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Introduction to SPSS Statistics in Psychology, 5th edition, offers comprehensive and engaging coverage of how 
to carry out statistical analyses using SPSS Statistics.

Fully updated to include an even wider range of statistical methods and to incorporate the latest version of SPSS 
Statistics, this text offers clear, step-by-step instruction and advice to students on using SPSS Statistics to analyse 
psychological data.

“An indispensable guide to SPSS, especially tailored for psychology students at all levels. The new edition is greatly 
enhanced by several new features, including chapters on the analysis of moderator variables, statistical power, 
meta-analysis, and the use of SPSS syntax. It is superbly presented and illustrated with excellent step-by-step 
procedures and guides to the interpretation” 

Professor Ronnie Wilson, University of Ulster

This book is supported by a companion website featuring a range of resources to help students in 
their studies.  Self-test questions, additional data sets plus handy quick guides to carrying out 
tests can all be found at www.pearsoned.co.uk/howitt

For each statistical test, the text discusses

 • What the test is used for 
 • When you should and shouldn’t use it 
 • Data requirements and any problems in usage  
 • Step-by-step direction on how to carry out the 
  test, using colour screenshots and labelled  
  guidance on each part of the process
 • How to interpret and report the output  
 • ‘At a glance’ summary of steps taken 
  to do each test

This new edition also features

 • New chapter on moderator analysis 
 • New chapter on power analysis 
 • New chapter on meta-analysis  
 • New coverage of how to use syntax
 • Three new chapters on multiple regression  
 • New section on linear structural modelling, 
  based on a freely available student version  
  of LISREL (Linear Structural Relationships)

Suitable for students to use alongside lectures or independently when needing to get to grips with SPSS Statistics.
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Visit the Introduction to SPSS Statistics in Psychology 5th edition Companion Website at
www.pearsoned.co.uk/howitt to find valuable student learning material including:

• Chapter overviews to introduce and give a feel for topics covered in the chapter

• Multiple choice questions to test your understanding

• Additional data sets with exercises for further practice and self testing

• A set of research scenarios and questions that enable you to check your understanding of
when to use a particular statistical test or procedure

• An online glossary to explain key terms

• Interactive online flashcards that allow you to check definitions against the key terms
during revision

• A guide to using Microsoft Excel to help you if doing statistical analyses

• A guide to statistical computations on the web for your reference

• Roadmaps to help you to select a test for analysis of data
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Introduction

Statistical Package for the Social Sciences (SPSS, an IBM company*) was initially developed in
1965 at Stanford University in California. Since then it has become the leading data analysis
package in the field and available all over the world in universities and elsewhere. It dominates
the field. Modern computing developments have allowed it to be used on home computers.
Because of SPSS’s popularity and universality, being able to use it is one of the most readily trans-
ferable of all research skills. Once learnt, SPSS can be used virtually anywhere in the world. SPSS
is constantly being updated both in terms of the range of statistical techniques covered and the
detail of the output.

This book is a stand-alone step-by-step approach to statistical analysis using SPSS for
Windows and is applicable to Releases 10 to 19. It is suitable for students and researchers wish-
ing to analyse psychological, sociological, criminological, health and similar data. SPSS does
change with time but this book will also be helpful to those using earlier releases of SPSS as the
changes which affect this book are generally hard to notice. Although the last three releases of
SPSS have Statistics in the title and releases 17 and 18 were called PASW Statistics, we shall gen-
erally refer to all versions as SPSS unless we are speaking about particular versions, in which case
we will give their release numbers. This is what is generally done by most users. The official name
of the latest release at the time of publication is IBM® SPSS® Statistics 19 (Release 19.0.0).

This book updates the fourth edition of Introduction to SPSS in Psychology to cover recent
changes in SPSS. Nevertheless, the structure provides the fastest possible access to computerised
data analysis with SPSS even when using the most advanced techniques. Each statistical technique
is carefully described step-by-step using screenshots of SPSS data analysis and output. The user’s
attention is focused directly on the screenshots, what each of them signifies, and why they are
important. In other words, it is as close as is possible in a textbook to face-to-face individual
instruction. Users with little or no previous computer skills will be able to quickly analyse quite
complex data and appreciate what the output means.

The chapters have a common pattern. The computer steps (which keys to press) are given in
exact sequence. However, this is not the end of any data analysis, and so there are also explana-
tions of how to interpret and report the SPSS output. For this new edition we have added three
new SPSS chapters on statistics techniques (simple mediational analysis, simultaneous multiple
regression and interactions in multiple regression) and one on data transformation as well as
including two further sections. The first is a section on structural equation modelling with the 
student version of LISREL (Linear Structural Relationships) which is freely downloadable from
Scientific Software (http://www.ssicentral.com/lisrel/student.html). This method is becoming
increasingly widely used and so some familiarity with it is useful. The last two chapters of this
section have been put on the website. The second section introduces the topics of power analysis
and meta-analysis also using software which is freely available on the Internet. The two chapters
of this section have also been placed on the website.

* SPSS was acquired by IBM in October 2009.
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The basic structure of the major chapters is as follows:

A brief bulleted overview of the use of the procedure or statistical technique. This will be
sufficient often to get a clear idea of where and when to use the techniques.

A need-to-know account of what the technique is for and what needs to be known in prepa-
ration to doing the SPSS analysis. It also gives information about when the technique is used,
when is should not be used, the data required for the analysis, and typical problems that we
know from long experience that cause users difficulties.

An illustrative example is given of the appropriate sorts of data for each statistical technique.
These examples allow the user to work through our computations, and to gain confidence
before moving on to their own data.

Data entry for a particular statistical analysis is presented visually and explained in adjacent
text.

This is followed by a step-by-step, screenshot-by-screenshot description of how a particular
statistical analysis is done using SPSS for Windows.

The SPSS statistical output is included exactly as it appears on the monitor screen and in print-
outs of the analysis. This is crucial – SPSS output can be confusing and unclear at first.

The key features of the statistical output are highlighted on the output itself together with sim-
ple explanations of what the important parts of the output mean – SPSS output is infamous
for its overinclusiveness.

Suggestions are made on reporting the statistical findings in reports, theses and publications.
These include samples of how to describe research findings and present tables clearly. The
form followed is that recommended by the American Psychological Association (APA) which
is also widely used by other publishers.

This book is based on the latest version of SPSS Statistics for Windows (that is, Release 19);
but remains suitable for Releases 10 to 18 because of their similarity. Notes after this Introduction
describe the main differences between these releases. Although SPSS is updated every year or so,
usually there is little difficulty in adapting knowledge gained on the older versions to the new version.

Introduction to SPSS Statistics in Psychology is an excellent single source for data analysis. It
is complete in itself and contains many features not available elsewhere. Unlike other SPSS books,
it meets the needs of students and researchers at all levels. However, it is also part of a package
of methodology books by the same authors designed to be comprehensive, authoritative and
exhaustive. The three volumes in this series are closely tied to each other. The other two are:

Introduction to Statistics in Psychology (2011) (5th edition) (Pearson Education: Harlow):
This is a thorough introduction to statistics for all students. It consists of a basic introduction
to key psychological statistics and, although maintaining its accessibility to students, it also
covers many intermediate and advanced techniques in detail. It contains chapters on topics,
such as meta-analysis, which are seldom covered in other statistics texts. Importantly, the
structure of the statistics textbook is closely linked to this book. Thus, anyone following a
chapter in the statistics book will, where appropriate, find an equivalent chapter in this book
with details of how to do the analysis using SPSS. Similarly, anyone using this book will be
able to find a detailed account of the technique in the statistics textbook.

Introduction to Research Methods in Psychology (2011) (3rd edition) (Pearson Education:
Harlow): This is a major textbook on research methods in psychology. It covers both quanti-
tative and qualitative methods. There are major chapters on report writing, ethics in psychol-
ogy and searching the literature. All aspects of experimental, field study, survey and
questionnaire construction are covered, and guidance is given on qualitative data collection
and analysis. There are numerous cross-references to this book and Introduction to Statistics
in Psychology.
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In other words, the three books offer a comprehensive introduction to conducting research in
psychology. They may be used independently or in any combination.

Introduction to SPSS Statistics in Psychology can be used alongside virtually any statistics text-
book to support a wide variety of statistics and practical courses. The range of statistical tech-
niques covered is large and includes the simplest as well as the most important advanced
statistical techniques. The variety of techniques described and the relative ease of using SPSS
Statistics for Windows ensure that this guide can be used at introductory, intermediate and
advanced levels of statistics teaching. The structure of the book is such that statistical procedures
are described more or less in order of conceptual difficulty. Generally speaking, computing with
SPSS is as easy for advanced statistical techniques as it is for simple ones.

Chapter 2 is essential reading, as it explains data entry and basic computer operating.
However, the subsequent chapters can be used on a stand-alone basis if desired. Users with
insufficient time to work chapter-by-chapter through the guide should find enough detail in the
relevant chapters to complete an SPSS analysis successfully. Table 1.4, at the end of Chapter 1,
states which chapter is most appropriate for which purpose, thereby enabling the reader to move
directly to that part of the book.

Those who work steadily through the book will profit by doing so. They will have a much bet-
ter overview of SPSS computing procedures. For most readers, this is possible in a matter of
hours, especially if they have prior knowledge of statistics.

SPSS has an extensive catalogue of statistical procedures – far more than could be included.
We have selected those suitable for most purposes when the range of possibilities is likely to 
confuse the average reader. The quickness and ease of SPSS mean that more advanced users can
explore the alternatives by using the menus and dialog boxes. Most users will find our coverage
more than sufficient.

Dennis Howitt
Duncan Cramer

The data and statistical analyses carried out in this book correspond almost always 
to those in the authors’ accompanying statistics text, Introduction to Statistics in
Psychology (2011) (5th edition) (Pearson Education: Harlow). This book is referred to
as ISP, followed by the corresponding chapter or table number.
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Key differences between 
IBM SPSS Statistics 19 and
earlier versions

PASW Statistics 18

There seem to be very few differences between 19 and 18 and between 18 and 17 for the proce-
dures described in this book.

PASW Statistics 17

This version of SPSS was called PASW which stands for Predictive Analytic Software. Otherwise,
there appear to be very few differences between 17 and 16 for the procedures described in this
book. Data Reduction which includes Factor Analysis is now called Dimension Reduction. Right
clicking on the keys in the ‘Select If: If’ box no longer gives a description of what the keys do.

SPSS 16

There seem to be very few differences between 16 and 15 for the procedures described in this
book. Basic tables are no longer available in the Tables procedure so the tables in Chapter 8 are
produced with Custom Tables. In the dialog boxes the OK, Paste, Reset, Cancel and Help options
are on the bottom of the box rather than on the right hand side while the analyses options are
on the right-hand side rather than at the bottom of the box.

SPSS 15

There also appear to be very few differences between 15 and 14. The ‘Graph’ menu in 14 dis-
plays all available options. The procedure for ‘Chart Builder’ is described in Chapter 4 of this
book as it was not available in releases before 14. An alternative procedure is shown in Chapters
6, 9 and 11.

SPSS 14

Similarly there seem to be very few differences between 14 and 13. Release 13 does not have
‘Chart Builder’ which was introduced in 14. In 14 the Properties dialog box of the ‘Chart Editor’
has separate boxes for ‘Text Style’ and ‘Text Layout’.
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SPSS 13

The major differences between 13 and 12 are to ‘Compute Variable …’, ‘Scatter/Dot …’ and the
‘Chart Editor’. Also the plots in the output of 13 are shaded.

In 12 the ‘Compute Variable’ dialog box has a single ‘Functions’ menu from which options
can be chosen. ‘Scatter/Dot …’ is called ‘Scatter …’, the ‘Scatter/Dot’ dialog box is called
‘Scatterplot’ and there is no ‘Dot’ option.

In 12, to label the slices of a pie diagram and add the percentages of cases in each, double click
anywhere in the ‘Chart Editor’, double click on the pie diagram (to open the ‘Properties’ dialog
box), select ‘Data Value Labels’ (in the ‘Properties’ dialog box), select ‘Count’ in the ‘Contents’
box, select the red ‘×’ (to put ‘Count’ in the ‘Available’ box), select the variable name (e.g.
‘Occupation’), select the curved upward arrow (to put ‘Occupation’ in the ‘Contents’ box), select
‘Percent’ and the curved upward arrow (to put ‘Percent’ in the ‘Contents’ box), select ‘Apply’ and
then ‘Close’.

To fit a regression line to a scatterplot, click on a dot in the chart of the ‘Chart Editor’ so that
the circles in the plot become highlighted, select ‘Chart’, select ‘Add Chart Element’, select ‘Fit
Line at Total’ (which opens the ‘Properties’ dialog box). Assuming that the ‘Fit Line’ tab is active,
select ‘Linear’ (this is usually the default) and then ‘Close’.

SPSS 12

The major differences between 12 and 11 also apply to 10. They are relatively few. In 11 and 10
variable names cannot begin with a capital letter and are restricted to eight characters. The ‘Data’
and ‘Transform’ options are not available in the ‘Viewer’ or ‘Output’ window. Some output, such
as partial correlation and reliability, is not organised into tables. The ‘Chart Editor’ works dif-
ferently. To fit a regression line to a scatterplot, double click anywhere in the scatterplot to open
the ‘Chart Editor’, select ‘Chart’, select ‘Options …’ (which opens the ‘Scatterplot Options’ dia-
log box), select ‘Total’ under ‘Fit Line’ and then ‘OK’.
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A brief introduction to
statistics

Overview

Unfortunately, there is no gain without some effort in statistics. There are a number of statistical
concepts which need to be understood in order to carry out a decent statistical analysis. Each of
these is discussed and explained in this chapter.

Key ideas covered in this chapter include score variables versus nominal (category) variables,
unrelated versus related designs, descriptive versus inferential statistics, and significance testing.
With a knowledge of each of these it is possible to quickly develop a working knowledge of 
statistical analysis using SPSS Statistics.*

The appropriate statistical analysis very much depends on the nature of the research design
employed.

The chapter provides detailed advice on how to select a statistical technique for the analysis of
psychological data.

1.1 Basic statistical concepts essential in SPSS Statistics analyses

The elements of statistics are quite simple. The problem is in putting the elements together.
Nobody can become expert in statistical analysis overnight but, with a very small amount of
knowledge, quite sophisticated analyses can be carried out by inexperienced researchers.
Mathematical ability has very little role to play in data analysis. Much more important is that the
researcher understands some of the basic principles of research design. There are close links
between different research designs and what is appropriate in terms of statistical analysis methods.
At the most basic level, there are two broad classes of research design – the comparative and the
correlational designs – though these have any number of variants. The type of research design
involved in the study lays down broadly the sort of statistical tests, etc. which are needed for 
the analysis of the data from that study. Of course, sometimes the personal preferences of the
researcher play a part since, quite often, there are several ways of achieving much the same ends.

* SPSS was acquired by IBM in October 2009.
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Table 1.1 A simple comparative design such as an experiment

Participant Group A Participant Group B
(case) (e.g. experimental group) (case) (e.g. control group)

1 13 11 5

2 12 12 8

3 10 13 6

4 7 14 9

5 5 15 3

6 9 16 6

7 5 17 5

8 14 18 4

9 12

10 16

Mean = 10.30 Mean = 5.75
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Before we can discuss research designs, there are two basic concepts we need to understand as
they are part of the jargon of statistics and SPSS Statistics:

Variable A variable is any concept that can be measured and which varies. Variables are
largely inventions of the researcher and they vary enormously from study to study. There are
a few fairly standard variables, such as age and gender, that are very commonly measured.
Typically, however, the variables used tend to be specific to particular topics of study.
Variables are the ways in which psychologists attempt to measure the concepts that they use
in their research – a variable, generally, cannot perfectly measure a concept and so is an
approximation to the concept. For this reason, it is important to understand that data and 
theory do not always map closely one on the other.

Cases A case is simply a member of the sample. In psychology a case is usually a person (i.e.
an individual participant in the research). Cases are very much SPSS Statistics jargon and it is
a wider and more embracing term than the participants which psychologist talk about.

Variables normally appear in SPSS analyses as the columns of the data spreadsheet. Cases (norm-
ally) appear in SPSS analyses as the rows of the data spreadsheet. In other words, variables and
cases can be set out in the form of a matrix – the size of which depends on the number of vari-
ables and cases involved.

1.2 Basic research designs: comparative versus correlational designs

■ Comparative designs
The basic comparative design compares the typical or average score of a group of participants
with that of another group. This might involve comparing a group of men with a group of women
or comparing an experimental group with a control group in an experimental study. This design
is illustrated in Table 1.1. Usually, in this sort of design, the comparison is between the average
score for one group and the average score in the other group. Usually what most people refer to
as the average is called by statisticians the mean. So the design can be used to assess whether, say,



FIGURE 1.1 Fundamentals of design and statistical analysis
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the average time taken by males getting ready for a first date is different from the average time
taken by females.

This is the basic version of a whole range of statistical procedures which compare the average
scores in different group in more complex research designs. The analysis of variance (ANOVA)
involves a whole family of different research designs based on this basic principle. Look at 
Figure 1.1 for more information.

■ The correlational design
The basic correlational design is one in which the researcher measures several different things at the
same time using a single group of participants. These things which are measured might be gender,
age, IQ, extraversion and dogmatism. This basic correlational design is illustrated in Table 1.2.

The statistical analysis of this sort of design is usually based on the correlation coefficient or
some other closely related statistical procedure based on the correlation coefficient. A correlation
coefficient is a numerical index of the relationship between two measures. The data from a cor-
relational design may be analysed using a variety of statistics as can seen in Figure 1.1.

Correlational designs are sometimes called cross-sectional studies. They can be more complex,
for example, when the researcher adds a time (temporal) dimension to the research design. There



Table 1.2 The basic correlational design

Participant Gender Age IQ Extraversion Dogmatism

1 Female 26 110 15 9

2 Male 31 130 19 6

3 Female 25 160 22 4

4 Female 22 110 34 8

5 Male 33 170 12 3

6 Female 28 140 17 7

7 Male 29 90 16 6

8 Male 34 130 22 5

9 Female 23 80 26 4

10 Male 27 70 11 2

6 CHAPTER 1 A BRIEF INTRODUCTION TO STATISTICS

are special statistics to deal with these more complex designs (e.g. causal modelling such as lin-
ear structural relationship, LISREL), of course, but these are essentially correlational in nature.

It would be misleading to pretend that the above covers every available statistical technique
but a surprising range of statistics can be better understood if the underlying research design is
clear to the researcher. Also remember that statistics is a mature discipline in its own right so it
is unrealistic to assume that there are shortcuts to mastery of statistics in psychology. Getting
basic concepts clear goes a long way towards this mastery, as does some experience.

1.3 The different types of variable in statistics

One’s ability to use statistics in a practical context will be made much easier if some basic facts
are learnt about the fundamental different types of variables in statistics. Different types of vari-
able require different types of versions of statistical techniques for their analysis. So there are two
basic questions that need to be asked:

What types of variable have I got?

What statistical tests analyse the variables in the way that I want?

Fortunately, there are just two main types of data so this is relatively straightforward. On the other
hand there are many different statistical tests and techniques. Of course, the way to learn about each
of these is to gain some experience trying each of them out by working through the chapters
which follow in this book. Most of the chapters in this book cover just one statistical technique
or test in each chapter. The important thing is that each chapter tells you exactly what sorts of
data (variables) are appropriate for that test or technique – and then how to do the analysis using
a computer.

■ Types of variable
For all practical purposes, variables can be classified as being of two types (see Figure 1.2):

Score variables Some variables are scores. A score is when a numerical value is given to a vari-
able for each case in the sample. This numerical value indicates the quantity or amount of the
characteristic (variable) in question. So age is a score variable since the numerical value indicates
an increasing amount of the variable age. One could also describe this variable as quantitative.



FIGURE 1.2 The two schemes for different types of variables
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Nominal, category or categorical variables Some variables are measured by classifying cases
into one of several named categories. These are also known as nominal, categorical or category
variables. A better name for them might be qualitative variables because they measure the qualities
of things rather than their quantities. For example, gender has two named categories – male
and female. Nationality is another example: English, Welsh, Irish and Scottish are the nation-
alities of people of the United Kingdom. They have no numerical implications as such. To say that
a person is Scottish is simply to put them into that named category. One could also describe
this variable as qualitative. There is one risk of confusion – categories such as gender are usually
entered into SPSS Statistics using different numbers to represent the different categories. For
example, the variable ‘gender’ has two categories – males could be represented by the number 1
and females by the number 2 (or vice versa). The numbers used are arbitrary – it could be 
1002 and 2005 if the researcher desired. It is vital not to confuse these numbers which merely
represent different coding categories or qualities with scores. For this reason, it is important to
label the different values of nominal variables in full in the SPSS data spreadsheet since the
number codes, in themselves, mean nothing. This is easily done as is shown on pages 24–25.

■ The alternative traditional classification system
Sometimes variables are classified as nominal, ordinal, interval and ratio. This is mainly of con-
ceptual interest and of little practical significance in selecting appropriate statistics. Generally
speaking, we would advise that this system is ignored because it does not correspond with mod-
ern practice. Nominal is exactly the same as our classification of nominal (category) data and is



You will find an extended discussion of ordinal, interval and ratio scales of measurement in Howitt, D. and Cramer, D.
(2011). Introduction to Research Methods in Psychology, 3rd edition. Harlow: Pearson.
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important since a particular set of statistical techniques is called for to analyse category data. Of
the other three, interval measurement is the most important. Interval measurement is where the
steps on the scale of measurement are equal (just as centimetre steps on a rule are equal). Some
psychologists are inclined to the view that this scale of measurement should reflect the underly-
ing psychological variable being measured. Unfortunately, it is very difficult to identify whether
a psychological measure has equal intervals but, nevertheless, it is a sort of holy grail to them.
Others, ourselves included, take the view that so long as the numerical scale on which variables
are measured has equal intervals (which is always the case except for nominal or category data,
of course, from this perspective) then there is no problem since it is these numbers on which the
statistical calculation is based and not some mystical underlying measurement scale. However, as
a concession, we have mentioned equality of intervals as being desirable from time to time in the
text though we (and no one else) can tell you how to establish this. Ratio measures have equal
intervals and a zero point, which means one can calculate ratios and make statements such as one
score is twice as big as another score. Unfortunately, yet again, it is impossible to identify any
psychological variables which definitely are measured on a ratio measurement scale. Finally, 
ordinal data are data which do not have equal intervals so that scores only give the rank order
of scores. Since the size of the intervals do not matter for ordinal data, then it is assumed that any
psychological score data correspond to the ordinal measurement scale at a minimum. For this
reason, some psychologists have advocated the use of non-parametric (distribution-free) statistics
for the analysis of much psychological data. The problem is that these techniques are not so pow-
erful or flexible as most statistics.

■ Importance of deciding the types of variable involved
It is essential to decide for each of your variables whether it is a nominal (category) variable or 
a score variable. Write a list of your variables and classify each of them if you are a beginner.
Eventually you will be able to classify somewhat automatically and usually without much thought.
The statistical techniques which are appropriate for score variables are generally inappropriate
for nominal or category variables because they measure qualities. So, for example, it is appro-
priate to calculate the mean (numerical average) of any variable which is a score (e.g. average
age). On the other hand, it is totally inappropriate to calculate the mean (average) for variables
which consist of categories. It would be nonsense to say that the average nationality is 1.7 since
nationality is not a score. The problem is that SPSS works with the numbers in the data spread-
sheet and does not know whether they are scores or numerical codes for different categories.
(Though SPSS does allow you to classify your variables as ordinal or nominal.)

1.4 Descriptive and inferential statistics compared

■ The difference between descriptive and inferential statistics
There are two main types of statistical techniques – descriptive and inferential statistics:

Descriptive statistics chiefly describe the main features of individual variables: calculating the
average age of a sample of people is an example of descriptive statistics. Counting the number
of English people would be another example of descriptive statistics. If one variable is consid-
ered at a time this is known as univariate statistics. Bivariate statistics are used when the rela-
tionship between two variables is being described.



Statistical significance is difficult to explain accurately in a few words. For a detailed discussion, see Box 1.1 in this
chapter or Howitt, D. and Cramer, D. (2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

Box 1.1 Statistical Significance

A crucial fact about research is that it is invariably carried
out on samples of cases rather than all possible cases. 
The reasons for this are obvious: economies of time and
money. Sometimes it is very difficult to specify what the
population is in words (for example, when one collects a
sample of participants from a university restaurant). The
realisation that research could be done on relatively small
samples was the initial stimulus for many of the statistical
techniques described in this book.

For many, statistics = tests of significance. This is a 
mistaken emphasis since, in terms of importance in any
analysis, basic descriptive statistics are the key to under-
standing one’s data. Statistical significance is about a very
limited question – is it reasonably safe to generalise from
my sample?

In order to do this, in statistics usually we take the
information based on the sample(s) of data that we have
collected and generalise to the population from which we
might assume the sample is drawn. Sometimes one simply
takes the sample characteristics and assumes that the popu-
lation characteristics are the same. On other occasions 
the sample characteristics have to be slightly modified to
obtain the best estimate of the population characteristics.
Whichever applies, one then uses these estimated popu-
lation characteristics to plot the distribution of the char-
acteristics of random samples taken from the estimated
population. The most important characteristic that is esti-
mated from samples is the variation of scores in the data.

The distribution of these random samples forms a 
baseline against which the characteristic of our sample
obtained in our research can be compared with what 
happens under conditions of randomness. If our actual
sample characteristic is unlikely to have occurred as a con-
sequence of randomness then we say that it is statistically

significant. All that we mean is that it is at the extremes of
the distribution of random samples. If our sample is very
typical of what happens by random sampling, then we say
that our sample characteristic is not statistically significant.

Often in psychology this is put in terms of accepting
the null hypothesis or rejecting the null hypothesis. The
null hypothesis is basically that there is no relationship 
or no difference in our data. Usually the population is
specified in terms of the null hypothesis. That is, in our
population there is no correlation or in our population
this is no difference.

Statistical significance is often set at the .05 or 5 per
cent significance level. This is purely arbitrary and is not
actually set in stone. Sometimes one would require a more
stringent significance level (say .01 or 1 per cent) and in
some circumstances one could relax the criterion a little.
However, unless you are very experienced you perhaps
ought to stick with the .05 or 5 per cent levels of statist-
ical significance. These levels of significance simply mean
that there is a one in 20 chance of getting a result as
extreme as ours by random sampling from the estimated
population.

One-tailed significance testing is used when the direc-
tion of the trend in the data is predicted on the basis of
strong theory or consistent previous research. The predic-
tion is made prior to collecting the data. Such conditions
are rarely met in student research and it is recommended
that you stick to two-tailed testing.

Finally, notice that the precision of this approach is
affected by how representative the sample characteristics
are of the population characteristics. One cannot know
this, of course. This may help you understand that despite
the mathematical sophistication of statistics, in fact it
should be used as a guide rather than a seal of approval.
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Inferential statistics is a totally distinct aspect of statistics. It only addresses the question of
whether one can rely on the findings based on a sample of cases rather than all cases. The use
of samples is characteristic of nearly all modern research. The problem with samples is that
some of them are not similar to the populations from which they are taken. The phrases 
‘statistically significant’ and ‘not statistically significant’ simply indicate that any trends in the
data can be accepted as substantial (i.e. statistically significant) or not substantial enough 
to rely on (i.e. not statistically significant). A statistically significant finding is one which is
unlikely to be the result of chance factors determining the results in a particular sample.



Table 1.3 The related and the unrelated research design

The related design

Participant Condition 1 (e.g. Time 1) Condition 2 (e.g. Time 2)

Sarah 1 6

Callam 6 10

Dominic 5 11

Tracey 4 9

Kwame 7 12

Imogen 6 6

Claude 3 9

Means = 32/7 = 4.57 63/7 = 9.00
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Every descriptive statistic has a corresponding inferential statistic. For example, the correlation
coefficient is a descriptive statistic indicating the direction and the strength of the relationship
between two variables. Associated with it is the inferential statistic – the significance of the cor-
relation coefficient. The descriptive statistic is important for understanding the trends in the data
– the inferential statistic simply deals with the reliance that can be placed on the finding.

1.5 Related versus unrelated designs

Researchers should be aware also of two different types of research design – that which uses
related measures and that which uses unrelated measures. Related measures may also be called
correlated measures or paired measures. Unrelated measures may also be called uncorrelated
measures or unpaired measures. The terms are mostly used when the mean or averages of scores
are being compared for two or more samples of data:

Where the means of a single sample of individuals are compared on two (or more) measures
of the same variable (e.g. taken at different points in time) then this is a related measures
design.

Where the means of two quite different samples of participants are compared on a variable,
this is an unrelated design.

Where two (or more) groups of participants have been carefully matched so that sets of par-
ticipants in the two (or more) conditions are similar in some respects, then this is a related
design too. In this case, members of each set are treated as if they were the same person.
Normally, a researcher would know if the participants were matched in sets because it requires
effort on the part of the researcher. For example, the researcher has to decide what character-
istics to match sets on, then choose individuals for the sets on the basis of their similarity on
these characteristics, and (often) has to allocate participants to the different samples (condi-
tions) especially in experimental research.

The main point of using related designs is that variability due to sampling is reduced.
Almost without exception, the researcher will be using a variety of these techniques with the

same data. Fortunately, once the data are entered, in many cases, data analysis may take just 
a minute or so. Note that in the related design there is always an equal number of cases (par-
ticipants) and that each case contributes a score to more than one condition.



The unrelated design

Participant Group 1 Participant Group 2

1 6 7 9

2 4 8 12

3 8 9 14

4 5 10 9

5 2 11 7

6 3

Mean = 28/6 = 4.67 Mean = 51/5 = 10.2
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1.6 Quick summaries of statistical analyses

■ Succinct methods of reporting statistics
You will probably be aware of the short (succinct) methods used to report statistical findings in
psychological research reports. We have, of course, used these in this book where we describe
how to report research findings. The system is quite simple, though there is no universal standard
and there will be some variation. Typical of the methods used would be the following, which fol-
lows the recommendations of the Publication Manual of the American Psychological Association:

The hypothesis that students who just work and have no play was supported, t(22) = 2.10, 
p < .05.

What the stuff after the first comma says is that the statistical test used was the t-test, that the
degrees of freedom are 22, and that the significance level is less than .05. In other words, our
findings are statistically significant.

■ Confidence intervals versus point statistics
Traditionally psychological statistics use point statistics. These are where the characteristics of
the data are defined by a single measure such as the average (mean) score. It is often recom-
mended that confidence intervals should be used instead. Usually in statistics we are trying to esti-
mate the characteristics of the population of scores from a sample of scores. Obviously samples
tend to vary from the population characteristics so there is some uncertainty about what the 
population characteristic will be. Confidence intervals give the most likely range of values in 
the population and not simply a single value. In this way, the variability of the data is better 
represented. Chapter 15 discusses confidence intervals in more detail.

1.7 Which procedure or test to use

One common heartfelt plea is the demand to know how to choose appropriate statistical tech-
niques for data. Over the years, writers of statistics textbooks have laboured to simplify the pro-
cess of choosing. This is done largely by producing spreadsheets or tables which indicate what
sorts of statistics are appropriate for different sorts of data. If you want that sort of approach
then there are a number of websites which take you through the decision-making process:



FIGURE 1.3 Steps towards a basic understanding of statistics
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http://www.socialresearchmethods.net/selstat/ssstart.htm

http://www.graphpad.com/welcome.htm

http://www.whichtest.info/

For basic statistics this is probably a useful approach. The difficulty increasingly is that
research designs, even for student projects, are very varied and quite complex. Once psychology
was almost a purely laboratory-based subject which concentrated on randomised experiments.
Psychologists still use this sort of experimentation, but their methods have extended greatly, so
extending the demands on their statistical knowledge. Therefore, there is a distinct limit to the
extent to which a simple spreadsheet or flow diagram can help the researcher select appropriate
statistical analyses.

One fundamental mistake that novice researchers make is to assume that data analysis is pri-
marily driven by statistics. It is more accurate to regard statistics as being largely a tool which
adds a little finesse to the basic task of research – to answer the researcher’s research questions.
Only the researcher can fully know what they want their research to achieve – what issues they
want resolving through collecting and analysing research data. Unless the researcher clearly
understands what they want the research to achieve, statistics can be of little help. Very often
when approached for statistical advice we find that we have to clarify the objectives of the
research first of all – and then try to unravel how the researcher thought that the data collected
would help them. These are not statistical matters but issues to do with developing research ideas
and planning appropriate data collection. So the first thing is to list the questions that the data
were intended to answer. Too often sight of the purpose of the research is lost in the forest of the
research practicalities. The following may help clarify the role of statistics in research:

Much of the most important aspects of data analysis need little other than an understand-
ing of averages and frequency counts. These are common in SPSS output. Many research 
questions may be answered simply by examining differences in means between samples or
cross-tabulation tables or scattergrams. It is useful to ask oneself how one could answer the
research questions just using such basic approaches. Too often, the complexities of statistical
output become the focus of attention which can lead to confusion about how the data relate
to the research question. It is not easy to focus on the research issues and avoid being drawn
in unhelpful directions.

Statistical analyses are actively constructed by the researcher. There is usually no single 
correct statistical analysis for any data but probably a range of equally acceptable alter-
natives. The researcher may need to make many decisions in the process of carrying out data
analysis – some of these may have to be carefully justified but others are fairly arbitrary. The
researcher is in charge of the data analysis – statistics is the researcher’s tool. The analysis
should not be a statistical tour de force, but led by the questions which necessitated data 
collection in the first place. There is no excuse – if you collected the data then you ought to
know why you collected it.

The more research you read in its entirety the better you will understand how statistics can 
be used in a particular field of research. Very little research is carried out which is not related 
to other research. What are the typical statistical methods used by researchers in your chosen
field? Knowing what techniques are generally used is often the best guide to what ought to be
considered.

Figure 1.3 summarises some of the major steps in developing a basic understanding of 
statistics while Table 1.4 gives some insight into the styles of analysis which researchers may 
wish to apply to their data and what sections of this book describe these statistical techniques 
in detail.

For further resources including data sets and questions, please refer to the website accompanying this book.
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Table 1.4 Major types of analysis and suggested SPSS procedures

Type/purpose of analysis Suggested procedures Chapter

All types of study Descriptive statistics, tables and diagrams 3–9

Assessing the relationship between two variables Correlation coefficient 10

Regression 11

Comparing two sets of scores for differences Unrelated t-test 14

F-ratio test 20

Related t-test 13

Unrelated ANOVA 21

Related ANOVA 22

Mann–Whitney 18

Wilcoxon matched pairs 18

Comparing the means of three or more sets of scores Unrelated ANOVA 21

Related ANOVA 22

Multiple comparisons 24

Computing groups for a multiple comparison of an interaction Computing a new group variable 45

Comparing the means of two or more sets of scores (ANOVAs) ANCOVA 26
while controlling for spurious variables influencing the data

Complex experiments, etc. with two or more unrelated Two (or more)-way ANOVA 23
independent variables and one dependent variable

– if you have related and unrelated measures Mixed-design ANOVA 25
– if other variables may be affecting scores on the dependent Analysis of covariance 26

variable

ANOVA designs with several conceptually relevant dependent MANOVA 27
variables

Eliminating third variables which may be affecting a correlation Partial correlation 29
coefficient

Finding predictors for a score variable Simple regression 11

Stepwise multiple regression 32

Hierarchical multiple regression 33

Simultaneous multiple regression 34

Testing interaction or moderator effects for continuous Hierarchical multiple regression 35
predictors of a score variable

Testing a simple path diagram without measurement error Structural equation modelling 52

Testing a simple path diagram with measurement error Structural equation modelling 53, 54*

Finding predictors for a category variable Multinomial logistic regression 38

Binomial logistic regression 39

Comparing frequency data for one or two unrelated variables Chi-square 16

Comparing frequency data for two unrelated variables with Fisher’s test 16
some low expected frequencies

Comparing frequency data for a related variable McNemar’s test 17

Comparing non-normally distributed data for three or Kruskal–Wallis 19
more groups

Friedman 19
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Type/purpose of analysis Suggested procedures Chapter

Comparing frequency data for three or more unrelated variables Log-linear analysis 37

Analysing a questionnaire Exploratory factor analysis 30

Confirmatory factor analysis 51

Alpha reliability 31

Split-half reliability 31

Recoding 42

Computing a scale score 43, 44

Coding open-ended data using raters Kappa coefficient 31

Determining sample size Power analysis 55*

Averaging effect sizes Meta-analysis 56*

*On the website.



Overview

This chapter gives the basics of operating SPSS Statistics on a personal computer. It includes data
entry as well as saving files. There will be small variations in how SPSS is accessed from location
to location. The basics are fairly obvious and quickly learnt. By following our instructions, you will
quickly become familiar with the essential steps in conducting a statistical analysis.

The chapter provides detailed advice on how to select a statistical technique for the analysis of
psychological data.

2.1 What is SPSS Statistics?

SPSS Releases 19, 18, 17, 16, 15, 14, 13 and 12 are commonly available on university and col-
lege computers. Individuals may still be using earlier versions such as Releases 11 and 10. It is by
far the most widely used computer package for statistical analysis throughout the world. As such,
learning to use SPSS is a transferable skill which is often a valuable asset in the job market. The
program is used at all levels from students to specialist researchers, and in a great many academic
fields and practical settings. One big advantage is that once the basics are learnt, SPSS is just as
easy to use for simple analyses as for complex ones. The purpose of this Introduction is to enable
beginners quickly to take advantage of the facilities of SPSS.

Most people nowadays are familiar with the basic operation of personal computers (PCs). The
total novice though will not be at too much of a disadvantage since the elements of SPSS are
quickly learnt. Users who have familiarity with, say, word processing will find much of this 
relevant to using SPSS – opening programs, opening files and saving files, for instance. Do not be
afraid to experiment.

Basics of SPSS Statistics
data entry and statistical
analysis

CHAPTER 2



FIGURE 2.1 Key steps in conducting an SPSS analysis
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Since SPSS is commonly used in universities and colleges, many users will require a user name
and a password, which may be obtained from their institution. Documentation is often available
on registration at the college or university. If not, such documentation is usually easily available.

SPSS may be found as a shortcut among the on-screen icons or it may be found in the list of
programs on Windows. Each institution has its own idiosyncrasies as to where SPSS can be
found. This book is based on Release 19 of SPSS. Although it is slightly different from earlier
releases, the user of earlier releases will probably not notice the differences as they follow the
instructions given in this book.

Figure 2.1 shows some of the keys steps in carrying out an SPSS analysis.

2.2 Accessing SPSS Statistics

SPSS Statistics for Windows is generally accessed using buttons and menus in conjunction with
clicks of the mouse. Consequently the quickest way of learning is simply to follow our steps and
screenshots on a computer. The following sequence of screenshots is annotated with instructions
labelled Step 1, Step 2, etc.
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2.3 Entering data



2.4 Moving within a window with the mouse

2.4 MOVING WITHIN A WINDOW WITH THE MOUSE 19



2.5 Moving within a window using the keyboard keys with the mouse

2.6 Saving data

20 CHAPTER 2 BASICS OF SPSS STATISTICS DATA ENTRY AND STATISTICAL ANALYSIS



2.6 SAVING DATA 21



2.7 Opening up a data file
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2.8 Using ‘Variable View’ to create and label variables

2.8 USING ‘VARIABLE VIEW’ TO CREATE AND LABEL VARIABLES 23
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2.9 More on ‘Data View’
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2.10 A simple statistical calculation with SPSS
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The good news is that anyone who can follow the above steps should have no difficulty in 
carrying out the vast majority of statistical analyses available on SPSS with the help of this book.
It is worthwhile spending an hour or so simply practising with SPSS. You will find that this is 
the quickest way to learn.

More information about displaying variable names in dialog boxes is given in Chapter 43
(Section 43.3).

Summary of SPSS Statistics steps for a statistical analysis

Data

In ‘Variable View’ of the ‘Data Editor’ ‘name’ the variable and ‘label’ each of its values if it’s a ‘nominal’ or
categorical ‘measure’.
In ‘Data View’ of the ‘Data Editor’, enter the values.
Select ‘File’ and ‘Save As …’
Name the data file, select the ‘Save in:’ file location and ‘Save’.

Analysis

Select ‘Analyze’ and then the type of analysis.

Output

Output is presented in the ‘Output’ window.

2.11 SPSS Statistics output

The ‘Data Editor’ window is replaced in view by the SPSS Output window.

For further resources including data sets and questions, please refer to the website accompanying this book.





Descriptive statistics

PART 2





Overview

Tables should quickly and effectively communicate important features of one’s data. Complexity,
for its own sake, is not a helpful characteristic of good tables.

Clear and meaningful tables are crucial in statistical analysis and report writing. Virtually every
analysis of data uses them in order to allow the distributions of variables to be examined. In this
chapter we provide the basic computer techniques to allow the construction of tables to describe
the distributions of individual variables presented one at a time.

All tables should be clearly titled and labelled. Depending on the table in question, horizontal and
vertical axes should be labelled, bars identified, scales marked and so forth. Great care should 
be taken with this. Generally speaking, SPSS tables require considerable work to make them 
optimally effective.

Frequency tables merely count the number of times the different values of the variable appear in
the data. A simple example would be a count of the number of males and the number of females
in the research. Tables need to be relatively simple and this usually requires that the variable has
only a small number of values or, if not, that a number of different values of the variable are
grouped together.

Describing variables
Tables

3.1 What are tables?

Now this sounds like a really silly question because we all know what tables are, don’t we? But
simply because we know about these things does not mean that we understand their importance
in a good statististical analysis or what makes a good table. The bottom line is that unless you
very carefully study each of your variables using the methods described in this and the next few
chapters then you risk failing to identify problems which may undermine the validity of your
analysis.

Tables in data analysis are almost always summary tables of key aspects of the data 
since rarely are the actual data tabulated and reported in statistical analyses – usually because 
this would be very cumbersome. Tables then report important features of the data such as 

CHAPTER 3



FIGURE 3.1 Steps in understanding tables
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(1) frequencies (counts) or the number of participants in the research having a particular char-
acteristic such as the number of males and the number of females in the study and (2) the 
average score on a variable in different groups of participants such as the average (known as the
mean in statistics) age of the male participants and the female participants in the research.

There is probably an infinite variety of possible tables. Table 3.1 is quite a simple example 
of a table. It gives a number of occupations together with the frequencies and percentage fre-
quencies of participants in a study who have a particular type of job. Figure 3.1 outlines some
basic steps in understanding tables.

3.2 When to use tables

Tables are a vital part of the analysis of data as well as being used to present data. The exami-
nation of basic tables which describe the data is an important aspect of understanding one’s 
data set and familiarising oneself with it. There is nothing unsophisticated in using tables – quite
the contrary, since it is poor statisticians who fail to make good use of them.

3.3 When not to use tables

Never use tables and diagrams as a substitute for reporting your research findings in words in the
body of a report. To do so is not good because it leaves the reader with the job of interpreting
the tables and diagrams, which is the task of the researcher.

3.4 Data requirements for tables

Different sorts of tables have different requirements in terms of the variables measured.



Table 3.1
Occupational status of participants in the research expressed as frequencies and
percentage frequencies

Occupation Frequency Percentage frequency

Nuns 17 21.25

Nursery teachers 3 3.75

Television presenters 23 28.75

Students 20 25.00

Other 17 21.25
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3.5 Problems in the use of tables

There are many problems in the use of tables:

Remember to label clearly all of the important components of tables. Not to do so is counter-
productive.

Problems can occur because of rounding errors for percentages such that the total of the per-
centages for parts of the table do not add up to 100 per cent. Keep an eye open for this and
make reference to it in your report if it risks confusing the reader.

We would recommend that you never use tables directly copied and pasted from SPSS. For one
thing, SPSS tables tend to contain more information than is appropriate to report. But the main
reason is that often SPSS tables are simply confusing and could be made much better with a
little work and thought.

You can find out more about tables in Chapter 2 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

3.6 The data to be analysed

SPSS is generally used to summarise raw data but it can use data which have already been sum-
marised such as those shown in Table 3.1 (ISP, Table 2.1).

In other words, since the data in Table 3.1 are based on 80 people, the data would occupy 
80 cells of one column in the ‘Data Editor’ window and each occupation would be coded with a
separate number, so that nuns might be coded 1, nursery teachers 2 and so on. Thus, one would
need 17 rows containing 1 to represent nuns, 3 rows containing 2 to represent nursery teachers
and so on. However, it is possible to carry out certain analyses on summarised data provided that
we appropriately weight the categories by the number or frequency of cases in them.

3.7 Entering summarised categorical or frequency data by weighting

It seems better practice to define your variables in ‘Variable View’ of the ‘Data Editor’ before
entering the data in ‘Data View’ because we can remove the decimal places where they are not
necessary. So we always do this first. If you prefer to enter the data first then do so.
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For this table we need two columns in ‘Data View’, one to say what the categories are and the
other to give the frequencies for these categories. In ‘Variable View’ variables are presented 
as rows.



3.7 ENTERING SUMMARISED CATEGORICAL OR FREQUENCY DATA BY WEIGHTING 37



38 CHAPTER 3 DESCRIBING VARIABLES: TABLES

3.8 Percentage frequencies

3.9 Interpreting the output
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REPORTING THE OUTPUT
Only the category labels, the frequency and the percentage frequency need be reported, consequently you need to sim-
plify this table if you are going to present it. If the occupation was missing for some of the cases you would need to decide
whether you would present percentages including or excluding them. There is no need to present both sets of figures. Also
omit the term ‘Valid’ in the first column as its meaning may only be familiar to SPSS users.

For further resources including data sets and questions, please refer to the website accompanying this book.

Summary of SPSS Statistics steps for frequency tables

Data

In ‘Variable View’ of the ‘Data Editor’ ‘name’ the ‘nominal’ or categorical variable, ‘label’ each of its values
and select ‘nominal’ as the ‘measure’.
Name the second variable.
In ‘Data View’ of the ‘Data Editor’, enter the value of the category for each case and its frequency.
Select ‘Data’, ‘Weight Cases …’, ‘Weight cases by’ and move the weighting variable to the ‘Frequency
Variable:’ box.

Analysis

Select ‘Analyze’, ‘Descriptive Statistics’ and ‘Frequencies …’.
Move the variables to be analyzed to the right-hand box.

Output

The percentage of cases for each category is given for the whole sample in the ‘Percent’ column including
any missing data, and in the ‘Valid Percent’ column excluding missing data. If there are no missing data,
these percentages will be the same.



Overview

Diagrams, like tables, should quickly and effectively communicate important features of one’s
data. Complexity, for its own sake, is not a helpful characteristic of good diagrams.

Clear and meaningful diagrams are crucial in statistical analysis and report writing. Virtually every
analysis of data uses them in order to allow the distributions of variables to be examined. In this
chapter we provide the basic computer techniques to allow the construction of diagrams to
describe the distributions of individual variables presented one at a time.

All diagrams should be clearly titled and labelled. Depending on the diagram in question, horizontal
and vertical axes should be labelled, bars identified, scales marked and so forth. Great care
should be taken with this. Generally speaking, SPSS Statistics diagrams require considerable work
to make them optimally effective.

Pie diagrams are effective and simple ways of presenting frequency counts. However, they are only
useful when the variable being illustrated has a small number of different values. Pie diagrams are
relatively uncommon in publications because they consume space, although they are good for
conference presentations and lectures.

A bar chart can be used in similar circumstances to the pie chart but can cope with a larger number
of values of variables before becoming too cluttered. Frequencies of the different values of the
variable are represented as physically separated bars of heights which vary according to the fre-
quency in that category.

A histogram looks similar to a bar chart but is used for numerical scores rather than categories.
Thus the bars in a histogram are presented in size order of the scores that they represent. The 
bars in histograms are not separated by spaces. Often a histogram will need the ranges of scores
covered by each bar to be changed in order to maximise the usefulness and clarity of the diagram.
This can be done by recoding variables (Chapter 42) but SPSS also allows this to be done in the
‘Chart Editor’. Producing charts like these is one of the harder tasks on SPSS.

Describing variables
Diagrams

CHAPTER 4



FIGURE 4.1 Some basic types of chart
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4.1 What are diagrams?

This sounds like another really silly question because we all know what diagrams are, don’t we?
But simply because we know about these things does not mean that we understand their import-
ance in a good statististical analysis or what makes a good diagram. The bottom line is that 
unless you very carefully study each of your variables using the methods described in this and 
the next few chapters then you risk failing to identify problems which may undermine the validity
of your analysis.

Diagrams in statistics do much the same sort of job as tables but, of course, they are intended
to have greater visual impact. So you are almost certain to be familiar with diagrams which illus-
trate frequencies of things in data. Pie charts represent the proportion of cases in each category
of a variable using proportionate slices of a circle (the pie) (see the examples on pages 47–50).
Very much the same sort of thing can be illustrated using bar charts in which each category of a
variable is represented by a bar and the frequencies by the heights of the relevant bar (see the
examples on pages 51–52). Neither is better than the other except a pie chart shows the propor-
tions of each category compared with the total number of participants perhaps a little more
quickly. Histograms are very similar in appearance to bar charts but are used when the categories
are actually scores on a particular measure which are ordered from smallest to the largest.
Examples of histograms are to be found on pages 53–54. Technically, a bar chart should have 
a gap between the bars but a histogram should not since it represents a dimension rather than a
number of distinct categories.

Diagrams do much the same task as tables but usually in a less compact form so that less infor-
mation can be put into the same physical space. They are much less common in professional pub-
lications than tables. Although it may be tempting to think that diagrams are preferable to tables,
this is not the case. Complex data are often difficult to report in a simple diagram and possibly much
easier to put into a table. Diagrams tend to be reserved for circumstances where the researcher is
trying to communicate the findings of a study quickly and with impact. This is more likely to be
the case with spoken presentations of research findings rather than written ones. So a diagram is
often better as part of a lecture than a table so long as the diagram does not get too complicated.

Figure 4.1 shows some basic types of charts while Figure 4.2 emphasises the importance of
nominal and score data when making charts.
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FIGURE 4.2 The importance of nominal and score data when making charts

4.2 When to use diagrams

Diagrams can be an important part of the analysis of data as well as being used to present data.
The examination of basic diagrams which describe the data is an important aspect of under-
standing one’s data and familiarising oneself with it. There is nothing unsophisticated in using
them – quite the contrary since it is poor statisticians who fail to make good use of them. We will
look at a number of circumstances where diagrams can prevent us making basic mistakes.

4.3 When not to use diagrams

Never use diagrams as a substitute for reporting your research findings in words in the body 
of a report. To do so is not good because it leaves the reader with the job of interpreting the 
diagrams, which is the task of the researcher. In terms of practical reports and dissertations, you
may well find that tables are generally more useful than diagrams because they can handle com-
plexity better.

4.4 Data requirements for diagrams

Different kinds of diagrams have different requirements in terms of the variables measured. 
Bar charts and pie charts are largely used for nominal (category) data which consist of named 
categories. Histograms are used for score data in which the scores are ordered from the smallest
values to the largest on the horizontal axis of the chart.

4.5 Problems in the use of diagrams

Problems in the use of diagrams are numerous:

Remember to label clearly all of the important components of diagrams. Not to do so is 
counterproductive.
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Problems can occur because of rounding errors for percentages such that the total of the 
percentages for parts of the diagram do not add up to 100 per cent. Keep an eye open for this
and make reference to it in your report if it risks confusing the reader.

Technically, the bars of histograms should each have a width proportionate to the range of
numbers covered by that bar. SPSS does not do this so the output can be misleading.

You need to be very careful when a scale of frequencies on a bar chart or histogram does not
start at zero. This is because if part of the scale is missing then the reader can get a very wrong
impression of the relative frequencies as some bars can look several times taller than others
whereas there is little difference in absolute terms. This is one of the ‘mistakes’ which has led
to the suggestion that one can lie using statistics.

We would recommend that you never use diagrams directly copied and pasted from SPSS 
without editing them first. SPSS diagrams are often simply confusing and could be made much
better with a little work and thought. Many SPSS diagrams can be modified on SPSS to
improve their impact and clarity. For example, there is no point in using coloured slices in a
pie chart if it is to be photocopied in black and white. Such a chart may be very confusing
because the shades of gray cannot be deciphered easily.

You can find out more about tables and diagrams in Chapter 2 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

4.6 The data to be analysed

SPSS is generally used to summarise raw data but it can use data which have already been summar-
ised such as those shown in Table 4.1 (ISP, Table 2.1). In other words, since the data in Table 4.1
are based on 80 people, the data would occupy 80 cells of one column in the ‘Data Editor’ 
window and each occupation would be coded with a separate number, so that nuns might be
coded 1, nursery teachers 2 and so on. Thus, one would need 17 rows containing 1 to represent
nuns, 3 rows containing 2 to represent nursery teachers and so on. However, it is possible to carry
out certain analyses on summarised data provided that we appropriately weight the categories by
the number or frequency of cases in them.

Table 4.1
Occupational status of participants in the research expressed as frequencies and
percentage frequencies

Occupation Frequency Percentage frequency

Nuns 17 21.25

Nursery teachers 3 3.75

Television presenters 23 28.75

Students 20 25.00

Other 17 21.25
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4.7 Entering summarised categorical or frequency data by weighting

It seems better practice to define your variables in ‘Variable View’ of the ‘Data Editor’ before
entering the data in ‘Data View’ because we can remove the decimal places where they are not
necessary. So we always do this first. If you prefer to enter the data first then do so.

For this table we need two columns in ‘Data View’. One is to say what the categories are. The
other is to give the frequencies for these categories. In ‘Variable View’ variables are presented as
rows. As we will be entering the data into columns we will refer to these rows as columns. If you
have already still have the data from the previous chapter, simply use that data file.
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4.8 Pie diagram of category data
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4.9
Adding labels to the pie diagram and removing the legend 
and label
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4.10
Changing the colour of a pie diagram slice to a black and 
white pattern
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4.11 Bar chart of category data



Table 4.2
Distribution of students’ replies to the statement ‘Statistics is my favourite university
subject’

Response category Value Frequency

Strongly agree 1 17

Agree 2 14

Neither agree nor disagree 3 6

Disagree 4 2

Strongly disagree 5 1
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4.12 Histograms

We will illustrate the making of a histogram with the data in Table 4.2 which shows the distri-
bution of students’ attitudes towards statistics. We have labelled this variable ‘Response’.
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Summary of SPSS Statistics steps for charts

Data

In ‘Variable View’ of the ‘Data Editor’ ‘name’ the ‘nominal’ or categorical variable, ‘label’ each of its values
and select ‘nominal’ as the ‘measure’.
Name the second variable.
In ‘Data View’ of the ‘Data Editor’, enter the value of the category for each case and its frequency.
Select ‘Data’, ‘Weight Cases …’, ‘Weight cases by’ and move the weighting variable to the ‘Frequency
Variable:’ box.

Analysis

Select ‘Graphs’, ‘Chart Builder …’, ‘OK’ and move type of graph into the box above.
Move variable to the ‘X-Axis?’ box.

Output

Charts may be edited in the ‘Chart Editor’.

For further resources including data sets and questions, please refer to the website accompanying this book.



Describing variables
numerically
Averages, variation and spread

Overview

The computation of a number of statistics which summarise and describe the essential character-
istics of each important variable in a study is explained. The techniques presented in this chapter
involve individual variables taken one at a time. In other words they are single variable or univari-
ate statistical techniques.

Each technique generates a numerical index to describe an important characteristic of the data.

With the exception of the mode which can be used for any type of data, all of the techniques are
for data in the form of numerical scores.

The mean is the everyday or numerical average of a set of scores. It is obtained by summing the
scores and dividing by the number of scores.

The mode is simply the most frequently occurring score. A set of scores can have more than one
mode if two or more scores occur equally frequently. The mode is the value of the score occurring
most frequently – it is not the frequency with which that score occurs.

The median is the score in the middle of the distribution if the scores are ordered in size from the
smallest to the largest. For various reasons, sometimes the median is an estimate of the score in
the middle – for example, where the number of scores is equal, and so that there is no exact middle.

The procedures described in this chapter can readily be modified to produce measures of vari-
ance, kurtosis and other descriptive statistics.

CHAPTER 5



FIGURE 5.1 A slightly asymmetrical frequency distribution
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5.1 What are averages, variation and spread?

Most of us when we think of averages imagine what statisticians call the mean. This is the sum
of a number of scores divided by the number of scores. So the mean of 5, 7 and 10 is 22/3 = 7.33.
However, statisticians have other measures of the average or typical score or observation which
are conceptually different from the mean. These include the median and mode. The median is
obtained by ordering the scores from the smallest to the largest and the score which separates the
first 50 per cent of cases from the second 50 per cent of cases is the median. If there is an even
number of scores then there is no one score right in the middle and so a slight adjustment has 
to be made involving the mean of the score just below the middle and the score just above the
middle. Sometimes even finer adjustments are made but SPSS will do the necessary calculation for
you. The third measure of the average is called the mode. This is the most frequently occurring
value in the data. This can be the most frequently occurring score if the data are score data or the
most frequently occurring category if the data are nominal (category) data. The mode is the only
measure of the average which can be used for nominal (category) data.

In statistics, rather than speak of an average it is more usual to refer to measures of central
tendency. The mean, median and mode are all measure of central tendency. They are all measures
of the typical score in the set of scores.

If a frequency distribution of scores is symmetrical (such as in the case of the normal dis-
tribution discussed in Chapter 6), then the value of the mean, the median and the mode will be
identical – but only in those circumstances. Where the frequency distribution of scores is not 
symmetrical then the mean, the median and the mode will have different values. Figure 5.1 con-
tains an example of an asymmetrical frequency distribution – though it is only slightly so. There
is a total of 151 participants. The mean in this case is 5.47, the median is 6.00, and the mode is
also 6.00. It is easy to see that the mode is 6.00 as this is the most frequently appearing score (i.e.
it has the highest bar). Since there are 151 cases then the median is the 76th score from the left-
hand side of the bar chart.

The spread of the scores is another characteristic which can be seen in Figure 5.1. Quite clearly
the scores vary and the largest score is 10 and the smallest is 1. The difference between the largest
score and the smallest score is known as the range, which in this case is 9. Sometimes the top and
bottom quarters of scores are ignored to give the interquartile range which is less susceptible to
the influence of unusual exceptionally large or small scores (outliers).



FIGURE 5.2 Essential ideas of averages

FIGURE 5.3 Measures which are closely related to variance
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Variance is the most important measure of the spread of scores. It is based on the squared devi-
ation (difference) between each score and the mean of the set of scores in the data. In fact it is
the average squared deviation from the mean. SPSS calculates this to be 6.06 for these data.
(Actually SPSS calculates the variance estimate and not the variance, which is a little smaller than
6.06. This is no great problem as the variance estimate is generally more useful – it is an estimate
of what the variance is in the population from which our sample came. The variance estimate is
bigger than the variance since it is the sum of the squared deviations of each score from the mean
score divided by the number of scores -1).

Figure 5.2 outlines some essential ideas about averages while Figure 5.3 highlights some mea-
sures related to variance.
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5.2 When to use averages, variation and spread

These should be routinely (always) calculated when dealing with score variables. However, many
of these can be calculated using different analysis procedures on SPSS and there may be more con-
venient methods than the ones in this chapter in some circumstances. For example, you will find
that SPSS will calculate means as part of many tests of significance such as the t-tests or ANOVA
though they may have to be requested.

5.3 When not to use averages, variation and spread

Apart from when using nominal (category) data, all measures of average, variation and spread
discussed in this chapter are useful when exploring one’s data.

5.4 Data requirements for averages, variation and spread

All of the techniques described in this chapter require a variable which is in the form of scores.
The only exception is the mode, which can be calculated on any type of data.

5.5 Problems in the use of averages, variation and spread

The measures of central tendency (mean, median and mode) refer to quite different ideas and
none of them is intrinsically better than the others. They each contain different information 
and each can be presented in any data analysis. There is, however, a tendency to ignore the median
and mode, which is a mistake for anything other than symmetrical distributions of scores (for
which the three different measures of central tendency give the same value). Be careful when con-
sidering the mode since a distribution has more than one mode if it has more than one peak. SPSS
will not warn you of this but a glance at the frequency distribution for the scores will also alert
you to this ‘bimodal’ or ‘multimodal’ characteristic of the distribution.

The range is sometimes given in error as being from 1 to 10, for example. This is not the range
since the range is a single number such as 9. The value 1 is the lower bound of the range and the
10 is the upper bound of the range.

Initially when learning statistics, it is sometimes easy to understand a concept but difficult to
see the importance or point of it. Variance is a good example of this since it is basically a very
abstract notion (the average of the sum of squared differences between each score and the mean
score). A particular value of variance is not intuitively meaningful since it does not refer to some-
thing that we regard as concrete such as, say, the mean score. Although variance is a funda-
mental statistical concept, it becomes meaningful only when we compare the variances of different
variables or groups of participants. Nevertheless, it will rapidly become apparent that the con-
cept of variance is involved in a great many different statistical techniques. Indeed, nearly all of
the techniques in this book involve variance in some guise.

Be careful to note that variance as calculated by SPSS is really what is known technically as
the variance estimate. It would be better to refer to it as the variance estimate but in this respect
SPSS does not set a good example.



Table 5.1 Ages of 12 students

18 21 23 18 19 19 19 33 18 19 19 20
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5.6 The data to be analysed

We will illustrate the computation of the mean, median and mode on the ages of university 
students – see Table 5.1 (ISP, Table 3.7).

You can find out more about describing data numerically in Chapter 4 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

5.7 Entering the data
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5.8 Mean, median, mode, standard deviation, variance and range
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5.10 Other features

You will see from the dialog box in Step 3 of Section 5.8 there are many additional statistical 
values which may be calculated. You should have little difficulty obtaining these by adapting the
steps already described.

Percentiles – indicate the cutoff points for percentages of scores. Thus the 90th percentile is
the score which cuts off the bottom 90 per cent of scores in terms of size.

Quartiles – values of a distribution which indicate the cutoff points for the lowest 25 per cent,
lowest 50 per cent and lowest 75 per cent of scores.

Sum – the total of the scores on a variable.

Skewness – frequency distributions are not always symmetrical about the mean. Skewness is
an index of the asymmetry or lop-sidedness of the distribution of scores on a variable. It takes
a positive value if the values are skewed to the left and a negative value if they are skewed to
the right.

Kurtosis – an index of how much steeper or flatter the distribution of scores on the variable 
is compared with the normal distribution. It takes a ‘+’ sign for steep frequency curves and a
‘-’ sign for flat curves.

Standard deviation (estimate) – this is a measure of the amount by which scores differ on aver-
age from the mean of the scores on a particular variable. Its method of calculation involves
unusual ways of calculating the mean. In SPSS the standard deviation is calculated as an esti-
mate of the population standard deviation. It is an index of the variability of scores around the
mean of a variable. Some authors call this the sample standard deviation.

Variance (estimate) – this is a measure of the amount by which scores on average vary around
the mean of the scores on that variable. It is the square of the standard deviation and is obvi-
ously therefore closely related to it. It is also always an estimate of the population variance in
SPSS. Some authors call this the sample variance. Like standard deviation, it is an index of 
the variability of scores around the mean of a variable but also has other uses in statistics. In
particular, it is the standard unit of measurement in statistics.

5.9 Interpreting the output
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Range – the numerical difference between the largest and the smallest scores obtained on a
variable. It is a single number.

Minimum (score) – the value of the lowest score in the data for a particular variable.

Maximum (score) – the value of the highest score in the data for a particular variable.

Standard error (SE mean) – the average amount by which the means of samples drawn from
a population differ from the population mean. It is calculated in an unusual way. Standard
error can be used much like standard deviation and variance as an index of how much vari-
ability there is in the scores on a variable.

REPORTING THE OUTPUT
The mean, median and mode can be presented as a table such as Table 5.2.

Summary of SPSS Statistics steps for descriptive statistics

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

Select ‘Analyze’, ‘Descriptive Statistics’ and ‘Frequencies …’.
Move the variables to be analysed to the right-hand box.
Select ‘Statistics …’, ‘Mean’, ‘Median’, ‘Mode’, ‘Variance’ and ‘Range’.

Output

These statistics are presented in a single table.

For further resources including data sets and questions, please refer to the website accompanying this book.

Table 5.2 Mean, median and mode of age

Ages of students (N = 12)

Mean 20.50 years

Median 19 years

Mode 19 years

Two decimal places are more than enough for most data. Most measurement is approximate, and the use of several
decimal places tends to imply an unwarranted degree of precision.
For the median, it is probably less confusing if you do not report values as 19.00 but as 19. However, if the decimal
places were anything other than .00 then this should be reported since it indicates that the median is estimated and
does not correspond to any actual scores for these particular data.



Overview

It is important to study the shape of the distribution of scores for each variable. Ideally for 
most statistical techniques, a distribution should be symmetrical and normally distributed 
(bell-shaped).

Some statistical techniques are at their most powerful when the distributions of the variables
involved are normally distributed. Major deviations from normality should be avoided but, for 
relatively small sample sizes, visual inspection of frequency diagrams is the only practical way 
to assess this. The effects of failure to meet this criterion can be overstated. Sometimes it is pos-
sible to transform one’s scores statistically to approximate a normal distribution but this is largely
a matter of trial and error, using, for example, logarithmic scales.

Nevertheless, researchers should be wary of very asymmetrical (skewed) distributions and distri-
butions that contain a few unusually high or low scores (outliers). Histograms, for example, can be
used to help detect asymmetry and outliers.

Consider combining ranges of scores together (as opposed to tabulating each individual possible
score) in order to clarify the distribution of the data. Small sample sizes, typical of much work in
psychology and other social sciences, can lead to a sparse figure or diagram in which trends are
not clear.

Shapes of distributions 
of scores

6.1 What are the different shapes of scores?

The initial stages of data analysis involve calculating and plotting statistics which describe the
shape of the distribution of scores on each variable. Knowing how your data are distributed is
obviously an intrinsic part of any study though it is frequently bypassed by those who see 
the primary aim of research as checking for statistical significance rather than understanding the
characteristics of the things they are investigating. But there are other reasons for examining the
distributions of scores. Statistical techniques are developed based on certain working assump-
tions. A common one is that scores on the variables follow the pattern of the bell-shaped curve

CHAPTER 6



FIGURE 6.1 The normal distribution

FIGURE 6.2 An example of a skewed distribution
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or normal distribution (Figure 6.1). Since many statistical techniques are built on this assump-
tion, if the data being analysed do not correspond to this ideal then one would expect, as is the
case, that the statistical techniques would work less than perfectly. Some departures from the
‘ideal’ bell-shaped curve can affect how powerful (capable of giving statistically significant
results) the test is. Distributions which are heavily skewed to the left or to the right may have this
effect. Figure 6.2 is an example of a distribution skewed to the left.

Apart from skewness in a distribution, some distributions depart from the ideal normal distri-
bution by being relatively steep or relatively flat (Figures 6.3 and 6.4). The degree of flatness and
steepness is known as kurtosis. Kurtosis compares the shape of a distribution with that of the nor-
mal distribution using a special formula but SPSS will calculate it for you (see Section 5.10 in
Chapter 5). If the curve is steep then the kurtosis has a positive value, if the curve is flat then the
kurtosis has a negative value.

We discussed histograms in Chapter 4. There is more to be said about them – in particular the
concept of the frequency curve. A frequency curve is basically a smoothed-out line which joins
the peaks of the various bars of the histogram. This smoothed-out line fits very uncomfortably 
if there are just a few different values of the scores obtained. It is not easy to fit a smooth curve to
the histogram that appears at the end of Chapter 4 (p. 54). The more data points the better from
this point of view. Figure 6.5 is a histogram with many more data points – it is easier to fit a rela-
tively smooth curve in this case as can be seen from the roughly drawn curve we have imposed
on the figure.

As might be expected and assuming that all other things are equal, the more data points the
better the fit the data can be to the normal curve. For this reason, often continuous variables



FIGURE 6.3 A flat frequency distribution

FIGURE 6.4 A steep frequency distribution

FIGURE 6.5 A histogram with more data points, making frequency curve fitting a little easier
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FIGURE 6.6 The influence of distribution shapes on tests of significance
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(those with an infinite variety of data points) are regarded as ideal. Few psychological measures
meet this ideal. Most psychological measures yield relatively bumpy frequency curves. Again this
means that the fit of the data to the normal distribution is not as good as it could be. The conse-
quence is that the data depart somewhat from the assumptions on which many statistical tests are
built. Again this will result in a degree of inaccuracy though psychologists happily tolerate this.
Generally speaking, these inaccuracies will tend to make the statistical test less powerful (i.e. less
capable of giving statistical significant outcomes). This is illustrated in Figure 6.6. Figures 6.7 and
6.8 outline some essential ideas about the shapes of distributions.

Of course, sometimes it may be preferable to use frequency tables to look at the way in which
the scores on a variable are distributed. Naturally, this makes it more difficult to identify a normal
distribution but it does make it easier to spot errors in data entry (e.g. scores out of the range).

6.2 When to use histograms and frequency tables of scores

It is always highly desirable to obtain histograms and/or tables of frequencies of scores. This is
an essential part of data analysis as conducted by a good researcher. Not to do so is basically
incompetent as many important bits of information are contained within these simple statistics.
Authorities on statistics have often complained that psychologists fail to use simple statistical
techniques to explore their data prior to more complex analyses. Too often this failing is encour-
aged by SPSS instruction manuals which hardly mention descriptive statistics.

6.3 When not to use histograms and frequency tables of scores

Use a histogram in favour of a frequency table when the frequency table would contain so 
many categories of scores that it would be unwieldy. Frequency tables that are too big can be
problematic.



FIGURE 6.7 Essential ideas for shapes of distributions of scores

FIGURE 6.8 Ideas important in the shapes of distributions
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6.4 Data requirements for histograms and frequency tables of scores

Histograms require score variables, but frequency tables can also be computed for nominal 
(category) data.



6.6 The data to be analysed

We will compute a frequency table and histogram of the extraversion scores of the 50 airline
pilots shown in Table 6.1 (ISP, Table 4.1).

You can find out more about distributions of scores in Chapter 4 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

Table 6.1 Extraversion scores of 50 airline pilots

3 5 5 4 4 5 5 3 5 2

1 2 5 3 2 1 2 3 3 3

4 2 5 5 4 2 4 5 1 5

5 3 3 4 1 4 2 5 1 2

3 2 5 4 2 1 2 3 4 1
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6.5 Problems in the use of histograms and frequency tables of scores

The major problem occurs when frequency tables are computed without consideration of the
number of scores or categories that it will produce. Any variable can be used to generate a 
frequency table on SPSS but it needs to be remembered that for every different score then a new
category will be created in the table, so if, for example, you measured people’s heights in mil-
limetres the resulting frequency table would be horrendous. This is a common problem with SPSS
– it readily generates output whether or not the requested output is sensible. The adage ‘junk 
in – junk out’ is true but it is also true that thoughtless button pressing on SPSS means that a
wheelbarrow may be needed to carry the printout home. Of course, it is possible to use SPSS pro-
cedures such as recode (see Chapter 42) to get output in a manageable and understandable form.

Be wary of the first charts and diagrams that SPSS produces. Often these need to be edited to
produce something optimal.

Finally, it is common to find that student research is based on relatively few cases. This can
result in somewhat difficult tables and diagrams unless some care is taken. It is very difficult 
to spot shapes of distributions if there are too many data points in the table or diagram.
Consequently, sometimes it is better to use score ranges rather than the actual scores in order 
to generate good tables and diagrams. This will involve recoding your values (Chapter 42).
Remember that in the worst cases SPSS will generate a different category for each different score
to be found in your data. Recoding data would involve, for example, expressing age in ranges
such as 15–19 years, 20–24 years, 25–39 years and so forth. Some experimentation may be 
necessary to achieve the best tables and diagrams.
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6.7 Entering the data

6.8 Frequency tables



REPORTING THE OUTPUT
Notice that we omitted some of the confusion of detail in Table 6.2. Tables and diagrams need to clarify the results.

