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PREFACE 

Algebra and number theory are two powerful, established branches of modem 
mathematics at the forefront of current mathematical research which are playing 
an increasingly significant role in different branches of mathematics (for instance, 
in geometry, topology, differential equations, mathematical physics, and others) 
and in many relatively new applications of mathematics such as computing, com
munications, and cryptography. Algebra also plays a role in many applications of 
mathematics in diverse areas such as modem physics, crystallography, quantum 
mechanics, space sciences, and economic sciences. 

Preface Historically, algebra and number theory have developed together, 
enriching each other in the process, and this often makes it difficult to draw 
a precise boundary separating these subjects. It is perhaps appropriate to say that 
they actually form one common subject: algebra and number theory. Thus, results 
in number theory are the basis and "a type of sandbox" for algebraic ideas and, in 
tum, algebraic tools contribute tremendously to number theory. It is interesting 
to note that newly developed branches of mathematics such as coding theory 
heavily use ideas and results from both linear algebra and number theory. 

There are three mandatory courses, linear algebra, abstract algebra, and number 
theory, in all university mathematics programs that every student of mathematics 
should take. Increasingly, it is also becoming evident that students of computer 
science and other such disciplines also need a strong background in these three 
areas. Most of the time, these three disciplines are the subject of different and 
separate lecture courses that use different books dedicated to each subject individ
ually. In a curriculum that is increasingly stretched by the need to offer traditional 
favorites, while introducing new applications, we think that it is desirable to intro
duce a fresh approach to the way these three specific courses are taught. On the 
basis of the authors' experience, we think that one course, integrating these three 
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X PREFACE 

disciplines, together with a corresponding book for this integrated course, would 
be helpful in using class time more efficiently. As an argument supporting this 
statement, we mention that many theorems in number theory have very simple 
proofs using algebraic tools. Most importantly, we think the integrated approach 
will help build a deeper understanding of the subject in the students, as well as 
improve their retention of knowledge. In this respect, the time-honored Euro
pean experience of integrated algebra and number theory courses, organically 
implemented in the university curriculum, would be very efficient. 

We have several goals in mind with the writing of this book. One of the most 
important reasons for writing this book is to give a systematic, integrated, and 
complete description of the theory of the main number systems that form a basis 
for the structures that play a central role in various branches of mathematics. 
Another goal in writing this book was to develop an introductory undergraduate 
course in number theory and algebra as an integrated discipline. We wanted to 
write a book that would be appropriate for typical students in computer science 
or mathematics who possess a certain degree of general mathematical knowledge 
pertaining to typical students at this stage. Even though it is mathematically 
quite self-contained, the text will presuppose that the reader is comfortable with 
mathematical formalism and also has some experience in reading and writing 
mathematical proofs. 

The book consists of 10 chapters. We start our exposition with the elements 
of set theory (Chapter 1). The next chapter is dedicated to matrices and determi
nants. This chapter, together with Chapters 4, 5, and 6 covers the main material 
pertaining to linear algebra. We placed some elements of field theory in Chapter 
3 which are needed to describe some of the essential elements of linear algebra 
(such as vector spaces and bilinear forms) not only over number fields, but over 
finite fields as well. Chapters 3, 6, 7, and 8 develop the main ideas of algebraic 
structures, while the final part consisting of Chapters 9 and 10 demonstrates the 
applications of algebraic ideas to number theory (e.g., Section 9.4). Chapter 10 
is dedicated to the development of the rigorous construction of the real number 
system and its main subsystems. Since the theme of numbers is so very impor
tant and plays a key role in the education of prospective mathematicians and 
mathematics teachers, we have tried to complete this work with all the required 
but bulky details. We consider this chapter as an important appendix to the main 
content of the book, and having its own major overlook value. 

We would like to extend our sincere appreciation to The University of Alabama 
(Tuscaloosa, USA), National Dnepropetrovsk University (Ukraine), and National 
University (California, USA) for their great support of the authors' work. 

The authors would also like to thank their wives, Murrie, Tamara, and Milia 
for all their love and much-needed support while this work was in progress. An 
endeavor such as this is made lighter by the joy that they bring. The authors would 
also like to thank their children, Rhiannon, Elena, Daniel, Tat'yana, Victoria, Igor, 
Janice, and Nicole for providing the necessary distractions when the workday 
ended. 
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Finally, we would like to dedicate this book to the memory of two great 
algebraists. The first of these is Z. I. Borevich who made extremely important 
contributions in many branches of algebra and number theory. The second is one 
of the founders of infinite group theory, S. N. Chemikov, who was a teacher and 
mentor of two of the authors of this book and whose influence has spread far 
and wide in the world of group theory. 

MARTYN R. DIXON 

LEONID A. KURDACHENKO 

IGOR Y A. SUBBOTIN 



CHAPTER 1 

SETS 

1.1 OPERATIONS ON SETS 

The concept of a set is one of the very basic concepts of mathematics. In fact, the 
notion of a set is so fundamental that it is difficult or impossible to use some other 
more basic notion, which could substitute for it, that is not already synonymous 
with it, such as family, class, system, collection, assembly, and so on. 

Set theory can be used as a faultless material for constructing the rudiments of 
mathematics only if it is presented axiomatically, a statement that is also true for 
many other well-developed mathematical theories. This approach to set theory 
requires a significant amount of time and a relatively high level of audience 
preparedness. Even though, in this text, we aim to introduce algebraic concepts 
and facts supporting them using relatively transparent set theoretical and logical 
justifications, we shall not pursue a really high level of rigor. This is not our goal, 
and is not realistically possible given that this is a textbook meant primarily for 
undergraduates. Consequently we shall use a somewhat traditional approach using 
only what is sometimes termed naive set theory. 

One of the main founders of set theory was George Cantor (1845 -1918), a 
German mathematician, born in Russia. Set theory is now a ubiquitous part of 
mathematics, and can be used as a foundation from which much of mathematics 
can be derived. 

A set is a collection of distinct objects which are usually called elements. A 
set is considered known if a rule is given that allows us to establish whether 

Algebra and Number Theory: An Integrated Approach. By Martyn R. Dixon, Leonid A. Kurdachenko 
and Igor Ya. Subbotin. Copyright© 2010 John Wiley & Sons, Inc. 

1 



2 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

a particular object is an element of the set or not. The relation of belonging is 
denoted by the symbol E. So the fact that an element a belongs to a set A will be 
denoted by a E A. If an object (element) b does not belong to A, we will write 
b 1- A. It is fundamentally important to note that for any object a and for any 
set A only one of two possible cases can arise, either a E A or a 1- A. This is 
nothing more than the set theoretical expression of a fundamental law of logic, 
namely the law of the excluded middle. 

If a set A is finite, then A can be defined by listing all of its elements. We 
usually denote such a listing by enclosing the elements of the set within the 
bracers { and }. Thus the finite set A could be written as follows: 

It is extremely important to understand the notational difference between a 
and {a}. The former is usually regarded as denoting an element of a set, whereas 
the latter indicates the singleton set containing the element a. If A is a set and 
a is an element of A then we write a E A to denote that a is an element of A. 
When a E A then it is also correct to write {a} s; A and conversely if {a} s; A 
then a E A. However, in general, {a} s; A does not usually imply that {a} E A; 
it is not usually correct to write a E A and also a s; A, nor are {a} s; A and 
{a} E A usually both correct. 

Another way of defining a set is by assigning a certain property that uniquely 
characterizes the elements and unifies them in this set. We can denote such a set 
A by 

A= {x I P(x)}, 

where P(x) denotes this defining property. For example, the set of all real num
bers belonging to the segment [2, 5] can be written as {x I x E JR. & 2 :::: x :::: 5}. 
Here JR. denotes the set of real numbers. This method of defining a set corresponds 
to the so-called Cantor Principle of Abstraction that Cantor used as the basis for 
the definition of a set. According to Cantor, if some property P is given, then one 
can build a new object-the set of all objects having this property P. The idea 
of moving from a property P to forming the set of all elements that have this 
property P is the main essence of Cantor's Principle of Abstraction. For example, 
the finite set {1, 2, 3} could also be defined as {x I x = 1, or x = 2 or x = 3}. 

For some important sets we will use the following conventional notation; we 
have already seen that JR. denotes the set of real numbers, but list this again here. 

N is the set of all natural numbers; 

Z is the set of all integers; 

Q is the set of all rational numbers; 

JR. is the set of all real numbers; 

C is the set of all complex numbers. 
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Note that the number 0 by common agreement is not a natural number. There
fore, for the set consisting of all natural numbers and the number 0 we will use 
the notation No. This set is the set of (so-called) whole numbers. 

We shall now introduce various concepts that allow us to talk about sets in a 
meaningful way. 

1.1.1. Definition. Two sets A and B are called equal, if every element of A is an 
element of B and conversely, every element of B is an element of A. 

This statement is one of the first set axioms. Together with the principle of 
abstraction it points out a significant difference between the notions of a property 
and a set. Indeed, the same set can be determined by different properties. Often, 
establishing equality between sets determined by different properties leads us to 
some rather sophisticated mathematical theorems. 

A very special important set-the empty set-arises naturally, at the outset, 
in the consideration of sets. 

1.1.2. Definition. A set is said to be empty, if it has no elements. 

Definition 1.1.1 shows that the empty set is unique and we denote it by the 
symbol 0. One can obtain the empty set with the aid of a contradictory property. 
For example, 0 = {x I x =I= x}. 

1.1.3. Definition. A set A is a subset of a set B if every element of A is an element 
of B. We will denote this by A ~ B. 

Note that the sets A and B are equal if and only if A ~ B and B ~ A. From 
this definition we see that the empty set is a subset of every set. Furthermore, 
every set A is a subset of itself, so that A ~ A. 

1.1.4. Definition. A subset A of a set B is called a proper subset of B, if A is a 
subset of B and A =/= B. 

1.1.5. Definition. Let A be a set. Then the Boolean of the set A, denoted by 123(A), 
is the set 123(A) = {X I X ~ A}. Thus 123(A) denotes the set of all subsets of A. 

We now introduce some operations on sets. Principal among these are the 
notions of intersection and union. 

1.1.6. Definition. Let A and B be sets. The set An B, called the intersection of 
A and B, is the set of elements which belong to both the set A and to the set B. 
Thus 

A n B = { x I x E A and x E B}. 
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1.1.7. Definition. Let A and B be sets. Then the set AU B, called the union of 
A and B, is the set of elements which belong to the set A or to the set B. Thus 

AU B ={xI x E A or x E B}. 

We note that the word "or" used here is used in an inclusive sense. 

1.1.8. Definition. Let A and B be sets. Then the set A\B, called the difference of 
A and B, is the set of elements which belong to the set A but not to the set B. 
Thus 

A\B = {x I x E A and x ~ B }. 

If B ~ A, then A \B is called the complement of the set B in the set A and is often 
denoted by Be when A is understood. 

1.1.9. Definition. Let A and B be sets. Then the set A t:,. B, called the symmetric 
difference of A and B, is the set of elements which belong to the set AU B but 
not to the set An B. Thus 

A t:,. B =(AU B)\ (An B)= (A\B) U (B\A). 

1.1.10. Theorem. Let A, B, and C be sets. 

(i) A ~ B if and only if An B = A or AU B = B. 
In particular, AU A =A= An A (the idempotency of intersection 

and union). 

(ii) An B = B n A and AU B = B U A (the commutative property of inter
section and union). 

(iii) An (B n C) = (An B) n C and AU (B U C) = (AU B) U C (the 
associative property of intersection and union). 

(iv) An (B U C) = (An B) U (An C) and AU (B n C) = (AU B) n 
(AU C) (the distributive property). 

(v) A\(A\B) =An B. 

(vi) A \(B n C) = (A \B) U (A \C). 
(vii) A\(B U C) = (A\B) n (A\C). 

(viii) A t:,. B = B t:,. A. 

(ix) A t:,. (B t:,. C) = (A t:,. B) t:,. C. 

(x) At:,. A= 0. 

Proof. The proofs of the majority of these assertions are easy to see from the 
definitions. For example, (viii) follows from the symmetry of the expression 
A t:,. B in the form (A \B) U (B\A). However, to give the reader an indication 
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as to how the proofs of some of the assertions may be written, we give a proof 
of (iv). 

Let x E An (B U C). It follows from the definition that x E A and x E B U C. 
Since x E B U C either x E B or x E C and hence either x is an element of both 
sets A and B, or x is an element of both sets A and C. Thus x E A n B or 
x E An C, which is to say that x E (An B) u (An C). This shows that An 
(B U C) s; (An B) U (An C). 

Conversely, let x E (An B) U (An C). Then x E An B or x E An C. In 
each case x E A and x is an element of one of the sets B or C, that is x E 

A n (B u C). This shows that (A n B) u (A n C) s; A n (B u C). Note that an 
alternative method of proof here would be to use the fact that B s; B U C and 
soAn B s; An (B U C). Likewise An C s; An (B U C) and hence (An B) U 
(An C) s; An (B U C). 

We also note that to prove the important assertion (ix) it is sufficient to show 
that 

A 6. (B 6. C) = (AU B U C)\[(A n B) U (An C) U (B n C)] = (A 6. B) 6. C. 

We can extend the notions of intersection and union to arbitrary families of 
sets. Let 6 be a family of sets, so that the elements of 6 are also sets. 

1.1.11. Definition. The intersection of the family 6 is the set of elements which 
belong to each set s from the family 6 and is denoted by n6 = nsEI5 s. Thus 

n6 = n s ={xI X E Sfor each sets E 6}. 
SEI5 

1.1.12. Definition. The union of the family 6 is the set of elements which belong 
to some set Sfrom the family 6 and is denoted by U6 =UsES S. Thus 

U6 = U S = { x I x E S for some set S E 6}. 
SEI5 

Next we informally introduce a topic that will be familiar to most readers. Let 
A and B be sets. A pair of elements (a, b) where a E A, bE B, that are taken 
in the given order, is called an ordered pair. By definition, (a, b) =(at, bt) if 
and only if a= at and b = bt. 

1.1.13. Definition. Let A and B be sets. Then the set A x B of all ordered pairs 
(a, b) where a E A, bE B is called the Cartesian product of the sets A and B. If 
A = B, then we call A x A the Cartesian square of the set A and write A x A 
as A2. 

The real plane JR2 is a natural example of a Cartesian product. The Cartesian 
product of two segments of the real number line could be interpreted geometri
cally as a rectangle whose sides are these segments. It is possible to extend the 
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notion of a Cartesian product of two sets to the case of an arbitrary family of 
sets. First we indicate how to do this for a finite family of sets. 

1.1.14. Definition. Let n be a natural number and let A 1, ... , An be sets. Then 
the set 

AI X 0 0 0 X An= n A; 
l:::;i:::;n 

of all ordered n-tuples (aJ, ... , an) where ai E AJ, for 1 ::=: j-:=: n, is called the 
Cartesian product of the sets A1, ... , An. 

Here (aJ, ... , an)= (bJ, ... , bn) if and only if a1 = b1, ... , an= bn. 
The element a1 is called the jth coordinate or jth component of (a1, ••• , an)· 
If A 1 = · · · = An = A we will call A x A x · · · x A the nth Cartesian power 

n 
An of the set A. 

We shall use the convention that if A is a nonempty set then A 0 will denote 
a one-element set and we shall denote A0 by {*}, where * denotes the unique 
element of A 0 . 

Naturally, A 1 =A. 
It is worth noting that the usual rules for the numerical operations of mul

tiplications and power cannot be extended to the Cartesian product of sets. In 
particular, the commutative law is not valid in general, which is to say that in 
general A x B =/= B x A if A =1= B. The same can also be said for the associative 
law: it is normally the case that A x (B x C), (A x B) x C and A x B x C are 
distinct sets. 

As mentioned, we can define the Cartesian product of an infinite family of sets. 
For our purpose it is enough to consider the Cartesian product of a family of sets 
indexed by the set N. Let {An I n EN} be a family of sets, indexed by the natural 
numbers. We consider infinite ordered tuples (a!, ... , an, an+l, .. . ) = (an)nEN, 

where an E An, for each n E N. As above, (an)nEN = (bn)nEN if and only if 
an = bn for each n E N. Then the set 

AI X 0 0 0 X An X An+l X 0 0 0 =nAn 
nEN 

of all infinite ordered tuples (an)nEN, where an E An for each n E N, is called 
the Cartesian product of the family of sets {An I n E N}. 

EXERCISE SET 1.1 

In each of the following questions explain your reasoning, by giving a proof of 
your assertion or by using appropriate examples. 
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1.1.1. Which of the following assertions are valid for all sets A, B, and C? 

(i) If A ~ B and B ~ C, then A ~ C. 

(ii) If A~ B and B cj;_ C, then A~ C. 

(iii) If A~B, A =j:. B and B~C, then C cj;_ A. 

(iv) If A~B, A =j:. B and B E C, then A ~C. 

1.1.2. Give examples of sets A, B, C, D, E satisfying all of the following con
ditions: A~B, A =j:. B, BE C, C~D, C =j:. D, D~E, D =j:. E. 

1.1.3. Give examples of sets A, B, C satisfying all of the following conditions: 
A E B, BE C, but A~ C. 

1.1.4. Let 

A = {x E Zjx = 2y for some y :=:: 0}; 

B = {x E Zjx = 2y- 1 for some y :=:: 0}; 

C = {x E Zl x < 10}. 
Find Z\A, Z\(A n B), Z\C, A\(1£\C), C\(A U B). 

1.1.5. Do there exist nonempty sets A, B, C such that An B =j:. 0, An C = 
0, (A n B)\C = 0? 

1.1.6. Let A, B, C be arbitrary sets. Prove that the equation (An B) U C = 
A n (B U C) is equivalent to C ~ A. 

1.1.7. Let S1, .•. , Sn be sets satisfying the following condition: Sj ~ Sj+l for 
all 1 :S i :S n - 1. Find S, n S2 n · · · n Sn and S, U S2 U ···USn. 

1.1.8. Let 6 = {Hn\n EN} be a family of sets such that Hn ~ Hn+! for every 
n E N. Let 9t be an infinite subset of 6. Prove that U6 = U9t. 

1.1.9. Let 6 = {Hn\n EN} be a family of sets such that Hn 2 Hn+l for every 
n E N. Let 9t be an infinite subset of 6. Prove that n6 = n9t. 

1.1.10. LetS be the set of all roots of a polynomial f(X). Suppose that f(X) = 
g(X)h(X). Let S1 (respectively S2) be the set of all roots of the polyno
mial g(X) (respectively h(X)). Prove that S = S, U S2. 

