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Abstract. Multilayer viscoelastic cylindrical shells have found their wide application in 

construction, mechanical engineering, aircraft and rocket engineering. The aim of the work is to 

investigation the reaction of an infinitely long three-layer cylindrical shell to the action of a 

normal load moving along an axis with a constant to resonant velocity. The paper presents a 

mathematical formulation of the problem, developed solution methods and obtained numerical 

results for the problems of stationary deformation of an infinitely long three-layered cylindrical 

shell under normal loading. The equations of motion of the bearing layers satisfy the Kirchhoff-

Love hypotheses. The solution methods are based on the joint application of the integral Fourier 

transform in the axial coordinate and the decomposition of all given and desired quantities into 

Fourier series in the angular coordinate. The outer and inner shells satisfy the Kirchhoff-Love 

hypotheses.   The Lame viscoelasticity equation is used as a linear equation of the filler motion. 

An effective algorithm for solving the problem of osculations of a three-layer viscoelastic 

cylindrical shell under normal loading has been developed on a computer. Critical velocities of 

wave propagation in a three-layer shell under the influence of moving loads are found. 

1. Introduction 

The dynamics of the half-plane under the action of moving loads is considered in [1]. In [2], the stress 

distribution in an elastic half-plane is studied, along the boundary of which an arbitrary load with vertical 

and horizontal components moves at an arbitrary speed. The solution is presented in integral form, 

numerical results are given for a concentrated normal force moving at a constant speed. The effect of a 

normal pressure pulse moving at transonic speed is considered in [3]. Displacements and bending 

moments depending on the velocity of linear load displacement in narrow plates elastically supported 

along the edges are determined in [4] using the Fourier transform in geometric coordinate and Laplace 

in time. The dynamics of a half-plane made of a non-linearly compressible material (soil) under the 

influence of a monotonically decreasing profile load was studied in [5]. The effect of the inhomogeneity 

of the band on the dynamic response under moving loads. 

The purpose of this work is to study the reaction of an infinitely long three-layer cylindrical shell to 

the action of a non-axisymmetric normal load moving along an axis with a constant to resonant velocity. 

mailto:ganish2011@gmail.com
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The equations of motion of the bearing layers satisfy the Kirchhoff-Love hypotheses. And also the filler 

satisfies the Lame equations and the boundary conditions on the contacts. 

 

2. Methods 

A shell of symmetrical structure is considered, in which the mechanical characteristics and thicknesses 

of the bearing layers are the same. For normal loading, the contact between the shells and the filler is 

assumed to be sliding with a two-way nature of the connection between them. 

The non - axisymmetric movement of the shell is written by the equations 

 𝐿𝑖𝑗к�⃗⃗� 0𝑘 − ∫ 𝐿𝑖𝑗к𝑅𝐸к(𝑡 − 𝜏)�⃗⃗� 0𝑘(𝑟 , 𝜏)
𝑡

0
𝑑𝜏 =

(1−𝜈0к
2)

𝐺0кℎ0к
�⃗� к + 𝜌0к

(1−𝜈0к
2)

𝐺0к

𝜕2�⃗⃗� 0𝑘

𝜕𝑡2  . (𝑘 = 1,2)  (1) 

Here the index k=1- for the inner shell (cylinder), k=2 -for the outer shell, �⃗⃗� 𝑘 - the vector of 

displacements of the points of the median surface of the carrier layer. For shells obeying the Kirchhoff-

Love hypotheses, the displacement vector has a dimension equal to three. For shells obeying the 

hypotheses of Timoshenko, the dimension of the displacement vector is equal to five. The linear 

equation of motion of the filler of the considered mechanical system has the form: 

 �̃�𝑐𝛻
2�⃗� 𝑐 + (�̃�𝑐 + �̃�𝑐)𝑔𝑟𝑎𝑑𝑑𝑖𝜗�⃗� 𝑐 = 𝜌𝑐

𝜕2�⃗⃗� 𝑐

𝜕𝑡2 ,      (2) 

where   �⃗� – displacement vector;𝜌к- medium density; к - sequence number of layers,
 