Table 6.2 One style of reporting the table output

Extraversion Score Frequency Percentage frequency Cumulative
percentage frequency

1 7 14.0 14.0

2 11 22.0 36.0

3 10 20.0 56.0

4 9 18.0 74.0

5 13 26.0 100.0

70 CHAPTER 6 SHAPES OF DISTRIBUTIONS OF SCORES

6.9 Interpreting the output
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6.10 Histograms



REPORTING THE OUTPUT
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6.11 Interpreting the output
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Summary of SPSS Statistics steps for frequency distributions

Data

In the ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In the ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

For frequency tables, select ‘Analyze’, ‘Descriptive Statistics’ and ‘Frequencies …’.
Move variables to be analysed to right hand side box.
For histograms, select ‘Graphs’, and then either ‘Chart Builder …’ (see Chapters 4 and 10) or ‘Legacy
Dialogs’ (this chapter and Chapters 9 and 11)
For ‘Chart Builder …’, select ‘OK’ and ‘Histogram’.
Move the appropriate graph to the box above and the appropriate variable to the ‘X-Axis?’ box.
For ‘Legacy Dialogs’, select ‘Histogram’ and then move the variable to the ‘Variable:’ box.

Output

The frequency table shows the frequency as well as the percentage of the frequency for each value.
If needed, use the ‘Chart Editor’ to edit the histogram.

For further resources including data sets and questions, please refer to the website accompanying this book.



Standard deviation
The standard unit of measurement in statistics

Overview

Basically, standard deviation is an index of how much scores deviate (differ) ‘on average’ from the
average of the set of scores of which they are members. In other words, standard deviation is an
index of the amount of variability of scores around the mean of the scores.

Standard deviation can also be used in order to turn scores on very different variables into z
or ‘standard scores’ that are easily compared and summed since they are on the same scale 
of measurement. This standard scale always has a mean of zero and a standard deviation of 
1.0 irrespective of the variable in question.

Standard scores occur in a variety of ways in statistics although not always in an obvious form. For
example, beta weights in multiple regression are based on standard scores. Z-scores are easily
computed in SPSS Statistics but a conceptual understanding of them is helpful in many contexts.

Standard deviation itself always takes a positive value, but researchers write of a number of 
standard deviations above the mean (i.e. ‘+’ relative to the mean) or a number of standard devi-
ations below the mean (i.e. ‘-’ relative to the mean). That is, scores above the mean of the sam-
ple will always convert to a z-score or standard score with a positive prefix. Scores below the mean
will always convert to a z-score or standard score with a negative prefix.

7.1 What is standard deviation?

Whoever invented the standard deviation did not have psychology students in mind. Like a lot of
statistical concepts, it was not designed to be easily comprehended by mere mortals but for its
very special mathematical properties. It is actually fairly easy to say what the standard deviation
is but much harder to understand what it is. Standard deviation is no more or less than the square
root of the variance of a set of scores as depicted in Figure 7.1. If you understood the concept 
of variance (Chapter 5) then the standard deviation is simply the square root of the value of the
variance. Unfortunately, the concept of variance is not that easy either since it is calculated by
taking each score in a set of scores and subtracting the mean from that score, squaring each of
these ‘deviations’ or differences from the mean, summing them up to give the total, and finally

CHAPTER 7



FIGURE 7.1 Calculating standard deviation from variance

7.1 WHAT IS STANDARD DEVIATION? 75

dividing by the number of scores (or the number of scores - 1 to calculate the variance estimate).
Easy enough computationally but it is a bit of a struggle to fix the concept in one’s head.

Notice that the standard deviation is simply the square root of the variance, so it is the square
root of something which involved squaring the deviation of each of the scores from the mean.
Since it is the square root of squares the standard deviation gets us near to getting back to the
original deviation anyway. And this is what conceptually the standard deviation is – a sort of
average amount by which scores differ (deviate) from the mean. That’s what it is but most of us
would simply have taken the average deviation from the mean in the first place without all of this
squaring and square rooting. The gods who invented statistics had worked out that the common-
sense measure of average deviation from the mean did not have the mathematical advantages that
standard deviation had.

Standard deviation comes into its own when our data have a normal distribution (the bell-
shaped distribution we discussed in Chapter 6). In these circumstances, it so happens that if 
one counts the number of standard deviations a score is from the mean then one can say exactly
what proportion of scores lie between the mean and that number of standard deviations from 
the mean. So if a score is one standard deviation from the mean then 34.13 per cent of scores 
lie between this score and the mean; if a score is two standard deviations from the mean then
47.72 per cent of scores lie between this score and the mean. How do we know this? Simply
because these figures are a property of the normal curve. Most importantly, these figures apply
to every normal curve. There are tables which give the percentages for every number of standard
deviations from the mean.

These precise figures only apply to the normal distribution. If one does not have data which
correspond to the normal curve then these figures are not accurate. The greater the deviation
from the normal curve the more inaccurate become these figures. Perhaps now it is easier to see
the importance of the normal distribution and the degree to which the normal distribution
describes the frequency curve for your data.

One application of the standard deviation is something known as z-scores. This is simply a
score re-expressed in terms of the number of standard deviations it is away from the mean score.
So the z-score is simply the score minus the mean score of the set of data then divided by the 
standard deviation. In other words, the z-score is the number of standard deviations a score is
away from the mean score. This is important since no matter the precise nature of a set of scores,
they can always be converted to z-scores which then serve as a standard unit of measurement in
statistics. It also means that one can quickly convert this number of z-scores to the proportion of
scores which the score lies away from the mean of the set of scores.

You may not wish to do this for a particular set of data, but you need to know that many of
the statistics described in this book can involve standardised measures which are very closely
related to z-scores (e.g. multiple regression, log-linear analysis and factor analysis).

By the way, SPSS actually does not compute standard deviation but something called the esti-
mated standard deviation. This is slightly larger than the standard deviation. Standard deviation
applies when you simply wish to describe the characteristic of a set of scores whereas estimated
standard deviation is used when one is using the characteristics of a sample to estimate the same
characteristic in the population from which the sample came. It would be good to label estimated
standard deviation as such despite what SPSS says in its output. Figure 7.2 outlines the main steps
in calculating standard deviation.



FIGURE 7.2 Steps in standard deviation
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7.2 When to use standard deviation

Standard deviation is always valuable when considering any score variable. It is clearly much
more informative when it is based on a normally distributed set of scores than where the distri-
bution deviates substantially from that ideal. Variance, standard deviation and standard error
(Chapter 5) are all used as measures of the variation in the scores on a variable. This is because
there is such a close mathematical relation between each of them. The square root of variance is
standard deviation and the variance divided by the square root of the sample size is the standard
error. Of course, it is important to be consistent in terms of which one is used.

7.3 When not to use standard deviation

Do not use standard deviation when dealing with nominal (category variables). SPSS will do a
calculation for you but the outcome is mathematically precise gibberish in this case.

7.4 Data requirements for standard deviation

Standard deviation can be calculated only on score data. Ideally, the variable in question should
be normally distributed and, some would say, be measured on an equal-interval scale.

7.5 Problems in the use of standard deviation

Getting to understand standard deviation is a bit like a child trying to play a concerto on the
piano before learning to play simple scales. That is, standard deviation, because of its abstract
nature, is very difficult to grasp but invariably taught early in a statistics module.



Table 7.1 Data for the calculation of standard deviation

Age 20 25 19 35 19 17 15 30 27
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Because of this, novices often stare blankly at SPSS output for standard deviation since it does
not immediately tell a story to them. It’s rather like, however, finding out that the average length
of a plank of wood is 1.6 metres long – it is something to be taken for granted. Standard devi-
ation is simply a sort of average amount by which scores deviate from the mean.

Remember that what SPSS calls standard deviation should really be labelled estimated stand-
ard deviation if one wishes to be precise.

You can find out more about standard deviation and z-scores in Chapter 5 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

7.6 The data to be analysed

The computation of the standard deviation and z-scores is illustrated with the nine age scores
shown in Table 7.1 (based on ISP, Table 5.1).

7.7 Entering the data
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7.8 Standard deviation

7.9 Interpreting the output
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7.11 Other features

‘Descriptives …’ contains a number of statistical calculations which can easily be selected:

Mean

Sum

Standard deviation (estimate)

Range

Minimum (score)

Maximum (score)

Standard error (S.E. mean)

Kurtosis

Skewness

These different statistical concepts are briefly explained in Chapter 5.

7.10 Z-scores



Table 7.2 The sample size, mean, range and standard deviations of age, IQ and verbal fluency

n Mean Range Standard deviation

Age 9 23.00 20.00 6.65

IQ 9 122.17 17.42 14.38

Verbal fluency 9 18.23 4.91 2.36
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Summary of SPSS Statistics steps for standard deviation

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

Select ‘Analyze’, ‘Descriptive Statistics’ and ‘Descriptives …’.
Move the variables to be analysed to the ‘Variable(s):’ box.
Select ‘Save standardised values as variables’.

Output

The standard deviation is presented in a table with other default statistics unless these are de-selected.
The standardised values are presented in the next free column of ‘Data View’ in the ‘Data Editor’ with the
name of the original variable starting with a Z.

REPORTING THE OUTPUT
The standard deviation of just one variable can easily be mentioned in the text of your report: 

The standard deviation of age was 6.65 years (n = 9).

However, it is more likely that you would wish to record the standard deviation alongside other statistics such as the mean
and range, as illustrated in Table 7.2. You would probably wish to include these statistics for other numerical score vari-
ables that you have data on.

For further resources including data sets and questions, please refer to the website accompanying this book.



Relationships between 
two or more variables
Tables

Overview

A great deal of research explores the relationship between two or more variables. The univariate
(single-variable) statistical procedures described so far have their place in the analysis of prac-
tically any data. Nevertheless, most research questions also require the interrelationships or 
correlations between different variables to be addressed.

As with univariate statistics, a thorough bivariate statistical analysis of data requires an explora-
tion of the basic trends in the data using cross-tabulation tables.

Care has to be taken to make sure that the tables you obtain are useful and communicate well. 
In particular, ensure that your data for cross-tabulation tables contain only a small number of 
different data values. If they do not, SPSS Statistics will produce massive tables.

Labelling tables in full is a basic essential, along with a clear title.

The type of table which is most effective at communicating relationships in your data depends very
much on the types of data involved. Two nominal variables are generally presented in terms of a
cross-tabulation table.

Remember that the effective presentation of basic descriptive statistics requires that researchers
consider their tables carefully. Often researchers will have to ‘tweak’ things to make the finished
tables effective forms of communication. That this can be done quickly is one of the advantages
of using SPSS.

It is recommended that the temptation to simply cut and paste tables from SPSS output into
reports is avoided. There is virtually no SPSS output which cannot be improved upon and made
clearer. The basic options of SPSS are not always ideal in this respect.

CHAPTER 8



FIGURE 8.1 Steps in showing relationships between two variables
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8.1 What tables are used to show relationships between variables?

Relationships between variables are the foundation stone of most psychological research. The
idea of relationships imbues many common psychological research questions. Is intelligence
related to income? Does depression cause suicide? Is there a correlation between age and mem-
ory deterioration? Is there an association between childhood attachment difficulties and adult
attachment difficulties? These are all examples of questions which imply an association or, in
other words, a relationship. There are other research questions which superficially may not 
imply a relationship but nevertheless do when examined more carefully. For example, ‘Is there a 
difference between men and women in terms of their emotional intelligence?’ This is a research
question which can be put another way: Is there a relationship between a person’s gender and the
strength of their emotional intelligence? In other words, the conventional psychological notion 
of tests of difference and tests of association which is found in many current popular textbooks
is fundamentally misleading.

There are many statistical techniques for showing that there are relationships between 
variables, as shown in Figure 8.1. But in this chapter we will concentrate on tables which do this.



FIGURE 8.2 A cross-tabulation table

You can find out more about methods of relating variables in Chapter 6 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.

Table 8.1 Means presented as a table

Mean aptitude score

Males 3.88

Females 3.69
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The appropriate tabular methods used to investigate relationships depend on the sorts of data in
question:

If both variables are nominal (category) variables then a cross-tabulation table is suitable. The
value of analysis becomes problematic if there are too many categories in one or both of the
variables. One thing that might be done is to combine categories together into one if that is a
reasonable thing to do given the detail of your data.

If both variables are score variables then a table is usually not appropriate. The problem with
tables is usually the large number of different values of scores on each variable. This can be
dealt with by breaking each score variable into a small number of score ranges prior to pro-
ducing the table using SPSS. How data can be recoded is described in Chapter 42. Apart from
that, it is simply a matter of computing the cross-tabulation table of the two variables – or
recoded variables. It sometimes is not quite so apparent that a crosstabulation table shows a
relationship between two variables. Look at the table in Figure 8.2. There is a correlation indi-
cated there since the frequencies near the diagonal from top left to bottom right tend to be
larger than the frequencies found in other sections (cells) of the table.

If one variable is a score variable and the other is a nominal (category) variable then it might
be appropriate to use a simple table which names the category and then gives the mean (and
possibly other statistics such as the standard deviation, maximum and minimum scores and so
forth). Tables such as Table 8.1 are quick and easy to interpret. Another advantage is that a
lot of similar analyses can be presented in a single, compact table.
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8.2 When to use tables to show relationships between variables

It is hard to conceive of circumstances in which a researcher would not wish to use a table to show
relationships. Basic descriptive statistics are not kindergarten statistics there to ease students into
their studies. They are vital to truly understanding not just the characteristics of one’s variables
but also clarifying exactly what the findings of one’s research are. Too often novice researchers fail
to understand their statistical analysis simply because they have not studied the essential descrip-
tive statistics as part of their data analysis. So often do novice researchers leap to the stage of test-
ing statistical significance which leaves them knowing that something is statistically significant
but they do not quite know what that something is or what it means. SPSS speeds up the process
of data analysis remarkably so there is little excuse for skipping vital stages such as computing
means and standard deviations, for example. Put simply, descriptive statistics are the way in
which you discover what your data have to say and tests of significance simply tell you the extent
to which what the data say is statistically reliable enough to have faith in the trends you discover.

8.3 When not to use tables to show relationships between variables

The key thing is to select a method of graphical or tabular analysis which suits the data in ques-
tion. We have given advice which will help you find the appropriate method for the majority 
of cases but, of course, there is always an element of judgement to apply in certain instances.
Furthermore, one has to consider what to do when one has many similar analyses to report. In
these circumstances a different approach may be preferable. Simply do not generate too many
separate tables – try to keep them to an essential minimum, otherwise your report will be too
cluttered. Also remember that the primary purpose of the descriptive statistics is to help you with
your data analysis – it does not follow that you should stuff your reports with them. Again, it is
a matter of judgement how many you use.

8.4
Data requirements for tables to show relationships between 
variables

There are different data requirements for the different methods. Two score or nominal variables
are dealt with carefully planned cross-tabulation tables. Situations in which you have one score
variable and one nominal variable can be most adequately dealt with by giving the means for each
category of the nominal variable.

8.5
Problems in the use of tables to show relationships between
variables

While the SPSS default versions of tables and charts are adequate for most aspects of data ana-
lysis, one should be very careful to consider what is needed for inclusion in research reports. 
Here the main criterion has to be how readily the table actually communicates to the reader.
Consequently you may need to adjust things such as the labelling of the table to make it readily
interpretable and meaningful to the reader.



Table 8.2 Cross-tabulation table of gender against hospitalisation

Female Male

Previously hospitalised F = 25 F = 20

Not previously hospitalised F = 14 F = 30
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8.6 The data to be analysed

We will illustrate the drawing up of a cross-tabulation table with the data shown in Table 8.2
(ISP, Table 6.4). This shows the number of men and women in a study who have or have not
been previously hospitalised.

8.7 Entering the data
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8.8 Weighting the data



Step 1

Select ‘Analyze’,
‘Tables’ and ‘Custom
Tables...’
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8.9 Cross-tabulation with frequencies
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8.10 Displaying frequencies as a percentage of the total number



8.11 Displaying frequencies as a percentage of the column total
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Summary of SPSS Statistics steps for contingency tables

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the ‘nominal’ variables and select ‘nominal’ as the ‘measure’.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

For a contingency table, select ‘Analyze’, ‘Table’ and ‘Custom Tables …’.
Select ‘OK’, move the appropriate variables to the column and row boxes and select ‘OK’.

Output

Check tables are correct. They can be edited in the ‘Chart Editor’ if required.

For further resources including data sets and questions, please refer to the website accompanying this book.



Relationships between two
or more variables
Diagrams

Overview

Another way of looking at and illustrating the relationship between two variables is through the
use of diagrams and graphs such as compound (clustered) bar charts and scattergrams. These
may be familiar to you already, but nevertheless can cause difficulties.

Care has to be taken to make sure that the diagrams you obtain are useful and communicate well.
In particular, ensure that your data for compound (clustered) bar charts only contain a small 
number of different data values. If they do not, SPSS Statistics will produce dense, unreadable
graphs and diagrams.

Labelling diagrams in full is essential, together with a clear title.

Scattergrams work well when you have many different values for the scores on your variables.

The type of diagram which is most effective at communicating relationships in your data depends
very much on the types of data involved. Two score variables will generally be most effectively pre-
sented as a scattergram than a cross-tabulation table.

Remember that the effective presentation of basic descriptive statistics requires that researchers
consider their diagrams carefully. Often researchers will have to ‘tweak’ things to make the 
finished graphs effective forms of communication. This can be quickly done using SPSS.

It is recommended that simply cutting and pasting diagrams from SPSS output into reports is
avoided. There is virtually no SPSS output which cannot be improved upon and made clearer. The
basic options of SPSS are not always ideal in this respect. Often the editing procedures available
for SPSS charts can improve things enormously.

Producing charts like those discussed in this chapter is one of the harder tasks using SPSS
Statistics.

CHAPTER 9



FIGURE 9.1 A compound bar chart

FIGURE 9.2 A stacked bar chart
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9.1 What diagrams are used to show relationships between variables?

As mentioned in the previous chapter, relationships between variables are the foundation stone
of most psychological research. There are many statistical techniques for showing such relation-
ships. In this chapter we will look at graphs which do this. The appropriate graphical methods
used to investigate relationships depends on the sorts of data in question:

If both variables are nominal (category) variables then the simplest graphical procedure is to
produce a compound bar chart as in Figure 9.1 (or alternatively a stacked bar chart as in
Figure 9.2). The value of analysis becomes problematic if there are too many categories in one
or both of the variables. One thing that might be done is to combine categories into one if that
is a reasonable thing to do given the detail of your data.



FIGURE 9.3 Example of a scatterplot

FIGURE 9.4 A bar chart representing means
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If both variables are score variables then the appropriate graphical method is the scattergram
or scatterplot. An example of a scatterplot is given in Figure 9.3. We explain how to do a scat-
terplot on SPSS in Chapter 11 where it is dealt with in conjunction with the correlation
coefficient.

If one variable is a score variable and the other is a nominal (category) variable then it might
be appropriate to produce the sort of bar chart which essentially displays the means for each
nominal category (see Figure 9.4). However, there is not a great deal to be gained from the use
of such a chart other than when giving, say, a PowerPoint presentation of some research to an
audience. In this context the chart does add to the impact of the presentation.

Figure 9.5 shows the main steps in using diagrams to show relationships between variables.

You can find out more about methods of relating variables in Chapter 6 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.



FIGURE 9.5 Steps in using diagrams to show relationships between variables
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9.2 When to use diagrams to show relationships between variables

It is difficult to think of situations in which a researcher would not wish to use some of the graph-
ical methods of showing relationships. Basic descriptive statistics are not only simple statistics
there to help students into their studies. They are essential to truly understanding not just the
characteristics of one’s variables but also clarifying exactly what the findings of one’s research
are. Too often beginning researchers fail to understand their statistical analysis simply because
they have not examined the essential descriptive statistics as part of their data analysis. Novice
researchers often jump to the stage of testing statistical significance which leaves them knowing
that something is statistically significant but they do not quite know what that something is or
what it means. SPSS hastens the process of data analysis remarkably so there is little excuse for
avoiding vital stages such as checking scattergrams. Put simply, descriptive statistics are the way
in which you discover what your data have to say. Tests of significance simply tell you the extent
to which what the data say is statistically reliable enough to have faith in the trends you discover.

9.3
When not to use diagrams to show relationships between 
variables

The essential thing is to select a method of graphical analysis which suits the data in question.
We have given advice which will help you find the appropriate method for the majority of 
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cases but, of course, there is always an element of judgement to apply in certain instances.
Furthermore, one has to consider what to do when one has many similar analyses to report. 
In these circumstances a different approach may be preferable. Simply do not generate too many
separate diagrams – try to keep them to an essential minimum otherwise your report will be too
cluttered. Also remember that the primary purpose of the descriptive statistics is to help you with
your data analysis – it does not follow that you should stuff your reports with them. Again, it is
a matter of judgement how many you use.

9.4
Data requirements for diagrams to show relationships between
variables

There are different data requirements for different types of diagrams. Two score variables are
dealt with scattergrams; two nominal variables are dealt with using stacked or clustered bar
charts. Situations in which you have one score variable and one nominal variable can be pre-
sented in a bar chart.

9.5
Problems in the use of diagrams to show relationships between
variables

While the SPSS default versions of charts are adequate for most aspects of data analysis, one
should be very careful to consider what is needed for inclusion in research reports. Here the main
criterion has to be how readily the chart actually communicates to the reader. Consequently you
may need to adjust things such as the labelling of the diagram to make it readily interpretable and
meaningful to the reader.

Errors in the selection of appropriate charts can often be seen in the unusual look to them. In
particular, scattergrams where a nominal variable has inadvertently been included as one of the
variables tend to have the data points seemingly stacked vertically. Be on the look out for oddities
like this. Figure 9.6 is a good example. Why does it look odd? Simply because gender has been
included, which only has two categories. Hence the points on the plot pile up on top of each other.

FIGURE 9.6 There are problems with this scatterplot, as explained in the text



Table 9.1 Cross-tabulation table of gender against hospitalisation

Female Male

Previously hospitalised F = 25 F = 20

Not previously hospitalised F = 14 F = 30
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9.6 The data to be analysed

We will illustrate the drawing up of a cross-tabulation table and compound bar chart with the
data shown in Table 9.1 (ISP, Table 6.4). This shows the number of men and women in a study
who have or have not been previously hospitalised. If your data are already entered into SPSS
then Steps 1 to 5 may be ignored.

9.7 Entering the data
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9.8 Weighting the data
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9.9 Compound (stacked) percentage bar chart
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9.10 COMPOUND HISTOGRAM (CLUSTERED BAR CHART) 99

9.10 Compound histogram (clustered bar chart)
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9.10 COMPOUND HISTOGRAM (CLUSTERED BAR CHART) 101

Summary of SPSS Statistics steps for bar charts

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

For bars, select ‘Graphs’, and then either ‘Chart Builder …’ (see Chapters 4 and 10) or ‘Legacy Dialogs’ 
(this chapter and Chapters 6 and 11).
For ‘Chart Builder …’, select ‘OK’ and ‘Bar’.
Move the appropriate bar to the box above and the appropriate variable to the ‘X-Axis?’ box.
For ‘Legacy Dialogs’, select ‘Bar …’, the appropriate bar, and then ‘Define’ to move the appropriate 
variables to their respective boxes and select the appropriate statistic.

Output

Check charts are correct. They can be edited in the ‘Chart Editor’ if required.

For further resources including data sets and questions, please refer to the website accompanying this book.



Correlation coefficients
Pearson’s correlation and Spearman’s rho

Overview

A correlation coefficient is a numerical index which indicates the strength and direction of a rela-
tionship between two variables.

There are a number of different correlation coefficients. In general, the most common and most
useful by far is the Pearson correlation coefficient. The phi, point biserial and Spearman’s rho cor-
relation coefficients are all merely variants of it.

It is good practice to draw a scattergram as this represents the data included in a correlation co-
efficient. Not only will this give you a visual representation of the relationship but it also helps
identify a number of problems such as a curved relationship or the presence of outliers.

The Pearson correlation coefficient assumes a straight-line relationship between two variables. It is
misleading if a curved relationship exists between the two variables. Outliers are extreme and un-
usual scores which distort the size of the correlation coefficient. Remedies include examining the
relationship if the outliers are omitted. Alternatively, a Spearman correlation coefficient is less affected
by outliers, and so one could compare the size of the Spearman correlation for the same data.

A correlation coefficient is a numerical measure or index of the amount of association between two
sets of scores. It ranges in size from a maximum of +1.00 through .00 to -1.00.

The ‘+’ sign indicates a positive correlation – that is, the scores on one variable increase as the
scores on the other variable increase. A ‘-’ sign indicates a negative correlation – that is, as the
scores on one variable increase, the scores on the other variable decrease.

A correlation of 1.00 indicates a perfect association between the two variables. In other words, a
scattergram of the two variables will show that all of the points fit a straight line exactly. A value
of .00 indicates that the points of the scattergram are essentially scattered randomly around any
straight line drawn through the data or are arranged in a curvilinear manner. A correlation coeffi-
cient of -.5 would indicate a moderate negative relationship between the two variables.

Spearman’s rho is the Pearson correlation coefficient applied to the scores after they have been
ranked from the smallest to the largest on the two variables separately. It is used when the basic
assumptions of the Pearson correlation coefficient have not been met by the data – that is espe-
cially when the scores are markedly asymmetrical (skewed) on a variable.

CHAPTER 10



Since correlation coefficients are usually based on samples of data, it is usual to include a state-
ment of the statistical significance of the correlation coefficient. Statistical significance is a state-
ment of the likelihood of obtaining a particular correlation coefficient for a sample of data if there
is no correlation (i.e. a correlation of .00) in the population from which the sample was drawn.
SPSS Statistics can give statistical significance as an exact value or as one of the conventional crit-
ical significance levels (for example .05 and .01).

FIGURE 10.1 A scattergram showing the relationship between maths ability and musical ability
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10.1 What is a correlation coefficient?

The simplest way to understand correlation coefficients is to conceive of them as a single numer-
ical index which summarises some of the vital information in a scattergram or scatterplot. Fig-
ure 10.1 shows a scatterplot of the information to be found in Table 10.1 overleaf. That is to say,
we have included a line of best fit through the various points on the scatterplot. This is a straight
line. You will notice that the data points on the scatterplot are spread around the straight line.
This means that the data do not fit the straight line perfectly. The correlation coefficient is really
just an index of the spread of the data points around that best fitting straight line. Correlation
coefficients range from absolute values of 1.00 at the most to .00 at the least. A correlation of
1.00 means that the data points all fit perfectly on the straight line whereas a correlation of .00
means that the data points fit the straight line very badly. Actually, a .00 correlation indicates
that there is no straight line which fits the data points any better than on a chance basis. Values
between .00 and 1.00 are indicative of increasingly strong relationships between the two variables
– that is the fit of the data points to the straight line is getting closer and closer.

There is a little more to things than this. Some correlation coefficients have a negative sign in
front of them such as -1.00 or -.50. The negative sign simply indicates that the slope of the scat-
terplot between two variables is negative – that is, the straight line points downwards from left
to right rather than upwards. This negative slope can be seen in Figure 10.1. In other words, 
a negative sign in a correlation coefficient indicates that as scores get bigger on one of the two



FIGURE 10.2 The constituents of a Pearson correlation coefficient

Table 10.1 Correlations and proportion and percentage of variance explained in one of the variables

Value of correlation coefficient r Square of correlation coefficient % of variance in relationship
between two variables explained

(by best-fitting straight line)

1.00 1.00 100.00

.70 .49 49.00

.50 .25 25.00

.25 .0625 6.25

.10 .01 1.00

.00 .00 0.00

-.50 .25 25.00

-1.00 1.00 100.00
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variables then they begin to get smaller on the other variable. Figure 10.2 illustrates the basic
parts of a Pearson correlation coefficient.

A correlation coefficient can be spoken of as explaining or accounting for a certain amout of
the variance between two variables. A correlation coefficient of 1.00 explains all of the variance
between two variables – that is there is no variation at all of the data points from the best fitting
straight line on the scatterplot so that all of the variation in data points is accounted for by the
best fitting straight line. A correlation coefficient of .00 means that there is no variance accounted
for by the best fitting straight line since the fit of the data points to the straight line is merely ran-
dom. This idea of variance explained by a correlation coefficient is very important in psychology
and needs to be understood in order to grasp the meaning of correlation coefficients adequately.
The correlation coefficient is the proportion of variance shared between two variables. However,
the variance explained in one variable by the other is calculated by squaring its value and express-
ing this as a proportion or percentage of the maximum value of a correlation coefficient possible,
i.e. 1.00. Some examples of such values are shown in Table 10.1.

This table tells us that there is not a direct relationship between a correlation coefficient and
the amount of variance that it accounts for. The relationship is exponential because it is based 
on squares. The percentage of variation explained is a better indicator of the strength of the 
relationship than the size of the correlation coefficient. So for example, although a correlation of
.5 may seem to be half as good as a correlation of 1.00, this is not really the case. A correlation
of .5 actually only explains .25 (25 per cent) of the variance. So a correlation of .5 is really a quar-
ter as good as a correlation of 1.00.

The above comments apply directly to what is known as the Pearson product moment cor-
relation coefficient – Pearson correlation for short. This is a correlation coefficient based on 
variables measured as numerical scores. It is the mother (father?) of a range of other correlation
coefficients such as the Spearman rho.



FIGURE 10.3 Some varieties of the correlation coefficient
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The Spearman rho correlation coefficient is based on the Pearson correlation coefficient. It
only differs in that the scores on the two variables are ranked separately from the smallest to the
largest values. (Ranking simply puts scores in order from the smallest to the largest values. The
smallest score would be given the rank 1, the next biggest score is given the rank 2, and so forth.)
One has two sets of ranks to calculate the Spearman rho. Essentially if the Pearson correlation
coefficient formula is applied to these ranks rather than the original scores, the resulting cor-
relation coefficient is known as the Spearman correlation coefficient. It has traditionally been
regarded as an alternative to the Pearson correlation coefficient when the variables involved are
measured on a scale which does not have equal intervals. That is, the difference between 5 and 6
on the scale, say, is not the same quantity as the difference between 8 and 9 on the scale in terms
of the ‘psychological’ units being measured. Modern psychologists tend to ignore this issue which
once created fierce debates among researchers and statisticians. So the preference seems to be
(although few would admit to it) to use the Pearson correlation coefficient. There are advantages
to this since more powerful statistical techniques are available which are based on the Pearson
correlation rather than on the Spearman rho.

Correlation coefficients are normally based on samples of data. As a consequence, it is necessary
to test the statistical significance of correlation coefficients (see Box 1.1). The test of statistical
significance assesses the possibility that the obtained correlation coefficient could come from a 
sample taken from a population in which the correlation is .00 (i.e. no correlation). SPSS displays
significance levels routinely. Figure 10.3 shows some different kinds of correlation coefficient.

10.2 When to use Pearson’s and Spearman’s rho correlation coefficients

The Pearson correlation coefficient can be used in any circumstance in which it would be appro-
priate to draw a scattergram (scatterplot) between two score variables. In other words, the Pearson
correlation coefficient can be used any time that the researcher wishes to know the extent to which



For a discussion of eta and its calculation see Chapter 34 in Howitt, D. and Cramer, D. (2011) Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson Education.

106 CHAPTER 10 CORRELATION COEFFICIENTS: PEARSON’S CORRELATION AND SPEARMAN’S RHO

one variable is related to another. It assesses the association between two variables – it is not a
way of comparing means, for example. So many statistical techniques described later in this book
are based on Pearson correlation in some form or another that it is impossible to avoid. Thus it is
one of the key statistical ideas to understand before going on to study many advanced techniques.

The Spearman rho correlation coefficient, in comparison, is infrequently used. Its main func-
tion is to serve as an alternative to Pearson correlation when the assumptions of the Pearson cor-
relation are not met by the data. Unfortunately, it is quite difficult to decide if these assumptions
are violated so there would be considerable disagreement as to whether to use the Spearman rho
correlation coefficient. If the Pearson correlation and Spearman’s rho result in much the same
conclusion as each other then there is no problem. But if they differ then one might wish to con-
sider the possibility that the statistical assumptions underlying the Pearson correlation are not
met by the data.

Versions of the Pearson correlation coefficient can be used when one is not considering the
relationship between two sets of scores. For example, if one has a score variable and a binary
variable (one with just two alternative categories such as yes and no or male and female) then the
point biserial correlation coefficient may be calculated. This is the Pearson correlation coefficient
applied to the score variable and the binary variable which is coded 1 and 2 for the two binary
categories. If one has two binary variables then these can be correlated using the Pearson corre-
lation coefficient though the outcome is conventionally known as the phi coefficient.

10.3
When not to use Pearson’s and Spearman’s rho correlation
coefficients

Pearson correlation is based on linear (straight-line) relationships hence we draw a straight line
through the points on a scattergram or scatterplot when illustrating Pearson correlation. But not
all relationships are linear in psychological research. One should always examine the scattergram
for the data to assess the extent to which the relationship is not linear – the best fitting line on a
scatterplot might actually be a curve (i.e. a curvilinear relationship). If this is the case for your
data then do not use Pearson correlation since it will be extremely misleading. In these circum-
stances, there is a correlation coefficient (eta) which may be calculated since it works with curved
relationships.

The Spearman rho also assumes that the relationship is a more or less linear one and so this
should not be used either where the relationship is a curve and not a straight line.

10.4
Data requirements for Pearson’s and Spearman’s rho correlation
coefficients

The Pearson correlation coefficient requires two score variables as does Spearman’s rho. How-
ever, the scores should ideally be normally distributed for the Pearson correlation and, some
would argue, on an equal interval scale. One could consider using Spearman’s rho where these
requirements are not met, though the advantages of doing so may not balance out the costs for
anything other than the most simple of research studies because it is a far less flexible statistic.



Table 10.2 Scores on musical ability and mathematical ability for 10 children

Music score Mathematics score

2 8

6 3

4 9

5 7

7 2

7 3

2 9

3 8

5 6

4 7
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It is possible to use the Pearson correlation coefficient when one or both variables are in the form
of binary variables – that is, there are only two possible response categories. Code these binary
variables as 1 for one category and 2 for the other category in SPSS. If you then run the Pearson
correlation procedure on these variables the resulting correlations are known as phi (if both vari-
ables are binary) and the point-biserial (if one variable is binary and the other a score variable).

10.5 Problems in the use of correlation coefficients

Most of the problems involved in using correlation can be identified by carefully looking at the
scatterplots of the relationship. The problem of curvilinear relationships has already been dis-
cussed and the easiest way of identifying curvilinear relationships is simply by looking at the 
scatterplot. The alternative is to compare the size of the Pearson correlation on your data with
the size of eta calculated on the same data.

Outliers are data points on the scatterplot which are at the extremes of the distribution. They
are problematic because they can totally distort the correlation such is their impact. They can
often be identified visually from the scatterplot. However, Spearman’s rho is largely unaffected
by outliers since they are changed into ranks along with the other scores. So one way of check-
ing for outliers is to compare the Spearman’s rho correlation with the Pearson correlation for 
the same data. If Spearman’s rho is much smaller than the Pearson correlation, then suspect the
influence of outliers which are making the Pearson correlation appear to be large.

You can find out more about the correlation coefficient in Chapter 7 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

10.6 The data to be analysed

We will illustrate the computation of Pearson’s correlation, a scatter diagram and Spearman’s 
rho for the data in Table 10.2 (ISP, Table 7.2), which gives scores for the musical ability and
mathematical ability of 10 children.
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10.7 Entering the data

10.8 Pearson’s correlation



REPORTING THE OUTPUT
The correlation between music ability and mathematical ability is -.900. It is usual to round correlations to two deci-
mal places, which would make it -.90. This is more than precise enough for most psychological measurements. Note
that there is no need to put a 0 before the decimal point (e.g. -0.90) because a correlation cannot be bigger than ±1.00.
The exact significance level to three decimal places is .000. This means that the significance level is less than 0.001.
We would suggest that you do not use a string of zeros, as these confuse people. Always change the third zero to a 1.
This means that the significance level can be reported as being p < 0.001.
It is customary to present the degrees of freedom (df ) rather than the number of cases when presenting correlations.
The degrees of freedom are the number of cases minus 2, which makes them 8 for this correlation. There is nothing
wrong with reporting the number of cases instead.
In a report, we would write:

There is a significant negative relationship between musical ability and mathematical ability, r(8) = -.90, p < 0.001.
Children with more musical ability have lower mathematical ability.

The significance of the correlation coefficient is discussed in more detail in Chapter 10 of Howitt, D. and Cramer, D.
(2011) Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.
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10.9 Interpreting the output

10.10 Spearman’s rho



REPORTING THE OUTPUT
The correlation reported to two decimal places is -.89.
The probability of achieving this correlation by chance is less than .001 (i.e. p < .001).
We would report this in the following way:

There is a statistically significant negative correlation between musical ability and mathematical ability, 
r(8) = -.89, p < .001. Those with the highest musical ability tend to be those with the lowest mathematical 
ability and vice versa.

Rho should be represented by the Greek small letter r.
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10.11 Interpreting the output

10.12 Scatter diagram
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REPORTING THE OUTPUT
You should never report a correlation coefficient without examining the scattergram for problems such as curved rela-
tionships or outliers (ISP, Chapter 7).
In a student project it should always be possible to include graphs of this sort. Unfortunately, journal articles and books
tend to be restricted in the figures they include because of economies of space and cost.
We would write of the scattergram:

A scattergram of the relationship between mathematical ability and musical ability was examined. There was no 
evidence of a curvilinear relationship or the undue influence of outliers.
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Summary of SPSS Statistics steps for correlation

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

For the correlation, select ‘Analyze’, ‘Correlate’ and ‘Bivariate …’.
Move appropriate variables to the ‘Variables:’ box.
Select the appropriate correlation and then ‘OK’.
For the scatterplot, select ‘Graphs’.
Then either select ‘Chart Builder’ (this chapter), ‘OK’, ‘Scatter/Dot’ and move the ‘Simple Scatter’ figure to
the box above.
Move appropriate variable names to the vertical and horizontal axes.
Or select ‘Legacy Dialogs’ (Chapter 11), ‘Scatter/Dot …’, ‘Define’, ‘Y Axis’ variable, ‘X Axis’ variable and ‘OK’.

Output

The correlation table shows the correlation, its significance level and the sample size.

10.13 Interpreting the output

For further resources including data sets and questions, please refer to the website accompanying this book.



Regression
Prediction with precision

Overview

Where there is a relationship between two variables, it is possible to estimate or predict a person’s
score on one of the variables from their score on the other variable. The stronger the correlation, the
better the prediction. This is known as simple regression because there are only two variables involved.

Regression can be used on much the same data as the correlation coefficient. However, it is far
less commonly used, partly because of the problem of comparability between values obtained
from different sets of variables. (The beta weight can be used if such comparability is required.)

The dependent variable in regression is the variable the value of which is to be predicted. It is also
known as the criterion variable, the predicted variable or the Y-variable.

The independent variable is the variable being used to make the prediction. It is also known as the
predictor variable or the X-variable.

Great care is needed not to get the independent variable and the dependent variable confused. This
can easily happen with simple regression. The best way of avoiding problems is to examine the
scatterplot or scattergram of the relationship between the two variables. Make sure that the horizon-
tal x-axis is the independent variable and that the vertical y-axis is the dependent variable. One can
then check what the cut point is approximately from the scattergram as well to get an idea of what
the slope should be. The cut point is where the slope meets the vertical axis. These estimates may
be compared with their calculated values to ensure that an error has not been made. If problems are
found, the most likely reason is that the independent and dependent variables have been confused.

The simple regression technique described in this chapter expresses relationships in terms of the
original units of measurement of the variables involved. Thus, if two different studies use slightly
different variables it is difficult to compare the outcomes of the studies using this form of regression.

In regression, the relationship between two variables is described mathematically by the slope of
the best fitting line through the points of the scattergram together with the point at which this
regression line cuts the (vertical) axis of the scattergram. Therefore, the relationship between two
variables requires the value of the slope (usually given the symbol B or b) and the intercept or cut
point in the vertical axis (usually given the symbol a or described as the constant).

Regression becomes a much more important technique when one is using several variables to 
predict values on another variable. These techniques are known as multiple regression (see
Chapters 32–35). When the dependent variable is a nominal category variable, then the appro-
priate statistical analysis will be a form of logistic regression (see Chapters 37 and 38).

CHAPTER 11



FIGURE 11.1 Scattergram of the relationship between music and maths ability
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11.1 What is simple regression?

One of the most difficult statistical techniques for novices to understand is that of simple regres-
sion. It is one of the earliest statistical methods, predating the correlation coefficient. The first
thing to understand is that regression is applied to exactly the same data as the Pearson correla-
tion coefficient. But it does something different. Look at the scatterplot in Section 11.11. When
we discussed Pearson correlation in Chapter 10, we explained how the correlation coefficient is
a measure of how closely the data points fit the straight line through the data points – the bigger
the correlation coefficient, the closer the data points tend to be to the straight line. Regression is
different in that it describes the characteristics of the straight line itself. In order to describe the
best fitting straight line we need to know two things: (1) where the line cuts the vertical axis of
the scatterplot and (2) what the slope of the line is. The point at which the vertical axis is cut by
the straight line is known as the cut point, intercept or constant whereas the slope is the regres-
sion weight. The slope is merely the amount that the line goes up (or down) for every unit that
one goes along the horizontal axis. The slope can be negative, which indicates that the line goes
downwards towards the right of the scatterplot.

The good news is that all of the hard work is done for you on SPSS Statistics. The best fitting
straight line is calculated by SPSS so it is not a matter of trial and error.

However, it needs to be understood that regression is affected by which variable you put on
the horizontal (or X axis) and which variable you put on the vertical (or Y) axis. Quite different
figures emerge in regression depending on your choice. Why does this matter? One of the func-
tions of regression is to allow the user to make predictions from the value of one variable to 
the other variable. This is possible if it is established from a sample of data that there is a good
correlation between the two variables. For example, if you measured the heights and weights 
of a sample of participants you would find a correlation between the two. On the basis of this
information, you would assume that someone who is tall is likely to be heavier than someone
who is small. The only problem is that this is not very precise.

Figure 11.1 gives a scattergram for the relationship between musical and mathematical ability
which is the data in Table 11.1 on page 117, identical to that in Table 10.2 in the previous chap-
ter. The best fitting straight line (also known as the regression line) has been drawn in. We have
added in some extra things: (1) the cut point of the regression line on the vertical axis (which, by
the way, can be negative, i.e. below the horizontal axis, and (2) the words independent and
dependent variable which refer to the horizontal and vertical axes respectively. You could predict



FIGURE 11.2
The formula for predicting a score on variable Y for a particular score on variable X knowing
the slope (b) and the cut point of the regression line on the vertical axis of the scattergram

FIGURE 11.3 Different forms of regression

music ability scores using this scatterplot if you wished simply by drawing a vertical line from the
relevant point on the horizontal axis (i.e. a particular individual’s maths ability score) to the regres-
sion line then horizontally to the vertical axis, The point that the vertical axis is cut is the predicted
score on musical ability. It would be more accurate, though, to use the formula in Figure 11.2,
where b is the slope of the regression line and X is a particular score on the x-axis from which
the score on the y-axis is to be predicted. You would obtain the figures for the slope of the regres-
sion line and the constant from the SPSS output for regression. The value of X you choose would
be the score on the X-variable of a particular individual that you are interested in. Such predic-
tions are rarely made in research settings. Figure 11.3 shows some different forms of regression.

11.2 When to use simple regression

Generally, in psychology, simple regression of this sort would be rarely used. Usually psycho-
logists would use the correlation coefficient in preference to regression when doing simple regres-
sion. Indeed, the regression weight expressed in standardised form is the same as the Pearson 
correlation coefficient. In terms of learning statistics, it is vital because it introduces the basic
ideas of regression. Regression comes into its own when extended into what is termed multiple
regression (see Chapters 32–35) in which there are several predictor variables involved. It is also
closely related conceptually to logistic regression.

11.2 WHEN TO USE SIMPLE REGRESSION 115



FIGURE 11.4 Conceptual stages in understanding regression
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However, it can be used on any pair of score variables especially when the data approximate
equal-interval measurement, which is the assumption for most score variables in psychology.

11.3 When not to use simple regression

Few psychologists use simple regression in their analyses. For most analyses, it generally has no
advantages over the Pearson correlation coefficient with which it has a lot in common.

In addition, do not use simple regression where one has one or more binary variables (two 
values or two category variables) since the output may be fairly meaningless – it certainly will not
look like a typical scatterplot and so may cause confusion.

11.4 Data requirements for simple regression

Two score variables are needed. It is best if these are normally distributed but some deviation
from this ideal will not make much difference.

11.5 Problems in the use of simple regression

Simple regression is beset with the same problems as the Pearson correlation coefficient (see
Chapter 10). So non-linear relationships are a problem as are outliers. These can be checked for
using a scatterplot of the data.

From a learner’s point of view, there is one extremely common mistake – putting the predic-
tor variable in the analysis wrongly so that it is treated as the dependent variable by SPSS. Making
a scatterplot should help with this since it is possible to estimate the likely values from this – espe-
cially the constant or cut point on the vertical axis. This can be checked against the computed
values since this may reveal such a confusion of the independent and dependent variables.



You can find out more about simple regression in Chapter 8 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics
in Psychology, 5th edition. Harlow: Pearson.

Table 11.1 Scores on musical ability and mathematical ability for 10 children

Music score Mathematics score

2 8

6 3

4 9

5 7

7 2

7 3

2 9

3 8

5 6

4 7
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11.6 The data to be analysed

We will illustrate the computation of simple regression and a regression plot with the data in
Table 11.1 (ISP, Table 8.2), which gives a score for the musical ability and mathematical ability
of 10 children. These data are identical to those used in the previous chapter on correlation. In
this way, you may find it easier to appreciate the differences between regression and correlation.

The music scores are the criterion or the dependent variable, while the mathematics scores 
are the predictor or independent variable. With regression, it is essential to make the criterion 
or dependent variable the vertical axis (y-axis) of a scatterplot and the predictor or independent
variable the horizontal axis (x-axis).

Sometimes the way in which SPSS gives the constant can cause confusion. The constant
appears under the column for B weights or coefficients which is not what it is. You should have
no trouble if you follow the instructions in Section 11.9.

11.7 Entering the data

If you have saved the data select the file. Otherwise enter the data again.
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11.8 Simple regression
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In simple regression involving two variables, it is conventional to report the regression equation
as a slope (b) and an intercept (a) as explained in ISP (Chapter 8). SPSS does not quite follow this
terminology. Unfortunately, at this stage the SPSS output is far more complex and detailed than
the statistical sophistication of most students:

B is the slope. The slope of the regression line is called the unstandardised regression coefficient
in SPSS. The unstandardised regression coefficient between ‘Music’ and ‘Maths’ is displayed under
B and is -.633, which rounded to two decimal places is -0.63. What this means is that for
every increase of 1.00 on the horizontal axis, the score on the vertical axis changes by -.633.

11.9 Interpreting the output

The table below is the last table of the output which has the essential details of the regression 
analysis. It is very easy to reverse the independent variable and dependent variable accidentally.
Check the table titled Coefficientsa. Under the table the name of the dependent variable is given.
In this case it is Music, which is our dependent variable. If it read Maths then we would have made
a mistake and the analysis would need to be redone as the regression values would be incorrect.
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The 95 per cent confidence interval for this coefficient ranges from -.88 (-.883) to -.38 
(-.383). Since the regression is based on a sample and not the population, there is always a risk
that the sample regression coefficient is not the same as that in the population. The 95 per cent
confidence interval gives the range of regression slopes within which you can be 95 per cent
sure that the population slope will lie.

The intercept (a) is referred to as the constant in SPSS. The intercept is presented as the
(Constant) and is 8.425, which rounded to two decimal places is 8.43. It is the point at which
the regression line cuts the vertical (y) axis.

The 95 per cent confidence interval for the intercept is 6.753 to 10.097. This means that, based
on your sample, the intercept of the population is 95 per cent likely to lie in the range of 6.75
to 10.10.

The column headed ‘Beta’ gives a value of -.900. This is actually the Pearson correlation
between the two variables. In other words, if you turn your scores into standard scores 
(z-scores) the slope of the regression and the correlation coefficient are the same thing.

11.10 Regression scatterplot

It is generally advisable to inspect a scattergram of your two variables when doing regression.
This involves the steps involved in plotting a scattergram as described in Chapter 10.
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The regression line sloping from the top left down to bottom right indicates a negative rela-
tionship between the two variables.

The points seem relatively close to this line, which suggests that Beta (correlation) should be 
a large (negative) numerical value and that the confidence interval for the slope should be 
relatively small.

11.11 Interpreting the output



REPORTING THE OUTPUT
Although all of the output from SPSS is pertinent to a sophisticated user, many users might prefer to have the bare bones
at this stage.

With this in mind, we would write about the analysis in this chapter:

The scatterplot of the relationship between mathematical and musical ability suggested a linear negative relation-
ship between the two variables. It is possible to predict accurately a person’s musical ability from their mathemat-
ical ability. The equation is Y¢ = 8.43 + (-0.63X ) where X is an individual’s mathematics score and Y¢ is the best
prediction of their musical ability score.

An alternative is to give the scatterplot and to write underneath a = 8.43 and B = -0.63.
One could add the confidence intervals such as:

The 95 per cent confidence interval for the slope of the regression line is -.88 to -.38. Since this confidence interval
does not include 0.00 the slope differs significantly from a horizontal straight line.

However, this would be a relatively sophisticated interpretation for novices in statistics.

For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for simple regression

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

For the correlation, select ‘Analyze’, ‘Regression’ and ‘Linear …’.
Move the dependent variable to the ‘Dependent:’ box and the independent variable to the ‘Independent(s):’
box and then select ‘OK’.
For the scatterplot, select ‘Graphs’,
Then either select ‘Chart Builder’ (Chapter 10), ‘OK’, ‘Scatter/Dot’ and move the ‘Simple Scatter’ figure to
the box above.
Move appropriate variable names to the vertical and horizontal axes.
Or select ‘Legacy Dialogs’ (this chapter), ‘Scatter/Dot …’, ‘Define’, ‘Y Axis’ variable, ‘X Axis’ variable and
‘OK’.

Output

The ‘Coefficients’ table shows the unstandardised and standardised regression coefficient and its signi-
ficance level.
For the scattergram, a regression line can be fitted by double clicking anywhere on the scattergram to bring
up the Chart Editor.
Select ‘Elements’ and ‘Fit Line at Total’.





Significance testing and
basic inferential tests

PART 3





Standard error

Overview

Standard error is an index of the variability of the means of many samples taken from the popula-
tion. It is nothing other than the standard deviation, but applied to sample means rather than
scores. In other words, conceptually, standard error can be regarded as the average amount by
which the means of samples differ from the mean of the population from which they came.

It is mostly used as an intermediate step in other statistical techniques such as the t-test. There is
little need to calculate the standard error in its own right since it adds practically nothing more
than that given by the standard deviation or variance.

Nevertheless, it can be used like variance or standard deviation as an index of the amount of vari-
ability in the scores on a variable. A knowledgeable researcher will find variance, standard devia-
tion and standard error equally useful as indicators of the variability of scores.

Standard error is an important concept in the calculation of confidence intervals. Indeed, it will
occur in many contexts where the focus is on the characteristics of samples rather than scores.

There are two versions of standard error. Standard error as applied to a set of scores and estimated
standard error, which is used when trying to estimate the population standard error from the 
standard error of a sample. SPSS Statistics only calculates estimated standard error. Hence, 
for standard error in SPSS output read estimated standard error.

12.1 What is standard error?

Standard error is a fundamental statistical concept which needs to be understood as part of your
development as a statistician. You would rarely need to compute standard error separately as its
computation is part of other SPSS procedures which you will probably be carrying out.

Standard error is more or less the same as the standard deviation (Chapter 7) with one big dif-
ference: standard deviation refers to a set of scores whereas the standard error refers to means of
samples. In fact, the standard error is the standard deviation of a set of sample means, essentially.
It is even estimated (calculated) from the standard deviation of the sample of scores which 
the researcher has information about. This sample is used to make inferences about the charac-
teristics of the population. Basically, but with some slight adjustments, the characteristics of the
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FIGURE 12.1 Estimating the population standard error from a sample of scores

FIGURE 12.2
The equation for calculating standard error from standard deviation and the square root of
the sample size
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sample are assumed to be those of the population from which the sample was drawn. Conceptu-
ally, you need to imagine that you are drawing samples of a particular size (say 10) from this 
estimated population of scores (on some measure). Common sense suggests and statistical theory
insists that there will be variation in the means of these different samples simply because of the
vicissitudes of random selection. The standard deviation calculated on these sample means is the
standard error. The standard error is simply a measure of the variation in sample means.

Usually in statistics (and definitely so in SPSS), we do not calculate the standard error but
something called the estimated standard error. This is because we usually have just one sample
to calculate the standard error from. The steps are that we calculate the standard deviation of the
population of scores from the sample (see Figure 12.1). This entails a very small adjustment to
the standard deviation formula and yields the estimated standard deviation. Then this estimated
standard deviation is used to estimate the standard error of sample means using a very simple 
formula as shown in Figure 12.2.



You can find out more about standard error in Chapter 11 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.
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The value of N is dependent on the sample size for which you wish to obtain the standard
error. This implies, of course, that there is a different standard deviation for each different size
of sample.

The standard error gives you an indication of the extent to which sample means can be
expected to vary if drawn at random from the same population. It clearly is closely linked to 
the standard deviation and, often, they are used interchangeably as they are both indicative of the
variation in the data. Standard error is important as a key idea in other statistics such as the 
t-test (Chapters 13 and 14).

12.2 When to use standard error

Standard error is most likely to be used as an indication of the variability or spread in the data.
As such, it vies with standard deviation and variance for that task. There is a close relationship
between all of these things and they can be used interchangeably by experienced researchers,
though, of course, only one of the three should be used for purposes of making comparisons.
Ideally the data should be on a scale with equal measurement intervals and normally distributed.

12.3 When not to use standard error

There are few if any circumstances in which it is inappropriate to use standard error if its basic
data requirements are met.

12.4 Data requirements for standard error

Standard error can be calculated on any score variable though it is most accurate where the scores
are normally distributed and the measurement approaches an equal interval scale.

12.5 Problems in the use of standard error

There are no particular problems associated with standard error.

12.6 The data to be analysed

The computation of the estimated standard error of the mean is illustrated with the set of six
scores of self-esteem presented in Table 12.1 (ISP, Table 11.3).



Table 12.1 Data for standard error example

Self-esteem scores

5

7

3

6

4

5
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12.7 Entering the data

12.8 Estimated standard error of the mean
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The table gives us the value of the standard error of sample means as 0.58, which is rounded
to two decimal places. This is the ‘average’ amount by which means of samples (n = 6) differ
from the population mean.

It is an estimate based on a sample and should really be termed the estimated standard error.

12.9 Interpreting the output
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The table includes other information such as the mean (5.00), the estimated population stand-
ard deviation based on this sample, and the minimum and maximum values in the data.

The final column gives the (estimated) standard deviation of the six scores, which is 1.41.

Summary of SPSS Statistics steps for standard error

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

Select ‘Analyze’, ‘Descriptive Statistics’ and ‘Descriptive …’.
Move the variable to the ‘Variable(s):’ box and then select ‘Options …’.
Select ‘S.E.mean’, ‘Continue’ and then ‘OK’.

Output

The standard error is in the column called ‘Std. Error’.

REPORTING THE OUTPUT
Generally, in psychological statistics, one would not report the standard error of sample means on its own. It would be
more usual to report it as part of certain tests of significance. However, in many circumstances it is just as informative as
the variance or standard deviation of a sample, as it bears a simple relationship to both of these.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

The t-test is used to assess the statistical significance of the difference between the means of two
sets of scores. That is, it helps to address the common research question of whether the average
(i.e. mean) score for one set of scores differs significantly from the average score for another set
of scores.

Because in research we invariably deal with samples of people drawn from the potential popula-
tion, we need to estimate whether any difference we obtain between two sets of scores is statistic-
ally significant. That is, is the obtained difference between the two means so very different from a
zero difference that it is unlikely that the samples come from the same population?

Statistical significance is assessed by using the variability in the available data to assess how
likely various differences between the two means would be if there was no true difference between
the two samples. The null hypothesis suggests that there is no difference between the sample
means. Differences between sample means that would be very uncommon by chance if the null
hypothesis were true are said to be statistically significant. They lead us to prefer the hypothesis
that there is truly a difference between the two means that is unlikely to be a chance effect due to
sampling.

There are two versions of the t-test. One is used when the two sets of scores to be compared come
from a single set or sample of people or when the correlation coefficient between the two sets of scores
is high. This is known as the related, correlated or paired t-test. The other version of the t-test is
used when the two different sets of scores come from different groups of participants. Refer to the
next chapter if the two means you wish to compare come from distinct groups of participants.

If you have used a matching procedure to make pairs of people similar on some other character-
istics then you would also use the related t-test in this present chapter – especially if the two sets
of scores correlate significantly.

Data entry for related and unrelated variables is very different in SPSS Statistics so take care to
plan your analysis before entering your data in order to avoid problems and unnecessary work.

The t-test
Comparing two samples of 
correlated/related/paired scores

CHAPTER 13



If you have more than two sets of scores to compare then refer to Chapter 25 on the related anal-
ysis of variance.

The t-test described in this chapter is known as the related t-test. Basically this means that the two
sets of scores are obtained from a single sample of participants. There should be a correlation
between the scores on the two measures since otherwise the two sets of scores are not related.

The related t-test works at its optimum if the distribution of the differences between the two sets
of scores is approximately bell-shaped (that is, if there is a normal distribution). If the distribution
is very different from a bell shape, then one might consider using a related non-parametric statis-
tics such as the Wilcoxon matched-pairs test (see Chapter 18).
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13.1 What is the related t-test?

The related t-test gives the statistical significance of the difference between the means of two score
variables. Usually, it is based on one group of participants measured twice which gives the two
means. The unrelated t-test (Chapter 14) is different and involves two separate groups of partici-
pants. Both are based on a statistical distribution known as the t-distribution, hence the t-test.

The related t-test examines whether the mean score of one measure is statistically significantly
different from the mean on another measure. However, the assumption of the related t-test is that
the two sets of scores should correlate with each other (hence the name correlated t-test). This
requirement of correlation is poorly understood but is vital to ensure that the related t-test is
interpreted properly. The related t-test is most likely to be used in psychology in circumstances
in which a single group of participants has been measured twice at different points in time on
essentially the same variable. The resulting two sets of scores are likely to correlate with each
other for the simple reason that some participants will tend to score consistently highly on 
the variable and others tend to score consistently lowly. This type of design is illustrated in 
Table 13.1 (see p. 138) in which a group of participants is measured at Time A and Time B. To be
precise, a group of babies has been assessed at the age of 6 months and then again at the age of 
9 months in order to study whether the time that they spend in eye-contact with their mothers
increases over this three month period. While we might assume that eye-contact increases as the
babies get older, we would expect that some babies at Time A tend to be developmentally more
advanced than other babies. We might also expect that the developmentally more advanced
babies at Time A will tend to be developmentally the more advanced at Time B despite the like-
lihood that all of the babies develop to some degree over that three month period. Do the calcu-
lations on these data and you will find that the mean eye-contact score at six months of age is
5.25 which increases to 6.75 at the age of nine months. This is in line with the hypothesis guid-
ing the research that eye-contact increases with age. Furthermore, if you correlate the two sets of
eye-contact scores you find that they correlate at .42 which is a moderate sized correlation
(though in this case) not statistically significant.

When we measure the same thing twice for a single sample of participants, we actually gain
control over more variation in the data. Basically there are two sources of variation in the scores
(i.e. the dependent variable) in most research designs:

Variation due to the difference between the two means (the independent variable).

Variation due to uncontrolled factors (usually called error variance).



FIGURE 13.1 More types of t-tests to be found in later chapters
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However, in the related t-test the second source of variance (that due to uncontrolled factors) can
be reduced because the measures have been taken twice on a single group of participants. That
is, we know that some participants will tend to score high on both measures whereas other par-
ticipants tend to get low scores. These ‘individual differences’ are removed from the error vari-
ance in the related t-test. The extent of the individual differences is reflected in the size of the
correlation between the two sets of scores. The bigger the correlation then the greater reduction
there is in the error variance – and the more likely is it that a significant difference will be
obtained between the two means as a consequence.

There is a downside, however, since by removing the variance due to individual differences the
number of degrees of freedom is reduced too – and the number of degrees of freedom (df ) affects
the statistical significance of the t-test. The fewer degrees of freedom, the less likely is it that a
significant difference will be obtained. This is fine if the reduction in the error variance due to
removing the variation arising from individual differences is sufficient to compensate for the
reduction in the degrees of freedom. The bigger the correlation between the two sets of scores
then the more likely this compensation will be achieved. If the correlation is zero there is just a
loss of degrees of freedom with no gains to compensate so there is a consequent reduction in the
chance of statistical significance. If there is zero correlation between the two sets of scores, it
would be totally appropriate to analyse the data with the unrelated t-test (Chapter 14) although
this we have never seen done by psychologists.

There is another circumstance in which the related t-test should be considered the appropriate
test of statistical significance. This is where the researcher matches participants in some way
between the two groups. Few studies in psychology employ matching so this is rarely an issue.
What do we mean by matching? Matching is simply choosing pairs of participants to be similar
on a variable(s) believed to correlate with the dependent variable. This is a way of increasing 
the similarities between the two groups since matching aims to form two groups of participants
from pairs of similar individuals. The consequence of effective matching is again that the scores
of the two groups should correlate. Figure 13.1 shows other types of t-tests to be covered in later
chapters.



FIGURE 13.2 The process of matching
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13.2 When to use the related t-test

Conventionally, the related t-test is used where there is a single group of participants which
has been measured twice – once at each of two different points in time. Usually the same mea-
sure is used twice or sometimes alternative forms of the same measure are used (with counter-
balancing of the order). However, for the related t-test to be effective, the scores on the two
measures should correlate with each other.

If participants have been matched in a number of pairs and one member of each pair assigned
to Group 1 and the other member of the pair assigned to Group 2 (usually at random), then
the related t-test can be used to analyse these data, though one should make sure that the two
sets of scores correlate when arranged in the pairs. If they do not correlate then the matching
procedure was not effective probably because the variable on which the pairs were matched
did not correlate with the dependent variable. Figure 13.2 shows the steps in the process of
matching.

Whatever design is used, you should make sure that the measures being compared in terms of
their means can meaningfully be compared. If they are the same measure then this condition
is met.

Ideally, the data should be normally distributed in terms of the distribution of the differences
between the pairs of scores on the dependent variable.

The related t-test is a version of the one-sample t-test in which a single sample of scores is 
compared with the population of scores. In the related t-test this single sample is essentially
created by taking the differences between each pair of scores to give a single sample of differ-
ence scores.
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13.3 When not to use the related t-test

One common mistake is to use the related t-test to compare two sets of scores which cannot be
meaningfully compared despite the fact that they are measured on a single group of participants.
For example, it is meaningless to compare scores on a measure of intelligence with scores on a
measure of extraversion even though these two measures came from the same group of partici-
pants. SPSS will do the calculation but why is it helpful to know that the mean score on intel-
ligence differs significantly from the mean score on extraversion? Intelligence and extraversion
are different measures which might be expected to have different means. So make sure that you
are comparing comparable measures. (Of course, it is meaningful to correlate intelligence with
extraversion since correlation coefficients do not test for differences in mean scores but the
strength of the association between two variables.)

You should not use the related t-test if the two measures do not correlate as this is to reduce
the likelihood of obtaining significant differences. Where there is a zero correlation then it is per-
fectly correct to use the unrelated t-test instead (though your data would have to be re-entered in
the correct format to do this). However, what if there is a modest correlation between the two
measures rather than a large correlation? Our advice is given in Section 13.5.

13.4 Data requirements for the related t-test

Two sets of scores on the same dependent variable are usually measured at two different points
in time. However, the scores could be from two groups of matched pairs of participants. The
scores should be normally distributed ideally, though the crucial thing is that the differences
between the pairs of scores should form a normal (bell-shaped) distribution.

13.5 Problems in the use of the related t-test

Careful thought should prevent most of the problems with the related t-test especially the prob-
lem of making meaningless comparisons between two variables which are very different from
each other. The solution is to make sure that you are using the same variable measured twice,
which generally is straightforward.

The other problem is where the two measures correlate poorly, which has the consequence 
of reducing the significance level. If you have any such worries, probably the simplest thing would
be for you to analyse your data with both the related and the unrelated t-test, although you 
need to remember that these use very different data entry methods. If both t-tests are significant
then there is no major problem. If the related t-test is more significant than the unrelated t-test
then all is well and good. If the unrelated t-test is significant but the related t-test not significant
(or less significant) then the related t-test is problematic since the basic assumptions of the test
are not being met.

It is always important to remember that the related t-test compares two different means. You
need to know the means for each of the groups in order to assess whether the mean is increasing,
decreasing or staying the same.

You can find out more about the correlated or paired t-test in Chapter 12 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.



Table 13.1 Number of one-minute segments with eye-contact at different ages

Baby Six months Nine months

Clara 3 7

Martin 5 6

Sally 5 3

Angie 4 8

Trevor 3 5

Sam 7 9

Bobby 8 7

Sid 7 9
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13.6 The data to be analysed

The computation of a related t-test is illustrated with the data in Table 13.1, which shows 
the number of eye-contacts made by the same babies with their mothers at six and nine months
(ISP, Table 12.6). The purpose of the analysis is to see whether the amount of eye-contact
changes between these ages.

13.7 Entering the data
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13.8 Related t-test

13.9 Interpreting the output
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In the first table of the output, the mean number of eye-contacts at six months (‘Six_mths’)
and at nine months (‘Nine_mths’) is displayed under Mean. Thus the mean amount of eye con-
tact is 5.25 at 6 months and 6.75 at nine months.

In the second table of the output is the (Pearson) correlation coefficient between the two 
variables (eye-contact at six months and eye-contact at nine months). Ideally, the value of 
this should be sizeable (in fact it is .419) and statistically significant (which it is not with a 
two-tailed significance level of .301). The related t-test assumes that the two variables are 
correlated, and you might consider an unrelated t-test (Chapter 14) to be more suitable in 
this case.

In the third table of the output the difference between these two mean scores is presented under
the ‘Mean’ of ‘Paired Differences’ and the standard error of this mean under ‘Std. Error Mean’.
The difference between the two means is -1.50 and the estimated standard error of means for
this sample size is .76.

The t-value of the difference between the sample means, its degrees of freedom and its two-
tailed significance level are also shown in this third table. The t-value is -1.984, which has an
exact two-tailed significance level of .088 with seven degrees of freedom.
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Summary of SPSS Statistics steps for related t-test

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

Select ‘Analyze’, ‘Compare Means’ and ‘Paired-samples T test …’.
Move the variables to be compared to the ‘Paired variable(s):’ box and then select ‘OK’.

Output

The t value, degrees of freedom (df ) and exact two-tailed significance level are reported in the last three
columns of the ‘Paired Samples’ table.

REPORTING THE OUTPUT
We could report these results as follows:

The mean number of eye-contacts at six months (M = 5.25, SD = 1.91) and at nine months (M = 6.75, SD = 2.05) did
not differ significantly, t(7) = -1.98, two-tailed p = .088.

In this book, to be consistent, we will report the exact probability level for non-significant results as above. However, it
is equally acceptable to report them as ‘p > .05’ or ‘ns’ (which is short for non-significant).
Notice that the findings would have been statistically significant with a one-tailed test. However, this would have to
have been predicted with sound reasons prior to being aware of the data. In this case one would have written to the
effect ‘The two means differed significantly in the predicted direction, t(7) = -1.98, one-tailed p = .044.’ A one-tailed
test should only be used if, prior to data collection, the direction of the difference between means has been predicted
on the basis of strong theoretical reasons or a strong consistent trend in the previous research. These requirements are
rarely met in student research so, generally, two-tailed significance testing should be the norm.
Once again, to be consistent throughout this book, we will report the exact probability level for significant findings
where possible. Note that when SPSS displays the significance level as ‘.000’, we need to present this as ‘p < .001’
since the exact level is not given. It is equally acceptable to report significant probabilities as ‘p < .05’, ‘p < .01’ and 
‘p < .001’ as appropriate.
If you prefer to use confidence intervals (see Chapter 15), you could report your findings as:

The mean number of eye-contacts at six months was 5.25 (SD = 1.91) and at nine months was 6.75 (SD = 2.05). The
difference was 1.50. The 95 per cent confidence interval for this difference is -3.29 to .29. Since the confidence
interval passes through 0.00, the difference is not statistically significant at the two-tailed 5 per cent level.

Some statisticians advocate the reporting of confidence intervals rather than significance levels. However, it remains
relatively uncommon to give confidence intervals.

For further resources including data sets and questions, please refer to the website accompanying this book.



The t-test
Comparing two groups of unrelated/
uncorrelated scores

Overview

The uncorrelated or unrelated t-test is used to calculate whether the means of two sets of scores
are significantly different from each other. It is the most commonly used version of the t-test.
Statistical signficance indicates that the two samples differ to an extent which is unlikely to be due
to chance factors as a consequence of sampling. The variability inherent in the available data is
used to estimate how likely it is that the difference between the two means would be if, in reality,
there is no difference between the two samples.

The unrelated t-test is used when the two sets of scores come from two different samples of 
people. (Refer to the previous chapter on the related t-test if your scores come from just one set 
of people or if you have employed a matching procedure.)

Data entry for related and unrelated variables are very different in SPSS Statistics. So take care to
plan your analysis before entering your data in order to avoid problems and unnecessary work.
SPSS, however, is very flexible and errors of this sort are usually straightforward to correct using
copy-and-paste and similar features.

SPSS procedures for the unrelated t-test are very useful and go beyond usual textbook treatments
of the topic. That is, they include an option for calculating the t-test when the variances of the two
samples of scores are significantly different from each other. Most textbooks erroneously suggest
that the t-test is too inaccurate to use when the variances of the two groups are unequal. This addi-
tional version of the unrelated t-test is rarely mentioned in statistics textbooks but is extremely
valuable.

If you have more than two sets of scores to compare, then refer to Chapter 21 on the unrelated
analysis of variance.

CHAPTER 14



FIGURE 14.1 The two types of unrelated t-test

14.1 WHAT IS THE UNRELATED T-TEST? 143

14.1 What is the unrelated t-test?

The unrelated t-test simply tests the statistical significance of the difference between two differ-
ent group (i.e. sample) means (see Box 1.1 for a discussion of statistical significance). That is, 
it addresses the question of whether the average score for one group (e.g. males) is significantly
different from the average score for the other group (females). It is much more commonly used
than the related t-test (discussed in Chapter 13). It is called the t-test because the computation is
based on a mathematical distribution known as the t-distribution.

The unrelated t-test basically involves the difference between the two sample means. Of course,
scores vary and this variation may be responsible for the apparent difference between the sample
means. So a formula based on combining the variances of the two separate samples is calculated.
This is known as the standard error of the differences between two sample means. The smaller
this is compared to the size of the difference between the two sample means then the more likely
it is for the two means to be statistically significantly different from each other. These two 
versions of the t-test are illustrated in Figure 14.1.