1.1.11. Let g(X) and h(X) be polynomials with real coefficients. Lets, (respec
tively S2) be the set of all real roots of the polynomial g(X) (respectively 
h(X)). Let S be the set of all real roots of the polynomial f(X) = 
(g(X))2 + (h(X))2. Prove that S = S, n S2. 

1.1.12. Let A, B, C be sets, suppose that B ~ A, and that An C = 0. Find the 
solutions X of the following system: 

I
A\X = B 

X\A= C. 

1.1.13. Let A, B, C be sets and suppose that B ~A ~ C. Find the solutions X 
of the system 

l
A n X= B 

XUA =C. 
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1.1.14. Prove that (a, b)= {{a}, {a, b}} = {{c}, {c, d}} = (c, d) if and only if 
a= c, b =d. 

1.1.15. Prove that A!::.B =Cis equivalent to B!::.C =A and C!::.A =B. 

1.1.16. Prove that An (B!::.C) =(An B)!::.(A n C) and A!::.(A!::.B) =B. 

1.1.17. Prove that !B(A n B) = !B(A) n !B(B) and !B(A u B) = {A 1 u B1 1 

At s; A, Bt s; B}. 

1.1.18. Prove that the equation !B(A) U !B(B) = !B(A U B) implies either A s; B 
orBs; A. 

1.1.19. Prove that (A n B) x (C n E) = (A x C) n (B x E), (An B) x C = 
(A x C) n (B x C), A x (B u C) = (A x B) u (A x C), and (A u B) 
X (CuE) = (A X C) u (B X C) u (A X E) u (B X E). 

1.1.20. Let A be a set. A family 6 of subsets of A is called a partition of A 
if A = U6 and C n D = 0 whenever C and D are two distinct subsets 
from 6. Suppose that 6 and 'I' are two partitions of A and put 6 n 
'I'= {C n T ICE 6, T E 'I'}, llJ ={X I X E 6 n 'I' and X# 0}. Is llJ a 
partition of A? 

1.2 SET MAPPINGS 

The notion of a mapping (or function) plays a key role in mathematics. At the 
level of rigor we agreed on, one usually defines the concept of mapping in the 
following way. We say that we define a mapping from a set A to a set B if for 
each element of A we (by some rule or law) can associate a uniquely determined 
element of B. We could stay with this commonly used "definition," that is often 
used in textbooks ignoring the fact that the term associate is still undefined. In this 
case, it would be enough to define a function as a special kind of correspondence 
(relation) between two sets. A correspondence is simply a set of ordered pairs 
where the first element of the pair belongs to the first set (the domain) and the 
second element of the pair belongs to the second set (the range). For example, 
the following mapping shows a correspondence from the set A into the set B. 
The correspondence is defined by the ordered pairs (1, 8), (1, 2), (2, 9), (7, 6), and 
(13, 17). The domain is the set {1, 2, 7, 13}. The range is the set {2, 8, 6, 9, 17}. 
A function is a set of ordered pairs in which each element of the domain has only 
one element associated with it in the range. The correspondence shown above is 
not a function because the element 1 (in the domain) is mapped to two elements 
in the range, 8 and 2. One correspondence that does define a function is the 
correspondence ( 1, 8), (1, 5), (3, 6), (7, 9). 

However, we can take another approach and use a more rigorous definition of 
mapping. This definition is based on the notion of binary correspondence. The 
reader who does not want to follow this more rigorous approach can simply skip 
the text up to Definition 1.2.6. A mapping will be rigorously determined if we 
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can list all pairs selected by this correspondence. Taking into account that a set 
of pairs is connected to the Cartesian product, we make the following definition. 

1.2.1. Definition. Let A and B be sets. A subset <I> of the Cartesian product A x B 
is called a correspondence (more precisely, a binary correspondence) between A 
and B, or a correspondence from A to B. If A :::;= B, then the correspondence will 
be called a binary relation on the set A. If a = (x, y) E <1>, then we say that the 
elements x andy (in this fixed order) correspond to each other at a. 

Often we will change the notation (x, y) E <I> to an equivalent but more natural 
notation x<I>y. The element x is called the projection of a on A, and the ele
ment y is called the projection of a on B. We can formalize these expressions 
by setting x = prAa andy= pr8a. We also define prA<l> = {prAa I a E <t>}, 
pr8 <1> = {pr8a I a E <1>}. 

For example, let A be the set of all points in the plane and let B be the set 
of all lines in the plane. We recall that a point P is incident with the line A if 
P belongs to A and this incidence relation determines a correspondence between 
the set of points in the plane and the set of lines in this plane. All the lines that 
go through the point P correspond to P, and all points of the line A correspond 
to A. In this example, an unbounded set of elements of B corresponds to every 
element of the set A. In general, a fixed element of A can correspond to many, 
one, or no elements of B. 

Here is another example. Let 

A= {1, 2, 3, 4, 5}, B ={a, b, c, d}, and let 

<I>= {(1, a), (1, c), (2, b), (2, d), (4, a), (5, c)}. 

Then we can describe the correspondence <I> with the help of the following simple 
table: 

B/A 2 3 4 5 
d 0 
c 0 0 
b 0 
a 0 0 

Here all the elements of the set A correspond to the columns, while the 
elements of B correspond to the rows, the elements of the set A x B correspond 
to the points situated on the intersections of columns and rows. The points inside 
the circles (denoted by 0) correspond to the elements of <1>. 

When A = B = JR, we come to a particularly important case since it arises 
in numerous applications. In this case, A x B = JR2 is the real plane. We can 
think of a binary relation on lR as a set of points in the plane. For example, the 
relation 

<1> = { (x, y) I x 2 + l = 1} 
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can be illustrated as a circle of radius 1, with center at the origin. Another very 
useful example is the relation "less than or equal to," denoted as usual by :::;, on 
the set lR of all real numbers. 

Next, let n be a positive integer. The relation congruence modulo n on Z is 
defined as follows. The elements a, b E Z are said to be congruent modulo n if 
a = b + kn for some k E Z (thus n divides a -b). In this case, we will write 
a = b (mod n). We will consider this relation in detail later. 

Very often we can define a correspondence between A and B with the help 
of some property P(x, y), which connects the element x of A with the element 
y of B as follows: 

<I>= {(x, y) I (x, y) E Ax Band P(x, y) is valid}. 

This is one of the commonest ways of defining a correspondence. 

1.2.2. Definition. Let A and B be sets and <I> be a correspondence from A to 
B. Then <I> is said to be a functional correspondence if it satisfies the following 
conditions: 

(F 1) for every element a E A there exists an element b E B such that 
(a, b) E <I>; 

(F 2) if (a, b) E <I> and (a, c) E <1>, then b = c. 

A function or mapping f from a set A to a set B is a triple (A, B, <l>) where <I> 
is a functional correspondence from A to B. The set A is called the definitional 
domain or domain of definition of the mapping f; the set B is called the domain 
of values or value area of the mapping f; afunctional correspondence <I> is called 
the graph of the mapping f. We will write <I> = Gr(f). In short, A is called the 
domain off and B is called the codomain off. 

If f is a mapping from A to B, then we will denote this symbolically by 
f: A---+ B. 

Condition (F 1) implies that pr A <I> = A. Thus, together with condition (F 2) 
this means that the mapping f associates a uniquely determined element b E B 
with every element a EA. 

1.2.3. Definition. Let f : A ---+ B be a mapping and let a E A. The unique ele
ment b E B such that (a, b) E Gr(f) is called the image of a (relative to f) and 
denoted by f(a). 

In some branches of mathematics, particularly in some algebraic theories, a 
right-side notation for the image of an element is commonly used; namely, instead 
of f(a) one uses af. However, in the majority of cases the left-sided notation is 
generally used and accepted. Taking this into account, we will also employ the 
left -sided notation for the image of an element. 

Every element a E A has one and only one image relative to f. 
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1.2.4. Definition. Let f : A ~ B be a mapping. If U s; A, then put 

f(U) = {f(a) I a E U}. 

This set f(U) is called the image of U (relative to f). The image f(A) of the 
whole set A is called the image of the mapping f and is denoted by lm f. 

1.2.5. Definition. Let f: A ~ B be a mapping. If b = f(a) for some element 
a E A, then a is called a preimage of b (relative to f). If V s; B, then put 

f- 1(V) ={a E A I f(a) E V}. 

The set f- 1 (V) is called the preimage of the set V (relative to f). If V = {b} then 
instead of f- 1 ({b}) we will write f- 1 (b). 

Note that in contrast to the image, the element b E B can have many preimages 
and may not have any. 

We observe that if A = 0, there is just one mapping A ~ B, namely, the 
empty mapping in which there is no element to which an image is to be assigned. 
This might seem strange, but the definition of a mapping justifies this concept. 
Note that this is true even if B is also empty. By contrast, if B = 0 but A is not 
empty, then there is no mapping from A to B. Generally we will only consider 
situations when both of the sets A and B are nonempty. 

1.2.6. Definition. The mappings f: A~ B and g: C ~ Dare said to be 
equal if A= C, B = D and f(a) = g(a) for each element a EA. 

We emphasize that if the mappings f and g have different codomains, they 
are not equal even if their domains are equal and f(a) = g(a) for each element 
a EA. 

1.2.7. Definition. Let f: A~ B be a mapping. 

{i) A mapping f is said to be injective (or one-to-one) if every pair of distinct 
elements of A have distinct images. 

(ii) A mapping f is said to be surjective (or onto) iflm f = B. 

(iii) A mapping f is said to be bijective if it is injective and surjective. In this 
case f is a one-to-one correspondence. 

The following assertion is quite easy to deduce from the definitions and its 
proof is left to the reader. 

1.2.8. Proposition. Let f : A ~ B be a mapping. Then 

(i) f is injective if and only if every element of B has at most one preimage; 
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(ii) f is surjective if and only if every element of B has at least one preimage; 

(iii) f is bijective if and only if every element of B has exactly one preimage. 

To say that f : A -----+ B is injective means that if x, y E A and x =f. y then 
f(x) =f. f(y). Equivalently, to show that f is injective we need to show that 
if f(x) = f(y) then x = y. To show that f is surjective we need to show that 
if b E B is arbitrary then there exists a E A such that f(a) =b. 

More formally now, we say that a set A is finite if there is a positive integer 
n, for which there exists a bijective mapping A -----+ { 1, 2, ... , n}. In this case 
the positive integer n is called the order of the set A and we will write this 
as lA I = n or Card A= n. By convention, the empty set is finite and we put 
101 = 0. Of course, a set that is not finite is called infinite. 

1.2.9. Corollary. Let A and B be finite sets and let f : A -----+ B be a mapping. 

(i) Iff is injective, then IAI :S IBI. 
(ii) Iff is surjective, then lA I ~ IBI. 

(iii) Iff is bijective, then lA I = IBI. 

These assertions are quite easy to prove and are left to the reader. 

1.2.10. Corollary. Let A be a finite set and let f : A -----+ A be a mapping. 

(i) Iff is injective, then f is bijective. 

(ii) Iff is surjective, then f is bijective. 

Proof. 
(i) We first suppose that f is injective and let A= {aJ, ... , am}. Then 

f(aj) =f. f(ak) whenever j =f. k, for 1 :::: j, k:::: m. It follows that lim !I= 
I {f(aJ), ... , f(am)JI = IAI, and therefore lmf =A. Thus f is surjective and 
an injective, surjective mapping is bijective. 

(ii) Next we suppose that f is surjective. Then f- 1(aj) is not empty for 1:::: 
j :Sm. If f- 1 (aj) = f- 1 (ak) = x then f(x) = aj and f(x) = ak, so aj = ak. 
Thus if a j =f. ak then f (a j) =f. f (ak ), which shows that f is injective. Thus f is 
bijective. 

Let f : A -----+ B be a mapping. Then f induces a mapping from !B(A) to 
!B(B), which associates with each subset U, of A, its image f(U). We will 
denote this mapping again by f and call it the extension of the initial function to 
the Boolean of the set A. 

1.2.11. Theorem. Let f : A -----+ B be a mapping. 

(i) If U =f. 0, then f(U) =f. 0; f(0) = 0. 



(ii) If X~ U ~A, then f(X) ~ f(U). 

(iii) If X, U ~ A, then f(X) U f(U) = f(X U U). 

(iv) If X, U ~A, then f(X) n f(U) ~ f(X n U). 
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These assertions are very easy to prove and the proofs are omitted, but the 
method of proof is similar to that given in the proof of Theorem 1.2.12 below. 
Note that in (iv) the symbol ~ cannot be replaced by the symbol =, as we 
see from the following example. Let f : Z -----+ Z be the mapping defined as 
follows. Let f(x) = x 2 for each x E Z, let X= {x E Z I x < 0} and let U = 
{x E z I X> 0}. Then X n u = 0 but f(X) n f(U) = u. 

The mapping f : A -----+ B also induces another mapping g : !J3(B) -----+ 
!J3(A), which associates each subset V of B to its full preimage f- 1 (V). 

1.2.12. Theorem. Let f : A -----+ B be a mapping. 

(i) IfY, v ~ B, then J-'crw) = J-'cnv-'cv). 

(ii) IfY ~ V ~ B, then f-'(n ~ f- 1(V). 

(iii) IfY, V ~ B, then f-'(n U f- 1(V) = f- 1(Y U V). 

(iv) IfY, v ~ B, then !-'en n f- 1(V) = f- 1(Y n V). 

Proof. (i)Leta E f- 1(Y\V).Thenf(a) E Y\V,sothatf(a) E Yandf(a) ~ V. 
It follows that a E !-'en and a~ f- 1(V), so that a E f-'cn\f- 1(V). To 
prove the reverse inclusion we repeat the same arguments in the opposite order. 

Assertion (ii) is straightforward to prove. 
(iii) We first show that f- 1 (Y U V) ~ f- 1 en U f- 1 (V) and to this end, let 

a E !-'en u f- 1(V). Then a E f-'cn ora E f- 1(V) and hence f(a) E Y or 
f(a) E V. Thus, in any case, f(a) E Y U V, so that a E f- 1(Y U V). We can 
use similar arguments to obtain the reverse inclusion that f- 1 en U f- 1 (V) ~ 
t-'cr u V). 

Similar arguments can be used to justify (iv). 

1.2.13. Definition. Let A be a set. The mapping e A : A -----+ A, defined by 
e A (a) = a, for each a E A, is called the identity mapping. 

If C is a subset of A, then the mapping }c : C -----+ A, defined by }c(c) = c 
for each element c E C, is called an identical embedding or a canonical injection. 

1.2.14. Definition. Let f : A -----+ B and g : C -----+ D be mappings. Then we say 
that f is the restriction of g, or g is an extension off, if A ~ C, B ~ D and 
f(a) = g(a) for each element a E A. 

For example, a canonical injection is the restriction of the corresponding 
identity mapping. 

Let A and B be sets. The set of all mappings from A to B is denoted by BA. 
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Assume that both sets A and Bare finite, say IAI = k and IBI = n. We sup
pose that A = {a1, ... , ak} and that f: A ~ B is a mapping. Iff E BA then 
we define the mapping <t>: BA ~ Bk by <t>(f) = (f(aJ), ... , f(ak)). If f: 
A ~ B, g : A ~ B are mappings and f =1= g, then there is an element a j E A 
such that f(aj) =I= g(aj). It follows that <t>(f) =1= <t>(g) and hence <t> is injective. 
Furthermore, let (b1, ... , bk) be an arbitrary k-tuple consisting of elements of B. 
Then we can define a mapping h : A ~ B by h(aJ) = b1, ••• , h(ak) = bk and 
hence <t> (h) = (b,, ... , bk). It follows that <t> is surjective and hence bijective. 
By Corollary 1.2.9, I BA I = I Bk I = I B II AI, a formula which justifies the notation 
BA for the set of mappings from A to B. We shall also use this notation for 
infinite sets. 

1.2.15. Definition. Let A be a set and let B be a subset of A. The mapping 
XB :A ~ {0, 1} defined by the rule 

1
1, if a E B, 

Xs(a) = 0, if rf- B 

is called the characteristic function of the subset B. 

1.2.16. Theorem. Let A be a set. Then the mapping B r---+ XB is a bijection from 
the Boolean IB(A) to the set {0, l}A. 

Proof. By definition, every characteristic function is an element of the set {0, 1 }A. 
We show first that the mapping B ~ XB is surjective by noting that if f E 

{0, l}A and C = {c E A I f(c) = 1} then f = Xc· Next let D and E be two 
distinct subsets of A. Then, by Definition 1.1.1, either there is an element dE D 
such that d rf- E, or there is an element e E E such that e rf- D. In the first case, 
xv(d) = 1 and xdd) = 0. In the second case we have XE(e) = 1 and xv(e) = 0. 
Hence, in any case, XD =I= XE and it follows that the mapping B ~ XB is 
injective and hence bijective. 

1.2.17. Corollary. If A is a finite set then IIB(A)I = 21AI. 

Indeed, from Theorem 1.2.16 and Corollary 1.2.9 we see that IIB(A)I = 
1{0, l}IIAI = 21AI. 

For every set A there is an injective mapping from A to IB(A). For example, 
a r---+ {a} for each a E A. However, the following result is also valid and has 
great implications. 

1.2.18. Theorem (Cantor). Let A be a set. There is no surjective mapping from 
A onto IB(A). 

Proof. Suppose, to the contrary, that there is a surjective mapping f : A ~ 
IB(A). Let B = {a E A I a rf- f(a)}. Since f is surjective there is an element 
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bE A such that B = f(b). One of two possibilities occurs, namely, either bE B 
or b ¢ B. If bE B then bE f(b). Also however, by the definition of B, b ¢ 
f(b) = B, which is a contradiction. Thus b ¢ Band, since B = f(b), it follows 
that b ¢ f(b). Again, by the definition of B, we have bE B, which is also 
a contradiction. Thus in each case we obtain a contradiction, so f cannot be 
surjective, which proves the result. 

1.2.19. Definition. A set A is called countable if there exists a bijective mapping 
f : N ----+ A. If an infinite set is not countable then it is said to be uncountable. 

In the case when A is countable we often write an = f(n) for each n EN. 
Then 

A = {a,, az, ... , an, ... } = {an I n E N}. 

In other words, the elements of a countable set can be indexed (or numbered) 
by the set of all positive integers. Now we discuss some important properties of 
countable sets. 

1.2.20. Theorem. 

(i) Every infinite set contains a countable subset, 

(ii) Let A be a countable set and let B be a subset of A. Then either B is finite 
or B is countable, 

(iii) The set N x N is countable. 