𝜈к − the Poisson's 

ratio, which we consider to be a non-relaxing value [6,7],   

�̃�к𝑓(𝑡) = 𝜆0к [𝑓(𝑡) − ∫ 𝑅𝜆к(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

−∞

] ; 

 �̃�к𝑓(𝑡) = 𝜇0к [𝑓(𝑡) − ∫ 𝑅𝜇к(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

−∞
],                  (3) 

𝑟 = 𝑟 (𝑥, 𝑦, 𝑧, 𝑡); 𝑅𝜆𝑘(𝑡 − 𝜏), 𝑅𝜇𝑘(𝑡 − 𝜏)– the core of relaxation;𝜆к0, 𝜇к0– instantaneous elastic 

modulus; 𝑓(𝑡)– an arbitrary function of time. 

When performing a sliding contact between the shell and the filler, when the shell obeys the 

Kirchhoff-Love hypotheses, the following conditions are placed on the contact 

𝑟 = 𝑎𝑘: 𝜎𝑟𝑧к = 𝜎𝑟𝜃к = 0; 

𝑢𝑟к = 𝑤𝑘; 𝜎𝑟𝑟к = ±𝑞𝑟к 

 (𝑘 = 1, 𝑟 = 𝑎1: 𝜎𝑟𝑟1 = −𝑞𝑟1; 𝑘 = 2, 𝑟 = 𝑎2: 𝜎𝑟𝑟2 = 𝑞𝑟2; ). (4) 

In the considered problem of propagation of free damped waves, the components of the external load 

are zero, i.e. 

𝑝𝑟𝑘 = 0, 𝑝𝜃𝑘 = 0, 𝑝𝑧𝑘 = 0. 

When considering the steady-state process, the Galilean transformation is applied  

𝜂 = (𝑥 − 𝑐𝑡)/𝐻, 

where H is some characteristic quantity in the problem under consideration, which has the dimension of 

length (for shells -the radius of the outer or inner carrier layer) [8,9]. Using the Galileo transformation, 

the problem is reduced to the joint solution of the shell and placeholder equations.  
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Applying the Fourier transform in a moving coordinate system by 𝜂 and decomposing all functions into 

Fourier series by 𝜃,  we find the Fourier coefficients (transformant of normal loads), which are 

transmitted to the filler from the side of the skin: 

 𝑞𝑟𝑘,𝑛
0 = −𝑝𝑘,𝑛

0 −
2𝐺

1−𝑣
𝑘2𝑓(𝑘)

𝑢𝑘,𝑛
0

ℎ
.           (5) 

Introducing potential functions [10], we search for the general solution of equations (1) in the form of 

Fourier series and satisfying the conditions (4), we obtain a system of algebraic equations for 

determining the functions 𝐴𝑛(𝜉). . . 𝑆𝑛(𝜉). The solution of this system can be written as 

 {𝐴𝑛 + 𝑆𝑛} = −
𝑎2

0𝑝𝑛
0(𝜉)

2𝐺𝑐 𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖
{𝐴𝑛

′ + 𝑆𝑛
′ }  ,   (𝑖, 𝑗 = 1, . . . ,6),     (6) 

𝐴𝑛
′ =

𝐴61

𝐾𝑛+1(𝑚𝜉)   
 ;    𝐵𝑛

′ =
𝐴62

𝐼𝑛(𝑚𝜉)
 ; 

  𝐶𝑛
′ = 𝑖

𝑎2𝐴63

𝜉𝐾𝑛+1(𝑚𝑠𝜉)
; 𝐷𝑛

′ = −𝑖
𝑎2𝐴64

𝜉𝐼𝑛(𝑚𝑠𝜉)
; 𝐸′ =

𝐴65

𝐾𝑛(𝑚𝑠𝜉)
; 

𝑆𝑛
′ =

𝐴66

𝐼𝑛(𝑚𝑠𝜉)
. 