Table 14.1 Emotionality scores in two-parent and lone-parent families

Two-parent family Lone-parent family
X1 X2

12 6

18 9

14 4

10 13

19 14

8 9

15 8

11 12

10 11

13 9

15

16

Mean = 13.42 Mean = 9.50
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Table 14.1 gives data from a study for which the unrelated t-test is an appropriate test 
of significance. The data consist of scores on a single variable coming from two groups of par-
ticipants – the important criterion for using the unrelated t-test. If you have just one group of 
participants then it is possible that the related t-test (Chapter 13) is the appropriate technique.
Group 1 consists of children brought up in two-parent families and Group 2 consists of those
brought up in lone-parent families. The researcher wishes to know whether these two groups 
differ on a measure of emotionality. It is easy to see from the mean scores for each group shown
in Table 14.1 that the two groups differ. Quite clearly, children from two-parent families have
higher emotionality scores (mean = 13.42) than those from the lone-parent families (mean =
9.50). The question is whether this difference is statistically significant, that is, hard to explain on
the basis of chance.

There is a slight problem in the calculation of the standard error of the difference between the
two group means. If the two variances are very different, then combining them is problematic in
terms of statistical theory. It is possible to test whether two variances are statistically significantly
different using the F-ratio (see Chapter 20). SPSS uses Levene’s test of homogeneity to do this. If
the two variances differ significantly then SPSS also provides a version of the unrelated t-test
‘Equal variances not assumed’. This should be used instead in these circumstances.

14.2 When to use the unrelated t-test

The unrelated t-test can be used where there are two separate groups of participants for which
you have scores on any score variable. It is best if the scores are normally distributed and corres-
pond to an equal interval level of measurement, though any score data can be used with a loss 
of accuracy. SPSS provides two versions of the unrelated t-test: one where the variances of the
two sets of scores are equal and the other where the two variances are significantly different.



You can find out more about unrelated t-test in Chapter 13 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.
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14.3 When not to use the unrelated t-test

Do not use the unrelated t-test where you have three or more groups of participants – the mean
of each group you wish to compare with the mean of each other group. ANOVA is a more suit-
able statistic in these circumstances since multiple comparisons using an unrelated t-test increases
the likelihood of having one or more comparisons significant by chance.

Some researchers would prefer to use a non-parametric or distribution-free test of significance
(Chapter 18) if the scores are not measured on an equal interval scale of measurement. Mostly,
however, considerable violations of the assumptions of the unrelated t-test are tolerated.

If your two sets of scores come from one group of participants, then you might need the related
t-test in preference (see Chapter 13).

14.4 Data requirements for the unrelated t-test

One single score variable and two distinct groups of participants are needed.

14.5 Problems in the use of the unrelated t-test

SPSS causes users some problems. The common problem is confusing the significance of the F-
ratio comparing the variances of the two groups of scores with the significance of the t-test. They
are quite distinct but very close together in SPSS output.

There are two versions of the unrelated t-test. One is used if the two sets of scores have sim-
ilar variances. This is described as ‘Equal variances assumed’ in SPSS. Where the F-ratio shows a
statistically significant difference in the variances then the output for ‘Equal variances not
assumed’ should be used.

As is often the case in statistical analysis, it is useful to be clear what the difference in the two
group means indicates prior to the test of significance. The test of significance then merely
confirms whether this is a big enough difference to be regarded as statistically reliable. It is very
easy to get confused by SPSS output giving mean differences otherwise.

14.6 The data to be analysed

The computation of an unrelated t-test is illustrated with the data in Table 14.1, which shows the
emotionality scores of 12 children from two-parent families and 10 children from single-parent
families (ISP, Table 13.8). In SPSS this sort of t-test is called an independent samples t-test. The
purpose of the analysis is to assess whether emotionality scores are different in two-parent and
lone-parent families.
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Take a good look at Step 2. Notice that there are two columns of data. The second column 
(‘emotion’) consists of the 22 emotionality scores from both groups of children. The data are not
kept separate for the two groups. In order to identify to which group the child belongs, the first
column (‘family’) contains lots of 1s and 2s. These indicate, in our example, children from a 
lone-parent family (they are the rows with 1s in ‘family’) and children from two-parent families
(they are the rows with 2s in ‘family’). Thus a single column is used for the dependent variable
(in this case, emotionality, ‘emotion’) and another column for the independent variable (in this
case, type of family, ‘family’). So each row is a particular child, and their independent variable
and dependent variable scores are entered in two separate columns in the ‘Data Editor’.

14.7 Entering the data
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14.8 Unrelated t-test
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The output for the uncorrelated/unrelated t-test on SPSS is particularly confusing even to 
people with a good knowledge of statistics. The reason is that there are two versions of the 
uncorrelated/unrelated t-test. Which one to use depends on whether or not there is a significant
difference between the (estimated) variances for the two groups of scores.

Examine the first table of the output. This contains the means and standard deviations of the
scores on the dependent variable (emotionality) of the two groups. Notice that an additional
figure has been added by the computer to the name of the column containing the dependent
variable. This additional figure indicates which of the two groups the row refers to. If you had
labelled your values, these value labels would be given in the table.

For children from two-parent families (‘family 2’) the mean emotionality score is 13.42 and
the standard deviation of the emotionality scores is 3.37. For the children of lone-parent 
families (‘family 1’) the mean emotionality score is 9.50 and the standard deviation of emo-
tionality is 3.10.

In the second table, read the line ‘Levene’s Test for Equality of Variances’. If the probability
value is statistically significant then your variances are unequal. Otherwise they are regarded
as equal.

Levene’s test for equality of variances in this case tells us that the variances are equal because
the p value of .650 is not statistically significant.

Consequently, you need the row for ‘Equal variances assumed’. The t-value, its degrees of 
freedom and its probability are displayed. The t-value for equal variances is -2.813, which
with 20 degrees of freedom has an exact two-tailed significance level of .011.

Had Levene’s test for equality of variances been statistically significant (i.e. .05 or less), then
you should have used the second row of the output which gives the t-test values for unequal
variances.



For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for unrelated t-test

Data

In ‘Variable View’ of the ‘Data Editor’, ‘name’ the variables.
In ‘Data View’ of the ‘Data Editor’ enter the data under the appropriate variable names.

Analysis

Select ‘Analyze’, ‘Compare Means’ and ‘Independent Samples T test …’.
Move the dependent variable to the ‘Test variable(s):’ box and the independent variable to the ‘Grouping
Variable;’ box.
Select ‘Define Groups …’, enter the values for the two groups, select ‘Continue’ and then ‘OK’.

Output

In the ‘Independent Samples Test’ table, first check whether Levene’s test is significant. If not significant,
use the t value, degrees of freedom (df ) and significance level for the first row (Equal variances assumed).
If Levene’s test is significant, use the values in the second row (Equal variances not assumed).

REPORTING THE OUTPUT
We could report the results of this analysis as follows:

The mean emotionality scores of children from two-parent families (M = 13.42, SD = 3.37) is significantly higher,
t(20) = -2.81, two-tailed p = .011, than that of children in lone-parent families (M = 9.50, SD = 3.10).

It is unusual to see the t-test for unequal variances in psychological reports. Many psychologists are unaware of its exist-
ence. So what happens if you have to use one? In order to clarify things, we would write:

Because the variances for the two groups were significantly unequal, F = 8.43, p < .05, a t-test for unequal variances
was used.

Knowing that variances are unequal may be of interest in itself. As the degrees of freedom for an unequal variance 
t-test involves decimal places, this information tells you which version of the t-test has been used.
If you prefer to use the confidence intervals (see Chapter 15), you might write:

The difference between the emotionality scores for the children from two-parent families (M = 13.42, SD = 3.37) 
and lone-parent families (M = 9.50, SD = 3.10) is -3.92. The 95 per cent confidence interval for this difference is 
-6.82 to -1.01. Since this interval does not include 0.00, the difference is statistically significant at the two-tailed
.05 level.



Overview

Confidence intervals are advocated as an alternative and, perhaps, improved way of conceptual-
ising inferential statistics since they better reflect the fact that statistical analyses are subject to a
certain amount of uncertainty.

A confidence interval is basically a range of a statistic within which the population value is likely
to lie. Conventionally single point statistics such as the mean are given, which fail to reflect the
likely variability of the estimate. The confidence interval would suggest that the population mean
is likely to lie between two points or limits (e.g. 2.3 and 6.8).

The most common confidence interval is the 95 per cent value. This gives the interval between the
largest and smallest values which cut off the extreme 2.5 per cent of values in either direction. That
is, the 95 per cent confidence interval includes the 95 per cent of possible population values in
the middle of the distribution.

Confidence intervals

15.1 What are confidence intervals?

The idea of confidence intervals is an important one but too little used in psychological reports.
Professional statistical practice demands that they are used though, as yet, they are far from uni-
versally employed. They can be regarded as an alternative to the point estimate approach which
is very familiar since it is the conventional approach. Point estimates can be made of any stat-
istic including the mean, the slope of a regression line, and so forth. This book is full of examples
of such point statistics. But point estimates fail to emphasise appropriately the extent to which
statistical estimates are imprecise. To estimate the mean of a population from a sample as 8.5
suggests a degree of precision which is a little misleading. So the confidence interval approach
does something different – that is, it gives the most likely range of the population values of the
statistics.

Although expert statisticians recommend the greater use of confidence intervals in psychology
they still tend to be supplementary rather than central to most analyses if, indeed, they appear 
at all. Nevertheless, the underlying concept is relatively easy to understand and, thanks to SPSS,
involve little or no labour. In inferential statistics, we use all sorts of statistics from a sample or

CHAPTER 15



FIGURE 15.1 Some key facts about confidence intervals
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samples to estimate the characteristics of the population from which the sample was drawn. Few
of us will have any difficulty understanding that if the mean age of a sample of participants 
is 23.5 years then our best estimate of the mean age of the population is exactly the same at 
23.5 years. This estimate is known as a point estimate simply because it consists of a single figure
(or point). Most of us will also understand that this single figure is simply the best estimate and
that it is likely that the population mean will be, to a degree, different. We know this because we
know that when we randomly sample from a population that the sample mean is likely to be 
similar to the population mean but generally will be a little different. So it follows that if we use
a sample to estimate a population characteristic then our estimate will be subject to the variation
due to sampling.

Confidence intervals simply are the most likely spread of values of a population characteristic
(parameter) when it is estimated from a sample characteristic (statistic). So instead of an estimate
of the mean population age of 23.5 one would get a confidence interval of, say, 20.0 years to 27.0
years. Actually the confidence interval gives the spread of the middle 95 per cent of means in the
case of the 95 per cent confidence interval or the middle 99 per cent of means in the case of the
99 per cent confidence interval. Figure 15.1 outlines some key facts about confidence intervals.

The value of the confidence interval is essentially dependent on the spread of scores in the ori-
ginal sample of data: the bigger the spread of scores then the wider will be the confidence inter-
val. So the variability in the scores is used to estimate the standard deviation of the population.
This standard deviation can be used to estimate the standard error of the population. Then it is
simply a matter of working out the number of standard errors that cover the middle 95 per cent
of the distribution of sample means which could be drawn from that population. The number of
standard errors can be obtained from something known as the t-distribution for any sample size
but, as we are using SPSS Statistics, then we can leave the computer to do the calculation.

SPSS calculates confidence intervals automatically as part of certain statistical procedures.
Although we have dwelt on the confidence interval for the mean in this chapter, there are other
statistics for which confidence intervals are provided as listed at the end of this chapter.

Sometimes the concept of confidence limits is used. Confidence limits are merely the extreme
values of the confidence interval. In the above example, the 95 per cent confidence limits are 4.64
and 15.36. Figure 15.2 shows the key steps in understanding confidence intervals.



You can find out more about confidence intervals in Chapter 37 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

FIGURE 15.2 Essential steps in confidence intervals
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15.2 The relationship between significance and confidence intervals

At first sight, statistical significance and confidence intervals appear dissimilar concepts. This is
incorrect since they are both based on much the same inferential process. Remember that in
significance testing we usually test the null hypothesis of no relationship between two variables.
This usually boils down to a zero (or near-zero) correlation or to a difference of zero (or near-
zero) between sample means. If the confidence interval does not contain this zero value then the
obtained sample mean is statistically significant at 100 per cent minus the confidence level. So if
the 95 per cent confidence interval is 2.30 to 8.16 but the null hypothesis would predict the 
population value of the statistic to be 0.00, then the null hypothesis is rejected at the 5 per cent
level of significance. In other words, confidence intervals contain enough information to judge
statistical significance. However, statistical significance alone does not contain enough informa-
tion to calculate confidence intervals.

15.3 Confidence intervals and limits in SPSS Statistics

Confidence intervals have been presented in the output for the following tests described in this
book:

Regression B: see the table on page 119.

Related t-test: see the table on page 140.

Unrelated t-test: see the table on page 148.
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One-way unrelated ANOVA: see the table on page 208.

Multiple-comparison tests: see the table on page 236.

One-way ANCOVA: see the table on page 257.

Confidence intervals can also be readily obtained for the following statistics when using SPSS:

One-sample t-test.

One-way related ANOVA.

Two-way unrelated ANOVA.

Two-way mixed ANOVA.

Regression – predicted score.

For further resources including data sets and questions, please refer to the website accompanying this book.



Chi-square
Differences between unrelated samples of 
frequency data

Overview

Chi-square is generally used to assess whether two or more samples each consisting of frequency
data (nominal data) differ significantly from each other. In other words, it is the usual statistical
test to analyse cross-tabulation or contingency tables based on two nominal category variables.

It can also be used to test whether a single sample differs significantly from a known population.
The latter application is the least common because population characteristics are rarely known in
research.

It is essential to remember that chi-square analyses frequencies. These should never be converted
to percentages for entry into SPSS Statistics as they will give misleading outcomes when calculat-
ing the value and significance of chi-square. This should be clearly distinguished from the use of
percentages when one is trying to interpret what is happening in a contingency table.

Also remember that a chi-square analysis needs to include the data from every individual only once.
That is, the total frequencies should be the same as the number of people used in the analysis.

The analysis and interpretation of 2 ¥ 2 contingency tables are straightforward. However, interpre-
tation of larger contingency tables is not quite so easy and may require the table to be broken
down into a number of smaller tables. Partitioning chi-square, as this is known, usually requires
adjustment to the significance levels to take into account the number of sub-analyses carried out.

This chapter also includes the Fisher exact test, which can be useful in some circumstances when
the assumptions of the chi-square are not met by your data (especially when the expected fre-
quencies are too low).

Versions of chi-square are used as measures of goodness-of-fit in some of the more advanced 
statistical techniques discussed later in this book such as logistic regression. A test of goodness-
of-fit simply assesses the relationship between the available data and the predicted data based
on a set of predictor variables. Consequently, it is essential to understand chi-square adequately,
not simply because of its simple application but because of its role in more advanced statistical
techniques.

CHAPTER 16



FIGURE 16.1 Basic steps in chi-square
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16.1 What is chi-square?

Chi-square is a test of statistical significance which is used when the data consist of only nominal
(category) variables (see Figure 16.1). It can be used with a single nominal variable (one-
sample chi-square) but it is much more usual to use it with two nominal variables. If you have
three or more nominal variables then it is likely that log-linear analysis (Chapter 37) is the 
solution, though it is a much more complex statistic. It has to be said that many psychologists
never collect data in the form of nominal category data rather than score data. As a consequence,
despite its familiarity among psychologists, chi-square is not so commonly used as this might
imply. Figure 16.2 outlines different types of chi-square.

The basic principle underlying chi-square is the comparison of the frequencies of cases of 
members of samples with what might be expected to be the frequencies in the population from
which the samples are drawn:

In the one-sample chi-square, the population distribution is usually based on some known
population (e.g. the national statistics on the number of males and females) or some theoret-
ical distribution (e.g. the population distribution of heads and tails for tosses of a coin can be
said to be 50 per cent heads and 50 per cent tails). (If you only have one sample then your best
estimate of the population characteristics is therefore exactly the same as that sample which is
not very helpful.) There are very few circumstances in which a researcher would need to carry
out a one-sample chi-square.

In the two-sample chi-square, the population distribution is estimated from the available data
since you will have two or more separate samples. This is simply done by combining the char-
acteristics of two or more samples of data.

This is illustrated by the data in Table 16.1 which is sometimes known as a cross-tabulation table
or contingency table. This table shows the data from a study in which a sample of males and a
sample of females (i.e. the nominal variable gender) have been asked about their favourite televi-
sion programme (i.e. the nominal variable favourite type of programme). Some mention soap
operas, some crime dramas, but others mention neither of these. The researcher wants to know
if males and females differ in terms of their favourite types of programme – which is exactly the



FIGURE 16.2 Different types of chi-square

Table 16.1 Relationship between favourite TV programme and gender

Respondents Soap opera Crime drama Neither

Males 27 14 19

Females 17 33 9
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same thing as asking whether there is a relationship between a respondent’s gender and their
favourite type of TV programme. In chi-square, the assumption is that there is no relationship
between the two nominal variables. In terms of our example this means that there is no differ-
ence between one group of respondents (males) in terms of their favourite TV programmes and
the other (females). That is, the male and females come from the same population so far as
favourite type of TV programme is concerned. The chi-square for the data can be referred to as
a 2 ¥ 3 chi-square as there are two rows and three columns of data.

What this amounts to is that it is possible to estimate the population characteristics simply by
combining the findings for the males with the findings for females. Thus the ‘population’ distri-
bution is 44 (i.e. 27 + 17) for Soap opera, 47 for Crime drama, and 28 for Neither. The total size
of the ‘population’ is 119.

But what if there is a relationship between gender and favourite type of TV programme – that
is, what if there is a difference between males and females in terms of their favourite type of TV
programme? If this were the case then the ‘population’ distribution will be very different from the
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distribution of favourite types of TV programme for males and females separately. If males and
females are no different in terms of their favourite type of TV programme then they should show
the same distribution as the estimated ‘population’ distribution (which, after all, was simply the
separate samples combined). In the terminology of chi-square, the cell frequencies are called the
observed frequencies and the population frequencies are called the expected frequencies (since
they are what we would expect on the basis that there is no difference between the samples).

The only complication is that the population frequencies have to be scaled down to the 
sample sizes in question which do not have to be equal. So the expected frequency of males in the
soap opera condition in Table 16.1 is calculated on the basis that in the population there are
44/119 who prefer Soap operas and that there is a total of 60 (i.e. 27 + 14 + 19) males. So the
expected frequency of males who like Soap operas is 44/119 of 60 which equals 22.185. Notice
that this expected value is different from the obtained value of 27 which can be seen in Table 16.1.
The more that the obtained and expected values differ for all of the entries in the table, then the
more that the male participants and the female participants differ. Chi-square is based on the sum
of the squared differences between the obtained frequencies and the expected frequencies.

Chi-square is subject to a range of restrictions which mean that the data may need to be
modified to make it suitable for analysis or a different analysis performed. The Fisher exact prob-
ability can be used, for example, instead of a 2 ¥ 2 chi-square in some circumstances – that is
where there are two rows and two columns of data. It is also available for the 2 ¥ 3 case.

16.2 When to use chi-square

There are few alternatives to the use of chi-square when dealing solely with nominal (category)
variables. Chi-square can only be used with nominal (category) data. It can be used where there
is just one nominal variable but also where there are two different nominal variables. There may
be any practical number of categories (values) of each of the nominal variables though you will
probably wish to restrict yourself to just a few categories as otherwise the analysis may be very
difficult to interpret. Chi-square is not used for three or more nominal variables where log-linear
analysis may be the appropriate statistic.

16.3 When not to use chi-square

There are a number of limitations on the use of chi-square. The main problem is when there are
too many expected frequencies which are less than five. Any more than 20–25 per cent of the
expected frequencies below five indicates that chi-square would be problematic. Sometimes a
Fisher exact test can be used instead because low expected frequencies do not invalidate this test
in the same way. An alternative is to combine categories of data together if this is appropriate,
thus increasing the expected frequencies to five or above (hopefully). However, it is not always
meaningful to combine categories with each other. Sometimes the alternative is simply to delete
the small categories. This is all based on judgement and it is difficult to give general advice other
than to be as thoughtful as possible (see Section 16.5).

16.4 Data requirements for chi-square

Each participant in the research contributes just one to the frequencies of each value of the nominal
variable. It is difficult to violate this requirement using SPSS but even then it is wise to check that
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the number of participants you have in your analysis is the same as the total number of frequencies
in the chi-square if you are imputting your own contingency or cross-tabulation table into SPSS.

16.5 Problems in the use of chi-square

Chi-square is not an easy statistical test to use well. Fortunately, psychologists tend to prefer
score data so the problems with chi-square are not routinely experienced by researchers. The
main difficulties with chi-square are as follows:

Usually it is necessary to have a fairly substantial numbers of participants to use chi-square
appropriately. This is because having small expected frequencies invalidates the test. Usually
if you have more than about 20 or 25 per cent expected frequencies of less than five then you
should not use chi-square. You may be able to use the Fisher exact test instead in the 2 ¥ 2
case. Otherwise it is a case of trying to re-jig the contingency table in some way. But the main
implication is to avoid categories of the nominal variable which attract few cases. These could
be deleted or put with other categories into a combined ‘other’ category.

A major problem in using chi-square is what happens when the analysis is of something larger
than a 2 ¥ 2 contingency table. The problem is that an overall significant chi-square tells you
that the samples differ, it does not entirely tell you in what way the samples differ. So, for
example, do women tend to prefer Soap operas and men tend to prefer Crime drama? It is 
possible to analyse the data as a 2 ¥ 2 chi-square by dropping the category ‘Neither’, for ex-
ample. Indeed it is possible to form as many 2 ¥ 2 analyses out of a bigger cross-tabulation
table as you wish though it would be usual to adjust the significance level for the number of
separate chi-squares carried out (see ISP).

One thing that gets students confused is it is possible to enter a cross-tabulation table directly
in SPSS using a weighting procedure. This would be useful in circumstances where you have
carried out a study and already have your data in the form of a simple table. However, if your
data are part of a bigger SPSS spreadsheet then this weighting procedure would not be used.
It all depends on what form your data are in.

You can find out more about chi-square in Chapter 14 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

16.6 The data to be analysed

The computation of chi-square with two or more samples is illustrated with the data in Table
16.1 (ISP, Table 14.8). This table shows which one of three types of television programme is
favoured by a sample of 119 teenage boys and girls. To analyse a table of data like this one with
SPSS, first we have to input the data into the ‘Data Editor’ and weight the cells by the frequen-
cies of cases in them.

As we are working with a ready-made table, it is necessary to go through the ‘Weighting Cases’
procedure first (see Section 16.7). Otherwise, you would enter Table 16.1 case by case, indicat-
ing which category of the row and which category of the column each case belongs to (see
Section 16.8). We need to identify each of the six cells in Table 16.1. The rows of the table rep-
resent the gender of the participants, while the columns represent the three types of television
programme. We will then weight each of the six cells of the table by the number of cases in them.
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The first column, called ‘gender’ in Step 1 of Section 16.7, contains the code for males (1) and
females (2). (These values have also been labelled.)

The second column, called ‘program’, holds the code for the three types of television programme:
soap opera (1), crime drama (2) and neither (3). (These values have also been labelled.)

16.7 Entering the data using the ‘Weighting Cases’ procedure



16.8 Entering the data case by case

16.9 Chi-square
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16.10 Interpreting the output for chi-square

The second table of the output gives the frequency (Count), the expected frequency (Expected
Count) and the difference (Residual) between the two for each of the six cells of the table.

The second (middle) table shows the observed and expected frequencies of cases and the 
difference (residual) between them for each cell. The observed frequency (called Count) is 
presented first and the expected frequency (called Expected Count) second. The observed 
frequencies are always whole numbers, so they should be easy to spot. The expected frequen-
cies are always expressed to one decimal place, so they are easily identified. Thus the first cell
of the table (males liking soap opera) has an observed frequency of 27 and an expected fre-
quency of 22.2.

The final column in this table (labelled ‘Total’) lists the number of cases in that row followed
by the expected number of cases in the table. So the first row has 60 cases, which will always
be the same as the expected number of cases (i.e. 60.0).



REPORTING THE OUTPUT
There are two alternative ways of describing these results. To the inexperienced eye they may seem very different but they
amount to the same thing:

We could describe the results in the following way:

There was a significant difference between the observed and expected frequency of teenage boys and girls in their
preference for the three types of television programme, c2(2) = 13.51, p = .001.

Alternatively, and just as accurate:

There was a significant association between gender and preference for different types of television programme, 
c2(2) = 13.51, p = .001.

In addition, we need to report the direction of the results. One way of doing this is to state that:

Girls were more likely than boys to prefer crime programmes and less likely to prefer soap operas or both 
programmes.

Table 16.2 Photographic memory and gender

Photographic memory No photographic memory

Males 2 7

Females 4 1
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Similarly, the final row in this table (labelled ‘Total’) first presents the number of cases in that
column followed by the expected number of cases in the table for that column. Thus the first
column has 44 cases, which will always be equal to the expected number of cases (i.e. 44.0).

The chi-square value, its degrees of freedom and its significance level are displayed in the third
table on the line starting with the word Pearson, the person who developed this test. The chi-
square value is 13.518 which, rounded to two decimal places, is 13.52. Its degrees of freedom
are two and its exact two-tailed probability is .001.

Also shown underneath this table is the ‘minimum expected count’ of any cell in the table,
which is 13.88 for the last cell (females liking neither). If the minimum expected frequency is
less than 5.0 then we should be wary of using chi-square. If you have a 2 ¥ 2 chi-square and
small expected frequencies occur, it would be better to use the Fisher exact test which SPSS
displays in the output in these circumstances.

16.11 Fisher’s exact test

The chi-square procedure computes Fisher’s exact test for 2 ¥ 2 tables when one or more of the
four cells has an expected frequency of less than 5. Fisher’s exact test would be computed for 
the data in Table 16.2 (ISP, Table 14.14).



REPORTING THE OUTPUT
We would write:

There was no significant relationship between gender and the possession of a photographic memory, two-tailed
Fisher exact p = .091.

or

Males and females do not differ in the frequency of possession of a photographic memory, two-tailed Fisher exact
p = .091.

However, with such a small sample size, the finding might best be regarded as marginally significant and a strong 
recommendation made that further studies should be carried out in order to establish with more certainty whether 
girls actually do possess photographic memories more frequently.
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16.12 Interpreting the output for Fisher’s exact test



Table 16.3 Data for a one-sample chi-square

Clear smilers Clear non-smilers Impossible to classify

Observed frequency 35 40 5

Expected frequency 40 32 8
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16.13 One-sample chi-square

We will illustrate the computation of a one-sample chi-square with the data in Table 16.3 (ISP,
Table 14.16), which shows the observed and expected frequency of smiling in 80 babies. The
expected frequencies were obtained from an earlier large-scale study.
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16.14 Interpreting the output for a one-sample chi-square



REPORTING THE OUTPUT
We could describe the results of this analysis as follows:

There was no statistical difference between the observed and expected frequency for the three categories of smiling in
infants, c2(2) = 3.75, p = .153.
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16.15 Chi-square without ready-made tables

In this chapter we have concentrated on how one can analyse data from pre-existing contingency
tables. This is why we need the weighting procedure. However, you will not always be using
ready-made tables. Any variables which consist of just a small number of nominal categories can
be used for chi-square. For example, if one wished to examine the relationship between gender
(coded 1 for male, 2 for female) and age (coded 1 for under 20 years, 2 for 20 to 39 years, and
3 for 40 years and over), the procedure is as follows. (a) Enter the age codes for your, say, 60
cases in the first column of the Data Editor. (b) Enter the age categories for each of these cases in
the equivalent row of the next column. You can then carry out your chi-square as follows. You
do not go through the weighting procedure first. The frequencies in the cells are calculated for
you by SPSS.

Summary of SPSS Statistics steps for chi-square

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

For a one-sample chi-square, select ‘Analyze’, ‘Nonparametric Tests’, ‘Legacy Dialogs’ and ‘Chi-Square Test
…’.
Move category variable to ‘Test Variable List:’ box and enter ‘Expected Values’ of frequencies for the cat-
egories of that variable.
For a more than one-sample chi-square, select ‘Analyze’, ‘Descriptive Statistics’ and ‘Crosstabs …’.
Move appropriate variables to Row and Column box.
Select ‘Statistics …’ and ‘Chi-square’.
Select ‘Cells …’ and ‘Expected’ and ‘Unstandardized’.

Output

Check that the minimum expected frequencies have been met.
Check that the test is statistically significant with p = .05 or less.
Determine direction of significant difference.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

McNemar’s test is generally used to assess whether two related samples each consisting of 
frequency data (nominal data) differ significantly from each other. In other words, it is the usual
statistical test to analyse cross-tabulation or contingency tables based on two nominal category
variables which are related.

It is sometimes known as a test of the significance of change since it involves comparing two
related samples which might be the same group of participants measured at two different points
in time.

McNemar’s test
Differences between related samples of frequency data

17.1 What is McNemar’s test?

McNemar’s test of significance of changes is a test of statistical significance which is used when
the data consist of only nominal (category) variables. This is a test of the change over time of the
categories of a nominal variable in which a sample is placed. The nominal variable can only have
two different categories so the data may look superficially like a 2 ¥ 2 chi-square or contingency
table but the calculation is actually based on the difference numbers between the two categories
for the two samples. The expectation is, if the null hypothesis of no difference (or no change) is
true, that the differences will be the same for the two categories. The steps in understanding
McNemar’s test are illustrated in Figure 17.1. Notice that only two out of the four cells refer to
change. McNemar’s test can be thought of as the chi-square equivalent of a related test.

17.2 When to use McNemar’s test

There are few alternatives to the use of McNemar’s test when dealing solely with two related
nominal (category) variables. McNemar’s test can only be used with nominal (category) data.
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FIGURE 17.1 Steps in understanding the McNemar test
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17.3 When not to use McNemar’s test

The main limitation on the use of McNemar’s test is when there are too many expected frequen-
cies which are less than five. Any more than 20–25 per cent of the expected frequencies below
five indicates that McNemar’s test would be problematic.

17.4 Data requirements for McNemar’s test

Each participant in the research contributes to two of the frequencies of each value of the nomi-
nal variable.



Table 17.1 Students wanting to go to university before and after a careers talk

1 Before talk ‘yes’ 2 Before talk ‘no’

1 After talk ‘yes’ 30 50

2 After talk ‘no’ 10 32
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17.5 Problems in the use of McNemar’s test

The main difficulties with McNemar’s test are as follows:

Usually it is necessary to have a fairly substantial numbers of participants to use McNemar’s
test appropriately. This is because having small expected frequencies invalidates the test.
Usually if you have more than about 20 or 25 per cent expected frequencies of less than five
then you should not use McNemar’s test.

One thing that gets students confused is it is possible to enter a cross-tabulation table directly
in SPSS Statistics using a weighting procedure. This would be useful in circumstances where
you have carried out a study and already have your data in the form of a simple table.
However, if your data are part of a bigger SPSS spreadsheet then this weighting procedure
would not be used. It all depends on what form your data are in.

You can find out more about McNemar’s test in Chapter 14 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics
in Psychology, 5th edition. Harlow: Pearson.

17.6 The data to be analysed

We will illustrate the computation of McNemar’s test with the data in Table 17.1, which shows
the number of teenage children who changed or did not change their minds about going to uni-
versity after listening to a careers talk favouring university education (ISP, Table 14.17). The
table gives the numbers who wanted to go to university before the talk and after it (30), those
who wanted to go before the talk but not after it (10), those who wanted to go to university after
the talk but not before it (50), and the numbers not wanting to go to university both before and
after the talk (32).

17.7 Entering the data using the ‘Weighting Cases’ procedure
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17.8 Entering the data case by case

17.9 McNemar’s test



REPORTING THE OUTPUT
We can report the results of this analysis as follows: 

There was a significant increase in the number of teenagers who wanted to go to university after hearing the talk, 
c2(1) = 25.35, p < .001.
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Summary of SPSS Statistics steps for McNemar’s test

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Nonparametric Tests’, ‘Legacy Dialogs’ and ‘2-Related Samples …’.
Move appropriate pair of variables to the ‘Test Pairs:’ box and select ‘McNemar’.

Output

Check that the minimum expected frequencies have been met.
Check that the test is statistically significant with p .05 or less.
Determine the direction of significant difference.

17.10 Interpreting the output for McNemar’s test

The first of the two tables shows the frequencies of cases in the four cells as in Table 17.1. The
two values, 1 and 2, have not been labelled.

For further resources including data sets and questions, please refer to the website accompanying this book.



Ranking tests for two
groups
Non-parametric statistics

Overview

Sometimes you may wish to know whether the means of two different sets of scores are signifi-
cantly different from each other but feel that the requirement that the scores on each variable are
roughly normally distributed (bell-shaped) is not fulfilled. Non-parametric tests can be used in
these circumstances.

Non-parametric tests are ones which make fewer assumptions about the characteristics of the
population from which the data came. This is unlike parametric tests (such as the t-test) which
makes more assumptions about the nature of the population from which the data came. The
assumption of normality (bell-shaped frequency curves) is an example of the sort of assumptions
incorporated into parametric statistics.

Strictly speaking, non-parametric statistics do not test for differences in means. They cannot,
since, for example, they use scores turned into ranks. Usually they test whether the ranks in one
group are typically larger or smaller than the ranks in the other groups.

We have included the sign test and Wilcoxon’s test for related data. In other words, they are the
non-parametric equivalents to the related t-test. Wilcoxon’s test should be used in preference to
the sign test when comparing score data.

The Mann–Whitney U-test is used for unrelated data. That is, it is the non-parametric equivalent to
the unrelated t-test.

18.1 What are non-parametric tests?

There is a whole variety of statistical techniques which were developed for use in circumstances
in which data do not meet the standards required of other more commonly used statistical tech-
niques. These are known as non-parametric or distribution-free methods. By this is meant that
they do not depend mathematically on standard distributions such as the normal distribution, the
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t-distribution and so forth unlike the t-test and similar techniques. Many statistical techniques
were developed on the assumption that the data are normally distributed. To the extent that this
is not the case, the results of the analysis using these tests may be to a degree misleading. Non-
parametric tests are often referred to as ranking tests since many of them are based on turning
the scores into ranks (where 1, 2, 3, etc. refer to the smallest score, second smallest score and
third smallest score, etc.). However, not all non-parametric tests use ranking.

The other issue which results in the use of non-parametric tests is the scale of measurement
involved. The interval scale of measurement assumes that the distances between each point on the
scale are equal. If you think of a ruler (or rule which carpenters use) then the marks on the scale
(e.g. millimetres) are of equal size no matter where you look on the ruler. That is basically what
an interval (or equal interval) scale is. It is possible to do things like work out the average length
of things using such a scale. Imagine that the ruler is made of plastic and it is heated such that 
it can be pulled and stretched. Now following this, the millimetres will not all be the same size
anymore. Strictly speaking, the ruler is now inaccurate and some would say useless. It is no longer
possible to work out the average length of things because the ruler has stretched more in some
places than others. If the stretching had been constant then the ruler would still be able to mea-
sure lengths though no longer in millimetres but some other unit. Since the stretching is not even,
can the ruler serve any purpose at all? Well, it could still be used to say which things are longer
than which other things, for example.

What has this to do with psychological measurements? Psychologists have in the past argued
that it has a lot to do with such measures as intelligence, extraversion and other measures. So
unless they felt that their measures were on an interval scale then they would use non-parametric
tests which do not assume equal intervals but only that a higher score on the scale would indic-
ate greater intelligence, for example. The trouble with this is how do we know that psycholo-
gical measures have equal intervals? The answer is that we do not.

So does that mean that we should never use statistics which assume equal intervals? Well some
would argue that. On the other hand, psychologists regularly seem to ignore the equal interval
requirement. One reason is that they might feel that psychological measures reflect more or less
roughly equal intervals so it does not matter that much. This is not much more than an article 
of faith and it has no factual basis. Others argue that the underlying psychological scale of 
measurement does not matter since mathematically it is the numbers (scores) which we do 
the statistical analysis on. So we do not need to bother about equal intervals and psychological
measurement. This is the view that we take.

The parametric tests which are built on the equal interval assumption are among the most
powerful statistical techniques available for psychologists to use. It would be extremely restrict-
ing not to use them.

If you wish to use a non-parametric test then there is no particular problem with this in sim-
ple analyses. Unfortunately for complex data it may result in a weaker analysis being employed
and the statistical question may not be so well addressed. Some may regard this as statistical
heresy but overwhelmingly it is clear that psychologists largely proceed on the assumption that
their measures are on an interval scale – more or less.

SPSS Statistics has a range of non-parametric statistical tests for one sample cases, two sample
cases and multiple sample cases. These are generally analogous to a parametric equivalent such
as the t-tests or ANOVA.

The Mann–Whitney U-test is equivalent to the unrelated t-test and can be applied to exactly
the same data.

The Wilcoxon matched-pairs test is equivalent to the related t-test and can be applied to
exactly the same data.

The sign test is a weaker test than the Wilcoxon matched-pairs test and cannot generally be
recommended as a substitute for the related t-test.

SPSS has these under ‘Analyze’, ‘Nonparametric Tests’ and ‘Legacy Dialogs’. That is also
where the one-sample chi-square is to be found, though this is not strictly a non-parametric test.
Figure 18.1 shows the key steps in using non-parametric statistics.



176 CHAPTER 18 RANKING TESTS FOR TWO GROUPS: NON-PARAMETRIC STATISTICS

18.2 When to use non-parametric tests

Generally speaking, use non-parametric tests only when you have a very clear and strong 
reason for doing so. Quite what would be sufficient reason is not obvious. Before computers 
non-parametric tests would often be recommended as they are easier to compute by hand than 
parametric tests in general, but these circumstances are unlikely to occur nowadays. You might
find it a useful exercise to compare the results of equivalent parametric and non-parametric ana-
lyses on the same data. It is unlikely that your interpretation will be very different and, where it
is, these will be marginal circumstances close to the dividing line between statistical significance
and non-significance.

However, you might find non-parametric tests useful in circumstances where you suspect that
outliers might be affecting your results. These are uncommonly high or low scores which may dis-
proportionately affect your findings. Because of the way they work, non-parametric tests are less

FIGURE 18.1 Key steps in non-parametric statistics



You can find out more about non-parametric tests for two groups in Chapter 18 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.
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prone to the influence of outliers. So, if you suspect the influence of outliers, then it would be use-
ful to compare the results of a parametric and the equivalent non-parametric test on the same
data. The non-parametric test will be likely to be much less statistically significant if outliers are
confusing the parametric test.

18.3 When not to use non-parametric tests

Generally speaking, non-parametric tests are less powerful than their parametric equivalents.
Basically this means that when applied to the same data, the non-parametric test is somewhat less
likely to give statistically significant results. Unfortunately, it is not possible to give a rule of
thumb which indicates the extent of this. If significance is being strictly interpreted as the 5 per
cent or .05 level then this may make a difference. However, it is our observation that psycholo-
gists are increasingly prepared to consider marginally significant findings (e.g. the 6 per cent and
.06 levels). This implies that the loss of power from using non-parametric tests may not be quite
so important as it once was.

18.4 Data requirements for non-parametric tests

The data requirements for non-parametric tests are similar to their parametric equivalents.
However, assumptions that the scores are normally distributed or that the measurement is equal
interval need not be met.

18.5 Problems in the use of non-parametric tests

There are few problems in using non-parametric tests other than their reduced power compared
with their parametric equivalents. In the past, before SPSS, they were considered student-friendly
techniques because they were so easy to calculate. SPSS has put an end to that advantage and
replaced them in the affections of teachers of statistics.

18.6 The data to be analysed

The computation of two non-parametric tests for related scores is illustrated with the data in
Table 18.1, which was also used in Chapter 13 and which shows the number of eye-contacts
made by the same babies with their mothers at six and nine months. Notice that the sign test
(Section 18.8) and the Wilcoxon matched-pairs test (Section 18.10) produce different significance
levels. The sign test seems rather less powerful at detecting differences than the Wilcoxon
matched-pairs test.



Table 18.1 Number of one-minute segments with eye-contact at different ages

Baby Six months Nine months

Clara 3 7

Martin 5 6

Sally 5 3

Angie 4 8

Trevor 3 5

Sam 7 9

Bobby 8 7

Sid 7 9
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18.7 Entering the data

Select the file of the data if you saved it. Otherwise enter the data.
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18.8 Related scores: sign test

18.9 Interpreting the output for the sign test



REPORTING THE OUTPUT
We could report these results as follows: 

There was no significant change in the amount of eye-contact between six and nine months, Sign test (n = 8) p = .289.
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18.10 Related scores: Wilcoxon test

The Wilcoxon test is the default option on the ‘2 Related Samples’ tests dialog box. If you have
previously deselected it, reselect it. Then ‘OK’ the analysis to obtain the Wilcoxon test output.

18.11 Interpreting the output for the Wilcoxon test



REPORTING THE OUTPUT 
We could report these results as follows: 

There was no significant difference in the amount of eye-contact by babies between six and nine months, Wilcoxon,
z(n = 8) = -1.71, two-tailed p = .088.

Table 18.2 Emotionality scores in two-parent and lone-parent families

Two-parent family Lone-parent family
X1 X2

12 6

18 9

14 4

10 13

19 14

8 9

15 8

11 12

10 11

13 9

15

16
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18.12 Unrelated scores: Mann–Whitney U-test

We will illustrate the computation of a non-parametric test for unrelated scores with the data in
Table 18.2, which shows the emotionality scores of 12 children from two-parent families and 
10 children from single-parent families.

18.13 Entering the data

Select the file of the data if you saved it. Otherwise enter the data.
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18.14 Mann–Whitney U-test
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18.15 Interpreting the output for the Mann–Whitney U test



REPORTING THE OUTPUT
We could report the results of this analysis as follows: 

The Mann–Whitney U-test found that the emotionality scores of children from two-parent families were significantly
higher than those of children in lone-parent families, U(n1 = 10, n2 = 12) = 23.5, two-tailed p = 0.016.

For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for non-parametric tests for
two groups

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

For the two related data tests, select ‘Analyze’, ‘Nonparametric Tests’, ‘Legacy Dialogs’ and ‘2-Related
Samples …’.
Move the appropriate pair of variables to the ‘Test Pairs:’ box and select ‘Sign’. Wilcoxon is already selected.
For the Mann–Whitney test, select ‘Analyze’, ‘Nonparametric Tests’ and ‘2 Independent Samples …’.
Move the dependent variable to the ‘Test Variables List:’ box and the grouping (independent) variable to the
‘Grouping Variable:’ box.
Select ‘Define Groups …’, define the two groups, select ‘Continue’ and then ‘OK’.

Output

Check to see if the p-value is significant at .05 or less.
If it is determine the direction of the difference.



Overview

Sometimes you may wish to know whether the means of three or more different sets of scores are
significantly different from each other but feel that the requirement that the scores on each vari-
able are roughly normally distributed (bell-shaped) is not fulfilled. Non-parametric tests can be
used in these circumstances.

Non-parametric tests are ones which make fewer assumptions about the characteristics of the
population from which the data came. This is unlike parametric tests (such as the t-test) which
make fairly stringent assumptions about the distribution of the population from which the data
came. The assumption of normality (bell-shaped frequency curves) is an example of the sort of
assumptions incorporated into parametric statistics.

Very few sets of data would meet the requirements of parametric testing exactly. However, some
variation makes little difference. The problem is knowing just how much the assumptions of para-
metric tests can be violated without it having a major impact on the outcome of the study.

Strictly speaking, non-parametric statistics do not test for differences in means. They cannot,
since, for example, they use scores turned into ranks. Usually they test whether the ranks in one
group are typically larger or smaller than the ranks in the other groups.

We have included the Friedman test for related data. In other words, it is the non-parametric equi-
valent to the related ANOVA.

The Kruskal–Wallis test is used for unrelated data. That is, it is the non-parametric equivalent to
the unrelated ANOVA.

Ranking tests for three or
more groups
Non-parametric statistics

CHAPTER 19



FIGURE 19.1 Parametric and non-parametric equivalents in this book
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19.1 What are ranking tests?

Several non-parametric tests were described in Chapter 18. However, these dealt with circum-
stances in which only two sets of scores were compared. If you have three or more sets of scores
there are other tests of significance which can be used. These are nowhere near so flexible and
powerful as the analyses of variance described in Chapters 21–27 although they could be applied
to the same data as some of the ANOVAs discussed in subsequent chapters. Nevertheless, in 
circumstances in which you have three or more sets of data to compare, then these ranking tests
might be appropriate. There are unrelated and related versions of these ranking methods so 
they can be applied to the data in Chapter 21 on unrelated ANOVA and Chapter 22 on related
ANOVA.

The decision to use non-parametric tests, then, does have an impact in that the analysis is less
likely to be statistically significant than where the parametric equivalent is used – all other things
being equal. Generally speaking, in simple research designs the non-parametric test will be 
adequate. The problem is that there is no non-parametric equivalent to many of the variants of
ANOVA discussed later in this book – so SPSS Statistics does not have non-parametric equi-
valents of MANOVA, ANCOVA, mixed-design ANOVA and so forth. The researcher may 
therefore have no choice but to use the parametric test. If it were possible to clearly specify the
circumstances in which parametric tests are too risky to apply then it would be less of a problem
but, unfortunately, such information is generally not available. The best advice is to try to ensure
that the data collected are of as good a quality as possible. Problems such as highly skewed data
distributions may reflect that the researcher’s measures have been poorly designed, for example.

It needs to be understood that the non-parametric techniques generally use ranks rather than
the original scores. This results in a situation in which it is not strictly speaking true to discuss
the differences in group means though, of course, the ranks do reflect differences in the means.

The statistical tests discussed in this chapter are equivalent to the parametric ANOVAs
described later in this book. So the Kruskal–Wallis test is used as an alternative to the unrelated
one-way ANOVA (Chapter 21) and the Friedman test is the alternative to the related one-way
ANOVA (Chapter 22). Figure 19.1 outlines parametric and their non-parametric equivalents in
this book.
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19.2 When to use ranking tests

The tests described in this chapter can be used in simple one-way unrelated and related ANOVA
designs. They can be employed when the data do not meet the requirements of the parametric
equivalents. However, this is a very subjective matter to assess and no hard-and-fast rules can be
given. There is a loss of power when choosing the non-parametric version and often a loss of the
flexibility offered by the parametric versions. For example, you will have to carry out multiple
comparisons tests using non-parametric versions of the t-test (see Chapter 18) with adjustments
for the number of comparisons made. It is also important to remember that there are no non-
parametric versions of some variants of ANOVA.

19.3 When not to use ranking tests

We would avoid using the ranking (non-parametric) version of the test wherever possible. As a
way of learning about the practical limitations of these, we would suggest that you compare the
outcomes of the parametric and non-parametric analyses on your data. You may be surprised
how little difference it makes.

19.4 Data requirements for ranking tests

Given the loss of power when ranking tests are used, then the researcher should satisfy themselves
that the data do not correspond to a normal distribution and that the data cannot be regarded as
on an equal interval scale. Other than that, the data requirements are the same as for the para-
metric equivalent.

19.5 Problems in the use of ranking tests

One major problem is that student research is often carried out on relatively small samples. This
means that there is insufficient data to decide whether the data are normally distributed, skewed
and so forth.

The limited variety of ranking tests on SPSS is a further limitation to their use.

You can find out more about non-parametric tests for three or more groups in Appendix B2 of Howitt, D. and Cramer, D.
(2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

19.6 The data to be analysed

The computation of the non-parametric test for related scores is illustrated with the data in 
Table 19.1, which shows the recall of the number of pairs of nonsense syllables for the same par-
ticipants under the three conditions of high, medium and low distraction. The computation of the



Table 19.1 Scores on memory ability under three different levels of distraction

Low distraction Medium distraction High distraction

John 9 6 7

Mary 15 7 2

Shaun 12 9 5

Edmund 16 8 2

Sanjit 22 15 6

Ann 8 3 4
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non-parametric test for related scores is illustrated with the data in Table 19.2 (see p. 191), which
shows the reading ability of three separate groups of children under the three conditions of high,
medium and low motivation.

19.7 Friedman three or more related samples test

This test is used in circumstances in which you have three or more related samples of scores. The
scores for each participant in the research are ranked from smallest to largest separately. In other
words the scores for Joe Bloggs are ranked from 1 to 3 (or however many conditions there are),
the scores for Jenny Bloggs are also ranged from 1 to 3, and so forth for the rest. The test essen-
tially examines whether the average ranks in the several conditions of the experiment are more
or less equal, as they should be if the null hypothesis is true.

Table 19.1 gives the scores in an experiment to test the recall of pairs of nonsense syllables
under three conditions – high, medium and low distraction. The same participants were used in
all conditions of the experiment.

19.8 Entering the data for the Friedman test
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19.9 Friedman test



REPORTING THE OUTPUT 
We could report these results as follows: 

There was a significant difference in recall in the three conditions, Friedman c2(n = 6) = 9.33, p < .009. 

We would then need to report the results of further tests to determine which groups differed significantly and in what 
direction.
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19.10 Interpreting the output for the Friedman test

19.11 Kruskal–Wallis three or more unrelated samples test

The Kruskal–Wallis test is used in circumstances where there are more than two groups of inde-
pendent or unrelated scores. All of the scores are ranked from lowest to highest irrespective of
which group they belong to. The average rank in each group is examined. If the null hypothesis
is true, then all groups should have more or less the same average rank.

Imagine that the reading abilities of children are compared under three conditions: (1) high
motivation, (2) medium motivation, and (3) low motivation. The data might be as in Table 19.2.
Different children are used in each condition so the data are unrelated. The scores on the depen-
dent variable are on a standard reading test.



Table 19.2 Reading scores under three different levels of motivation

High motivation Medium motivation Low motivation

17 10 3

14 11 9

19 8 2

16 12 5

18 9 1

20 11 7

23 8 6

21 12

18 9

10
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19.12 Entering the data for the Kruskal–Wallis test
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19.13 Kruskal–Wallis test



REPORTING THE OUTPUT
We could report the results of this analysis as follows: 

The Kruskal–Wallis test found that the reading scores in the three motivation conditions differed significantly, 
c2(2) = 21.31, two-tailed p = 0.001.

We would then follow this with reporting the results of further tests to determine which groups differed significantly and
in what direction.
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Summary of SPSS Statistics steps for non-parametric tests for
three or more groups

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

For the Friedman test, select ‘Analyze’, ‘Nonparametric Tests’, ‘Legacy Dialogs’ and ‘K Related Samples …’.
Move the appropriate variables to the ‘Test Variables:’, check ‘Friedman’ is already selected and select ‘OK’.
For the Kruskal–Wallis test, select ‘Analyze’, ‘Nonparametric Tests’, ‘Legacy Dialogs’ and ‘K Independent
Samples …’.
Move the dependent variable to the ‘Test Variables List:’ box and the grouping (independent) variable to the
‘Grouping Variable’ box.
Select ‘Define Groups …’, define the two groups, select ‘Continue’ and then ‘OK’.

Output

Check to see if the p value is significant at .05 or less.
If it is determine the direction of the difference.

19.14 Interpreting the output for the Kruskal–Wallis test

For further resources including data sets and questions, please refer to the website accompanying this book.





Analysis of variance

PART 4





The variance ratio test
Using the F-ratio to compare two variances

Overview

The variance ratio test (F-test) indicates whether two unrelated sets of scores differ in the variability
of the scores around the mean (i.e. are the variances significantly different?).

This is clearly not the same question as asking whether two means are different, and one should
remember that variances can be significantly different even though the means for the two sets of
scores are the same. Consequently, examining the variances of the variables can be as important
as comparing the means.

Because few research questions are articulated in terms of differences in variance, researchers
tend to overlook effects on variances and concentrate on differences between sample means. This
should be avoided as far as possible.

The F-test is probably more commonly found associated with the t-test and the analysis of variance.

20.1 What is the variance ratio test?

One of the conceptual clichés which is hard to break is the idea that the main function of statis-
tical analysis in psychology is to compare groups in terms of the mean scores on a particular 
variable. Is it not possible to imagine circumstances in which two groups differ not in terms of
their means but in terms of the spread of their scores? For example, what about eating behaviour
when under emotional stress? We have probably all heard people say that they eat more when they
are stressed (e.g. comfort eating) but others say that they can’t eat when they are stressed. So if
we compared the eating behaviour of a group of participants suffering from stress with that of 
a group not suffering stress then we would not necessarily expect the mean amounts of food eaten
to be different between the two groups. What we might expect is that some stressed individuals
eat a lot more and other stressed individuals eat a lot less. In contrast, those who are not stressed
should show no such tendency. In other words, eating behaviour may be more extreme in both
directions for the stressed group than for the non-stressed group. The mean amount of food eaten
in both groups may average out the same. So it would be quite wrong to suggest that stress has
no effect on eating behaviour simply because the means amounts eaten are the same.

CHAPTER 20



FIGURE 20.1 About comparing variances
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How can one detect this difference between the groups? The variance ratio (or F-ratio) is one
way of identifying that the variability of scores in one group is greater than for the other group.
The variance ratio is simply the ratio of the larger variance divided by the smaller variance. If the
variances are significantly different, then this means that the variability of scores is different for
the two samples. It is called the F-ratio because this statistic is distributed like the F-distribution,
which is a statistical distribution like the t- and z-distributions.

The variance ratio is part of other statistical techniques. For example, it is a crucial statistic in
analysis of variance (although SPSS actually calculates Levene’s test which is slightly different).
Levene’s test is also calculated as part of the unrelated t-test procedure. The t-test assumes that
the variances of the two samples are statistically similar. If they are not, then a different version
of the t-test must be used from the SPSS output. Figure 20.1 highlights some of the points in 
comparing variances.

20.2 When to use the variance ratio test

It is legitimate to compare the variances of scores for different groups of participants. Routinely
a researcher would obtain the variance (or standard deviation or standard error) for each sample
of scores as part of the basic descriptive statistics reported in any study. Any large differences in
variance could be tested using the variance ratio test.

It is good practice to check that the variances on a particular variable are similar for the 
different groups in the study. Normally variance (or the related measures of standard deviation
or standard error) is routinely calculated for each variable or sample routinely as part of the basic
descriptive statistics for the data. It would be appropriate to test for differences in variances if
they seemed very different, say, for two different samples of participants. Most tests of differences
between means routinely include variance ratios (F-ratios) in the SPSS output.



Table 20.1 Emotional stability scores from a study of ECT to different hemispheres of the brain

Left hemisphere Right hemisphere

20 36

14 28

18 4

22 18

13 2

15 22

9 1

Mean = 15.9 Mean = 15.9
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20.3 When not to use the variance ratio test

So long as the data are score data, use of the variance ratio test will be helpful in general.

20.4 Data requirements for the variance ratio test

The variance ratio needs to be computed on score data.

20.5 Problems in the use of the variance ratio test

There are no particular problems except that it is easily forgotten that variance is variation
around the mean score of a sample. The value of the variance does not say anything about the
mean score as such.

You can find out more about the variance ratio test in Chapter 19 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

20.6 The data to be analysed

To compute the variance ratio – or F-ratio – we divide the larger variance estimate by the smaller
variance estimate. The variance estimate is produced by the Descriptives procedure first introduced
in Chapter 7. The computation of the variance ratio is illustrated with the data in Table 20.1
(ISP, Table 19.2), which reports the emotional stability scores of patients who have had an elec-
tric current passed through either the left or the right hemisphere of the brain. In this chapter, the
method involves a little manual calculation. However, it provides extra experience with SPSS.

An alternative way of achieving the same end is to follow the t-test procedures in Chapter 14.
You may recall that the Levene F-ratio test is part of the output for that t-test. Although Levene’s
test is slightly different, it is a useful alternative to the conventional F-ratio test.
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20.7 Entering the data

20.8 Variance estimate
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20.9 Calculating the variance ratio from the output

Divide the larger variance estimate in the output by the smaller variance estimate. The larger
variance estimate is 191.476 (for ‘Right’), which divided by the smaller one of 19.810 (for
‘Left’) gives a variance or F-ratio of 9.6656. This ratio is 9.66 when rounded down to two 
decimal places. We round down to provide a more conservative F-test and probability value.



REPORTING THE OUTPUT
We would report these findings as: 

The variance of emotionality scores of patients in the right hemisphere condition (191.48) was significantly larger, 
F(6, 6) = 9.66, p < .05, than those of patients in the left hemisphere condition (19.81).

For further resources including data sets and questions, please refer to the website accompanying this book.
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We need to look up the statistical significance of this ratio in a table of critical values of 
F-ratios where the degrees of freedom for the numerator (191.48) and the denominator (19.81)
of the ratio are both six.

The .05 critical value of the F-ratio with six degrees of freedom in the numerator and denom-
inator is 4.28.

The F-ratio we obtained is 9.66, which is larger than the .05 critical value of 4.28 (see ISP
Significance Table 19.1 where the nearest critical value is 4.4 with five degrees of freedom in
the numerator).

Summary of SPSS Statistics steps for the variance ratio test

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Compare Means’ and ‘Means …’.
Move the dependent variable to the ‘Dependent List:’ box and the independent variable to the ‘Independent
List:’ box.
Select ‘Options …’ and move ‘Variance’ from the ‘Statistics’ to the ‘Cell Statistics’ box.

Output

Divide the larger variance by the smaller variance and look up in an appropriate table such as Appendix J in
ISP under the appropriate degrees of freedom whether the ratio is statistically significant.



Analysis of variance
(ANOVA)
Introduction to the one-way unrelated or 
uncorrelated ANOVA

Overview

The unrelated/uncorrelated analysis of variance indicates whether several (two or more) groups of
scores have very different means. It assumes that each of the sets of scores comes from different
individuals. It is not essential to have equal numbers of scores for each set of scores.

The different groups correspond to the independent variable. The scores correspond to the dependent
variable.

Basically the analysis of variance calculates the variation between scores and the variation
between the sample means. Both of these can be used to estimate the variation in the population.
If the between groups estimate is much bigger than the combined within groups estimate, it
means that the variation due to the independent variable is greater than could be expected on the
basis of the variation between scores. If this disparity is big enough, the difference in variability is
statistically significant. This means that the independent variable is having an effect on the scores.

The interpretation of the analysis of variance can be difficult when more than two groups are used.
The overall analysis of variance may be statistically significant, but it is difficult to know which of
the three or more groups is significantly different from the other groups.

The solution is to break the analysis into several separate comparisons to assess which sets of
scores are significantly different from other sets of scores. That is, which of the groups are signi-
ficantly different from other groups.

Ideally an adjustment should be made for the number of comparisons being made (see 
Chapter 24 on multiple comparisons for information on more sophisticated methods for doing 
this than those described in this chapter). This adjustment is necessary because the more stat-
istical comparisons that are made, the more likely it is that some of the comparisons will be 
statistically significant.

CHAPTER 21



Table 21.1 Data for a study of the effects of hormones

Group 1 Group 2 Group 3
Hormone 1 Hormone 2 Placebo control

9 4 3

12 2 6

8 5 3
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It is known as the one-way ANOVA since there is just one independent variable – that is, a
single nominal variable forms the basis of the groups. In this case, that single variable is the drug
treatment (Hormone 1, Hormone 2 and Placebo). It is possible to extend this design to have a
second (or third, etc.) independent variable as discussed in Chapter 23 on the two-way ANOVA.

Essentially ANOVA works by comparing the variation in the group means with the variation
within the groups using the variance ratio or F-ratio. The more variation there is between the
group means compared to the variation within the groups then the more likely it is that the ana-
lysis will be statistically significant. The variation between the group means is the between groups
variance; the variation within the groups is the within groups variance though it can be referred
to as the error variance since it is the variation in scores which is unaccounted for. The bigger the
error variance then the greater the possibility that we get variation between the cell means by
chance. The calculation is a little more complex than this description implies but this will serve
you well enough conceptually.

Confusingly, ANOVA does not use the terms between groups variance and error variance.
Instead terms such as between groups mean square and error mean square are used. This is
merely a convention as they are, in fact, the between groups variance estimate and the error vari-
ance estimate. They are variance estimates because one is trying to calculate the variance in the
population of scores using information from a sample of scores.

The language used in ANOVA can be somewhat arcane – terms such as levels of treatment,
split-plot designs, blocks and so forth reflect the origins of ANOVA in agricultural research.
Gradually the terminology is changing but this takes a lot of time in psychological statistics.

ANOVA, like other statistical techniques, makes use of the concept of degrees of freedom. This
is closely related to the number of participants in the study though it is not always apparent. This
is because the total number of degrees of freedom (which is always one less than the number of
scores) gets divided up in various ways. Fortunately, SPSS Statistics does all of this for you.

Finally, you need to understand that a significant ANOVA simply means that the variation in
the group means is bigger than can be accounted for simply on the basis of the variation due to
using samples. In other words, the independent variable (the groups) makes a difference to the
dependent variable (the scores). It does not mean that all of the groups have means that are

21.1 What is one-way ANOVA?

The one-way ANOVA is essentially an extension of the unrelated t-test to cover the situation in
which the researcher has three or more groups of participants. Indeed, one could use one-way
ANOVA instead of the unrelated t-test where one has just two groups of participants but 
convention is against this. The sort of data which could be analysed using one-way ANOVA is
illustrated in Table 21.1. This shows the data for a study which investigated the effect of different
hormone treatments on depression scores. Do the mean scores for the groups differ significantly?
It would appear from looking at Table 21.1 that the mean score for Group 1 is higher than those
of the other two groups since if we calculate the means we find that they are: Group 1 mean =
9.67, Group 2 mean = 3.67 and Group 3 mean = 4.00.



FIGURE 21.1 The steps in one-way ANOVA
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significantly different from each other. In our example, the means are 9.67, 3.67 and 4.00. It is
obvious that the last two means are not very different from each other whereas both are very dif-
ferent from the first mean. As part of ANOVA, it is usual to test which means are significantly
different from each other. These tests are discussed in Chapter 24 on multiple comparisons.
However, we do suggest simple procedures in this chapter which may be more readily understood
by novices. Figure 21.1 shows the main steps in carrying out a one-way analysis of variance.

21.2 When to use one-way ANOVA

One-way ANOVA can be used when the means of three or more groups are to be compared.
These must be independent groups in the sense that a participant can only be in one group and
contribute one score to the data being analysed.

Conventionally, one-way ANOVA is not used when there are just two groups to be compared.
A t-test is usually employed in these circumstances. However, it is perfectly proper to use one-way
ANOVA in these circumstances. It will give exactly the same significance level as the t-test on the
same data when the variances do not differ. When the variances differ it may be more appropriate
to use an unrelated t-test where the variances are pooled together more appropriately.

21.3 When not to use one-way ANOVA

The main indication that there may be problems is when the test of the homogeneity of variances
is statistically significant. This is discussed later in this chapter. This means that the variances of
the different groups are very different, which makes it difficult to combine them. The extent to
which this is a problem is not well documented but it is probably not so important where the
group sizes are equal. If the variances do differ significantly, then some researchers might prefer
to use the Kruskal–Wallis three or more unrelated conditions test which is available under
‘Nonparametric Tests’ on SPSS (see Chapter 19).
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21.4 Data requirements for one-way ANOVA

One-way ANOVA requires three or more independent groups of participants, each of which con-
tributes a single score to the analysis. Since one-way ANOVA essentially tests for differences
between the means of the groups of participants, ideally the scores correspond to the theoreti-
cally ideal equal interval scale of measurement. The variances of the various groups need to be
approximately equal.

21.5 Problems in the use of one-way ANOVA

Confusion arises because of the traditional advice that if the one-way ANOVA is not significant,
then no further analysis should be carried out comparing the different group means with 
each other. This may have been sound advice once but it is somewhat outmoded. It is perfectly
appropriate to use the Newman–Keuls test and Duncan’s new multiple range test as multiple-
comparisons tests (see Chapter 24) even if the ANOVA is not significant. This begs the question
whether ANOVA adds anything in these circumstances – the answer is probably no. If ANOVA
is significant, then any multiple-range test is appropriate.

You can find out more about one-way ANOVA in Chapter 20 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics
in Psychology, 5th edition. Harlow: Pearson.

21.6 The data to be analysed

The computation of a one-way unrelated analysis of variance is illustrated with the data in 
Table 21.1 (ISP, Table 20.2), which shows the scores of different participants in three conditions.
It is a study of the effect of different hormone and placebo treatments on depression. So drug is
the independent variable and depression the dependent variable.

21.7 Entering the data
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21.8 One-way unrelated ANOVA
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The F-ratio is the between groups mean square divided by the within group mean square,
which gives an F-ratio of 10.586 (34.111/3.222 = 10.5869).

This indicates that there is a significant difference between the three groups. However, it does
not necessarily imply that all the means are significantly different from each other. In this case,
one suspects that the means 3.67 and 4.00 are not significantly different.

Which of the means differ from the others can be further determined by the use of multiple
comparison tests such as the unrelated t-test. To do this, follow the procedure for the unre-
lated t-test described in Chapter 14. You do not have to re-enter your data. However, do an
unrelated t-test selecting the groups 1 and 2, then selecting the groups 1 and 3, and finally you
would select the groups 2 and 3. For our example, group 1 is significantly different from
groups 2 and 3, which do not differ significantly from each other. (See ISP Chapter 11 for
more details.)

21.9 Interpreting the output



REPORTING THE OUTPUT
We could report the results of the output as follows:

The effect of the drug treatment was significant overall, F(2, 6) = 10.58, p = 0.011, h2 = .78. When a Bonferroni adjustment
was made for the number of comparisons, the only significant difference was between the means of hormone treatment 1
and hormone treatment 2, t(4) = 4.02, two-tailed p < .05. The mean of hormone treatment 1 (M = 9.67, SD = 2.08) was
significantly greater than that for hormone treatment 2 (M = 3.67, SD = 1.53). There was no significant difference
between the mean of the placebo control and the mean of either hormone treatment 1 or hormone treatment 2.

For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for one-way ANOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable name in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Compare Means’ and ‘One-Way ANOVA …’.
Move the dependent variable to the ‘Dependent List:’ box and the independent variable to the ‘Factor:’ box.
Select ‘Post Hoc …’, the post hoc test you want and ‘Continue’.
Select ‘Options’, ‘Descriptive’, ‘Homogeneity of variance test’, ‘Continue’ and then ‘OK’.

Output

Check if the Sig(nificance) of the F ratio is significant at .05 or less.
If so, check that the Sig(nificance) of the homogeneity of variances is not significant at more than .05.
Check which means differ significantly with the post hoc test or further unrelated t-tests.

Because we are doing three comparisons, the exact significance level of each t-test should be
multiplied by 3 to obtain the Bonferroni significance level.

It is useful to know how much variance the independent variable accounts for or explains. 
This is given by a statistic called eta squared. This statistic is not available with the one-way
ANOVA SPSS procedure. It is available with the general linear model SPSS procedure, which
is described in Chapters 22–27. If you use the univariate option of the general linear model 
you will see that eta squared for this analysis is about .78. This means that the three conditions
account for about 80 per cent of the variance in the depression scores. Psychologists are
encouraged to report this statistic as it gives an indication of the size of an effect.



Analysis of variance for
correlated scores or
repeated measures

Overview

The correlated/related analysis of variance indicates whether several (two or more) sets of scores
have very different means. However, it assumes that a single sample of individuals has con-
tributed scores to each of the different sets of scores and that the correlation coefficients between
sets of scores are large. It is also used in designs when matching has taken place.

If your data do not meet these requirements then turn back to Chapter 21 on the unrelated analysis
of variance.

Changes in scores on a variable over time is a typical example of the sort of study which is appro-
priate for the correlated/related analysis of variance.

If properly used, correlated/related designs can be extremely effective in that fewer participants
are required to run the study. The reason is that once participants are measured more than once,
it becomes possible to estimate the individual differences component of the variation in the data.
In a study of memory, for example, some participants will tend to do well whatever the condition
and others will tend to do poorly. These individual differences can be identified and adjusted for
in the analysis. What would be classified as error variation in an unrelated analysis of variance is
separated into two components – the individual differences component (within subjects error) and
residual error. Effectively this means that the error term is reduced because the individual differ-
ence component has been removed. Since the error term is smaller, it is possible to get significant
results with smaller numbers of participants than would be possible with an unrelated design.

CHAPTER 22



Table 22.1 Pain relief scores from a drugs experiment

Aspirin ‘Product X’ Placebo

Bob Robertson 7 8 6

Mavis Fletcher 5 10 3

Bob Polansky 6 6 4

Ann Harrison 9 9 2

Bert Entwistle 3 7 5
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22.1 What is repeated-measures ANOVA?

Just as the one-way ANOVA was an extension of the unrelated t-test, the repeated-measures
ANOVA is an extension of the related t-test to cover three or more measures taken (usually) at
different points in time. It is mainly used to investigate how scores change on a measure for a
sample of cases over a period of investigation but can be used where participants in three groups
are matched. It could be used as an alternative to the related t-test since exactly the same level of
significance would be obtained. However, conventionally this is not done.

The whole point of repeated-measures, related-measures and correlated measures tests is that
they can be very effective designs since they capitalise on the fact that participants are serving ‘as
their own controls’. That is to say, because individuals are measured at several different points 
in time, it is possible to estimate the tendency for individuals to give, say, particularly high scores
or particularly low scores irrespective of the time that they are measured. In other words, it is
possible to adjust the calculation for the consistencies in the responses of individuals measured at
different points in time. This can be seen in the data in Table 22.1. As you can see, there are five
participants who are given one of two drug treatments or an inert placebo. The scores are the
amount of relief from pain felt in these three conditions. The greatest relief from pain is experi-
enced in the Product-X condition where the average score is 8.00 compared to 6.00 in the Aspirin
condition and 4.00 in the control Placebo condition. Thus the treatment condition does seem to
have an effect.

It is equally important, however, to notice that Bob Robertson tends to get the highest relief
from pain scores irrespective of the drug treatment condition. Bert Entwistle gets the lowest
scores on average. The repeated-measures ANOVA simply takes this information and adjusts the
scores to take account of these individual differences. In doing so, essentially it deals with some
of the variance which would have been attributed to error in the unrelated measures one-way
ANOVA. In other words, the error variance is essentially reduced. What this means is that the
research findings have an increased chance of being significant simply because the error variance
is smaller – that is, all things being equal.

Unfortunately, and this is largely overlooked by psychologists, all things are not equal. What
happens is that the degrees of freedom associated with the error variance are reduced because of
these individual difference adjustments. Depending on the size of the correlations between the
scores in the different conditions, the analysis may be statistically significant (if the correlations
are strong) but it may be statistically non-significant if the correlations are poor. But the
researcher has to check on this.

The repeated measures ANOVA introduces yet more new terminology. This is because the
error variance (error mean square) no longer contains the variance due to individual differences
unlike the ANOVA in the previous chapter. This adjusted error variance is known as the residual
variance although it is usually used as the measure of error. The individual difference variance is
known as the between subjects or between people variance. Figure 22.1 shows the key steps in
carrying out a repeated-measures or related samples ANOVA.



FIGURE 22.1 Steps in the repeated measures ANOVA

212 CHAPTER 22 ANALYSIS OF VARIANCE FOR CORRELATED SCORES OR REPEATED MEASURES

22.2 When to use repeated-measures ANOVA

Correlated scores designs are relatively uncommon in psychology but do have some advantages 
in terms of their power in appropriate circumstances. They are, of course, essential if a group of
participants is being studied over time on several occasions. Matching is harder to use though is
perfectly appropriate as a way of achieving the requirement of correlated scores. It is essential that
the dependent variable (the scores) is comparable at different points in time. Usually this is achieved
by using the same measure on each occasion (or possibly alternative forms of the same measure).