Proof. 
(i) Let A be an infinite set so that, in particular, A is not empty and choose 

a, EA. The subset A\{a1} is also not empty, therefore we can choose an element 
a2 in this subset. Since A is infinite, A\{a1, a 2 } =1= 0, so that we can choose 
an element a3 in this subset and so on. This process cannot terminate after a 
finite number of steps because A is infinite. Hence A contains the infinite subset 
{an I n E N}, which is countable. 

(ii) Let A = {an 1 n E N}. Then there is a least positive integer k(l) such that 
ak(l) E B and we put h = ak(l)· There is a least positive integer k(2) such that 
ak(2) E B\{b, }. Put bz = ak(2)• and so on. If after finitely many steps this process 
terminates then the subset B is finite. If the process does not terminate then all 
the elements of B will be indexed by positive whole numbers. 

(iii) We can list all the elements of the Cartesian product N x N with the help 
of the following infinite table. 

(1' 1) 
(2, 1) 

(k, 1) 

(1, 2) 
(2, 2) 

(k, 2) 

(1' 3) 
(2, 3) 

(k, 3) 

(1, n) 
(2, n) 

(k, n) 

(l,n+1) 
(2, n + 1) 

(k, n + 1) 
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Notice that if n is a natural number and if the pair (k, t) lies on the nth diagonal 
(where the diagonal stretches from the bottom left to the top right) then k + t = 
n + 1. Let the set Dn denote the nth diagonal so that 

Dn = {(k, t) I k + t = n + 1}. 

We now list the elements in this table by listing them as they occur on their 
respective diagonal as follows: 

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ... , (1, n), (2, n- 1), ... , (n, 1), ... 
"-..--' '-...-' '----..----' 

D1 D2 D3 Dn+l 

In this way we obtain a listing of the elements of N x N and it follows that 
this set is countable. 

Assertion (ii) of Theorem 1.2.20 implies that the set of all positive integers in 
some sense is the least infinite set. 

1.2.21. Corollary. Let A and B be sets. If A is countable and there is an injective 
mapping f : B -+ A, then B is finite or countable. 

Proof. We consider the mapping !1 : B -+ Im f defined by !1 (b) = f(b), for 
each element b E B. By this choice, !1 is surjective. Since f is injective, !1 
is also injective and hence f 1 is bijective. Finally, Theorem 1.2.20 implies that 
Im f is finite or countable. 

1.2.22. Corollary. Let A = UnENAn where An is finite or countable for every 
n E N. Then A is finite or countable. 

Proof. The set A1 is finite or countable, so that A1 = {an In E I:J}, where either 
I: 1 = N or I: 1 = { 1, 2, ... , k 1} for some k 1 E N. We introduce a double indexing 
of the elements of A by setting b1n =an, for all n E I:J. Then, by Theorem 1.2.20, 
A2\A1 is finite or countable, and therefore A2\A1 ={an In E I:2} where either 
I:2 =Nor I:1 = {1, 2, ... , k2}, for some k2 EN. For this set also we use a double 
index notation for its elements by setting b2n =an, for all n E I:2. Similarly, we 
index the set A3\(A2 U A1) and so on. Finally, we see that A= {bij I (i, j) E M} 
where M is a certain subset of the Cartesian product N x N. 

It is clear, from this construction, that the mapping b;1 ~ (i, j) is injective 
and Corollary 1.2.21 and Theorem 1.2.20 together imply the result. 

Since Z = UnEN{n- 1, -n + 1} we establish the following fact. 

1.2.23. Corollary. The set Z is countable. 

1.2.24. Corollary. The set Ql is countable. 

To see this, for each natural number n, put An= {k/t llkl + ltl = n}. Then 
every subset An is finite and Ql = UnENAn, so that we can apply Corollary 1.2.22. 
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The implication that we make here is that all countable sets have the same 
"size" and, in particular, the sets N, Z, and Q have the same "size." 

On the other hand, Theorem 1.2.18 implies that the set 113 (N) is not countable 
and Theorem 1.2.16 shows that the set {0, l}N is not countable. Each element of 
this set can be represented as a countable sequence with terms 0 and I. With each 
such sequence (a 1, a2, ... , an, ... ) we can associate the decimal representation 
of a real number 0 · a, a2 ... an ... from the segment [0, I]. It follows from this 
that the set [0, 1], and hence the set of all real numbers, is uncountable. 

Corollary 1.2.9 shows that to establish the fact that two finite sets have the 
same "number" of elements there is no need to count these elements. It is suffi
cient to establish the existence a of bijective mapping between these sets. This 
idea is the main origin for the abstract notion of a number. Extending this obser
vation to arbitrary sets we arrive at the concept of the cardinality of a set. 

1.2.25. Definition. Two sets A and Bare called equipollent, if there exists a bijec
tive mapping f : A ---+ B. We will denote this fact by IAI = IBI, the cardinal 
number of A. 

If A and B are finite sets, then the fact that A and B are equipollent means 
that these sets have the same number of elements. Therefore Cantor introduced 
the general concept of a cardinal number as a common property of equipollent 
sets. Two sets A, B have the same cardinality if IAI = IBI. On the other hand, 
every infinite set has the property that it contains a proper subset of the same 
cardinality. This property is not enjoyed by finite sets. Now we can establish a 
method of ordering the cardinal numbers. 

1.2.26. Definition. Let A and B be sets. We say that the cardinal number of A is 
less than or equal to the cardinal number of B (symbolically I A I .:::: I B 1), if there 
is an injective mapping f : A ---+ B. 

In this sense, Theorem 1.2.20 shows that the cardinal number corresponding to 
a countable set is the smallest one among the infinite cardinal numbers. Theorem 
1.2.18 shows that there are infinitely many different infinite cardinal numbers. 
We are not going to delve deeply into the arithmetic of cardinal numbers, even 
though this is a very exciting branch of set theory. However, we present the 
following important result which, although very natural, is surprisingly difficult 
to prove. We provide a brief proof, with some details omitted. 

1.2.27. Theorem (Cantor-Bernstein). Let A and B be sets and suppose that IAI .:::: 
IBI and IBI.:::: IAI. Then IAI = IBI. 

Proof. By writing A1 =A x {0} and B1 = B x {1} and noting that A1 n B1 = 0 
we may suppose, without loss of generality, that A n B = 0. Let f : A ---+ B 
and g : B ---+ A be injective mappings. Consider an arbitrary element a E A. 
Then either a E lmg and in this case a= g(b) for some element bE B, or 
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a ¢. Im g. Since g is injective, in the first case, the element b satisfying the 
equation a= g(b) is unique. Similarly, either b = f(aJ) for some unique a, E A, 
orb¢. Im f. For an element x E A we define a sequence (xn)nEN as follows. Put 
xo = x, and suppose that, for some n ::: 0, we have already defined the element 
Xn. If n is even, then we define Xn+ 1 to be the unique element of the set B such 
that Xn = g(xn+1). If such an element does not exist, the sequence is terminated 
at Xn. If n is odd, then we define Xn+l to be the unique element of the set A such 
that Xn = f(xn+J), with the proviso that the sequence terminates in Xn should 
such an element Xn+l not exist. Only the following two cases are possible: 

1. There is an integer n such that the element Xn+ 1 does not exist. In this case 
we call the integer n the depth of the element x. 

2. The sequence (xn)n:c:O is infinite. In this case, it is possible that the set {xn : 
n::: 0} is itself finite, as in the case, for example, when a= g(b) and b = f(a). 
In any case we will say that the element x has infinite depth. 

We obtain the following three subsets of A: 
the subset AE consisting of the elements of finite even depth; 
the subset Ao consisting of the elements of finite odd depth; 
the subset A00 consisting of the elements of infinite depth. 
We define also similar subsets B£, Bo, and B00 in the set B. From this con

struction it follows that the restriction of f to AE is a bijective mapping from 
AE to Bo and the restriction of f to A00 is a bijective mapping between A00 

and B00 • Furthermore, if x E Ao, then there is an element y E BE such that 
g(y) = x. Now define a mapping h : A ----+ B by 

l
f(x) if X E A£, 

h(x) = f(x) if x E Aoo, 

y if x E A0 . 

It is not hard to prove that h is a bijective mapping and this now proves the 
theorem. 

As an illustration of how the language of sets and mappings may be employed 
in describing information systems, we consider briefly the concept of automata. 
An automaton is a theoretical device, which is the basic model of a digital 
computer. It consists of an input tape, an output tape, and a "head," which is 
able to read symbols on the input tape and print symbols on the output tape. 
At any instant, the system is in one of a number of states. When the automata 
reads a symbol on the input tape, it goes to another state and writes a symbol 
on the output tape. 

To make this idea precise we define an automaton A to be a 5-tuple 

(/, 0, S, v, a), 

where I and 0 are the respective sets of input and output symbols, S is the set 
of states, 

v:/xS----+0 



SETS 19 

is the output function, and 

a:IxS~S 

is the next state function. The automaton operates in the following manner. If 
it is in state s E S and an input symbol j E I is read, the automaton prints the 
symbol v(j, s) on the output tape and goes to the state a(j, s). Thus the mode of 
operation is determined by the three sets I, 0, S and the two functions v and a. 

EXERCISE SET 1.2 

In each of the following questions explain your reasoning, either by giving a 
proof of your assertion or a counterexample. 

1.2.1. Let <I> = { (x, y) E N x N I 3x = y}. Is <I> a functional correspondence? 

1.2.2. Let <I>= {(x, y) EN x N I 3x = Sy}. Is <I> a functional correspondence? 

1.2.3. Let <I> = { (x, y) E N x N I x = 3 y}. Is <I> a functional correspondence? 

1.2.4. Let <I> = { (x, y) E N x N I x 2 = i}. Is <I> a functional correspondence? 

1.2.5. Let <I>= {(x, y) EN x NIx= y4 }. Is <I> a functional correspondence? 

1.2.6. Let f: Z ~No be the mapping defined by f(n) = lnl, where n E Z. 
Is f injective? Is f surjective? 

1.2.7. Let f: N ~ {x E Q I x > 0} be the mapping defined by f(n) = n~i, 
where n E N. Is f injective? Is f surjective? 

1.2.8. Let f: N ~ N be the mapping defined by f(n) = (n + 1)2, where 
n E N. Is f injective? Is f surjective? 

1.2.9. Let f : N ~ N be the mapping defined by f(n) = n
2r, where n EN. 

Is f injective? Is f surjective? 

1.2.10. Let f: Z ~ Z x Z be the mapping defined by f(n) = (n + 1, n), 
where n E Z. Is f injective? Is f surjective? 

1.2.11. Let f : Z ~ Z x Z be the mapping defined by f(n) = (n, n4 ), where 
n E Z. Is f injective? Is f surjective? 

1.2.12. Let f: Z ~No be the mapping defined by f(n) = (n + 1)2 , where 
n E Z. Is f injective? Is f surjective? 

1.2.13. Let f: No~ No be the mapping defined by f(n) = n2 - 3n, where 
n E No. Is f injective? Is f surjective? 

1.2.14. Let f: No~ No be the mapping defined by 

f(n) = ln
2

- 2, if n ~ 2 
n + 2, if n :=:: 1 

Is f injective? Is f surjective? 

n E No. 
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1.2.15. Let f : N -----+ ~(N) be the mapping defined by f(n) is the set of all 
prime divisors of n, where n E N. Is f injective? Is f surjective? 

1.2.16. Construct a bijective mapping from N to Z. 

1.2.17. Let /! : A -----+ B and h : A -----+ B be mappings. Prove that the union 
(respectively the intersection) of Gr(/!) and Gr(/2) is a graph of some 
mapping from A to B if and only if/! = h· 

1.2.18. Let A and B be finite sets, with lA I =a, IBI =b. Find the number of 
injective mappings from A to B. 

1.2.19. Let A be a set. Prove that A is finite if and only if there exists no bijective 
mapping from A to a proper subset of A. 

1.2.20. Let A and B be sets, U <::;A, V <::;B. Prove that f(U n f- 1(V)) = 
f(U) n v. 

1.3 PRODUCTS OF MAPPINGS 

This section is dedicated to the notion of the product of two mappings. Note, 
at once, that this product is a partial operation: it is not defined in all cases. If 
f : A -----+ B and g : C -----+ D are mappings, then the product of g and f is 
defined only when B =C. 

1.3.1. Definition. Let f : A -----+ B and g : B -----+ C be mappings. The mapping 
go f from A to C, defined by the rule 

go f(a) = g(f(a)) for each a E A 

is called the product or the composite of g and f. 

More precisely, first the mapping f acts on the element a E A, and then the 
mapping g acts on the image, f(a), of a. We agreed to write maps on the left. 
When we write maps on the right it is logical to write the product in the reverse 
order. This order is then used to denote the image of an element. Thus, when we 
write maps on the right, the image of a E A under the map f o g is a (f o g) = 
(af)g. It will be convenient to write certain functions known as permutations in 
this form when we multiply them. Permutations will be introduced later. 

We say that the mappings f and g permute (or commute) if g o f = f o g. 
In general, the situation when go f = fog seldom occurs. In fact, let f : 

A -----+ B and g : C -----+ D be mappings. The product g o f is defined if B = C 
and the product f o g is defined if A = D. Hence, in order for both products 
g o f and f o g to exist it is first necessary that A = D and B = C, which means 
that f : A -----+ B and g : B -----+ A. In this case, 

g o f : A -----+ A and f o g : B -----+ B. 
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In particular, if A # B then go f # f o g. However, even when A = B, if the set 
A has at least three elements then there are always mappings f : A ---+ A and 
g: A ---+ A such that go f #fog. Indeed, let a1, az, and a3 be three distinct 
elements of A. Define the mappings f, g by the rules 

f(aJ) = az, f(az) = a3, f(a3) = a1, and f(x) = x whenever x ¢ {a I, az, a3} 

and 

g(aJ) = a3, g(az) = az, g(a3) = a1, and g(x) = x whenever x ¢ {aJ, az, a3}. 

Then we have 

go f(aJ) = g(f(aJ)) = g(az) = az and f o g(aJ) = f(g(aJ)) = f(a3) = a1. 

It follows that go f # fog. 
However, multiplication of mappings satisfies another important property, 

namely the associativity property. 

1.3.2. Theorem. Let f : A ---+ B, g : B ---+ C, and h : C ---+ D be mappings. 
Then h o (go f)= (hog) of. 

Proof. We have 

g o f : A ---+ C, h o g : B ---+ D and h o (g o f) : A ---+ D, (h o g) o f : A ---+ D. 

If a is an arbitrary element of A, then 

(h o (go f))(a) = h((g o f)(a)) = h(g(f(a))), 

whereas 

((hog) o f)(a) = (h o g)(f(a)) = h(g(f(a))). 

Hence (ho(gof))(a) = ((hog)of)(a) for all a E A which proves that 
(h 0 g) 0 f = h 0 (g 0 f). 

Let f : A ---+ B be a mapping. It is not hard to see that 

so the mappings 8 8 and 8 A play the role of "left identity" and "right identity" 
elements, respectively, for the operation of multiplication of mappings. Also, it 
should be noted that there is no "universal" identity element for all mappings. 

1.3.3. Lemma. Let f :A ---+ B, g: B ---+ C be mappings. If go f = 8A, then 
f is an injective mapping and g is a surjective mapping. 
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Proof. Suppose that A has elements a and c such that f(a) = f(c). Then 

a= eA(a) =go f(a) = g(f(a)) = g(f(c)) =go f(c) = eA(c) = c, 

which shows that f is injective. 
Next, let u be an arbitrary element of A. Then 

u = eA(u) =go f(u) = g(f(u)), 

and, in particular, f(u) is a preimage of the element u relative to g. It follows 
that Im g =A. 

1.3.4. Definition. Let f : A ---+ B be a mapping. The mapping g : B ---+ A is 
called a left inverse to for the retraction associated with f if go f = 8A. 

The mapping h : B ---+ A is called a right inverse to f or the excision asso
ciated with f iff o h = es. 

Our next theorem gives conditions for the existence of left and right inverses. 

1.3.5. Theorem. Let f : A ---+ B be a mapping. A left inverse to f exists if and 
only iff is injective. A right inverse to f exists if and only iff is surjective. 

Proof. Suppose first that g is a left inverse of f. Then g : B ---+ A is such that 
go f = 8A and Lemma 1.3.3 shows that f is injective. Conversely, suppose that 
f is injective. We choose and fix the element u in the set A. If b E Im f, then 
the element b has a unique preimage a, since f is injective. Put 

I
a, where f(a) = b whenever bE Im f, 

g(b) = 
u, if b ¢ Im f. 

By the definition of g we have, for every element a E A, 

go f(a) = g(f(a)) =a= eA(a), 

which shows that g is a left inverse to f. 
Now let f be a surjective mapping. Then the preimage of every element b E B 

is nonempty. For each element b E B we choose and fix an element ab in the set 
f- 1 (b). Put h(b) = ab. Then 

foh(b) = f(h(b)) = f(ab) = b = es(b), 

so that f o h = e 8 . This means that h is a right inverse of f. Conversely, if there 
is a mapping h such that f o h = e 8 , then Lemma 1.3.3 implies that the mapping 
f must be surjective. 
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The following theorem summarizes some of the main properties of left and 
right inverses. 

1.3.6. Theorem. Let f : A --+ B, let !I : B --+ C be mappings and let h = 
/I of. 

(i) Iff and !I are injective, then h is also injective. If g, gi are left inverses 
to f and !I respectively, then go gi is a left inverse to h· 

(ii) If f and !I are surjective, then h is also surjective. If g, gi are right 
inverses to f and !I respectively, then g o gi is a right inverse to h· 

(iii) If the mapping his injective, then f is also injective. If g2 is a left inverse 
to /2, then g2 o !I is a left inverse to f. 

(iv) If the mapping h is surjective, then !I is surjective. If g2 is a right inverse 
to /2, then f o g2 is a right inverse to fi· 

(v) If h is surjective and !I is injective, then f is surjective. If g2 is a right 
inverse to /2, then g2 o /I is a right inverse to f. 