Here 𝐴6𝑗  algebraic additions of elements 𝑎6𝑗 , and the elements of determinants 𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖  are 

calculated according to (6). 

Knowing 𝐴𝑛. . . 𝑆𝑛,  we obtain expressions for the terms of the expansions of the transformant of 

displacements and stresses in the placeholder [10]. Then the transformants of the radial components 

during the movement of the normal load on the shell surface are represented by the formulas 

 𝑢𝑟
0(𝜉, 𝜃, 𝑟∗) = −

𝑎2

𝐺𝑐
∑

𝑝𝑟,𝑛
0 (𝜉)𝑢𝑛(𝜉,𝑟∗)

𝑑𝑒𝑡𝑛‖𝑎𝑟𝑗‖
𝑐𝑜𝑠( 𝑛𝜃);∞

𝑛=0                  (7) 

𝑢𝑛(𝜉, 𝑟∗) = (
𝑛

𝑟∗
𝑠14 − 𝑚𝜉𝑠13)𝐴61 + (

𝑛

𝑟∗
𝑠16 + 𝑚𝜉𝑠15)𝐴62 + 

+(
𝑛

𝑟∗
𝑠18 − 𝑚𝜉𝑠17)𝐴63 − (

𝑛

𝑟∗
𝑠20 + 𝑚𝜉𝑠19)𝐴64 −

𝑛

𝑟∗
𝑠18𝐴65 +

𝑛

𝑟∗
𝑠20𝐴66;                      (8) 

 𝜎𝑟𝑟
0 (𝜉, 𝜃, 𝑟∗) = −∑

𝑝𝑟,𝑛
0 (𝜉)𝜎𝑛(𝜉,𝑟∗)

𝑑𝑒𝑡𝑛‖𝑎𝑟𝑗‖
𝑐𝑜𝑠( 𝑛𝜃);∞

𝑛=0  (9) 

𝜎𝑛(𝜉, 𝑟∗) = {[𝑡1𝜉
2 +

𝑛(𝑛 − 1)

𝑟∗
2 ] 𝑠14 +

𝑚𝜉

𝑟∗
𝑠13}𝐴61 + {[𝑡1𝜉

2 +
𝑛(𝑛 − 1)

𝑟∗
2 ] 𝑠16 −

𝑚𝜉

𝑟∗
𝑠15}𝐴62 + 

+{[𝑚𝑠
2𝜉2 +

𝑛(𝑛 − 1)

𝑟∗
2 ] 𝑠18 +

𝑚𝜉

𝑟∗
𝑠17} 𝐴63 − {[𝑚𝑠

2𝜉2 +
𝑛(𝑛 − 1)

𝑟∗
2 ] 𝑠20 +

𝑚𝜉

𝑟∗
𝑠19} 𝐴64 − 

−
𝑛

𝑟∗
[
𝑛−1

𝑟∗
𝑠18 − 𝑚𝑠𝜉𝑠17] 𝐴65 +

𝑛

𝑟∗
[
𝑛−1

𝑟2
∗
𝑠20 + 𝑚𝑠𝜉𝑠19] 𝐴66;  

𝑠13 =
𝐾𝑛+1(𝑚𝜉𝑟∗)

𝐾𝑛+1(𝑚𝜉)
; 𝑠14 =

𝐾𝑛(𝑚𝜉𝑟∗)

𝐾𝑛+1(𝑚𝜉)
;  𝑠15 =

𝐼𝑛+1(𝑚𝜉𝑟∗)

𝐼𝑛(𝑚𝜉)
; 𝑠16 =

𝐼𝑛(𝑚𝜉𝑟∗)

𝐼𝑛(𝑚𝜉)
; 

𝑠17, 𝑠18 are obtained from 𝑠13, 𝑠14 а 𝑠19, 𝑠20 -из 𝑠15, 𝑠16 replacement 𝑚 on 𝑚𝑠. Calculations are carried 

out for the system l of self-balanced forces concentrated at the same distance along the circumference 

