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 The boundary value problem with nonlocal conditions 
for a system of partial differential equations of the second order 
is investigated. The parameterization method is used to 
establish coefficient sufficient conditions for the correct 
solvability of the problem under consideration in terms of the 
initial data. The algorithm for finding a solution is proposed. 
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The aim of this work is to find coefficient 

sufficient conditions for the correct 

solvability of problem (1) - (4). 

In the theory of boundary value problems 

for partial differential equations, problems 

with nonlocal constraints are of 

considerable interest. We note the papers 

[3], [7], where one can find a detailed survey 
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and bibliography on these problems. To 

study boundary value problems for systems 

of hyperbolic equations with a mixed 

derivative, a method for introducing 

functional parameters was proposed in [2], 

which is a generalization of the 

parameterization method [6], developed for 

solving boundary value problems of 

ordinary differential equations. 

Following [1], we introduce new unknown 

functions    tx
x

u
txv ,,




 ,   Dutxw ,  and 

then problem (1) - (4) is reduced to an 

equivalent problem for the system of first-

order hyperbolic equations 
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w(x,t)=Du, we have that the function u(x,t) 

satisfies (1) and conditions (2) - (4) for all 

  ],0[],,0[,, Ttxtx  , that is the 

function u(x,t) is a solution to the nonlocal 

boundary value problem (1) - (4). 

The triple of continuous on   functions 

(v(x,t), u(x,t), w(x,t)) is called the solution of 

the boundary value problem for equation 
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sense by Friedrichs [6], if the function v(x,t) 

is continuously differentiable with respect 
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equations, condition (6), where the function 
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 A continuous function  ,~v   is 

called the solution to the boundary value 

problem (9) - (12) with known continuous 

functions  ,~u  and  ,~w , if the function 
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Теорема 1. Пусть при некоторых h и N – 

матрица Q обратима при всех 0 и 

выполняются неравенства: 

Тогда последовательные приближения v 

равномерно сходятся к v– 
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единственному решению задачи (9)-

(12). 

При доказательстве теоремы 

используется схема доказательства 

теоремы [4, c.54], [1] и указанный 

алгоритм нахождения решения краевой 

задачи (9)-(12). 

Теорема 2. Пусть выполнены условия 

теоремы 1. Тогда нелокальная краевая 

задача (1)-(4) имеет единственное 

решение u. 

Из теоремы 1 вытекает, что задача (9)-

(12) однозначно разрешима. Так как 

задача (9)-(12) эквивалентна задаче (5)-

(8), а задача (5)-(8) эквивалентна задаче 

(1)-(4), то получим, что задача (1)-(4) 

имеет единственное решение u. 

Отметим, что при фиксированной 

функции u задача (9)-(10) является 

семейством двухточечных краевых 

задач для обыкновенных 

дифференциальных уравнений (11). 

Theorem 1. Let for some h>0: Nh=T and 

,=1,2,…, (nNnN)-the matrix Q(,h) be 

invertible for all ],0[   and the following 

inequalities hold: 
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successive approximations of 

       ,~,,~,,~ kkk wuv  converge 

uniformly to 

        nRHCwuv ,,~,,~,,~ ***  - the 

unique solution of problem (9) - (12). 

In the proof of the theorem, we use the 

scheme for proving the theorem [6, p. 54], 

[1] and the indicated algorithm for finding a 

solution to the boundary value problem (9) 

- (12). 

Theorem 2. Let the conditions of Theorem 

1 be satisfied. Then the nonlocal boundary 

value problem (1) - (4) has a unique 

solution    nRCtxu ,,*  . 

Theorem 1 implies that problem (9) - (12) is 

uniquely solvable. Since problem (9) - (12) 

is equivalent to problem (5) - (8), and 

problem (5) - (8) is equivalent to problem 

(1) - (4), we obtain that problem (1) - (4 ) 

has a unique solution    nRCtxu ,,*  .  

Note that for a fixed function  ,~u , 

problem (9) - (10) is a family of two-point 

boundary value problems for ordinary 

differential equations 
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with boundary condition (10). 

The parameterization method is applied to 

the family of linear two-point boundary 

value problems (13), (10). 

Definition 1. The two-point boundary value 

problem (13), (10) is called correctly 

solvable if for any  ,
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~
 it has the 

unique solution    nRHCv ,,~   and for it 

the estimate 
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Definition 2. Boundary value problem (1) - 

(4) is called well-solvable in the broad sense 

if for any f(x,t), d(x), 1(t) and 2(t), it has a 

unique solution    nRCtxu ,,*   and it 

satisfies the estimate 
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where K=const is independent of f(x,t), d(x), 

1(t) and 2(t). 
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Theorem 3. If the boundary value problem 

(1) - (4) for any functions f(x,t), d(x), 1(t) 

and 2(t) has a unique solution, then it is 

correctly solvable. 

If the constructed solution in the wide sense 

is continuously differentiable with respect 

to x and t, then function u(x,t) with 

continuous partial derivatives 






















x

u
D

x

u

t

u
,,  satisfying (1) for all 

  tx,  with conditions (2) - (4) is also a 

classical solution to the boundary value 

problem (1) -(4). 
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