(vi) If h is injective and f is surjective, then !I is injective. If g2 is a left 
inverse to /2, then f o g2 is a left inverse to fi· 

Proof. (i) Let a I, a2 be two distinct elements of the set A. Since the mapping f 
is injective, we have f(aJ) = bi I= b2 = j(a2). The mapping !I is also injective, 
therefore /I (bJ) I= !I (b2). Thus, 

/2(aJ) =/I o f(ai) = /I(/(aJ)) = /I(bi) I= /I(b2) = /I(/(a2)) 

=/I o f(a2) = /2(a2), 

so that h is injective. The equations go f = E: A, gi, o /I = E: B imply 

which shows that go gi is a left inverse of !I of. 
(ii) Since the mapping !I is surjective, C = Im !I and hence, if c E C, there 

exists an element bE B such that /I (b) =c. Since f is also surjective, b = f(a) 
for some element a EA. Hence, 

c =/I (b) =!I (f(a)) =/I o f(a) = /2(a), 

so that h is also surjective. The equations fog = e8 and !I o gi = E:c together 
imply 

=/I ogi = E:c, 

so go gi is a right inverse of /I of. 
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(iii) Suppose that a1, a2 E A are such that f(aJ) = j(a2). Then !1 (f(aJ)) = 
!1 (f(a2)) so that 

Since h is injective we deduce that a 1 = a2, which proves that f is injective. 
Furthermore, g2 o h = 8 A, so we obtain 

and hence g2 o !1 is a left inverse of f. 
(iv) Since h is surjective, for every element c E C there is an element a E A 

such that f2(a) =c. Then 

c = h(a) = !1 o f(a) = !1 (f(a)). 

It follows that the mapping !1 is also surjective. Furthermore, h o g2 = 8c and 
therefore 

so that f o g2 is a right inverse of f 1 • 

(v) Assertion (iv) implies that the mapping f 1 is surjective and hence, by 
hypothesis, f 1 is bijective. Let b E B and c = !1 (b). Since h is surjective, there 
is an element a E A such that f2(a) =c. Then 

c = h(a) = !1 o f(a) = !1 (f(a)) and also c = !1 (b). 

Since !1 is injective it follows that b = f(a), which shows that f is surjective. 
Furthermore, h o g2 = 8c. Since !1 is a bijective mapping, it has a left inverse 
g1, so g1 o !1 = 8s. Therefore 

f o (g2 o fJ) = (8 B of) o (g2 o fJ) = (g1 o fJ) of o (g2 o f 1) 

= gl 0 ((JJ 0 f) 0 g2) 0 !1 = gl 0 (h 0 g2) 0 !1 

Thus g2 o !1 is a right inverse to f. 
(vi) Assertion (iii) implies that the mapping f is injective, and by hypothesis, f 

is surjective, so f is bijective. Let b1, b2 be two distinct elements of B. Since f is 
bijective, there are distinct elements a1, a2 E A such that b1 = f(al ), b2 = j(a2). 
Since the mapping h is injective, f2(aJ) =f. f2(a2). In tum, it follows that 

which shows that f 1 is injective. 
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Furthermore, g2 o h =cA. Since f is a bijective mapping, it has a right inverse 
g, so fog= cs. Therefore, 

(f o g2) o fi = (f o g2) o fi o 8 B = (f o g2) o fi o (f o g) 

= (f 0 g2) 0 (/J 0 f) 0 g = f 0 (g2 0 h) 0 g 

= focA og =fog= cs. 

Thus f o g2 is a left inverse to fi· 
We shall use a special notation and terminology for those functions 

f: A---+ A. 

1.3.7. Definition. Let A be a set. A mapping from A to A is called a transforma
tion of the set A The set of all transformations of A is denoted by P( A) or, using 
our previous notation, A A. 

We observe that a product of two transformations of A is always defined 
and is again a transformation. Clearly, multiplication of transformations is asso
ciative and in this case there exists an identity element, namely the identity 
transformation cA. 

1.3.8. Definition. Let f : A ---+ B be a mapping. Then the mapping g : B ---+ A 
is called an inverse off, if it is simultaneously a left inverse and a right inverse 
to f, so that gof = 8A and fog= cs. 

Theorem 1.3.5 shows that a mapping f has an inverse if and only if f is 
bijective. We note, in this case, that if f has an inverse then it is unique. To 
show this let g : B ---+ A and h : B ---+ A be mappings satisfying 

g 0 f = 8 A, f 0 g = 8 B and h 0 f = 8 A, f o h = 8 B. 

Now consider the product g o f o h. We have 

h = 8 A o h = (g o f) o h = g o ( f o h) = g o 8 B = g. 

Theorem 1.3.5 illustrates how to determine the inverse of a bijective mapping 
f : A ---+ B. If b is an arbitrary element of the set B, then there exists a unique 
element a E A such that f(a) =b. Put g(b) =a. Then 

go f(a) = g(f(a)) = g(b) =a= cA(a) 

and 

fog(b) = f(g(b)) = f(a) = b = cs(b), 

so that go f = cA and fog= cs. Since a bijective mapping f has only one 
inverse, we use the notation f- 1 for it and the reader is cautioned not to confuse 
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this with the full preimage and that the notation does not mean 1/f(x). We note 
also that by Lemma 1.3.3 the mapping f- 1 is also bijective. 

Once again, bijective transformations are given special terminology. 

1.3.9. Definition. Let A be a set. A bijective transformation of A is called a 
permutation of A. The set of all permutations of A is denoted by S(A). Thus 
¢ E S(A) if and only if¢ : A -----+ A is a bijective mapping. 

If ({J, ¢ E S(A), then by Theorem 1.3.6 the mapping ({J o ¢ is bijective, so 
that ({J o ¢ E S(A). Multiplication of permutations is associative, and the identity 
mapping E'A is a permutation. Finally, if ({J E S(A), then ({J has an inverse mapping 
({J-I, which also is a permutation of A. 

Later, when we study the main algebraic structures the reader will be 
introduced to one of the most important and fundamental ideas of modem 
mathematics-the notion of a group. On the basis of the properties mentioned 
above, we will conclude that S(A) is a group under the operation of multipli
cation of permutations and we will discuss some properties of the group of 
permutations of the set A. 

EXERCISE SET 1.3 

Be sure to give explanations of your work, either by providing a proof or a 
counterexample. 

1.3.1. Let A be a set and let f be a transformation of A. Suppose that there 
is a positive integer n such that fn = 8 A. Prove that f is a permutation 
of A. 

1.3.2. Let A be a finite set and let IAI = n. Find IP(A)I. 

1.3.3. Let A be a nonempty set. Prove that A is infinite if and only if S(A) is 
infinite. 

1.3.4. Let A be a nonempty set. Prove that A is infinite if and only if P(A) is 
infinite. 

1.3.5. Prove that there is a bijective mapping from A x B to B x A. 

1.3.6. Prove that there is a bijective mapping from A x (B x C) to (A x 
B) X c. 

1.3.7. Prove that there is a bijective mapping from (Ax B)c to Ac x Be. 

1.3.8. Let A be a set consisting of two elements. Is the multiplication on the 
set P(A) commutative? 



SETS 27 

1.3.9. Let f : N -----+ Z be the mapping defined by 

I
n . 

2 - 1 whenever n IS even, 

f(n) = n + 1 
- -

2
- whenever n is odd. 

Is f injective? If yes, find an inverse to f. 

1.3.10. Let f: Q -----+ Q be the mapping defined by f(x) = 3x- lxl, where 
x E Q. Is f injective? If yes, find an inverse to f. 

1.3.11. Let f : ffi. -----+ ffi. be the mapping defined by 

(x) = {x2 
whenever x 2: 0, 

f x(x - 3) whenever x < 0. 

Is f injective? If yes, find an inverse to f. 

1.3.12. Let f : Q -----+ Q be the mapping defined by 

{

X- 1 
--whenever xi= -2, 

f(x) = x + 2 
1 if X= -2. 

Is f injective? If yes, find an inverse to f. 

1.3.13. Let f : ffi. -----+ ffi. be the mapping defined by 

[ 
1 - x whenever x > 0, 

f(x) = -
(1 - x)2 whenever x < 0. 

Is f injective? If yes, find an inverse to f. 

1.3.14. Let f: N x N-----+ N be the mapping defined by f(n, m) = 
2n-l (2m - 1). Is f injective? If yes, find an inverse to f. 

1.3.15. Let f : Q -----+ Q be the mapping defined by 

[
x + 1 whenever x E Z, 

f(x) = 
x whenever x tf. Z. 

Is f injective? If yes, find an inverse to f. 

1.3.16. Let f, g, and h : Q-----+ Q be mappings defined by f(x) = ~. g(x) = 
x + 1, and h (x) = x - 1. Find the products go f o h, g o h of, f o g o h, 
and hog of. 
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1.3.17. Let f: Q-----+ Q be the mapping defined by f(x) = x 2 + 2, and let 
g : Q-----+ Q be a mapping defined by the rule g(x) = ~ - 2. Find the 
products g o f, f o g, (f o g) o f, and f o (g o f). 

1.3.18. Let f : A -----+ B be a mapping and suppose that f has a left inverse 
(respectively a right inverse). Is this left inverse (respectively right 
inverse) unique? 

. I I 
1.3.19. Let f: Q-----+ Q be the mappmg defined by f(x) = (1 + (l- x)J)5. 

Present f as a product of four mappings. 

1.3.20. Let f : A -----+ B be a mapping. Prove the following assertion: f is sur
jective if and only if for each set U and arbitrary pair of mappings 
g : B -----+ U and h : B -----+ U the equation h of = go f always implies 
h =g. 

1.3.21. Let f, g, and h : Z -----+ Z be mappings defined by 

f(x)=x+l; 

) l
x whenever x is even, 

g(x = 
x + 2 whenever x is odd; 

h l
x + 2 whenever x is even, 

(x) = 
x whenever x is odd. 

Prove that f, g, and h are permutations of Z. Find the products 
f of, go h, and hog. 

1.4 SOME PROPERTIES OF INTEGERS 

As mentioned already, we will develop the theory of natural numbers and integers 
later in Chapter 10. For now, we will use the well-known properties of these 
numbers quite freely. However, there are some important notions and results that 
are worth recalling now. One of these is The Principal of Mathematical Induction, 
which we now discuss. The main idea of this principle is the following. 

Suppose that for all n E No we have some assertion P(n). Let us suppose that 
P(n) is valid for all natural numbers n, where 0::::; n ::::; k, and k is a fixed natural 
number. Such an assumption is commonly called the induction hypothesis. Thus, 
the assertions P(O), P(l), ... , P(k) are all valid. If we can show that P(k + 1) 
is also valid, and this will almost certainly rely on the validity of at least P(k), 
then we can assert that in this case P(n) is valid for all n E No. This idea can 
be made more precise using Axiom (P 4) of Definition 10.1.1 that occurs later. 

We focus our attention on the following important issue. A very key step in 
a proof by mathematical induction is to check the fact that P(n) takes place 
for an appropriate small value of n (the so-called basis of the induction, and n 
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need not be 0 or 1). Neglecting the verification of this step can lead to incorrect 
assertions. For example, the statement "All people have the same eye color" could 
be "proven" in the following way. Let P(n) denote the statement that in every set 
of n people all n people have the same eye color. Indeed, for n = 1 the statement 
P(l) is true. Suppose that P(k) is true and consider a set S consisting of k + 1 
persons. Then S = M U {x} where M consists of k people. By the induction 
hypothesis, all people in the set M have the same eye color. Let y E M and 
T = S\{y}. Then all people from T have the same eye color, by the induction 
hypothesis and, in particular, x and any person y of M have the same eye color. 
This means that every person from M has the same eye color as x so that all 
people in S have the same eye color. Hence the assertion P(k + 1) is true. 

The problem with this "proof' is that the first meaningful statement for the 
assertion that "all people have the same eye color" must deal with at least two 
people, the case n = 2. The statement P(2), that all pairs of people have the 
same eye color is of course false, so we might say that the induction process 
never starts. Usually, the problem itself will give you a hint concerning where 
the induction process should start. 

We now illustrate the Principle of Mathematical Induction using some 
examples. First we will prove the following well-known equation: 

1 + 3 + 5 + ... + (2n- 1) = n2 for all natural numbers n. (1.1) 

It is clear that if n = 1 then this equation is true since 12 = 1 and 2 x 1 - 1 = 1 
also. To proceed to the inductive step we suppose that we have already proved 
that Equation 1.1 is valid for all natural numbers n ::=: k. In particular we have, 

1 + 3 + 0 0 0 + (2k - 1) = k2 
0 (1.2) 

We now use this statement to prove that Equation 1.1 holds in the case when 
n = k + 1. We have, using Equation 1.2, 

f+ 3 + 0 0 0 + (2k- 1) + (2k + 1) = [1 + 3 + 0 0 0 + (2k- 1)] + (2k + 1) 

= k2 + (2k + 1) = (k + 1)2 

By the axiom of mathematical induction we conclude that for any n E N the 
equation 1 + 3 + · ·. + (2n- 1) = n2 is true for all natural numbers n. 

As another example, we will prove that for any natural number n, n3 + 2n is 
divisible by 3. 

For the basis step note that if n = 1, then n3 + 2n = 3, which is divisible 
by 3. 

Next our induction hypothesis is that the assertion is true for all n ::=: k, for 
some natural number k. Thus, in particular 3 divides k3 + 2k. We now use this 
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statement to prove that our assertion is true with n = k + 1. To this end consider 
(k + 1)3 + 2(k + 1). We have 

(k + 1)3 + 2(k + 1) = (k3 + 3k2 + 3k + 1) + (2k + 2) 

= (k3 + 2k) + (3k2 + 3k + 3) 

= (k3 + 2k) + 3(k2 + k + 1). 

Here k 3 + 2k is divisible by 3, by the induction hypothesis and 3(k2 + k + 1) 
is obviously divisible by 3. Thus 3 divides (k + 1)3 + 2(k + 1); so our assertion 
holds for n = k + 1 and the Principle of Mathematical Induction implies that the 
assertion is true for all n E N. 

As a further illustration of the power of the method we shall prove the well
known binomial theorem 

(1.3) 

Here x, y are arbitrary numbers, n is a natural number, and the Cf: are the 
binomial coefficients that we can compute using the formula 

en- n! 
k - -k-! (-n---k)-! 

n(n - 1) ... (n - k + 1) 

1 X 2 ... (k- 1)k 

where we interpret c;: to be 0 if k > n. 
We will prove Formula 1.3 by induction on n. 
Clearly, the result is valid for n = 1, 2, since cf = CJ = 1 = c& = C2 and 

c? = 2. Assume the result is valid for all n :::; m and consider (x + y)m+T. We 
have 

(x + y)m+1 = (x + y)m(x + y) 

= (xm + Cfxm-1Y + C~xm-2l + ... 
+ c;:xm-kl + ... + ym)(x + y) 

= xm(x + y) + Cfxm- 1 y(x + y) + · · · 
+ c;:xm-kl(x + y) + ... + ym(x + y) 

= xm+1 + xmy + ... + c;:_1xm+2-kl-i + c~,xm+1-kl 
+ c;:xm+1-kl + c;:xm-kl + ... + xym + ym+l. 

Combining like terms we see that the term xm+ 1-k l has the coefficient 

m m m! m! 
ck-i + ck = (k- l)!(m- k + 1)! + k!(m- k)! 
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m! ( 1 1) 
= (k- l)!(m- k)! m- k + 1 + k 

m! m+ 1 (m + 1)! m+l 
k!(m + 1- k)! = ck 0 

(k- l)!(m- k)! k(m- k + 1) 

It follows that (x + y)m+l has the stated form and the result now follows by 
the Principle of Mathematical Induction. 

Other important useful results are connected with division of integers. We 
begin with the following basic result. The reader will observe that this is simply 
the usual process of long division. 

1.4.1. Theorem. Let a, b E Z and b -=ft 0. Then there are integers q, r such that 
a= bq +rand 0 S r < lbl. The pair (q, r) having this property is unique. 

Proof. Suppose first that b > 0. There exists a positive integer n such that nb > a, 
so nb - a > 0. Put 

M = {x I x E No and x = nb- a for some n E Z}. 

We have proved that M is not empty. If 0 E M, then bt - a = 0 for some 
positive integer t, and a= bt. In this case, we can put q = t, r = 0. Sup
pose now that 0 ¢ M. Since M is a subset of No, M has a least element xo = 
bk -a, where k E z. By our assumption, x0 -=ft 0. If xo > b then xo - b E No and 
xo- b = b(k- 1)- a E M. We have xo- (xo- b) = b > 0, so xo >(xo- b) 
and we obtain a contradiction with the choice of xo. Thus 0 < bk- a S b, 
which we can rearrange by subtracting b, to obtain -b < b(k- 1)- a S 0. It 
follows that 0 s a - b(k - 1) < b. Now put q = k - 1 and r = a - bq. Then 
a = bq + r, and 0 S r < b = I b 1. 

Suppose now that b < 0. Then -b > 0 and, applying the argument above to 
-b, we see that there are integers m, r such that a = ( -b)m + r where 0 S r < 
-b = lbl. Put q = -m. Then a= bq + r. 

To prove the uniqueness claim we suppose also that a = bq, + r 1 where 0 S 
r, < lbl. We have 

bq + r = bq1 + r 1 or r - r 1 = bq, - bq = b(q, - q). 

If r = r,, then b(q, - q) = 0 and since b -=ft 0, then q,- q = 0, so that q, = q. 
Therefore assume that r 1 -=ft r. Then either r > r, or r < r,. If r > r,, then 

0 < r- r, S lbl so 0 < lr- r1l < lbl, and q, -I q. 

The equation r- r, = b(q, - q) implies that lr- r1l = lbllq- q,l and this 
shows that lbl S lr- r,l, since lq- q,l :::: 1, which is a contradiction. 
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If we suppose that r < r1, then writing r1 - r = b(q - qJ) and switching the 
roles of r and r1 in the previous argument, we again obtain a contradiction. Hence 
r=r1 andq=q1. 

The previous theorem has some very important consequences. 

1.4.2. Definition. Let a, bE Z and b =!= 0. Then a= bq + r where q, r E Z and 
0 :S r < lbl. The integer r is called a residue. If r = 0, that is a = bq, then we 
say that b is a divisor of a, or that b divides a, or that a is divisible by b. We will 
write this symbolically as b I a. 

From this definition we see that a = a 1, so 1 divides every integer. Similarly, 
a= (-a)(-1) so ±1 and ±a are divisors of a. If b is a divisor of a, then 
a =be= (-b)( -c) and so -b is also a divisor of a. Notice also that 0 is 
divisible by all integers. 

We now prove the basic well-known properties of divisibility. 

1.4.3. Theorem. Let a, b, c E Z. Then the following properties hold: 

(i) if a I b and b I c, then a I c; 

(ii) if a I b, then a I be; 

(iii) if a I b, then ac I be; 

(iv) if c =/= 0 and ac I be, then a I b; 

(v) if a I band c I d, then ac I bd; 

(vi) if a I b and a I c, then a I (bk + cl) for every k, l E Z. 

