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The boundary value problem with nonlocal conditions
for a system of partial differential equations of the second order
is investigated. The parameterization method is used to

establish coefficient sufficient conditions for the correct

boundary value problem,
nonlocal condition,
parameterization method,
correctness, solvability.

On the
Q={(x1):t<x<t+0, 0<t<T}, T>0,0>0

we consider a non-local boundary value
problem for the system of partial
differential equations

D[%u} = A(x,t)Z—iJr S(x,t)u+ f(x,t),

(1)
ou ou
B&(X,O)+C(x)&(x+T,T): d(x), xe[0,w]
, (2)
u(t,t)="¥,(t), telo,T],

(3)
Du(t,t)=",(t), te[0, T].
(4)

Here ueR", D:2+£, A(x,t), S(x,t) are
ot ox

(nxn)- matrices and n -vector-function
f(x,t) is continuous in x and t on Q; B(x),

C(x) are (nxn)- matrices and n -vector-

solvability of the problem under consideration in terms of the
initial data. The algorithm for finding a solution is proposed.

function d(x) is continuous on [0,w]; the
function ‘I’l(t) is  continuously
differentiable and ¥,(t) is continuous
function on [0, T].

We denote by C(f_Z,R”) the space of
continuous in x and t functions u: Q — R"

with the norm

bl =t

Alx.t)

A= o &; (thj

n
= MaX Max
(%t)eQ i=Ln ;

)

o, = maxja (e, [, = maxf, o), i=12

xe[0,0] te[0,T]

The aim of this work is to find coefficient
sufficient conditions for the correct
solvability of problem (1) - (4).

In the theory of boundary value problems
for partial differential equations, problems
with  nonlocal constraints are of
considerable interest. We note the papers
[3],[7], where one can find a detailed survey
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and bibliography on these problems. To
study boundary value problems for systems
of hyperbolic equations with a mixed
derivative, a method for introducing
functional parameters was proposed in [2],
which is a generalization of the
parameterization method [6], developed for
solving boundary value problems of
ordinary differential equations.

Following [1], we introduce new unknown
functions v(x,t)zg—z(x,t), w(x,t)=Du and
then problem (1) - (4) is reduced to an
equivalent problem for the system of first-
order hyperbolic equations

Dv = A(x,t\v+S(x,t)u+ f(xt), (x,t)eQ,

(5)
B(xV(x,0)+C(xM(x+T,T)=d(x), xe[0,w],
(6)
u(xt)=",(t)+ [v(n,tkdn, te[0,T],

t

7)
w(x,t) = ¥,(0)+ [ Dv(n,t)im, te[0T].

(8)

If the continuous function u(x,t) is known,
then by solving the two-point boundary
value problem (5) - (6), we find v(x,t). If a
continuous function v(x,t) is known, then
from (7) - (8) we define the functions u(x,t)
and w(x,t).

If the function u(x,t) is solution to problem
(1)-(4), then the triple of continuous
functions (v(x,t), u(x,t), w(x,t)) is solution to
problem (5) - (8), where

V(X,t):a—u, W(X,t): Du and vice versa, if
OX

(v(x,8), u(x,t), w(x,t)) is solution to problem
(5) - (8), then from (7) it follows that the
function u(xt) satisfies condition (3) and

. L ou ou
has continuous derivatives a—a and
X

ou ou
D| — |. Substituting v(X,t)=— into (5) -
[ax} ubstituting v(x,t)= =" into (5)

(6) and taking into account (7)-(8),
w(x,t)=Du, we have that the function u(x,t)
satisfies (1) and conditions (2) - (4) for all
(X,t)eﬁ, xe[0,m], te[0,T], that is the
function u(x,t) is a solution to the nonlocal
boundary value problem (1) - (4).

The triple of continuous on Q functions
(v(x,t), u(x,t), w(x,t)) is called the solution of
the boundary value problem for equation
(5) under conditions (6) - (8) in the broad
sense by Friedrichs [6], if the function v(x,t)
is continuously differentiable with respect
to the variable t along the characteristic and
satisfies the family of ordinary differential
equations, condition (6), where the function
v(x,t) with functions u(xt) and w(xt) is
related by relations (7) - (8).