22.3 When not to use repeated-measures ANOVA

We would argue that the repeated-measures ANOVA should be used only where the data show
substantial correlations between the scores measured, for example, at different points in time.
Otherwise, it is a form of analysis which has lower power compared with the unrelated samples
ANOVA. That is to say, the findings may be non-significant for the repeated-measures ANOVA
but significant if the same data are put through an unrelated ANOVA analysis. Unfortunately,
except for carrying out the two analyses and comparing the outcomes, it is not possible to say
just how much the scores need to correlate.

22.4 Data requirements for related-measures ANOVA

The repeated-measures ANOVA requires a complete set of scores from each participant. It can-
not be done using partial data. The scores in each condition should ideally have similar variances.
Overall, the scores should correlate between conditions.
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22.5 Problems in the use of repeated-measures ANOVA

A major difficulty lies in the view that the research design rather than the statistical features 
of the data determine that a repeated-measures ANOVA should be used. Unfortunately, there is
no guarantee that matching, for example, will result in strong correlations between the scores in
different conditions – unless it is known that the matching variable correlates highly with the
dependent variable. Furthermore, it is just an assumption that individuals will serve as their own
controls – it can only be the case for measures which are fairly stable over time.

A more common problem is the lack of multiple comparisons measures for repeated-measures
ANOVAs on SPSS Statistics. One solution to this is to carry out a number of related t-tests on
selected pairs of conditions.

You can find out more about the repeated-measures ANOVA in Chapter 21 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

22.6 The data to be analysed

The computation of a one-way repeated-measures analysis of variance is illustrated with the 
data in Table 22.1, which shows the scores of the same participants in three different conditions
(ISP, Table 21.10).

22.7 Entering the data
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22.8 One-way repeated-measures ANOVA
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22.9 Interpreting the output

The output gives seven tables. Only the more important ones are shown below.



REPORTING THE OUTPUT
We could describe the results of this analysis in the following way:

A one-way repeated measures analysis of variance showed a significant treatment effect for the three conditions,
F(2, 8) = 5.10, p = .037, partial h2 = .56. The Aspirin mean was 6.00, the Product X mean 8.00, and the Placebo mean
was 4.00. None of the three treatments differed from one another with related t-tests when a Bonferroni adjustment
was made for the number of comparisons.
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The F-ratio is the Mean Square (MS) for ‘factor1’ (20.000) divided by Error(factor1) Mean
Square (3.917). It is 5.106 (20.000/3.917 = 5.1059).

The exact significance level of this F-ratio is 0.037. Since this value is smaller than .05, we
would conclude that there is a significant difference in the mean scores of the three conditions
overall.

In order to interpret the meaning of the ANOVA as it applies to your data, you need to con-
sider the means of each of the three groups of scores which are displayed in the second table.
They are 6.00, 8.00 and 4.00. Which of these means are significantly different from the other
means?

You also need to remember that if you have three or more groups, you need to check where
the significant differences lie between the pairs of groups. The related t-test procedure in
Chapter 13 explains this. For the present example, only the difference between the means for
‘Product X’ and the ‘Placebo’ was significant. Because you are doing several t-tests, each exact
probability for the t-tests should be multiplied by the number of t-tests being carried out. 
In our example, there are three comparisons, so each exact probability should be multiplied
by 3. This is known as the Bonferroni adjustment or correction.



This could be supplemented by an analysis of variance summary table such as Table 22.2. Drugs is factor1 in the 
output, and Residual Error is Error(factor1) from the fifth table in the output.
Significant at 5% level.
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Summary of SPSS Statistics steps for repeated-measures
ANOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable name in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘General Linear Model’ and ‘Repeated Measures …’.
Enter the number of groups in the ‘Number of Levels’ and select ‘Add’ and ‘Define’.
Move the appropriate variables to the upper ‘Within-Subjects Variables (factor1):’ box and select ‘Options’.
Select ‘Descriptive statistics’, ‘Estimates of effect size’, ‘Continue’ and then ‘OK’.

Output

Check if Mauchly’s test of sphericity is not significant with Sig. greater than .05.
If it is not significant, check that the Sig(nificance) of the Factor for Sphericity Assumed in the Tests of
Within-Subjects Effects table is .05 or less.
If more than two means, check with related t-tests which means differ significantly.

Table 22.2 Analysis of variance summary table

Source of variation Sum of squares Degrees of freedom Mean square F-ratio

Drugs 40.00 2 20.00 5.11*

Residual error 31.33 8 3.92

For further resources including data sets and questions, please refer to the website accompanying this book.



Two-way analysis of
variance for unrelated/
uncorrelated scores

Overview

Two-way analysis of variance allows you to compare the means of a dependent variable when
there are two independent variables.

If you have more than one dependent variable then you simply repeat the analysis for each depen-
dent variable separately. On the other hand, if the several dependent variables are measuring
much the same thing then they could be combined into a single overall measure using the 
summing procedures described in Chapter 43 or 44, or MANOVA could be used (Chapter 27).

With SPSS Statistics, you do not need equal numbers of scores in each condition of the indepen-
dent variable. If it is possible to have equal numbers in each condition, however, the analysis is
optimal statistically.

Although the two-way ANOVA can be regarded as an efficient design in so far as it allows two dif-
ferent independent variables to be incorporated into the study, its ability to identify interactions
may be more important. An interaction is simply a situation in which the combined effect of two
variables is greater than the sum of the effects of each of the two variables acting separately.

The two-way ANOVA can be tricky to interpret. It is important to concentrate on the means in each
condition and not simply on the complexities of the statistical output. It is important to note that
ANOVAs proceed according to certain rules. The main effects are identified prior to the inter-
actions. Sometimes, unless care is taken, the interaction is mistaken for the main effects – simply
because variation is claimed for the main effects before it is claimed for the interaction. As with
most statistical analyses, it is important to concentrate as much on the patterns of means in the
data as the statistical probabilities.

CHAPTER 23



Table 23.1 Data for sleep deprivation experiment: number of mistakes on video test

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 16 18 22

12 16 24

17 25 32

No alcohol 11 13 12

9 8 14

12 11 12
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23.1 What is two-way ANOVA?

ANOVA can be extended to include two or more independent variables. This is illustrated by the
data in Table 23.1. This is a study of the effects of sleep deprivation on the number of mistakes
that participants make on a task (the dependent variable). There are three groups of participants
on the basis of the independent variable sleep deprivation. One group is deprived of sleep for 
4 hours, one is deprived of sleep for 12 hours, and the third is deprived of sleep of 24 hours.
However, there is a second independent variable – alcohol. Some of the participants are given
alcohol as part of the study and others are not given alcohol. As can be seen, every combination
of the alcohol variable and the sleep deprivation variable is used in the study. This is known 
as a two-way ANOVA because there are two independent variables. In each combination, in 
this case, data have been collected from three different participants – a total of 18 different par-
ticipants. (If it were decided to consider male and female participants separately in addition, 
then this would be a three-way ANOVA because there are three independent variables – sleep
deprivation, alcohol and gender.)

It is possible to regard the data in Table 23.1 as two separate studies:

The effects of sleep deprivation on the number of mistakes made. In order to do this, one
essentially ignores the alcohol condition so that there are six participants in the 4 hour sleep
deprivation condition, six participants in the 12 hour sleep deprivation condition, and six 
participants in the 24 hour sleep deprivation condition. The average number of mistakes made
in these three conditions would be compared.

The effects of alcohol on the number of mistakes made. In this case, the sleep deprivation con-
dition is ignored so that there are nine participants in the alcohol condition and another nine
participants in the no-alcohol condition. The average number of mistakes made in the alcohol
condition would be compared with the average number of mistakes made in the no-alcohol
condition.

Thus really there are two separate studies contained within the one overall study. If it were
two entirely separate studies, then one could compare the average errors in the sleep deprivation
study using the one-way ANOVA discussed in Chapter 21 and the average errors for the alcohol
study either using the unrelated t-test (Chapter 14) or the one-way ANOVA which is essentially
the same thing for just two groups. This is more or less what happens in two-way ANOVA. Each
of the separate studies, though, is called a main effect. So we would speak of the main effect of
sleep deprivation and the main effect of alcohol. In the two-way ANOVA, the main effects are
computed almost as if they were separate studies with one slight difference. That is, the degrees
of freedom are slightly reduced for the error variance. The consequence of this is that the main
effects are slightly less statistically significant than they would have been if the data had been



FIGURE 23.1 A chart illustrating the interaction of sleep deprivation with alcohol
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analysed separately. In other words, there is a slight negative consequence involved in doing two
studies essentially for the price of one.

However, there is nothing wrong in regarding each main effect as if it were a separate study.
There is an advantage in the use of two-way ANOVA. This is something known as the interaction.

There is just one interaction for the two-way ANOVA but there would be four interactions for
the three-way ANOVA. The number of interactions escalates with increasing numbers of independ-
ent variables in the design. Interaction is a difficult concept to understand. Looking at Table 23.1,
it might be noticed that the number of errors made in the 24 hour sleep deprivation with alcohol
condition seems to be disproportionately large. This is an indication that there may be an inter-
action since the scores in that condition are bigger than generally one would expect on the basis of
the influence of alcohol acting alone and the effect of 24 hours of sleep deprivation acting alone.
This becomes clearer if we put the means calculated from Table 23.1 on a chart (Figure 23.1).
Notice that there are two lines on the chart – one for the alcohol conditions and the other for the
no-alcohol condition. The vertical axis on the chart is the average number of mistakes.

If we look at the 4 hour sleep conditions first, it can be seen that on average a few more 
mistakes are made in the alcohol condition than the no alcohol condition. The 12 hour sleep
deprivation conditions also indicate that even more mistakes are made on average in the alcohol
condition than the no-alcohol condition. Finally, the 24 hour sleep deprivation conditions also
show that more mistakes are made when alcohol is consumed but the difference is bigger than
for any of the other sleep deprivation conditions. That is to say, the effect of being given alcohol
is not consistently the same for each sleep deprivation condition. It is greater for some conditions
than others. This is indicative of an interaction between the amount of sleep deprivation and
whether or not alcohol had been consumed. The reason for this is that in statistics it is assumed
that the effects of a variable are additive. In other words, there is an effect of being given alcohol
which adds a certain amount to the effects of the different amounts of sleep deprivation. The 
crucial thing is that this effect of alcohol should be constant (the same amount) irrespective of 
the effect of the different amounts of sleep deprivation. This clearly is not the case in Figure 23.1
since more mistakes can be attributed to the influence of alcohol when participants have been
sleep deprived for 24 hours than for those who had been sleep deprived, say, for 4 hours. This
inconsistency of effect is the interaction. That is, alcohol has greater influence at some levels of
sleep deprivation than others or, in other words, amount of sleep deprivation and alcohol inter-
act to produce greater effects (greater numbers of mistakes) than the effects of alcohol alone plus
the effects of the amount of sleep deprivation alone can account for.

Figure 23.2 illustrates one case where there is no interaction. Notice that the lines are parallel
to each other. This means that alcohol has exactly the same effect on mistakes made irrespective
of the amount of sleep deprivation.



FIGURE 23.2 A chart illustrating a situation in which there is no interaction
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In ANOVA, the main effects are calculated before the interaction is calculated. This means
that priority is given to the main effects. Thus variation is attributed to the main effects as a 
priority and only the variation which is left over can potentially be attributed to the interaction.
This is important when interpreting two-way ANOVA designs and others which involve potential
interactions. Figure 23.3 highlights the main steps in carrying out a two-way ANOVA.

FIGURE 23.3 Steps in the two-way ANOVA
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23.2 When to use two-way ANOVA

Two-way ANOVA, like other forms of ANOVA, are ideally suited to randomised experimental
studies. Of course, ANOVA can be used in other contexts but care has to be taken to avoid making
the analysis too cumbersome. Survey data are usually too complex to use ANOVA on, though
not in every case.

It should be noted that ANOVA is very closely related to multiple regression, which may be
preferred for survey-type data.

23.3 When not to use two-way ANOVA

While two-way ANOVA does have fairly restricted data requirements, it is actually difficult to
avoid using it when interactions may be an important aspect of the analysis. This is because SPSS
has no non-parametric alternatives to two-way ANOVA.

23.4 Data requirements for two-way ANOVA

The independent (grouping) variables should consist of relatively small numbers of categories
otherwise the data analysis will be exceedingly cumbersome. This is not usually a problem for
researchers designing randomised experiments as the practicalities of the research will place 
limits on what can be done.

It is best if the scores in each condition have more or less similar variances which SPSS can test
is the case. As usual, many psychologists believe that it is better if the scores approximate an
equal interval scale of measurement.

There does not have to be the same number of participants in each condition of the study
though it is generally better if there are when the requirements of ANOVA are violated, such as
when the variances of scores in each condition are different.

23.5 Problems in the use of two-way ANOVA

The major problem is the interpretation of the two-way ANOVA. It has to be appreciated that
the calculation gives priority to finding main effects to such an extent that it can attribute to a
main effect influences which really are due to the interaction. Take Figure 23.4. If you look at the
‘No alcohol’ line you will see that there are no differences in terms of mistakes between any of
the three sleep deprivation conditions. This would seem to indicate that there is no main effect
for the variable sleep deprivation simply because all of the means are the same. If we look at 
the line for the ‘Alcohol’ condition, there is no difference between the 4 hour and the 12 hour
periods of sleep deprivation, which again would indicate no main effect for sleep deprivation. 
The number of mistakes is the same for both conditions. This would suggest that there is no main
effect of sleep deprivation. It is only when we consider the 24 hour sleep deprivation group given
alcohol that we find that the number of mistakes changes. We would say much the same of the



FIGURE 23.4 A case where an interaction may be confused with a main effect
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alcohol variable. If we consider the 4 hour and the 12 hour periods of sleep deprivation, there is
virtually no difference between the alcohol groups and the no-alcohol groups. This would be
indicative of no main effect for alcohol. Only when we consider the 24 hour sleep deprivation
groups do we get a big difference due to alcohol.

If the ANOVA tells us that there is a significant main effect for either or both alcohol and sleep
deprivation, we need to be very cautious since this is at odds with what the pattern of the data
in Figure 23.4 tells us. We suspect an interaction. However, it is possible that the interaction is
not significant according to the SPSS output.

The message is that the ANOVA may be confusing things and we need to be very cautious
when interpreting the output. This is a case where simple descriptive statistics are vital to the
interpretation of our data.

Anyone contemplating more complex ANOVAs than this should be wary that three-way, four-
way and so forth ANOVAs generate massive numbers of interactions which are extremely diffi-
cult to interpret. We would suggest that very complex ANOVAs should be avoided unless you
have a very good reason for using them and until your level of statistical skill is well developed.

You can find out more about two-way ANOVA in Chapter 22 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics
in Psychology, 5th edition. Harlow: Pearson.

23.6 The data to be analysed

The computation of a two-way unrelated analysis of variance is illustrated with the data in 
Table 23.1. The table shows the scores of different participants in six conditions, reflecting the
two factors of sleep deprivation and alcohol (ISP, Table 22.11). The purpose of the analysis is to
evaluate whether the different combinations of alcohol and sleep deprivation differentially affect
the mean number of mistakes made.
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23.8 Two-way unrelated ANOVA

23.7 Entering the data
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23.9 Interpreting the output
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In the analysis of variance table, the F-ratio for the two main effects (‘Alcohol’ and ‘SleepDep’)
is presented first.

For the first variable of alcohol the F-ratio is 31.683, which is significant at less than the .0005
level. Since there are only two conditions for this effect we can conclude that the mean score
for one condition is significantly higher than that for the other condition.

For the second variable of sleep deprivation it is 5.797, which has an exact significance level
of .017. In other words, this F-ratio is statistically significant at the .05 level, which means that
the means of the three sleep conditions are dissimilar.

Which of the means differ from the others can be further determined by the use of multiple
comparison tests such as the unrelated t-test.

The F-ratio for the two-way interaction between the two variables (Alcohol * SleepDep) is
2.708. As the exact significance level of this ratio is .107 we would conclude that there was no
significant interaction. If this interaction was significant, we could determine which means of
the six groups differed from each other by creating a new group variable from Alcohol and
SleepDep (Chapter 45) and running a multiple comparison test (Chapter 24) in a one-way
ANOVA (Chapter 21).

This plot is shown for the means of the six conditions. It has been edited with the ‘Chart
Editor’. The style of the different coloured lines has been changed so that they can be more 
readily distinguished.
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23.10 Editing the graph



REPORTING THE OUTPUT
We could report the results of the output as follows: 

A two-way unrelated ANOVA showed that significant effects were obtained for alcohol, F(2, 12) = 31.68, p < 0.001,
partial h2 = .73, and sleep deprivation, F(2, 12) = 5.80, p = .017, partial h2 = .49, but not for their interaction, 
F(2, 12) = 2.70, p = .107, partial h2 = .31.

You may be required to give an analysis of variance summary table. A simple one, like that shown in Table 23.2, would
leave out some of the information in the third table in the output, which is unnecessary.
Because the ‘SleepDep’ factor has more than two conditions, we need to use an appropriate multiple comparison test
to determine the means of which groups differ significantly (see Chapter 24).
We also need to report the means and standard deviations of the groups which differ significantly. These descriptive
statistics are given in the second table of the output.
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Table 23.2 Analysis of variance summary table

Source of variation Sums of squares Degrees of freedom Mean square F-ratio Probability

Alcohol 355.56 1 355.56 31.68 < .001

Sleep deprivation 130.11 2 65.06 5.80 < .05

Alcohol with sleep 60.78 2 30.39 2.71 Not
deprivation significant

Error 134.67 12 11.22
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Summary of SPSS Statistics steps for two-way ANOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘General Linear Model’ and ‘Univariate …’.
Move the dependent variable to the ‘Dependent Variable:’ box.
Move the independent variables to the ‘Fixed Factor(s):’ box.
Select ‘Plots …’.
Move one independent variable (Factor) to the ‘Horizontal Axis:’ box and the other to the ‘Separate Lines:’
box.
Select ‘Add’ and ‘Continue’.
Select ‘Options …’, ‘Descriptive Statistics’, ‘Estimates of effect size’, ‘Homogeneity tests’, ‘Continue’ and
then ‘OK’.

Output

Check which F-ratios are significant by having a Sig(nificance) of .05 or less.
Check that Levene’s test shows the variances are homogeneous by having a Sig(nificance) level of more
than .05.
If a significant main effect has more than two groups, use further tests to determine which means differ.
With a significant interaction use further tests to determine which means differ.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

This chapter extends the coverage of multiple t-tests from Chapters 21 and 22. It explains how to
decide which particular pairs of means are significantly different from each other in the analysis of
variance.

The technique is used when you have more than two means. It adds no further information if there
are only two means.

ANOVAs with three or more means to compare are almost certain to benefit from employing multiple
comparison methods.

It is not possible to give definitive advice as to which multiple comparison test to use in different
situations as there is no clear consensus in the literature.

Multiple comparisons in
ANOVA

24.1 What is multiple comparisons testing?

ANOVA brings problems of interpretation when the independent variable (the grouping variable)
has three or more categories. The problem arises because if the ANOVA is significant, this does
not indicate that all of the means are significantly different from each other – it merely implies
that the pattern of means is unlikely to have occurred by chance as a consequence of random 
sampling from a population in which the groups do not differ. If the independent variable has
just two categories, then a significant ANOVA indicates that the two means involved do differ
significantly from each other.

Take the data in Table 24.1 which we have previously discussed in Chapter 21. We have added
the group means on the dependent variable ‘Depression’ in each case. What is obvious is that the
mean Depression score is higher in the Hormone 1 condition than in the other two conditions.
Indeed, there seems to be little difference between the Hormone 2 group and the Placebo control
group. If any comparison is statistically significant, it is likely to be the comparison between the

CHAPTER 24



Table 24.1 Data for a study of the effects of hormones

Group 1 Group 2 Group 3
Hormone 1 Hormone 2 Placebo control

9 4 3

12 2 6

8 5 3

Mean = 9.667 Mean = 3.667 Mean = 4.000
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Hormone 1 group and the Hormone 2 group. The comparison between the Hormone 1 group
and the Placebo control group is the next most likely significant difference. It is very unlikely that
the comparison between the Hormone 2 group and the Placebo control group will be statistically
significant.

It would seem to be obvious to compare the pairs of means using the t-test in these circum-
stances. There is just one problem with what is otherwise a good idea – that is, the more statis-
tical analyses one carries out on any data the more likely that one is to get at least one statistically
significant finding by chance. So if that method is to be used, then some adjustment should 
be made to deal with this problem. One way of doing this is the Bonferroni procedure which 
basically involves adjusting the significance level for the number of t-tests used. However, there
is little point in doing this as SPSS Statistics has far better multiple comparisons tests available.

The problem is generally to decide which one(s) to use. It has to be said that there is little 
clarity in the literature on this matter. One way of dealing with this would be to use all of the
available multiple comparisons tests on SPSS on the grounds that if they all lead to the same con-
clusion there is no problem – a problem only arises if they give different conclusions. However,
we would recommend instead that you consider using the Newman–Keuls test (S-N-K in SPSS,
the S standing for Student which the unrelated t-test is sometimes called) or Duncan’s new mul-
tiple range test which are available on SPSS. The reasons are as follows:

These are among the more powerful multiple comparison tests and are not prone to problems.

They can be used when the ANOVA is not statistically significant overall. This is important
because in the past it used to be claimed that ANOVA had to be significant before any paired
comparisons could be tested for. This produced obviously anomalous situations in which 
certain means were clearly very different but had to be disregarded because of this unfortun-
ate ‘rule’. It should be added that some of the multiple comparisons tests were developed as
alternatives to ANOVA anyway so it is legitimate to use them on their own.

These two tests assume that each condition has the same number of cases in them. A test which
does not assume this is the Scheffé test. However, it is a more conservative test which means that
differences are less likely to be significant.

Of course, the issue of multiple comparisons disappears when the independent variables in 
the ANOVA only have two different values. With a one-way ANOVA then it is easy to obtain
multiple comparisons. However, with the two-way ANOVA and more complex versions one has
to resort to breaking the analysis up into individual one-way ANOVAs in order to employ multiple
comparisons. It probably is sound advice, wherever possible, then to plan the two-way ANOVA
in a way in which each independent variable has only two values which circumvents the problem.
However, this is not always desirable, of course. SPSS will calculate the multiple comparisons
tests for two-way (and more complex) ANOVAs simply by doing two (or more) separate one-way
ANOVAs.



FIGURE 24.1 Steps in multiple comparison testing
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24.2 When to use multiple comparisons tests

It is appropriate to carry out Newman–Keuls test (S-N-K in SPSS) or Duncan’s new multiple
range test whenever doing an unrelated samples one-way ANOVA irrespective of the outcome 
of the ANOVA. Generally, it is helpful to calculate multiple comparisons tests for one-way 
unrelated ANOVAs of the sort described in Chapter 21. If the variances of your groups depart
markedly from being equal, it is possible to select a multiple comparisons test which does not
assume equal variances. The Games–Howell would be a good choice in these circumstances. SPSS
will calculate a homogeneity of variance test as one of the procedure’s Options.

Multiple comparisons testing is available for two-way and more complex ANOVAs. However,
be aware that SPSS will not attempt to calculate these where there are only two conditions of the
independent (grouping) variable. Figure 24.1 outlines the main steps in carrying out multiple
comparison tests.

24.3 When not to use multiple comparisons tests

Unfortunately, there is no point trying to do multiple comparisons tests on SPSS when dealing
with correlated data as in the repeated-measures ANOVA (Chapter 22). It simply does not have
any available. In these circumstances you could resort to multiple related t-tests between pairs of
means.
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24.4 Data requirements for multiple comparisons tests

There is a flexible choice of multiple comparisons tests in SPSS, Some of these do not require
equality of variances. It is a simple matter to go into Options in SPSS for ANOVA analyses and
select ‘Homogeneity test’. If this is statistically significant then one should choose a multiple 
comparisons test which does not assume that the variances are equal.

24.5 Problems in the use of multiple comparisons tests

The output from SPSS for multiple comparisons tests is not entirely consistent for each of the
tests. Choosing more than one test can make the output seem much more complicated so you may
find it easier to check for homogeneity before running the multiple comparison test of your
choice. This does mean running the analysis twice but this is just a small chore for SPSS.

You can find out more about multiple comparison tests in Chapter 23 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

24.6 The data to be analysed

Knowing precisely where significant differences lie between different conditions of your study is
important. The overall trend in the ANOVA may only tell you part of the story. SPSS has a num-
ber of post hoc procedures which are, of course, applied after the data are collected and not
planned initially. They all do slightly different things. There is a thorough discussion of them in
Howell, D. (2010). Statistical Methods for Psychology (7th edition). Belmont, CA: Duxbury. We
will illustrate the use of these multiple comparison procedures (using the data in Table 24.1,
which were previously discussed in Chapter 21).

24.7 Entering the data

Either select the saved file used in Chapter 21 or enter the data as follows:
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24.8 Multiple comparison tests
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24.9 Interpreting the output

The second and last table gives the results for the three multiple comparison tests.



REPORTING THE OUTPUT
We could report the results of the output as follows:

A one-way unrelated analysis of variance showed an overall significant effect for the type of drug treatment, F(2, 6) =
10.59, p = 0.011. Scheffé’s test found that the Hormone 1 group differed from the Hormone 2 group, p = .018, and the
Placebo Control, p = .023, but no other significant differences were found.
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The last table, entitled ‘Homogeneous Subsets’, lists the sets of means which do not differ
significantly from each other. So taking the section for the Student–Newman–Keuls test, there
are two subsets of means. Subset 1 indicates that the Hormone 2 and Placebo control means
of 3.67 and 4.00 do not differ significantly. Subset 2 contains just the Hormone 1 mean of
9.67. Thus the mean of Hormone 1 differs significantly from the means of both Hormone 2
and the Placebo control. However, the means of Hormone 2 and the Placebo control do not
differ significantly. The pattern is identical for the Duncan and Scheffé tests in this case – it is
not always so.

Therefore the three multiple comparison tests all suggest the same thing: that there are
significant differences between Hormone 1 and Hormone 2, and between Hormone 1 and the
Placebo control. There are no other differences. So, for example, it is not possible to say that
Hormone 1 and Hormone 2 are significantly different.

The choice between the three tests is not a simple matter. Howell (2010) makes some 
recommendations.

Summary of SPSS Statistics steps for multiple comparison tests

Data

Name variables in ‘Variable View’ of the ‘Data Editor’.
Enter data under the appropriately named variables in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’ and appropriate analysis of variance option.
Enter dependent and independent variables in boxes to the right.
Select ‘Post Hoc …’, ‘Scheffe’, ‘Continue’ and then ‘OK’.

Output

Check which means differ significantly by seeing if the Sig(nificance) is .05 or less.
Note the direction of the difference.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

A mixed analysis of variance design is merely a two-way (or three-way, etc.) research design which
contains both unrelated and related independent variables.

Mixed designs generate rather more complex measures of error estimates compared with other
forms of ANOVA. This means that special care needs to be taken when producing appropriate 
summary tables.

Apart from that, concepts from related and unrelated ANOVAs apply.

Two-way mixed analysis of
variance (ANOVA)

25.1 What is two-way mixed ANOVA?

So long as you understand the two-way ANOVA (Chapter 23) and the concept of related data
(Chapter 22), there is little new to learn for the mixed analysis of variance. It is simply a two-way
ANOVA in which one of the two independent variables is based on repeated measures of the
same variable such as when a group of participants is measured at several different points in time,
for example. An example of a mixed-design is shown in Table 25.1. The study consists of two
separate groups of children – the experimental and the control conditions or the experimental
and control groups. These are unrelated groups since any child can be in either the experimental
or control condition but not in both. That is, we have an unrelated independent variable. The
other independent variable is a pre-test/post-test measure. Now, in this particular study, children
are measured in both the pre-test and the post-test situations. In other words, pre-test/post-test is
a related independent variable. What is happening in the study is that the self-esteem of children
is being measured on two occasions – one before the experimental manipulation and the other
after the experimental manipulation. The children in the experimental condition were praised
whenever they exhibited good behaviour whereas there was no feedback for the children in the
control condition. It should be fairly obvious that the self-esteem of the children in the experi-
mental condition increases between the pre-test and the post-test.
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Table 25.1 Pre- and post-test self-esteem scores in two conditions

Conditions Children Pre-test Post-test

Control 1 6 5

2 4 6

3 5 7

Experimental 4 7 10

5 5 11

6 5 12

FIGURE 25.1 Essential steps in two-way mixed analysis of variance
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Of course, all other things being equal, the fact that there is a related independent variable
means that the error term can be adjusted for individual differences since participants have been
measured more than once. If there is a strong individual difference component to the data then
adjusting for this will make the ANOVA more powerful – that is, more able to detect significant
differences if they exist.

There is little more that needs to be known since mixed ANOVA would be looking for the
main effect of the pre-test/post-test variable and the main effect of the control/experimental vari-
able together with any interaction between the two. Actually the interaction is crucial in this
study since it is this which tests the hypothesis that praise raises self-esteem. The main effects are
of relatively little interest in this example, though this will not always be the case. Figure 25.1
presents the essential steps in carrying out a two-way mixed analysis of variance.
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25.2 When to use two-way mixed ANOVA

A two-way mixed design ANOVA will be particularly appropriate for studies which investigate
change over a period of time. So it will be used when a single group of participants are studied
at different time-points. It can also be used where a group of participants serves in a number of
different conditions of an experiment (though counterbalancing of the order of serving in the 
different conditions would be a design improvement).

Such a design is readily turned into a mixed design simply by, for example, breaking the sample
down into two separate samples – males and females. Of course, there may be other unrelated
independent variables which could be used.

25.3 When not to use two-way mixed ANOVA

The usual strictures about related measures apply to the mixed analysis of variance. That is,
where the data are supposed to be related scores, then the scores should correlate. In our 
example, the pre-test scores should correlate with the post-test scores. If they do not, then it is
not advantageous to use the mixed analysis of variance and it can be counterproductive.

You may find it useful to try both the two-way ANOVA and the mixed ANOVA on your data
since this can be informative. If you get more significant results with the two-way ANOVA than
the mixed ANOVA then it may be that your related measure is not in fact a related measure. In
these circumstances, it would be acceptable to use the results of the two-way ANOVA, though
we know of no cases where researchers have done that.

25.4 Data requirements for two-way mixed ANOVA

A two-way mixed ANOVA requires a related and an unrelated independent variable. The 
variances should be similar for all conditions though the test used (the Box test of equality of
covariance matrices) actually checks that the covariances in the data are similar as well.

As discussed above, the scores on the repeated measures should correlate with each other for
this form of analysis to be maximally effective.

25.5 Problems in the use of two-way mixed ANOVA

The mixed design ANOVA in SPSS produces a particularly bewildering array of output. It is 
helpful to dispense with as much of this as possible and just concentrate on the essentials if you
are new to the procedure. Our step-by-step instructions should help you with this.

What is particularly confusing is that different error terms are used in different parts of the
analysis.

You can find out more about mixed ANOVA in Chapter 24 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.
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25.6 The data to be analysed

A two-way mixed analysis of variance has one unrelated factor and one related factor. 
Factors are independent variables. We will illustrate this analysis with the data in Table 25.1
(ISP, Table 24.1), which consists of the self-esteem scores of children measured before and after
an experimental manipulation in which half the children (chosen at random) were praised for
good behaviour (experimental condition) while the other half were given no feedback (control
condition).

25.7 Entering the data

25.8 Two-way mixed ANOVA
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25.9 INTERPRETING THE OUTPUT 243

The third table shows whether the covariances matrices of the post-test are equal across the
two conditions. This analysis of variance assumes that they are. As the significance level of .951
is greater than .05, the matrices are similar and this assumption is met.

25.9 Interpreting the output

The output gives 10 tables and a plot. Only the more important tables are shown here.
The second table gives the mean and standard deviation for the two groups.
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The ninth table shows whether the error variance of the two variables is similar across the two
conditions. A significance level of more than .05 indicates that these variances are similar.

The eighth table contains information for the F-test. The F-test that is of particular interest to
us is that for the interaction between the within-subjects and between-subjects factor (factor1 *
Condition). This F-ratio is 7.682 and has a probability value of .05. In other words, this interac-
tion is just significant. If we look at the means for the four groups we can see that while the mean
for the control condition increases little from pre-test (5.00) to post-test (6.00), the mean for the
experimental condition shows a larger increase from pre-test (5.67) to post-test (11.00).

To determine whether these increases were statistically significant we could run a related t-test
between the pre- and post-test scores for the two conditions separately (with Bonferroni
adjustment for the number of comparisons carried out).

We could also see whether the two conditions differed at pre-test and at post-test with an 
unrelated t-test for the two test periods separately.

The graph on the facing page shows the means of the four cells which may help you to grasp more
quickly the relationships between them.



REPORTING THE OUTPUT
We could report the results of the output as follows:

The interaction between the two conditions and the change over time was statistically significant, F(1, 4) = 7.68, 
p = .05, partial h2 = .66. While the pre-test means did not differ significantly, t(4) = 0.76, two-tailed p = .492, the
post-test mean for the experimental condition (M = 11.00, SD = 1.00) was significantly higher, t(4) = 6.12, two-tailed 
p = .004, than that for the control condition (M = 6.00, SD = 1.00). The increase from pre-test (M = 5.67, SD = 1.15)
to post-test (M = 11.00, SD = 1.00) was significant for the experimental condition, t(2) = 4.44, two-tailed p = .047,
but not for the control condition, t(2) = 1.00, two-tailed p = .423.

An analysis of variance table for this analysis is presented in Table 25.2.
It is also useful to include a table of means (M) and standard deviations (SD) as shown in Table 25.3.
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Table 25.2 ANOVA summary table for a two-way mixed design

Source of variance Sums of squares Degrees of freedom Mean square F-ratio

Between subjects factor 24.08 1 24.08 72.25*

Between subjects error 1.33 1 1.33

Within subjects factor 30.08 1 30.08 16.41*

Within subjects error 7.33 4 1.83

Interaction 14.08 1 14.08 7.68*

*Significant at .05 level.

Table 25.3 Means and standard deviations of the pre- and post-tests for the control and experimental conditions

Pre-test Post-test

Conditions M SD M SD

Control 5.00 1.00 6.00 1.00

Experimental 5.67 1.15 11.00 1.00
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Summary of SPSS Statistics steps for mixed ANOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘General Linear Model’ and ‘Repeated Measures …’.
Enter number of conditions for related independent variable in ‘Number of levels:’ box. Select ‘Add’ and
‘Define’.
Move the related or repeated measures variables to the ‘Within-Subjects Variables:’ box.
Move the unrelated factor to the ‘Between-Subjects Variables:’ box.
Select ‘Plots …’. Move related variable to ‘Horizontal Axis:’ box and unrelated variable to ‘Separate Lines:’
box. Select ‘Add’ and ‘Continue’.
Select ‘Options’, ‘Descriptive statistics’, ‘Estimates of effect size’, ‘Homogeneity tests’, ‘Continue’ and ‘OK’.

Output

The effect of most interest in a pre-test–post-test design is the interaction between the related and the unre-
lated variable.
Check whether this interaction is significant in the ‘Tests of Within-Subjects Contrasts’ table by seeing if the
Sig(nificance) is .05 or less.
If it is significant, conduct further tests to determine which means differ significantly.
In a repeated measures design where the order of conditions is controlled, it is important to determine if
there is a carryover effect.

For further resources including data sets and questions, please refer to the website accompanying this book.



Analysis of covariance
(ANCOVA)

Overview

The analysis of covariance (ANCOVA) is a variant of ANOVA. ANCOVA allows the researcher to control
or adjust for variables which correlate with the dependent variable before comparing the means
on the dependent variable. These variables are known as covariates of the dependent variable.

To the extent that the levels of the covariates are different for the different research conditions,
unless you adjust your dependent variable for the covariates you will confuse the effects of your
independent variables with the influence of the pre-existing differences between the conditions
caused by different levels of the covariates.

By controlling for the covariates, essentially you are taking their effect away from your scores on
the dependent variable. Thus having adjusted for the covariates, the remaining variation between
conditions cannot be due to the covariates.

One common use of ANCOVA is in pre-test/post-test designs. Assume that the pre-test suggests
that the different conditions of the experiment have different means prior to testing (e.g. the experi-
mental and control groups are different), ANCOVA may be used to adjust for these pre-test differences.

26.1 What is analysis of covariance (ANCOVA)?

Analysis of covariance (ANCOVA) basically allows the researcher to control (adjust for) vari-
ables which are not part of the main ANOVA design but may be correlated with both the 
independent and the dependent variables and so produce a spurious relationship in the ANOVA
analysis. In randomised experiments, it is assumed that random assignment of participants to 
various conditions of the study equates the conditions in terms of all influences other than the
independent variables. Of course, randomisation only works in the long run – it may not fully
equate the participants in each of the conditions prior to the experimental treatment.

Furthermore, ANCOVA can also be used to analyse non-experimental studies. In this case, it
is perfectly possible that participants in the different conditions of the experiment are different 
in some respect related to the dependent variable. ANCOVA allows you to explore possible
influential variables which are not part of the basic ANOVA design.
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Table 26.1 Data for a study of the effects of hormones (analysis of covariance)

Group 1 Group 2 Group 3
Hormone 1 Hormone 2 Placebo control

Pre Post Pre Post Pre Post

5 9 3 4 2 3

4 12 2 2 3 6

6 8 1 5 2 3
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Table 26.1 contains data which can be used to illustrate the use of ANCOVA. The study 
is the one which we used in Chapter 21 though it has been extended. We have three groups of
participants who have been given one of three hormone treatments (Hormone 1, Hormone 2, or
Placebo control). The dependent variable is a measure of depression. The study has been changed
such that it now includes a pre-test measure of depression as well as a post-treatment measure.
Ideally, the pre-test measures should have the same mean irrespective of the condition. But you
will notice that the mean pre-test score for the Hormone 1 group is higher than for the other two
groups. It is possible that the higher post-test scores of the Hormone 1 group is simply a conse-
quence of their starting with higher levels of depression and not an effect of the hormone treatment.

It is possible to compute an ANOVA for these data but treating the pre-test measure of depres-
sion as a covariate. Two important things can be achieved:

ANCOVA on SPSS Statistics will give you the means on the dependent variable adjusted for
the covariate. In other words, it will equate all the participants on the covariate and make
adjustments to the scores of the dependent variable to reflect this equality.

ANCOVA adjusts the error variance to take into account the tendency for individual differ-
ences to affect the dependent variable. This gives a new significance level which can be more
statistically significant, though, of course, this does not have to be so.

Figure 26.1 highlights the main steps in carrying out an analysis of covariance.

26.2 When to use ANCOVA

The analysis of covariance needs to be used with restraint. It is undesirable to have more than 
a few covariates for example. These covariates should be selected because it is known that they
correlate with the dependent variable – if not then there is no point in using it. Covariates should
correlate poorly with each other to be effective in ANCOVA.

26.3 When not to use ANCOVA

There is a requirement that the relationship between the covariate and the dependent variable
should be the same throughout the data. It should not be the case that the regression slope is dif-
ferent in the different conditions of the study because ANCOVA works with the average slope
which may not be appropriate within a particular condition if the regression is not consistent.
SPSS offers a test of the homogeneity of regression. This simply means that the regression slope
is constant for each condition of the independent variable.



FIGURE 26.1 The basics of analysis of covariance (ANCOVA)
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Covariates which are unreliable can cause difficulty because ANCOVA assumes that all 
covariates are reliable. Of course, few psychological variables are reliable in the same sense that,
say, a measure of age is. Estimates of the adjusted mean may be over-inflated if covariates are
unreliable and it is likely that the test of significance is reduced in power.

26.4 Data requirements for ANCOVA

Generally any ANOVA model can be used as an ANCOVA. The covariates in ANCOVA should
have a clear linear relationship with the dependent variable otherwise ANCOVA will not be 
helpful. Curvilinear relationships are inappropriate because of the way in which ANCOVA works.
Avoid the use of non-continuous variables such as marital status as covariates in ANCOVA.
These could, however, potentially be used as an additional independent variable.

26.5 Problems in the use of ANCOVA

Conceptually be very wary when speaking of causality in relation to the analysis of covariance.
Controlling for a covariate has no strong implication in relation to the issue of causality.

In general, it is fairly difficult to meet in full the requirements of data for ANCOVA which
should encourage extra caution where the results of an ANCOVA are marginal in terms of
significance.
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26.6 The data to be analysed

The analysis of covariance is much the same as the analysis of variance dealt with elsewhere but
with one major difference. This is that the effects of additional variables (covariates) are taken
away as part of the analysis. It is a bit like using partial correlation to get rid of the effects of a
third variable on a correlation. We will illustrate the computation of an ANCOVA with the data
shown in Table 26.1, which are the same as those presented in Tables 21.1 and 24.1 except that
depression scores taken immediately prior to the three treatments have been included.

It could be that differences in depression prior to the treatment affect the outcome of the 
analysis. Essentially by adjusting the scores on the dependent variable to ‘get rid’ of these pre-
existing differences, it is possible to disregard the possibility that these pre-existing differences 
are affecting the analysis. So, if (a) the pre-treatment or test scores are correlated with the post-
treatment or test scores and (b) the pre-test scores differ between the three treatments, then these
pre-test differences can be statistically controlled by covarying them out of the analysis.

26.7 Entering the data

Either select the saved file used in Chapters 21 and 24 and make the changes below or enter the
data as follows:

You can find out more about mixed ANCOVA in Chapter 25 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.
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26.8 One-way ANCOVA

26.9 Testing that the slope of the regression line within cells is similar
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26.10 Interpreting the output

26.11 Testing the full model
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26.12 Interpreting the output

The second table shows the unadjusted means for the three conditions.

The fourth and last table shows the adjusted means for these three conditions. The adjusted
means of the three treatments are what the means are when all groups are adjusted to be identi-
cal on the covariate (in this case pre-treatment depression scores).

The adjusted mean is 10.881 for the first treatment, 2.952 for the second treatment and 3.500
for the third treatment.

We can see that these adjusted means seem to differ from the unadjusted means shown in 
the second table of the output. For the first treatment the adjusted mean is 10.88 and the un-
adjusted mean is 9.67. For the second treatment the adjusted mean is 2.95 and the unadjusted
mean is 3.67, while for the third treatment the adjusted mean is 3.50 and the unadjusted mean
is 4.00.

The third table shows the F-ratio for the analysis of covariance.



REPORTING THE OUTPUT
We could report the results of the output as follows:

A one-way ANCOVA showed that when pre-test depression was covaried out, the main effect of treatment on post-
test depression was not significant, F(2, 5)= 3.80, p = .099, partial h2 = .60.

You would normally also report the changes to the means once the covariate has been removed.
If necessary, we could give an ANCOVA summary table as in Table 26.2.

Table 26.2 ANCOVA summary table for effects of treatments on depression controlling for pre-treatment depression

Source of variance Sums of squares Degrees of freedom Mean square F-ratio

Covariate (pre-treatment 1.93 1 1.93 0.55
depression scores)

Main effect (treatment) 26.43 2 13.21 3.80*

Residual error 17.41 5 3.48

*Significant at .05 level.
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The F-ratio for the main effect is 3.796 (13.213/3.481 = 3.796).

The probability of this F-ratio is .099. In other words, it is greater than the .05 critical value
and so is not statistically significant.
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Summary of SPSS Statistics steps for ANCOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

If the potential covariate is reasonably strongly related to the dependent variable, proceed with ANCOVA.
Select ‘Analyze’, ‘General Linear Model’ and ‘Univariate …’.
Move dependent variable to ‘Dependent Variable:’ box, independent variable to ‘Fixed Factor:’ box and
covariate variable to ‘Covariate:’ box.
To check that the slope of the regression line is similar in each condition, select ‘Model:’ and ‘Custom:’.
Move the independent variable, the covariate and the interaction between the independent variable and
covariate box to the box on the right.
If the interaction between the independent variable and the covariate is not significant by having a 
Sig(nificance) of greater than .05, proceed with the ANCOVA.
Select ‘Analyze’, ‘General Linear Model’, ‘Univariate …’, ‘Model’, ‘Full factorial’ and ‘Continue’.
Select ‘Options …’, ‘Descriptive statistics’ and ‘Estimates of effect size’. Move the independent variable to
the ‘Display Means for:’ box.

Output

Check if the independent variable is significant by seeing if its Sig(nificance) is .05 or less.
If it is and there are more than two conditions, conduct further tests to determine which adjusted means 
differ significantly.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

The multivariate analysis of variance (MANOVA) is a variant of ANOVA which is applied when 
you wish to analyse several dependent variables at the same time. These dependent variables
should be conceptually related to the hypothesis and each other. They need to be scores rather
than categorical variables.

Essentially MANOVA computes a composite variable based on several dependent variables and
then tests to see whether the means of the groups on the combined dependent variables differ 
significantly.

MANOVA helps deal with the problems created by multiple significance tests being applied to the
same data.

If MANOVA is statistically significant then it is appropriate to test the significance of the individual
dependent variables using ANOVAs and also to explore the combination of variables used in the
MANOVA using discriminant function analysis (see Chapter 28).

Multivariate analysis of
variance (MANOVA)

27.1 What is multivariate analysis of variance (MANOVA)?

Multivariate analysis of variance (MANOVA) is a test of the statistical significance of differences
between several groups. It is different from ANOVA in that the means which are compared are
a composite variable based on combining several score variables statistically. It is most commonly
used by researchers using randomised experimental designs but, like ANOVA, not exclusively so.
Read Chapter 21 on one-way ANOVA if you haven’t already done so as this forms the starting
point for the present chapter.

Table 27.1 summarises a study for which MANOVA may be the preferred test of significance.
It is taken from ISP, Table 26.2. The study is of the effectiveness of different team building methods
in sport. There are three groups (or conditions) – team building with a sports psychologist, 
team building with a sports coach, and a no team building control. The hypothesis is that team
building has a positive influence on team cohesiveness. Three dependent variables were measured
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Table 27.1 Data suitable for a MANOVA analysis

Group (independent variable)

Team building with Team building with sports coach No team building controls
sports psychologist

Dependent variables Dependent variables Dependent variables

Like* Gym Game Like Gym Game Like Gym Game

9** 12 14 4 6 15 9 6 10

5 9 14 5 4 12 1 2 5

8 11 12 4 9 15 6 10 12

4 6 5 3 8 8 2 5 6

9 12 3 4 9 9 3 6 7

9 11 14 5 3 8 4 7 8

6 13 14 2 8 12 1 6 13

6 11 18 6 9 11 4 9 12

8 11 22 4 7 15 3 8 15

8 13 22 4 8 28 3 2 14

9 15 18 5 7 10 2 8 11

7 12 18 4 9 9 6 9 10

8 10 13 5 18 18 3 8 13

6 11 22 7 12 24 6 14 22

*Like = Difference between ratings of most and least liked team members, Gym = Number of gym sessions
voluntarily attended, and Game = Number of games played.
**The scores are the scores on the three dependent variables.
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following this experimental manipulation. These are (1) the difference between ratings of most
and least liked team members, (2) the number of gym sessions voluntarily attended, and (3) the
number of games played. The researchers considered that these were measures which would indi-
cate the success of the team building sessions. There are other possibilities too, of course, and it
is difficult to choose which one of the three should be used. After all, they are all measures of 
different aspects which might be expected of successful team building, so why not use them all?

One could analyse the data in Table 27.1 by (a) using separate ANOVA analyses for each of
the three different dependent variables measured or (b) by combining the dependent variables 
in some way to give a composite variable mean score which is then analysed in a single analysis.
The latter is the approach used in MANOVA. In fact, in the MANOVA procedure in SPSS
Statistics both these approaches are taken though the ANOVAs are not considered unless the
MANOVA is statistically significant. Why is this?

Researchers do not use MANOVA simply because it uses a composite measure of several
dependent variables in combination. It has the major advantage that it deals with the problem of
multiple tests of significance. If one carries out multiple tests of significance on any data (such as
several ANOVAs in this case) there is an increased likelihood that at least one of the tests of
significance will be statistically significant. All things being equal, the more tests of significance
that are performed on any data the more likely it is that at least one test will be statistically
significant by chance in any data analysis. By using a single combined dependent variable,
MANOVA avoids the problem of multiple tests of significance.

Things are a little more complicated than this in practice:

If the MANOVA is statistically significant then it is legitimate to examine the results of
ANOVAs performed on each of the several dependent variables which were combined for the



FIGURE 27.1 The basic steps of a MANOVA analysis
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MANOVA. (You will probably find that there is more MANOVA output on SPSS which refers
to these individual ANOVAs than refers to MANOVA.)

You will notice that so far we have said nothing about how the dependent variables are com-
bined in MANOVA. Just how are the dependent variables combined to give the combined
variable in MANOVA? Without this information it is not possible to interpret the meaning of
the MANOVA precisely. The complication is that this requires a separate and distinct analysis
using discriminant function analysis, which is described in the next chapter (Chapter 28). So,
if you have a significant MANOVA, then you will probably wish to do a discriminant function
analysis. (The separate ANOVAs do not tell you anything about the combined dependent 
variable for the simple reason that the several dependent variables will correlate to different
extents with each other.)

All of this means that a MANOVA analysis involves several steps. These steps and some other
essential features of a MANOVA analysis are summarised in Figure 27.1. This is a flow-diagram
for the important elements of a data analysis using MANOVA.

27.2 When to use MANOVA

MANOVA can be used when the researcher has employed a randomised experimental design 
in which there are several groups of participants but where several different variables have 
been measured to reflect different aspects of the dependent variable described in the hypothesis.
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There is no point (and a great deal to be lost) by simply trying to combine different variables
together in MANOVA which have no conceptual relationship to each other and the hypothesis.
MANOVA will indicate whether the means for the groups on the combined dependent variables
differ significantly.

Of course, it is possible to use MANOVA even in circumstances where participants where not
randomly allocated to the different groups formed by the independent variable. In such a study,
researchers would be less likely to refer to the causal influence of the independent variable on the
dependent variable.

MANOVA is used when there are three or more different groups (just like one-way ANOVA).
If there are just two groups (as in the unrelated t-test), then the analysis becomes Hotelling’s t-
test which is just the same as any other unrelated t-test conceptually but uses a combination of
several different dependent variables. Hotelling’s t-test can be calculated simply by carrying out
the MANOVA procedure on SPSS.

27.3 When not to use MANOVA

If the dependent variables are very highly correlated with each other then there may be simpler
ways of combining the variables, e.g. simply by adding up the scores of each participant over the
several dependent variables and then carrying out an ANOVA on these summated scores. What
is the advantage of this? One of the problems of using MANOVA is that degrees of freedom are
lost owing to the number of dependent variables in the analysis. This, effectively, reduces the 
statistical significance of MANOVA which is not desirable and should be avoided. So if there is
an alternative but unproblematic way of combining the separate dependent variables then this
can be employed to good effect. This will not work where some dependent variables correlate
with each other highly while others do not since it is unclear how the dependent variables should
be combined to give a combined score on the dependent variable. But these are the circumstances
in which MANOVA is likely to be at its most effective and so would be the preferred approach.

We would not recommend the use of MANOVA if you have many dependent variables to
combine. For example, if one has a lengthy questionnaire (say, ten or more questions) then it
would not be helpful to treat answers to each question as a separate dependent variable as part
of MANOVA as there are more informative ways of combining items to yield a small number of
combined variables. It would be better, for example, to factor analyse (Chapter 30) the set of
dependent variables. In this way, the structure of the items will be clarified. It is likely that a very
small number of significant factors will emerge. Individuals may be given a score on each factor
using the factor score procedure of SPSS which puts a score on each factor at the end of the SPSS
spreadsheet (see page 287). These factor scores may be used as variables in ANOVA.

27.4 Data requirements for MANOVA

The independent variable (grouping variable) consists of three or more different categories for
MANOVA (do not use score variables as the independent variable unless they have been recoded
into a small number of categories).

Always try to ensure that the sample sizes of each group in the MANOVA are the same. This
helps avoid problems in the analysis if assumptions related to something called the equality of the
covariance matrices are not met.

The two sample equivalent to the t-test is known as the Hotelling’s t-test but it would be 
calculated on SPSS using the MANOVA procedure. There need to be several dependent variables
which take the form of numerical scores.
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27.5 Problems in the use of MANOVA

It is possible to run before you can walk with MANOVA. Many of the features of SPSS
MANOVA output require understanding of ANOVA – post hoc multiple comparisons tests and
the like are discussed in the chapters on ANOVA and are not dealt with in this chapter for 
reasons of clarity. So it is best to have a grounding in ANOVA before moving on to MANOVA.
If you need to cut corners then try a crash-course in ANOVA by studying Chapter 21 on one-
way ANOVA and then trying out what you have learnt on your data by using just one depend-
ent variable – also study post hoc tests in Chapter 24.

You can find out more about MANOVA in Chapter 26 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

27.6 The data to be analysed

The data in Table 27.1 is used as the example for SPSS analysis for MANOVA.

27.7 Entering the data
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27.8 MANOVA
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27.9 Interpreting the output

The interpretation of the SPSS output from MANOVA is complicated when options are selected
but there is only a small core of the SPSS output which contains the results of the MANOVA
analysis. If this is significant then one would normally go on to examine other aspects of the 
output which deal with the individual dependent variables – and probably go on to do a dis-
criminant function analysis as detailed in Chapter 28.

The SPSS output for MANOVA contains the results of separate ANOVA analyses for each
separate dependent variable. These are considered when the overall MANOVA is significant.
However, the individual ANOVAs actually do not tell us about the combined dependent variable
since we need to know the contribution of each dependent variable to the combined scores before
we know this. This is why it is usually recommended that a discriminant function analysis is 
carried out in addition.
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Summary of SPSS Statistics steps for MANOVA

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘General Linear Model’ and ‘Multivariate …’.
Move the dependent variables to the ‘Dependent Variables:’ box and the independent variable(s) to the
‘Independent Variable(s):’ box.
Select ‘Options …’ and move the independent variable to the ‘Display Means for:’ box. Select ‘Descriptive
statistics’, ‘Estimates of effect size’, ‘Continue’ and ‘OK’.

Output

Check in the Multivariate Tests table if Pillai’s trace F for the independent variable is significant with a
Sig(nificance) of .05 or less.
If it is significant, check in the ‘Tests of Between-Subjects Effects’ table which of the dependent variables
the independent variable has a significant effect on with a Sig(nificance) of .05 or less.
If there are more than two groups use further tests to determine which means differ significantly from each
other.

REPORTING THE OUTPUT
In circumstances in which the MANOVA is not significant then you could briefly note this as follows:

The hypothesis that team work training improves team training was tested using MANOVA. However, the null hypo-
thesis was supported by the data, Pillai’s trace F() = , ns, partial h2 = .

In the example, the findings were significant and you might write:

MANOVA showed there was a significant multivariate effect of team building on the three dependent variables, Pillai’s
trace F(6, 76) = 4.12, p < .01, partial h2 = .25. Each dependent variable was subjected to a further ANOVA in order to
show whether this trend is the same for each of the separate dependent variables. For the measure of the difference
between favourite and least favourite team member, an ANOVA showed there was an overall significant difference
between the means, F(2, 39) = 15.71, p = .001, partial h2 = .45. Similarly, the mean number of gym sessions attended
was different according to group, F(2, 39) = 61.17, p = .03, partial h2 = .26. However, the number of games played failed
to reach statistical significance, F(2, 39) = 49.07, ns, partial h2 = .08.

Note that had we selected post hoc tests during the analysis, it would be possible to specify exactly which groups 
differed significantly from each other on each dependent variable. We would recommend that you routinely do this. It is
explained in Chapter 24.

Furthermore, if the findings for MANOVA are significant, you are likely to wish to carry out a discriminant function 
analysis as described in the next chapter.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

Discriminant function analysis has its major application in understanding better the meaning of a
significant MANOVA (see Chapter 27). It can be used alone as a way of assessing whether a set of
predictor (independent) score variables effectively distinguishes different categories or groups of
participants. However, logistic regression (Chapters 37 and 38) does a far better job of this.

A discriminant function is basically a computed variable which combines several score variables.
It is computed in such a way that the differences between the groups of participants on the means
(centroids) of the discriminant function are maximised.

There may be several discriminant functions obtained in an analysis. The number depends on the
characteristics of the data, especially the number of independent variables. Each discriminant
function is uncorrelated with the others.

Discriminant function analysis and MANOVA are mathematically similar. Discriminant function
analysis can help understand the meaning of a significant MANOVA analysis since it identifies the
combination of score variables which led to the significant MANOVA.

Discriminant function analysis produces a classification table which indicates the accuracy of the
group membership predictions based on the independent variables.

Confusingly, the independent variables and dependent variables are reversed for discriminant
function analysis compared with MANOVA. That is, the independent variable in MANOVA is the
dependent variable in discriminant function analysis.

Discriminant function
analysis (for MANOVA)

28.1 What is discriminant function analysis?

Discriminant function analysis is a way of assessing whether members of different groups can 
be identified on the basis of their scores on a set of variables. It is sometimes used as a final stage
of MANOVA (see Chapter 27) where it indicates which of a set of scores had been used by
MANOVA as the ‘combined’ dependent variable. In discriminant function analysis a mathematical
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Table 28.1 Data suitable for a discriminant function analysis

Group (dependent variable)

Team building with Team building with sports coach No team building controls
sports psychologist

Independent variables Independent variables Independent variables

Like* Gym Game Like Gym Game Like Gym Game

9** 12 14 4 6 15 9 6 10

5 9 14 5 4 12 1 2 5

8 11 12 4 9 15 6 10 12

4 6 5 3 8 8 2 5 6

9 12 3 4 9 9 3 6 7

9 11 14 5 3 8 4 7 8

6 13 14 2 8 12 1 6 13

6 11 18 6 9 11 4 9 12

8 11 22 4 7 15 3 8 15

8 13 221 4 8 28 3 2 14

9 15 18 5 7 10 2 8 11

7 12 18 4 9 9 6 9 10

8 10 13 5 18 18 3 8 13

6 11 22 7 12 24 6 14 22

*Like = Difference between ratings of most and least liked team members, Gym = Number of gym sessions
voluntarily attended, and Game = Number of games played.
**The scores are the scores on the three independent variables.
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function (or functions) is calculated based on weighted combination of variables. This function
is calculated in such a way that the group differences on the function are maximised. This is prob-
ably best understood in terms of an example and, don’t worry, all of the hard work of analysis
is done by SPSS Statistics – you just need to understand what it all means.

Table 28.1 summarises a study for which MANOVA may be the preferred test of significance.
It should be familiar to you as it is more or less the same as that used to illustrate MANOVA 
in Chapter 27. Eagle-eyed readers may notice that there is a difference. The grouping variable
(team building) has been labelled the dependent variable whereas the score variables have been
labelled the independent variables. This is exactly the reverse of how the variables were labelled
for MANOVA. This reversal of labelling is the consequence of MANOVA being a test of differ-
ences between means and discriminant function analysis being a form of regression. Essentially,
what we are trying to do when using discriminant function analysis is to use the scores on the 
three score variables (the difference between ratings of most and least liked team members, the
number of gym sessions voluntarily attended and the number of games played) to discriminate
participants in terms of the group that they belong to (the team building with a sports psychologist
group or the team building with a sports coach group or the no team building control group).

A discriminant function is a weighted combination of variables. In this example, the discrimin-
ant function would be based on a weighted combination of the independent variables like Gym
and Games that are the independent variables in the table. Just to illustrate the general idea, the
formula for the discriminant function might include the following weights applied to scores on
each variable:



FIGURE 28.1 The steps of a discriminant function analysis
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Discriminant function = (2 ¥ Like) + (1 ¥ Gym) + (3 ¥ Games)

For example, ‘Like’ is weighted twice as much (2¥) as ‘Gym’. To calculate this discriminant
function we would apply the above formula for the scores of every participant in the study. Then
we can calculate the means of each of the groups of participants on the resulting discriminant
function. A group mean on a discriminant function is called a centroid.

A discriminant function can be regarded as a derived variable based on a particular combination
of other variables. Of course, the problem is that there are many different discriminant functions
possible. Each would have its own pattern of weightings. So which discriminant function or pat-
tern of weightings do we choose? Since we wish to discriminate between the groups of participants
in our research we choose the discriminant function which has the maximum difference between
the groups in terms of the group means (or centroids). There is only one discriminant function 
that meets this requirement and that is the one we use. Fortunately the SPSS calculation of the
discriminant function analysis does all of this work of identifying this one discriminant function for us.

Actually, it is a little misleading to talk of a single discriminant function emerging from an
analysis since there may be several discriminant functions depending on the data – and especially
the number of variables. Discriminant functions are independent of each other – that is, they are
not correlated. This ensures that the discriminant functions have the maximum possible power 
to differentiate between the groups of participants. Figure 28.1 outlines the main steps in a 
discriminant function analysis.

28.2 When to use discriminant function analysis

If you carry out a MANOVA and find that it is statistically significant (Chapter 27), a discrimi-
nant function analysis may be used to explore the nature of the weighted combination of vari-
ables which was calculated as part of this analysis. Mathematically MANOVA and discriminant
function analysis have much in common. The discriminant functions identified in discriminant
function analysis are the basis of the combination of variables used in MANOVA.

It is possible to use discriminant function analysis in any circumstance in which you wish 
to use a set of score variables to predict membership of groups of participants. It can thus be
regarded as a form of regression in which score variables are used to predict membership of groups
(as opposed to scores on a dependent variable). This use of discriminant function analysis is 
suggested in a number of popular SPSS texts but should be regarded as superseded by logistic
regression (Chapters 38 and 39).
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28.3 When not to use discriminant function analysis

As indicated above, discriminant function analysis has no advantages over the more powerful and
flexible logistic regression methods (Chapters 38 and 39). It is built on a less adequate math-
ematical model than logistic regression and does not have the latter’s flexibility. For example,
logistic regression can be used with both score variables and nominal (category) variables as pre-
dictors. Binary logistic regression is capable of producing quite complex models of one’s data.
Basically, this is a case of no-contest and discriminant function analysis should be used only in
support of MANOVA analyses. Why not use logistic regression in relation to MANOVA?
Unfortunately this is not appropriate as the underlying statistical model is different in logistic
regression whereas the statistical models underlying MANOVA and discriminant function 
analysis are essentially the same.

28.4 Data requirements for discriminant function analysis

Discriminant function analysis requires a set of score variables and a single nominal (category)
variable which defines the groups used. Cases can only be in one of the groups.

There is no point in deriving the groups from a score variable such as by classifying high,
medium and low scoring groups on the basis of that variable. Multiple regression would handle
this situation better by using the grouping variable which has been measured as a score variable
(the dependent variable) in its original form.

28.5 Problems in the use of discriminant function analysis

The main problem in using discriminant function analysis is its use of the concept of ‘centroids’,
which is not a self-evident concept. However, a centroid is merely a group mean on a discrimin-
ant function so is easily understood as a mean of a particular combination of variables.

Another problem is that the meaning of a discriminant function lies in the variables which
were used to derive the discriminant function. Some of the variables will be strongly related to
the discriminant function and others will relate to it poorly. So the variables which correlate with
(or load on) a discriminant function are the ones which help you to identify what the discrimin-
ant function is.

You can find out more about discriminant function analysis in Chapter 27 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

28.6 The data to be analysed

The data in Table 28.1 is used as the example for the SPSS analysis for discriminant function
analysis.
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28.7 Entering the data

As you will be using discriminant function analysis as an adjunct to MANOVA you will already
have entered the data into SPSS. Section 27.7 describes this. If you have not entered or saved the
data, carry out the following steps.

28.8 Discriminant function analysis
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28.9 Interpreting the output

The interpretation of discriminant function analysis on SPSS is reasonably straightforward if the
appropriate options are chosen. The key thing to remember is that a discriminant function is a
sort of variable that is based on several measured variables. As such, in order to understand what
the discriminant function measures it is necessary to know how each of the score variables which
contribute to the discriminant function correlate with that discriminant function. This informa-
tion is to be found in the structure matrix table.

This, taken in combination with the classification results table, gives a basic understanding of
the output of the discrimination function analysis. If the classification results table is examined
then it is apparent what the extent is to which the predicted classification on the basis of the pre-
dictor variables matches the known, actual classification of participants into the various groups.

There can be problems if the Box test is statistically significant but generally speaking, so long
as the sample sizes of all of the groups are equal, this can be ignored. However, if the sample sizes
are very different from each other then be very cautious about your analysis. It is not possible to
specify how much of a problem a significant Box test is in these circumstances.
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■ Summary of canonical discriminant functions



REPORTING THE OUTPUT
The results of this discriminant function analysis could be written up in the following way:

A discriminant analysis was carried out using the three predictors (1) the difference between the most and least liked
team member, (2) the number of gym sessions voluntarily attended and (3) the number of games played. The grouping
variable was team building, which consisted of three different conditions – team building with a sports psychologist,
team building with a sports coach and the no team building controls. Two discriminant functions differentiated member-
ship of these conditions effectively and accounted for 97 per cent and 3 per cent of the variance respectively. Wilks’
lambda was statistically significant for the combined functions, X2(6) = 24.69, p < .001, but was not significant when
the first function was removed, X2(2) = 1.01, p ns. The first discriminant function differentiated the psychologist team-
work building group from the other two groups. The variable ‘the difference between the most and least liked team
member’ correlated with the discriminant function at .96. The variable ‘number of gym sessions attended’ also corre-
lated but at the lower level of .64. The second discriminant function maximally distinguished the sports coach’s team
work group from the other two groups and loaded most strongly with the number of games played (.96). Classification
based on the discriminant functions was good with about 80 per cent of the cases correctly classified compared with
the 33 per cent chance accuracy. Approximately 79 per cent of the psychologist’s team group were correctly identified,
with 14 per cent misclassified as belonging to the coach’s team building group. Of the control group 57 per cent were
correctly identified, with 29 per cent misclassified in the psychologist’s team building group. Of the coach’s team 
building group 29 per cent were correctly identified, with 50 per cent misclassified as the control team members.
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Summary of SPSS Statistics steps for discriminant 
function analysis

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Classify’ and ‘Discriminant …’.
Move grouping variable to ‘Grouping Variable:’ box.
Select ‘Define Range’. Put the lowest group number code in the ‘Minimum’ box and the highest in the
‘Maximum’ box. Select ‘Continue’.
Move predictor variables to the ‘Independents’ box and select ‘Statistics’.
Select ‘Means’, ‘Box’s M’ and ‘Continue’.
Select ‘Classify’, ‘Compute from group size’, ‘Summary table’, ‘Continue’ and ‘OK’.

Output

Check whether any of the Wilks’ lambda for the discriminant functions are significant with a Sig(nificance)
of .05 or less.
If so check in the ‘Structure Matrix’ table which predictors are most highly correlated as these best discrimi-
nate the groups.
Determine the percentage of correct classification for the groups.

For further resources including data sets and questions, please refer to the website accompanying this book.
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Partial correlation

Overview

If you suspect that a correlation between two variables is affected by their correlations with 
yet another variable, it is possible to adjust for the effects of this additional variable by using the
partial correlation procedure.

The correlation between two variables (before partialling) is known as the zero-order correlation.

Using SPSS Statistics, it is also possible to simultaneously control for several variables which may
be affecting the correlation coefficient.

If the variable to be controlled for consists of a small number of nominal categories, it is useful to
explore the correlations for separate sets of cases based on the control variable. For example, if
gender is to be controlled, then separate your sample into a male subsample and then a female
subsample. Explore what the correlations between your main variables are for these two groups.
Often this clarifies the effect of partialling in unanticipated ways.

29.1 What is partial correlation?

We know that variables correlate with each other. Height correlates with weight, age correlates
with general knowledge, experiencing violence in childhood correlates with being violent as an
adult, and so forth. But it is not simply that pairs of variables correlate but that pairs of variables
correlate with other variables. The patterns are, of course, complex. Partial correlation takes a
correlation between two variables and adjusts that correlation for the fact that they correlate with
a third variable. Essentially it calculates what the correlation would be if the two variables did
not correlate with this third variable.

Table 29.1 gives some data which illustrate what is meant. The basic data consist of two vari-
ables – one is scores on a measure of numerical intelligence and the other variable is scores on 
a measure of verbal intelligence. These two variables correlate highly with a Pearson correlation
of .97. But the table also contains a third variable – age. There is a correlation between verbal
intelligence and age of .85 and a correlation between numerical intelligence and age of .80. 
In other words, part of the correlation between verbal intelligence and numerical intelligence is
associated with age. Partial correlation tells us what the correlation between verbal intelligence
and numerical intelligence would be if their association with age were removed. That is, what the
correlation would be if the correlations with age were zero. Usually researchers would refer to
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FIGURE 29.1 The correlations between the three variables before partialling

Table 29.1 Numerical and verbal intelligence test scores and age

Numerical scores Verbal scores Age

90 90 13

100 95 15

95 95 15

105 105 16

100 100 17
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age (the variable being removed) as the third variable. As can be seen in Figure 29.1, the correla-
tion becomes .91. Figure 29.2 highlights the main steps in a partial correlation analysis.

This is a relatively simple calculation but SPSS also allows you to control for several third 
variables at the same time with scarcely any additional effort. A partial correlation in which one
variable is partialled out is called a first order partial correlation, if two variables are partialled
out it is called a second order partial correlation, and so forth. You will see the main correlation
(before partialling) referred to as the zero order partial correlation.

The change in the size of the correlation between verbal intelligence and numerical intelligence
following partialling is not at all great in this case. There is an important lesson here since it is
all too easy to believe that a third variable, if it has strong correlations with the two main vari-
ables, will produce a massive change in interpretation when partialled out. This is not always 
the case as can be seen. Also be aware that it is possible to have any pattern of change following
partialling – a positive correlation can become a negative one, a zero correlation can become sub-
stantial, and a large correlation can become smaller – and quite what will happen is not easily
predictable especially by inexperienced researchers.

29.2 When to use partial correlation

Partial correlation is built on the assumption that the relationships between the variables in ques-
tion are linear. That is, if plotted on a scattergram the points are best represented by a straight
line. Where the relationships depart from linearity then partial correlation may be misleading.



FIGURE 29.2 Steps in understanding partial correlation
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This aside, the partial correlation can be a useful technique for estimating the influence of a
third variable on any correlation coefficient.

29.3 When not to use partial correlation

Many techniques in statistics can do a similar job to partial correlation – that is, control for the
influences of third variables, for example, analysis of covariance and multiple regression. If you
are using these, then it is sensible to partial out influences of third variables using these techniques
rather than carry out an additional partial correlation analysis.

29.4 Data requirements for partial correlation

At a minimum, partial correlation requires three score variables, each of which should ideally be
normally distributed. There can be any number of third variables partialled at the same time though
it is recommended that the ones to include are carefully planned to be the minimum needed.



You can find out more about partial correlation in Chapter 29 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics
in Psychology, 5th edition. Harlow: Pearson.
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29.5 Problems in the use of partial correlation

The main problem when using partial correlation is that some researchers try to make too strong
claims about what they can achieve. In particular, it should be understood that partial correla-
tion is not about establishing causality by removing the spurious influence of third variables.
They may take away the influence of a variable which may be influencing the relationship
between the two key variables but that does not mean that the remaining partialled correlation
is a causal one. There may be any number of other third variables which need to be removed
before any confidence can be gained about the relationship being a causal one. It is the research
design which enables causality to be assessed (such as randomised experiments) and not the 
statistical analysis.

29.6 The data to be analysed

We will illustrate the computation of partial correlations with the raw scores in Table 29.1,
which represent a numerical intelligence test score, a verbal intelligence test score and age in
years. We will correlate the two test scores partialling out age.