Proof. (i) We have b = ad and c = bu for some d, u E Z. Then c = bu = 
(ad)u = a(du), so that a I c, since du E Z. 

(ii) We have b = ad for some d E Z. Then be = (ad)c = a(dc), so that a I be. 
(iii) We have again b =ad. Then be= (ad)c = a(dc) = a(cd) = (ac)d, so 

that ac I be. 
(iv) We have be= (ac)d = a(cd) = a(dc) = (ad)c for some d E Z. Then 

0 =be- (ad)c = (b- ad)c. Since c =/= 0, Theorem 10.1.11 implies that b
ad= 0 and hence b =ad. 

(v) We have b =au and d = cv for some u, v E Z. Then 

so that ac I bd. 

bd = (au)(cv) = a(u(cv)) = a((uc)v) 

= a((cu)v) = a(c(uv)) = (ac)(uv), 

(vi) We have b =ad and c =au for some d, u E Z. Then 

bk + cl = (ad)k + (au)l = a(dk) + a(ul) = a(dk + ul), 

so that a I bk + cl. 
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1.4.4. Definition. Let a, b E Z. An integer d is called a greatest common divisor 
of a and b (which we denote by GCD(a, b)), if it satisfies the conditions 

(GCD 1) d divides a and b; 

(GCD 2) if c divides a and c divides b, then c divides d. 

Furthermore, we define GCD(O, 0) to be 0. 

Clearly if d is a greatest common divisor of a and b, then -d is also a greatest 
common divisor of a and b. Conversely, if g is another greatest common divisor 
of a and b, then by (GCD 2) d = gu and g = dv for some integers u, v. Then 

d = gu = (dv)u = d(vu) and 0 = d- d(vu) = d(l - vu). 

It follows that either d = 0 or 1 - vu = 0. If d = 0, then by definition a = b = 
0. Therefore suppose that d =I= 0. Then 1 - uv = 0 and uv = 1. In this case, 
1 = !u!!v!, and Theorem 10.1.11(viii) implies that 1 =lui= !v!. Hence u = ±1 
and v = =fl. In particular, g = ±d. Thus we often speak of the greatest common 
divisor of two integers to mean the positive integer satisfying both (GCD 1) and 
(GCD 2). 

The expression "greatest common divisor of a and b" is really quite descriptive 
in the sense that if d = GCD(a, b) then !dl is the greatest of the divisors of both 
a and b. For example, for 12 and 30 the numbers -6, -3, -2, -1, 1, 2, 3, 6 are 
common divisors, while 6 and -6 are the greatest common divisors. Of course 
-6 is minimal in value among the divisors of 12 and 30 but I - 6! is the greatest 
of the divisors. 

The following natural question must be raised: for what pairs of integers does 
the greatest common divisor exist? The following theorem answers this question. 

1.4.5. Theorem. Let a, b be arbitrary integers. Then a and b have a greatest 
common divisor. 

Proof. Clearly, if a = b = 0, then 0 is a greatest common divisor of a and 
b. Furthermore if a = 0 and b =1= 0 then GCD(a, b) = b, with a similar obser
vation if b = 0 and a =I= 0. Therefore we can assume that a and b are both 
nonzero. Put 

M ={ax+ by I x, y E Z}. 

We observe that a = a 1 + bO E M, and b = aO + b 1 E M. Thus, in particular, 
M is not empty. Furthermore, if ax+ by EM, but ax+ by ¢ N, then 

. -(ax+ by)= a(-x) + b(-y) EM n N, 
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so that M n N # 0. Consequently, M n N has a least element d. Let d =am+ 
bn. Suppose that d is not a divisor of a. By Theorem 1.4.1, a = dq + r where 
0 < r <d. Then 

r =a - dq =a - (am+ bn)q 

=a- amq- bnq = a(l - mq) + b( -nq) E M n N, 

and we obtain a contradiction with the choice of d. This contradiction shows that 
d divides a. Similarly, we can prove that d divides b. Hence d is a common 
divisor of a and b. 

Moreover, if c is a common divisor of a and b then a = ck and b = cl, for 
some integers k and l. We have 

d =am+ bn = (ck)m + (cl)n = c(km) + c(ln) = c(km + ln). 

Thus c is a divisor of d, so that d satisfies the conditions (GCD 1) and 
(GCD 2). Hence d is a greatest common divisor of a and b. 

The construction of d in the proof of Theorem 1.4.5 shows that the greatest 
common divisor satisfies a further interesting property, which we state separately. 

1.4.6. Corollary. Let a, b be arbitrary integers and let d = GCD(a, b). Then 
there are integers m, n such that d = am + bn. 

We say that the integers a, b are relatively prime, if GCD(a, b) = ± 1. 
The following consequence has many important applications in algebra and 

number theory. 

1.4.7. Corollary. Let a, b be integers. Then a and b are relatively prime if and 
only if there are integers m, n such that 1 = am + bn. 

Proof. Indeed, if a and bare relatively prime, then GCD(a, b) = 1, and we can 
use Corollary 1.4.6. Conversely, suppose that there are integers m, n such that 
1 =am+ bn. Let d = GCD(a, b). Then a = da 1, b = db 1 for some integers 
a 1, b1• We have 

Theorem lO.l.ll(viii) implies that 1 = ldl, and hence a and bare relatively 
prime. 

Our next result is clear intuitively; if we "divide out" the greatest common 
divisor of two integers then the corresponding quotients have nothing left in 
common. 
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1.4.8. Corollary. Let a, b be integers, let d = GCD(a, b) and let a= da1, b = 
dh. Then a1 and h are relatively prime. 

Proof. If GCD(a1, b1) = c > 1 then a1 = caz and b1 = cbz, where h, bz E Z. 
Then de> d is a common divisor of a and b, contrary to the definition of d. The 
result follows. 

Next we establish some further facts about relatively prime integers. 

1.4.9. Corollary. Let a, b, c be integers. 

(i) If a divides be and a, b are relatively prime, then a divides c. 

(ii) If a, b are relatively prime and a, c are also relatively prime, then a and 
be are relatively prime. 

(iii) If a, b divide c and a, bare relatively prime, then ab divides c. 

Proof. (i) By Corollary 1.4.7 there are integers m, n such that am+ bn = 1. 
Then 

c = c(am + bn) = c(am) + c(bn) 

= (ca)m + (cb)n = (ac)m + (bc)n = a(cm) + (bc)n. 

However aibc also; so Theorem 1.4.3(vi) shows that a divides a(cm) + (bc)n 
and hence a divides c. 

(ii) By Corollary 1.4.7 there are integers m, n, k, t such that am+ bn = 1 and 
ak + ct = 1. Then 

1 =(am+ bn)(ak + ct) = a(mak +met+ bnk) + (bc)(nt), 

and, again using Corollary 1.4.7, we see that a and be are relatively prime. 
(iii) By Corollary 1.4.7 there are integers m, n such that am+ bn = 1. We 

have c =au and c = bv for some integers u, v. Then 

c = c(am + bn) = c(am) + c(bn) = (bv)(am) + (au)(bn) 

= (ab)(vm) + (ab)(un) = ab(vm + un). 

Thus ab I c. 

Before continuing we make the standard definition of a prime number. 

1.4.10. Definition. Let a E Z. A divisor of a, which does not coincide with ± 1 or 
±a is called a proper divisor of a. The divisors ± 1 and ±a are called nonproper 
divisors of a. A nonzero natural number p is called prime if p =!= ± 1 and p has 
no proper divisors. An integer that is not prime is called composite. 
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We note here that it is a very straightforward argument, using the Principle 
of Mathematical Induction and Corollary 1.4.9, to prove that if a is prime and 
a!b1b2···bn then alb; for some i. We shall use this fact in the proof of our 
next result, which is of fundamental importance. This result, which is called the 
Fundamental Theorem of Arithmetic shows that prime numbers are certain kinds 
of bricks from which each integer is built. 

1.4.11. Theorem. Let a be an integer such that Ia I> l. Then Ia I is a product of 
positive primes and this decomposition is unique up to the order of the factors. 
Furthermore, if a > 0, then 

_ k1 km 
a- P1 ···Pm' 

where k1, ... , km are positive integers, PI, ... , Pm are positive primes, and p j =I= 
Ps whenever j =I= s. If a < 0, then 

Proof. Without loss of generality, we may suppose that a> 0. We proceed to 
prove that a is a product of primes, by induction on a. If a is a prime (in 
particular, a = 2, 3), then the result clearly holds. Suppose that a is a not prime 
and, inductively, that every positive integer u such that 1 < u < a decomposes 
as a product of positive primes. Then a has a proper divisor b, that is a =be for 
some integer c. We may suppose that b and c are positive. Then b < a, since b 
is a proper divisor and, for the same reason, c < a. By our induction hypothesis 
b and c can be presented as products of positive primes, so that a = be has a 
similar decomposition. Thus, by the Principle of Mathematical Induction, every 
positive integer greater than 1 is a product of primes. 

We now prove uniqueness of the decomposition a = p 1 ••• Pn· where 
PI, ... , Pn are primes. We shall prove this by induction on n. To this end, 
suppose also that a = q1 ... qt where q1, ... , qt are primes. Clearly we may also 
assume that all prime factors are positive. If n = 1, then a = PI is a prime. We 
have PI = q1 ... qt. Since PI is prime, its only divisors are ±p1 and ±1. Also 
q1 =I= ±1 so it follows that q2 ... qt = ±1, which means that t = 1 and PI = q1. 
Suppose now that n > 1 and our assertion already holds for natural numbers that 
are products of fewer than n primes. We have PI ... Pn = q1 ... qt. Clearly, PI 
divides q1q2 ... qt; so, by the observation we made before this theorem we see, 
by renumbering the q; if necessary, that PI divides q1. Then since q1 is prime we 
have q1 = PI· Cancelling PI, it follows that P2 ... Pn = q2 ... qt. For the natural 
number P2 ... Pn we can apply the induction hypothesis. Thus n - 1 = t - 1 
and, after some renumbering, qj = Pj for j = 2, ... , n. Consequently n = t and, 
since PI = q1 also, we now have Pj = qj for 1 ~ j ~ n. The result follows. 

The existence and uniqueness of the decomposition of integers into prime 
factors had been assumed as an obvious fact up to the end of the eighteenth 
century, when the first examples of commutative rings were developed. (A ring 
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is an important algebraic structure that generalizes some number systems-for 
example, Z is a ring-and we will study such structures later on in this book.) 
In some of these examples, the decomposition of elements into prime factors 
was proved, but the uniqueness of such a decomposition appeared to be false, 
which was a great surprise for mathematicians of that time. The great German 
mathematician Carl Friedrich Gauss (1777 -1855) who contributed significantly 
to many fields, including number theory, and was known as the Prince of Mathe
maticians, clearly formulated and proved the Fundamental Theorem of Arithmetic 
in 1801. 

The following absolutely brilliant proof showing that the set of all primes is 
infinite was published in approximately 300 BC by the father of geometry, Euclid, 
a great Greek mathematician who wrote one of the most influential mathematical 
texts of all time, The Elements. 

1.4.12. Theorem. The set of all primes is infinite. 

Proof. Assume the contrary and let P = {p1, •.. , Pn} denote the set of all primes. 
Now, consider the natural number 

a= 1 +PI· ··Pn· 

By Theorem 1.4.11, a should be decomposed into a product of primes and so 
there is a prime p j E P such that p j Ia. However p j also divides PI ... Pn; so, by 
Theorem 1.4.3(vi), it follows that p j 11, which is a contradiction. This completes 
the proof. 

The Sieve of Eratosthenes is a simple, ancient algorithm for finding all prime 
numbers up to a specified integer. It was created by Eratosthenes (276-194 BC), 
an ancient Greek mathematician. This algorithm consists of the following steps: 

1. Write a list of all the natural numbers from 2 to some given number n. 
2. Delete from this list all multiples of two (4, 6, 8, etc.). 

3. Delete from this list all remaining multiples of three (9, 15, etc.). 

4. Find in the list the next remaining prime number 5 and delete all numbers 
that are multiples of 5, and so on. 

Note that the primes 2, 3, ... do not get deleted in this process-in fact the 
primes are the only numbers remaining at the end of the process. Moreover, at 
some stage the process can be stopped. Numbers larger than Jn that have not 
yet been deleted must be prime. For if n is a natural number that is not prime 
then it must have a prime factor less than Jn, otherwise n would be a product 
of at least two natural numbers both strictly larger than Jn which is impossible. 
As a consequence, we need to delete only multiples of primes that are less than 
or equal to Jn. 
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In Theorem 1.4.5 we proved the existence of the greatest common divisor for 
each pair of integers. However, we did not answer the question of how to find 
this greatest common divisor. One method of finding the greatest common divisor 
of the integers a and b would be to find the prime factorizations of a and b and 
then work as follows. Let a = p~1 ... p~k and b = p~ 1 ... p~k, where r j, s j :::: 0 
for each j. Then it is quite easy to see that GCD(a, b) = p~1 ... p~k, where t j 
is the minimum value of r j and s j, for each j. The main disadvantage of this 
method of course is that finding the prime factors of a and b can be difficult. 
A more practical approaches utilizes a commonly used procedure known as the 
Euclidean Algorithm which we now describe. 

First we note the following statements: 

If b I a then GCD(a, b) =b. 

If a= bt + r, for integers t and r, then GCD(a, b)= GCD(b, r). 

Note that every common divisor of a and b also divides r. So GCD(a, b) 
divides r. Since GCD(a, b) I b, it is a common divisor of b and r and hence 
GCD(a, b) _:::: GCD(b, r). Conversely, since every divisor of band r also divides 
a, the reverse is also true. We illustrate this idea with the following example. 

Example. 

Let a = 234, b = 54. 

234 =54 x 4 + 18. So GCD(234, 54) = GCD(54, 18). 

Next, 54= 18 x 3, and GCD(54, 18) = 18. 

Therefore, GCD(234, 54) = 18. 

Let's describe some details of the Euclidean Algorithm. Suppose that a, b are 
integers. Since GCD(O, x) = x, for any integer x we can assume that a and bare 
nonzero. By Theorem 1.4.1, a= bq, + r, where 0 _:::: r 1 < lbl. Again by Theorem 
1.4.1, b = bq2 + r2 where 0 _:::: r2 < r,. Next, if r2 =f. 0 then r, = r2q3 + r3, where 
0 _:::: r3 < r2. We continue this process; thus if rj-! and rj have been obtained 
with rj =f. 0 then there are integers qj+!, rj+! such that rj-! = rjqj+! + rj+! with 
0 _:::: rH1 < rj. Since, at each step, rj-! < rj, then this process will terminate in 
a finite number of steps so that at some step rk = 0. We obtain the following 
chain of equalities: 

a= bq, + r,, b = r1q2 + r2, 

r, = r2q3 + r3, ... , rk-3 = rk-2qk-! + rk-!, 

rk-2 = rk-!qk + rk. rk-! = rkqk+l· (1.4) 

It is now possible to prove, using the Principle of Mathematical Induction, that rk 
is a common divisor of a and b. Here we just indicate how such a proof would go: 



We have 

so that rk divides rk-2· Further, 

rk-3 = rk-2qk-l + rk-1 = rk(qk+lqk + l)qk-1 + rkqk+l 

= rk(qk+lqkqk-1 + qk-1 + qk+J), 
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so that rk divides rk-3· Moving back up the chain of equalities in Equation 1.4 
we finally see that rk divides a and b. 

Now let u be an arbitrary common divisor of a and b. The equation r1 = 
a - bq 1 shows that u divides r 1. The next equation r2 = b - r1 q2 shows that 
u divides r2. Continuing to move directly through the chain of equalities in 
Equation 1.4 we finally see that u divides rk. This means that rk is a greatest 
common divisor of a and b. Again this claim can be proved more formally using 
the Principle of Mathematical Induction. 

Corollary 1.4.6 proves that there are integers x, y such that rk = ax + by. It 
is important to note that the Euclidian Algorithm allows us to find these numbers 
x andy. Indeed, we have 

Thus 

so that 

rk = rk-2- (rk-3- rk-2qk-l)qk = rk-2- rk-3qk + rk-2qk-lqk 

= rk-20 + qk-lqk)- rk-3qk = rk-2YI- rk-3XJ, say. 

Using the further equation rk-2 = rk-4 - rk-3qk-2· we can prove that rk = 
rk-3Y2 - rk-4X2. Continuing in this way and moving back along the chain in 
Equation 1.4, we finally obtain the equation rk = ax + by. The values of x and 
y will then be evident. 

Of course many standard computer programs will compute the greatest com
mon divisor of two integers in an instant. 

EXERCISE SET 1.4 

1.4.1. Prove that 3 divides n3 - n for each positive integer n. 

1.4.2. Prove that n2 + n is even for each positive integer n. 

1.4.3. Prove that 8 divides n2 - 1 for each odd positive integer n. 
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1.4.4. Prove that 12 + 22 + 32 + · · · + n2 = tn(n + 1)(2n + 1) for each posi
tive integer n. 

1.4.5. Prove that 13 + 23 + 33 + ... + n3 = ( n(nt) r for each positive integer 
n. 

1.4.6.Prove that 1x1!+2x2!+3x3!+···+nxn!=(n+1)!-1 for 
each positive integer n. 

1.4.7. Prove that 133 divides 11n+2 + 122n+l for each integer n ::=: 0. 

1.4.8. Prove that n different lines lying on the same plane and intersecting in 
the same point divide this plane into 2n parts. 

1.4.9. Find all positive integers x such that x 2 + 2x - 3 is a prime. 

1.4.10. Find all positive integers n, k such that n + k = 221 and GCD(n, k) = 
612. 

1.4.11. Suppose n is a two-digit number with the property that if we divide n 
by the sum of its digits we obtain a quotient of 4 and a remainder of 3. 
Suppose also that the quotient of n by the product of its digits is 3 and 
the remainder is 5. What is n? 

1.4.12. Find all positive integers x such that 9 divides x 2 + 2x - 3. 

1.4.13. Prove that 2n > 2n + 1 for each integer n ::=: 3. 

1.4.14. Prove that 24 divides n4 + 6n3 + 11n2 + 6n for each positive integer n. 

1.4.15. Suppose that 2n + 1 is a prime where n is a positive integer. Prove that 
n = 2k for some positive integer k. 

1.4.16. Let n, k be positive integers. Let n = kq + r where 0:::; r < k. Prove 
that GCD(n, k) = GCD(k, k- r). 

1.4.17. Find a positive integer k such that 1 + 2 + · · · + k is a three-digit number 
with all digits equal. 

1.4.18. The coefficient of x in the third member of the decomposition of the 
binomial (1 + 2x)n is 264. Find the member of this decomposition with 
the largest coefficient. 