[11]. In this case, radial displacements and stresses in the filler are calculated using the formulas  
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2𝐺𝑢𝑟

𝑝0
= −

2𝛾

𝑙
∑ [∫

𝑢𝑛(𝜉, 𝑟∗) 𝑐𝑜𝑠( 𝜉𝜂)𝑑𝜉

𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖

∞

0

] 𝑎𝑛 𝑐𝑜𝑠( 𝑛𝜃)

∞

𝑛=0

; 

 
𝜎𝑟𝑟𝑎2

𝑝0
= −

2

𝑙
∑ [∫

𝑎𝑛(𝜉,𝑟∗) 𝑐𝑜𝑠(𝜉𝜂)𝑑𝜉

𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖

∞

0
] 𝑎𝑛 𝑐𝑜𝑠( 𝑛𝜃)∞

𝑛=0 .          (10) 

Note the special cases of the problem.   

1. For a single-layer shell of the same radius as the outer bearing layer, the formula for determining 

deflections has the form    

  
2𝐺𝜔

𝑝0
= −

2(1−𝑣)

𝑘𝑙
∑ [∫

𝑐𝑜𝑠(𝜉𝜂)𝑑𝜉

𝑡4(𝑛,𝜉)

∞

0
] 𝑎𝑛 𝑐𝑜𝑠( 𝑛𝜃)∞

𝑛=0 .                                 (11) 

2. If the inner surface of the filler is not in contact with the supporting layer (a shell with a hollow 

filler, on the inner surface of which there are no stresses), then the boundary conditions have 

the form (4) and the solution is obtained by replacing the elements of the fifth row in the 

determinants 𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖ according to (4).  

3. Results and analysis 

The pre-resonant modes of motion are considered, while for obtaining numerical results in finite Fourier 

series (11), which were determined by numerical experiment on a computer. The calculation results for 

the displacements are shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Change in the 

radial distribution of 

deflections of the loaded 

outer bearing layer 

depending on 𝜃. 

 

Figure 1 shows the distribution of dimensionless deflections of the outer bearing layer 𝑤∗  by 

circumference in cross section 𝜂 = 0  for the impact of concentrated forces. As the relaxation kernel, 

we take the three-parameter Koltunov - Rzhanitsyn relaxation kernel:  

𝑅𝑘(𝑡) = 𝐴𝑒−𝛽𝑡/𝑡1−𝛼, 

with parameters: 

𝐴 = 0.048;  𝛽 = 0.05;  𝛼 = 0.10. 

The calculations were carried out at the following values of dimensionless parameters: 

𝑘 = 0.02; 𝑣 = 𝑣𝑐 = 0.33; 𝛾 = 250; 𝑝∗ = 12.5; 𝑘𝑠 = 20; 𝑐01 = 0.05 . 
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In the considered case, shells with a solid filler, with a circumferential distance from the place of 

application of the stress force, become tensile, which indicates the possibility of the carrier layer lagging 

behind the filler. Figure 1 shows the distribution of deflections of the loaded outer bearing layer along 

the circumference [12]. 

Figure 2 shows the distribution of the radial stress of the filler from θ. It can be seen that the voltage 

distribution over the filler circuit is non-monotonic. In the considered case, shells with a solid filler, with 

a circumferential distance from the place of application of the stress force, become tensile, which 

indicates the possibility of the carrier layer lagging behind the filler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of the radial 

stress of the filler from θ. 

4. Conclusions 

Thus, in the considered case, coaxial shells with a solid filler, with a circumference away from the place 

of application of the stress force, become tensile, which indicates the possibility of the carrier layer 

lagging behind the filler. 

An effective algorithm for solving the problem of vibrations of a three-layer viscoelastic cylindrical 

shell under normal loading has been developed on a computer. Critical velocities of wave propagation 

in a three-layer shell under the influence of moving loads are found. 
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