29.7 Entering the data
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29.8 Partial correlation

29.9 Interpreting the output



For further resources including data sets and questions, please refer to the website accompanying this book.

REPORTING THE OUTPUT
We need to mention the original correlation between numerical and verbal intelligence which is .92. So we could report
the results as follows:

The correlation between numerical and verbal intelligence is .92, df = 3, two-tailed p = .025. However, the correlation
between numerical and verbal intelligence controlling for age declines to 0.78, which is not significant, two-tailed 
p = .224. In other words, there is no significant relationship between numerical and verbal intelligence when age is 
controlled.
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Summary of SPSS Statistics steps for partial correlation

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Correlate’ and ‘Partial …’.
Move the two variables to be correlated to the ‘Variables:’ box and move the variables to be controlled to
the ‘Controlled for:’ box.
Select ‘Options …’ if ‘Means and standard deviations’, ‘Zero-order correlations’ or ‘Exclude cases pairwise’
is needed. Select ‘Continue’ and ‘OK’.

Output

Check for any difference in size and sign between the zero-order correlation and the partial correlation.
Note whether the partial correlation is significant with a Significance of .05 or less.



Overview

There are two types of factor analysis: exploratory and confirmatory factor analysis. SPSS Statistics
does not compute confirmatory factor analysis directly. Exploratory factor analysis is probably the
more important and SPSS has a very extensive package of options for this.

(Exploratory) factor analysis allows one to make sense of a complex set of variables by reducing
them to a smaller number of factors (or supervariables) which account for many of the original
variables. Although it is possible to obtain valuable insights from a matrix of correlations between
several variables, the sheer size of the matrix may make this difficult even with a relatively small
number of variables.

Factor analysis is commonly used when trying to understand the pattern of responses of people
completing closed-ended questionnaires. The items measuring similar things can be identified
through factor analysis and, consequently, the structure of replies to the questionnaire.

Factor analysis, however, includes a variety of techniques and approaches which can be bewilder-
ing. We provide a ‘standard’ approach which will serve the purposes of most researchers well.

Factor analysis requires a degree of judgement, especially on the matter of the number of factors
to extract. The speed of computer factor analyses means that more than one approach may be
tried even within quite a short analysis session. It is a useful exercise to explore the effects of vary-
ing the method of analysis in order to assess the effect of this on one’s conclusions.

Factor analysis

30.1 What is factor analysis?

Factor analysis is a different sort of statistical technique from those in previous chapters. It is 
one of a number of statistical procedures that can be used to try to identify patterns in fairly large
sets of data with substantial numbers of variables. There are other techniques such as cluster
analysis which do a similar thing. One of the commonest uses of factor analysis is where one has
written a number of questions (items) to measure such things as attitudes, personality and so
forth. Such questionnaires tend to be fairly lengthy and there is little to be done with them using
the statistical techniques so far covered in this book. One could, perhaps, produce a correlation
matrix of answers to all of the items on the measure but, say, if you have 20 items then this 
results in a 20 ¥ 20 correlation matrix of every item correlated with every other item. This is a
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Table 30.1 Scores of nine individuals on six variables

Individual Batting Crosswords Darts Scrabble Juggling Spelling

1 10 15 8 26 15 8

2 6 16 5 25 12 9

3 2 11 1 22 7 6

4 5 16 3 28 11 9

5 7 15 4 24 12 7

6 8 13 4 23 14 6

7 6 17 3 29 10 9

8 2 18 1 28 8 8

9 5 14 2 25 10 6

Table 30.2 Correlation matrix of the six variables

Batting Crosswords Darts Scrabble Juggling Spelling

Batting 1 .00 .91 .05 .96 .10

Crosswords 1 .08 .88 .02 .80

Darts 1 .01 .90 .29

Scrabble 1 .08 .79

Juggling 1 .11

Spelling 1
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table containing 400 correlation coefficients which will not even fit on a page of SPSS output.
Consequently it is not simply mentally difficult to handle but it is physically virtually unmanage-
able too.

Factor analysis is usually based on such a correlation matrix. The matrix is produced by SPSS
as part of doing the factor analysis so it does not have to be produced separately. Table 30.1 con-
tains a very simplified set of data which in many ways would be suitable for a factor analysis. It
contains performance scores on six variables (batting, crosswords, darts, Scrabble, juggling and
spelling) from nine participants for purposes of illustration. In truth, one would not normally do
a factor analysis on data from so few cases but we should emphasise that this is for purposes of
illustration not to be emulated directly.

A correlation matrix for all of these variables is shown in Table 30.2. Because a correlation
matrix is symmetrical around the top left to bottom right diagonal, we have left out some of the
correlations for clarity’s sake. The diagonal contains correlations of 1 because the correlation of
a set of scores with itself is a perfect correlation. What can be made of this correlation matrix?
Well it is quite a simple one and deliberately highly structured so you may be able to work out
patterns, but this would be difficult in many cases.

If we subject this correlation matrix to a factor analysis we get a factor loading matrix such as
that in Table 30.3. Each of the six variables is listed and there are columns headed ‘Factor 1’ and
‘Factor 2’. There are also a lot of numbers. The numbers are known as ‘factor loadings’ but they
are nothing other than correlation coefficients. The new idea in this is the factors. Factors are
empirically derived variables based on the data in the correlation matrix. They are made up of



Table 30.3 Orthogonal factor loading matrix for six skills

Variable Factor 1 Factor 2

Skill at batting .98 -.01

Skill at crosswords .01 .95

Skill at darts .96 .10

Skill at Scrabble -.08 .95

Skill at juggling .98 -.01

Skill at spelling .15 .91
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combinations of variables which tend to correlate. So the factor loadings are the correlations of
variables with an empirically derived ‘combined variable’ or factor.

The researcher’s task is to make sense of each of these factors. This is done by looking at 
which set of variables correlates highly with the factor. For Factor 1 these are batting, darts and 
juggling. What do these variables have in common? They seem to reflect sensory-motor skills and
Factor 1 could be labelled with this phrase. Factor 2 has its high correlations with crosswords,
Scrabble and spelling. These all seem to reflect verbal skills and Factor 2 could be given that
name. Of course, the naming of the factors requires some creativity and insight.

Well that is basically what factor analysis produces. However, there are a number of other
issues that need to be considered:

What sort of factor analysis? There are many sorts of factor analysis but for most psycholo-
gical data we would recommend principal components analysis or, failing that, principal axes
analysis which is more suitable if the typical correlations are low.With some data, principal
axes analysis simply fails to work properly on SPSS. This is not a fault in SPSS.

How many factors? A factor analysis will produce as many factors as variables in the analysis.
This is not helpful as many of the factors are simply nonsensical error. At the very minimum,
a factor should have an eigenvalue of 1.00 or greater. The eigenvalue is simply the sum of the
squared factor loadings on a particular factor. As such it is a measure of the amount of vari-
ance associated with that factor. You will also see it referred to as the latent root. However,
in order to estimate the number of factors to use it is more helpful to use the scree test. 
This produces a graph and where the graph of the eigenvalue of each of the factors levels off 
(i.e. becomes virtually a straight line). The number before this break is usually the number of
factors that should be used.

Rotation. If you choose rotation in factor analysis then you are more likely to get a factor
matrix which is readily interpretable. We would recommend that you use some method of
rotation though this very occasionally only changes things a little.

It is often desirable to get factor scores for each factor. These are essentially a score for each
participant on each factor so factors can be treated just like any other variable. SPSS saves
them as an additional column(s) on the SPSS data spreadsheet. You will see a button on the
SPSS Factor Analysis window labelled ‘Scores’ which will allow you to save the factors as vari-
ables. Factor scores look odd on the spreadsheet because they are standardised around a mean
of zero just like z-scores of which they are a variant.

SPSS describes factor analysis as a dimension reduction procedure. This is because it takes a 
number of variables and condenses them into a number of factors which are still variables and
can be used like any other score variable. Figure 30.1 gives a schematic presentation of a factor
analysis.



FIGURE 30.1 Steps in factor analysis

288 CHAPTER 30 FACTOR ANALYSIS

30.2 When to use factor analysis

Factor analysis can be used whenever you have a set of score variables (or it can be used with
binary (yes–no) variables). It identifies patterns in the correlations between these variables.
However, it is not desirable to put every variable that meets these criteria into your factor ana-
lysis since the output will be somewhat meaningless. It is better to confine your factor analysis 
to a set of variables which is relatively coherent in the first place. So if you have a number of items
which were intended to measure ‘strength of religious feeling’, say, then do not throw into the
analysis other variables such as gender, age and number of marathons run in a year as what you
get may not make too much sense at all. But this would be advice that should generally be applied
to statistical analysis. Aim to have a coherent set of data which addresses the questions that 
you are interested in and avoid simply collecting data because you can and avoid statistically
analysing data simply because the data are there.

30.3 When not to use factor analysis

Factor analysis merely identifies patterns in data and it is not, for example, a test of significance.
Neither does it have independent and dependent variables. So if either of these is in your mind
then you do not need factor analysis.
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Also it makes little sense to carry out a factor analysis if one has less than a handful of vari-
ables. So it is unlikely that you would wish to do a factor analysis where, say, you had five or
fewer variables.

30.4 Data requirements for factor analysis

There is some controversy about the number of participants required for a study using factor
analysis. The suggestions vary widely according to different sources. Generally speaking, you
would not carry out a factor analysis with fewer than about 50 participants. Of course, for 
student work then a smaller sample than this would be common and in this context probably
acceptable as part of learning and assessment. However, one also finds suggestions that for a 
factor analysis to be stable then one should have a minimum of about 10 participants per vari-
able. Sometimes the figure given is greater than this. Basically, the more participants the better,
though factor analysis may be illuminating even if one is at the lower end of acceptable numbers
of participants.

30.5 Problems in the use of factor analysis

Our experience is that beginners have the greatest difficulty with the least statistical of the aspects
of factor analysis – that is the interpretation of factors. Partly this is because many statistical tech-
niques seem to require little special input from the user. Factor analysis, however, requires some
inductive reasoning and is not merely a rule-following task. However, the task is really relatively
straightforward since it merely involves explaining why a number of variables should be closely
related. Usually, and this is a rule-of-thumb, we recommend that the variables which have a 
factor loading of about .5 on a particular factor should be considered when trying to name the
factor. Of course, -.5 and bigger also counts.

Of course, factor analysis is a somewhat abstract procedure so it can take a little while to grasp
the core ideas. But persevere since factor analysis is the first step towards a variety of procedures
which help you explore complex data rather than simply test significance.

You can find out more about factor analysis in Chapter 30 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

30.6 The data to be analysed

The computation of a principal components analysis is illustrated with the data in Table 30.1,
which consist of scores on six variables for nine individuals. This is only for illustrative purposes.
It would be considered a ludicrously small number of cases to do a factor analysis on. Normally,
you should think of having at least two or three times as many cases as you have variables. The
following is a standard factor analysis which is adequate for most situations. However, SPSS has
many options for factor analysis.
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30.7 Entering the data

30.8 Principal components analysis with orthogonal rotation
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The second table presents the correlation matrix. From this it appears that there are two
groups of variables that are strongly intercorrelated. One consists of batting, juggling and
darts, and the other of crosswords, Scrabble and spelling. These have been indicated – but
remember that as a correlation matrix is symmetrical that only the lower half below the 
diagonal has been marked. Normally in factor analysis the correlation matrix is much more
difficult to decipher than this. Our data are highly stylised.

30.9 Interpreting the output

The first table gives the mean, standard deviation and number of cases for each variable.

The fourth table shows that two principal components were initially extracted in this case. The
computer ignores factors with an eigenvalue of less than 1.00. This is because such factors consist
of uninterpretable error variation. Of course, your analysis may have even more (or fewer) factors.
Note that ‘Rotation Sums of Squared Loadings’ are not displayed if related factors are requested.
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The Scree Plot also shows that a break in the size of eigenvalues for the factors occurs after the
second factor: the curve is fairly flat after the second factor. Since it is important in factor ana-
lysis to ensure that you do not have too many factors, you may wish to do your factor analysis
and rotation stipulating the number of factors once you have the results of the Scree test. (This
can be done by inserting the number in the ‘Number of factors:’ in the ‘Factor Analysis:
Extraction’ sub-dialog box.) In the case of our data this does not need to be done since the
computer has used the first two factors and ignored the others because of the minimum eigen-
value requirement of 1.00. It is not unusual for a component analysis to be recomputed in the
light of the pattern which emerges.

These two components are then orthogonally rotated and the loadings of the six variables on
these two factors are shown in the fifth table entitled ‘Rotated Component Matrix’.

The variables are ordered or sorted according to their loading on the first factor from those with
the highest loadings to those with the lowest loadings. This helps interpretation of the factor
since the high loading items are the ones which primarily help you decide what the factor is.

On the first factor, ‘batting’ has the highest loading (.980) followed by ‘juggling’ (.979) and
‘darts’ (.962).

On the second factor, ‘crosswords’ and ‘Scrabble’ have the highest loading (.951) followed 
by ‘spelling’ (.914). The apparent lack of difference in size of loading of ‘crosswords’ and



REPORTING THE OUTPUT
It would be usual to tabulate the factors and variables, space permitting. Since the data in our example are on various
tests of skill, the factor analysis table might be as in Table 30.3. The figures have been given to two decimal places.
The exact way of reporting the results of a factor analysis will depend on the purpose of the analysis. One way of
describing the results would be as follows:

A principal components analysis was conducted on the correlations of the six variables. Two factors were initially
extracted with eigenvalues equal to or greater than 1.00. Orthogonal rotation of the factors yielded the factor struc-
ture given in Table 30.3. The first factor accounted for 48 per cent of the variance and the second factor 44 per cent.
The first factor seems to be hand–eye coordination and the second factor seems to be verbal flexibility.

Since the factors have to be interpreted, differences in interpretation may occur.

For further resources including data sets and questions, please refer to the website accompanying this book.
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‘Scrabble’ is due to rounding. This can be seen if you double click on the rotated component
matrix table and then double click on these two loadings in turn to show more decimal places.

We would interpret the meaning of these factors in terms of the content of the variables that
loaded most highly on them.

The percentage of variance that each of the orthogonally rotated factors accounts for is given
in the third table under ‘% of variance’ in the ‘Rotation Sums of Squared Loadings’ section. 
It is 47.931 for the first factor and 44.236 for the second factor.

Summary of SPSS Statistics steps for factor analysis

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Dimension Reduction’ and ‘Factor …’.
Move the variables to be analysed to the ‘Variables:’ box.
Select ‘Descriptives …’, ‘Univariate descriptives’ and ‘Continue’.
Select ‘Extraction …’, ‘Method’ of extraction if different from principal components, ‘Scree test’ and
‘Continue’.
Select ‘Rotation …’, method of rotation and ‘Continue’.
Select ‘Options …’, ‘Sorted by size’, ‘Continue’ and ‘OK’.

Output

The analysis may not complete if any variable has no variance and if the number of iterations needed is
greater than the default of 25. Adjust analysis accordingly.
Check the sample size in the ‘Descriptive Statistics’ table.
Check the meaning of the variables correlating most highly on the rotated factors to determine the meaning
of the factors.



Item reliability and 
inter-rater agreement

Overview

Reliability is a complex matter, as the term refers to a range of very different concepts and mea-
sures. It is easy to confuse them.

Item alpha reliability and split-half reliability assess the internal consistency of the items in a
questionnaire – that is, do the items tend to be measuring much the same thing?

Split-half reliability on SPSS Statistics refers to the correlation between scores based on the first
half of items you list for inclusion and the second half of the items. This correlation can be
adjusted statistically to maintain the original questionnaire length.

Coefficient alpha is merely the average of all possible split-half reliabilities for the questionnaire
and so is generally preferred, as it is not dependent on how the items are ordered. Coefficient
alpha can be used as a means of shortening a questionnaire while maintaining or improving its
internal reliability.

Inter-rater reliability (here assessed by kappa) is essentially a measure of agreement between the
ratings of two different raters. Thus it is particularly useful for assessing codings or ratings by
‘experts’ of aspects of open-ended data; in other words, the quantification of qualitative data. It
involves the extent of exact agreement between raters on their ratings compared with what agree-
ment would be expected by chance. Note then that it is different from the correlation between
raters, which does not require exact agreement to achieve high correlations but merely that the 
ratings agree relatively for both raters.

Other forms of reliability, such as the consistency of a measure taken at two different points in time
(test–retest reliability), could be assessed simply using the correlation coefficient (Chapter 10).

CHAPTER 31



Table 31.1 Data for 10 cases from a four-item questionnaire

Cases Item 1 Item 2 Item 3 Item 4

1 1 3 5 6

2 2 1 1 2

3 1 1 1 1

4 5 2 4 2

5 6 4 3 2

6 5 4 5 6

7 4 5 3 2

8 2 1 2 1

9 1 2 1 1

10 1 1 2 2
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31.1 What are item reliability and inter-rater agreement?

■ Alpha and split-half reliability
The concept of reliability is one of the most important in psychological methodology alongside
that of validity. Both of these concepts are applied to psychological test scores and other measures.
The concept of reliability covered in this chapter is primarily to do with the construction of psy-
chological tests and scales. There are two important and very different meanings of reliability:

External reliability which considers the stability of scores on psychological tests and other
measures over time. This is typically known as test–retest reliability and essentially consists of
the correlation between measures taken at different points in time.

Internal reliability which considers the internal consistency of a test or scale. Alpha and split-
half reliabilities are both examples of measures of internal consistency.

Psychological tests and scales consist of a number of items which are intended to measure a
psychological concept such as self-esteem, locus of control, personality characteristics and so
forth. A lot of items are used simply because it is believed that a single item is not powerful
enough to adequately measure the concept. So the assumption is that all of the items on the scale
are measuring aspects of the psychological concept in question. This has several implications –
one of which is that the items will all correlate with each other over a sample of participants.
(Factor analysis could be used to explore this pattern, of course.) Another implication is that any
subset or subgroup of items on the test or scale should show a good correlation with any other
subset of items on the test or scale. This is essentially because all of the items are assumed to be
measuring the same thing.

Table 31.1 contains data illustrative of the situation. There are data from 10 participants for
a four item questionnaire. Normally, to score such a scale one would simply sum the scores on
the four individual item to give a total score for each participant on the four-item scale. So do
these items form an internally consistent (i.e. reliable) scale? The approach of split-half reliability
is simply to split the items into two halves and sum the total for each half. So Item 1 + Item 2
would be the score of each participant on the first half of the items and Item 3 + Item 4 would be
the score of each participant on the second half of the items.

Essentially, the split-half reliability for these data would be the correlation between the sum of
the first half of items with the sum of the second half of these items. One would expect a good



Table 31.2 Ratings of risk by two professionals of 12 offenders

Sex offenders Forensic psychologist Psychiatrist

1 3 3

2 3 3

3 3 3

4 1 1

5 1 2

6 3 3

7 2 3

8 3 3

9 2 3

10 3 3

11 3 3

12 3 3
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correlation between the two if the items on the scale are internally consistent. There is one slight
problem with this. We have so far calculated the reliability of just halves of the scale and not the
total scale. So an adjustment is made to the split-half reliability to estimate the reliability of the
full-length scale. This is an easy computation but SPSS does it for you automatically so no fur-
ther action is needed on your part.

Alpha reliability (or Cronbach’s coefficient alpha) is conceptually much the same as split-half
reliability but deals with an obvious problem with split-half-reliability. How one splits a scale
into two halves will affect the size of the reliability. If Item 1 and Item 3 are summed and Item 2
and Item 4 summed then this will give a different answer from summing the first two and last
two items. This is a little less than satisfactory. Alpha reliability gets around this problem by 
calculating the average of all possible split-half reliabilities based on a scale. That is, it works out
all possible ways of choosing two different halves of the set of items. In other words, alpha reli-
ability is based on more information in the data and, consequently, is a better estimate of the
internal reliability.

■ Inter-rater agreement
This is used in a quite different set of circumstances. Self-evidently, it would be used when the
data are from raters who are making assessments of the characteristics of individuals. For example,
imagine that the study is comparing the ratings of a forensic psychologist and a psychiatrist of
the risk posed to the public by sex offenders, a rating of 3 being the highest risk level. This situ-
ation is illustrated in Table 31.2. At first sight, one might assume that the reliability of these 
ratings could be assessed by correlating the ratings of the forensic psychologist with those of the
psychiatrist. There is a problem with this which is due to the fact that correlation coefficients
actually assess covariation in data and do not reflect agreement on the actual scores. So, for
example, if a number such as 7 were added to each of the ratings made by the psychiatrist, this
would make no difference to the size of the correlation coefficient between the two sets of ratings
but would make a big difference to the mean score.

The kappa coefficient is a measure of the extent to which the actual ratings of the forensic 
psychologist and the psychiatrist are identical. We could take the data in Table 31.2 and recast 
it into a table which shows the frequency of agreements and disagreements between the two (see
Table 31.3). It is probably obvious that the agreement is largely due to the high number of high
ratings (extremely dangerous) made since there is little agreement at the lower rating levels. The



Table 31.3
Agreements and disagreements between the forensic psychologist and the psychiatrist on
ratings of sex offenders with marginal totals added

Psychiatrist

1 2 3

1 1 1 0

Psychologist 2 0 0 2

3 0 0 8

FIGURE 31.1 Essential ideas in item reliability and inter-rater agreement
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31.2 When to use item reliability and inter-rater agreement

Item reliability should be used whenever you have a group of items which you intend to combine
into a total score. You may wish to employ factor analysis too in these circumstances. If you are
using a ready-made scale (e.g. a commercial test) then it may be appropriate to assess its reli-
ability on the sample you are researching as reliability is not totally a feature of a test but may be
affected by the nature of the sample and the circumstances of the research.

kappa coefficient makes allowance for this sort of tendency by adjusting for the chance level of
agreement based on the data.

Figure 31.1 highlights some of the main ideas in item reliability and inter-rater agreement.
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Inter-rater agreement in the form of coefficient kappa can be used in any circumstances where
independent ratings are being used. Do not forget, however, that the chances of agreement are
reduced if there are many rating categories. So consider the extent to which you might wish to com-
bine rating categories for the purposes of the analysis should you have more than a few categories.

31.3 When not to use item reliability and inter-rater agreement

Not all test and scale construction methods are built on the assumption that scores on individual
items are intercorrelated and can be summed to give a total score. Be on the lookout for such cir-
cumstances and consider carefully the applicability of item reliability methods. These exceptional
circumstances are unlikely, however.

Inter-rater agreement is important in some circumstances but not in all circumstances. So low
inter-rater agreement may be unimportant for research studies and having a good correlation
between the two sets of ratings sufficient to indicate that the measure is reliable for the purposes
of the research.

31.4 Data requirements for item reliability and inter-rater agreement

Item reliability can be used for response scales using Likert ratings as well as those using binary
(yes–no) answer formats. It cannot be used for responses which are on a three or more category
nominal scale or where the responses are not entered into SPSS in the form of scores.

Inter-rater agreement requires two separate raters who make ratings on a small number of 
categories.

31.5 Problems in the use of item reliability and inter-rater agreement

Item analysis does not generally cause any problems. However, compared with factor analysis 
it performs a very limited task. Although higher item reliability is better (alphas of .7 are con-
sidered satisfactory), really the reliability has to be assessed in terms of the purposes of the 
measurement. Scales for research purposes may have lower reliabilities than scales which are
being used, say, by a clinician to make decisions about the future of an individual.

Inter-rater agreement is what it says, with one proviso – that is, it is agreement adjusted for
the chance level of agreement. So it is possible that where raters agree in percentage terms very
accurately, the value of kappa is low simply because both raters are using a particular category
very frequently.

You can find out more about item reliability and inter-rater agreement in Chapter 36 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

31.6 The data to be analysed for item alpha reliability

The answers of 10 people to the four items of a questionnaire are shown in Table 31.1. These
data will be used to illustrate two measures of item reliability known as alpha reliability and split-
half reliability.
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31.8 Alpha reliability

31.7 Entering the data
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31.9 Interpreting the output



31.11 Interpreting the output

REPORTING THE OUTPUT
One way of reporting the results of this analysis is as follows: ‘The alpha reliability of the four item scale was .81, indicat-
ing that the scale had good reliability.’ An alpha of .70 or above is considered satisfactory.
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31.10 Split-half reliability

The previous data are reused for this analysis.
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31.12 The data to be analysed for inter-rater agreement (kappa)

Kappa is used to measure the agreement between two raters, taking into account the amount 
of agreement that would be expected by chance. We will illustrate its computation for the data
of Table 31.2, which shows the ratings by a forensic psychologist and a psychiatrist of 12 sex
offenders in terms of the offenders being no risk (1), a moderate risk (2) or a high risk (3) to the
public.

31.13 Entering the data

REPORTING THE OUTPUT
One way of reporting the results of this analysis is as follows:

The split-half reliability of the four item scale was .65, indicating that the scale had only moderate reliability.
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31.14 Kappa



REPORTING THE OUTPUT
One way of reporting the results of this analysis is as follows:

Kappa for the agreement between the ratings of the forensic psychologist and the psychiatrist was .40, which indicates
only moderate agreement.
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Note that kappa allows for raters tending to use the same ratings most of the time. It is not a
measure of percentage agreement.

31.15 Interpreting the output
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Summary of SPSS Statistics steps for reliability

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

For alpha reliability, select ‘Analyze’, ‘Scale’ and ‘Reliability Analysis …’.
Move appropriate items to the ‘Items:’ box.
Select ‘Statistics …’, ‘Scale if item’ deleted, ‘Continue’ and ‘OK’.
For kappa, select ‘Analyze’, ‘Descriptive Statistics’ and ‘Crosstabs …’.
Move one rater to ‘Row(s):’ box and the other rater to the ‘Column(s):’ box.
Select ‘Statistics …’, ‘Kappa’, ‘Continue’ and ‘OK’.

Output

For alpha reliability, check number of cases and whether deleting an item substantially improves reliability.
For kappa, check the distribution of ratings.

For further resources including data sets and questions, please refer to the website accompanying this book.



Stepwise multiple
regression

Overview

Stepwise multiple regression is a way of choosing predictors of a particular dependent variable on
the basis of statistical criteria.

Essentially the statistical procedure decides which independent variable is the best predictor, the
second best predictor, etc.

The emphasis is on finding the best predictors at each stage. When predictors are highly corre-
lated with each other and with the dependent variable, often one variable becomes listed as a
predictor and the other variable is not listed. This does not mean that the latter variable is not a
predictor, merely that it adds nothing to the prediction that the first predictor has not already done.
Sometimes the best predictor is only marginally better than the second predictor and minor vari-
ations in the procedures may affect which of the two is chosen as the predictor.

There are a number of multiple regression variants. Stepwise is usually a good choice though one
can enter all variables simultaneously as an alternative (Chapter 33). Similarly, one can enter all
of the variables simultaneously and gradually eliminate predictors one by one if eliminating does
little to change the overall prediction.

It is possible to enter variables as different groups for analysis. This is called hierarchical multiple
regression and can, for example, be selected alongside stepwise procedures. The use of blocks is
discussed in Chapter 35.

32.1 What is stepwise multiple regression?

Multiple regression is like simple or bivariate regression (Chapter 11) except that there is more
than one predictor variable. Multiple regression is used when the variables are generally normally
distributed. In other words, it is used when the criterion is a qualitative or score variable. In step-
wise multiple regression the predictor variables are entered one variable at a time or step accord-
ing to particular statistical criteria.

CHAPTER 32



Table 32.1 Data for stepwise multiple regression

Educational achievement Intellectual ability School motivation Parental interest

1 2 1 2

2 2 3 1

2 2 3 3

3 4 3 2

3 3 4 3

4 3 2 2

Table 32.2 A correlation matrix for the four variables

1 2 3 4

Achievement Ability Motivation Interest

Achievement

Ability .70

Motivation .37 .32

Interest .13 .11 .34
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The first predictor to be considered for entry on the first step is the predictor that has the high-
est correlation with the criterion (Chapter 10). This predictor on its own will explain the most
variance in the criterion. This correlation has to be statistically significant for it to be entered. If
it is not significant, the analysis stops here with no predictors being entered.

The second predictor to be considered for entry on the second step is the one that explains the
second highest proportion of the variance after its relation with the first predictor and the cri-
terion is taken into account. In other words it is the predictor that has the highest part correlation
with the criterion after the first predictor has been removed. Once again, this first-order part core-
lation has to be statistically significant for it to be entered. If it is not significant, the analysis stops
after the first predictor has been entered.

The third predictor to be considered for entry on the third step is the predictor that has the
highest part correlation after its association with the first two predictors and the criterion is taken
into account. This second-order part correlation has to be statistically significant for it to be
entered. If it is not significant, the analysis stops after the second step and does not proceed any
further. If it is significant, then it is entered. At this stage, the second-order part correlations 
of the first two predictors with the criterion is examined. It is possible that one or both of these
second-order part correlations are not significant. If this is the case, then the predictor with the
non-significant second-order part correlation will be dropped from the analysis. The process con-
tinues until no other predictor explains a significant proportion of the variance in the criterion.

We will illustrate a stepwise multiple regression with the data in Table 32.1 which shows the
scores of six children on the four variables of educational achievement, intellectual ability, school
motivation and parental interest. We would not normally use such a small sample to carry out a
stepwise multiple regression as it is unlikely that any of the correlations would be significant. So
what we have done to make the correlations significant is to weight or multiply these six cases by
20 times so that we have a sample of 120, which is a reasonable number for a multiple regression.

The correlations among these four variables are shown in Table 32.2. (For a discussion of cor-
relation see Chapter 10.) We can see that the predictor with the highest correlation is ability
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which is .70 and which is statistically significant. So ability is the first predictor to be entered into
the stepwise multiple regression.

The two first-order part correlations of achievement with motivation and interest controlling
for ability have been calculated as .16 and .05 respectively. As the first-order part correlation for
motivation is higher than that for interest and is statistically significant it is entered in the second
step. The second-order part correlation for interest is .00 and is not significant. Consequently the
analysis stops after the second step.

The proportion of variance explained by the first predictor is simply the square of its correla-
tion with achievement which is .702 or about .49 or 49.0 per cent. The values can be found in
the SPSS Statistics regression Model Summary table which is shown on p. 315. You will find
Model 1 and Model 2 referred to. The first model includes just the first variable selected for 
inclusion in the regression, the second model includes the first and second variables selected 
for inclusion and so forth. However, it may be helpful to understand that the proportion of the
variance explained by the first two predictors, for example, is their squared multiple correlation
(R2) which is calculated by multiplying the standardised partial beta regression coefficient by 
the correlation coefficient for each predictor and the criterion and summing these products. The 
standardised partial regression coefficient is normally more simply referred to as the standardised
regression coefficient. It is .649 for ability and .164 for motivation. Consequently the squared
multiple correlation is about .515. [(.649 × .70) + (.164 × .37)]. In other words, the two predic-
tors taken together explain about 51.5 per cent of the variance in achievement. As ability explains
about 49.0 per cent of the variance, motivation explains about a further 2.5 per cent.

You can use nominal (category) variables as predictors (independent variables) in regression using
what is known as dummy coding. This is discussed in Chapters 37 and 38 on logistic regression.
Basically it involves creating a variable for each category of the nominal (category) variable. If the
categories are oranges, apples and bananas then one could create three dummy variables – oranges
or not orranges, apples or not apples, and bananas or not bananas. These variables would only
have two coding categories, obviously, and so can be used in correlations and hence in regres-
sion. You would have to create the dummy variables using Recode (Chapter 42). You also must
understand that one of the dummy variables will not be used in the regression analysis because
it contains the same information as the other two dummy variables. It does not matter which
dummy variable you choose to omit. Figure 32.1 highlights the main steps in multiple regression.

32.2 When to use stepwise multiple regression

Stepwise multiple regression should be used when you want to find out what is the smallest num-
ber of predictors that you need which make a significant contribution in explaining the maximum
amount of variance in the criterion variable, what these predictors are and how much of the vari-
ance of the criterion variable they explain. It may be helpful to use stepwise multiple regression
when you have a large number of predictor variables and you want to get a quick impression of
which of these explain most of the variance in the criterion variable.

32.3 When not to use stepwise multiple regression

Ideally it is better to use theoretical criteria rather than purely statistical ones in determining 
how you think your predictor variables are related to your criterion variable. This may be done
by looking at particular variables or groups of variables at a time as is done in simple path 
analysis (Chapter 34) or by putting the variables in a multiple regression in a particular order.
Hierarchical regression (which is dealt with in Chapter 35) is the procedure used for entering 
predictor variables in a particular sequence. Stepwise multiple regression would not generally be



FIGURE 32.1 Steps in stepwise multiple regression
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used when one or more of the predictor variables are nominal (category) variables involving three
or more categories as these have to be converted into dummy variables. The dummy variables are
best entered in a single step as a block to see what contribution this predictor variable makes to
the criterion. This is done using hierarchical multiple regression.

32.4 Data requirements for stepwise multiple regression

Although multiple regression can handle categorical variables when they have been turned into
dummy variables, a basic requirement for any form of simple or multiple regression is that the
scatterplot of the relation between a predictor variable and the criterion should show homo-
scedasticity which means that the plot of the data points around the points of the line of best fit



You can find out more about stepwise multiple regression in Chapter 31 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.
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should be similar. This can be roughly assessed by plotting the line of best fit in a scatterplot and
seeing if this assumption seems to have been met for each of the predictor variables (Chapter 11).
It is important the criterion or dependent variable should be a continuous score which is normally
distributed. If the criterion is a binomial variable, then it is far better to use binomial logistic
regression (Chapter 38). If it is a multinomial variable, then multinomial logistic regression
should be used (Chapter 37).

32.5 Problems in the use of stepwise multiple regression

Care needs to be taken in interpreting the results of a stepwise multiple regression. If two predictor
variables show multicollinearity in that they are highly correlated, then the predictor variable
which has the higher relation with the criterion variable will be entered first even if this relation
is minutely bigger than that with the other predictor variable. As both variables are strongly related
to each other, it is likely that the other variable may not be entered as a significant predictor in the
multiple regression even though it may be an equally strong candidate. As the relation between
each predictor and the criterion is similar, the results for this analysis may not be very reliable 
in the sense that the other predictor may have the higher relation with the criterion in another
sample. Consequently it is important to look at the zero-order and the part correlations of these
variables to see whether the difference in the size of their relation can be considered small.

32.6 The data to be analysed

We will illustrate the computation of a stepwise multiple regression analysis with the data shown
in Table 32.1, which consist of scores for six individuals on the four variables of educational
achievement, intellectual ability, school motivation and parental interest respectively.

Because this is for illustrative purposes and to save space, we are going to enter these data 
20 times to give us a respectable amount of data to work with. Obviously you would not do this
if your data were real. It is important to use quite a lot of research participants or cases for 
multiple regression. Ten or 15 times your number of variables would be reasonably generous. 
Of course, you can use less for data exploration purposes.

32.7 Entering the data
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32.8 Stepwise multiple regression analysis
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The second table of the output ‘Model Summary’ gives the values of Multiple R, R Square and
Adjusted R Square for the two steps (Models). This is really a table of the multiple correlation
coefficients between the models and the criterion. It also includes statistics indicating the

32.9 Interpreting the output

There is a great deal of information in the output. Multiple regression is a complex area and
needs further study in order to understand all of its ramifications. In interpreting the results of
this analysis we shall restrict ourselves to commenting on the following statistics: Multiple R,
R Square, Adjusted R Square, B, Beta, R Square Change Part correlations and Collinearity
Statistics. Most of these are dealt with in a simple fashion in ISP Chapter 31.

In stepwise multiple regression, each new step is called a Model. In this example, two
significant steps were involved. The first step (Model 1) uses the predictor Ability. The second
step (Model 2) is built on this predictor with the addition of a second predictor Motivation.
Generally, it is reasonable to concentrate on the highest numbered model.

Notice how badly the first table in particular is laid out. If you double click on a table it 
will be enclosed in a rectangle. To move any but the first line, move the cursor to that line.
When it changes to a double-arrow (4), click the left button of the mouse and, holding
the left button down, move the line to the position you want before releasing the button. 
By dragging the column dividers in this way you should be able to obtain a better and more
easily read table.
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improvement of fit of the models with the data. Each model in this example gives an improve-
ment in fit. This can be seen from the final figures where the change in fit is significant for both
Model 1 and Model 2. (The regression weights (B and Beta) are to be found in the fourth table
of the output entitled ‘Coefficients’.)

The predictor that is entered on the first step of the stepwise analysis (Model 1) is the predic-
tor which has the highest correlation with the criterion. In this example this predictor is
‘Ability’. (Note ‘a’ immediately underneath the Model Summary table indicates this.)

As there is only one predictor in the regression equation on the first step, Multiple R is the
same as the correlation between Ability and Achievement (the dependent or criterion variable).
In this case it is .701 or .70 to two decimal places.

R Square is simply the multiple correlation coefficient squared, which in this instance is .491
or .49 to two decimal places. This indicates that 49 per cent of the variance in the criterion is
shared with or ‘explained by’ the first predictor.

Adjusted R Square is R Square which has been adjusted for the size of the sample and the num-
ber of predictors in the equation. The effect of this adjustment is to reduce the size of R Square,
so Adjusted R Square is .487 or .49 to two decimal places.

The variable which is entered second in the regression equation is the predictor which gener-
ally explains the second greatest significant proportion of the variance in the criterion. In this
example, this variable is ‘Motivation’.

The Multiple R, R Square and Adjusted R Square for Model 2 are .718, .515 and .507 respec-
tively which, rounded to two decimal places, are .72, .52 and .51. As might be expected, these
values are bigger than for the corresponding figures for Model 1. This is to be expected
because there is an additional predictor contributing to a better prediction.

In Model 2, then, two variables (‘Ability’ and ‘Motivation’) explain or account for 51 per cent
of the variance in the criterion.

R Square Change presented under ‘Change Statistics’ in the second table shows the increase in
the proportion of the variance in the criterion variable (‘Achievement’) by predictors that have
been entered after the first predictor (‘Ability’). In this case there is only one other predictor
(‘Motivation’). This predictor explains a further 2.4 per cent of the variance in the criterion.

Examine the table headed ‘Coefficients’. Find the column headed Beta in the table. The first
entry is .701 for Model 1. This is exactly the same as the value of the multiple correlation
above for Model 1. That is because Beta is the standardised regression coefficient which is the
same as the correlation when there is only one predictor. It is as if all your scores had been
transformed to z-scores before the analysis began.



REPORTING THE OUTPUT
There are various ways of reporting the results of a stepwise multiple regression analysis. In such a report we should
include the following kind of statement.

In the stepwise multiple regression, intellectual ability was entered first and explained 49 per cent of the variance
in educational achievement, F(1, 118) = 113.76, p = .001. School motivation was entered second and explained a 
further 2 per cent, F(1, 117) = 5.85, p = .017. Greater educational attainment was associated with greater intellec-
tual ability and school motivation.
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For Model 2 Beta is .649 for the first predictor (‘Ability’) and .164 for the second predictor
(‘Motivation’).

The analysis stops at this point, as the third predictor (‘Interest’) does not explain a further
significant proportion of the criterion variance. Notice that in the final table of the output 
entitled ‘Excluded Variables’, ‘Interest’ has a t-value of .000 and a significance level of 1.0000.
This tells us that ‘Interest’ is a non-significant predictor of the criterion (‘Achievement’).

The part correlations for Ability and Motivation are .615 and .156 respectively, which when
squared means that they explain about 37.8 and 2.4 per cent of the variance in Achievement
when not taking account of the variance they share together. As the total percentage of vari-
ance these two variables explain is about 51.5 per cent this means that the percentage of 
variance they share is about 11.3 per cent which is calculated by subtracting the sum of 
their separate variances (40.2) from the total variance (51.5).

The tolerance level is shown in the 12th column of the table and is an index of the extent to
which a predictor may be too highly correlated with other predictors to be entered into the
multiple regression. This problem is known as multicollinearity or collinearity. A tolerance
level of 0.1 or below indicates that the predictor may be too highly correlated with other pre-
dictors to be entered into the multiple regression. A tolerance level of above 0.1 means that 
the predictor may be entered into the multiple regression. As the tolerance level for both pre-
dictors is greater than 0.1, all three predictors may be entered into the multiple regression as
there is no multicollinearity. The VIF (variance inflation factor) is simply 1/Tolerance so there
is no need to report both statistics. A VIF of less than 10 indicates no multicollinearity.



For further resources including data sets and questions, please refer to the website accompanying this book.

Table 32.3
Stepwise multiple regression of predictors of educational achievement (only significant predictors are
included)

Variable Multiple R B Standard error b Beta t Significance of t

Intellectual ability 0.70 0.83 0.09 0.65 9.56 .001

School motivation 0.72 0.17 0.07 0.16 2.42 .05
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Summary of SPSS Statistics steps for stepwise multiple
regression

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’ and ‘Linear …’.
Move the criterion or dependent variable to the ‘Dependent:’ box and the predictors or independent vari-
ables to the ‘Independent(s):’ box.
In the ‘Method’ box select ‘Stepwise’.
Select ‘Statistics …’ and then ‘R squared change’, ‘Descriptives’, ‘Part and partial correlations’, ‘Collinearity
diagnostics’, ‘Continue’ and ‘OK’.

Output

Check sample size in ‘Descriptive Statistics’ table.
In the ‘Model Summary’ table note the predictor and R Square Change in each step.
In the ‘Coefficients’ table check that the Tolerance level is above 0.1.

A table is sometimes presented. There is no standard way of doing this but Table 32.3 is probably as clear as most.



Overview

Simultaneous or standard multiple regression is a way of determining the relationship between
each member of a set of predictor (or independent) variables and a criterion (dependent variable).
This involves taking into account the fact that the predictor variables are related to each other as
well as to the criterion. Basically what is calculated is the relationship between each predictor vari-
able and the criterion variable after the relationship of the predictor variable to all other predictor
variables has been removed (controlled for).

This form of regression is not about building models but about choosing a set of predictors which
independently predict the criterion significantly and collectively equate to an effective prediction
of scores on the criterion variable.

The relative size of the prediction of the criterion by each predictor in the set of predictors can be
compared as well as the amount of variance in the criterion that each predictor explains inde-
pendently of the other predictors.

The relationship between a predictor and the criterion is given as a regression coefficient. These
may be expressed in standardised form which makes it easier to compare one regression coeffi-
cient with another.

Standardised regression coefficients vary from -1.00 to 1.00.

Bigger standardised regression coefficients denote stronger associations between the criterion
and a predictor.

The proportion of variance in the criterion that is explained by or shared with the predictor is given
by the square of the part correlation. A part correlation is like a partial correlation (Chapter 29) but
only the association of one variable with the other predictor variables is removed. In other words,
it is as if the correlation is between the original scores on one variable (the criterion) and the
scores on the second variable (a predictor), with the other predictor variable’s influences par-
tialled out from the predictor variable in question.

Predictors can be ordered in terms of the size of their standardised regression coefficients and the
amount of variance of the criterion which they explain.

Simultaneous or standard
multiple regression

CHAPTER 33



The predictor having the highest standardised regression coefficient with the criterion, regardless
of whether the sign of the coefficient is positive or negative, has the strongest relation with the 
criterion and explains the most variance in the criterion.

The predictor with the second highest standardised regression coefficient with the criterion,
regardless of the sign of the coefficient, has the second strongest relation with the criterion and
explains the second greatest amount of variance in the criterion.

The sign of the regression coefficient expresses the direction of the relation between the criterion
and the predictor.

A positive coefficient means that higher values on the predictor generally go with higher values on
the criterion.

A negative coefficient means that higher values on the predictor generally go with lower values on
the criterion.

Coefficients without a sign are assumed to be positive.

Generally only predictors having a statistically significant coefficients are considered in the analysis.
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33.1 What is simultaneous or standard multiple regression?

Multiple regression is generally used in psychology as a means of building models. So stepwise
multiple regression allows the researcher to take predictors in turn of importance in order to find
a set of variables which make for the best model to explain variation in scores on the criterion
variable being studied. Stepwise multiple regression tends to result in a parsimonious set of pre-
dictor variables, which leads to a simple model to account for the criterion variable. This is
because stepwise multiple regression chooses the best predictor first of all. It then chooses the 
second best predictor on the basis of the data having taken away statistically the influence of that
best predictor. Simultaneous or standard multiple regression does something rather different.
What it calculates is the independent predictive power of each of the predictor variables having
taken into account the strength of the association of all of the other predictors with each predic-
tor. This means that instead of a parsimonious number of predictors (such as emerge in stepwise
multiple regression), the number of predictors at the start of the analysis remains the same at the
end of the analysis. This does not mean that all of these predictors are significant predictors, how-
ever, and quite clearly the researcher is likely to concentrate on the significant predictors. While
simultaneous or standard multiple regression has similarities with stepwise multiple regression
(Chapter 32) and other forms of multiple regression, essentially all of the predictor variables are
entered in a single block – that is, at the same time. Entering all predictor variables simultane-
ously in a single block enables the relative size of the association between each predictor and the
criterion to be compared. In stepwise multiple regression, in contrast, the order of being chosen
determines the relative size of the association between predictor and criterion variable.

This comparison is carried out in terms of the standardised (partial) regression or Beta
coefficient which has a maximum value of ±1.00. The comparison can also be carried out in terms
of the amount of variance in the criterion that is explained by or shared with each predictor. The
proportion of variance accounted for is computed by squaring the part correlation. The propor-
tion is often converted into a percentage by multiplying the proportion by 100.

The part correlation has great similarities with the partial correlation coefficient discussed in
Chapter 29. The difference is that in partial correlation the influence of the third variable(s) on
the two main variables is removed; in part correlation the influence of the third variable(s) is



FIGURE 33.1 Partial versus part correlation
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removed from just one of the two main variables. Since the part correlation involves partialling
the third variable out from just one of the two main variables, part correlation is sometimes, not
surprisingly, referred to as the semi-partial correlation. Conceptually the part correlation is the
correlation of the actual scores on one of the two main variables with the adjusted scores on the
other main variable. To stress the point, these adjusted scores have been adjusted for the corre-
lations of the variable with a third variable(s). In simultaneous multiple regression, the scores on
the criterion variable are the original scores whereas the scores on the predictor variable have
been partialled. This is illustrated in Figure 33.1. In other words, standardised regression weights
are similar to part correlation coefficients in that respect.

The reason that one might concentrate on the standardised regression coefficients is that these
(like say the correlation coefficient) are directly comparable one with the other. It is quite differ-
ent with unstandardised regression coefficients since these are used to predict actual values on the
criterion variable. So the predictor that has the highest standardised regression coefficient with
the criterion has the strongest relation with the criterion – that is, it is the most effective pre-
dictor. The predictor that has the next highest standardised regression coefficient has the next
strongest association with the criterion and so is the second best predictor. So the predictors can
easily be ordered in terms of the size of their standardised regression coefficients from largest to
smallest. Generally speaking, only predictors that have a statistically significant regression
coefficients are considered as variables that explain or predict the criterion.

Because the predictive power of each predictor variable is independent of (uncorrelated with)
the predictive power of the other predictor variables, the predictive powers of each of the pre-
dictor variables add together. This makes the use of multiple regression extremely effective in
ways that a series of simple regression analysis simply would not.

Multiple regression is used when the criterion variable is more or less normally distributed. 
In other words, it is used when the criterion is a quantitive or score variable. The predictor vari-
ables can be either binominal category (categorical) or score variables. If a categorical variable is
used which has more than two categories, it needs to be converted into several dummy variables
(see Chapter 38).

We will illustrate a simultaneous or standard multiple regression with the data in Table 33.1,
which shows the scores of six children on the four score variables of educational achievement,
intellectual ability, school motivation and parental interest. This table is the same as Table 32.1.
We would not normally use such a small sample to carry out a multiple regression as it is unlikely
that any of the correlations would be significant. So what we have done to make the correlations
significant is to weight or multiply these six cases by 20 times so that we have a sample of 120,
which is a reasonable number for a multiple regression. This does not affect the size of the 
correlation coefficients.

The correlations between these four variables are shown in Table 33.2 (see Chapter 10 for cor-
relation). We need to look at each of these predictors in turn, paying attention to their correla-
tions with the criterion and the other predictors. We will illustrate this procedure for the first



Table 33.1 Data for simultaneous or standard multiple regression

Educational achievement Intellectual ability School motivation Parental interest

1 2 1 2

2 2 3 1

2 2 3 3

3 4 3 2

3 3 4 3

4 3 2 2

Table 33.2 A correlation matrix for the four variables

1 2 3

1 Achievement

2 Ability .70

3 Motivation .37 .32

4 Interest .13 .24 .34

Table 33.3
Part correlations, squared part correlations, standardised regression coefficients (beta) and
their statistical significance

Predictors Part correlation Squared part correlation Beta

Ability .62 .38 .65***

Motivation .15 .02 .15*

Interest .00 .00 .00

*p < .05, ***p < .001 (two-tailed).
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predictor of intellectual ability which has a correlation of .70 with educational achievement.
However, intellectual ability is correlated with the other two predictors of school motivation and
parental interest which are also correlated with the criterion of educational achievement. For
example, intellectual ability has a correlation of .32 with school motivation and school motiva-
tion has a correlation of .37 with educational achievement. Consequently we do not know to
what extent the correlation between the criterion of educational achievement and the predictor
of intellectual ability is due to the correlation of the variables of educational achievement and
intellectual ability with the predictors of school motivation and parental interest. This can be
determined by calculating the part correlation between educational achievement and intellectual
ability which controls for their associations with school motivation and parental interest.

Table 33.3 shows the part correlations between the criterion and each of the three predictors
as well as the proportion of variance that is explained by each of the three predictors, the stand-
ardised (partial) regression or beta coefficients and their statistical significance. For example, the
part correlation between the criterion of educational achievement and intellectual ability is .62
which squared is .38. This means that the amount of variance in educational achievement that is



FIGURE 33.2 Steps in simultaneous or standard multiple regression
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explained just by intellectual ability is .38 having taken into account its relationships with the
other variables. In other words, the proportion of variance in educational acheivement that is
unique or specific to intellectual ability is .38. This proportion of variance is less than that which
is shared between educational achievement and intellectual ability not taking into account its 
relationship with the other variables. This proportion is calculated by squaring the correlation of
.70 between educational achievement and intellectual ability which is .49. If we subtract the pro-
portion of variance of .38 from that of .49, then .11 (.49 - .38 = .11) of the variance between
educational achievement and intellectual ability is shared with school motivation and parental
interest. In other words, this proportion of variance is not unique or specific to intellectual abil-
ity. What proportion of this variance is shared with school motivation and with parental interest
cannot be worked out from these figures. If we were interested in finding this out, which we are
generally not, we would have to do two further simultaneous multiple regressions, one excluding
parental interest and one excluding school motivation.

Figure 33.2 shows the essential steps in carrying out a simultaneous or standard multiple
regression.

33.2 When to use simultaneous or standard multiple regression

Simultaneous or standard multiple regression should be used when you want to find out the asso-
ciation between the criterion and each predictor, taking into account the other predictors. If there
was no correlation between the predictors we would not have to carry out a multiple regression
as the relation between the criterion and each predictor would be represented by its zero-order
correlation. However, it is very unusal for variables not to be correlated to some extent with each
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other. Simultaneous multiple regression takes these correlations into account, telling us what the
association is between the criterion and the predictor which is unique or specific to that predictor.
Simultaneous multiple regression is like a path analysis (Chapter 34) in which each predictor is
considered to influence the criterion. Predictors which are not significantly associated with the 
criterion are thought not to affect the criterion.

33.3 When not to use simultaneous or standard multiple regression

Simultaneous or standard multiple regression should not be used in at least two situations. 
One is where we want to find out what is the minimum number of predictors which signific-
antly explain the greatest amount of variance in the criterion. In this situation we would use 
stepwise multiple regression (Chapter 32). The other situation is where we want to enter the pre-
dictors in a particular sequence. Doing this effectively controls for the predictors entered earlier
in the sequence. This form of multiple regression is called hierarchical multiple regression
(Chapters 35 and 36). Each step in a hierarchical multiple regression is a simultaneous or 
standard multiple regression provided there is more than one predictor in that step and can be
interpreted in that way.

33.4
Data requirements for simultaneous or standard multiple
regression

Although multiple regression can handle categorical variables when they have been turned into
dummy variables, a basic requirement for any form of simple or multiple regression is that the
scatterplot of the relation between a predictor variable and the criterion should show homo-
scedasticity, which means that the plot of the data points around the points of the line of best 
fit should be similar. This can be roughly assessed by plotting the line of best fit in a scatterplot
and seeing if this assumption seems to have been met for each of the predictor variables 
(Chapter 11). It is important the criterion or dependent variable should be a continuous score
which is normally distributed. If the criterion is a binomial variable, then it is far better to use
binomial logistic regression (Chapter 39). If it is a multinomial variable, then multinomial logis-
tic regression should be used (Chapter 38).

33.5
Problems in the use of simultaneous or standard multiple
regression

As with stepwise multiple regression, care needs to be taken in interpreting the results of a simul-
taneous or standard multiple regression. If two predictor variables show multicollinearity in that
they are highly correlated, then the standardised regression coefficients may be greater than
±1.00, which they should not exceed, and/or the sign of the coefficients may be reversed. These
factors make it difficult to interpret these coefficients. The extent to which multicollinearity exists
in the data is given by two collinearity statistics provided by SPSS Statistics called tolerance and
VIF (variance inflation factor). Tolerance and VIF are directly related in that VIF = 1/tolerance,
so only one of these indices need be reported. A tolerance of 0.1 or less and a VIF of more than



You can find out more about simultaneous or standard multiple regression in Chapter 31 of Howitt, D. and Cramer, D.
(2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.
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10 are considered as indicating multicollinearity. Multicollinearity should be dealt with by
removing one or more predictors. A good rationale should be provided for the predictors that 
are omitted.

33.6 The data to be analysed

We will illustrate the computation of a simultaneous or standard multiple regression analysis
with the data shown in Table 33.1, which consist of scores for six individuals on the four vari-
ables of educational achievement, intellectual ability, school motivation and parental interest.

Because this is for illustrative purposes and to save space, we are going to enter the data 20
times to give us a respectable amount of data to work with. Obviously you would not do this 
if your data were real. It is important to use quite a lot of research participants or cases for 
multiple regression. Ten or 15 times your number of variables would be reasonably generous. 
Of course, you can use less for data exploration purposes.

33.7 Entering the data

If saved, use the data from Chapter 32. Otherwise enter the data as follows.
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33.8 Simultaneous or standard multiple regression analysis
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33.9 Interpreting the output

There is a substantial amount of output. Multiple regression is a complex technique and needs
further study in order to understand it fully. In interpreting the results of this analysis we shall
restrict ourselves to commenting on the following statistics: Beta, its statistical significance,
part correlations and tolerance level. Most of these are dealt with in a simple fashion in ISP,
Chapter 31.

The first table shows the means and standard deviations of the variables in the multiple regres-
sion. It is usual to report these descriptive statistics together with the correlations shown in the
second table.

The sixth table labelled ‘Coefficients’ is generally the most important table to look at. The
standardised (partial) regression coefficients called Beta are presented in the fourth column.
The biggest coefficient is for intellectual ability and is .649. The second biggest coefficient is
for school motivation and is .164. The coefficient for parental interest is zero and so can be
ignored.
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The statistical significance of the standardised coefficients is calculated by dividing the unstand-
ardised or B coefficient by its standard error to give the t-value. So, for example, for intellec-
tual ability the unstandardised or B coefficient of .833 which divided by its standard error of
.088 gives a t-value of 9.47 which is similar to that of 9.52 shown in the table. The difference
between the two values is due to rounding error. Our calculation is based on three decimal
places while that of SPSS is based on more decimal places. The t-value is large and has a 
statistical significance of less than .001. In other it is statistically significant at less than .001.

The part correlation is displayed in the 11th column of the table. The part correlation for intel-
lectual ability is .615 which squared is about .38. So about .38 or 38 per cent of the variance
in educational achievement is explained by or shared with intellectual ability taken into
account its relations with the other variables.

Note that the total amount of variance explained in this way by the three predictors of intel-
lectual ability (.38), school motivation (.02) and parental interest (.00) is .40 which is less than
that given by the R Square of .515 given in the fourth table. This is because the part correla-
tion squared represents the variance that is unique to the criterion and the predictor and which
is not shared by any other predictor. The R Square includes the variance that is shared between
the criterion and all the predictors. So, for example, some of the variance between educational
achievement and intellectual ability may be shared with the other predictors of school motiva-
tion and parental interest. The part correlation squared excludes this variance shared with 
the criterion and the other predictors.

The tolerance level is shown in the 12th column of the table and is an index of the extent to
which a predictor may be too highly correlated with other predictors to be entered into the
multiple regression. This problem is known as multicollinearity or collinearity. A tolerance
level of 0.1 or below indicates that the predictor may be too highly correlated with other pre-
dictors to be entered into the multiple regression. A tolerance level of above 0.1 means that the
predictor may be entered into the multiple regression. As the tolerance level for all three pre-
dictors is greater than 0.1, all three predictors may be entered into the multiple regression as
there is no multicollinearity. The VIF is simply 1/tolerance so there is no need to report both
statistics. A VIF of less than 10 indicates no multicollinearity.



REPORTING THE OUTPUT
One way of concisely reporting the results of a simultaneous or standard multiple regression analysis is as follows:

In a simultaneous multiple regression, intellectual ability had the strongest significant standardised regression
coefficient with the criterion of educational achievement, Beta(116) = .65, p < .001, and explained about 38 per cent
of the variance in educational achievement. School motivation had the second strongest significant standardised
regression oefficient, Beta(116) = .15, p < .05, and explained about 2 per cent. Greater educational attainment was
associated with greater intellectual ability and school motivation. The total variance explained by all three pre-
dictors is about 52 per cent. As the tolerance level for all predictors was greater than .840, multicollinearity was 
not considered a problem.

It is usual to present a table which reports the means, standard deviations and correlations of the variables analyses
as shown in Table 33.4. If alpha reliabilities are appropriate (Chapter 31), these are also often included in such a table.
Means, standard deviations and correlations should be given to two decimal places. Two-tailed significance level can
be obtained by conducting a correlation analysis (Chapter 10).
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Table 33.4 Means, standard deviations and correlations for the four variables

M SD 1 2 3

1 Achievement 2.50 0.96

2 Ability 2.67 0.75 .70***

3 Motivation 2.67 0.95 .37*** .32***

4 Interest 2.17 0.69 .13 .11 .34***

***p < .001 (two-tailed).

FIGURE 33.3 Intellectual ability, school motivation, parental interest and educational achievement

It may be useful to illustrate these results with the path diagram (see Chapter 34) shown in Figure 33.3, where arrows
point from each of the predictors to the criterion. When this is done in journal articles, the correlation coefficients and
the statistical symbols are not usually shown. However, when looking at or presenting your results it is useful to include
them so that it is easier to see the effect of controlling for the other predictors. Asterisks indicate the coefficients are
statistically significant. One asterisk indicates a significance level of .05 or less, two asterisks .01 or less and three
asterisks .001 or less.
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Summary of SPSS Statistics steps for simultaneous or standard
multiple regression

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’ and ‘Linear …’.
Move the criterion or dependent variable to the ‘Dependent:’ box and the predictors or independent vari-
ables to the ‘Independent(s):’ box.
Select ‘Statistics …’ and then ‘R squared change’, ‘Descriptives’, ‘Part and partial correlations’, ‘Collinearity
diagnostics’, ‘Continue’ and ‘OK’.

Output

Check sample size in ‘Descriptive Statistics’ table.
In the ‘Coefficients’ table check that the Tolerance level is above 0.1 and note the standardised regression
or Beta coefficient for each predictor and its significance level.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

Mediational analysis examines how two variables precede or cause a third variable. Because this
involves a sequence between the first two variable, the third variable may be called a consequent,
effect, dependent, outcome or criterion variable. The other two variables also are given a variety of
names including independent, predictor, antecedent or causal variables.

One of these two predictor variables may be thought to intervene, mediate or explain the relation
between the other predictor variable and the criterion variable. This variable may be called a medi-
ating, mediator or intervening variable.

The mediating variable may either partly explain the relation between the other predictor variable
and the criterion variable or totally explain it. If it partly explains the relation, the other predictor
will also partly explain the relation in the absence of additional mediating variables. If it totally
explains the relation, the other predictor will only explain the relation through the mediating vari-
able. In other words, the first variable will explain the relation indirectly rather than directly.

For there to be a potential mediating effect, the correlation between the first predictor variable and
the mediating variable and the correlation between the mediating and the criterion variable must
be significant or substantial.

A potential mediating effect is assessed with simultaneous or standard multiple regression in
which the first predictor variable and the mediator variable are entered in a single step in a multi-
ple regression.

A total mediating effect may be considered to exist if the standardised partial regression coeffi-
cients (correlations) between the first predictor variable and the criterion variable and between the
mediating and the criterion variable are non-significant and close to zero in the regression analysis.

A partial mediating effect may be thought to occur if the following two conditions hold: (a) the
standardised partial regression coefficient between the mediating and the criterion variable is 
significant or substantial and (b) the standardised partial regression coefficient between the first
predictor variable and the criterion variable is significant or substantial but somewhat lower than
the correlation between these two variables.

More complex ways of conducting a mediational analysis are described in Chapters 52–54
(Chapters 53 and 54 are on the website).

Simple mediational
analysis

CHAPTER 34



FIGURE 34.1 Equivalent terms for variables in mediational analysis
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34.1 What is simple mediational analysis?

A simple mediational analysis involves the statistics of correlations (Chapter 10) and multiple
regression (Chapters 32 and 33). Both simple and multiple regression are used to explain one
variable in terms of one or more than one other variable respectively. Various terms have been
adopted to refer to the variable being explained. These include the consequent, criterion, depen-
dent, effect or outcome variable. The terms employed to refer to the explanatory variables also
vary, including terms such as causal, independent or predictor variables. We will generally use
the term ‘criterion variable’ to refer to the variable being explained and the term ‘predictor vari-
able’ to describe the variables measured to explain the criterion variable. The term ‘explanation’
usually refers to the size and the direction of the association between the predictor and the cri-
terion variables and/or the percentage of the variance in the criterion variable that is explained or
shared with the predictor variables. The greater the association, the greater the predictor variable
explains the criterion variable. These two measures are related in that the stronger the associ-
ation is between two variables, the greater the proportion or percentage of their variance they
share. The terminology is summarised in Figure 34.1.

There are two important things to bear in mind:

A mediator or intervening variable is one that is thought to wholly or partially explain the 
relation between a predictor and a criterion variable.

As the mediator variable is also thought to explain the criterion variable, it is also a predictor
variable but it is one whose effect on the criterion variable is assumed to come later on in the
sequence of variables assumed to affect the criterion variable.

Suppose, for example, we think that more intelligent people are likely to do better at their
schoolwork because of their intelligence. Now being intelligent does not necessarily mean that
you will do better at school. You may be more interested in and spend more time doing activities
other than schoolwork, in which case your schoolwork is likely to suffer. However, being more
intelligent may mean that you are more interested in and spend more time doing schoolwork
because you find it challenging, you think it relatively easy and you do well in it. So part or all
of the relationship between intellectual ability and educational achievement may be due to how
motivated you are to do well at school. The more motivated you are, the better you do at school.



FIGURE 34.2 Partial mediation of school motivation on educational achievement

FIGURE 34.3 Total mediation of school motivation on educational achievement
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It is important to draw out the relation between these three variables in terms of a simple path
diagram as shown in Figure 34.2 where the predictor variable of intellectual ability is listed first
and to the left on the page and the criterion variable of educational achievement is listed last and
to the furthest right on the page. The mediator or intervening predictor variable of school motiva-
tion is placed between these other two variables and above them. The direction of the relation
between the three variables is indicated by arrows pointing to the right. So there is a right point-
ing arrow between intellectual ability and educational achievement, between intellectual ability
and school motivation and between school motivation and educational achievement. If we
thought that the relation between intellectual ability and educational achievement was totally
meditated by school motivation, then we would omit the arrow between intellectual ability and
educational achievement as shown in Figure 34.3.

A simple mediational analysis will be illustrated with the same data that we used in Chapter 32
for the stepwise multiple regression except that we will ignore the fourth variable of parental interest.
The data are shown in Table 34.1.

The correlations between these three variables is shown in Table 34.2 (see Chapter 10 for 
correlation). We can see that the correlation between the predictor variable of intellectual ability
and the mediating variable of school motivation is .32, which is a reasonable size for such a 
relationship and is significant for a sample of this size. Because of this significant and substantial
association, it is possible that the relation between intellectual ability and educational achieve-
ment may be partly explained by school motivation. More intelligent students may do better at
school because they are more motivated to do better. Figure 34.4 shows the main steps in under-
standing simple mediational analysis.



FIGURE 34.4 Steps in understanding simple mediational analysis

Table 34.1 Data for a simple mediational analysis

Educational achievement Intellectual ability School motivation

1 2 1

2 2 3

2 2 3

3 4 3

3 3 4

4 3 2

Table 34.2 A correlation matrix for the three variables

1 2

1 Achievement

2 Ability .70

3 Motivation .37 .32
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34.2 When to use simple mediational analysis

A simple mediational analysis should be used when the following three conditions are met:

The mediator variable should provide a plausible explanation for the relation between the 
predictor and the criterion variable. So, in this case, age should not be used as a mediator 
variable since intellectual ability cannot affect age. For example, intellectual ability does not
and cannot cause people to be older.

There is a significant or substantial correlation between (a) the predictor and the mediator
variable and (b) between the mediator and the criterion variable as this indicates that these
variables are related. If there is not a substantial correlation between these variables, then this
means that intellectual ability is not related to school motivation which is not related to edu-
cational achievement. In others words, school motivation cannot mediate the relation between
intellectual ability and educational achievement because it is not related to either of these two
variables.

It is not necessary that there should also be a significant or substantial correlation between the
predictor and the criterion variables as this relation may be reduced or suppressed by the medi-
ator variable. This sometimes happens.

34.3 When not to use simple mediational analysis

A simple mediational analysis should not be carried out under the following four conditions.
Firstly, no plausible explanation can be provided as to why the mediator variable may explain
the relation between the predictor and the criterion variable. Secondly and thirdly, there is little
or no relation between the predictor and the mediator variable and between the mediator and the
criterion variable. Little or no relation between these variables suggests that these variables are
unrelated and so cannot provide an explanation for the relation between the predictor and the
criterion variable. Fourthly, some of the variables should not be very highly correlated as this may
make interpretation difficult. Very high correlations between some of the variables may make the
standardised regression coefficients greater than ±1.00 which they are not supposed to be. A per-
fect correlation of ±1.00 only exists when a variable is effectively being correlated with itself. This
should not be the case when the two variables are expected to be different variables. Very high
correlations may also reverse the sign of the partial standardised coefficient. This reversal may be due
to the high correlation rather than to the actual relation between the three variables. In other words,
it is due to the statistical formulae that are used to partial out or control for other variables.

34.4 Data requirements for a simple mediational analysis

A basic data requirement for any form of simple or multiple regression is that the scatterplot of
the relation between the three variables should show homoscedasticity which means that the plot
of the data points around the points of the line of best fit should be similar. This can be roughly
assessed by plotting the line of best fit in a scatterplot and seeing if this assumption seems to have
been met for each of the predictor variables (Chapter 11). It is important the criterion variable
should be a continuous score which is normally distributed. If the criterion is a binomial variable,
then it is far better to use binomial logistic regression (Chapter 39). If it is a multinomial vari-
able, then multinomial logistic regression should be used (Chapter 38).



You can find out more about simple mediational analysis in Chapter 32 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.
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34.5 Problems in the use of simple mediational analysis

Care needs to be taken in interpreting the results of a simultaneous or standard multiple regres-
sion used in simple mediational analysis. If some of the variables are very highly correlated, then
two potential problems may occur. One problem is the standardised regression coefficients may
be greater than ±1.00, which indicates that the two variables are more than perfectly correlated.
Two variables are only perfectly correlated if they are, in effect, the same variable, which should
not be the case when the variables are different. Another problem is the sign of the partial regres-
sion coefficient may be reversed.

34.6 The data to be analysed

We will illustrate the computation of a simple mediational analysis using simultaneous multi-
ple regression with the data shown in Table 34.1. The data consist of scores for six individuals
on the three variables of educational achievement, intellectual ability and school motivation
respectively.

Because this is for illustrative purposes and to conserve space, we are going to enter the data
20 times to give us a respectable amount of data to work with. Obviously you would not do this
if your data were real. It is important to use quite a substantial number of research participants
or cases for multiple regression. Ten or 15 times your number of variables would be reasonably
generous. Of course, you can use less for data exploration purposes.

34.7 Entering the data

If saved, use the data from Chapter 32 or 33. Otherwise enter the data as follows.
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34.8 Simultaneous multiple regression analysis
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The ‘Correlation’ table shows the one-tailed statistical significance of these correlations. The
two-tailed significance level may be obtained by doubling these significance levels or by using
the ‘Correlate’ procedure to produce this significance level (Chapter 10). This makes no 
difference in this case as significance levels are reported to three decimal places and these
significance levels remain below .001.

The correlation coefficients, their significance level and the number of cases on which they are
based are shown twice, once in the lower left triangle and again in the upper right triangle.

The tolerance level is shown in the 12th column of the table and is an index of the extent to
which a predictor may be too highly correlated with other predictors to be entered into the

34.9 Interpreting the output

The main table in the output you have to look at is that headed ‘Coefficients’. In this table you
need to primarily look at the standardised regression coefficient Beta which is in the fourth 
column and the statistical significance of Beta which is in the sixth column. Both these regres-
sion coefficients are statistically significant. The standardised regression coefficient between
‘Ability’ and ‘Achievement’ is .649 while that between ‘Motivation’ and ‘Achievement’ is much
smaller at .164.

This table also shows the correlations between the effect variable of ‘Achievement’ and the two
predictors of ‘Ability’ and ‘Motivation’.



REPORTING THE OUTPUT
One of the most succinct ways of reporting the results of this simple mediational analysis is as follows.

As the relation between intellectual ability and educational achievement, r(118) = .70, two-tailed p < .001, was lit-
tle affected when school motivation was controlled, B = .65, t(117) = 9.56, two-tailed p < .001, school motivation
was not considered to mediate the relation between intellectual ability and educational achievement. Greater 
educational attainment was associated with greater intellectual ability.

It may be useful to illustrate these results with the path diagram shown in Figure 34.5. When this is done in journal 
articles, the correlation coefficients and the statistical symbols are not usually shown. However, when examining or
presenting your results you may find it useful to include them so that it is easier to see the effect of controlling for the
mediator variable. Asterisks indicate the coefficients are statistically significant. One asterisk indicates a significance
level of .05 or less, two asterisks .01 or less and three asterisks .001 or less.

FIGURE 34.5 Intellectual ability, school motivation and educational achievement
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multiple regression. This problem is known as multicollinearity or collinearity. A tolerance
level of 0.1 or below indicates that the predictor may be too highly correlated with other pre-
dictors to be entered into the multiple regression. A tolerance level of above 0.1 means that the
predictor may be entered into the multiple regression. As the tolerance level for all three pre-
dictors is greater than 0.1, all three predictors may be entered into the multiple regression as
there is no multicollinearity. The VIF (variance inflation factor) is simply 1/tolerance so there
is no need to report both statistics. A VIF of less than 10 indicates no multicollinearity.



For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for simple mediational
analysis

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’ and ‘Linear …’.
Move the criterion or dependent variable to the ‘Dependent:’ box and the predictor and mediating variable
to the ‘Independent(s):’ box.
Select ‘Statistics …’ and then ‘R squared change’, ‘Descriptives’, ‘Part and partial correlations’, ‘Collinearity
diagnostics’, ‘Continue’ and ‘OK’.