1.4.19. Prove that (k!)2 ::=: kk for all positive integer k. 

1.4.20. Prove that 10 divides e 3 - k37 for all positive integer k. 



CHAPTER2 

MATRICES AND DETERMINANTS 

2.1 OPERATIONS ON MATRICES 

Matrices are one of the most useful and prevalent objects in mathematics and 
its applications. The language of matrices is very convenient and efficient, so 
scientists use it everywhere. Matrices are particularly useful as a concise means 
for storing large amounts of information. The idea of a matrix is also a cen
tral concept in linear algebra. In this chapter, we begin our study of the main 
foundations of matrix theory. 

We can think of a matrix as a rectangular table of elements, which may 
be numbers or, more generally, any abstract quantities that can be added and 
multiplied. The choice of these elements depends on the branch of the particular 
science and on the specific problem. These elements (the entries of the matrix) 
could be numbers, or polynomials, or functions, or elements of some abstract 
algebraic system. We will denote these matrix entries using lower case letters 
with two indices-the coordinates of this element in the matrix. The first index 
shows the number of the row in which the element is situated, while the second 
index is the number of the place of the element in this row, or, which is the 
same, the number of the column in which this element lies. If the matrix has k 
rows and n columns then we say that the matrix has dimension k x n and we 
can write this matrix in the form 
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c 
a12 GJ3 a1,n-1 

a;") [au GJ2 a1,n-1 

a;" l a21 a22 a23 a2,n-1 G2n a21 a22 a2,n-1 G2n 
. or . . . 
' ' . . 

Gk1 Gk2 Gk3 ak,n-1 Gkn Gk1 Gk2 ak,n-1 Gkn 

We shall also use the following brief form of matrix notation 

when the dimension is reasonably clear. The set of matrices of dimension k x n 
whose entries belong to a set S will be denoted by Mk x n ( S). In this chapter, we 
will mostly think of S as being a subset of the set, JR., of real numbers. In this 
case, we shall say that we are dealing with numerical matrices. 

A submatrix is a matrix formed by certain rows and columns from the original 
matrix. 

Thus, if in the matrix [a;j] we choose rows numbered i (1), i (2), ... , i (t) and 
columns numbered j(1), j(2), ... , j(m), where 1 ::=: t ::=: k, 1 ::=: m ::=: n, then we 
will have the following submatrix: 

r111Jlll Gi(l),j(2) a;111j(mJ) 
Gi(2),j(l) Gi(2),j(2) Gi(2),j(m) 

. . 

Gi(t),j(l) Gi(t),j(2) Gi(t),j(m) 

In particular, all rows and all columns are submatrices of the original matrix. For 
example, for the matrix 

the following matrices could serve as examples of submatrices: 

("II a12 a13) ( a11 a12 G14)' ( G21 G22 G24 G25), a21 a22 a23 , 
Q31 G32 G34 G31 G32 a34 a35 

G31 G32 G33 

("13) ( G22 G23 G24 G25) ( a12 GJ3 Q14 a1s), a23 , , Q11 
G32 G33 G34 G35 

G33 

("II a12 Q]3 G14 

:::) , ( :::) , (au) . a21 a22 G23 G24 

G31 G32 G33 G34 G35 

First we make the following definition of equality of matrices. 
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2.1.1. Definition. Two matrices 

A= [aij] and B = [b;1] 

of the set Mkxn (S) are said to be equal, if aij = bij for every pair of indices (i, j), 
where 1 :S i :S k, 1 :S j :S n. 

Thus, equal matrices should have the same dimensions and the same elements 
in the corresponding places. 

If in a k x n matrix the number of rows is equal to the number of columns, so 
n = k, then this matrix is called a square (or quadratic) matrix, and the number 
n(= k) of its rows (or columns) is called the order of this matrix. 

In particular, a square matrix of order 1 is a 1 x 1 matrix so is just a single 
element. The set of all square matrices of order n whose entries belong to S will 
be denoted by Mn(S) rather than Mnxn(S). 

Certain special types of matrices crop up on a regular basis. We define some 
of these next. 

2.1.2. Definition. Let A = [aij] be an n x n numerical matrix. 

(i) A is called upper triangular, if a;1 = 0 whenever i > j and lower triangular 
if aij = 0, whenever i < j. 

(ii) If A is upper or lower triangular then A is called unitriangular, if a;; = 1 
for each i, 1 :::; i :::; n. 

(iii) If A = [a;J] is triangular then A is called zero triangular if a;; = 0 for each 
i, 1 :::; i :::; n. 

(iv) A is called diagonal, if aij = 0 for every i =/= j. 

For example, the matrix 

("~' 
al2 "") a22 a23 
0 a33 

is upper triangular; the matrix 

G 
al2 "") 1 a23 
0 1 

is unitriangular; the matrix 

G 
al2 "") 0 a23 
0 0 
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is zero triangular; the matrix 

0 

is diagonal. 
The power of matrices is perhaps best utilized as a means of storing infor

mation. An important part of this is concerned with certain natural operations 
defined on numerical matrices which we consider next. 

2.1.3. Definition. Let A= [aij] and B = [b;j] be matrices in the set MkxnOR). 
The sum A+ B of these matrices is the matrix C = [c;j] E MkxnOR), whose 
entries are C;j = a;j + b;j for every pair of indices (i, }), where 1 ::; i ::; k, 1 ::; 
j ::; n. 

The definition means that we can only add matrices if they have the same 
dimension and in order to add two matrices of the same dimension we just add 
the corresponding entries of the two matrices. In this way matrix addition is 
reduced to the addition of the corresponding entries. Therefore the operation of 
matrix addition inherits all the properties of number addition. 

Thus, addition of matrices is commutative, which means that A + B = B + A 
for every pair of matrices A, B E Mk xn (lR). Addition of matrices is associa
tive which means that (A + B) + C = A + (B + C) for every triple of matrices 
A, B, C E Mkxn (lR). The set MkxnOR) has a zero matrix 0 each of whose entries 
is 0. The matrix 0 is called the (additive) identity element since A+ 0 = A = 
0 + A for each matrix A E Mk xn (lR). It is not hard to see that for each pair 
(k, n) there is precisely one k x n matrix with the property that when it is added 
to a k x n matrix A the result is again A. If A = [a;j] E MkxnOR) then the k x n 
matrix -A is the matrix whose entries are -aij. It is easy to see from the defi
nition of matrix addition that A + (-A) = 0 = -A + A. This matrix -A is the 
unique matrix with the property that when it is added to A the result is the matrix 
0. The matrix -A is called the additive inverse of the matrix A. 

Matrix subtraction can be introduced in Mk xn (lR) by using the natural rule 
that A- B =A+ (-B) for every pair of matrices A, BE Mkxn(lR). 

Compared to addition, matrix multiplication looks more sophisticated. We 
will define it for square matrices first and then will generalize it to rectangular 
matrices. 

2.1.4. Definition. Let A = [aij] and B = [bij] be two matrices in the set Mn (JR). 
The product A B of these matrices is the matrix C = [c;j ], whose elements are 

Cij = ailblj + a;2b2j + · · · + a;nbnj = L a;kbkj 
I_:::k_:::n 

for every pair of indices (i, j), where 1 ::; i, j ::; n. 
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We must observe that matrix multiplication is not commutative as the follow
ing example shows. Indeed, let, 

G D (; 
(; nG 

n-c: 
;) = (1

7
9 

10
) while 11 ' 

188) 0 

The matrices A, B satisfying A B = B A are called permutable (in other words 
these matrices commute). However, matrix multiplication does possess another 
important property-the associative property of matrix multiplication. 

2.1.5. Theorem. For arbitrary matrices A, B, C E Mn(l~.), the following prop
erties hold: 

(i) (AB)C = A(BC). 

(ii) (A+ B)C = AC + BC. 

(iii) A(B +C) = AB + AC. 

(iv) There exists a matrix I= In E Mn(l~) such that AI =I A= A for each 
matrix A E Mn (~). For a given value of n, I is the unique matrix with this 
property. 

Proof. (i) We need to show that the corresponding entries of (AB)C and A(BC) 
are equal. To this end, let 

Put 

A= [aiJ], B = [biJ], and C = [c;j]. 

AB = [diJ], BC = [viJ], 

(AB)C = [uij]. A(BC) = [w;j]. 

We must show that uiJ = wiJ for arbitrary (i, j), where 1 _:::: i, j _:::: n. We have 

= L L a;m(bmkCkj). 
I::=k::=n I::=m::=n 
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Since (a;mbmk)ckJ = a;m (bmkCkJ ), it follows that uiJ = WiJ for all pairs (i, j). 
Hence (AB)C = A(BC). 

(ii) We need to show that corresponding entries of AC + BC and A(B +C) 
are equal. Put 

AC = [xiJ], BC = [yiJ], (A+ B)C = [ZiJ]. 

We shall prove that ZiJ = XiJ + Yii for arbitrary i, j, where 1 :::; i, j :::; n. We 
have 

Thus (A+ B)C = AC + BC. 
The proof of (iii) is similar. 
(iv) We define the symbol 8iJ (the Kronecker delta) by 

1
0 if i -=!= j, 

8ij = ' 
1, if i = j. 

Put 

Let AI= [x;1] and I A= [ZiJ]. We have 

and 

x;J = L a;k8kJ = aiJ8JJ = a;J 
1-:'0k-:'On 

ZiJ = L 8;kakJ = 8;;aiJ = aiJ. 
1-:'0k-:'On 

It follows that AI = I A= A. 
In order to prove the uniqueness of I assume that there also exists a matrix U 

such that AU= U A= A for each matrix A E Mn(~). Setting A=/, we obtain 
I U = I. Also, though, we know that I U = U, from the definition of I, so that 
I =U. 

The matrix I = In is called the n x n identity matrix. 

2.1.6. Definition. Let A E Mn (~). The matrix U E Mn (~) is called an inverse 
matrix or a reciprocal matrix to A if AU = U A= I. The matrix A is then said 
to be invertible or nonsingular. 
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It is very straightforward to show that A 0 = 0 A = 0 for all n x n matrices 
A, so certainly the zero matrix has no inverse, which is as might be expected. 
However, many nonzero matrices lack inverses also. The matrix 

is such an example. If A had an inverse 

(
XII xu), 
X2J X22 

then we would have 

XJ2) = (XII 
X22 0 

which is impossible since 0 =1- 1. This shows that A has no inverse matrix. 
If a matrix A has an inverse, then this inverse is unique. Indeed, let U, V be 

two matrices with the property AU= U A= I = VA= A V and consider the 
matrix V(AU). We have 

V(AU) =VI= V and V(AU) = (V A)U =IV= U. 

Thus V = U. We will denote the inverse of the matrix A by A -I. 
We note that criteria for the existence of an inverse of a given matrix are 

closely connected to some ideas pertaining to determinants, a topic we shall 
study in the next section. 

Matrix multiplication can be extended to rectangular matrices in general. In 
the case of two rectangular matrices A and B, their product is defined only if the 
number of columns of A is equal to the number of rows of B, but the technique 
of multiplying A and B is the same as described for square matrices. Observe 
that the number of rows in the product AB is equal to the number of rows 
in A, while the number of columns of AB is equal to the number of columns 
in B. Specifically, if A= [aij] E MkxnOR) and B = [b;j] E Mnx1 (1R), then the 
product AB of these matrices is the matrix C = AB = [c;1] E Mkx 1 (1R), whose 
elements are 

Cij = ailbij + a;2b2j + · · · + a;nbnj = L a;mbmj 
I ::;m::;n 

for every pair of indices (i, j), where I ::::; i ::::; k, I ::::; j ::::; t. 
We observe that multiplication of rectangular matrices is associative, when the 

products are defined. Thus, if A E Mmxn(lR), BE Mnxs(lR), and C E Msx 1 (1R), 
then A(BC) = (AB)C E Mmx 1(1R). The proof of this fact is similar to one that 
we provided above. 
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As we mentioned above, matrices form a very useful technical tool which 
not only provide us with a brief way of writing certain things but also help to 
clearly show the main ideas. For instance, consider the following system of linear 
equations: 

al!Xl +a12x2 +a13x3+ +a!nXn =bl 
a21x1 +a22x2 +a23x3+ +a2nXn = b2 

ak!Xl +ak2x2 +ak3x3+ +aknXn = bk 

We can use matrix multiplication to rewrite this system as the following single 
matrix equation: 

c 
al2 al3 ... al")n (1)· 

a21 a22 a23 ... a2n X2 
. . . . . . 

akl ak2 ak3 akn Xk 

which can be written more succinctly as AX = B, where A = (aiJ) is the k x n 
matrix of coefficients, X = (x J) is the k x 1 column vector of unknowns, and 
B = (b 1) is the k x 1 column vector of constants. This provides us with a very 
simple way of writing systems of linear equations. We can use the algebra of 
matrices to help us solve such systems also, as we shall see. 

Now we consider multiplication of a matrix by a number, or scalar. 

2.1.7. Definition. Let A = [aiJ] be a matrix from the set Mkxn(IR) and let a E JR. 
The product of the real number a and the matrix A is the matrix aA = [cij] E 

Mkxn(IR), whose entries are defined by C;J = aa;1, for every pair of indices (i, j), 
where 1 ::::; i ::::; k, l ::::; j ::::; n. 

Thus, when we multiply a matrix by a real number we multiply each element 
of the matrix by this number. Here are the main properties of this operation, which 
can be proved quite easily, in a manner similar to that given in Theorem 2.1.5: 

(a+ ,B)A = aA + ,BA, 

a(A +B)= aA + aB, 

a(,BA) = (a,B)A, 

lA =A, 

a(AB) = (aA)B = A(aB). 

These equations hold for all real numbers a, ,Band for all matrices A, B where 
the multiplication is defined. Note that this operation of multiplying a matrix by a 
number can be reduced to the multiplication of two matrices since a A = (a I) A. 
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Here is a summary of all the properties we have obtained so far, using our 
previously established notation. 

A+B=B+A, 

A+ (B +C) = (A+ B)+ C, 

A+ 0 =A, 

A+(-A)=O, 

A(B +C)= AB + AC, 

(A+ B)C = AC + BC, 

A(BC) = (AB)C, 

AI= /A= A, 

(a+ f3)A =a A+ f3A, 

a(A+B)=aA+aB, 

a(f3A) = (af3)A, 

lA =A, 

a(AB) = (aA)B = A(aB). 

With the aid of these arithmetic operations on matrices, we can define some 
additional operations on the set Mn(ffi.). The following two operations are the 
most useful: the operation of commutation and the operation of transposing. 

2.1.8. Definition. Let A, B E Mn(ffi.). The matrix [A, B] =AB-BA is called 
the commutator of A and B. 

The operation of commutation is anticommutative in the sense that [A, B] = 
-[B, A]. Note also that [A, A]= 0. This operation is not associative. In fact, 
by applying Definition 2.1.8, we have 

[[A, B], C] =[AB-BA, C] =ABC- BAC- CAB+ CBA, whereas 

[A, [B, C)]= [A, BC- CB] =ABC- ACB- BCA + CBA. 

Thus, if the associative law were to hold for commutation then it would follow 
that BAC +CAB= ACB + BCA. However, the matrices 



50 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

show that this is not true. In fact, 

BAC +CAB= c ~) (~ ~) (~ ~) 

+ (~ ~) (~ ~) c ~) 
= (~ ~) (~ ~) + (~ n c ~) 
= C ~) + ( ~ ~) = G ~) , whereas 

ACB+BCA = (~ ~) G ~) c ~) 
+ c ~) (~ ~) (~ ~) 

= (~ ~) c ~) + (~ ~) (~ ~) 
= (~ ~) + (~ ~) = G ~). 

Thus, BAC +CAB i= ACB + BCA, so we can see that [[A, B], C] i= 
[A, [B, C]]. 

However, for commutation there is a weakened form of associativity, known 
as the Jacobi identity which, states 

[[A, B], C] + [[C, A], B] + [[B, C], A]= 0. 

Indeed 

[[A, B], C] + [[C, A], B] + [[B, C], A] =[AB-BA, C] 

+ [CA- AC, B] + [BC- CB, A] 

=ABC- BAC- CAB+ CBA +CAB- ACB- BCA + BAC 

+BCA-CBA-ABC+ACB= 0. 

The second operation of interest is transposition which we now define. 

2.1.9. Definition. Let A = [aij] be a matrix from the set MkxnOR). The transpose 
of A is the matrix N = [bij] which is the matrix from the set Mnxk(JR) whose 
entries are bij = aji· Thus, the rows of A1 are the columns of A, and the columns 
of A1 are the rows of A. We will say that we obtain N by transposition of A. 

Here are the main properties of transposition. 
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2.1.10. Theorem. Transposition has the following properties: 

(i) (N)t = A, for all matrices A. 

(ii) (A+ B)t =AI+ Bt, if A, BE Mkxn(lR). 

(iii) (AB)t = Bt AI, if A E Mkxn(lR) and BE Mnxt(lR). 

(iv) (A -I )t = (N)- 1 ,for all invertible square matrices A. Thus, if A -i exists so 
does (At)-1• 

(v) (aA)t =aN, for all matrices A and real numbers a. 

Proof. Assertions (i) and (ii) are quite easy to show and the method of proof 
will be seen in the remaining cases. 

(iii) Let A= [aij] E Mkxn(lR) and B = [bij] E Mnxt(lR). Put 

Then 

AB = C = [C;j] E Mkxt(lR), At= [uij] E Mnxk(JR), 

Bt = [viJ] E Mtxn(lR), Bt At= [wij] E Mtxk(JR). 

Cji = L ajmbmi and 
!:Om :On 

It follows that (AB)t = Bt At. 
(iv) If A- 1 exists then we have A-1A = AA-1 =/.Using (iii) we obtain 

Thus, (A -I )t is the inverse of N, which is to say that At is invertible and 
(At)-! = (A -I )t 

(v) is also easily shown. 

2.1.11. Definition. The matrix A = [aij] E Mn(lR) is called symmetric if A= AI. 
In this case a;j = aji for every pair of indices (i, j), where 1 :::; i, j :::; n. 

The matrix A= [aij] E Mn(lR) is called skew symmetric, if A= -AI. Then 
aiJ = -a ji for every pair of indices (i, j), where 1 :::; i, j :::; n. 