The nonlocal boundary value problem (5) -
(8) for a system of equations with the same
principal part according to Courant is
reduced to family of ordinary differential
equations on
H={&1):0<t<w, 0<t<T}, T>0,0>0

3

= A&, Tl +S (& 1)i(E 1)+ F(&,T), t€[0,T]
, (9)

with the boundary condition
BeN(£0)+C(el(eT)=d(®). g<l0.al,
(10)

o)}

functional relations
T+
ﬁ(&,r): ‘I’l(r)+ IV(Q,T)d(;, t1€[0,T],

(11)
T+E A~
VT/(&,I):‘PZ(I)+ I%dg, t€[0,T],

T

(12)
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where

\7(&, r) = V(?’; +, ’E), :&(?’; r) = A(i +, r), S~(§ r) = S(?’; #esp)ecgi(%ty) =f (@ +7, r),

WE 1) =wE+1,7), 0E1)=u(E+71);
A(&,7) and S(& 1) are (nxn)-matrices and
the n-vector function f (& 1) is continuous
intand &on H; C(g) and B(&) are (nxn)-
matrices and the n-vector function d (¢) is
continuous on [0,m]; the function ‘I’l(r) is
continuous and W,(t) is continuously
differentiable on [0,T].

By C(ﬁ, R”) we denote the space of
functions V:H — R" continuous in £ and 1

with the norm ||\7||0 = érggli)(] trg%”?(&,r)”.

A continuous function V(§,t) is
called the solution to the boundary value
problem (9) - (12) with known continuous
functions G(&,7) and W(E,1), if the function
V(&,T)EC(H,R”) has a
derivative with respect to variable Tt and
satisfies the family of ordinary differential
equations (9), the boundary condition (10)
for all (&, r)e H, £<[0,0], where the

functions U(&,t) and W(g,t) are related to

continuous

the function V(£,t) by functional relations
(11) - (12).
The continuous function u(x,t): G(X—t,t)

on Q is called a solution of the boundary
value problem for the system equations (1)
with conditions (2) - (4) in the broad sense.
To find a solution to problem (9) - (12)
algorithm is proposed.

Step 0: In (9), taking U(¢,1)=¥,(tr) and
having solved the two-point boundary value
problem (9) - (10), we determine the initial
approximation \7°(§,r). Using
. . N Ve

V(g,1)=V°(¢,1), =— =—— from relations
ot ot

(11) - (12) we find T°(&,t) and W°(& 1),

Step 1: Taking (&, t)=0°(&, 1) on the right-
hand side of (9), solving the boundary value
problem (9) - (10), we define the
approximation V¥ (g, t). Substituting the

V(1)
ot

(11) - (12), we find G¥ (g, 1) and WY (g, 7).
Etc.
Continuing this process, at the k-th step we

get (\7'((2';,1), Uk(ﬁ,r), w- (é’;,t)).

At each step of the proposed algorithm, we

found function V?(¢,7) and into

apply the parameterization method to find a
solution to the two-point boundary value
problem.

One of the main conditions for the unique
solvability of the problem posed is the
invertibility of the matrix Q, (&,h), h>0:

Nh=T, v=1, 2,... composed of the sums of
iterated integrals over variable t of length h
from the coefficient matrix of the system
and the matrices of the boundary condition

L R N A A o ]
L Eh) -1 0 0 0
QEN=| 0 1L, Eh) -1 0 0
0 0 0 - I+L,,Eh) -

)

I is the identity matrix of dimension n,

rh rh n

Lvr(i,h): jﬂ(&,‘cﬁd‘rﬁ I A(E_,,‘cl) J/&(i,tz)dtldtz+---+
(r-1)h (r-1h (r-1)h

rh N1

+ .[ A(&,rl)--- j;\(i,rv)dtl...drv

(r-1h (r-1)h

Teopema 1. Ilyctb npu HekoTOopbix h u N -
Matpua Q o6patuma npu Bcex 0 U
BBINOJIHAKOTCSI HEPABEHCTBA:

Torpa nocnefoBaTebHble NIPUOIMKEHUS V

PaBHOMEPHO cxXogAaTcd K A%
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e/JMHCTBEHHOMY pelleHu0 3azadyu (9)-

(12).
HpI/I JOKa3aTeJIbCTBe TeopeMbI
HCIIOJIb3YEeTCA cxeMma JOKa3aTeJIbCTBa

TeopeMbl [4, c¢.54], [1] ¥ yka3aHHbIHA
aJITOPUTM HaXO/JeHUs pelleHUs] KpaeBou
3ajauu (9)-(12).