Output

Check sample size in ‘Descriptive Statistics’ table.
In the ‘Coefficients’ table note the standardised coefficients (Beta) and their statistical significance (Sig.).



Hierarchical multiple
regression

Overview

Hierarchical multiple regression allows the researcher to decide which order to use for a list of 
predictors.

This is achieved by putting the predictors or groups of predictors into blocks of variables. The com-
puter will carry out the regression taking each block in the order that it was entered into SPSS
Statistics, so it provides a way of forcing the variables to be considered in the sequence chosen by
the researcher. Rather than let the computer decide on statistical criteria as in Chapter 32, the
researcher decides which should be the first predictor, the second predictor, and so forth.

A block may be a single predictor but it may be a group of predictors.

This order of the blocks is likely to be chosen on theoretical grounds. One common procedure is
to put variables which need to be statistically controlled in the first block. The consequence of 
this is that the control variables are partialled out before the rest of the blocks are analysed.

Since the researcher is trying to produce models of the data, the multiple regression may be 
varied to examine the effects of, say, entering the blocks in a different order.

35.1 What is hierarchical multiple regression?

Hierarchical multiple regression is used to determine how much variance in the criterion, 
dependent or outcome variable is explained by predictors (independent variables) when they are 
entered in a particular sequence. The more variance that a predictor explains, the potentially
more important that variable may be. The variables may be entered in a particular sequence on
practical or theoretical grounds. An example of a practical situation is where we are interested in
trying to predict how good someone might be in their job. We could collect a number of vari-
ables which we think might be related to how good they might be. This might include how well
they did at school, how many outside interests they have, how many positions of responsibility
they hold, how well they performed in interview and so on. Now some of these variables might

CHAPTER 35



Table 35.1 Data for hierarchical multiple regression

Educational Intellectual School motivation Parental interest Social class
achievement ability

1 2 1 2 2

2 2 3 1 1

2 2 3 3 5

3 4 3 2 4

3 3 4 3 3

4 3 2 2 2
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be easy and cheap to obtain, such as finding out how well they did at school or how many out-
side interests they have, while other variables might be more costly to obtain, such as how well
they performed at interview. We may be interested in whether using these more costly variables
enable us to make much better predictions about how likely someone is to be good at their job
than the cheaper ones. If they do not add much to how well we are able to predict job compet-
ence, then it might be better not to use them. So we could add the cheaper variables in the first
step of our hierarchical multiple regression and see how much of the variance in job competence
is generally explained. We could then add the more costly variables in the second step to see how
much more of the variance in job competence these variables explain.

Turning to a more theoretical situation, we may be interested in trying to explain how much
different variables or types of variables explain some criterion such as educational achievement.
We may arrange the variables in a particular sequence. We may be interested first in how much
basic demographic variables explain such as social class and age. Next we may wish to consider
whether going to preschool made any difference to explaining educational achievement beyond
social class and age. Third, we may wish to look at the effects of intellectual ability on educa-
tional achievement. Finally, we may want to examine the effects of other variables such as how
motivated children are to do well at school and how interested their parents are in how well they
do at school. Entering these variables in a sequence like this will enable us to see how much each
group or block of variables adds to how well we can predict educational achievement.

Hierarchical multiple regression will be illustrated with the same data that we used in 
Chapter 32 except that we will add another variable, that of social class. The data are shown 
in Table 35.1. We will enter social class in the first step of the analysis, ability in the second step
and motivation and interest in the third step.

To work out the proportion of variance in educational achievement that is explained at each
step we calculate the squared multiple correlation (R2) which is derived by multiplying the 
standardised (partial) beta regression coefficient by the correlation coefficient for each predictor
and the criterion in that step and summing their products. The correlations between educational
achievement and ability, motivation, interest and class are about .70, .37, .13 and .07 respect-
ively. (All figures are calculated in Section 35.9.) The standardised regression coefficient for 
class in the first step is its correlation which is .07. Consequently class explains about 0.5 per cent
(.07 ¥ .07 ¥ 100) of the variance in educational achievement which is effectively none. The 
standardised regression coefficients for class and ability in the second step are about -.14 and 
.74 respectively. So the variance explained by both class and ability is about 51 per cent {[(.07 ¥
-.14) + (.70 ¥ .74)] ¥ 100}. If we subtract the per cent of variance in the first step from that in the
second step we see that ability explains about a further 50.5 per cent. Finally the standardised
regression coefficients for class, ability, motivation and interest is about -.439, .730, .185 and
.314 respectively. Thus the variance explained by all four of these predictors in the third step 
is about 59 per cent {[(.07 ¥ -.439) + (.70 ¥ .730) + (.37 ¥ .185) + (.13 ¥ .314)] ¥ 100}. If we 



FIGURE 35.1 Steps in hierarchical multiple regression
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subtract the per cent of variance in the second step from that in the third step we see that moti-
vation and interest explain about a further 8.5 per cent. We can see that ability explains the most
variance in educational achievement even when social class is taken into account. There is no reason
to calculate these yourself as they can be found under Model Summary in the SPSS output dis-
cussed later in this chapter. Figure 35.1 outlines the main steps in hierarchical multiple regression.

35.2 When to use hierarchical multiple regression

Hierarchical multiple regression should be used when you want to enter the predictor variables
in a particular sequence as described above. It is also used to determine whether there is a
significant interaction between your predictor variables and the criterion. The interaction term is
created by multiplying the predictor variables together and entering this term in a subsequent step
in the multiple regression after the predictor variables have been entered. If the interaction term
explains a significant proportion of the variance in the criterion, this implies that there is an inter-
action between these predictor variables. The nature of this interaction needs to be determined,
as is described in the following chapter.

35.3 When not to use hierarchical multiple regression

Hierarchical multiple regression should not be used when there is no reason why the predictor
variables should be entered in a particular order. If there are no good grounds for prioritising the
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variables, then it is better to enter them in a single block or step. This is known as a standard
multiple regression.

35.4 Data requirements for hierarchical multiple regression

The data requirements for hierarchical multiple regression are the same as those for stepwise 
multiple regression which are outlined in Chapter 32. The criterion variable should be a quanti-
tative variable which is normally distributed. The relation between each predictor and the cri-
terion should show homoscedasticity in the sense that the plot of the data points around the best
fitting regression line should be similar at each point along the regression line. A rough idea of
whether this is the case can be obtained by producing a scatterplot with a line of best fit between
each predictor and the criterion as shown in Chapter 11.

35.5 Problems in the use of hierarchical multiple regression

As in all regression and correlation analyses, it is important to look at the mean and standard
deviation of the variables. If the mean is very low or high then this suggests that the variation in
the variable may not be well spread. A variable which has a smaller standard deviation indicates
that it has a smaller variance, which means that the relation between this variable and the cri-
terion may be smaller than a predictor which has a larger variance when all other things are
equal.

You can find out more about hierarchical multiple regression in Chapter 32 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

35.6 The data to be analysed

We will illustrate the computation of a hierarchical multiple regression analysis with the data
shown in Table 35.1, which consist of scores for six individuals on the four variables of educa-
tional achievement, intellectual ability, school motivation and parental interest.

We have added a further variable, social class, which is on a scale of 1 to 5, with 5 being the
lowest social class. Hierarchical analysis is used when variables are entered in an order prede-
termined by the researcher on a ‘rational’ basis rather than in terms of statistical criteria. This is
done by ordering the independent variables in terms of blocks of the independent variables, called
Block 1, Block 2, etc. A block may consist of just one independent variable or several. In this 
particular analysis, we will make Block 1 social class (‘Class’), which is essentially a demographic
variable which we would like to control for. Block 2 will be intellectual ability (‘Ability’). 
Block 3 will be school motivation (‘Motivation’) and parental interest (‘Interest’). The dependent
variable or criterion to be explained is educational achievement (‘Achievement’).

In our example, the model essentially is that educational achievement is affected by intellec-
tual ability and motivational factors such as school motivation and parental interest. Social 
class is being controlled for in this model since we are not regarding it as a psychological 
factor.
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35.7 Entering the data

If saved, use the data from Chapter 32, 33 or 34 and add the sixth variable of ‘Class’. Otherwise
enter the data as follows.

35.8 Hierarchical multiple regression analysis
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35.9 Interpreting the output

As summarised in the fourth table of the output entitled ‘Model Summary’, the variable
entered on the first block is ‘Class’ (social class). The R Square for this block is effectively 
0.0 (.004), which means that social class explains 0 per cent of the variance of educational
achievement.

The statistical significance of the F-ratio of .497 for this block or model is .482. As this value
is above the critical value of .05, this means that the regression equation at this first stage does
not explain a significant proportion of the variance in educational achievement.

The variable entered on the second block is ‘Ability’ (intellectual ability). The Adjusted R
Square for this block or model is .501, which means that intellectual ability together with
social class explains 50.1 per cent of the variance of educational achievement.

The statistical significance of the F-ratio for this block is .000 which means that it is less than
.001. As this value is much lower than the critical value of 0.05, the first two steps of the regres-
sion equation explain a significant proportion of the variance in educational achievement.

The variables entered on the third and final block are ‘Motivation’ (school motivation) and
‘Interest’ (parental interest). The Adjusted R Square for this block is .577, which means that
all four variables explain 57.7 per cent of the variance in educational achievement.

The F-ratio for this block is .000. As this value is much lower than the critical value of 0.05,
the first three steps in the regression equation explain a significant proportion of the variance
in educational achievement.
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The simplest interpretation of the output comes from examining the fourth table entitled
‘Coefficients’ of the output. Especially useful are the Beta column and the Sig (of t) column.
These tell us that the correlation (Beta) between ‘Class’ (social class) and ‘Achievement’ 
(educational achievement) is -.439 when the other predictors are taken into account. This cor-
relation is significant at the .000 level which means that it is less than .001. This coefficient is
now significant because the two variables of ‘Ability’ and ‘Interest’ suppress the zero-order
coefficient between ‘Class’ and ‘Achievement’. Having controlled for social class in Block 1,
the correlation between ‘Ability’ (intellectual ability) and ‘Achievement’ (educational achieve-
ment) is .730. This is also significant at the .000 level. Finally, having controlled for ‘Class’
(social class) and ‘Ability’ (intellectual ability), the correlations for each of the variables in
Block 3 (school motivation and parental interest) with educational achievement (‘Achievement’)
are given separately.

The part correlations for Class, Motivation, Ability and Interest are -.275, .667, .165 and .201
respectively, which when squared mean that they account for about 7.6, 44.5, 2.7 and 4.0 per
cent of the variance in Achievement, not taking into account the variance that they share
between them. As the total percentage of variance these four variables explain is about 59.1
per cent this means that the percentage of variance they share is 0.3 per cent (59.1 - 58.8).

The tolerance level is shown in the 12th column of the table and is an index of the extent to
which a predictor may be too highly correlated with other predictors to be entered into the
multiple regression. This problem is known as multicollinearity or collinearity. A tolerance
level of 0.1 or below indicates that the predictor may be too highly correlated with other pre-
dictors to be entered into the multiple regression. A tolerance level of above 0.1 means that the
predictor may be entered into the multiple regression. As the tolerance level for all three pre-
dictors is greater than 0.1, all three predictors may be entered into the multiple regression as
there is no multicollinearity. The VIF (variance inflation factor) is simply 1/tolerance so there
is no need to report both statistics. A VIF of less than 10 indicates no multicollinearity.



For further resources including data sets and questions, please refer to the website accompanying this book.

REPORTING THE OUTPUT
There are various ways of reporting the results of a hierarchical multiple regression analysis. In such a report we would
normally describe the percentage of variance explained by each set or block of predictors (from the value of the R Square).
One way of reporting these results is to state that:

In a hierarchical multiple regression, potential predictors of Achievement were entered in blocks. Social class was
entered first, then intellectual ability was added in the second block, and school motivation and parental interest
were added in the final block. The final model indicated that social class was a negative predictor (B = -.31), intel-
lectual ability was a positive predictor B = .94), and school motivation and parental interest were also positive pre-
dictors (B = .19 and .44). All predictors were significant at the 1 per cent level. 

One would also need to summarise the regression equation as in Table 35.2.
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Summary of SPSS Statistics steps for hierarchical multiple
regression

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’ and ‘Linear . . .’.
Move the criterion or dependent variable to the ‘Dependent:’ box and the other predictors or independent
variables to the ‘Independent(s):’ box in the appropriate blocks.
In the ‘Method’ box check ‘Enter’ has been selected.
Select ‘Statistics . . .’ and then ‘Descriptives’, ‘Collinearity diagnostics’, ‘Continue’ and then ‘OK’.

Output

In the ‘Coefficients’ table note the size and direction of the standardised or beta coefficient for the pre-
dictors together with their tolerance value.

Table 35.2 Hierarchical multiple regression of predictors of educational achievement

Blocks B Standard error B Beta

Block 1:
Social class -.31 .07 -.44*

Block 2:
Intellectual ability .94 .08 .73*

Block 3:
School motivation .19 .07 .19*

Parental interest .44 .13 .31*

*Significant at .01.



Overview

A moderator variable is one where there is a different relationship between the main variables in
a study at different levels of the moderator variable.

A simple example of a moderator variable could be gender. Imagine that a study finds a strong
relationship between educational achievement and intelligence. Subsequently it is found that the
relationship is much stronger in girls than in boys. This indicates that gender is a moderator vari-
able since the main findings differ for the different levels (categories) of the third variable gender.

A clear distinction should be made between moderator variables and mediating variables. The
later is a variable which brings about the relationship between the two main variables in an analysis.

The method of detecting moderator variable effects differs according to the statistical nature of 
the two main variables and the third variable. If all three variables are score variables then hier-
archical multiple regression using interactions is the appropriate analysis method. Since score
variables are the most likely data in psychological research, this chapter concentrates on the 
hierarchical multiple regression approach.

If all of the variables are nominal category variables then log-linear analysis is the appropriate
method of analysis. If there is a mixture of score and nominal category variables it is usually pos-
sible to adopt the ANOVA approach though some manipulation of the variables may be required.

Calculating the hierarchical multiple regression involves the preliminary step of converting all of
the variables into z-scores otherwise problems can occur in the analysis.

Furthermore, an interaction term has to be generated by multiplying the z-scores of the moderator
variable by the scores on one of the other variables.

The analysis proceeds hierarchically since one needs to remove the independent effects of the
moderator variable and the other variable. Once this has been done, the analysis can turn to the
question of whether the interaction term has any relationship with the variable which has been
used as the dependent variable. If it has, then a moderator effect has been found.

Moderator analysis with
continuous predictor
variables

CHAPTER 36



FIGURE 36.1 Illustrating one circumstance in which there is a moderator effect of a third variable
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36.1 What is a moderator variable analysis?

A moderator variable can be seen when the relationship between two main variables in a study
is substantially different for different levels of a third variable – the moderator variable. For
example, there may be a relationship between delinquency and the parenting skills of a child’s
mother. This is of interest in itself but on exploring the data further, we may find that things dif-
fer according to a third variable such as the family’s financial circumstances. It may be that the
relationship between delinquency and parenting skills is much stronger where the family has a
low income than where it has a higher income. In these circumstances, one might come to the
view that the third variable income is moderating the relationship between delinquency and par-
enting skills. This is illustrated in the example in Figure 36.1.

Moderator variables are not the same thing as mediator variables. Mediator variables, in this
case, would be third variables which mediate between the two main variables. For example, the
relationship between parenting skills and delinquency may be the result of parenting skills affect-
ing how accepted/rejected the child feels by its parents. The feeling of rejection then encourages
delinquent behavour in the child. This mediating effect is illustrated in Figure 36.2. What should
be clear is that the moderator variable and the mediator variable are very different.

The process of detecting moderator variable effects varies according to the nature of the 
variables in the study. There are basically two types of variable: scores and nominal category 
variables. Scores dominate the data collected by psychologists so the typical situation will be one
in which the two main variables and the potential moderator variables are all score variables. The
recommended way of identifying moderator variables in this case is to use hierarchical multiple
regression (Chapter 35). If all three variables were nominal category variables then the appro-
priate way of testing for moderator variables would be to use logistic regression (Chapters 38 
and 39). If you have a mixture of score variables and nominal category variables then it might be



FIGURE 36.2 Illustrating the mediating variable

36.1 WHAT IS A MODERATOR VARIABLE ANALYSIS? 351

possible to use ANOVA to test for moderator effects. Indeed, some researchers use ANOVA to
test for moderator effects simply by forcing some of the score variables into a small number of
categories. Of course, if you are intending to use ANOVA in this way, you need to make sure
that one of the variables is a score variable which will be used as the dependent variable in
ANOVA.

In all three approaches, basically we are using the presence of interactions as the indication of
moderator effects being present. For ANOVA and for log-linear we have discussed interactions

FIGURE 36.3 Steps in the analysis of moderator variables
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A fuller explanation of these steps can be found in Chapter 38 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.

36.2 When to use moderator variable analysis

The use of moderator variable analysis needs, of course, to be selective. In modern psychological
research, the number of variables measured is often substantial. This means that the potential for
carrying out moderator variable analyses is enormous. But we would recommend that its use is
rather more selective than this would imply. The researcher needs to ask themselves just what
moderator effects would be of interest to understanding the main relationship in question. This
would translate into a small number of analyses based on conceptual and theoretical considera-
tions than an empiricist data-bashing overkill approach would demand.

36.3 When not to use moderator variable analysis

The use of moderator variable analysis is appropriate in all situations where the above require-
ments are met. Moderator variable analysis does call for the use of some rather advanced statis-
tical procedures which may tax the statistical skills and understanding of novices to some extent,
of course. It may be preferable to use simpler approaches which effectively select groups of par-
ticipants on the basis of their responses on the moderator variable. For example, one could carry
out an analysis separately of the relationship between the two main variables for individuals scor-
ing high on the moderator variable and those scoring low on the moderator variable. A compar-
ison of the outcomes of these two separate analyses would help you detect a moderator effect.

36.4 Data requirements for moderator variable analysis

Moderator variable analysis can be carried out on virtually any data where there are two main
variables (or multiples of this) and a third variable which is a potential moderator variable. Quite
how the analysis is carried out depends very much on the nature of the variables being studied:

in the appropriate chapters (Chapters 23 and 37). However, we have not discussed interactions
in relation to multiple regression, so we will concentrate on this.

So long as you are familiar with hierarchical multiple regression (Chapter 35), the procedure
described in this chapter to identify moderator effects when all of your variables are measured as
scores should be fairly straightforward.

When using hierarchical multiple regression there are two important stages before the regres-
sion analysis can be carried out (Figure 36.3):

All three variables should be converted into standardised or z-scores. This is easily done using
SPSS (Chapter 7). If standard scores are not used then there may be problems in the analysis
because of multicollinearity between the variables.

An interaction variable or interaction term is created by multiplying the z-scores for the inde-
pendent variable by the corresponding ones on the moderator variable. Again this is easily
done using SPSS.



You can find out more about moderator analysis with continuous predictor variables in Chapter 38 of Howitt, D. and
Cramer, D. (2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

FIGURE 36.4 The different types of moderator variable analysis for different sorts of data
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are they score variables, are they nominal category variables or are they a mixture? In this chap-
ter we explain how to deal with the typical case in psychology where all of the three variables are
score variables. See Figure 36.4 for the range of alternatives.

36.5 Problems in the use of moderator variable analysis

The data for most forms of test of significance may be used when trying to identify moderator
variable effects if the various approaches mentioned in this chapter are used – and, of course, the
potential moderator variable is part of the data that has been collected. Some imagination is
required, at times, in order to make the data fit the analytic approach taken.

36.6 The data to be analysed

We will illustrate the computation of a moderator analysis with continuous predictor variables
with the data shown in Table 36.1, which consist of scores for nine individuals on the three vari-
ables of depression, stress and social support. Higher scores on these three variables indicate
higher levels of these three characteristics.

As with the data for the other multiple regressions because this is for illustrative purposes and
to save space, we are going to enter these data 20 times to give us a respectable amount of data



Table 36.1 Data for moderator variable analysis

Depression Stress Support

4 9 37

6 17 30

6 24 15

7 18 22

6 23 33

5 28 24

6 36 32

7 36 26

17 37 21
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to work with. Obviously you would not do this if your data were real. It is important to use quite
a number of research participants or cases for multiple regression. Ten or 15 times your number
of variables would be reasonably generous. Of course, you can use less for data exploration purposes.

36.7 Entering the data
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36.8 Standardising the variables

36.9 Computing the interaction term
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36.10 Hierarchical multiple regression analysis
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36.11 Interpreting the output

The second line in the fourth table of the output entitled ‘Model Summary’ shows whether
there is a significant moderator or interaction effect or not. If the moderator or interaction
effect is significant as it is here, there is a moderator or interaction effect. If the moderator or
interaction effect is not significant, there is no moderator or interaction effect.
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The statistical significance of the F-ratio (‘Sig. F Change’) for the moderator or interaction
effect (‘Model 2’) is less than .000. Consequently, the moderator or interaction effect is statis-
tically significant at less than .001. The F-ratio (‘F Change’) of this effect is 97.572. The
degrees of freedom are 1 for the moderator or interaction effect and 176 for the error term.
The proportion of variance explained by the moderator or interaction effect (‘R Square
Change’) is .223 or about 22 per cent.

If the moderator or interaction is not significant, the analysis stops here. If it is significant it
proceeds.

36.12 Entering the data for predicting the criterion values
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36.13 Computing the predicted criterion values

36.14 Plotting the predicted criterion values
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REPORTING THE OUTPUT
One way of reporting the multiple regression results is as follows:

Baron and Kenny (1986) have suggested a moderator effect is most appropriately tested with multiple regression.
Such an effect is indicated if the interaction of the two predictor variables explains a significant increment in the
variance of the criterion variable while the two predictor variables are controlled. Aitken and West (1991) recom-
mended that the criterion and the two predictor variables be standardised. Following these recommendations, a sig-
nificant proportion of the variance in depression was accounted for by the interaction of stress and social support
after the individual variables comprising the interaction were controlled, R2 change = .04, p < .01. To interpret the
significant interaction three separate unstandardised regression lines were plotted between standardised stress,
standardised social support, and the standardised level of depression at the mean and at one standard deviation
above and below the mean of standardised social support. The relation between stress and depression was strongest
at low levels of social support.

Aitken, L.S. & West, S.G. (1991). Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage.

Baron, R.M. & Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research:
Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.

The plot of the predicted values of depression may be included.
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Summary of SPSS Statistics steps for moderator analysis with
continuous predictor variables

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable names in ‘Data View’ of the ‘Data Editor’.

Standardising variables and computing the interaction

Select ‘Analyze’, ‘Descriptive Statistics’ and ‘Descriptives …’.
Move the variables to be standardised to the ‘Variable(s):’ box and select ‘Save standardized values as vari-
ables’.
To compute the interaction term, select ‘Analyze’, ‘Descriptive Statistics’ and ‘Descriptives’.
Select ‘Transform’ and ‘Compute Variable …’.
Type interaction name in ‘Target Variable:’ box and multiply the two standardised predictors in the ‘Numeric
Expression:’ box, and then select ‘OK’.

Hierarchical multiple regression analysis

Select ‘Analyze’, ‘Regression’ and ‘Linear …’.
In the ‘Method’ box check ‘Enter’ has been selected.
Move the criterion or dependent variable to the ‘Dependent:’ box and the two predictors or independent
variables to the ‘Independent(s):’ box.
Select ‘Next’ and move the interaction term to the ‘Independent(s):’ box.
Select ‘Statistics …’ and then ‘Descriptives’, ‘Collinearity diagnostics’, ‘Continue’ and then ‘OK’.

Output

In the ‘Coefficients’ table note whether the F-ratio for the moderator or interaction effect is significant.
If the F-ratio is not significant, the analysis stops. If it is significant, proceed.
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Computing predicted values for use in the graph

To draw the graph showing predicted criterion values for the three levels of one standard deviation above,
below and at the mean for the predictor X and the moderator M, enter these values in ‘Data View’ of the
‘Data Editor’ together with the constant (a) and the unstandardised regression coefficients for the predictor
(b1), the moderator (b2) and the interaction (b3).
In the Syntax editor, type in and run the following commands:

compute Y = a + ((b1 + (b3 * M)) * X) + (b2 * M).
exe.

Plotting the values

Select ‘Analyze’, ‘General Linear Model’ and ‘Univariate …’.
Move the dependent variable to the ‘Dependent Variable:’ box.
Move the independent variables to the ‘Fixed Factor(s):’ box.
Select ‘Plots …’.
Move the independent variable (Factor) to the ‘Horizontal Axis:’ box and the moderator to the ‘Separate
Lines:’ box.
Select ‘Add’, ‘Continue’, then ‘OK’.

Output

Edit the graph as desired.

For further resources including data sets and questions, please refer to the website accompanying this book.



Advanced qualitative or
nominal techniques

PART 6





Overview

Log-linear analysis is used to analyse frequency tables (contingency or cross-tabulation) consist-
ing of three or more variables. It can therefore be regarded as an extension of the chi-square test
discussed in Chapter 16.

Its purpose is to determine which of the variables and their interactions best explain (or repro-
duce) the observed frequencies in the table.

Variables and their interactions on their own and in combination are known as models in log-
linear analysis.

Goodness-of-fit test statistics are used to assess the degree of correspondence between the
model and the data. Statistical significance when comparing the model with the data indicates
that the model fails to account totally for the observed frequencies. Statistical non-significance
means that the model being analysed fits the observed frequencies. If more than one model fits
the data well, the model having the fewer or fewest variables and interactions is the simplest one
and may be the preferred model.

Hierarchical log-linear analysis described in this chapter begins with the saturated model (which
includes all possible main effects and interactions) and examines the effect of removing these in
steps. If a main effect or interaction is removed then the question is whether this affects the stat-
istical fit of the model to the data. If its removal produces a significant change (reduction) in fit
then the main effect or interaction should be reinstated in the model as it is having an important
influence.

Generally, main effects are unimportant in interpreting the model since they merely reflect differ-
ent proportions of cases in each category.

Likelihood ratio chi-square is employed as the test statistic in log-linear analysis.

Log-linear analysis

CHAPTER 37



Table 37.1
A three-way contingency table showing the relationship between gender, sexual abuse and
physical abuse in a sample of psychiatric hospital patients

Sexual abuse Physical abuse Gender Margin totals

Female Male

Sexually abused Physical abuse 20 30 50

No physical abuse 40 25 65

Not sexually abused Physical abuse 35 55 90

No physical abuse 45 50 95

Margin totals 140 160 300
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37.1 What is log-linear analysis?

Log-linear analysis can be regarded as being simply an extension of chi-square (see Chapter 16).
However, rather than being limited to two nominal (category) independent variables as in the
case of chi-square, log-linear analysis allows the researcher to study the associations between 
several variables. Chi-square can only deal with a two-way contingency (cross-tabulation) table
whereas log-linear can deal with three-way, four-way and so forth tables. Contingency (or cross-
tabulation) tables record the frequencies in each of the categories produced by the various inde-
pendent variables. An example is shown in Table 37.1. The table shows the relationship between
having been sexual abused, physically abused and gender in a sample of psychiatric hospital
patients. Of course, this table is more difficult to interpret than the two-way examples we saw in
Chapter 16. This is not simply because of the extra variable. It is also because we would not
expect equal numbers in the cells if there was no relationship between the three variables since
the categories of the independent variables do not have equal sample sizes, for one reason. But 
it becomes an even more complex situation in reality because, for example, two of the three 
independent variables may have an association which is different from the association between
all three of the independent variables. There is no intuitively obvious way of working out the
expected frequencies in these circumstances. Actually, we are faced with a mathematically
extremely complex situation compared with the two-way chi-square we studied earlier. Without
computers, the analysis is not possible.

Log-linear analysis does use chi-square but it is a slightly different form from the Pearson chi-
square used in Chapter 16. This is known as the likelihood ratio chi-square. Log-linear analysis
also uses natural logarithms (Napierian logarithms) which give the log-linear method its name.
Neither of these are particularly helpful in understanding log-linear output from SPSS Statistics.

Log-linear analysis involves things called interactions which are not dissimilar from interac-
tions in ANOVA. They are simply aspects of the data which cannot be accounted for on the basis
of the independent variables acting independently (or the influence of lower level interactions). 
In a sense, particular combinations of categories from two or more independent variables tend 
to result in relatively high or low cell frequencies in the data table. The number of interactions
depends on the number of independent variables. If the analysis has three independent variables
then there will be three main effects – one for each of the independent variables acting alone. But,
in addition, there are interactions between two or more of the independent variables. If we call
the independent variables (and so also the main effects) A, B and C, the interactions are A*B,
B*C, A*C and A*B*C. That is, there are three two-way interactions and one three-way interac-
tion. The three-way interaction is what cannot be accounted for by the main effects and the three
two-way interactions. Step up a notch to four independent variables and there are 11 interactions.
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Actually the chi-square itself (Chapter 16) works on interactions but nobody refers to them 
as such. When we discussed the two-way chi-square, we investigated the frequencies on the basis
of the independent variables acting alone. What was left over after taking away the influences of
these was used to calculate chi-square. This is another way of saying that chi-square assesses the
interaction of the two independent variables.

In log-linear analysis there is a great deal of emphasis on models. A model is simply an attempt
to explain the empirical data that we obtain on the basis of the influence of the independent 
variables. In log-linear analysis we try to explain the frequencies obtained in the research on the
basis of the independent variables and their interactions. Goodness-of-fit is another commonly
used term in log-linear analysis. It simply refers to the extent to which the observed frequencies
are modelled (or predicted) by the variables in the model.

It is common in log-linear analysis to start with what is known as the saturated model and
work backwards. This is the method that we demonstrate in this chapter. The saturated model is
the one which perfectly fits the data so it includes all of the independent variables plus all of their
interactions. Of course, some of these may have absolutely no influence on the data we obtain.
So what happens next is that aspects of the model are removed one at a time to see whether
removing them actually makes a significant difference to the model’s fit to the data. If taking
away a main effect or an interaction does not change the fit of the model to the actual data, then
this main effect or interaction is doing nothing in the model – that is, it is making no contribu-
tion since when it is removed it makes no difference to the model.

It is only the interactions which are of interest since the main effects simply indicate whether
the proportions of the sample in each category of the main effect differ. Does it matter, for ex-
ample, whether the genders differ from each other in terms of numbers in the sample? The answer
is almost certainly not except in the unusual circumstances where there has been proper random
sampling from the population. It is more important to know if there is an interaction between
gender and being physically abused.

So, in the analysis we carry out on Table 37.1, basically we begin with all possible main effects
and interactions and then discard any which make no difference to the fit of the model to the
data. The way in which such main effects and interactions are identified is to examine the size 
of the likelihood-ratio chi-square when that component is removed. If the likelihood-ratio chi-
square is statistically significant then this means that removing that component (main effect or
interaction) makes a significant difference to the fit of the model to the data. Hence, that com-
ponent should be retained in the data. Where removing a component results in a non-significant
change in the fit of the model to the data then that component can be discarded from the ana-
lysis. This is done a step at a time. The final model consists of the original (saturated or full)
model minus any component which makes no significant difference if it is removed.

In a sense, log-linear analysis is very much like three-way ANOVAs, etc. (see Chapter 23). The
big difference is that it deals with frequencies in cells of a contingency table rather than the means
of the scores in the cells. Figure 37.1 depicts the main steps in a log-linear analysis.

37.2 When to use log-linear analysis

Log-linear analysis is used in exactly the same circumstances as a two-way chi-square to deal 
with the situation where the researcher has three or more nominal (category) independent vari-
ables which may be associated in some way. Many psychologists prefer to collect data primarily
in the form of scores so may never need log-linear analysis. Score data cannot be used in log-
linear analysis.

Of course, it is tempting to think that nominal (category) data are simpler data than score data.
This may encourage the less numerate novice researcher to employ nominal (category) data and
thus snare themselves into the trap of needing log-linear analysis, which is among the more
difficult statistical techniques to understand.



FIGURE 37.1 Steps in log-linear analysis
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37.3 When not to use log-linear analysis

If any of your variables are score variables then do not use log-linear analysis.
Be careful to consider quite what you need out of a log-linear analysis which could not be

obtained by some other form of statistical analysis. For example, in the case of the study
described in this chapter does the researcher really want to know whether there is a difference
between males and females in terms of their histories of physical and sexual abuse? If this were
the case, then binomial logistic regression or multinomial logistic regression (Chapters 38 and 39)
might be capable of supplying the analysis required. One could even mix score and nominal vari-
ables in this instance. It is possible to use interactions with some forms of logistic regression.

37.4 Data requirements for log-linear analysis

Three or more nominal (category) variables are required – score variables may not be used. Be
parsimonious in terms of the number of variables you include as each additional one adds
significantly more complexity to the output.



You can find out more about log-linear analysis in Chapter 40 of Howitt, D. and Cramer, D. (2011). Introduction to
Statistics in Psychology, 5th edition. Harlow: Pearson.
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37.5 Problems in the use of log-linear analysis

Log-linear analysis is not the simplest statistic to understand because of the variety of new and
difficult concepts it introduces. It is probably simply unsuitable for total novices. So we would
suggest that you do not contemplate using it until you have a more advanced level of statistical
skill and experience in deciphering SPSS output. Only choose it when there is no alternative ana-
lysis which would do an equally good job.

37.6 The data to be analysed

The computation of a log-linear analysis is illustrated with the data in Table 37.1. This table
shows the frequency of sexual and physical abuse in 140 female and 160 male psychiatric
patients. To analyse a table of data like this one with SPSS we first have to input the data into
the Data Editor and weight the cells by the frequencies of cases in them.

37.7 Entering the data
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37.8 Log-linear analysis

37.9 Interpreting the output

The likelihood ratio chi-square for the saturated or full model is .000 which has a probability
of 1.000. In other words, the saturated model provides a perfect fit for the observed frequen-
cies and so is non-significant. The saturated model in this case consists of the three main
effects, three two-way interactions and one three-way interaction. In general, the saturated
model includes all main effects and interactions.
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However, the saturated model includes all components whether or not they individually con-
tribute to explaining the variation in the observed data. So it is necessary to eliminate com-
ponents in turn to see whether this makes the model’s fit worse. If it does, this component 
of the model is kept for the final model.

SPSS begins with the full model and eliminates each effect in turn to determine which effects
make the least significant change in the likelihood ratio chi-square.

The best-fitting model is presented last. In our example, this includes the interaction of phys-
ical abuse and gender and the main effect of sexual abuse. This model has a likelihood ratio
chi-square of 3.91 (rounded to two decimal places), three degrees of freedom and a probabil-
ity level of .271. In other words, it is not significant which means that the observed data can
be reproduced with these two effects.



Table 37.2 Contingency tables for sexual abuse and the interaction of physical abuse and gender
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To interpret these two effects, we need to present the data in terms of a one-way table for 
sexual abuse and a two-way table for physical abuse and gender. We can do this using ‘Chi-
square …’ for the one-way table (see Section 16.13) and ‘Crosstabs …’ for the two-way table (see
Section 16.9). These two tables are shown in Table 37.2. The one-way table shows that more 

Sexual abuse

Observed N Expected N Residual

Sexually abused 115 150.0 -35.0

Not sexually abused 185 150.0 35.0

Total 300

Physical abuse * Gender Crosstabulation

Gender

Females Males Total

Physical Physically Count 55 85 140

Abuse Abused Expected Count 65.3 74.7 140.0

Residual -10.3 10.3

Not physically Count 85 75 160

Abused Expected Count 74.7 85.3 160.0

Residual 10.3 -10.3

Total Count 140 160 300

Expected Count 140.0 160.0 300.0



For further resources including data sets and questions, please refer to the website accompanying this book.

REPORTING THE OUTPUT
One way of describing the results found here is as follows: 

A three-way frequency analysis was performed to develop a hierarchical linear model of physical and sexual abuse in
female and male psychiatric patients. Backward elimination produced a model that included the main effect of sexual
abuse and the interaction effect of physical abuse and gender. The model had a likelihood ratio, c2(3) = 3.91, p = .27,
indicating a good fit between the observed frequencies and the expected frequencies generated by the model. About
38 per cent of the psychiatric patients had been sexually abused. About 53 per cent of the males had been physically
abused compared with about 39 per cent of the females.
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Summary of SPSS Statistics steps for log-linear analysis

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variable name in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Loglinear’ and ‘Model Selection …’.
Move variables to the ‘Factor(s):’ box.
Select ‘Define Range’ and define range for each variable.
Select ‘Continue’ and then ‘OK’.

Output

In the ‘Step Summary’ table note the best-fitting model which is presented last and which should not be 
significant.

psychiatric patients have not been sexually abused than have been sexually abused. The two-way
table indicates that males are more likely to be physically abused than females.

It is possible to see the contribution of each component to the final mode in the step just before
the final step. The final step in this example is Step 4 in the step summary table. These entries
essentially indicate the change (reduction) in the goodness-of-fit chi-square if each component is
taken away. Thus in Step 3, it can be seen that Physical*Gender has a likelihood ratio Chi-Square
Change of 5.770 which is significant (.016). Sexual has a value of 16.485 which is very significant
(.000). Obviously these two effects cannot be eliminated from the model because of their
significant contribution.

In a hierarchical model, components of an interaction may be significant. Since
Physical*Gender has a significant contribution to the model, Physical and Gender may themselves
be significant main effects. Select ‘Model’ in the Model Selection Loglinear Analysis dialog box
(Step 2 in Section 37.8). The window that appears will allow you to test these main effects by
stipulating models containing only these particular main effects.



Multinomial logistic
regression

Overview

Logistic regression is a form of multiple regression (see Chapter 32). It identifies the variables
which collectively distinguish cases that belong to different categories of a nominal (or category)
variable. For example, it could be used to identify the differentiating characteristics of psychology,
sociology and physics students.

Put another way, logistic regression identifies groups of variables that accurately classify people
according to their membership of the different categories of a nominal variable.

Binomial logistic regression is used if there are just two categories of the variable to be predicted.
This is dealt with in Chapter 39. Multinomial logistic regression is used if there are three or more
categories.

The predictors (i.e. the independent variables) may be score variables, nominal (category or 
categorical) variables or a mixture of both.

The best predictors of which category a case belongs to have significant b weights (or regression
weights). This is much the same as for the more familiar multiple regression procedures described
in Chapter 32.

The b weights in logistic regression are actually applied to the natural logarithm of something
termed the odds ratio, which is the ratio of the frequencies for two alternative outcomes. This 
logarithm is also known as the logit. Hence the term logistic regression. The odds ratio is simply
the likelihood of being in one category rather than any of the other categories. There is little need
for most researchers to calculate these values themselves so the logit is mainly of conceptual
rather than practical importance.

It is more important to understand the concept of dummy variable. This is a device by which a 
nominal variable may be dealt with numerically. If the nominal variable has just two categories
then these may be coded numerically as 0 and 1.

However, if the nominal category has three or more categories then the process is slightly more
complex. Essentially, the data are coded for the presence or absence of each of the three (or more)

CHAPTER 38
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38.1 What is multinomial logistic regression?

Multinomial regression is a form of regression analysis. However, unlike simple regression
(Chapter 11) and multiple regression (Chapter 32) it does not use predictor (independent) vari-
ables in order to predict scores on a dependent variable. Instead it uses predictor variables to 
predict which groups individuals belong to. That is, it predicts to which nominal category an 
individual belongs. Of course, the main function of regression is mostly to simply describe the
relationship between a group of independent variables and a dependent variable – that is, to say
what the significant predictors of the dependent variable are out of a set of predictors.

Multinomial logistic regression can use score variables as predictors but also nominal (categ-
ory) variables too. Normally one would use a mixture of score variables and category variables
but the technique is very flexible in this regard. One cannot easily do this with multiple regres-
sion but multinomial logistic regression makes this simple.

Multinomial logistic regression is so called firstly because the dependent variable consists of
three or more nominal categories. There is also binomial logistic regression (Chapter 39) which
only handles nominal dependent variables which have just two categories. There is a greater
range of options with binomial logistic regression which actually make it more complex to use
on SPSS. So it is better, as a learning experience, to start with multinomial logistic regression. As
might be anticipated, logistic regression employs logarithms in the calculation. Actually, what
one is predicting is something called the logit. The logit is the natural logarithm of something
called the odds or odds ratio. This is closely related to probability but is expressed differently. If
a sample consists of 30 men and 40 women then the odds of selecting a man by chance would be

categories. In effect, three (or more) new variables are created. So if the three categories are called
A, B and C, three new variables are created:

(i) The individual is in Category A (or not).
(ii) The individual is in Category B (or not).
(iii) The individual is in Category C (or not).

Each of these three variables is a different dummy variable.

However, one dummy variable from the set is always excluded from the analysis. It does not 
matter which one. The reason is that this dummy variable contains no new information which is
not contained in the other dummy variables.

SPSS Statistics will generate dummy variables automatically for the dependent variable but needs
to be informed which of the predictor variables are nominal (category) variables.

Classification tables generated by SPSS indicate the prediction of category membership based 
on the predictor variables. This is a good indication of how good the prediction is because the
number of correct classifications is given in the table.

Logistic regression analyses contain numerous goodness-of-fit statistics based on chi-square.
These serve a number of functions, but most importantly they indicate the improvement in fit of
the predicted category membership to the actual category membership. A useful predictor should
improve the fit of the predicted membership to the actual categories cases belong to.

Multinomial logistic regression must be used when there are three or more categories for the
dependent (predicted or criterion) variable. If there are just two categories for the dependent vari-
able, then binomial logistic regression is normally used (see Chapter 39).



Table 38.1 Data for multinomial logistic regression

Age DAS* Mother Father Children’s Physical Sexual Type of
hostile hostile home abuse abuse offence

1 younger low high low no yes no rapist

2 younger low high low no yes yes rapist

3 older low high low no yes yes rapist

4 older high high high yes no no incest

5 older high high high yes yes yes rapist

6 younger low high low no no no rapist

7 older high low high no yes yes rapist

8 older high low high yes no no incest

9 younger low low high yes no yes incest

10 older high high low no yes yes incest

11 older high low low yes no yes incest

12 younger high low high no yes no rapist

13 older high low high yes no yes incest

14 older high high low yes yes yes incest

15 older low high high no yes yes incest

16 younger high high low yes no no paedophile

17 older high low high yes no yes paedophile

18 older low high high no no yes paedophile

19 younger high low high yes yes yes paedophile

20 older low low high yes no no paedophile

etc.

*Depression Anxiety Stress scale.
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30/40 = 0.75. In other words, there is 0.75 men for every woman in the sample. In truth, to carry
out logistic regression on SPSS calls for absolutely no knowledge of logarithms or odds ratios. So
if they are meaningless to you then do not worry too much.

Much more crucial in logistic regression is to understand the concept of dummy variables.
These are needed when a nominal (category) variable has three or more categories. In order to
analyse such data one has to create a new binary (yes–no) nominal variable for each category of
the nominal (category) variable. (Actually one fewer but see later.) If you had three categories of
the nominal variable colour consisting of red, yellow and blue then you would create three binary
nominal variables from this: (1) red and not red, (2) yellow and not yellow, and (3) blue and not
blue. These three categories contain as much information as was contained in the original three
category nominal variable. Actually, one of the categories is redundant since it contains no 
additional information. So if someone tells you that they are thinking of a colour which is red,
yellow or blue then you need to ask only two questions to find out definitely the colour. These
questions might be ‘Is it red?’ and ‘Is it blue?’ If the person says no to both of these questions
then you know that the colour they are thinking of is yellow. Actually, of course, it does not mat-
ter which two colours you ask about. For this reason, in multinomial logistic regression you will
find that SPSS gives you one fewer dummy variables than score variables.

Table 38.1 contains data for which a multinomial logistic regression would be appropriate
since the purpose of the research is to predict which type of sex offender a man is from six 
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predictor variables. He can be a rapist, incest offender or a paedophile. The variable Type 
of offence is clearly a nominal (category) variable with three categories. This would be turned
into two dummy variables by SPSS. These would be rapist versus non-rapist and incest offender
versus non-incest offender possibly, but which two of the three dummy variables are used
depends on how the data are coded and the options chosen in SPSS. It makes no difference which
of the three is omitted. The predictor variables in this case are all binary nominal (category) 
variables in this example but score variables could have been used as predictors just as nominal
(category) variables with three or more categories could be used. The dependent variable used
must not be a score.

The multinomial logistic regression analysis basically gives regression weights for the predictor
variables which are much the same as the weights found in multiple regression. The difference is
that in multinomial logistic regression the weights are used to predict group (category) member-
ship on the dependent variable. There will be more than one dependent variable for the simple
reason that the categories of the dependent variable will be converted to dummy variables by
SPSS. So the output looks more complex than for a multiple regression. The Wald test is used to
assess the statistical significance of the regression weight.

All predictors which consist of three or more nominal categories are turned into dummy vari-
able predictors by SPSS – except for the one which is left out because it is redundant. At first,
unless you anticipate the production of these dummy variables it is easy to get confused, so take
care. There are two more important features of the multinomial logistic regression output which
help the interpretation of the output:

Logistic regression produces pseudo R-square statistics which are analogous to the R-square
statistics in multiple regression. They give an indication of how well the model (the predictor
variables) fit the data.

Logistic regression produces a classification table which indicates the number of each group of
the dependent variable which are accurately (and not) accurately predicted to be in their actual
group (as well as those wrongly predicted to be in other groups). These tables give a concrete
indication of what is happening in the analysis.

Figure 38.1 highlights the main steps in multinomial logistic regression.

38.2 When to use multinomial logistic regression

Multinomial logistic regression is a very flexible regression procedure. The most important thing
is that the dependent variable is a nominal (category) variable with three or more categories. It
will work with a binomial dependent variable though it is probably better to use the binomial
logistic regression which has more advanced features in SPSS for this. The predictor variables can
be any mixture of score variables and nominal (category) variables. Multinomial logistic regres-
sion is useful when trying to differentiate a nominal (category) dependent variable’s categories 
in terms of the predictor variables. In the present example, the question is what differentiates
rapists, incest offenders and paedophiles.

38.3 When not to use multinomial logistic regression

There are few reasons not to use multinomial logistic regression where the dependent variable is
a nominal (category) variable with three or more categories. The predictors used can be scores
and nominal (category) variables so it is very flexible in this respect.



FIGURE 38.1 Steps in multinomial logistic regression
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In circumstances where binomial logistic regression is appropriate then this should be used in
preference simply because SPSS has more powerful procedures for the two-category case.

38.4 Data requirements for multinomial logistic regression

The dependent variable should consist of three or more nominal categories. We would not advise
the use of dependent variables with more than say five or six categories simply because of the
complexity of the output. SPSS will cope with more categories – though the researcher may not
cope with the output.

The independent variables ideally should not correlate highly (as in any regression) and it is
wise to examine the interrelationships between the independent variables when planning which
of them to put into the logistic regression analysis.
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38.5 Problems in the use of multinomial logistic regression

Multinomial logistic regression can produce a great deal of SPSS output. However, much of it is
not necessary and a good interpretation can be based on a limited number of tables. We find 
it particularly helpful to keep an eye on the classification table as this is a simple and graphic 
summary of the analysis.

SPSS procedures for the multinomial logistic regression and the binomial logistic regression are
rather different in terms of how one goes about the analysis. This can cause confusion. Even the
terminology used is different.

The major problem in our experience centres around stipulating which are score variables and
which are nominal (category) variables – or failing to differentiate between the two. The worst
situation is where SPSS believes that a score variable is a nominal (category) variable. The prob-
lem is that each value of the score variable is regarded as a different nominal category so numer-
ous dummy variables are created, to the consternation of the researcher.

You can find out more about multinomial logistic regression in Chapter 41 of Howitt, D. and Cramer, D. (2011).
Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

38.6 The data to be analysed

The use of multinomial logistic regression can be illustrated using the data described in Table
38.1 (ISP, Table 41.2). These data are from a fictitious study of the differences between rapists,
incestuous sex offenders and paedophiles. This means that the categories of offender equate to a
nominal or category variable with three different values. In this example all of the predictor vari-
ables – age, DAS (Depression, Anxiety and Stress scale), mother hostile, father hostile, children’s
home, physical abuse and sexual abuse – are nominal (category) variables with just two different
values in each case. It must be stressed that any type of variable may be used as a predictor in
multinomial logistic regression. However, the researcher needs to indicate which are score vari-
ables in the analysis.

38.7 Entering the data

These data are entered into SPSS in the usual way, with each variable being represented by a col-
umn. For learning purposes, the data have been repeated 10 times in order to have a realistic data
set for the analysis, but to limit the labour of those who wish to reproduce the analysis exactly.
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In all multinomial logistic regression analyses, dummy variables are created by SPSS. This is
always the case for the predicted variable (offence type in this case), but there may be also nom-
inal (category) predictor variables with more than two categories. If this is the case, SPSS gen-
erates new variables (dummy variables) for inclusion in the analysis. So do not be surprised to
find variables reported in the output which were not part of the data input. SPSS does not show
the dummy variables that it creates in the data spreadsheet – they are referred to in the output,
however. SPSS creates appropriate dummy variables for the dependent (criterion) variable auto-
matically based on the number of different values (categories) of that variable. The predictor or 
independent variables are also dummy coded if they are defined by the researcher as being nom-
inal (category or categorical) variables. Dummy variables are discussed in the overview and first
section at the start of this chapter and also in the accompanying statistics text (ISP, Chapter 41).

Until Release 12 of SPSS, multinomial logistic regression was available only in a rather un-
satisfactory number of options. However, from Release 12 onwards, SPSS includes a stepwise
version in which variables are selected as predictors in order of their independent predictive 
powers. In this guide we will analyse the data using stepwise multinomial logistic regression. The
findings are slightly different in detail from those of the accompanying statistics text (ISP), but
not substantially so.

38.8 Stepwise multinomial logistic regression
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38.9 Interpreting the output

The output for multinomial logistic regression is quite substantial. Of course, it is possible to
reduce the amount of output but then the researcher needs to be clear just what aspects of the
output are not necessary for their purposes. Since it is easier to ignore surplus tables than to
redo the analysis then it is better to err on the side of too much output.

It is a useful reminder to examine the table labelled Case Processing Summary. This provides
a reminder of the distributions of the categories of each of the variables in the analysis. In 
our example all of the variables simply have two categories so no dummy variables need to be
created. However, the predictor variables may have three or more categories in which case
SPSS will create appropriate dummy variables for all but one of the categories of that variable.
(This does not apply to variables defined as a covariate which are treated as score variables.)
There are, however, three different values of the criterion variable of offence type – rapists,
incestuous offenders and paedophiles – and SPSS will create two dummy variables from these
three categories.
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The Step Summary table essentially gives the sequence of Variables entered into the stepwise
multiple regression.

Remember that in stepwise analyses the predictors are selected in terms of their (distinct) pre-
dictive power. So the best predictor is selected first, adjustments made, and the remaining best
predictor selected second, and so forth. There is a Step 0 which contains only the intercept of
the regression line. Steps 1 to 4 in this example add in the strongest predictors in turn. The
variable ‘childhom’ (children’s home) is added in Step 1, age in Step 2. ‘physabus’ (physical
abuse) in Step 3 and ‘sexualab’ (sexual abuse) in Step 4. Each of these produces a significantly
better fit of the predicted (modelled) data to the actual data. This can be seen from the lower-
ing values of the -2 log likelihood values (which are chi-square values) given in the table. Each
of these changes is significant in this example, meaning that none of the predictors may be
dropped without worsening the accuracy of the classification.

The Model Fitting table gives the value of the -2 log-likelihood chi-square for the fit of the
model (i.e. the significant predictors plus the intercept). This value is significant in this case. 
It merely is an indication that the model (predictor variables) does not completely predict the
actual data. In other words, the prediction is less than complete or partial. Clearly, there are
other factors which need to be taken into account to achieve a perfect fit of the model to the
data. This will normally be the case.
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The table of the Pseudo R-square statistics merely confirms this. The R-square statistic gives
the combined correlation of a set of predictors with the predicted variable for score data. 
The Pseudo R-square is analogous to this in interpretation but is used when it is not possible
to accurately compute the R-square statistic itself as in the case of logistic regression. As can
be seen, there are three different methods of calculation used. They are all indicators of the
combined relationship of the predictors to the category variable. A value of 0 means no 
multiple correlation, a value of 1.00 means a perfect multiple correlation. Values of around
0.5 are fairly satisfactory as they indicate an overall combined correlation of the predictor 
variables with the predicted variable of around 0.7. (This is obtained by taking the square 
root of 0.5).

The table of the Likelihood Ratio Tests tells us what happens to the model if we remove each
of the predictor variables in turn. The model is merely the set of predictors which emerge 
in the analysis. In this case we have four predictors as already described. In each case there 
is a significant decrement in the fit of the predicted data to the actual data following the 
dropping of any of the predictors. In other words, each of the predictors is having a significant
effect and normally should be retained. Of course, should the researcher have good reason
then any predictor can be dropped though it is recommended that inexperienced researchers
do not do this.
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The table of the Parameter Estimates basically gives the Intercept and the regression weights
for this multinomial regression analysis. The intercept value is clear at .088 for Rapists. But
notice a number of things. The dependent variable (offence type) which has three categories
has been turned into two dummy variables Rapists (versus the other two groups) and
Incestuous Child Molester (versus the other two groups).



The classification table is very important and gives the accuracy of the predictions based on
the Parameter Estimates. This cross-tabulation table indicates what predictions would be made
on the basis of the significant predictor variables and how accurate these predictions are. As
can be seen, the predictions are very accurate for Rapists and to a lesser degree for the
Incestuous Child Molesters. However, the classification is poor for Paedophiles.
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Remember that the number of dummy variables is given by the number of categories minus
one. There are three offender categories so two dummy variables. The dummy variables are
created by taking one of the three offender categories and contrasting this with the remaining
offender categories. In our example, we have Rapists versus Incestuous Child Molesters and
Paedophiles, Incestuous Child Molesters versus Rapists and Paedophiles, and Paedophiles 
versus Rapists and Incestuous Child Molesters. The choice of which of the possible dummy
variables to select is arbitrary and can be varied by selecting ‘Custom/Stepwise’ in Step 3 of
Section 38.8. Also notice that the variables have been given two regression weights – a differ-
ent one for each value. However, one of the pair is always 0 which essentially means that no
contribution to the calculation is made by these values. The significance of each of these regres-
sion weights is given in one of the columns of the table. Significance is based on the Wald value
which is given in another column. Do not worry too much if you do not understand this too
clearly as you will not need to do any actual calculations.

This is explained in more detail in Chapter 41 of Howitt, D. and Cramer, D. (2011). An Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

The Observed and Predicted Frequencies Table is probably most useful to those who have a
practical situation in which they wish to make the best prediction of the category based on the
predictor variables. The table gives every possible pattern of the predictor variables (SPSS calls
them covariates) and the actual classifications in the data for each pattern plus the most likely
outcome as predicted from that pattern. In other words, the table could be used to make pre-
dictions for individual cases with known individual patterns.
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Summary of SPSS Statistics steps for multinomial logistic
regression

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variables names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’, and ‘Multinomial Logistic …’.
Move the dependent variable to the ‘Dependent:’ box and the independent variables to the ‘Factor(s):’ box.
Select ‘Model’, ‘Custom/Stepwise’, move each of the predictors to the ‘Stepwise Terms:’ box and then
select ‘Continue’.
Select ‘Statistics …’, ‘Cell probabilities’, ‘Classification table’, ‘Goodness-of-fit’, ‘Continue’ and ‘OK’.

Output

The ‘Step Summary’ table presents the significant predictors in order with the best first.
The ‘Parameter Estimates’ table gives the regression weights for the predictors together with their statist-
ical significance.

REPORTING THE OUTPUT
There is no conventional method of reporting the findings succinctly for a multinomial logistic regression. If the technique
has been used for previous studies in the chosen area of research then the reporting methods used in those studies might
be adopted.

For the data analysed in this chapter, it is clear that there is a set of predictors which work fairly effectively in part. One
way of reporting these findings would be as follows:

Multinomial logistic regression was performed to establish what characteristics distinguish the three different types 
of offender. Out of the seven predictor variables included in the analysis, four were shown to distinguish the different
types of offender to a degree. Rapists were correctly identified as such in 85.7 per cent of cases, Incestuous Child
Abusers were correctly identified in 62.5 per cent of instances, but paedophiles were correctly identified in only 
40.0 per cent of instances. Paedophiles tended to be misclassified as Incestuous Child Abusers very often. The 
predictors which distinguished rapists from others the best were time spent in a children’s home (b = -1.97), 
physical abuse (b = 20.17) and sexual abuse (b = -18.40). The last is not reported as significant as such in the table.
No significance is given. However, paedophiles were best distinguished from the other two groups by age (b = -1.96)
and father’s hostility (b = -1.48).

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

Binomial logistic regression may be regarded as a special case of multinomial logistic regression,
which was described in Chapter 38. The major difference is that it differentiates the character-
istics of people in just two different groups.

SPSS Statistics has a much more extensive repertoire of regression techniques for binomial logis-
tic regression although Releases 12 and onwards of SPSS have introduced a little more flexibility
to its multinomial logistic regression procedures.

Binomial logistic regression is a form of multiple regression. It identifies patterns of variables
which can effectively differentiate between the members of two different categories. That is, 
binomial logistic regression predicts category membership as opposed to a score as in the case 
of multiple regression (Chapter 32). For example, one could use it to examine the pattern of vari-
ables which best differentiates male from female participants in a study of reasons for seeking
medical advice. There may be a different pattern of reasons why men go to a doctor from the pattern
of reasons why women go to a doctor.

Another way of putting this is that binomial logistic regression uses predictor variables to predict
the most likely category of the dependent variable to which different individuals belong.

The binomial logistic regression procedure calculates b weights (or regression weights) much as
in multiple regression (Chapter 32). The big difference is that in binomial logistic regression these
b weights are not applied to predict scores. Instead they are applied to something called the logit
which is the natural logarithm of the odds ratio. The odds ratio is rather like a probability. It is sim-
ply the ratio of the numbers in one category to the number of cases in the other category. The logit
(and natural logarithms for that matter) generally is not crucial to a researcher’s use of binomial
logistic regression so does not require detailed understanding.

Although the categories are always a binomial (binary or two-value) category variable, the other
variables in the analysis may be score variables, nominal (category or categorical) variables or a
mixture of both.

Any category variable which has more than two categories is automatically turned into a set of
dummy variables by SPSS. Each dummy variable consists of one of the categories of the variable

Binomial logistic
regression

CHAPTER 39
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versus all of the rest of the categories. There are as many dummy variables as categories. For 
technical reasons, one of the possible dummy variables is arbitrarily omitted from the binomial
logistic regression. This is because it contains no new information which is not already contained
in the other dummy variables.

Binomial regression, for example, can proceed using stepwise procedures, forward entry of poor
predictors, backward elimination of poor predictors and so forth. The choice of the type of model
to use is often a rather subtle matter. Stepwise procedures gradually build up the model by select-
ing on a step-by-step basis variables which are good at differentiating between the members of
the two categories of the dependent variable. Forward entry means that at each step the computer
finds the best remaining variable for differentiating between the two categories. If it does not meet
certain requirements in terms of predictive (or classificatory) power then it is not entered into the
model. For many purposes, stepwise forward entry is a good choice in psychology.

Much of the binomial logistic regression output from SPSS consists of indicators of how well the
modelled data (the category membership predicted by the predictor variables) fits the actual data
(the actual category which the individual belongs to). These are based on chi-square for the most
part. A useful predictor should improve the fit of the predicted membership to the actual categ-
ories cases belong to.

More directly understood are the classification tables generated by SPSS which indicate how well
the predictions match the actual classifications.

39.1 What is binomial logistic regression?

Binomial logistic regression is more or less the same as multinomial logistic regression with the
sole difference that the dependent variable consists of two nominal categories. Apart from that
most things are identical – except for, unfortunately, the SPSS procedure which is frustratingly
different for the two. Any type of variable – scores or nominal (category) – may be used as the
predictor variables in binomial logistic regression. However, in our example in Table 39.1, 
we have used very simple variables such as age, previous imprisonment, treatment, contrition,
marital status and whether or not the offender is a sex offender. We have also used a binomial
variable as the dependent variable, of course. In this case it is where the offender goes on to be a
repeat offender (i.e. recidivist). All of these are binomial nominal variables though they do not
have to be, except for the dependent variable. We can use score variables, which are defined as
covariates in SPSS, as some or all of our predictor variables. We can also use nominal (category)
variables with three or more different values (categories). In this case, SPSS recodes the variable
into a number of dummy variables automatically as was the case with multinomial logistic regres-
sion in the previous chapter. This means that the set of predictor variables is actually greater than
the initial number of variables in the data. If we had a variable such as type of crime with the 
categories sex crime, violent crime and theft then, in theory, we could create three dummy vari-
ables. These would be:

Dummy variable 1 = sex crime or not

Dummy variable 2 = violent crime or not

Dummy variable 3 = theft or not
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Table 39.1
Data for the study of recidivism – the data from 19 cases is reproduced five times to give realistic sample sizes
but only to facilitate explanation

Recidivism Age Previous prison Treatment Contrite Married Sex offender

1 yes younger yes no no no yes

2 yes older yes no no no yes

3 yes older yes yes no no yes

4 yes older yes yes no yes no

5 yes younger yes no no no no

6 yes younger no yes yes no no

7 yes older no yes yes yes yes

8 yes younger yes no no no yes

9 yes younger no no no yes yes

10 yes older no no no no no

11 no younger no yes yes no no

12 no older no yes yes no no

13 no older yes yes yes yes yes

14 no younger no yes yes yes yes

15 no younger no yes yes no yes

16 no younger no no yes yes no

17 no older no no no yes no

18 no older yes yes yes no no

19 no older yes yes yes no no

It really is as simple as that to create dummy variables. There is just one complication to note
which confirms what was discussed in the previous chapter. One of the dummy variables con-
tains no new information if we know a person’s values for the other two dummy variables. So,
if we know that someone has not committed a sex crime and we know that they have not com-
mitted a violent crime then they must have committed a theft. Since they are all offenders, this is
a simple logical assessment. Because one of the dummy variables is always repetitive and redund-
ant, in logistic regression there is always one fewer than the maximum number of dummy vari-
ables. SPSS chooses this arbitrarily unless the user stipulates otherwise.

Table 39.2 demonstrates one way of coding the data ready for the computer analysis. It is best
to enter data numerically into SPSS so each value of each variable is given a numerical code. 1s
and 0s have been used in every case to indicate the presence or absence of a characteristic. The
values would be given value labels in SPSS so as to make the output as clear as possible.

Binomial logistic regression in SPSS has a good variety of analysis options, most of which are
unavailable on multinomial logistic regression. Beginners will find the range a little bewildering
and many of the options will be of no interest to many researchers. Choosing the appropriate
options (what some would refer to as the appropriate model) depends very much on the purpose
of one’s analysis and only the researcher knows this. Generally speaking, if the sole purpose of
the analysis is to obtain the best set of predictors to categorise people then it is sufficient to enter
all of the predictors at the same time – SPSS merely takes the variables in the order they are listed.
However, more typically the researcher is trying to build up a theoretical/conceptual explanation
as in this example of why some offenders reoffend. In these circumstances, the researcher may
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Table 39.2 Data from Table 39.1 coded in binary fashion as 0 and 1 for each variable

Recidivism Age Previous prison Treatment Contrite Married Sex offender

1 1 0 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 0 0 1

4 1 1 1 1 0 1 0

5 1 0 1 0 0 0 0

6 1 0 0 1 1 0 0

7 1 1 0 1 1 1 1

8 1 0 1 0 0 0 1

9 1 0 0 0 0 1 1

10 1 1 0 0 0 0 0

11 0 0 0 1 1 0 0

12 0 1 0 1 1 0 0

13 0 1 1 1 1 1 1

14 0 0 0 1 1 1 1

15 0 0 0 1 1 0 1

16 0 0 0 0 1 1 0

17 0 1 0 0 0 1 0

18 0 1 1 1 1 0 0

19 0 1 1 1 1 0 0

wish to give some variables priority in the analysis. This involves entering the predictors hier-
archically in blocks. Furthermore, one needs to identify the best predictors. The variables may be
entered in step-by-step form, in which the best predictor is taken first, then the next remaining
best predictor entered second (allowing for correlations between predictors), and so forth until
no significant improvement in prediction is achieved.

An alternative is to enter all of the predictors initially, then drop predictors one by one 
(backwards elimination). If dropping the weakest predictor significantly reduces the accuracy of
the prediction then it should be retained. However, it can be eliminated if dropping it makes no
change to the accuracy of the prediction. The process goes on step by step by examining the effect
of removing the weakest predictor in the remaining set. There is only one complication of note –
that is eliminated predictors can return to the set of predictors if the elimination of another vari-
able results in the previously eliminated variable increasing its independent predictive power.

Backwards elimination is not better than other approaches. It largely does the job in a differ-
ent way. It does not necessarily give exactly the same findings as other methods either – it is 
simply one reasonable and appropriate approach to the data.

Binary logistic regression produces weights for a set of predictor variables. The Wald test is
the test of significance of these. The computer can also classify participants in terms of the 
accuracy of the predictions made as to which of the two categories of the dependent variable 
they belong to. You may find these categorisation tables very helpful in understanding what is
happening in the analysis. Figure 39.1 highlights the steps in binomial logistic regression.



39.5 PROBLEMS IN THE USE OF BINOMIAL LOGISTIC REGRESSION 393

39.2 When to use binomial logistic regression

Binomial logistic regression helps the researcher decide which of a set of predictor variables best
discriminates two groups of participants. For example, which of our variables best discriminates
male and female participants. More generally, it can be regarded as an example of a regression
procedure but designed for situations where the dependent variable simply has two categories.

39.3 When not to use binomial logistic regression

There are no major circumstances which would argue against the use of binomial logistic regres-
sion except where there is just a single predictor variable. Also your predictor variables should
not be highly correlated with each other as in any regression. Avoid throwing every independent
variable into the analysis without careful thought in advance. Usually it is better to be selective
in the choice of predictors in any form of regression.

39.4 Data requirements for binomial logistic regression

The dependent variable should have just two nominal categories, whereas the predictor variables
can be any sort of variable including score variables. A participant may be only one category of
the independent and dependent variable or contribute just a single score to score variables.

39.5 Problems in the use of binomial logistic regression

As with multinomial logistic regression, binomial logistic regression produces a great deal of SPSS
output for most analyses, just a part of which may be useful to a researcher. Learning to identify
the crucial aspects of the output is as essential here as with any other sort of SPSS analysis.

FIGURE 39.1 Steps in binomial logistic regression
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There is a confusing dissimilarity between how multinomial logistic regression and the bino-
mial logistic regression are computed on SPSS and they do not use consistent terminology.

Score variables can cause problems if the researcher fails to tell SPSS that a particular variable
is not a nominal (category) variable but it is a score. This is because SPSS will consider each dif-
ferent score mistakenly as a separate nominal category. Thus huge amounts of output may occur
when the proper identification is not made.

You can find out more about binomial logistic regression in Chapter 42 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.

39.6 The data to be analysed

The example we will be working with is a study of the variables which might be used to help
assess whether a prisoner is likely to reoffend or not reoffend after leaving prison. Reoffending is
known as recidivism. The data from the study are shown in Table 39.2 (ISP, Table 42.5). For
pedagogical purposes and the convenience of those who wish to follow our steps on a computer,
the 19 cases are reproduced five times. As can be seen, recidivism is a binomial category variable
– in a given period of time, a prisoner either reoffends or does not. Since the purpose of our 
analysis is to find the pattern of variables which predict which of these two categories a prisoner
will fall then this is an obvious set of data for the binomial logistic regression.

39.7 Entering the data
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39.8 Binomial logistic regression
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39.9 Interpreting the output
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REPORTING THE OUTPUT
One way of reporting the findings of this analysis is as follows: 

Using the conditional backward elimination model, characteristics differentiating prisoners who reoffend after release
from those who do not reoffend were investigated. The final regression model indicated that younger offenders, those
with a previous history of prison, those who were not contrite about their offences, and those who were not sex 
offenders were more likely to reoffend. Age was a significant predictor at the .05 level. The Cox and Snell pseudo 
r-square was .53, indicating that the fit of the model to the data was only moderate. This model was almost equally
accurate for reoffending (88.9 per cent correct) as for non re-offending (90.0 per cent).
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Summary of SPSS Statistics steps for binomial logistic
regression

Data

Name the variables in ‘Variable View’ of the ‘Data Editor’.
Enter the data under the appropriate variables names in ‘Data View’ of the ‘Data Editor’.

Analysis

Select ‘Analyze’, ‘Regression’ and ‘Binary Logistic …’.
Move the dependent variable to the ‘Dependent:’ box, the predictors to the ‘Covariate(s):’ box and select
‘Categorical …’.
Move the categorical predictors to the ‘Categorical Covariate(s):’ box and select ‘Continue’.
Select the ‘Method:’ of entry from the dropdown menu next to this option (e.g. ‘Backward conditional’) and
‘OK’.

Output

Check the way the dependent variable has been coded in the ‘Dependent Variable Encoding’ table.
Note the predictors in the ‘Variables in the Equation’ table for the final model and the direction of the asso-
ciation for the regression weights.
Note the percentage of cases correctly identified in the ‘Classification Table’ for this model.

For further resources including data sets and questions, please refer to the website accompanying this book.
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PART 7





Reading ASCII or text files
into the ‘Data Editor’

Overview

Sometimes you have a computer file of data which you wish to use on SPSS Statistics. This chap-
ter tells you how to use data not specifically entered into the SPSS ‘Data Editor’ spreadsheet.

Although student work will rarely require the use of ASCII files, there are a number of databases of
archived data which researchers may wish to analyse.

It is worth noting that sometimes data from other spreadsheets can be entered into SPSS. For
example, data from Excel spreadsheets can simply be copied and pasted into SPSS though not the
spreadsheet in its entirety. SPSS data can be saved as an Excel file.

40.1 What is an ASCII or text data file?

SPSS Statistics is obviously one of many different computer programs for analysing data. There
are circumstances in which researchers might wish to take data sets which have been pre-
pared for another computer and run those data through SPSS Statistics. It can be expensive in
time and/or money to re-enter data, say, from a big survey into the ‘Data Editor’ spreadsheet.
Sometimes, the only form in which the data are available is as an archived electronic data file.
The original questionnaires may have been thrown away. No matter the reason for using an
imported data file, SPSS Statistics can accept files in other forms. In particular, data files are some-
times written as simple text or ASCII files, as these can be readily transferred from one type of
computer to another. ASCII stands for American Standard Code for Information Interchange. To
analyse an ASCII data file you first need to read it into the ‘Data Editor’.

Suppose, for example, that you had an ASCII data file called ‘data.txt’ which consisted of the
following numbers:

1118
2119
3218

Obviously you cannot sensibly use an ASCII file until you know exactly where the information
for each variable is. However, we do know where and what the information is for this small file.

CHAPTER 40



FIGURE 40.1 Why use ASCII and other files?
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The figures in the first column simply number the three different participants for whom we have
data. The values in the second column contain the code for gender, with 1 representing females
and 2 males. While the values in the third and fourth column indicate the age of the three 
people. Figure 40.1 highlights issues in using ASCII and other files. We would carry out the fol-
lowing procedure to enter this ASCII data file into the ‘Data Editor’.

40.2 Entering data into an ASCII or text data file
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Summary of SPSS Statistics steps for inputting an ASCII or 
text data file

Data

Select ‘File’ and ‘Read Text data …’.
Select the ▼ button of the ‘Look in:’ box to find the data file.
Select the file and then ‘Open’.
Select ‘Next >’, ‘Next >’, and ‘Next >’.
Click after the appropriate number of columns for each variable.
Select ‘Next >’, ‘Next >’, and ‘Finish’.
The data will appear in the ‘Data Editor’.