We note that if a matrix A has the property that A = N, then A is necessarily 
square. Also the elements of the main diagonal of a skew-symmetric matrix 
must be 0 since, in this case, we have au = -au, or a;; = 0 for each i, where 
1 :::; i :::; n. If A is skew symmetric then N = -A clearly. 

The following remarkable result illustrates the role that symmetric and skew
symmetric matrices play. 
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2.1.12. Theorem. Every square matrix A can be represented in the form A = 
S + K, where Sis a symmetric matrix and K is a skew-symmetric matrix. This 
representation is unique. 

Proof. LetS= 1<A +AI) and K = 1<A- AI) and note, using Theorem 2.1.10, 
that 

Thus S is symmetric. Also, again by Theorem 2.1.1 0, 

t 1 t t 1 t t t 1 t 1 t K =-(A- A) =-(A +(-A))= -(A -A)= --(A- A)= -K 
2 2 2 2 ' 

so that K is skew symmetric. Furthermore, S + K = 1<A + A1
) + 1<A- AI) = 

A. Consequently, it is always possible to write the matrix A as a sum of a 
symmetric and a skew-symmetric matrix. To show uniqueness, let S1 be sym
metric and let K1 be skew symmetric such that also A= S1 + K1 = S + K. 
Then -S + S1 = S1 - S = K- K1. However, X= S1 - S is symmetric and 
X = K - K 1 is skew symmetric. Then X = X 1 = -X and it follows that X = 0. 
Therefore, S = S1 and K = K 1 and the uniqueness of the expression follows. 

EXERCISE SET 2.1 

2.1.1. Prove that there are no matrices A and B for which the equation [A, B] = 
I is valid. Hint. Just show that the sum of all elements of the principal 
diagonal of the matrix [A, B] is equal to 0. 

2.1.2. Let A be a diagonal matrix whose diagonal entries are all different. Let 
B be a matrix such that AB = BA. Prove that B is diagonal. 

2.1.3. Find all matrices A E M2 (IR) with the property that A 2 = 0. 

2.1.4. If we interchange rows j and k of a matrix A, what changes does this 
imply in the matrix AB? 

2.1.5. If we interchange columns j and k of a matrix A, what changes does 
this imply in the matrix AB? 

2.1.6. If we add a times row k to row j in the matrix A, what changes does 
this imply in the matrix AB? 

1 1 
0 1 

2.1.7. Find A3 if A = 0 0 

0 0 0 



2.1.8. Find 

2.1.9. Find 

2.1.10. Find 

2.1.11. Find 

1 
0 
1 
0 

0 
n 

1 
2 
3 
4 

0 0 
1 0 
1 1 

0 0 
1 0 
1 1 
0 0 

0 0 
0 0 

0 
1 
0 
0 

n- 1 0 
n 0 

1 0 
0 1 1 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 
0 
1 
1 

0 
0 

0 
0 
1 
0 

0 
0 

0 
0 
1 
1 
0 
0 
0 
0 
0 

0 3 

0 
0 

0 
0 
1 
0 

1 
0 

0 
0 
0 
1 

0 
0 

0 0 
0 0 
0 0 
1 0 
1 1 
0 1 
0 0 
0 0 
0 0 

0 
0 
0 

2.1.12. Find the n x n matrix 

0 
0 
n 
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0 3 

0 
1 
0 

0 
1 

0 0 3 

0 0 
0 0 
0 0 

1 0 
0 1 

0 0 0 8 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
1 1 0 
0 1 1 
0 0 1 

0 1 0 0 0 
7 

0 0 1 0 0 
0 0 0 0 0 

0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 

2.1.13. Prove that for any square matrix A the product AA1 is a symmetric 
matrix. 

2.1.14. Prove that a product of two symmetric matrices A, B is a symmetric 
matrix if and only if AB = BA. 
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2.1.15. Prove that a product of two skew-symmetric matrices A, B is a symmetric 
matrix if and only if AB = BA. 

2.1.16. Prove that for every pair of symmetric (respectively, skew symmetric) 
matrices A, B the commutator [A, B] is a skew-symmetric matrix. 

2.1.17. Prove that for every pair of symmetric matrices A, B the product 
AB AB ... ABA is also a symmetric matrix. 

2.1.18. Let A E Mn (JR). A matrix A is called nilpotent, if A k = 0 for some 
positive integer k. Let A, B be nilpotent matrices. Prove that AB = BA 
implies the nil potency of A + B. 

2.1.19. Let A E Mn(lR). A matrix A is called nilpotent, if Ak = 0 for some 
positive integer k. The minimal such number k is called the nilpotency 
class of A. Prove that every zero triangular matrix is nilpotent. 

2.1.20. Let A be a nilpotent matrix. Prove that the matrices I - A and I + A 
are invertible. 

2.2 PERMUTATIONS OF FINITE SETS 

There is a key numerical characteristic of a matrix called the determinant of the 
matrix which requires some ideas from permutations of finite sets. The properties 
of determinants are therefore closely connected with properties of permutations 
and, for this reason, in this section we shall study some basic properties of 
permutations. The properties that we discuss now will often be used in the next 
section when we study determinants. 

Let A be a finite set, say A = {a 1, a2 , ... , an}. In the case of sets, the order that 
the elements are written is not important as we saw in Definition 1.1.1. However, 
there are cases when the order of the elements in a set is important. One such 
case arose when we considered the Cartesian product. As we saw, the elements 
of a Cartesian nth power of a set are ordered n-tuples. This means, for example, 
that the n-tuples (a,, az, a3, ... , an) and (az, a,, a3, ... , an) are different. An n
tuple consisting of all elements of a finite set A= {a,, az, ... , an} that contains 
each element from A once and only once is called a pennutation of the elements 
a 1, a2 , •.• , an. These elements in an n-tuple appear in some order: the tuple has 
a first element (unless it is empty), a second element (unless its length is less 
than 2), and so on. For example, if A= {1, 2, 3}, then (1,2,3) and (3,2,1) are 
two different ways to list the elements of A in some order; these constitute two 
different permutations of the numbers 1, 2, 3. 

We have already used the term pennutation to mean a bijective transformation 
of sets. This term is also widely used in combinatorics but has a different meaning. 
This often happens in mathematics and can be a cause for confusion, but usually 
the context should make clear which meaning is in use. In this case, the two 
concepts are closely related and it should be clear from the context which meaning 
of permutation is being used. 
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To justify some of these remarks, let A be a set with n elements, say 
A= {a,, a2, ... , an} and let Tr denote a permutation of A. For 1 :S j :S n, 
let n(a 1) = ak. where k is dependent upon j. Then Tr induces a mapping 
no: {1, 2, ... , n}---+ {1, 2, ... , n} defined by 

no(})= k whenever n(aJ) = ak. 

Thus, n(a1) = arco(}) for all j such that 1 :S j :S n. The mapping no is a permu
tation of {1, ... , n}. To see this, note that if no(}) = Tro(i) then n(aJ) = arco(}) = 

arco(i) = n(a; ). However, Tr is a permutation of A so this implies that a J = a; 
and hence j = i. Thus, no is injective and hence is bijective by Corollary 1.2.10. 
Conversely, every permutation a of {1, 2, ... , n} gives rise to a permutation <Pa 
of A. We simply define </Ja(a1) = aa<J)• for each j such that 1 :S j :S n. Then, 
if <Pu(aj) = </Ja(a;), we have au(})= aa(i) and hence a(j) = a(i). Since a is 
a permutation of { 1, 2, ... , n} it follows that j = i and hence <Pa is injective. 
Corollary 1.2.10 further implies that <Pu is bijective and hence a permutation of 
A. Furthermore, if n =!= <P are two permutations of A then there is an index r 

such that n(ar) =/= </J(ar). It follows that n 0 (r) =/= </Jo(r) and therefore no=/= <Po. 
Consequently, every permutation n of the set A corresponds to precisely one 
permutation no of { 1, 2, ... , n} and the mapping Tr ~-------+ n 0 is bijective. 

Every algebraic permutation n of the set A is equivalent to a combinatorial 
permutation, since informally both involve some type of listing of the elements of 
{a1, a2, ... , an}. More formally, let a denote a mapping from {1, ... , n} to itself 
and let (aa(l), au(2), ... , aa(n)) be a combinatorial permutation of the elements 
a 1, a2, ... , an. This implies that a is a bijection and hence a permutation of the 
set {1, ... , n}. By our analysis above this means that the transformation Tr of A, 
defined by the rule n(a 1) = au()), where 1 .:::; j :S n, is a bijection and hence an 
(algebraic) permutation of A. Thus, every combinatorial permutation of A gives 
rise to an algebraic permutation of A. 

Conversely, let n be a permutation of the set A. Then n(a1) is an element of A 
and hence n(a1) = au(J)• where 1 .:::; j .:::; nand a is a mapping from {1, ... , n} 
to itself. Since Tr is an injective mapping, the elements aa(l)• aa(2)• ... , aa(n) 
are distinct. It follows that {aa(l)• aa(2), ... , aa(n)} ={a,, a2, ... , an}. Hence 
(au(!)• aa(2), ... , au(n)) is a combinatorial permutation of the elements 
a,, a2, ... , an. Thus, every algebraic permutation gives rise to a combinatorial 
permutation. 

For our purposes we do not need to focus on the nature of the elements of 
the given set A. When we study permutations of the elements of A we actually 
only need to work with their indices, which means that we only work with the 
set {1, 2, ... , n}. 

These arguments show that in order to study permutations of the set A = 
{a,, a2, ... , an}, we can study permutations of {1, 2, ... , n} (notice that the two 
sets have the same number of elements). Earlier we used the notation S(A) for the 
set of permutations of A. However, the notation S( {1, 2, ... , n}) is cumbersome 
so we shall instead use the notation Sn for the set of all permutations of the 
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set {1, 2, ... , n}, which is in accord with standard usage. If n E Sn, then we 
will say that n is a permutation of degree n. Every permutation of degree n can 
conveniently be written as a matrix consisting of two rows, where the first row 
has the entries 1, 2, ... , n and n (m) is written in the second row under the entry 
m in the first row. The permutation n can be written as 

2 
n(2) 

which we will call the tabular form of the permutation. We note that this is just 
a notational device; we shall not be adding or multiplying such tabular forms 
in the manner usually reserved for matrices. Since n is a permutation of the set 
{1, 2, ... , n}, we see that 

{1, 2, ... , n} = {n(l), n(2), ... , n(n)}. 

Thus the second row of a tabular form is a permutation of the numbers 1, 2, ... , n. 
It is not necessary to write all elements of the first row in the natural order from 
1 to n, although this is often the way such permutations are written. Sometimes it 
is convenient to write the first row in a different order. What is most important is 
that every element of the second row is the image of the corresponding element 
of the first row situated just above. For example, 

( 
1 2 3 4 5 6 7 8 9) (2 5 7 1 9 3 6 4 8) 
4 9 1 7 8 3 5 2 6 and 9 8 5 4 6 1 3 7 2 

are the same permutation. Perhaps, for beginners, in order to better understand 
permutations, it may be worthwhile to write the permutation with arrows con
necting the element of the first row with its image in the second row as in 

2 
,j, 
9 

3 
,j, 
1 

4 
,j, 
7 

5 
,j, 
8 

6 
,j, 
3 

7 
,j, 
5 

8 
,j, 
2 

This way of writing a permutation will be useful only at the beginning and soon 
one will feel no need to continue this. 

We will multiply permutations by using the general rule of multiplication of 
mappings, namely composition of functions, introduced in Section 1.3. According 
to that rule, the product of the two permutations n and a is the permutation 

( 
1 2 

n oa = n(a(l)) n(a(2)) 

Thus, to multiply two permutations in tabular form, in the first row of the table 
corresponding to the permutation a we choose an arbitrary element i. We locate 
a(i) in the second row of a corresponding to i and then find this number a(i) in 
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the first row of the table corresponding to the permutation n. In the second row 
of the table corresponding ton just under the number a(i), we find the number 
n(a(i)). This is the image of i under the product permutation, no a. A diagram 
conveniently illustrates this process 

1 

-1-
a(l) 

-1-
n(a(l)) 

2 

-l
a(2) 

-l
n(a(2)) 

n 

-1-
a(n) 

-1-
n(a(n)) 

Given a set A, we next obtain some elements of S (A). 

2.2.1. Lemma. Let A be a set, let f be a fixed but arbitrary element of S(A), 
and let g E S(A) be arbitrary. The following mappings are permutations of the 
set S(A): 

(i) !J1: g-----+ g-1; 

(ii) !J2 : g -----+ f 0 g; 

(iii) !J3 : g -----+ g 0 f. 

Proof. (i) Note that if g E S(A), then g has an inverse which is also an ele
ment of S(A) so that !J1 is a mapping from S(A) to itself. We show that !J1 is 
injective and, to this end, suppose that there are permutations g1, g2 E S(A) such 
that !JI(gi) = !J1(g2). Then g)1 = g;- 1. Since (g-1)-1 = g it follows that g1 = 
(g)1)-1 = (g:2 1)-1 = g2 and this implies that !J1 is injective. Also if g E S(A), 
then !J1(g-1) = (g-1)-1 = g so that !J1 is surjective. Thus, !J1 is bijective. 

(ii) Note that when f, g E S(A) then fog E S(A) so that !J2 is a mapping 
from S(A) to itself. To prove that !J is injective, let g1, g2 E S(A) and suppose 
that !J2(g1) = !J2Cg2). Then we have f o g1 = f o g2. Since f- 1 exists, we may 
multiply both sides of this equation by f- 1. We have 

gl =SAogl =(f-lof)ogl =f-lo(fogi) 

= f-1 o (f o g2) =(/-I of) o g2 =SAo g2 = g2, 

which shows that !J2 is injective. Furthermore, the equation 

implies that !J2 is surjective. Hence !J2 is bijective. 
(iii) A similar proof to that in (ii) shows that the mapping !J3 : g -----+ g o f is 

also bijective. 
Permutations interchanging just two integers from the set {1, 2, ... , n} and 

leaving all others fixed have special significance. 
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2.2.2. Definition. The permutation t of the set A is called a transposition (more 
precisely, the transposition of the symbols k, tEA) if t(k) = t, t(t) = k, and 
t(j) = j for all other elements j E A. 

The transposition of k and twill be denoted by Lkt or (k t). Thus, a transposition 
is a permutation that interchanges two selected symbols and leaves all other 
symbols fixed. 

Consider tfj = Lij o Lij. We have 

Also, if k 'fi {i, j}, then 

Thus, Li,j(k) = k for all k E A so that tfj = e is the identity permutation. 
We recall that the number of different permutations of elements of the set A 

consisting of n elements is equal ton!= 1 · 2 · 3 · · · · · (n- 1) · n. So we have 
the following result. 

2.2.3. Theorem. ISnl = 1 · 2 · 3 · · · · · (n- 1) · n. 

Proof. The tabular form of the permutation TC E Sn consists of two rows. We 
can suppose here that the upper row of the tabular form TC is 1, 2, ... , n in this 
order. The lower row of TC is a permutation of the numbers 1, 2, ... , n. Hence, 
the order of Sn is equal to the number of different permutations of the numbers 
1, 2, ... , n and this is n!. 

We now consider all differences (t - k) where 1 :::; k < t :::; n, and let V n 

denote the product of such expressions. Then 

v = n (t -k). 
n i::Ok<t::On 

If TC E Sn, then let 

x ( y) ~ JL (x(t) - x(k)). 

For every pair t, k, where 1 :::; k < t :::; n, there are natural numbers m, j such 
that t = Tr(m) and k = Tr(j) so that t- k = Tr(m)- Tr(j). Two cases now occur: 

(i) If m > j, then (t - k) is a factor in the decomposition of Tr(V n). 

(ii) If m < j, then Tr(m) = t > k = Tr(j). 
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We say that the natural numbers m, j form an inversion pair relative to the 
permutation n, if m < j but rr(m) > rr(j). For example, the permutation 

2 3 4) 
4 3 2 

has three inversion pairs namely (2, 3), (2, 4), and (3, 4). Notice that, in case (ii), 
m, j is an inversion pair. Furthermore, in the second case, the decomposition of 
rr(V n) has the factor rr(j) - rr(m) = (k- t) = -(t - k). Thus, every factor 
(t - k) of the decomposition v n = n, <k<t<n (t - k) is also, apart possibly 
from the sign, a factor in the decompositiOn ii:<Vn) = n,<k<t<n<n<t)- rr(k)). 
Since the number of factors in V n and rr <V n) is the same It fOllows that 

where i (rr) denotes the number of inversion pairs, relative to the permutation rr. 
We define sign rr = ( -1 )i(n) and call sign rr the signature of the permutation rr. 
Consequently, rr(Vn) =sign rr · Vn· 

If rr, a E Sn and if p = rr o a, then 

By using the arguments we saw above, we can prove that 

(rr o a) ( y) = sign rr sign a . y, so that sign(rr o a) = sign rr sign a. 

2.2.4. Definition. The permutation rr is called even, if sign rr = 1 and rr is called 
odd, if sign rr = -1. Thus, rr is even precisely when the number of inversion pairs 
of rr is even and odd when the number of inversion pairs is odd. 

The equation sign(rr o a) = sign rr sign a implies that the product of two even 
permutations is even, the product of two odd permutations is even, and that the 
product of an even and an odd permutation is odd. 

There is a very convenient graphical method for deciding whether a given 
permutation rr is odd or even, based on the following observation. We rewrite 
the permutation rr as two rows of numbers, both in the order 1, 2, ... , n and 
then draw a line from each number k to its image rr(k) in the second row. Let 
1 .::; j < k .::; n. If (j, k) is not an inversion pair, then the two lines drawn from 
j to rr(j) and from k to rr(k) will not intersect. If the lines do intersect, then this 
tells us that (j, k) is an inversion pair and the number of such crossovers for all 



60 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

pairs (j, k) determines the number of these. If numbers j and k do not form an 
inversion pair relative to 1r, we obtain a picture of the following type: 

r 
k 

~ 
Jr(j) lr(k) 

with no crossover of the corresponding lines. If numbers j and k make an inver
sion pair relative to Jr, we will have the following picture: 

j k 

X 
7r(k) lr(j) 

The total number of intersections of these lines is the number of inversion 
pairs. 

We will illustrate this with the following example. Use the same permutation 
as we already used above: 

G 2 3 4) 
4 3 2 . 

The following diagram corresponds to this permutation: 

I 

~ 
I 2 3 4 

As we can see, there are three intersections corresponding to the three pairs 
of indices forming inversions (2,3), (2,4), and (3,4). In practice, we often write 
the permutation 1r in the usual manner as a matrix, the first row consisting of 
the elements { 1, 2, ... , n} listed in that order. Then, we draw lines from each 
number in the upper row to the same number in the bottom row. This is clearly 
equivalent to the procedure described above. 