Teopema 2. IlycTp BBINIOJIHEHBI YCJIOBHUA
TeopeMbl 1. Torzga HesoKasbHAadA KpaeBasd
3afjaya (1)-(4) wuMeeT eAUHCTBEHHOE
pelieHue U.

13 Teopembl 1 BbITeKaeT, 4To 3aja4a (9)-
(12) omHo3HayHO paspemuMa. Tak Kak
3ajava (9)-(12) sakBuBaJsieHTHa 33ajiaue (5)-
(8), a3agaua (5)-(8) akBuBaJieHTHa 33/jaue
(1)-(4), To moayuumM, yto 3azada (1)-(4)
uMeeT

€JUHCTBEHHOE peumenue u.

OTMeTuM, 4YTO mNpHu (GUKCUPOBAHHOU
¢yHkuuu u 3azava (9)-(10) saBasercd
JIBYXTOY€YHbIX
3ajia4 Jist
nuddepeHnManbHbIX ypaBHeHUH (11).

Theorem 1. Let for some h>0: Nh=T and
v,v=1,2,..., (nNxnN)-the matrix Q.(§h) be
invertible for all  €[0,®] and the following

CceMelCTBOM KpaeBbIX

0ObIKHOBEHHBIX

inequalities hold:

D [l enl<r.0);

b) et (imacut

where a(&)= {Q%H,&(&, ’EX‘, c =const. Then

successive approximations of
(\7"(&,1), a*(e,1), w* (&,r)) converge
uniformly to

(60 061 W (g 0)eCA.R)-  the
unique solution of problem (9) - (12).

In the proof of the theorem, we use the
scheme for proving the theorem [6, p. 54],
[1] and the indicated algorithm for finding a

solution to the boundary value problem (9)
- (12).

o<

6(§wfzﬂ(i’“ —1—a(§)h—...—M <

vl

Theorem 2. Let the conditions of Theorem
1 be satisfied. Then the nonlocal boundary
value problem (1) - (4) has a unique
solution u”(x,t)e C(ﬁ, R").

Theorem 1 implies that problem (9) - (12) is
uniquely solvable. Since problem (9) - (12)
is equivalent to problem (5) - (8), and
problem (5) - (8) is equivalent to problem
(1) - (4), we obtain that problem (1) - (4 )
has a unique solution u“(x,t)e C(ﬁ, R" )
Note that for a fixed function G(g,1),
problem (9) - (10) is a family of two-point
boundary value problems for ordinary
differential equations

~

% = ;&(é,’t)\?' + é(&,r), t€[0,T],

(13)
with boundary condition (10).
The parameterization method is applied to
the family of linear two-point boundary
value problems (13), (10).
Definition 1. The two-point boundary value

problem (13), (10) is called correctly
solvable if for any é(E_,,t) and J(&) ithas the

unique solution \7(&, r) IS C(ﬁ, R”) and for it

)

where K(&) is continuous on [0,0] and
function independent of é(& 1), 5(@)

Definition 2. Boundary value problem (1) -
(4) is called well-solvable in the broad sense
if for any f(x,t), d(x), ¥1(t) and Y2(¢), it has a
unique solution u”(x,t)e C(ﬁ, R") and it

the estimate

max (€, )| < K(a)max(ua H , max”é(?,,r]

1 €[0,T]

satisfies the estimate
max(u

)

where K=const is independent of f(x,t), d(x),
Y1(t) and Y2(t).

au
0" 1l ox

d quHz)

\Pl

o’ 1’ 2!

js KmaxQ\f

0
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Theorem 3. If the boundary value problem continuous partial derivatives

(1) - (4) for any fur?ctlons f(x,.t), d(x), ‘P.1(:.t) 8_u’ 8_u’ D[@_u} satisfying (1) for all
and W;(t) has a unique solution, then it is ot ox OX
correctly solvable. (x,t)e Q with conditions (2) - (4) is also a

If the constructed solution in the wide sense
is continuously differentiable with respect
to x and ¢t then function u(xt) with

classical solution to the boundary value
problem (1) -(4).
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