For further resources including data sets and questions, please refer to the CD accompanying this book.



Overview

Sometimes in research, you may not have a complete set of data from each participant. Missing
values tells the computer how to deal with such situations.

Missing values can also be used to instruct the computer to ignore cases with a particular value(s)
on particular variables.

Typically, when coding the variables for entry into the SPSS Statistics spreadsheet, the researcher
chooses a distinctive value to denote a missing value on that variable. This value needs to be out-
side the possible range of actual values found in the data. Typically, numbers such as 9, 99 and
999 are used for missing values.

It is possible to have more than one missing value for any variable. For example, the researcher
may wish to distinguish between circumstances in which the participant refused to give an answer
to a questionnaire and cases where the interviewer omitted the question for some reason.

One needs to be very careful when using missing values on SPSS. If a value has not been identi-
fied as a missing value for a particular variable, the computer will analyse what the researcher
intended as a missing value as a real piece of data. This can seriously and misleadingly distort the
analysis.

Missing values can be used in two main ways. In listwise deletion the case is deleted from the
analysis if any missing values are detected for that case. This can rapidly deplete the number of
participants in a study.

The alternative is to simply delete the case from analyses involving pairs of variables for which
there is a missing value (pairwise deletion).

It is better to specify missing values as a value rather than type nothing under an entry. This is
because typos made when typing in the data are too easily confused for an actual missing value.

Missing values

CHAPTER 41



Table 41.1 Scores on musical ability and mathematical ability for 10 children with their gender and age

Music score Mathematics score Gender Age

2 8 1 10

6 3 1 9

4 9 2 12

5 7 1 8

7 2 2 11

7 3 2 13

2 9 2 7

3 8 1 10

5 6 2 9

4 7 1 11
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41.1 What are missing values?

When collecting data, information for some of the cases on some of the variables may be missing.
Take, for example, the data in Table 41.1, which consists of the music and mathematics scores
of 10 children with their code for gender and their age in years. There is no missing information
for any of the four variables for any of the 10 cases. But suppose that the first two cases were away
for the music test so that we had no scores for them. It would be a pity to discard all the data for
these two cases because we have information on them for the other three variables of mathem-
atics, gender and age. Consequently we would enter the data for these other variables. Although
we could leave the music score cells empty for these two cases, what we usually do is to code
missing data with a number which does not correspond to a possible value that the variable could
take. Suppose the scores for the music test can vary from 0 to 10. Any number, other than 0 to
10 which are real scores, can be used to signify a missing value for the music test. We will use the
number 11 as the code for a missing music score so that the values in the first two rows of the
first column are 11. Additionally, it is assumed that the age for the third case is missing. The num-
ber 0 is the code for an age when the data are missing. Now we need to tell SPSS how we have
coded missing data. If we do not do this, then SPSS will read these codes as real numbers.

Missing values can also be used to tell the computer to ignore certain values of a variable
which you wish to exclude from your analysis. So, for example, you could use missing values in
relation to chi-square to get certain categories ignored. Leaving a cell blank in the ‘Data Editor’
spreadsheet results in a full stop (.) being entered in the cell if it is part of the active matrix 
of entries. On the output these are identified as missing values but they are best regarded as 
omitted values. We would recommend that you do not use blank cells as a way of identifying
missing values since this does not distinguish between truly missing values and keyboard errors.
Normally, substantial numbers and distinctive numbers such as 99 or 999 are the best way of
identifying a missing value.

SPSS offers two options for analysing data with missing values. One, listwise, ignores all of the
data for an individual participant if any of the variables in the particular analysis has a missing
value. This is the more extreme version. Less extreme is pairwise deletion of missing data since
the data are ignored only where absolutely necessary. So if a correlation matrix is being com-
puted, the missing values are ignored only for the correlations involving the particular variables
in question. There is a limit to the number of missing values that can be included for any vari-
able on SPSS. Figure 41.1 highlights some issues in using missing values.



FIGURE 41.1 Why use missing values?
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41.2 Entering the data

Select the file from Chapter 10 or 11 if you saved it and enter the new data as follows. Otherwise
enter the data as follows.



412 CHAPTER 41 MISSING VALUES

41.4 Pairwise and listwise options

We will illustrate some of the options available when you have missing data with the Correlate
procedure, although similar kinds of options are available with some of the other statistical 
procedures.

41.3 Defining missing values
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41.5 Sample output for pairwise deletion



REPORTING THE OUTPUT
Remember to report the actual sample sizes (or degrees of freedom) used in reporting each statistical analysis rather than
the number of cases overall.
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Pairwise deletion means that a correlation will be computed for all cases which have non-
missing values for any pair of variables. Since there are two missing values for the music test
and no missing values for the mathematics test and gender, the number of cases on which these
correlations will be based is 8. Since one value for age is missing for another case, the number
of cases on which the correlation between music scores and gender is based is 7. As there are
no missing values for the mathematics test and gender, the number of cases on which this cor-
relation is based is 10. Finally, the number of cases on which the correlation between the math-
ematics score and age is 9 since there is one missing value for age and none for mathematics.

Notice that the number of cases varies for pairwise deletion of missing values.

41.6 Sample output for listwise deletion

In listwise deletion, correlations are computed for all cases which have no missing values on
the variables which have been selected for this procedure. In this example, the number of cases
which have no missing values on any of the four variables selected is 7.

Notice that the number of cases does not vary in listwise deletion of missing values.

41.7 Interpreting the output

There is little in the output which has not been discussed in other chapters. The only thing to bear
in mind is that the statistics are based on a reduced number of cases.
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Summary of SPSS Statistics steps for handling missing values

Data

In ‘Variable View’ of the ‘Data Editor’ select the right-hand side of the cell of the appropriate variable in the
‘Missing’ column.
Select ‘Discrete missing values’ and enter in the box/es below the values used to indicate missing values.
Select ‘OK’.
This cell can be copied and pasted in other cells to provide the same missing values.

Analysis

In many of the analysis procedures you can select either ‘Exclude cases listwise’ or ‘Exclude cases pairwise’.

Output

If there is missing data and ‘Exclude cases pairwise’ is selected, the number of cases for the analyses 
carried out in a single step may differ.
For example, in a correlation analysis involving three or more variables the number of cases for pairs of vari-
ables may differ.
If ‘Exclude cases listwise’ is selected, the number of cases is the same for all pairs of variables and will be
smaller.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

From time to time researchers need to alter how certain values of a variable are recorded by the
computer. Perhaps several different values need to be combined into one.

The recoding values procedure allows you considerable flexibility to easily modify how any value
has been coded numerically.

Because SPSS Statistics can quickly recode values, it is good practice to enter as much data as
possible in their original form. This leaves the researcher with the greatest freedom to recode the
data. If data have been recoded by the researcher prior to entry into the SPSS data spreadsheet, it
is not possible to try an alternative coding of the original data. For example, if all of the scores are
entered for a measure of extraversion for each participant, SPSS can be used to recode the entries
(such as reversing the scoring of an item) or to compute a total based on all or some of the
extraversion items. If the researcher calculates a score on extraversion manually before entering
this into SPSS, it is not possible to rescore the questionnaire in a different way without adding the
original scores.

It is usually best to keep your original data intact. So always make sure that you create a brand
new variable (new column) for the recoded variable. Do not use the original variables unless you
are absolutely certain that you wish to change the original data forever.

42.1 What is recoding values?

Sometimes we need to recode values for a particular variable in our data. There can be many rea-
sons for this, including the following:

To put together several categories of a nominal variable which otherwise has very few cases.
This is commonly employed in statistics such as chi-square.

To place score variables into ranges of scores.

To combine items to form an overall score (see Chapter 43) where some items need to be
scored in the reverse way.

Recoding values

CHAPTER 42



Table 42.1 Scores on musical ability and mathematical ability for 10 children with their gender and age

Music score Mathematics score Gender Age

2 8 1 10

6 3 1 9

4 9 2 12

5 7 1 8

7 2 2 11

7 3 2 13

2 9 2 7

3 8 1 10

5 6 2 9

4 7 1 11

FIGURE 42.1 Why recode values?
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We may wish to categorise our sample into two or more groups according to some variable such
as age or intelligence. The recoding of cases can be illustrated using the data in Table 42.1, which
shows the music and mathematics scores of 10 children together with their code for gender and
their age in years. These values are the same as those previously presented in Table 40.1. Suppose
that we wanted to compute the correlation between the music and mathematics scores for the
younger and older children. To do this, it would first be necessary to decide how many age groups
we wanted. Since there are only 10 children then one might settle for two groups. Next the cut-
off point in age which divide the two groups has to be decided. As it would be good to have the
two groups of similar size, age 10 would make a good cutoff point with children younger than
10 falling into one group and children aged 10 or more into the other group. SPSS can be used
to recode age in this way. Figure 42.1 highlights some issues in recoding values.
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42.2 Entering the data

Select the file from Chapter 41 or from Chapters 10 or 11 if you saved it and make the changes
shown below. Otherwise enter the new data as follows.

42.3 Recoding values
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With a complex set of data it is very easy to forget precisely what you have done to your data.
Recoding can radically alter the output from a computer analysis. You need to carefully check
the implications of any recodes before reporting them.
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42.4 Recoding missing values

Note that if there are missing values (as for ‘age’ in Section 42.2, Step 1) it is necessary to code
these by selecting ‘System- or user-missing’ in the ‘Old Value’ section of the ‘Recode into
Different Variables: Old and New Values’ sub-dialog box and selecting ‘System-missing’ in the
‘New Value’ section.

Always check that your recoding has worked as you intended by comparing the old and new
values in the data editor for each new value for one or more cases.

42.5 Saving the Recode procedure as a syntax file

You need to keep a note of how any new variables were created. The simplest way to do this is
to write it down. Another way is to save what you have done as a syntax command by using the
‘Paste’ option in the main box of the procedure (see Step 7 in Section 42.3). The syntax for this
procedure is shown below.

Save this command as a file. You could use this file to carry out this procedure on data sub-
sequently added to this file or on new data with the same variables and variable names. Before
Windows was developed SPSS commands were carried out with this kind of syntax command.

To check out this procedure select the column in ‘Data View’ containing recoded age and
delete it.

Select the Syntax window, select the whole of the command in it and run it with the button
on the toolbar shown above.

42.6 Adding some extra cases to Table 42.1

▼
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Summary of SPSS Statistics steps for recoding values

Data

Select ‘Transform’ and ‘Recode into Different Variables …’.
Select variable and the button to put variable into the ‘Numeric Variable 6 Output Variable:’ box.
Type in the name of the new variable in the ‘Name:’ box.
Select ‘Change’ to add this new name to the ‘Numeric Variable 6 Output Variable:’ box.
Select ‘Old and New Values …’.
Type in ‘Old Value’ and then ‘New Value’.
Select ‘Add’.
Repeat for other values.
When finished, select ‘Continue’ and ‘OK’.
Check recoding has been done correctly.
Save procedure as a Syntax file by selecting ‘Transform’, ‘Recode into Different Variables …’ and ‘Paste’.
Label Syntax file.

▼

42.7 Running the Recode syntax command

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

Computing new variables allows you to add, subtract, etc. scores on several variables to give you
a new variable. For example, you might wish to add together several questions on a questionnaire
to give an overall index of what the questionnaire is measuring.

One of the few disadvantages of SPSS Statistics is that no record is kept as to how the new vari-
able was calculated in the first place. There are three ways of doing this: one can keep a detailed
written record of the formula used to compute the new variable; if it is simple enough, the variable
label could be used to describe what it is; the syntax command can be saved.

When computing new variables, it is generally a wise precaution to do a few hand checks of cases.
It is easy to inadvertently enter an incorrect formula which then gives a new variable which is not
the one that you think you are creating.

Computing a scale score
with no missing values

43.1 What is computing a scale score?

When analysing data we may want to form a new variable out of one or more old ones. For
example, when measuring psychological variables, several questions are often used to measure
more or less the same thing such as the following which assess satisfaction with life:

I generally enjoy life

Some days things just seem to get me down

Life often seems pretty dull

The future looks hopeful.

Participants are asked to state how much they agree with each of these statements on the fol-
lowing four-point scale:

1: Strongly agree 2: Agree 3: Disagree 4: Strongly disagree

CHAPTER 43



Table 43.1 Life satisfaction scores of three respondents

Enjoy life (recode) Get me down (no recode) Dull (no recode) Hopeful (recode)

Respondent 1 Agree Agree St. disagree Agree
(2 recoded as 3) (2) (4) (2 recoded as 3)

Respondent 2 Disagree Disagree Agree St. disagree
(3 recoded as 2) (3) (2) (4 recoded as 1)

Respondent 3 St. agree Disagree Disagree Disagree
(1 recoded as 4) (3) (3) (3 recoded as 2)

FIGURE 43.1 Why compute a new scale score?
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These items could be used to determine how satisfied people are with their lives by adding up
each participants’ responses to all four of them.

Notice a problem that frequently occurs when dealing with questionnaires: if you answer
‘Strongly agree’ to the first and fourth items you indicate that you enjoy life, whereas if you
answer ‘Strongly agree’ to the second and third items you imply that you are dissatisfied with life.
We want higher scores to denote greater life satisfaction. Consequently, we will reverse the scor-
ing for the first and fourth items as follows:

1: Strongly disagree 2: Disagree 3: Agree 4: Strongly agree

The ‘Recode’ procedure described in Chapter 42 can be used to recode the values for the first and
fourth items. Figure 43.1 outlines some issues in computing new scale score.

The data in Table 43.1 show the answers to the four statements by three individuals, and the
way in which the answers to the first and fourth items have to be recoded. We will use these data
to illustrate the SPSS procedure for adding together the answers to the four statements to form
an index of life satisfaction.
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43.3 Displaying variable labels in dialog boxes

For most purposes it is sufficient to give your variables short names. However, when inputting
questionnaire items it may be useful to type in or paste the complete item. This is particularly use-
ful when seeing which items correlate or load most highly on a factor (Chapter 30) as it enables
you to see at the same time the wording of the item in the output. This makes it easy to see what
the factor seems to be measuring.

It is generally not useful to display a long variable label in a dialog box as only part of the label
is displayed because of the limited size of the text box. Furthermore, when creating new variables
as in Compute it is very difficult to see what you are doing. This is shown in the dialog box below,
which is otherwise the same as the dialog box in Step 2a in Section 43.4.
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The variable labels can be either displayed or not displayed in a dialog box using the following
procedure.
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43.4 Computing a scale score
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43.6 Adding some extra cases to Table 43.1

43.7 Running the Compute syntax command

43.7 RUNNING THE COMPUTE SYNTAX COMMAND 429

43.5 Saving the Compute procedure as a syntax file



For further resources including data sets and questions, please refer to the webstie accompanying this book.
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Summary of SPSS Statistics steps for computing a scale score
with no missing values

Data

Select ‘Transform’ and ‘Compute Variable …’.
Type a name for the new scale variable in the box under ‘Target Variable:’.
Either type in or select the terms of the expression in the ‘Numeric Expression:’ box, e.g. mean(q1, q2, etc.).
Select ‘OK’.
Check the computation is correct.
Save procedure as a Syntax file by selecting ‘Transform’, ‘Compute Variable …’ and ‘Paste’.
Label Syntax file.



Overview

Some of the data which go to make up a variable such as the score for an attitude or personality
scale may be missing or unclear for some of your participants. For example, a few participants may
have accidentally ticked or marked two of the Likert responses for the same item and not ticked
an answer for the next item. In a situation like this, we would have to code the answers for these
two items as missing (see Chapter 41) as we do not know what they are.

If a large amount of data like this was missing for a participant, then it is better to discard the data
for this participant. However, if only a small amount of data like this was missing it would be bet-
ter not to discard these participants but to use what data we have. We could work out the mean
score for these participants based on the items we have values or answers for.

If we were working in terms of total scores rather than mean scores, then we could convert these
mean scores into total scores by multiplying the mean score by the number of items for that scale.

Computing a scale score
with some values missing

44.1 What is computing a scale score with some values missing?

When we collect data, some items may be missing or it may not be clear what the data are. When
we have a measure which is based on a number of values and some of those values are missing,
then we have to decide what we are going to do in those circumstances. For example, we may be
interested in measuring how quickly people respond. In order to obtain a reliable measure of their
reaction time, we may obtain their reaction time to a signal on 10 separate trials and take their
mean time for those 10 occasions. Now some people on some occasions may react before the 
signal has been given so that they have unrealistically fast reaction times. We would want to
exclude these ‘false starts’ by coding these times as missing. If some people make many false
starts, then we may feel that we have insufficient data on them to provide a reliable estimate of
their reaction time and we may wish to exclude these individuals from our analysis. However, 
if individuals make only a few false starts, then we may be able to obtain a reasonable estimate
of their reaction time. So we have to decide what our criterion is going to be for including or

CHAPTER 44



FIGURE 44.1 Why compute a new scale score when there are missing values?
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excluding people. We may decide that if people have more than 10 per cent of false starts, we are
going to exclude them. In other words, if they have a false start on more than one trial out of the
ten then we are going to exclude them. If they make a false start on only one trial, then we will
include them.

Another example is where we have a questionnaire scale which consists of a number of ques-
tions or items. We may have a questionnaire which consists of only four items where people are
asked to respond to these items on a six-point Likert scale where the answer ‘Strongly disagree’
receives a score of 1 and an answer of ‘Strongly agree’ a score of 6. In this case we may base our
overall score for that scale if they have given clear answers to three or four items. If they have
given clear answers to fewer than three items we will exclude their score on that scale. If the score
for the scale is going to be based on a varying number of items, then we cannot score that scale
by simply adding together or summing their scores for the items that they have answered as some-
one who has answered fewer items will generally obtain a lower score than someone who has
answered more items. For example, if two people have answered ‘Strongly agree’ to all items, but
one person answered all four items while the other person only answered three items, then the
total score for the person answering all four items is 24 while the total score for the person only
answering three items is 18. Yet both people may be similar in that they have answered ‘Strongly
agree’ to all the items they have answered. What we have to do here is to take the mean score for
the items they have answered. If we do this, then both people will have a mean score of 6, which
indicates that they strongly agreed with all items. If the scale is generally interpreted in terms of
a total score rather than a mean score, then we can convert this mean score into a total score by
multiplying the mean score by the number of items in the scale. So, in this case, both people will
have a total score of 24. Figure 44.1 highlights some issues in computing a new scale score when
some values are missing.

We will illustrate how to calculate a mean score based on having answered more than a cer-
tain number of items with the data in Table 44.1 (which are the same as those in Table 31.1).
There are 10 cases who have answered on a six-point Likert scale four questions that go to make
up a particular index. To illustrate how this works, the first case will have missing data for the
first item, the second case will have missing data for the first two items and the third case will
have missing data for the first three items. Missing data are coded as zero. We would expect 
a mean score to be computed for the first case who has answered three items but not for the 
second and third case who have not.



Table 44.1 Data for 10 cases from a four-item questionnaire

Cases Item 1 Item 2 Item 3 Item 4

1 1 3 5 6

2 2 1 1 2

3 1 1 1 1

4 5 2 4 2

5 6 4 3 2

6 5 4 5 6

7 4 5 3 2

8 2 1 2 1

9 1 2 1 1

10 1 1 2 2
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44.2 Entering the data

Retrieve the data file from Chapter 31 and enter the missing values or enter this data anew as follows.
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44.3 Computing a scale score with some values missing
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44.4 Saving the Compute procedure as a syntax file

44.5 Adding some extra cases to Table 44.1

44.6 Running the Compute syntax command
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For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for computing a scale score
with some missing values

Data

Select ‘Transform’ and ‘Compute Variable …’.
Type a name for the new scale variable in the box under ‘Target Variable:’.
Either type in or select the terms of the expression in the ‘Numeric Expression:’ box, e.g. mean.?(q1, q2 etc).
Where the ? is in the numeric expression, enter the minimum number of valid items needed to form a scale.
Select ‘OK’.
Check the computation is correct.
Save procedure as a Syntax file by selecting ‘Transform’, ‘Compute Variable …’ and ‘Paste’.
Label Syntax file.



45.1
What is computing a new group variable from existing 
group variables?

There are occasions when you may want to compute or create a new group variable from exist-
ing group variables. One such occasion is where you find that the interaction effect in a factorial
analysis of variance is significant. For instance, in Chapter 23 the effect of both alcohol and sleep
deprivation on making mistakes in a task were analysed. There were two alcohol conditions,
alcohol and no alcohol, and three sleep deprivation conditions of 4, 12 and 24 hours of sleep
deprivation. Figure 45.1 shows the mean number of errors for these two independent variables.

Overview

There are situations where you may want to compute a new group from two or more other group
variables. This can be done in SPSS Statistics.

One such situation is a significant interaction in an analysis of variance (Chapter 23) where you
may wish to compare the mean of groups in one independent variable which do not fall within the
same condition or level of another variable.

An example of such a comparison is comparing never married women with married men. Marital
status is one independent variable and gender is another. Coded as two separate variables it is
possible to compare women and men and, say, the never married and married.

However, it is not possible to compare never married women and married men.

To compare these groups you would have to compute a new group variable which contained these
two groups.

Computing a new group
variable from existing
group variables

CHAPTER 45



FIGURE 45.1 The effect of alcohol and sleep deprivation on errors
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Although with these data there was not a significant interaction effect, an interaction effect 
is apparent in that the differences in mean errors for the three sleep deprivation conditions is 
bigger under the alcohol condition than the no alcohol condition. If the interaction had been
significant, then it is possible that we would wish to determine whether the mean errors for 
the alcohol 4 hour sleep deprivation group or condition differed from the mean errors of the 
no alcohol 24 hour condition. We may also want to determine if the mean errors for the alcohol
12 hour sleep deprivation group or condition differed from the mean errors of the no alcohol 
24 hour condition.

Now it is not possible to make these two comparisons with the way the two variables of alcohol
and sleep deprivation are coded. With these two variables it is possible to compare the two alcohol
conditions with each other and the three sleep deprivation conditions with each other but it is not
possible to compare groups across these two variables. The two variables of alcohol and sleep
deprivation make up the following six different groups: (1) alcohol 4 hour; (2) no alcohol 4 hour;
(3) alcohol 12 hour; (4) no alcohol 12 hour; (5) alcohol 24 hour; and (6) no alcohol 24 hour. To
be able to compare all six conditions with each other we could create a new variable which codes
each of these six groups. For example, we could code them as numbered above. We could then
analyse this new variable in a one-way analysis of variance (Chapter 21) and compare each con-
dition with every other condition with one or more multiple comparison tests (Chapter 24).

We will illustrate how to create a new group variable with the data in Section 45.2 (which are
the same as those in Table 23.1). In SPSS we need to write a syntax file involving the ‘if’ proce-
dure. This procedure takes the following form:

if old variable one = a value & old variable two = a value compute new
variable = new value

We compute a new variable (e.g. group) with new values for each of the conditions in the new
variable for old variables with old values. Suppose the variable name for the alcohol variable is
‘Alcohol’ and it has the two values of 1 and 2 representing the two alcohol conditions of alcohol
and no alcohol respectively. The variable name for sleep deprivation is ‘SleepDep’ and it has the
three values of 1, 2 and 3 denoting the three conditions of 4, 12 and 24 hours of sleep depriva-
tion. The new variable will be called ‘group’. So for the first group of alcohol and 4 hours of sleep
deprivation, we would write the following syntax command:



You can find out more about one-way ANOVA in Chapter 21, two-way ANOVA in Chapter 23 and multiple comparison tests
in Chapter 24 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.

FIGURE 45.2
Steps in understanding how to create new categories when original categories are specified
by two different variables
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if Alcohol = 1 & SleepDep = 1 compute group = 1

The value of 1 for the variable of ‘group’ represents participants who have had alcohol and 
4 hours of sleep deprivation. We write similar syntax commands to create the five other groups.

Figure 45.2 outlines the main steps in creating a new group variable from existing group variables.

45.2 Entering the data

Use the file from Chapter 23 if you saved it. Otherwise enter the data as follows.



45.3
Syntax file for computing a new group variable from existing
group variables
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45.4 Running the Compute syntax commands

45.5 Computing a new group using menus and dialog boxes

Alternatively you can compute a new group using the ‘Compute’ menu option as follows.
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Summary of SPSS Statistics steps for computing a new group
variable from existing group variables

Data

Enter the data or retrieve data file.

Syntax file

In the Syntax Editor type in the following kind of commands:

if old variable one = a value & old variable two = a value 
compute new variable = new value

Select ‘Run’ and ‘All’.



For further resources including data sets and questions, please refer to the website accompanying this book.
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Menu procedure

Select ‘Transform’ and ‘Compute Variable …’.
Enter name of new variable in ‘Target Variable:’ box and number of condition in ‘Numeric Expression:’ box.
Select ‘If …’ and ‘Include if case satisfied condition:’.
Select condition, ➥ button, = and number of condition for each condition or type in this expression in the
box.
Select ‘Continue’ and then ‘OK’.
Repeat the procedure for each group.

Output

The new variable and its values are in the ‘Data Editor’.



Overview

This chapter explains how to select a particular subgroup from your sample. For example, you may
wish to analyse the data only for young people or for women.

It is possible to select subgroups for analysis based on multiple selection criteria such as age and
gender (e.g. young women).

Sometimes the use of subgroups leads to a much clearer understanding of the trends in the data
than would be possible if, for example, one used crosstabulation by gender.

Selecting cases

46.1 What is selecting cases?

Sometimes we may wish to carry out computations on subgroups in our sample. For example, we
may want to correlate musical and mathematical ability (a) in girls and boys separately, (b) in
older and younger children separately and (c) in older and younger girls and boys separately. To
do this, gender needs to be coded (e.g. 1 for girls and 2 for boys) and what age is the cutoff point
for determining which children fall into the younger age group and which children fall into the
older age group stipulated. We will use age 10 as the cutoff point, with children aged 9 or less
falling into the younger age group and children aged 10 or more falling into the older age group.
Then each of the groups of interest need to be selected in turn and the appropriate statistical 
analyses carried out. We will illustrate the selection of cases with the data in Table 46.1, which
shows the music and mathematics scores of ten children together with their code for gender and
their age in years. (These values are the same as those previously presented in Table 42.1.)

Obviously the selection of cutoff points is important. You need to beware of inadvertently
excluding some cases. Figure 46.1 presents some issues in selecting cases.

CHAPTER 46



Table 46.1 Scores on musical ability and mathematical ability for 10 children with their gender and age

Music score Mathematics score Gender Age

2 8 1 10

6 3 1 9

4 9 2 12

5 7 1 8

7 2 2 11

7 3 2 13

2 9 2 7

3 8 1 10

5 6 2 9

4 7 1 11

FIGURE 46.1 Why select cases?
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46.2 Entering the data

Use the data file for the first 10 cases from Chapter 42 if you saved it. Otherwise enter the data
as follows.
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46.3 Selecting cases
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You can check that the correct sort of cases have been selected since those deselected are ‘struck
off’ at the start of the appropriate rows of the data spreadsheet in ‘Data View’.

Summary of SPSS Statistics steps for selecting cases

Data

Select ‘Data’ and ‘Select Cases …’.
Select ‘If condition is satisfied’ and ‘If ’.
In the top right-hand box list the variables and the values you want to include or exclude.
Select ‘Continue’ and then ‘OK’.
If helpful save as a syntax file.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

Random sampling is a key aspect of statistics. This chapter explains how random samples can be
quickly generated. This is not a commonly used procedure in statistical analysis but can provide
useful experience of the nature of random processes.

One can get a better ‘feel’ for inferential statistics and sampling by obtaining random samples
from your data to explore the variability in outcomes of further statistical analyses on these 
random samples. The variation in the characteristics of samples is known as sampling error and 
is the basis of inferential statistics.

The procedure could be used to randomly assign participants to, say, an experimental and a 
control group.

Keep an eye on the dialog boxes as you work through this chapter. You will notice options which
allow you to select samples based on other criteria such as the date when the participants were
interviewed.

Samples and populations
Generating a random sample

47.1 What is generating random samples?

In this chapter, the selection of random samples from a known set of scores is illustrated. The pri-
mary aim of this is to allow those learning statistics for the first time to try random sampling in
order to get an understanding of sampling distributions. This should lead to a better appreciation
of estimation in statistics and the frailty that may underlie seemingly hard-nosed mathematical
procedures. We will illustrate the generation of a random sample from a set of data consisting of
the extraversion scores of the 50 airline pilots shown in Table 6.1.

If one wished to randomly assign participants to the experimental or control group in an
experiment prior to collecting the data, then simply create a variable in the SPSS Statistics spread-
sheet and enter the numbers 1 to 50 (or whatever is the expected number of participants for 
the study) in separate rows of the spreadsheet. By selecting a random sample of 25 individuals,
you can generate a list of participants who will be in the experimental group. So if the random
sample is 3, 4, 7, 9, etc. then this means that the third, fourth, seventh, ninth, etc. participant
recruited will be in the experimental group. The remainder would be the control group, for 
example. Figure 47.1 highlights some issues in generating random samples.
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FIGURE 47.1 Why generate random samples?

47.2 ENTERING THE DATA 451

You can find out more about sampling in Chapter 9 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.

47.2 Entering the data

Use the data file from Chapter 6 if you saved it. Otherwise enter the data as follows.



452 CHAPTER 47 SAMPLES AND POPULATIONS: GENERATING A RANDOM SAMPLE

47.3 Selecting a random sample



47.5 STATISTICAL ANALYSIS ON A RANDOM SAMPLE 453

47.4 Interpreting the results

47.5 Statistical analysis on a random sample



For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of SPSS Statistics steps for generating a 
random sample

Data

Select ‘Data’ and ‘Select Cases …’.
Select ‘Random sample of cases’ and ‘Sample’.
To select about an approximate per cent of all cases, enter that value in the box beside ‘Approximately’.
To select an exact number of cases, select ‘Exactly’, enter that number in the first box and the total number
of cases in the second box to the right.
Select ‘Continue’ and then ‘OK’.



Overview

Some publications report a correlation matrix for their analysis which may also contain the means
and standard deviations of the variables.

SPSS Statistics allows you to do some further analyses on these matrices such as partial correla-
tion, factor analysis and multiple regression.

You need to use syntax commands to input the correlation matrix and to carry out the subsequent
statistical analysis.

The syntax commands for the statistical analysis are given first in the output when an analysis
using menus and dialog boxes are run. Alternatively you can obtain these in the Syntax window by
using the ‘Paste’ function in the main dialog box.

We illustrate the inputting of and analysis of a correlation matrix for stepwise multiple regression
with the data in Chapter 32.

The exact way in which the matrix is referred to in the syntax command for the statistical analysis
varies according to the statistical procedure. How this is done can be found by looking up the syn-
tax command in the Help procedure.

Inputting a correlation
matrix

48.1 What is inputting a correlation matrix?

If a correlation matrix has been published in a particular study, it is possible to enter this matrix
into SPSS Statistics so that further analyses can be carried out. A table or matrix of correlations
is sometimes presented in a publication to show the relation between the different variables.
Having a matrix of correlations means that we can carry out some further statistical analyses
such as partial correlation (Chapter 29), factor analysis (Chapter 30) and multiple regression
(Chapters 32 to 35) which the publication may not have reported. For example, we may wish to
partial out a variable which the publication has not mentioned or we may want to see what the
higher order factors are in a factor analysis by carrying out a factor analysis on the correlations
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Table 48.1 Data for producing a correlation matrix

Educational Intellectual School Parental
achievement ability motivation interest

1 2 1 2

2 2 3 1

2 2 3 3

3 4 3 2

3 3 4 3

4 3 2 2

FIGURE 48.1 Why input a correlation matrix?
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between the first factors. It is possible that the publication contains means and standard devia-
tions for the variables too. We need these to calculate unstandardised regression coefficients.

We will illustrate how to input a correlation matrix together with the means and standard devi-
ations of the variables with the data in Table 48.1 (which are the same as those in Table 32.1).
The data in this table have been weighted so as to represent 120 rather than the 6 cases presented
here. This has been done so that some of the relations between the variables will be statistically
significant. Small correlations become significant in large samples. Figure 48.1 outlines some issues
about inputting a correlation matrix.

The means, standard deviations and correlations for these variables are presented in Table 48.2.
These can be computed from the data in Table 48.1 by carrying out correlations (Chapter 10) or
a multiple regression (Chapter 32). They all have to be based on the same sample of cases. In other
words, the listwise procedure for missing values needs to be used.

We will carry out the same stepwise multiple regression on this matrix as was carried out in
Chapter 32 so you can see that the results are essentially the same. Any differences are due to the
fact that the data for this analysis have been rounded to fewer decimal places than in the ori-
ginal analysis. The stepwise multiple regression has to be carried out using syntax commands. As
this book does not describe these commands, they can be most readily generated by simulating
the statistical procedure to be used and using the Paste function to produce the relevant syntax.
We do this by creating a data file which has the relevant variables in it but does not have to have
any data in it.



Table 48.2 Means, standard deviations and correlations of four variables

Mean SD 1 2 3

1 Achievement 2.50 .961

2 Ability 2.67 .961 .701

3 Motivation 2.67 .947 .369 .316

4 Interest 2.17 .690 .127 .108 .343

n = 120

48.3 Running the syntax file
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48.2
Syntax file for inputting a correlation matrix and running a
stepwise multiple regression
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Summary of SPSS Statistics steps for inputting a 
correlation matrix

Syntax file

In the Syntax Editor type in the following kind of commands:

matrix data variables=rowtype_ (enter variable names).
begin data.
mean (enter means)
stddev (enter standard deviations)
n (enter number of cases for each variable
corr 1.00
corr (enter correlation) 1.00
corr (enter correlations) 1.00
corr (enter correlations) 1.00
end data.
REGRESSION matrix=in(*)
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT (enter dependent variable)
/METHOD=(enter type of regression and then predictor variables).

Select ‘Run’ and ‘All’.

48.4 Part of the output

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

It is essential to enter the data accurately into the ‘Data Editor’. With a small set of data it is most
probably sufficient to check the inputted data against the original data. With a larger data set, this
is more difficult to do.

One strategy is to enter the same data separately into two files and to compare the value of the
same cells in the two files. This kind of procedure is available as part of SPSS Statistics Data
Builder but this software is expensive and not readily available.

It is relatively easy to carry out this procedure in SPSS by combining the two files, using syntax
commands to see if there is a difference between the same cells and to check and correct any 
differences.

This procedure assumes that it is unlikely that the same mistake will be made twice, particularly
if different people enter the data.

Checking the accuracy of
data inputting

49.1 What is checking the accuracy of data inputting?

Mistakes can occur when data is typed into the ‘Data Editor’ of SPSS Statistics. When you have
a small set of data, accuracy can be checked by simply comparing the ‘Data Editor’ with the ori-
ginal data. If you find this difficult to do conscientiously or if you have a large data set, then it is
better to use a procedure which is more systematic and more accurate. This procedure involves
entering the data twice and then comparing the two sets of data. It is better that different people
are involved so that one person does not enter the data twice. Two different people are less likely
to make the same mistake. The data are entered into two separate files so that data entry is inde-
pendent. If there is a difference in the value of a cell between the two files, then both values can-
not be correct and the original data have to be checked to see which value is correct. If there is
no difference, then it is likely that the values are correct. Once all the values have been checked
and corrections made as appropriate, one of the corrected files can be used for the data analysis.
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Table 49.1 Correct data to be inputted

Item 1 Item 2 Item 3 Item 4

1 0 1 2

2 2 3 1

2 2 3 3

3 4 0 2

3 3 4 3

4 3 2 2

Table 49.2 First data file with inputting mistakes in red

Item 1 Item 2 Item 3 Item 4

1 0 1 2

22 3 1

2 2 3 3

3 4 0 2

3 3 4 3

4 3 2 2

Table 49.3 Second data file with inputting mistakes in red

Item 1 Item 2 Item 3 Item 4

1 0 1 2

2 2 3 1

2 2 3

4 3 0 2

3 3 4 3

4 3 2 2
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We will illustrate this procedure with the data files in Tables 49.1, 49.2 and 49.3. Table 49.1
shows the correct data set of the values for the responses of six people to four questionnaire items
which are answered on a four-point scale where 1 represents ‘Strongly agree’ and 4 ‘Strongly 
disagree’. A 0 represents an item that has not been answered or where the answer is not clear. 
As we are just checking the accuracy of data inputting it does not matter what the numbers rep-
resent. These values have been put into a table to make them easier to read but if we were enter-
ing the data then we would be most probably reading them off a questionnaire or some other
form of record. We will assume that an optical scanner is not available or is not suitable for 
reading this information electronically. Figure 49.1 highlights two issues about checking accuracy
of data inputting.



FIGURE 49.1 Why check data accuracy?
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Table 49.2 shows the data file for the first time the data is entered while Table 48.3 shows 
the data file for the second time that the data are entered. We have introduced two mistakes in
the first file in Table 49.2 and three mistakes in the second file in Table 49.3. For the second case
in Table 49.2 the value for item 2 has been accidentally entered in the same cell as the value for
item 1. The cell for item 2 has been left empty. For Table 49.3 the cell for item 3 for the third
case has been left empty and the values of the cells for item 1 and 2 for the fourth case have been
transposed.

49.2 Creating two data files

With a large number of variables it is better to carry out the following procedure which is
designed to minimise the amount of work involved.

Create the variable names in an SPSS file. At the end of each name add a character which can-
not be easily confused with a character in the name. This character could be a hash sign (#).
For example, the name of the first variable could be q1#. The reason for this will become
apparent later on.

You could specify other characteristics of the variables such as the names of categories if this 
is helpful for you or the person entering the data. However, you should not specify any missing
values when comparing the files as you will be calculating the differences between the two values.
If one of the values is missing, then a difference will not be computed for that pair of values.
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Save this file with a name such as that of the person who is going to enter the data together
with the character to distinguish the two forms of the name such as ‘DC1#’.

Save this file again with a different name such as ‘DC2@’.

Highlight the names of the variables in one of the files and paste them four times into a Word
document and separated from one another. It is useful to do this for subsequent tasks we are
going to carry out.

Using the ‘Replace’ procedure, replace the hash sign (#) with an ‘at’ sign (@) for the second
copy of variable names.

Highlight these names ending in @ and paste them over the names in the second data file. The
names in the two data files for the same variable can now be easily distinguished.
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Enter the data from Table 49.2 in the first file and the data from Table 49.3 in the second file.

49.3 Combining the two data files

With one of the data files in the Data Editor (say, DC1#), carry out the following procedure.
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49.4
Creating a syntax file for computing the difference between the
two entries for the same variables

We are going to subtract one entry of the variable (e.g. q1#) from the other (e.g. q1@) to create
a difference score which we are going to call q1#@ using the following form of the syntax com-
mand for each of the four variables:

compute q1# - q1@ = q1#@.
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If you have a large number of such commands to make, it is easier to do this in Word, copy-
ing and pasting the relevant terms into a table with seven columns and as many rows as variables.
This table can then be copied and pasted into a syntax file. Add ‘execute.’ at the end of this file
or select ‘File’ and ‘Save’ after running it to display the values of the new variables.

Copy this syntax file and paste it into the ‘Syntax Editor’. With the first data file open, run this
syntax file.
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Summary of SPSS Statistics steps for checking the accuracy of
data inputting

Data

Enter the data into two files, making sure that the names for the same variables are different (e.g. age# and
age@).
In one data file, select ‘Data’, ‘Merge Files’ and ‘Add Variables’.
Select other data file, ‘Continue’ and then ‘OK’.

Syntax

In the Syntax editor, create a syntax file in which the two versions of the same variable is subtracted from
one another to give a difference score, e.g. ‘compute age#@ = age# - age@’.
Run this syntax file.

Analysis

Select ‘Analyze’, ‘Reports’ and ‘Case Summaries …’.
Select the case number and up to five of the difference variables at a time and with the button to put 
these five variables in the ‘Variables:’ box.
If your sample is larger than 100, change the ‘Limit cases to first’ to the size of your sample (or greater).
Select ‘OK’.

▼



For further resources including data sets and questions, please refer to the website accompanying this book.
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Output, Data, Syntax and Analyze

For each difference value which is not zero, check which value has been wrongly entered (Output) and enter
the correct value (Data).
When all differences have been corrected, run the syntax file again (Syntax).
If some differences are not zero (Analyze), check (Output) and correct these values (Data).
When all differences are zero (Output), delete the second variable names and the difference variable names
and save the file as the checked data file (Data).



Linear structural
relationship (LISREL)
analysis

PART 8





Overview

This chapter introduces the main basic ideas of structural equation modelling and LISREL together
with some of the basics of data entry for LISREL.

Structural equation modelling is difficult to define but involves a range of models which a
researcher puts forward and validates to indicate the pattern of (causal) relationships which lead
to changes in a key variable or variables.

LISREL stands for Linear Structural Relationships and is one of the most widely used software 
programs for carrying out structural equation modelling (SEM).

One of the advantages of the LISREL program is that measurement error in the form of alpha 
reliability can be controlled (Chapter 54). Variables can differ substantially in terms of their reli-
abilities. The reliability of a measure puts a limit on the maximum relationship it may have with
another variable. So, as a consequence, relationships between variables may be distorted by 
variations in their reliabilities.

A free student version of LISREL can be downloaded which can handle up to 15 variables, which
is enough for many studies.

LISREL can carry out confirmatory factor analysis in which the statistical fit of one or more theoret-
ical models to the data can be evaluated and compared (Chapter 51).

It can carry out path analyses where certain variables are assumed to affect or influence other 
variables.

Unlike multiple regression (Chapter 34), structural equational modelling allows more than one cri-
terion (dependent) variable to be examined at the same time, can control for measurement error
and enables the statistical fit of theoretical models to be evaluated and compared.

Basics of LISREL and
LISREL data entry

CHAPTER 50



Table 50.1 Hypothetical two-factor model

Variables Sensory-motor skills Verbal skills

Batting 1.00 .00

Crosswords .00 1.00

Darts 1.00 .00

Scrabble .00 1.00

Juggling 1.00 .00

Spelling .00 1.00
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50.1 What is LISREL and structural equation modelling?

Structural equation modelling is an advanced statistical technique which involves the researcher
actively building models which account for the relationships between different variables and 
testing their adequacy against actual data. LISREL is an abbreviation for Linear Structural
Relationships. It is the name of a particular form of software for carrying out structural equation 
modelling (SEM). LISREL was among the first such programs and is among the most widely used
programs. A free student version of LISREL can be downloaded from the web (http://www.
ssicentral.com/lisrel/student.html). This version can analyse up to 15 variables which is sufficient
for the examples used in this book and for most student needs. Otherwise you will need the full
version of LISREL. As SEM is a very sophisticated form of conceptual and statistical analysis 
and as LISREL produces a large amount of output, it is sensible to start learning this technique
on a small number of variables. You can move on to using more variables as you become more
familiar and skilled with the method.

It is important to understand that SEM involves a range of different statistical techniques
(some of which have already been dealt with in this book) and it is not simply another statistical
test. As such, it requires a developed statistical awareness on the part of its users.

Unlike multiple regression which can only analyse one criterion or dependent variable at a time
(Chapter 34), SEM can analyse two or more such variables at the same time. For example, the
potential effect of parents’ interest in how well their children do at school can be looked at in
terms of how well they perform academically as well as how interested they are in academic
work. Multiple regression is not up to this analytic task for a number of reasons especially since
it is able to examine only one of these two criterion variables in a single analysis.

As the name implies, SEM involves setting up a model to account for relationships among the
variables in one’s data. A model is simply a set or pattern of variables which predicts or explains
the thing of interest. For instance, in confirmatory factor analysis, the model may specify that par-
ticular variables are expected to perfectly load on or correlate with a certain factor and not to
load on or correlate with other factors. This model may be referred to as a measurement model.
In terms of the example used to illustrate exploratory factor analysis in Chapter 30 we might
expect that the three variables or measures of batting, darts and juggling will define the factor or
construct of sensory-motor skills. The three variables or measures of crosswords, Scrabble and
spelling will define the factor or construct of verbal skills. We can represent this two factor model
with Table 50.1. A value of 1.00 means that the loading or correlation of that variable with that
factor is expected to be perfect while a value of .00 means that no relationship is expected to exist
between that variable and that factor. Furthermore, we can specify whether these two factors are
expected to be unrelated (orthogonal) or related (oblique). In SEM, the variables are referred to
as manifest or observed variables or as indicators. On the other hand, the factors are called latent
variables because we cannot measure them directly since factors are abstractions and therefore
not directly observable.



FIGURE 50.1 Path diagram of a hypothetical two-factor model similar to ones drawn by LISREL
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Latent variables are assumed to affect or influence the manifest variables. This model is usu-
ally represented with a path diagram or path model like that shown in Figure 50.1:

Manifest variables are denoted in rectangles .

Latent variables are given as circles or ovals .

An arrow is drawn from the latent variable to the manifest variable as latent variables are
thought to influence manifest latent variables 6.

Curved or straight lines with arrows at either end are drawn between variables which are expected
to be related. These lines are usually referred to as two-way or double-headed arrows 4.

So, we would draw a curved or straight two-way arrow to indicate that we expected the two
factors or latent variables to be related. If we did not expect them to be related there would be
no two-way arrow between them. Two-way arrows can also be drawn between manifest vari-
ables which are expected to be related. Variables may be assumed to be measured with or with-
out error. This is indicated by drawing an arrow to the variable. If no error is expected, this can
be indicated by putting .00 at the start of the arrow. The issue of the reliability of variables is
important because the reliability of a variable sets a cap on the size of the correlation that it can
have with another variable. This is discussed in more detail later. It is really important to under-
stand that the models tested are ones developed by the researcher – they do not simply appear
out of a statistical analysis.

Path diagrams are drawn in LISREL to specify the model that is being tested. Figure 50.1 has
been drawn to illustrate the broad pattern of path diagrams in LISREL.

The relationship between variables are specified in terms of a number of structural equations which
are more or less like regression equations. For example, the manifest variable of batting is a func-
tion of the product of the path coefficient between the latent variable of sensory-motor skills and
the value of that latent variable together with the error (or residual) of the manifest variable:
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In LISREL path coefficients are represented by different Greek letters:

The path coefficient between a manifest and a latent variable is represented by the Greek small
letter l (lambda). For this model there would be a structural equation for each of the six 
manifest variables.

The path coefficient between a predictor variable and a criterion variable is represented by the
Greek small letter g (gamma).

The path coefficient between a predictor variable and a mediator variable is denoted by the
Greek small letter b (beta).

How well the hypothesised model fits the actually observed data is assessed in SEM. Various
measures of this statistical fit between model and data are available. However, there is little 
consensus as to which ones are the best to use. Consequently, it is common practice to report
more than one measure of fit. Two measures that are frequently presented in path diagrams 
are: chi-square and RMSEA (Root Mean Square Error of Approximation). This chi-square is 
a special version of chi-square which is known as the Normal Theory Weighted Least Squares 
Chi-Square. It is called this in LISREL’s detailed output.

The Normal Theory Weighted Least Squares Chi-Square compares the difference between the
variance–covariance matrix of the orginal data and the variance–covariance matrix produced 
by the model. This is not as difficult as it sounds. Think of a correlation matrix – instead of cor-
relations, the variance–covariance matrix contains covariances of the variables in the columns
with the variables in the rows. The diagonal contains variances since the covariance of a variable
with itself is what we call the variance. Like a correlation matrix, the variance–covariance matrix
is symmetrical around the diagonal. If the variance–covariance matrix is the same for the 
data and the model then there is a perfect fit between the data and the model. However, this is
not likely to be the case so the bigger the difference between the data and the model matrix, the
bigger chi-square is and the more likely it is that chi-square will be statistically significant at the
.05 level or less:

A statistically significant chi-square means that the model does not fit the data well enough.

A non-significant chi-square indicates that the model does fit the data and so confirms the
model.

In other words, chi-square is used to test the hypothesis that the model and the data are differ-
ent. Thus a significant value of chi-square means that the data do not support the model. A non-
significant value of chi-square indicates that the model and the data are the same within the 
limits of sampling error.

The more values the model has to estimate the bigger chi-square is likely to be and so the more
likely it is to be statistically significant. The number of values to be estimated is indicated by the
degrees of freedom (df ). So models with more degrees of freedom are more likely to yield chi-
squares which are statistically significant. In other words, as a consequence, the more complex
the model then the less likely it is to fit the data. Also, the bigger the sample used in data collec-
tion the bigger the chi-square value is likely to be since the chi-square measure used is multiplied
by the sample size minus one. These problems make chi-square less than ideal on its own and
encourage the use of other indices in addition.

Some of the other indices of fit are designed to deal with these problems:

The RMSEA takes account of the degrees of freedom by dividing the measure of fit by the
degrees of freedom. A RMSEA of about .05 or less is considered to indicate good fit while 
values of .10 and above denote poor and unacceptable fit.

The Non-Normed Fit Index (NNFI) compares the hypothesised model with a null or inde-
pendence model in which the variables are assumed to be unrelated. This index takes account
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of the degrees of freedom for each model. The NNFI is non-normed in the sense that its 
values can lie outside 0 and 1. A NNFI of .95 and above is thought to indicate a good or
acceptable fit and values below .95 a poor and unacceptable fit. The NNFI is sometimes
referred to as the Tucker–Lewis Index (TLI) which is the same as the NNFI but was indepen-
dently developed earlier.

The Comparative Fit Index (CFI) also compares the hypothesised model with a null model but
is a normed index in that it values are normed to vary between 0 and 1. Values greater than 
1 are changed to 1 and negative values are changed to 0. Like the NNFI, a CFI of .95 and
above is thought to indicate a good or acceptable fit and values below .95 a poor and unac-
ceptable fit.

If a model is found not to fit the data, then the model may be modified to improve the fit. 
LISREL provides information which shows how the model may be changed to increase its fit.
However, sometimes it is not sensible to change the model in this way as the changes may be
difficult to justify conceptually and theoretically.

Furthermore, unlike multiple regression, SEM can take account of the error with which vari-
ables are usually measured. It can do so in one of two ways:

The first is based on the fact that a variable’s relationship with other variables is dependent 
on the reliability of each of the measures, so it is possible to allow for the internal reliability
of the measures used (Chapter 54) as assessed by Cronbach’s alpha reliability (Chapter 31).
Making such an adjustment has two related benefits:

(a) One advantage of correcting for measurement error in this way is that the path coefficients
between variables will almost certainly be higher because this correction treats variables 
as if there was no measurement error. In terms of correlation coefficients, the highest cor-
relation that can exist between two variables is the square root of the product of the (alpha)
reliabilities of the two measures. For example, if the alpha reliability of one measure is 
.7 and that of the other measure is .8, then the maximum size of the correlation between
those two variables is ±.75 (√(.7 × .8) = .75). If the alpha reliability of the two measures
were a perfect 1.00, then the maximum size of the correlation would be ±1.00 (√(1.00 
× 1.00) = 1.00).

(b) As the (alpha) reliability of measures is likely to differ, not correcting for measuring error
makes it difficult to compare the relative size of coefficients. A coefficient between two vari-
ables may appear smaller than another coefficient because the alpha reliability of one or
both variables may be lower than the variables for the other coefficient. Thus correcting
for alpha reliability is that it enables the size of coefficients to be directly compared as they
have all been standardised so that their maximum value can be ±1.00.

Another way and one which is most commonly used to correct for measurement error is based
on the relationships between the manifest variables and the latent variable which the manifest
variables are believed to represent (Chapter 53). In this approach, the variance that is shared
by the manifest variables is assumed to reflect the latent variable and the variance that is not
shared is measurement error. Typically a latent variable may be represented by two or three
manifest variables. So if one is measuring a variable with a number of questions, then those
questions need to be grouped together into two or three manifest variables (Chapter 43). The
way in which this is done may be rather arbitrary and doing it in another way may produce
different results. For example, if we have 10 questions or items making up a scale and we want
to form three groups of items, we first have to decide whether the three groups will have the
same number of items and then which items are to be put together.

For the moment, that is enough of the conceptual background to SEM. We can begin to exam-
ine how LISREL, the computer program, is used. Figure 50.2 shows some of the basic steps in SEM.



FIGURE 50.2 The basic steps of structural equation modelling
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50.2 When to use structural equation modelling

SEM is a sophisticated and complicated statistical technique which should be attempted only by
those who have some knowledge and experience with more basic statistical techniques such as
factor analysis and multiple regression. If you are going to use this method, then it is wise to do
this after you have carefully looked at your data with simpler more familiar techniques. Most
undergraduate students would not be expected to use this method to analyse their data. However,
it is not uncommon for doctoral students and professional researchers to adopt the modelling
approach when trying to answer complex questions about the way in which things operate in the
world. Some sophistication about the role of theory in research is also helpful.

Probably many of the circumstances in which students and researchers use multiple regression
are ones in which SEM might be more appropriate. For example, often multiple regression is used
to identify simple models which might be elaborated better with SEM.



You can find out more about factor analysis in Chapter 30, path analysis in Chapter 34 and alpha reliability in Chapter 31
of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in Psychology, 5th edition. Harlow: Pearson.
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50.3 When not to use structural equation modelling

Like correlation (Chapter 10), regression (Chapters 11 and 34) and factor analysis (Chapter 30),
SEM assumes that the variables being analysed are continuous score variables (and not nominal
or categorical ones) and that the relationships between variables are linear (and not curvilinear).
This linear relationship is an assumption of virtually all of the statistics in this book. To the extent
that these requirements are not met by your data, SEM should not be used.

50.4 Data requirements for structural equation modelling

The data for structural equation modelling take the form of a number of variables measured as
scores. The closer each variable is to a continuous variable the better. This means the scores
should show fine gradations for each variable; that is, there should be many different values. The
assumption is that there is a linear relationship between the variables which is a standard assump-
tion of most of the statistical techniques in this book. Avoid variables which show curvilinear
relationships with each other. These may be identified from scattergrams of the relationships
between pairs of variables, for example.

Nominal category or categorical variables may also be used if dichotomous or converted into
dummy variables.

More than one dependent variable may be modelled at the same time unlike the case of regres-
sion, for example.

50.5 Problems in using structural equation modelling

Modelling is not part of the basic statistics that undergraduate psychology students are taught.
So much statistical thinking that students learn is not very helpful when tackling SEM. For that
reason it should be regarded as something for those whose understanding of psychology is well
developed in terms of theory, research and statistics. SEM is fundamentally about causal rela-
tionships in a system so needs the researcher to be familiar with issues of causality.

One difficulty in using SEM is that many psychologists are unfamiliar with it and so it may be
difficult to get advice and support.

50.6 The data to be analysed

To illustrate the procedure we are using the data in Table 50.2 which is the same as that in 
Table 30.1. We assume that you have already entered the data into an SPSS file. The data show
the scores of nine individuals on six different tasks. The data are used in Chapter 51 to illustrate
confirmatory factor analysis.



Table 50.2 Scores of nine individuals on six variables

Individual Batting Crosswords Darts Scrabble Juggling Spelling

1 10 15 8 26 15 8

2 6 16 5 25 12 9

3 2 11 1 22 7 6

4 5 16 3 28 11 9

5 7 15 4 24 12 7

6 8 13 4 23 14 6

7 6 17 3 29 10 9

8 2 18 1 28 8 8

9 5 14 2 25 10 6
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50.7 Entering data into LISREL

SPSS files can be entered into LISREL. They need to be saved as PRELIS (.psf) files. ‘psf’ stands
for PRELIS System File. PRELIS is a program, like SPSS, which carries out data transformation
and basic statistical analyses. There is no free student version of this software but it is not 
necessary to have it as data transformations such as computing scale scores (Chapter 43) can be
done with SPSS. This procedure involves a number of steps and so is described separately from 
LISREL analyses.
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50.8 Conducting LISREL analyses
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For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of LISREL steps for data entry and analysis in LISREL

Data

Select ‘File’ and ‘Import Data …’.
Select the ▼ button of the ‘Look in:’ box to find the directory holding the file.
Select the ▼ button of the ‘Files of type:’ box to find SPSS files.
Select the file and then ‘Open’.
Type in .psf name in ‘File name:’ box and select ‘Save’ and then OK.

Analysis

Select ‘File’ and ‘New’, ‘Path Diagram’ and then ‘OK’.
In the ‘File name:’ box type in name for path diagram file and then select ‘Save’.
Select ‘Setup’, ‘Variables …’ and ‘Add/Read Variables’.
In ‘Labels’ box select downward pointing arrow and ‘PRELIS System File’.
Select ‘Browse’ to find the file and then select ‘Open’.
Select ‘OK’ and ‘OK’.



Overview

In confirmatory factor analysis, the researcher’s expectations of the ways in which variables clus-
ter together on factors may be tested. For example, the factor structure model may be compared
with the original data and with other models.

These models are often based on the results of factor analyses of the same variables in previous
studies. These previous factor analyses can be either exploratory (see Chapter 30) or confirmatory.

Models vary in their simplicity. The simplest model is to assume that all variables group together
into a single factor. That is, all the variables are assumed to be strongly associated with one factor.

The next simplest model is to assume that the variables group together into two factors, with one
set of variables forming one factor and the other set of variables another factor.

In this model the two factors may be assumed to be unrelated to one another so that the scores of
one factor are unrelated to the scores on the other factor. This is a slightly simpler model than one
assuming that the two factors are related to one another so that scores on one factor are related
to scores on the other factor.

Generally, the preference is for simpler models rather than more complex ones if they both fit the
original data equally well.

The statistical fit of the model to the original data can be assessed in various ways. If there is no
difference or only a small difference between the model and the original data, then the model fits
the data. If there is a big difference between the model and the original data, then the model is
considered not to fit the data and other models may have to be tested.

Different models for the same data can be compared to see if their statistical fits differ from one
another. If there is no difference between them, the simpler model is preferred.

The simpler model is the one which has the fewer pathways.

Confirmatory factor
analysis with LISREL

CHAPTER 51



Table 51.1 Scores of nine individuals on six variables

Individual Batting Crosswords Darts Scrabble Juggling Spelling

1 10 15 8 26 15 8

2 6 16 5 25 12 9

3 2 11 1 22 7 6

4 5 16 3 28 11 9

5 7 15 4 24 12 7

6 8 13 4 23 14 6

7 6 17 3 29 10 9

8 2 18 1 28 8 8

9 5 14 2 25 10 6
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51.1 What is confirmatory factor analysis?

Exploratory factor analysis is dealt with in Chapter 30 of this book. It is concerned with the way
in which variables can be grouped together and works on a purely empirical basis with no need
to theorise about the likely structure. You will need to understand that chapter before going any
further. Confirmatory factor analysis does exactly what it says – it examines whether our expec-
tations about how variables will be grouped together into factors are confirmed by the data.
Thus, confirmatory factor analysis tests our expectations or model of the data. Furthermore, 
it allows different expectations represented by different models to be compared. Our models 
are often based on the results of previous factor analyses of the same variables – either using
exploratory or confirmatory factor analysis.

Although we may have ideas about how the variables may group together in factors in
exploratory factor analysis, we do not have readily available statistical criteria for assessing
whether our expectations have been met. Furthermore, we do not have statistical criteria for
determining whether, say, a one factor solution is better than another factor solution. How do
we decide whether allowing our factors to be correlated with one another provides a better or
more accurate fit to our data than not allowing them to correlate? Confirmatory factor analysis
provides us with appropriate criteria. In this sense confirmatory factor analysis can be regarded
as an extension of exploratory factor analysis.

We will illustrate confirmatory factor analysis with the same example as was used to explain
exploratory factor analysis (Chapter 30) and to explain some of the major ideas in structural
equation modelling (Chapter 50). The data are shown in Table 51.1 and consist of the scores of
nine individuals on the following six variables: (1) batting; (2) crosswords; (3) darts; (4) Scrabble;
(5) juggling; and (6) spelling. As batting, darts and juggling all seem to involve coordinating per-
ception with motor responses, we might expect the scores on these three tasks to go together.
Crosswords, Scrabble and spelling, on the other hand, seem to reflect an ability with words and
so we might expect the scores on these three tasks to group together. It seems likely that how well
people perform on the sensory-motor tasks will be unrelated to how well they perform on the
verbal tasks in which case we would expect these two factors to be unrelated to one another.



Table 51.2 Hypothetical unrelated two-factor model

Variables Sensory-motor skills Verbal skills

Batting 1.00 .00

Crosswords .00 1.00

Darts 1.00 .00

Scrabble .00 1.00

Juggling 1.00 .00

Spelling .00 1.00

FIGURE 51.1 Path diagram of a hypothetical two-factor model similar to that drawn by LISREL
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In confirmatory factor analysis we represent these expectations in terms of the relationship or
loading of each variable with the two hypothesised factors as shown in Table 51.2. In other
words, Table 51.2 presents our model of the relationship between various skills and the factors
sensory-motor skills and verbal skills. Thus since we believe that the first factor reflects the sen-
sory-motor tasks and the second factor the verbal tasks, the three sensory-motor scores will have
a loading or coefficient of 1.00 with the first factor and a loading or coefficient of .00 with the
second factor. The three verbal scores will have a loading of .00 on the first factor and a loading
of 1.00 on the second factor. A loading of 1.00 indicates a perfect relationship between a variable
and a factor while a loading of .00 denotes no relationship between a variable and a factor. In the
table there is no simple way of showing whether the factors themselves are expected to be related
or unrelated. We could indicate the expected relationship between the factors in the title of the
table or in a note to the table. In our title for Table 51.2, we have mentioned that it is an unre-
lated two-factor model, thus informing the reader that the two factors should be uncorrelated.

An alternative way of representing this model is in terms of a path diagram as shown in Fig-
ure 51.1. The six variables are manifest or observed variables and are depicted as rectangles. The
two factors are latent variables and are shown as ovals or ellipses. A relationship between an
observed variable and a factor is portrayed with an arrow going from the factor to an observed



FIGURE 51.2 Steps in confirmatory factor analysis
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variable as it is assumed that the factor affects the performance or score on that variable. The
absence of an arrow between a factor and an observed variable means that there is no relation-
ship between the factor and the observed variable. We would indicate the expectation that vari-
ables were related by drawing a straight or slightly curved two-way or double-headed arrow
between them. The absence of such an arrow means that there is no relationship between them.

The extent to which this particular model provides an adequate fit to the data is given by 
various indices which were outlined in Chapter 50:

If the Normal Theory Weighted Least Squares Chi-Square is not significant, this means that
the model gives a good fit to the data. Conversely, if it is significant, then the model does not
fit the data.

A Root Mean Square Error of Approximation (RMSEA) of about .05 or less means that the
model provides a good fit to the data while values above this indicate a poor or inadequate fit.

A Non-Normed Fit Index (NNFI) and a Comparative Fit Index (CFI) of .95 and above are
thought to indicate a good or acceptable fit and values below .95 a poor and unacceptable fit.

The fit for any two models to the data may be compared with the Normal Theory Weighted
Least Squares Chi-Square. For example, the fit of a two-factor unrelated factors model may be
compared to the fit of a two-factor related factors model. For our data, as will be calculated later
in this chapter, the chi-square fit is 5.50 with nine degrees of freedom for the unrelated two-
factor model (based on an orthogonal exploratory factor analysis) and 5.50 with eight degrees of
freedom for the related two-factor model (based on an oblique factor analysis). The model with
the smaller chi-square is substracted from the model with the bigger chi-square. The model with
the bigger chi-square also tends to be the model with the more degrees of freedom. The statist-
ical significance of the difference in chi-square is looked up in a significance table for chi-square
for the difference in degrees of freedom. The difference in degrees of freedom is 1 (9 - 8 = 1) in
this case. With one degree of freedom chi-square has to be 3.84 or larger to be significant at the
.05 level. As the difference in chi-square is 0, chi-square is not statistically significant. In this case,
the simpler unrelated two-factor model may be preferred to the related two-factor model. Tables
of the significance of chi-square are found in some statistics textbooks such as ISP where an
explanation may be found of how to use them. Alternatively, the Web has many sites containing
tables of chi-square such as http://home.comcast.net/~sharov/PopEcol/tables/chisq.html and
http://people.richland.edu/james/lecture/m170/tbl-chi.html. Figure 51.2 shows some of the key
steps in confirmatory factor analysis.
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51.2 When to use confirmatory factor analysis

Confirmatory factor analysis is generally used in the same kind of situations as exploratory factor
analysis except that the aim is to check or confirm a particular factor structure rather than 
simply explore what the factor structure may be. In other words, it is used to determine whether
a number of variables may be grouped together to form a factor and to determine whether that
factor is related to other factors. Confirmatory factor analysis may be used in the following two
situations. One is where you wish to check the results of previous factor analyses of the same set
of variables. These previous factor analyses may have been confirmatory or exploratory. You
may wish to see whether an alternative factor structure which has not been tested before may pro-
vide a better fit to the data. Another situation is where you have a clear idea of which variables
are expected to load on which factors and you want to see whether this is the case.

51.3 When not to use confirmatory factor analysis

If you have no clear idea as to which variables are likely to load or be most strongly associated
with which factors, it is better to use exploratory rather than confirmatory factor analysis.

51.4 Data requirements for confirmatory factor analysis

The data for confirmatory factor analysis may be dichotomous variables such as ‘Yes’ or ‘No’
responses to statements and should be at least ordinal in the sense that higher numbers indicate
more of the quality being measured. There needs to be variation in the data for a variable. If there
is no variation, then we are dealing with a constant rather than a variable. There is some contro-
versy about the number of participants required for a study using factor analysis. The suggestions
vary widely according to different sources. Generally speaking, you would not carry out a confir-
matory factor analysis with fewer than about 50 participants. Of course, for student work then
a smaller sample than this would be common and in this context probably acceptable as part of
learning and assessment. However, one also finds suggestions that for a factor analysis to be stable
then one should have a minimum of about 10 participants per variable. Sometimes the figure
given is greater than this. Basically, the more participants the better, though confirmatory factor
analysis may be illuminating even if one is at the lower end of acceptable numbers of participants.

51.5 Problems in the use of confirmatory factor analysis

A problem in confirmatory factor analysis can be that the analysis stops before it is completed. It
is not always easy to know the reason for this. One possibility is that two or more variables may
be very highly correlated with each other. If this is the case then the correlation matrix between
the variables will reveal it. In these circumstances, only one of the highly correlated variables
should be included in the analysis. In the event that it is not possible to sort out the problem, it
is usually better to use exploratory factor analysis instead.

You can find out more about factor analysis in Chapter 30 of Howitt, D. and Cramer, D. (2011). Introduction to Statistics in
Psychology, 5th edition. Harlow: Pearson.



51.8 Confirmatory factor analysis

51.8 CONFIRMATORY FACTOR ANALYSIS 489

51.6 The data to be analysed

The computation of a confirmatory factor analysis is illustrated with the data in Table 51.1. 
This consists of scores on six variables for nine individuals. The small number of cases is for 
illustrative purposes only. Normally, you would not carry out a confirmatory factor analysis on
such a small number of cases.

51.7 Entering the data
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51.9 Interpreting the output

Assuming the path diagram is the correct one, the first step is to check the fit indices. For the unre-
lated two-factor model, all four indices show that the model fits the data. If the model did not fit
the data, then one could look at the modification indices to see which paths need to be changed
to produce a better fit. In this example there are no modification indices. If the model fits the data,
the standardised coefficients between the observed and latent variables should be examined to
check the size and direction of the coefficients. The coefficients should be relatively large. In this
case the coefficients are large with the smallest one being .84 and being between spelling and the
verbal skills factor.

The fit for two models may be compared in terms of the Normal Theory Weighted Least
Squares Chi-Square. For example, the fit of an unrelated two-factor model may be compared with
the fit of a related two-factor model. This chi-square is 5.50 with nine degrees of freedom for the
unrelated two-factor model and 5.50 with eight degrees of freedom for the related two-factor
model. Usually the model with the smaller chi-square is substracted from the model with the big-
ger chi-square. The model with the bigger chi-square tends to be the model with the more degrees
of freedom. The statistical significance of the difference in chi-square is looked up in a significance
table for chi-square for the difference in degrees of freedom. The difference in degrees of freedom



REPORTING THE OUTPUT
The exact way of reporting the results of a confirmatory factor analysis will depend on the purpose of the analysis. One
way of describing the results would be as follows:

The statistical fit of the unrelated and the related two-factor models were compared using the maximum likelihood
estimation method of confirmatory factor analysis with LISREL 8.80 Student. The fit of each model was assessed in
terms of the four indices of the Normal Theory Weighted Least Squares Chi-Square (chi-square), Root Mean Square
Error of Approximation (RMSEA), the Non-Normed Fit Index (NNFI) and the Comparative Fit Index (CFI). For the unrelated
two factor model chi-square was 5.50 p = .79, RMSEA 0.00, NNFI 1.26 and CFI 1.00. For the related two factor model
chi-square was 5.50 p = .70, RMSEA 0.00, NNFI 1.21 and CFI 1.00. Both models provided a satisfactory fit to the data
as chi-square was not significant, RMSEA was less than .05 and NNFI and CFI were greater than .95. As the differ-
ence in chi-square between the two models was not significant, chi square difference (1) = 0.00, p ns, the unrelated
two-factor model was seen as providing the more parsimonious model. The two factors were interpreted as assessing
sensory-motor and verbal skills respectively as batting, darts and juggling were significantly related to the sensory-
motor factor and crosswords, Scrabble and spelling to the verbal factor.

The standardised coefficients for the accepted model may be presented in a path diagram such as Step 14 or in a table
such as Table 51.3. It is better to draw the path diagram yourself rather than use the one provided by LISREL as you will
be able to provide full variable names.
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is 1 (9 - 8 = 1) in this case. With one degree of freedom chi-square has to be 3.841 or larger to
be significant at the .05 level or less. As the difference in chi-square is 0, chi-square is not stat-
istically significant. In this case, the simpler unrelated two-factor model may be preferred to 
the related two-factor model.

Table 51.3 Standardised lambda coefficients of the unrelated two-factor model

Variable Factor 1 Factor 2

Skill at batting .99*** .00

Skill at crosswords .92** .00

Skill at darts .98*** .00

Skill at Scrabble .00 .94***

Skill at juggling .00 .94***

Skill at spelling .00 .84**

**p < .01; ***p < .001 (two-tailed).

Summary of LISREL steps for confirmatory factor analysis

Analysis

Select ‘File’ and ‘New’, ‘Path Diagram’ and then ‘OK’.
In the ‘File name:’ box type in name for path diagram file and then select ‘Save’.
In ‘Labels’ box select downward pointing arrow and ‘PRELIS System File’.
Select ‘Browse’ to find the file and then select ‘Open’.
Select ‘OK’ and ‘OK’.
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Select ‘Setup’, ‘Variables …’ and ‘Add Latent Variables’.
Type in name of latent variable in ‘Add Variables’ box and select ‘OK’.
Repeat for other latent variables.
Draw path diagram by moving variables into the path diagram window and then draw arrows between them.
Select ‘Setup’ and ‘Build LISREL Syntax’.
Select ‘File’ and ‘Run’ to run the syntax commands.

Output

Output is shown in the path diagram window as well as the output window.

For further resources including data sets and questions, please refer to the website accompanying this book.



Overview

A useful way to begin structural equation modelling is to examine simple path models. A path
model is a pattern of relationships among variables in which causal directions are identified.

For our purposes, we can use a basic model which involves a third variable which may mediate the
effect between two other variables (Chapter 34).

In the analysis, the three variables in the structural equation model are assumed to be measured
without error. This is an assumption made in other statistics such as multiple regression.

In structural equation models we refer to the ‘unstandardised maximum likelihood coefficients’.
These are similar to regression coefficients in multiple regression.

Two measures of fit of the model to the data are used: (1) the Normal Theory Weighted Least
Squares Chi-Square and the (2) the Root Mean Square Error of Approximation (RMSEA), both of
which were discussed in some detail in Chapter 50.

A model may be termed saturated (or alternatively just-identified) because it accounts for all of 
the variation in the data. It happens because the number of covariances equals the number of
pathways.

However, if a pathway is removed from the model, the remaining model is described as being over-
identified. This is because there is more covariance than the model accounts for. In other words,
an over-identified model fails to account completely for the data.

If there is no significant difference between the fits of the two models with the data, the simpler or
more parsimonious model is preferred.

A model needs to be interpreted in terms of the size, direction and statistical significance of the
path coefficients.

Simple path analysis with
measurement error
uncorrected

CHAPTER 52



FIGURE 52.1 Partial mediation of school motivation on educational achievement
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52.1
What is simple path analysis with measurement 
error uncorrected?

A simple mediational analysis involves the statistics of correlations (Chapter 10) and multiple
regression (Chapter 34). Both simple and multiple regression are used to explain one variable 
(the criterion) in terms of one or more other variables. There are various other terms to refer to
the variable being explained (the criterion) including the consequent, dependent, effect or out-
come variable. They all refer to the same thing. The terms employed to refer to the explanatory
variables also vary, including terms such as causal, independent or predictor variables. We will 
generally use the term ‘criterion variable’ to refer to the variable being explained and the term
‘predictor variable’ to refer to the variables being used to explain the criterion variable in the
model. The term ‘explanation’ is used in specific ways in modelling. It often refers to the size and
the direction of the association between the predictor and the criterion variables. Alternatively, 
it is the percentage of the variance in the criterion variable that is explained or shared with the
predictor variables. These two measures refer to much the same thing since an association and
the percentage of variance explained or shared are closely related. The stronger the association is
between two variables, the greater the proportion or percentage of their variance they share.

A mediator or intervening variable is one that is thought to wholly or partially explain the rela-
tion between a predictor and a criterion variable. As the mediator variable is also thought to
explain the criterion variable, it is also a predictor variable but it is one whose effect on the 
criterion variable is assumed to come later on in the sequence of variables assumed to affect the
criterion variable. Suppose, for example, we think that more intelligent people are likely to do
better at their schoolwork because of their intelligence. Now being intelligent does not necessar-
ily mean that you will do better at school because you may be more interested in and spend more
time doing activities other than schoolwork, in which case your schoolwork is likely to suffer.
However, being more intelligent may mean that you are more interested in and spend more time
doing schoolwork because you find it challenging, you think it relatively easy and you do well in
it. So part or all of the relationship between intellectual ability and educational achievement may
be due to how motivated you are to do well at school. The more motivated you are, the better
you do at school. So school motivation may wholly or partly mediate the assocation between
intelligence and educational achievement. In other words, intelligence may lead directly to edu-
cational achievement but intelligence may result in motivational factors which lead to educational
achievement. Thus there are two paths between intelligence and educational achievement.

It may be useful to draw out the relation between these three variables in terms of a simple
path diagram as shown in Figure 52.1 where the predictor variable of intellectual ability is listed
first and to the left on the page and the criterion variable of educational achievement is listed last



FIGURE 52.2 Total mediation of school motivation on educational achievement

FIGURE 52.3
Paths between intellectual ability and education achievement, including standardised
regression weights
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and to the furthest right on the page. This variable is called an exogenous variable as its explana-
tion lies outside the model. The other two variables are known as endogenous variables as they
are partly explained within the model. The mediator or intervening predictor variable of school
motivation is placed between these other two variables and above them. The direction of the rela-
tion between the three variables is indicated by arrows pointing to the right. So there is a right
pointing arrow between intellectual ability and educational achievement, between intellectual
ability and school motivation and between school motivation and educational achievement. If we
thought that the relation between intellectual ability and educational achievement was totally
mediated by school motivation, then we would omit the arrow between intellectual ability and
educational achievement as shown in Figure 52.2.

The question is the extent to which the model which is proposed is supported by the empir-
ically derived relationships between the variables – i.e. the data. This involves calculating the
regression weights between, in this case, our three variables. For example, if intellectual ability is
not predictive of school motivation or if school motivation is not predictive of educational
achievement, then the model or part of the model which has school motivation as a mediating
variable is not supported. However, if intellectual ability is predictive of educational achievement
through school motivation then the model is supported. Nevertheless, it remains necessary to see
the extent to which the simpler model of intellectual ability directly affecting educational achieve-
ment is also true.

We can see this more concretely if we add standardised regression weights to the previous
figures. This has been done in Figure 52.3. Before we get on to the complexities of the LISREL
analysis, it is necessary to do some clear thinking about our model so we have added some 



FIGURE 52.4 Steps in simple path analysis with measurement error uncorrected
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somewhat arbitrary regression weights, although LISREL will calculate proper ones for you. We
can see that intellectual ability is actually quite strongly predictive of educational achievement
since the standardised regression weight is .7. This is larger but not greatly so than the relation-
ship (.6) between our possible mediating variable school motivation and educational achieve-
ment. Thus (assuming that these standardised regression weights are statistically significant) both
(a) the simple direct model of intellectual ability leading directly to educational achievement and
(b) the more complex indirect model which has school motivation mediating between intellectual
ability and educational achievement are supported.

The question, though, is the extent to which the complex model adds anything over and above
what the simple model does. Remember that the basic principle is that the simpler model is pre-
ferred to the more complex model unless it can be shown that the complex model contributes to
a significantly greater fit between the model and the data. So we need to calculate the standard-
ised regression between intellectual ability and educational achievement controlling for (or 
partialling) school motivation. If partialling in this way takes away the statistical significance of
the simpler model then we would prefer the more complex model. However, if partialling in this
way made no difference then we would prefer the simpler model. But there is a third possibility
which is that the size of the relationship changes somewhat but what remains is still statistically
significant. In this case, a model combining the simple and the complex models is to be preferred.
Obviously things can get somewhat more complex than this. The important thing to remember
is that the process is of suggesting and then testing models.

In path analyis the terms just-identified and over-identified are often used. The just-identified
model accounts for all of the variation in the data and is sometimes also known as a saturated
model. The model in Figure 52.1 is an example of this. It should be fairly obvious that this model
must completely explain the data collected since there are as many pathways as there are differ-
ent correlations or path coefficients. However, if we take the model in Figure 52.2 then this fails
to take into account all of the different correlations or path coefficients simply because everything
that is available is not included in the model – after all, it does not include one of the pathways.
This sort of ‘incomplete’ model is referred to as being over-identified. This distinction is of the-
oretical more than practical significance as it is unlikely that you will wish to develop models
which have a large number of pathways rather than something simpler and more parsimonious.
Figure 52.4 shows the key steps in a simple path analysis with measurement error uncorrected.
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52.2
When to use simple path analysis with measurement 
error uncorrected

A simple mediational analysis should be used when the following three conditions are met.
Firstly, the mediator variable should provide a plausible explanation for the relation between the
predictor and the criterion variable. For example, age should not be used as a mediator variable
in this example since intellectual ability cannot affect age. Intellectual ability does not cause 
people to be older. Secondly and thirdly, there is a significant or substantial correlation between
the predictor and the mediator variable and between the mediator and the criterion variable as
this suggests that these variables are related. It is not necessary that there should also be a
significant or substantial correlation between the predictor and the criterion variables as this 
relation may be suppressed by the mediator variable.

52.3
When not to use simple path analysis with measurement 
error uncorrected

A simple mediational analysis should not be carried out under the following three conditions:

If no plausible explanation can be provided as to why the mediator variable may explain the
relation between the predictor and the criterion variable.

If there is little or no relation between the predictor and the mediator variable and/or between
the mediator and the criterion variable. Since the variables are unrelated they cannot explain
the relationship between the predictor and criterion variables.

If you have generally very high correlations between the variables in your analysis. This may
make some standardised regression coefficients greater than ±1.00, which is not really possible
since a perfect regression coefficient of ±1.00 exists only when a variable is effectively being
correlated with itself. Different variables should not lead to such a situation.

52.4
Data requirements for a simple path analysis with measurement
error uncorrected

A basic data requirement for any form of simple or multiple regression is that of homoscedastic-
ity. This means that if one examines the scatterplot of one variable against another variable, the
variance around the line of best fit should be the same irrespective of, say, whether one examines
the top end, middle or bottom end of the line of best fit. This can be roughly assessed by plotting
the line of best fit in a scatterplot and seeing if this assumption seems to have been met for each
of the predictor variables. If you look at Figure 11.1 (Chapter 11), then it seems that the require-
ment of homoscedacity is met since the variance around the line of best fit seems similar all the
way along the line of best fit, though there is not a lot of data points on which to base this judge-
ment in this case.

It is important the criterion variable should be a continuous score which is normally dis-
tributed. If the criterion is a binomial variable, then it is far better to use binomial logistic regres-
sion (Chapter 39). If it is a multinomial variable, then multinomial logistic regression should be
used (Chapter 38).



Table 52.1 Data for a simple mediational analysis

Educational Intellectual School
achievement ability motivation

1 2 1

2 2 3

2 2 3

3 4 3

3 3 4

4 3 2

Table 52.2 A correlation matrix for the three variables

1 Achievement 2 Ability

2 Ability .70

3 Motivation .37 .32
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52.5
Problems in the use of simple path analysis with measurement
error uncorrected

Care needs to be taken in interpreting the results of a simple path analysis with no measurement
error. If some of the variables are very highly correlated, then two potential problems may occur.
One problem is the standardised regression coefficients may be greater than ±1.00, which indi-
cates that the two variables are more than perfectly correlated. Two variables are only perfectly
correlated if they are, in effect, the same variable, which should not be the case when the vari-
ables are different. Another problem is the sign of the partial regression coefficient may be reversed.

You can find out more about simple mediational analysis in Chapter 34 of Howitt, D. and Cramer, D. (2011). Introduction
to Statistics in Psychology, 5th edition. Harlow: Pearson.

52.6 The data to be analysed

We will illustrate the computation of a simple path analysis without measurement error with the
data shown in Table 52.1. This data consist of scores for six individuals on the three variables of
educational achievement, intellectual ability and school motivation respectively. This is the same
data that we used in Chapter 32 for the stepwise multiple regression except that we will ignore
the fourth variable of parental interest for the sake of simplicity.

The correlations between these three variables is shown in Table 52.2 (see Chapter 10 for
information about correlation). We can see that the correlation between the causal variable (intel-
lectual ability) and the moderator variable (school motivation) is .32, which is acceptable and is
significant for a sample of this size.

Because this is for illustrative purposes and to save space, we are going to enter the data 20
times to give us a respectable amount of data to work with. Obviously you would not do this if
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your data were real. It is important to use quite a lot of research participants or cases for path
analysis. Ten or 15 times your number of variables would be reasonably generous. Of course, you
can use less for data exploration purposes.

52.7 Entering the data
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REPORTING THE OUTPUT
One of the simplest ways of reporting the results of this simple path analysis with no measurement error is as follows:

A model assuming that educational achievement was directly affected by intellectual ability and indirectly affected
by school motivation was tested with maximum likelihood structural equation model using LISREL 8.80 Student. All
variables were manifest variables. As this model was just-identified it provided a perfect fit to the data. Educational
achievement was significantly positively associated with both intellectual ability, b = .65, two-tailed p < .001, and
school motivation, b = .16, two-tailed p < .05. School motivation was also significantly positively associated with
intellectual ability, b = .32, two-tailed p < .001. A model postulating that the relation between intellectual ability 
and educational achievement was totally mediated by school motivation did not fit the data, the Normal Theory
Weighted Least Squares Chi-Square(1) = 78.51, p < .001 and RMSEA = 0.66. Educational achievement was largely
explained in terms of intellectual ability with school motivation having a small mediating effect.

It may be useful to illustrate these results with the path diagram shown in Figure 52.5. When this is done in journal 
articles, the correlation coefficients and the statistical symbols are not usually shown. When inspecting or presenting
your results it may be useful to include them so that it is easier to see the effect of controlling for the mediator variable.
Asterisks indicate the coefficients are statistically significant. One asterisk indicates a significance level of .05 or less,
two asterisks .01 or less and three asterisks .001 or less.
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52.9 Interpreting the output

The statistical fit of the saturated or just-identified model is given just below the path diagram
and in the output. As this model is saturated or just-identified, the fit is perfect. The next step is
to examine the standardised path coefficients and their statistical significance. The standardised
path coefficient between intellectual ability and educational achievement is .65 and statistically
significant at the .001 level or less. The standardised path coefficient between intellectual ability
and school motivation is .32 and statistically significant at the .001 level or less. The standard-
ised path coefficient between school motivation and educational achievement is .16 and stat-
istically significant at the .05 level or less. Note that these results are the same as those for the
multiple regression analysis on page 338 in Chapter 34.

These results indicate that educational achievement is more strongly associated with intellec-
tual ability than school motivation. Both intellectual ability and school motivation are positively
associated with educational achievement so that greater intellectual ability and school motivation
is related to greater educational achievement. Intellectual ability is also positively associated with
school motivation so that greater intellectual ability is related to greater school motivation. 
As the relation between intellectual ability and school motivation and the relation between school
motivation and educational achievement are significant, this means that the relation between
intellectual ability and educational achievement is partly mediated by school motivation. The
mediation is partial because there is little reduction in the size of the relation between intellectual
ability and educational achievement when school motivation is controlled or partialled out.

We can go on to check this by determining the fit of a model in which there is no relation
between intellectual ability and educational achievement. This model assumes that the relation
between these two variables is totally mediated by school motivation. As the chi-square for this
model is statistically significant, the model does not provide a satisfactory fit to the data. A model
which assumes that the relation between intellectual ability and educational achievement is
totally mediated by school motivation is inadequate. In other words, we need a model which has
a path between intellectual ability and school motivation. In this case, there is no need to com-
pare the fit of the two models as the simpler or nested model does not fit the data. If this model
had fitted the data, we would compare the fit of the two models to see whether the chi-square dif-
ference was significant. If it was not significant, we would go for the simpler model. If it was
significant, we would go for the model with the better fit.



For further resources including data sets and questions, please refer to the website accompanying this book.
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Summary of LISREL steps for simple path analysis with
measurement error uncorrected

Analysis

Select ‘File’ and ‘New’, ‘Path Diagram’ and then ‘OK’.
In the ‘File name:’ box type in name for path diagram file and then select ‘Save’.
Select ‘Setup’, ‘Variables …’ and ‘Add/Read Variables’.
In ‘Labels’ box select downward pointing arrow and ‘PRELIS System File’.
Select ‘Browse’ to find the file and then select ‘Open’.
Select ‘OK’.
Click box for endogenous variables.
Draw path diagram by moving variables into the path diagram window and then draw arrows between them.
Select ‘Setup’ and ‘Build LISREL Syntax’.
Select ‘File’ and ‘Run’ to run the syntax commands.

Output

Output is shown in the path diagram window as well as the output window.

FIGURE 52.5 Intellectual ability, school motivation and educational achievement
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Analyze menu Analyze submenu Dialog box

Descriptive Crosstabs . . . Lambda

Statistics Uncertainty coefficient
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Risk

Eta

Correlate Bivariate . . . Kendall’s tau-b
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Discriminant . . .

Some other statistics in
SPSS Statistics

APPENDIX

Some other statistical methods provided by SPSS Statistics but not described in this book are
shown below in terms of their options on the ‘Analyze’ menu, submenu and dialog box options.
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Analyze menu Analyze submenu Dialog box

Dimension Reduction Correspondence Analysis . . .

Optimal Scaling . . .

Scale Multidimensional Scaling . . .

Multidimensional Scaling [PROXSCAL] . . .

Multidimensional Scaling [ALSCAL]

Nonparametric Binomial . . .

Tests Runs . . .

1-Sample K-S . . .

(Kolmogorov–Smirnov)

2 Independent Samples . . . Kolmogorov–Smirnov Z

Wald–Wolfowitz runs

Moses extreme reactions

K Independent Samples . . . Jonckheere–Terpstra

Median

2 Related Samples . . . Marginal Homogeneity

K Related Samples . . . Kendall’s W

Cochran’s Q

Survival Life Tables . . .

Kaplan–Meier . . .

Cox Regression . . .

Cox w/ Time-Dep Cov . . .



A priori test: A test of the difference between two groups of
scores when this comparison has been planned ignorant of
the actual data. This contrasts with a post hoc test which
is carried out after the data have been collected and which
has no particularly strong expectations about the outcome.

Adjusted mean: A mean score when the influence of one or
more covariates has been removed especially in analysis of
covariance.

Alpha level: The level of risk that the researcher is prepared
to mistakenly accept the hypothesis on the basis of the
available data. Typically this is set at a maximum of 5%
or .05 and is, of course, otherwise referred to as the level
of significance.

Analysis of covariance (ANCOVA): A variant of the analysis
of variance (ANOVA) in which scores on the dependent
variable are adjusted to take into account (control) a
covariate(s). For example, differences between conditions
of an experiment at pre-test can be controlled for.

Analysis of variance (ANOVA): An extensive group of tests
of significance which compare means on a dependent vari-
able. There may be one or more independent (grouping)
variables or factors. ANOVA is essential in the analysis of
most laboratory experiments.

Association: A relationship between two variables.

Bar chart: A picture in which frequencies are represented by
the height of a set of bars. It should be the areas of a set
of bars but SPSS ignores this and settles for height.

Bartlett’s test of sphericity: A test used in MANOVA of
whether the correlations between the variables differ
significantly from zero.

Beta or Type II level: The risk that we are prepared to accept
of rejecting the null hypothesis when it is in fact true.

Beta weight: The standardised regression weight in multiple
regression. It corresponds to the correlation coefficient in
simple regression.

Between-groups design: A design where different participants
are allocated to different groups or conditions.

Between-subjects design: See Between-groups design.
Bimodal: A frequency distribution with two modes.
Bivariate: Involving two variables as opposed to univariate

which involves just one variable.
Bivariate correlation: A correlation between two variables.
Block: A subset of variables which will be analysed together

in a sequence of blocks.
Bonferroni adjustment: A method of adjusting significance

levels for the fact that many statistical analyses have been
carried out on the data.

Boxplot: A diagram indicating the distribution of scores on 
a variable. It gives the median in a box, the upper and
lower sides of which are the upper and lower values of the
interquartile range. Lines at each side of the box identify
the largest and smallest scores.

Box’s M: A statistical test which partly establishes whether
the data meet the requirements for a MANOVA analysis.
It examines the extent to which the covariances of the
dependent variables are similar for each of the groups 
in the analysis. Ideally, then, Box’s M should not be
significant. The test is used in MANOVA though its inter-
pretation is complex.

Case: The basic unit of analysis on which data are collected
such as individuals or organisations.

Categorical variable: A nominal or category variable.
Category variable: A variable which consists of categories

rather than numerical scores. The categories have no par-
ticular quantitative order. However, usually on SPSS they
will be coded as numbers.

Cell: The intersection of one category of a variable with
another category of one or more other variables. So if a
variable has categories A, B and C and the other variable
has categories X, Y and Z, then the cells are A with X, 
A with Y, A with Z, B with X, B with Y, etc. It is a term
frequently used in ANOVA as well as with chi-square
tables (i.e. cross-tabulation and contingency tables).

Chart: A graphical or pictorial representation of the charac-
teristics of the data.

Chart Editor window: In SPSS it is a Window which can be
opened to refine a chart.

Chi-square distribution: A set of theoretical probability dis-
tributions which vary according to the degrees of freedom
and which are used to determine the statistical significance
of a chi-square test.

Chi-square test, Pearson’s: A test of goodness-of-fit or asso-
ciation for frequency data. It compares the observed 
data with the estimated (or actual) population distribu-
tion (this is usually based on combining two or more 
samples).

Cluster analysis: A variety of techniques which identify the
patterns of variables or cases which tend to be similar to
each other. No cluster analysis techniques are dealt with
in this book as they are uncommon in psychology. Factor
analysis often does a similar job.

Cochran’s Q test: A test of whether the frequencies of a
dichotomous variable differ significantly for more than
two related samples or groups.

GLOSSARY
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Coefficient of determination: The square of Pearson’s corre-
lation coefficient. So a correlation of .4 has a coefficient of
determination of .16. It is useful especially since it gives a
numerically more accurate representation of the relative
importance of different correlation coefficients than the
correlation coefficients themselves do.

Common variance: The variance that two or more variables
share.

Communality: The variance that a particular variable in an
analysis shares with other variables. It is distinct from
error variance and specific variance (which is confined to
a particular variable). It mainly appears in factor analysis.

Component matrix: A table showing the correlations
between components and variables in factor analysis.

Compute: In SPSS this procedure allows the researcher to
derive new variables from the original variables. For
example, it would be possible to sum the scores for each
participant on several variables.

Condition: One of the groups in ANOVA or the t-test.
Confidence interval: A more realistic way of presenting the

outcomes of statistical analysis than, for example, 
the mean or the standard deviation would be. It gives the
range within which 95 per cent or 99 per cent of the most
common means, standard deviations, etc. would lie. Thus
instead of saying that the mean is 6.7 we would say that
the 95 per cent confidence interval for the mean is 5.2 
to 8.2.

Confirmatory factor analysis: A test of whether a particular
model or factor structure fits a set of data satisfactorily.

Confounding variable: Any variable which clouds the inter-
pretation of a correlation or any other statistical relation-
ship. Once the effects of the confounding variable are
removed, the remaining relationship presents a truer pic-
ture of what is going on in reality.

Contingency table: A frequency table giving the frequencies
in all of the categories of two or more nominal (category)
variables tabulated together.

Correlation coefficient: An index which gives the extent 
and the direction of the linear association between two
variables.

Correlation matrix: A matrix of the correlations of pairs of
variables.

Count: The number of times (frequency) a particular obser-
vation (score or category, for example) occurs.

Counterbalancing: If some participants take part in condition
A of a study first followed by condition B later, then to
counterbalance any time or sequence effects other parti-
cipants should take part in condition B first followed by
condition A second.

Covariance: The variance which two or more score variables
have in common (i.e. share). It is basically calculated like
variance but instead of squaring each score’s deviation
from the mean, the deviation of variable X from its mean
is multiplied by the deviation of variable Y from its mean.

Covariate: A variable which correlates with the variables that
are the researcher’s main focus of interest. In the analysis
of covariance it is the undesired influence of the covariate
which is controlled for.

Cox and Snell’s R2: The amount of variance in the criterion
variable accounted for by the predictor variables. It is used
in logistic regression.

Cramer’s V: Also known as Cramer’s phi, this correlation
coefficient is usually applied to a contingency or cross-
tabulation table greater than 2 rows × 2 columns.

Critical value: Used when calculating statistical significance
with statistical tables. It is the minimum value of the 
statistical calculation which is statistically significant (i.e.
which rejects the null hypothesis).

Cronbach’s alpha: A measure of the extent to which cases
respond in a similar or consistent way on all the variables
that go to make up a scale.

Data Editor Window: The data spreadsheet in which data are
entered in SPSS.

Data handling: The various techniques to deal with data from
a study excluding its statistical analysis. It would include
data entry into the spreadsheet, the search for errors in
data entry, recoding variables into new values, computing
new variables and so forth.

Data View: The window in SPSS which allows you to see the
data spreadsheet.

Degrees of freedom: The number of components of the data
that can vary while still yielding a given population value
for characteristics such as mean scores. All other things
being equal, the larger the degrees of freedom the more
likely it is that the research findings will be statistically
significant.

Dependent variable: A variable which potentially may be
affected or predicted by other variables in the analysis. It
is sometimes known as the criterion or outcome variable.

Descriptive statistics: Indices which describe the major 
characteristics of variables or the relationships between
variables. They include measures of central tendency (mean,
median and mode for example) and measures of spread
(range, variance, etc.).

Deviation: Usually the difference between a score and the
mean of the set of scores.

Dialog box: A rectangular picture in SPSS which allows the
user to select various procedures.

Dichotomous: A nominal (category) variable with just two
categories. Gender (male/female) is an obvious example.

Direct oblimin: A rotation procedure for making factors in a
factor analysis more meaningful or interpretable. Its essen-
tial characteristic is that the factors are not required to be
uncorrelated (independent) of each other.

Discriminant (function) analysis: A statistical technique for
score variables which maximises the difference(s) between
two or more groups of participants on a set of variables.
It generates a set of ‘weights’ which are applied to these
variables.

Discriminant function: Found mainly in discriminant (func-
tion) analysis. A derived variable based on combining a set
of variables in such a way that groups are as different as
possible on the discriminant function. More than one dis-
criminant function may emerge but each discriminant
function is uncorrelated with the others.
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Discriminant score: An individual’s score on a discriminant
function.

Dummy coding: Used when analysing nominal (category)
data to allow such variables to be used analogously to
scores. Each category of the nominal (category) variable 
is made into a separate dummy variable. If the nominal
(category) variable has three categories A, B and C then
two new variables, say A versus not A and B versus not B
are created. The categories may be coded with the value 1
and 0. It would not be used where a variable has only two
different categories.

Dummy variable: A variable created by dummy coding.

Effect size: A measure of the strength of the relationship
between two variables. Most commonly used in meta-
analysis. The Pearson correlation coefficient is a very
familiar measure of effect size. Also commonly used is
Cohen’s d. The correlation coefficient is recommended as
the most user-friendly measure of effect size as it is very
familiar to most of us and easily understood.

Eigenvalue: The variance accounted for by a factor. It is sim-
ply the sum of the squared factor loadings. The concept is
also used for discriminant functions.

Endogenous variable: Any variable in path analysis that can
be explained on the basis of one or more variables in that
analysis.

Eta: A measure of association for non-linear (curved) 
relationships.

Exact significance: The precise significance level at and
beyond which a result is statistically significant.

Exogenous variable: A variable in path analysis which is not
accounted for by any other variable in that analysis.

Exploratory factor analysis: The common form of factor
analysis which finds the major dimensions of a correlation
matrix using weighted combinations of the variables in the
study. It identifies combinations of variables which can be
described as one or more superordinate variable or factor.

Exponent or power: A number with an exponent or power
superscript is multiplied by itself by that number of times.
Thus 32 means 3 × 3 whereas 43 means 4 × 4 × 4.

Extraction: The process of obtaining factors in factor analysis.

F ratio: The ratio of two variances. It can be used to test
whether these two variances differ significantly using the
F-distribution. It can be used on its own but is also part of
the t-test and ANOVA.

Factor, in analysis of variance: An independent or subject
variable but is best regarded as a variable on which groups
of participants are formed. The variances of these groups
are then compared using ANOVA. A factor should consist
of a nominal (category) variable with a small number of
categories.

Factor, in factor analysis: A variable derived by combining
other variables in a weighted combination. A factor seeks
to synthesise the variance shared by variables into a more
general variable to which the variables relate.

Factor matrix: A table showing the correlations between fac-
tors and the variables.

Factor scores: Standardised scores for a factor. They provide
a way of calculating an individual’s score on a factor
which precisely reflects that factor.

Factorial ANOVA: An analysis of variance with two or more
independent or subject variables.

Family error rate: The probability or significance level for a
finding when a family or number of tests or comparisons
are being made on the same data.

Fisher test: Tests of significance (or association) for 2 × 2 and
2 × 3 contingency tables.

Frequency: The number of times a particular category occurs.
Frequency distribution: A table or diagram giving the fre-

quencies of values of a variable.
Friedman’s test: A non-parametric test for determining

whether the mean ranks of three or more related samples
or groups differ significantly.

Goodness-of-fit index: A measure of the extent to which a
particular model (or pattern of variables) designed to
describe a set of data actually matches the data.

Graph: A diagram for illustrating the values of one or more
variables.

Grouping variable: A variable which forms the groups or
conditions which are to be compared.

Harmonic mean: The number of scores, divided by the sum
of the reciprocal (1/x) of each score.

Help: A facility in software with a graphical interface such as
SPSS which provides information about its features.

Hierarchical agglomerative clustering: A form of cluster ana-
lysis, at each step of which a variable or cluster is paired
with the most similar variable or cluster until one cluster
remains.

Hierarchical or sequential entry: A variant of regression in
which the order in which the independent (predictor) vari-
ables are entered into the analysis is decided by the analyst
rather than mathematical criteria.

Hierarchical regression: see Hierarchical or sequential entry.
Histogram: A chart which represents the frequency of par-

ticular scores or ranges of scores in terms of a set of bars.
The height of the bar represents the frequency of this score
or range of scores in the data.

Homogeneity of regression slope: The similarity of the regres-
sion slope of the covariate on the criterion variable in the
different groups of the predictor variable.

Homogeneity of variance: The similarity of the variance of
the scores in the groups of the predictor variable.

Homoscedasticity: The similarity of the scatter or spread of
the data points around the regression line of best fit in dif-
ferent parts of that line.

Hypothesis: A statement expressing the expected or predicted
relationship between two or more variables.

Icicle plot: A graphical representation of the results of a clus-
ter analysis in which x’s are used to indicate which vari-
ables or clusters are paired at which stage.

Identification: The extent to which the parameters of a struc-
tural equation model can be estimated from the original data.
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Independence: Events or variables being unrelated to each
other.

Independent groups design: A design in which different cases
are assigned to different conditions or groups.

Independent t-test: A parametric test for determining whether
the means of two unrelated or independent groups differ
significantly.

Independent variable: A variable which may affect (predict)
the values of another variable(s). It is a variable used to
form the groups in experimental designs. But it is also
used in regression for the variables used to predict the
dependent variable.

Inferential statistics: Statistical techniques which help 
predict the population characteristics from the sample
characteristics.

Interaction: This describes outcomes in research which can-
not be accounted for on the basis of the separate influ-
ences of two or more variables. So, for example, an 
interaction occurs when two variables have a significant
influence when combined.

Interaction graph: A graph showing the relationship of the
means of three or more variables.

Interquartile range: The range of the middle 50 per cent of 
a distribution. By ignoring the extreme quarter in each
direction from the mean, the interquartile range is less
affected by extreme scores.

Interval data: Data making up a scale in which the distance
or interval between adjacent points is assumed to be the
same or equal but where there is no meaningful zero
point.

Just-identified model: A structural equation model in which
the data are just sufficient to estimate its parameters.

Kaiser or Kaiser–Guttman criterion: A statistical criterion 
in factor analysis for determining the number of factors 
or components for consideration and possible rotation 
in which factors or components with eigenvalues of one or
less are ignored.

Kendall’s tau (t): An index of the linear association between
two ordinal variables. A correlation coefficient for non-
parametric data in other words.

Kolmogorov–Smirnov test for two samples: A non-parametric
test for determining whether the distributions of scores on
an ordinal variable differ significantly for two unrelated
samples.

Kruskal–Wallis test: A non-parametric test for determining
whether the mean ranked scores for three or more unre-
lated samples differ significantly.

Kurtosis: The extent to which the shape of a bell-shaped
curve is flatter or more peaked than a normal distribution.

Latent variable: An unobserved variable that is measured by
one or more manifest variables or indicators.

Level: Used in analysis of variance to describe the different
conditions of an independent variable (or factor). The
term has its origins in agricultural research where levels of
treatment would correspond to, say, different amounts of
fertiliser being applied to crops.

Levels of measurement: A four-fold hierarchical distinction
proposed for measures comprising nominal, ordinal, equal
interval and ratio.

Levene’s test: An analysis of variance on absolute differences
to determine whether the variances of two or more un-
related groups differ significantly.

Likelihood ratio chi-square test: A form of chi-square which
involves natural logarithms. It is primarily associated with
log-linear analysis.

Line graph: A diagram in which lines are used to indicate the
frequency of a variable.

Linear association or relationship: This occurs when there is
a straight line relationship between two sets of scores. The
scattergram for these data will be represented best by a
straight line rather than a curved line.

Linear model: A model which assumes a linear relationship
between the variables.

LISREL: The name of a particular software designed to carry
out linear structural relationship analysis also known as
structural equation modelling.

Loading: An index of the size and direction of the association
of a variable with a factor or discriminant function of which
it is part. A loading is simply the correlation between a
variable and the factor or discriminant function.

Log likelihood: An index based on the difference between 
the frequencies for a category variable(s) and what is 
predicted on the basis of the predictors (i.e. the modelled
data). The bigger the log likelihood the poorer the fit of
the model to the data.

−2 log likelihood (ratio) test: Used in logistic regression, it is
a form of chi-square test which compares the goodness of
fit of two models where one model is a part of (i.e. nested
or a subset of ) the other model. The chi-square is the dif-
ference in the −2 log likelihood values for the two models.

Logarithm: The amount to which a given base number (e.g.
10) has to be multiplied by itself to obtain a particular
number. So in the expression 32, 2 would be the logarithm
for the base 3 which makes 9. Sometimes it is recom-
mended that scores are converted to their logarithms 
if this results in the data fitting the requirements of the 
statistical procedure better.

Logistic or logit regression: A version of multiple regression
in which the dependent, criterion or outcome variable
takes the form of a nominal (category) variable. Any 
mixture of scores and nominal (category) variables can 
act as predictors. The procedure uses dummy variables 
extensively.

Log-linear analysis: A statistical technique for nominal (cat-
egory) data which is essentially an extension of chi-square
where there are three or more independent variables.

Main effect: The effect of an independent or predictor 
variable on a dependent or criterion variable.

Manifest variable: A variable which directly reflects the 
measure used to assess it.

Mann–Whitney test: A non-parametric test for seeing
whether the number of times scores from one sample are
ranked significantly higher than scores from another unre-
lated sample.
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Marginal totals: The marginal totals are the row and column
total frequencies in cross-tabulation and contingency
tables.

Matched-subjects design: A related design in which par-
ticipants are matched in pairs on a covariate or where 
participants serve as their own control. In other words, a
repeated or related measures design.

Matrix: A rectangular array of rows and columns of data.
Mauchly’s test: A test for determining whether the assump-

tion that the variance–covariance matrix in a repeated
measures analysis of variance is spherical or circular.

Maximum likelihood method: A method for finding estimates
of the population parameters of a model which are most
likely to give rise to the pattern of observations in the sam-
ple data.

McNemar test: A test for assessing whether there has been a
significant change in the frequencies of two categories on
two occasions in the same or similar cases.

Mean: The everyday numerical average score. Thus the mean
of 2 and 3 is 2.5.

Mean square: A term for variance estimate used in analysis of
variance.

Measure of dispersion: A measure of the variation in the
scores such as the variance, range, interquartile range, and
standard error.

Median: The score which is halfway in the scores ordered
from smallest to largest.

Mixed ANOVA: An ANOVA in which at least one indepen-
dent variable consists of related scores and at least one
other variable consists of uncorrelated scores.

Mixed design: See Mixed ANOVA.
Mode: The most commonly occurring score or category.
Moderating or moderator effect: A relationship between two

variables which differs according to a third variable. For
example, the correlation between age and income may be
moderated by a variable such as gender. In other words,
the correlation for men and the correlation for women
between age and income is different.

Multicollinearity: Two or more independent or predictor
variables which are highly correlated.

Multimodal: A frequency distribution having three or more
modes.

Multiple correlation or R: A form of correlation coefficient
which correlates a single score (A) with two or more other
scores (B + C) in combination. Used particularly in multi-
ple regression to denote the correlation of a set of predic-
tor variables with the dependent (or outcome) variable.

Multiple regression: A parametric test to determine what pat-
tern of two or more predictor (independent) variables is
associated with scores on the dependent variable. It takes
into account the associations (correlations) between the
predictor variables. If desired, interactions between pre-
dictor variables may be included.

Multivariate: Involving more than two variables.
Multivariate analysis of variance (MANOVA): A variant 

of analysis of variance in which there are two or more
dependent variables combined. MANOVA identifies 
differences between groups in terms of the combined
dependent variable.

Nagelkerke’s R2: The amount of variance in the criterion
variable accounted for by the predictor variables.

Natural, Naperian or Napierian logarithm: The logarithms
calculated using 2.718 as the base number.

Nested model: A model which is a simpler subset of another
model and which can be derived from that model.

Non-parametric test: A statistical test of significance which
requires fewer assumptions about the distribution of 
values in a sample than a parametric test.

Normal distribution: A mathematical distribution with very
important characteristics. However, it is easier to regard it
as a bell-shaped frequency curve. The tails of the curve
should stretch to infinity in both directions but this, in the
end, is of little practical importance.

Numeric variables: Variables for which the data are collected
in the form of scores which indicate quantity.

Oblique factors: In factor analysis, oblique factors are ones
which, during rotation, are allowed to correlate with each
other. This may be more realistic than orthogonal rotations.
One way of looking at this is to consider height and weight.
These are distinct variables but they correlate to some
degree. Oblique factors are distinct but they can correlate.

Odds: Obtained by dividing the probability of something
occurring by the probability of it not occurring.

Odds ratio: The number by which the odds of something
occurring must be multiplied for a one unit change in a
predictor variable.

One-tailed test: A version of significance testing in which a
strong prediction is made as to the direction of the rela-
tionship. This should be theoretically and empirically well
founded on previous research. The prediction should be
made prior to examination of the data.

Ordinal data: Numbers for which little can be said other than
the numbers give the rank order of cases on the variable
from smallest to largest.

Orthogonal: Essentially means at right angles.
Orthogonal factors: In factor analysis, orthogonal factors are

factors which do not correlate with each other.
Outcome variable: A word used especially in medical stat-

istics to denote the dependent variable. It is also the cri-
terion variable. It is the variable which is expected to vary
with variation in the independent variable(s).

Outlier: A score or data point which differs substantially
from the other scores or data points. It is an extremely
unusual or infrequent score or data point.

Output window: The window of computer software which
displays the results of an analysis.

Over-identified model: A structural equation model in which
the number of data points is greater than the number of
parameters to be estimated, enabling the fit of the model
to the data to be determined.

Paired comparisons: The process of comparing each variable
mean with every (or most) other variable mean in pairs.

Parameter: A characteristic such as the mean or standard
deviation which is based on the population of scores. In
contrast, a statistic is a characteristic which is based on a
sample of scores.
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Parametric: To do with the characteristics of the population.
Parametric test: A statistical test which assumes that the

scores used come from a population of scores which is
normally distributed.

Part or semi-partial correlation: The correlation between a
criterion and a predictor when the predictor’s correlation
with other predictors is partialled out.

Partial correlation: The correlation between a criterion and a
predictor when the criterion’s and the predictor’s correla-
tion with other predictors have been partialled out.

Participant: Someone who takes part in research. A more
appropriate term than the archaic and misleading ‘subject’.

PASW Statistics: The name for SPSS in 2008–9. PASW stands
for Predictive Analytic Software.

Path diagram: A diagram in which the relationships (actual or
hypothetical) between variables are presented.

Pathway: A line in a path diagram depicting a relationship
between two variables.

Phi: A measure of association between two binomial or
dichotomous variables.

Pivot table: A table in SPSS which can be edited.
Planned comparisons: Testing whether a difference between

two groups is significant when there are strong grounds
for expecting such a difference.

Point biserial correlation: A correlation between a score vari-
able and a binomial (dichotomous) variable – i.e. one with
two categories.

Population: All of the scores from which a sample is taken. 
It is erroneous in statistics to think of the population as
people since it is the population of scores on a variable.

Post hoc test: A test to see whether two groups differ
significantly when the researcher has no strong grounds
for predicting or expecting that they will. Essentially they
are unplanned tests which were not stipulated prior to the
collection of data.

Power: In statistics the ability of a test to reject the null
hypothesis when it is false.

Principal component analysis: Primarily a form of factor
analysis in which the variance of each variable is set at the
maximum value of 1 as no adjustment has been made for
communalities. Probably best reserved for instances in
which the correlation matrix tends to have high values
which is not common in psychological research.

Probability distribution: The distribution of outcomes
expected by chance.

Promax: A method of oblique rotation in factor analysis.

Quantitative research: Research which at the very least
involves counting the frequency of categories in the main
variable of interest.

Quartimax: A method of orthogonal rotation in factor 
analysis.

Randomisation: The assignment of cases to conditions using
some method of assigning by chance.

Range: The difference between the largest and smallest score
of a variable.

Ratio data: A measure for which it is possible to say that a
score is a multiple of another score such as 20 being twice

10. Also there should be a zero point on the measure. This
is a holy grail of statistical theory which psychologists will
never find unless variables such as time and distance are
considered.

Recode: Giving a value or set of values another value such as
recoding age into ranges of age.

Regression coefficient: The weight which is applied to a 
predictor variable to give the value of the dependent 
variable.

Related design: A design in which participants provide data
in more than one condition of the experiment. This is
where participants serve as their own controls. More
rarely, if samples are matched on a pairwise basis to be as
similar as possible on a matching variable then this also
constitutes a related design if the matching variable corre-
lates with the dependent variable.

Related factorial design: A design in which there are two or
more independent or predictor variables which have the
same or matched cases in them.

Reliability: Internal reliability is the extent to which items
which make up a scale or measure are internally consist-
ent. It is usually calculated either using a form of split-
half reliability in which the score for half the items is 
correlated with the score for the other half of the items
(with an adjustment for the shortened length of the scale)
or using Cronbach’s alpha (which is the average of all 
possible split-half reliabilities). A distinct form of reliabil-
ity is test–retest reliability which measures consistency
over time.

Repeated-measures ANOVA: An analysis of variance which
is based on one or more related factors having the same or
similar cases in them.

Repeated-measures design: A design in which the groups of
the independent variables have the same or matched cases
in them.

Residual: The difference between an observed and expected
score.

Residual sum of squares: The sum of squares that are left
over after other sources of variance have been removed.

Rotation: see Rotation of factors.
Rotation of factors: This adjusts the factors (axes) of a factor

analysis in order to make the factors more interpretable.
To do so, the number of high and low factors loadings are
maximised whereas the number of middle-sized factor
loadings are made minimal. Originally it involved plotting
the axes (factors) on graph paper and rotating them phys-
ically on the page, leaving the factor loadings in the same
points on the graph paper. As a consequence, the factor
loadings change since these have not moved but the axes
have.

Sample: A selection or subset of scores on a variable. Samples
cannot be guaranteed to be representative of the popula-
tion but if they are selected at random then there will be
no systematic difference between the samples and the
population.

Sampling distribution: The theoretical distribution of a par-
ticular size of sample which would result if samples of that
size were repeatedly taken from that population.
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Saturated model: A model (set of variables) which fully
accounts for the data. It is a concept used in log-linear
analysis and structural equation modelling.

Scattergram: see Scatterplot.
Scatterplot: A diagram or chart which shows the relationship

between two score variables. It consists of a horizontal
and a vertical axis which are used to plot the scores of
each individual on both variables.

Scheffé test: A post hoc test used in analysis of variance to test
whether two group means differ significantly from each
other.

Score statistic: A measure of association in logistic regression.
Scree test: A graph of the eigenvalues of successive factors 

in a factor analysis. It is used to help determine the
‘significant’ number of factors prior to rotation. The point
at which the curve becomes flat and ‘straight’ determines
the number of ‘significant’ factors.

Select cases: The name of an SPSS procedure for selecting
subsamples of cases based on one or more criteria such as
the gender of participants.

Sign test: A non-parametric test which determines whether
the number of positive and negative differences between
the scores in two conditions with the same or similar cases
differ significantly.

Significance level: The probability level at and below which
an outcome is assumed to be unlikely to be due to chance.

Simple regression: A test for describing the size and direction
of the association between a predictor variable and a cri-
terion variable.

Skew: A description given to a frequency distribution in
which the scores tend to be in one tail of the distribution.
In other words, it is a lop-sided frequency distribution
compared with a normal (bell-shaped) curve.

Sort cases: The name of an SPSS procedure for ordering cases
in the data file according to the values of one or more 
variables.

Spearman’s correlation coefficient: A measure of the size and
direction of the association between two variables rank
ordered in size.

Sphericity: Similarity of the correlations between the depend-
ent variable in the different conditions.

Split-half reliability: The correlation between the two halves
of a scale adjusted for the number of variables in each
scale.

SPSS: A computer program, now called IBM SPSS Statistics,
which performs many important data analyses and stat-
istical procedures. It can be regarded as the standard 
program worldwide.

Squared Euclidean distance: The sum of the squared dif-
ferences between the scores on two variables for the 
sample.

Standard deviation: Conceptually the average amount by
which the scores differ from the mean.

Standard error: Conceptually, the average amount by 
which the means of samples differ from the mean of the
population.

Standard or direct entry: A form of multiple regression in
which all of the predictor variables are entered into the
analysis at the same time.

Standardised coefficients or weights: The coefficients or
weights of the predictors in an equation are expressed in
terms of their standardised scores.

Stepwise entry: A form of multiple regression in which vari-
ables are entered into the analysis one step at a time. In
this way, the most predictive predictor is chosen first, then
the second most predictive predictor is chosen second,
having dealt with the variance due to the first predictor,
and so forth.

Sum of squares: The total obtained by adding up the squared
differences between each score and the mean of that set of
scores. The ‘average’ of this is the variance.

Syntax: Statements or commands for carrying out various
procedures in computer software.

Test–retest reliability: The correlation of a measure taken at
one point in time with the same (or very similar) measure
taken at a different point in time.

Transformation: Ways of adjusting the data to meet the
requirements for the data for a particular statistical tech-
nique. For example, the data could be changed by taking
the square root of each score, turning each score into a
logarithm, and so forth. Trial and error may be required
to find an appropriate transformation.

Two-tailed test: A test which assesses the statistical signi-
ficance of a relationship or difference in either direction.

Type I error: Accepting the hypothesis when it is actually
false.

Type II error: Rejecting the hypothesis when it is actually
true.

Under-identified model: A structural equation model in
which there are not enough data points to estimate its
parameters.

Unique variance: Variance of a variable which is not shared
with other variables in the analysis.

Univariate: Involving one variable.
Unplanned comparisons: Comparisons between groups

which were not stipulated before the data were collected
but after its collection.

Unstandardised coefficients or weights: The coefficients or
weights which are applied to scores (as opposed to stand-
ardised scores).

Value label: The name or label given to the value of a vari-
able such as ‘Female’ for ‘1’.

Variable label: The name or label given to a variable.
Variable name: The name of a variable.
Variable View: The window in SPSS ‘Data Editor’ which

shows the names of variables and their specification.
Variance: The mean of the sum of the squared difference

between each score and the mean of the set of scores. It
constitutes a measure of the variability or dispersion of
scores on a quantitative variable.

Variance ratio: The ratio between two variances, commonly
referred to in ANOVA (analysis of variance).

Variance–covariance matrix: A matrix containing the vari-
ance of the variables and the covariance between pairs of
variables.
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Varimax: In factor analysis, a procedure for rotating the 
factors to simplify understanding of the factors which
maintains the zero correlation between all of the 
factors.

Wald statistic: The ratio of the beta coefficient to its standard
error. Used in logistic regression.

Weights: An adjustment made to reflect the size of a variable
or sample.

Wilcoxon signed-rank test: A non-parametric test for assess-
ing whether the scores from two samples that come from
the same or similar cases differ significantly.

Wilks’ lambda: A measure, involving the ratio of the within-
groups to the total sum of squares, used to determine if the
means of variables differ significantly across groups.

Within-subjects design: A correlated or repeated-measures
design.

Yates’s continuity correction: An outmoded adjustment to a
2 × 2 chi-square test held to improve the fit of the test to
the chi-square distribution.

z-score: A score expressed as the number of standard devi-
ations a score is from the mean of the set of scores.
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compound (stacked) 82, 91, 94, 97–8

bell-shaped curve 64, 66, 67, 75, 134, 137, 174
Beta see Type II level
beta weight 74, 113, 316
binomial logistic regression 312, 368, 375, 389–400

data entry 394
data for analysis 394
data requirements 493
definition of 390–3
interpreting the output 396–9
problems with 393–4
reporting the output 399
when to use 374–5, 375, 377, 378, 393
see also multiple regression

bivariate statistics 8, 90
Bonferroni adjustment 209, 216, 232, 244
Box’s M (Test of Equality of Covariance Matrices) 243,

272, 273

case 4, 445–9
categorical variable 7
category variables see nominal variables
central tendency 56, 58
centroids 266, 268, 269
Chart Editor 47, 49, 52, 54

INDEX

Note: Entries in bold refer to terms described in the Glossary. Page numbers in red refer to Chapters 53–56 which are
available on the website at www.pearsoned.co.uk/howitt
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checking accuracy of data input 459–68
combining the two data files 463–4
creating two data files 456, 461–3
definition of 459–61
syntax file 464–7

chi-square distribution 154–67, 175, 474
binomial logistic regression 398
data entry 159–60
data for analysis 158–9
data requirements 157–8
definition of 155–7
Fisher exact test 154, 156, 157, 163–4
interpreting the output 162–3
log-linear analysis 365, 366, 367, 370–3
McNemar test 154, 156, 168
multinomial logistic regression 383–4
one-sample 165–6
problems with 158
reporting the output 163, 164, 167
when to use 157
without ready-made tables 167

chi-square test, Pearson’s see chi-square distribution
Cohen’s d 555, 563, 564, 565
collinearity 338, 347
comparative designs 4–5
Comparative Fit Index (CFI) 475, 487
Compute 442
computing a new group variable from existing group

variables 438–44
Compute syntax commands 442
data entry 440–1
definition 438–40
menus and dialog boxes 442–3
syntax file for 441

confidence interval 11, 119, 120, 123, 150–3
ANCOVA 254
definition of 150–2
MANOVA 264
one-way unrelated ANOVA 208
related t-test 140, 141
significance and 152
standard error 127
stepwise multiple regression 316
unrelated t-test 148, 149

confidence limits 151, 152–3
confirmatory factor analysis 472, 484–98

data entry 489
data for analysis 489
data requirements 488
definition 485–7
interpreting the output 496–7
problems in 488
reporting the output 497
steps in 487
when to use 488

contingency table 24
chi-square 154, 155, 158
log-linear analysis 366, 367, 372

correlated measures 10
correlation coefficient 102–12, 564

data entry 107
data for analysis 107
data requirements 106–7
definition of 103–5
hierarchical multiple regression 341–2, 347

interpreting the output 109, 110, 112
item reliability 296
problems with 107
reporting the output 109, 110, 112
simple regression 113, 114, 115, 119
stepwise multiple regression 310, 316
when to use 105–6
see also partial correlation; Pearson correlation coefficient

Spearman’s rho correlation coefficient
correlation matrix 285–7, 293, 410, 455–8
correlational design 5–6
covariate 386
Cox and Snell’s R2 399
criterion variable in simple mediational analysis 331
Cronbach’s alpha reliability 296, 298, 303, 475, 533
cross-sectional studies 5
cross-tabulation 25, 90, 95, 94

chi-square 158, 162
log-linear analysis 366, 372
McNemar’s test 170
multinomial logistic regression 386
see also contingency tables

Data Editor Window 18, 29
data entry 18–19

analysis of covariance (ANCOVA) 250
analysis of variance (ANOVA)

multiple comparisons 234–5
one-way related (repeated-measures) 213
two-way mixed 241–3
two-way unrelated 224

ASCII files 403–8
averages 59
binomial logistic regression 394
checking accuracy 459–68
chi-square 159–60
computing new group variable from existing group

variables 440–1
computing new variables 425, 433–4
confirmatory factor analysis 489
correlation coefficients 107
Data View 26–7, 444
diagrams 24, 95
discriminant (function) analysis 270
factor analysis 290
frequency tables 69
hierarchical multiple regression 344
linear structural relationship (LISREL) analysis

471–83
log-linear analysis 369
MANOVA 261
McNemar test 170–2
missing values 411, 433–4
moderator variable analysis 354, 358
multinomial logistic regression 379–80
multiple comparison tests 234–5
non-parametric test 178
partial correlation 282
ranking tests 241–3
recoding 418
related t-test 133, 138
relationships between variables 95
reliability 301–2
sample 451
selecting cases 446–9



INDEX I:3

simple mediational analysis 335–6
simple path analysis controlling for alpha reliability 539
simple path analysis with latent variables 521
simple path analysis with measurement error 

uncorrected 505
simple regression 117–18
simultaneous (standard) multiple regression 324
SPSS Statistics 18–29
standard deviation 77
standard error 130
statistical power analysis 559–61
stepwise multiple regression 312–13
structural equation modelling 478–9
tables 24
unrelated t-test 142, 146
Variable View 23–5
variance ratio test (F-test) 200
weighting 86, 35–7, 96, 158, 159–60, 170–1

Data View 26–7, 444
deletion 409, 410
dependent variable 113, 114, 115, 116, 231

ANCOVA 247, 248
binomial logistic regression 393
discriminant function analysis 266, 267–8, 273
MANOVA 257–9, 260, 263, 264, 265
multinomial logistic regression 375, 378, 385
one-way unrelated ANOVA 203, 205
stepwise multiple regression 308
two-way unrelated ANOVA 218

descriptive statistics 8–10, 229, 263
diagrams 40–54, 90–101

data entry 95
data for analysis 43, 95
data requirements 42, 94
data weighting 44–5, 96
definition 41–2
problems with 42–3, 94
types 91–3
when to use 42, 93–4
see also bar charts; cross-tabulation; histograms;

scattergrams tables
dialog box 425–6, 442–3
discriminant (function) analysis 259, 263, 265, 

266–75
data analysis 269
data entry 270
data requirements 269
definition of 266–8
interpreting the output 272–4
problems with 269
reporting the output 275
when to use 268–9

distributions of scores 63–73
data entry 69
frequency curve 64, 65
frequency tables 66–9
interpreting the output 70, 72
normal distribution 64, 67
reporting the output 70, 72

dummy variable
binomial logistic regression 390–1
multinomial logistic regression 374, 375, 376, 379, 380,

385–6
stepwise multiple regression 310, 311

Duncan’s new multiple range test 206, 232, 233, 236

effect size 564, 565
eigenvalue 274, 287, 293
error variance 134, 204, 211, 219, 244, 248

see also Levene’s Test for Equality of Variances
eta squared 209
exploratory factor analysis 285, 472, 485

factor analysis 285–95, 455
data analysis 289
data entry 290
data requirements 289
definition of 285–8
interpreting the output 293–5
item reliability 299
problems with 289
reporting the output 295
when to use 288–9

files
ASCII 403–8
opening 22

Fisher test (z) 154, 156, 157, 163–4, 566
forward entry 390
F-ratio 143–4, 145, 197–202, 358

ANCOVA 254, 255
hierarchical multiple regression 346
multiple comparison tests 236
one-way unrelated ANOVA 204, 205, 208, 209
repeated-measures ANOVA 212, 216
two-way mixed ANOVA 244, 245
two-way unrelated ANOVA 227, 229

frequency curves 64, 65, 75
frequency distribution 56, 58
frequency tables 66–9, 87–9

log-linear analysis 365
multinomial logistic regression 387
when to use 66

Friedman’s test 185, 186, 188–90
F-test see variance ratio test

Games-Howell test 233
general linear model 209
goodness-of-fit index 365, 367

chi-square 154
log-linear analysis 365, 367, 373
multinomial logistic regression 375, 384

hierarchical multiple regression 308, 340–8, 356–7
data analysis 343
data entry 344
data requirements 343
definition of 340–2
interpreting the output 346–7
problems with 343
reporting the output 348
when to use 342–3

histogram 41, 52–4
compound 90, 99–100
distributions of scores 64, 66–8, 71–2

homoscedasticity 334, 343, 503
Hotelling’s t-test 135, 260, 263

independent (predictor) variables 113, 115, 116, 231
ANCOVA 247, 249
binomial logistic regression 389, 392, 393
discriminant function analysis 266, 267–8
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independent (predictor) variables (continued)
hierarchical multiple regression 340–1, 343, 346–7
log-linear analysis 366–7
MANOVA 258, 260
moderator analysis with 349–62
multinomial logistic regression 374, 375, 378–9, 380,

382–5
one-way unrelated ANOVA 203, 204, 205
simple mediational analysis 331–2
stepwise multiple regression 308–10, 311, 315–16
two-way mixed ANOVA 238, 239, 240
two-way unrelated ANOVA 218

independent t-test 145
indicators 472
inferential statistics 8–10
interaction 220, 221, 227, 342, 366–7, 370
internal consistency 297–8
interquartile range 56
inter-rater agreement 296, 298–9, 299–300, 304
interval measures 7, 8

kappa coefficient 298–9, 300, 304
Kruskal-Willis test 185, 186, 190–3, 205
kurtosis 61, 64, 79

latent variable 472, 473, 516
Levene’s Test for Equality of Variances 144, 148, 198, 

199, 208, 226, 244
likelihood ratio chi-square

log-linear analysis 365, 366, 367, 370–3
multinomial logistic regression 383–4

linear structural relationship (LISREL) analysis
basics 471–83
data entry 471–83
definition 472–6
path coefficients 474

LISREL see linear structural relationship (LISREL) 
analysis

listwise deletion 409, 410, 413–14, 456
logarithm 366
logistic (logit) regresstion 114, 115, 154, 269

see also binomial logistic regression; multinomial logistic
regression

logit 374, 375, 389
log-linear analysis 365–88

data analysis 369
data entry 369
data requirements 368–9
definition of 366–7
interpreting the output 370–3
problems with 369
reporting the output 373
when to use 367–8

log-linear classify test 359

main effect 219–20, 221, 227, 365, 367
manifest variables 472, 473
Mann-Whitney U-test 174, 175, 181–3, 193
MANOVA see multivariate analysis of variance
matching 135, 213
Mauchly’s test of sphericity 215
maximum score 62, 79
McNemar test 154, 156, 168–73

data for analysis 170
data entry 170–2

data requirements 169
definition of 168
interpreting the output 173
problems with 170
reporting the output 173
weighting 170–1
when to use 168–9

mean 55, 56, 57, 60
ANCOVA 253, 254–5
confidence intervals 152
converting to total score 431, 432
correlation matrix 455, 456
diagrams 95
discriminant function analysis 268, 272
factor analysis 293
hierarchical multiple regression 347
histograms 72
MANOVA 257, 259, 263, 264
multiple comparison tests 231, 232, 236
one-way unrelated ANOVA 204, 205, 208, 209
related t-test 137, 139, 140
repeated-measures ANOVA 212, 215
reporting the output 255
standard deviation 79
standard error 62, 127–32
tables 82, 83
two-way mixed ANOVA 243, 244, 245
two-way unrelated ANOVA 218, 220, 226–7, 229
unrelated t-test 143, 147, 148
variance ratio test 197

measurement model 472
median 55, 56, 57, 60
mediator variables 350, 352
meta analysis 563–71

data for analysis 569
data requirements 568
definition 563–7
interpreting the output 571
problems with 568–9
reporting the output 571
steps in 567
when to use 568

minimum score 62, 79
missing values 409–15, 456

computing new variables 431–7
data entry 411, 433–4
definition of 410, 412
recoding 421

mode 55, 56, 57, 60
moderating or moderator effect 349–50, 352, 357–8, 361
moderator variable analysis 349–62

computing predicted criterion values 359
data entry 354
data entry for predicting criterion values 358
data for analysis 353–4
data requirements 352–3
definition 350–2
hierarchical multiple regression analysis 356–7
interaction term 355–6
interpreting the output 357–8
plotting predicted criterion values 359–60
problems in use 353
reporting the output 361
steps in 351
types 353
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variable standardising 355
when to use 352

mouse
moving within a window 19
moving within a window using keyboard keys with 20

multicollinearity 338, 347
multinomial logistic regression 312, 368, 374–88, 393

data analysis 379
data entry 379–80
data requirements 378
definition of 375–7
interpreting the output 382–7
problems with 379
reporting the output 388
stepwise 380–1
when to use 377–8

multiple comparison tests 206, 226, 229, 231–7
data entry 234–5
data for analysis 234
data requirements 234
definition of 231–2
interpreting the output 236–7
problems with 234
reporting the output 237
when to use 233

multiple regression 74, 114, 115, 269
correlation matrix 455, 456
partial correlation 281
two-way unrelated ANOVA 221
see also binomial logistic regression; hierarchical multiple

regression; stepwise multiple regression
multivariate analysis of variance (MANOVA) 186, 218,

257–65
data for analysis 261
data entry 261
data requirements 260
definition of 257–9
discriminant function analysis 266–75
interpreting the output 263–4
problems with 261
reporting the output 265
when to use 259–60

natural (Naperian) logarithm 366, 389
nominal (category) variables 7, 42, 114

bar charts 51–2, 91, 93
binomial logistic regression 389, 390, 393, 396, 399
chi-square 154, 155–6, 157
discriminant function analysis 269
log-linear analysis 366, 367–8
McNemar’s test 168
multinomial logistic regression 374–5, 376, 377–8, 379
pie diagrams 41, 46–50
stepwise multiple regression 310, 311

Non-Normed Fit Index (NNFI) 474–5, 487, 497
non-parametric test 174–84, 359–60

data entry 178
data for analysis 177
data requirements 177
definition of 174–6
interpreting the output 179–80, 183
problems with 177
reporting the output 184
when to use 176–7
see also ranking tests

normal distribution 64, 66, 67, 75, 134, 137, 174–5
Normal Theory weighted Least squares Chi-Square 474,

487, 496, 497
null hypothesis 9, 133, 152

observed power 555, 558
observed variables 472
odds 375
odds ratio 374, 375, 389
one-tailed test 337
ordinal data 7
outlier 102, 107, 112, 177
output 29
Output Window 29

pairwise deletion 410, 413–14
part correlation 318, 319–20
partial correlation 279–84, 318, 319–20, 455

data analysis 282
data entry 282
data requirements 281
definition of 279–80
hierarchical multiple regression 347
interpreting the output 283
problems with 282
reporting the output 284
stepwise multiple regression 309, 310, 312, 316
when to use 280–1

path diagram 328, 338, 486, 511, 517–18
Pearson chi-square 163, 366

see chi-square distribution
Pearson correlation coefficient 102, 104, 105–7, 108, 563,

565
missing values 413, 414
simple regression 114, 115, 120

percentiles 61
pie diagrams 41, 46–50

changing from colour to black and white 49–50
labeling 47–9

Pillai’s trace 263
point statistics 11, 150, 151, 152
post hoc test 265
power 553
predictors see independent variables
principal component analysis 287, 288, 289, 290–2
procedure selection 11–15
psychological measures 175

quartiles 61

random sampling 450–4
see also samples

range 56, 58, 60, 79
ranking tests 185–93

data entry 241–3
data for analysis 187–8
data requirements 187
definition of 186
Friedman test 185, 187–90
interpreting the output 190, 193
Kruskal-Wallis test 185, 186, 190–3, 205
problems with 187
reporting the output 190, 193
when to use 187
see also non-parametric tests
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ratio data 7, 8
recoding 68, 416–22, 424

data entry 418
definition of 416–17
missing values 421
running syntax command 422
saving procedure as syntax file 421

regression
ANCOVA 248–9, 251, 252
definition of 114–15
discriminant function analysis 269
logistic 114, 115, 154, 269
simple 113–23
see also binomial logistic regression; multinomial logistic

regression; multiple regression simple regression
related measures 10

Friedman test 188–90
sign test  179–80
Wilcoxon test 180–1

reliability 296–307
alpha 300, 301–2
data analysis 301
data entry 301–2
data requirements 300
interpreting the output 302–3, 304
problems with 300
reporting the output 303
split-half 303
when to use 299–300

repeated-measures ANOVA see analysis of variance, 
one-way related

residual variance 212
RMSEA (Root Mean Square Error of Approximation) 474,

487, 497

sample 450–4
chi-square 155
confidence intervals 150–1
data entry 451
definition of random sampling 450–1
factor analysis 288
interpreting the results 453
selecting  452
standard error 127, 129, 131
statistical analysis 453–4
t-test 133, 142, 143

saturated model 365, 367, 370–1
saving data 20–1
scattergram see scatterplot
scatterplot 24, 90, 92, 94

correlation coefficients 102, 103, 104, 105, 110–12
homoscedasticity 311
regression 113, 114–15, 120–2

Scheffé test 232, 236, 237
score variables 6, 42, 349

averages 57
bar charts 93
binomial logistic regression 389, 390, 393
correlation coefficients 106
discriminant function analysis 266, 269, 271
factor analysis 288
log-linear analysis 368
multinomial logistic regression 375, 379
scattergrams 92
simple regression 115

scree test 287, 288, 294
selection of procedure 11–15
semi-partial correlation 320
sign test 174, 175, 177, 179–80
simple mediational analysis 330–9

data entry 335–6
data for analysis 335
data requirements 332–4
definition 331–3
intepreting the output 337–8
problems with 335
reporting the output 338
simultaneous multiple regression analysis 336–7
steps in 333
when to use 334

simple path analysis controlling for alpha reliability 
533–50

data entry 539
data for analysis 539
data requirements 538
definition 534–7
interpreting the output 549
problems with 539
reporting the output 549
when to use 538

simple path analysis with latent variables 515–32
data entry 521
data for analysis 520
data requirements 520
definition 516–19
interpreting the output 531
problems with 520
reporting the output 531
when to use 519–20

simple path analysis with measurement error uncorrected
499–512

data entry 505
data for analysis 504–5
data requirements 503
definition 500–2
interpreting the output 511
problems with 504
reporting the output 511–12
when to use 503

simple regression 113–23
data entry 117–18
data for analysis 117
data requirements 116
definition of 114–15
interpreting the output 119–20, 122
predicted score 115
problems with 116
reporting the output 123
scatterplot 120–1
when to use 115
see also regression

simultaneous (standard) multiple regression 318–29, 
336–7

data entry 324
data for analysis 324
data requirements 323
definition 319–22
interpreting the output 326–7
problems with 323–4
reporting the output 328
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steps in 322
when to use 322–3

skewness 61, 64, 79, 186
Spearman’s correlation coefficient 102, 104, 105–7,

109–10, 112
split-half reliability 296, 297–8
SPSS, definition 16–17
standard deviation 60, 61, 72, 74–80, 127–8, 131

ANCOVA 254
confidence intervals 151
correlation matrix 455, 456, 457
data entry 77
data for analysis 77
data requirements 76
definition of 74–5
discriminant function analysis 273
factor analysis 293
interpreting the output 78
MANOVA 263
one-way unrelated ANOVA 208
problems using 76–7
related t-test 139
reporting the output 61
two-way mixed ANOVA 243, 245
two-way unrelated ANOVA 226, 229
unrelated t-test 147, 148
when to use 76

standard error 62, 79, 127–32
ANCOVA 254
confidence intervals 151
data entry 130
data for analysis 129
data requirements 129
definition of 127–9
estimated 130–1
hierarchical multiple regression 348
interpreting the output 131–2
MANOVA 264
multinomial logistic regression 385
multiple comparison tests 236
one-way unrelated ANOVA 208
problems with 129
related t-test 139, 140
reporting the output 132
stepwise multiple regression 315, 316, 317
unrelated t-test 143, 147, 148
when to use 129

statistical power analysis 553–62
data entry 559–61
data for analysis 558–9
data requirements 558
definition 553–6
interpreting the output 562
problems with 558
reporting the output 562
steps in 557
when to use 557–8

statistical significance 9
ANCOVA 255
binomial logistic regression 399
Bonferroni adjustment 232
chi-square 162, 166
confidence intervals 151
correlation coefficients 103, 104, 109, 110
correlation matrix 457

Fisher exact test 164
Friedman test 190
hierarchical multiple regression 346
Kruskal-Wallis test 193
log-linear analysis 365
MANOVA 257, 258, 260, 265
McNemar test 173
multiple comparison tests 231
non-parametric tests 176, 180
one-way unrelated ANOVA 203
related t-test 133, 134, 135, 137, 139, 140, 141
repeated-measures ANOVA 215, 216
stepwise multiple regression 309
two-way mixed ANOVA 244, 245
two-way unrelated ANOVA 226, 227
unrelated t-test 142, 143–4, 145, 149
variance ratio test 202

stepwise entry 312–13
stepwise multiple regression 308–17

binomial 390
correlation matrix 456, 457
data analysis 312
data entry 312–13
data requirements 311–12
definition of 308–10
interpreting the output 314–16
multinomial 380–1
problems with 312
reporting the output 316
when to use 310–11

structural equation modelling
basic steps 476
conducting LISREL analyses 480–2
data entry 478–9
data for analysis 477–8
data requirements 477
definition 472–6
problems with 477
when to use 476–7

Student-Newman-Keuls test 206, 232, 233, 236, 237
subgroups 445–9
sum 61, 79
syntax command

checking accuracy of data input 459, 464–7
compute procedure 429, 429, 434–5
correlation matrix 455, 457, 458
recoding 421, 422

tables 81–9
data entry 85
data for analysis 34, 85
data requirements 34, 84
data weighting 35–7, 86
definition 33–4
interpreting the output 38
labelling 81, 87, 90
of means 82, 83
percentage frequencies 38, 88–9
problems with 34, 68, 84, 94
reporting the output 39
when to use 34, 84
types 82–3
see also bar charts; cross-tabulation; diagrams;

histograms; scattergrams
test choice 11–15
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test-retest reliability 296, 297
text files 403–8
t-test

averages 57
Hotelling’s t-test 260, 263
related 133–41, 144, 244

data entry 138
data for analysis 138
data requirements 137
definition of 134–5
interpreting the output 139–40
non-parametric equivalents 175
problems with 137
repeated-measures ANOVA 213, 216
reporting the output 141
when to use 136–7

standard error 127
statistical significance 232
unrelated 133, 142–9, 209, 219

data entry 146
data for analysis 146
data requirements 145
definition of 143–4
Hotelling’s t-test 260, 263
interpreting the output 147–8
non-parametric equivalents 175
one-way ANOVA 204, 205
problems with 145
reporting the results 149
two-way mixed ANOVA 244
two-way unrelated ANOVA 227
variance ratio 198
when to use 144

Tucker-Lewis Index (TLI) 475
two-tailed test 337
Type I error 554, 555
Type II error 554, 555

uncorrelated measures 10
univariate statistics 8, 90
unpaired measures 10
unrelated measures 10, 11, 181–3, 190–3
U-test 174, 175

Value Label 27
Variable View 23–5, 35, 36, 44
variables

checking accuracy of data input 461–3, 464–7
classification system 7–8
computing new 423–30

data entry 425, 433–4
definition of 423–4
display labels in dialog boxes 425–6
missing values 423–30

running syntax command 429, 436
saving procedure as syntax file 429, 436

creating and labeling 23–5
definition 4
displaying in dialog boxes 425–6
factor analysis 285–95
partial correlation 279–84
recoding values 416–22
relationships between 90–101

bar charts 90, 91, 93, 95, 97–8
compound histograms 90, 99–100
cross-tabulation 90, 95
data entry 95
problems with methods 94
scattergrams 90, 92, 94

simple regression 113–14
standard deviation 74
stepwise multiple regression 308–17
types 6–7
see also dependent variables; independent variables;

nominal variables; score variables
variance 57, 58, 60, 61

correlation coefficients 104
eigenvalues 287
factor analysis 293, 295
hierarchical multiple regression 340–2, 346, 347, 

348
related t-test 134, 135
standard deviation 74–5, 76
standard error 127, 129
stepwise multiple regression 309, 310, 315, 316
unrelated t-test 142, 143–4, 145, 148
see also analysis of covariance; analysis of variance;

multivariate analysis of variance
variance estimate 57, 61
variance ratio test (F-test) 197–202, 244

data entry 200
data for analysis 199
data requirements 199
definition of 197–8
problems with 199
reporting the output 202
variance estimate 200–1
when to use 198–9
variance ratio calculation from output 201–2

variance-covariance matrix 474

Wald statistic 377, 385, 399
Wilcoxon signed-rank test 134, 174, 175, 177, 180–1
Wilks’ lambda 263, 274, 275

zero-order correlation 279, 312, 316, 347
see also partial correlation

z-scores 74, 75, 79, 315, 349, 566–7
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