We let An denote the subset of Sn consisting of all even permutations. 

2.2.5. Proposition. Every transposition is an odd permutation. 

Proof. We will find the number of inversion pairs for the transposition Lkt 

where k < t and both these are fixed. Let i, j be natural numbers such that 
1 .::; i < j .::; n. We wish to determine when this pair forms an inversion pair 
relative to Lkt· There are several cases to consider. If {i, j} n {k, t} = 0, then 
Lk1(i) = i, Lk1(j) = j, and hence i, j is not an inversion pair since Lk1(i) < Lk1(j) 
in this case. If j = k, then i < j = k < t and Lk1(i) = i, Lk1(j) = t. Since Lk1(j) = 
t > k > i = Lk1(i), again the pair i, j is not an inversion pair. In a similar man
ner, it is possible to show that an inversion pair occurs if i = k, j = t or if 
i = k, j < t or if i > k, j = t. Since k, t are fixed, there is only one inversion 
pair corresponding to the situation when i = k, j = t. When i = k, j < t, j could 
be any of the numbers k + 1, k + 2, ... , t- 1, which gives a total oft- k- 1 
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possible inversion pairs and a similar counting argument shows that there are the 
same number of inversion pairs when i > k, j = t. Thus the total number of all 
such inversion pairs is 2(t- k- 1) + 1, an odd number. Thus the total number 
of inversion pairs relative to the transposition Lkr is odd, and hence Lkr is an odd 
permutation. Since k, t were fixed but arbitrary, the result follows. 

Our next result tells us the number of even permutations in the set Sn and is 
rather important. We remark that it is evidently the case that Sn \An is the set of 
odd permutations in Sn. Of course, no permutation is both even and odd so Sn 
is the disjoint union of the sets An and Sn \An. 

2.2.6. Proposition. !An I = !!}. 

Proof. Let 1 ::::; i < j ::::; n be fixed and consider the mapping i} : Sn ~ Sn, 
which is defined by the rule i} ( u) = L;J o u, whenever u E Sn. By Lemma 2.2.1, 
the mapping i} is a bijection. If n is an even permutation then Proposition 2.2.5 
and the remark before Definition 2.2.4 imply that L;J on = i} (n) is an odd permu
tation. Conversely, if n is an odd permutation, then if(n) is even. Furthermore, 
in either case, i} ( LiJ on) = LiJ o LiJ o n = n. This means that i} (An) s; Sn \An s; 
if(An) and if(Sn\An) s; An s; if(Sn\An). Since i} is bijective, 

Thus, !An I = I Sn \An I, and our observation before the start of the proof shows 
that !Ani=!!}. 

The next theorem shows the key role of transpositions in the theory of per
mutations. 

2.2.7. Theorem. Every permutation is a product of transpositions. 

Proof. If n E Sn, then put 

Inv(n) = {k I I ::::; k::::; n and n(k) = k}, 

the set of elements fixed by n. We proceed by induction on the number r(n) = 
n- jlnv(n)j. If r(n) = 0, then n = jlnv(n)j. It follows that n = 8, the identity 
permutation. In this case, for example, 8 = LiJ o t;1 for each transposition L;J, so 
certainly the result holds in this case. 

Now let r(n) > 0 and suppose that we have already proved the result for all 
permutations u satisfying the condition r(u) < r(n). 

Since r (n) > 0, Inv(n) =f. { 1, 2, ... , n}. It follows that there is a number k 
such that n(k) = t =1- k. Since n is a permutation, it also follows that n(t) =1- t. 
Consequently, k, t rf. Inv(n ). Now consider the product n1 = Lkr on. We have 

lrJ(k) = Lkr on(k) = Lkr(n(k)) = Lkr(t) = k, 
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so that k E Inv(:rrJ). If mE Inv(:rr), then clearly m =f. k, m =f. t, and 

1TJ (m) = lkt o:rr(m) = Lkr(:rr(m)) = lkr(m) = m, 

so that m E Inv(:rrJ). Hence, Inv(:rr) ~ Inv(:rrJ) and Inv(:rr) =f. Inv(:rrJ). 
This implies that r(:rrJ) < r(:rr). By the induction hypothesis, there exists a 
decomposition 

1TJ = VJ ovz o ••• ov,, 

where the v; are certain transpositions, for 1 ::::; i ::::; s. Thus, 

Lkt o 1T = VJ o Vz o ... o Vs. 

Multiplying both sides of this equation, on the left, by the transposition Lkr, and 
observing that s = Lkr o Lkr, we obtain the equation 

1T = Lkt o VJ o Vz o ... o Vs. 

Thus, :rr is also a product of transpositions and the induction step is now complete. 

We observe that the decomposition of a permutation into a product of trans
positions is not unique. One easy example of this is the identity permutation, 
which can be written as a product of transpositions in many different ways. Less 
trivially, it is easy to show that the permutation 

1T = (! 
has at least two decompositions: 

Let :rr E Sn. The set 

2 3 4 s 6 1
5

) 
2 3 6 7 

Supp(:rr) = { 1, 2, ... , n }\lnv(:rr) 

is called the support of the permutation :rr. 
We observe at once that Supp(:rr) = Supp(:rr -I). To see this, we will prove that 

Inv(:rr) = Inv(:rr- 1), which immediately implies that Supp(:rr) = Supp(:rr-1). 

Let j E Inv(:rr) so that :rr(j) = j. Applying the permutation :rr- 1 to both sides 
of this equation, we see that j = :rr-1 (j) which means that j E Inv(:rr- 1 ). Thus, 
Inv(:rr) ~ Inv(:rr -I). Applying the above argument to :rr -I and remembering that 
(:rr- 1)-1 = :rr, we see that also the inclusion Inv(:rr- 1) ~ Inv(:rr) holds, which 
shows that Inv(:rr) = Inv(:rr- 1). 
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2.2.8. Definition. Let 1 ::::; r ::::; n. A permutation 7r is called a cycle of length r if 
Supp(rr) = {j,, h. ... , j, }, and 

In other words, the permutation n "cycles" the indices j,, h . ... , j, around 
(thus j, --+ h --+ h --+ · · · --+ j, --+ j,) but leaves all other indices fixed. A very 
convenient shorthand notation is used for cycles. Using the notation introduced 
above, for the cycle n we write 

or, more briefly still, 

In particular, a transposition is a cycle of length 2. Notice also that, in this 
notation, it does not matter which jk is listed first; it is only important that the 
successor of every index in the cycle is its image. For example, 

(j, h ... j,) = (h h ... j, jJ) = (j) j4 ... j, j, h), and so on. 

Two permutations rr, a E Sn are called disjoint or independent if Supp(rr) n 
Supp(a) = 0. 

We observe the following important property of such permutations, which says 
that disjoint permutations commute. 

2.2.9. Proposition. Let n, a E Sn. If the permutations 7r and a are disjoint, then 
;roa=aon. 

Proof. Let j E {1, 2, ... , n}. We will prove that rr(a(j)) = a(n(j)). If 
j ~ Supp(rr) U Supp(a), then rr(a(j)) = j = a(n(j)). Suppose now that 
j E Supp(rr). Since rr, a are disjoint, it follows that j ~ Supp(a) so a(j) = j 
and rr(a(j)) = rr(j). If rr(j) E Inv(rr), then n (rr(j)) = rr(j). Applying rr- 1 

to both sides of this equation, we see that n (j) = j, contrary to the fact that 
j E Supp(rr). Thus, rr(j) E Supp(rr) also and the disjointness of a and n 
shows that a(rr(j)) = rr(j). Thus, n(a(j)) = a(n(j)) whenever j E Supp(rr). 
A similar argument can be applied when j E Supp( a) and this completes the 
proof. 

We end this section with another important theorem. 

2.2.10. Theorem. Every nonidentity permutation is a product of mutually disjoint 
cycles. 
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Proof. Let 8 =!= n E Sn. We will proceed by induction on the number r(n) = 
jSupp(rr)j. If r(n) = 2, then, clearly, n is a transposition and hence is a cycle 
of length 2. Now let r(n) > 2 and assume that the result is proved for all per
mutations a with the property that r(a) < r(n). Since n =!= 8, there is an index 
j such that n (j) =!= j. Consider the numbers 

These numbers all belong to the finite set { 1, 2, ... , n} and hence we can find 
positive integers t, s such that t > s and n 1 (j) = ns (j). We now apply the per
mutation rr- 1 s times to both sides ofthis equation to deduce that n 1-s(j) = j. 
Hence, there is a least natural number m such that nm (j) = j and the definition 
of m implies that the numbers 

. c·) 2(·) m-1(·) J,lrJ,n J, ... ,n 1 

are all different. Let 

Clearly, a is a cycle and n = a o p. If k E {j, n(j), n 2 (j), ... , rrm- 1 (j)}, then it 
is easy to see that p(k) = k. It follows that Supp(a) n Supp(p) = 0, and hence 
Supp( a) £ Supp(rr). Furthermore Proposition 2.2.9 shows that a o p = p o a. 

Now let k E Inv(rr). Since Supp(a) £ Supp(rr), it is clear that Inv(rr) £ 
Inv(a) and hence k E Inv(a). We remarked above that Inv(a) = Inv(a- 1), so 
we deduce that k E Inv(p). This shows that Inv(rr) £ Inv(p). Furthermore, j E 

Inv(p)\Inv(rr) so Inv(p) =!= Inv(rr). This means that jSupp(a)j < jSupp(rr)j. 
By the induction hypothesis, the permutation p is a product of disjoint cycles. 
Finally n = a o p so n is also a product of cycles, and the equation 

Supp(p) n Supp(a) = 0 

shows that these cycles are all disjoint. The result follows. 

We make the remark that if n = (j1 h ... j,) is a cycle, then 
n = Ch j,) ... (h j))(j1 h) as a product of transpositions. This observation and 
Theorem 2.2.10 give an alternative proof of Theorem 2.2.7. 

EXERCISE SET 2.2 

( 3
1 2 3 4 5 6 7 8 9 10 11 ) 2.2.1. Represent the permutation 

6 5 11 7 9 8 1 10 2 4 
as a 

product of transpositions. 
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2.2.2. Represent the permutation ( ~ ~ ; 
4 5 6 7 8 i) as a product 7 2 8 3 9 

of transpositions and find its parity. 

2.2.3. Represent the permutation ( ~ ~ ; 
4 5 6 7 8 

; ) as a product 7 5 2 9 4 
of transpositions and find its parity. 

2.2.4. Represent the permutation (; 
2 3 4 5 6 7 8 9 10) 
8 3 9 6 7 10 5 4 

as a 

product of transpositions. 

2.2.5. Find the parity of the permutation ( ~ 2 3 4 5 6 ~). 4 3 5 2 1 

2.2.6. Find the parity of the permutation (; 
2 3 4 5 6 ~). 3 1 4 7 5 

2.2.7. Represent the permutation(; 
2 3 4 5 6 7 8 

; ) as a product 
6 4 7 9 2 8 1 

of transpositions. 

2.2.8. Represent the permutation ( ~ 2 3 4 5 6 7 8 i) as a product 7 4 9 5 2 6 8 
of transpositions. 

. (1 2 3 4 5 6 7 8 9 10) 2.2.9. Represent the permutation 
2 3 1 8 6 7 5 9 10 4 

as a 

product of transpositions and find its parity. 

2.2.10. Represent the permutation (~ i ; ~ ; ~ ~ ~ ~) as a product 

of transpositions and find its parity. 

2.2.11. Represent the permutation (~ ~ ; 

of transpositions and find its parity. 

(
1 2 3 4 

2.2.12. Find the sign of TC = 2 1 4 3 

~ ; ~ 7 ~ ~) as a product 

2n-1 2n ) 
2n 2n-1 · 

2 2 13 F d h . f (1 2 3 4 5 6 . . . 3n - 2 3n - 1 3n ) . 
· · · m t e stgn ° TC = 3 2 1 6 5 4 . . . 3n 3n - 1 3n - 2 

2 2 14 . d . f (1 2 3 4 5 6 .. . 2n - 3 2n - 2 2n - 1 2n) 
• · · Fm the stgn ° TC = 3 4 5 6 7 8 . . . 2n - 1 2n 1 2 · 

2.2.15. Find the sign of TC = G ~ 3 4 5 6 
1 5 6 4 

2.2.16. Find the sign of rr = (! ~ ~ ~ ~ 

. . . 3n - 2 3n - 1 3n ) . 

. . . 3n - 1 3n 3n - 2 

6 3n- 2 3n- 1 3n) 
9 1 2 3 . 
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2.2.17. Find the permutation n from the equation (~ 

(n~l) n~2) n~3) n~) n~5) n~6)) G 
(

1 2 3 4 5 6) 
=435164. 

2.2.18. Find the permutation n from the equation (! 
{n~l) n~2) n~3) n~) n~5) n~6)) G 
(

1 2 3 4 5 6) 
6 5 1 2 3 4 . 

2.2.19. Find the permutation n from the equation G 
(n~l) n~2) n~3) n~) n~5) n~6)) G 
= (~ ; ; : ~ ~)· 

2 3 4 5 
3 5 1 6 

2 3 4 5 
1 5 2 6 

2 3 4 5 
3 6 5 2 

2 3 4 5 
5 2 6 1 

2 3 4 5 
4 1 2 6 

2 3 4 5 
6 5 2 1 

2.2.20. Find n
97 

if n = G ~ ; ~ ~ ~ ~ ~ ~). 

2.3 DETERMINANTS OF MATRICES 

~) 
~) 

~) 
~) 

~) 
~) 

In this section we introduce a very important numerical characteristic of a square 
matrix-its determinant. First, we consider some preliminary concepts. 

Let M = {a1, a2, ... , an} be a finite set of numbers. Sometimes, instead of 
the commonly used notation I:7=1 ai =a, + a2 +···+an for the sum of the 
elements ai of the set M, we will use the shorter notation LaEM a. Note that we 
can also index a finite set of elements with the help of a segment of the set of 
natural numbers and also by using other finite sets. For example, if X is a finite 
set, then we might use X as an index set; using this notation, a set M could be 
written as M ={ax I x E X}. Thus, for the sum of all elements of M, we can 
also use the notation LxEX ax. If n is a permutation of the finite set X, then 

{n(x) I x E X} = X, 

and hence 

M = {aJr(x) I X Ex}. 
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It follows that 

Lax= Lan(x)· 
XEX XEX 

We can then use Lemma 2.2.1 to obtain the following result. 

2.3.1. Lemma. Let n be a natural number and let M = {a;r I Jr E Sn} be a .finite 
set, indexed by the set of permutations Sn. Then 

(i) LnESn a;r = LnESn a;r-l, 

(ii) LnESn a;r = LnESn a;r oa = LnESn aa 0 Jr• where a is a fixed permutation 
from Sn. 

We will remind the reader of the definition of the determinants of second and 
third order and then, by analogy, we will introduce the idea of the determinant 
of a square matrix of arbitrary order. We have 

I all 
a21 

al21 
a22 

= a11a22- a12a21, 

a11 al2 al3 
a231 la21 a231 + a 13 la21 a221 la22 a21 a22 a23 =at! -al2 

a32 
a31 a32 a33 

a32 a33 a31 a33 a31 

We wish to discover some common features of these two formulae. First note 
that in the first case there are two terms in each product whereas in the second 
there are three terms in each product. In the first case there are 2 terms in total 
whereas in the second case there are 6 = 3! terms. Notice also that in each term 
the set of second indices occurring is a permutation of the set { 1, 2 ... , n}, where 
n = 2 or 3. In the first case, therefore, we consider the set S2 which consists of 
the two permutations 

and we note that signs = 1, sign a = -1. Consequently, we can write 
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Now consider the second case where the determinants are of order 3. In this 
case, the set S3 consists of six permutations: 

€- (1 - 1 ; n .a= G 
i).n=G y- (1 2 

- 3 2 

2 ;).~=G; i). 
; ;).u=G i ;). 

where sign e = sign a = sign~ = 1 and sign y = sign n = sign u = -1. Now 
we have, by inspection, 

a11 a12 a13 
a21 a22 a23 = sign£ GJ,s(l)a2,s(2)a3,s(3) +sign a ai.a(l)a2,a(2)a3,a(3) 

G31 G32 G33 

+sign~ al,fJ(l)a2,fJ(2)a3.fJ(3) +sign y al,y(l)a2,y(2)a3,y(3) 

+sign Jr GJ,rr(l)G2,rr(2)G3,rr(3) +sign U GJ,a(l)G2,a(2)G3,a(3) • 

For an arbitrary square matrix of dimension n we make the following defini
tion, using the cases when n = 2, 3 as our model. 

2.3.2. Definition. Let A = [ aiJ] E Mn (!~). For each permutation, n E Sn form 
the product 

sign Jr GJ,rr(l)G2,rr(2) • • • Gn,rr(n) · 

The sum det(A) of all these products is called the determinant of the matrix 
A. Thus, 

det(A) = L signn GJ,rr(l)a2,rr(2) ... an,rr(n)· 
rrESn 

We will use the following expanded notation for det(A): 

GJJ a12 Gin 
a21 a22 azn 

Note that the determinant of a matrix of dimension 1 is the number that is in this 
single-entry matrix. 

This definition is difficult to employ even for matrices with relatively small 
dimensions (for n = 4 the sum in the decomposition of the determinant has 24 
terms, for n = 5 it has 120 terms, and so on). For this reason, we now determine 
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some elementary, but important, properties of determinants that help to evaluate 
them in a relatively easy way. With the help of these properties we can move 
from a given matrix to another one with the same determinant, but whose value 
is more easily calculated. 

2.3.3. Proposition. Let A= [aij] E Mn(lR) and let B = N. Then det(A) = 
det(B). 

Proof. Let B = [bij], where bij = aj;, for 1 ::=:: i, j ::=:: n. We have 

det(A) = L d:n:, where d:n: = signn a1,:n:(l)a2,:n:(2) .•. an,:n:(n)· 

:n:ESn 

Furthermore, 

det(B) = L signn h,:n:(l)bz,:n:(2) ... bn,:n:(n) 

:n:ESn 

= L signn G:n:(l),1G:n:(2),2 .•• G:n:(n),n 

:n:ESn 

= L signn a:n:(l),:n:-I:n:(l)a:n:(Z),:n:-I:n:(Z) ••• a:n:(n),:n:-I:n:(n)· (2.1) 
:n:ESn 

However, 1r is a permutation so {n(l), ... , n(n)} = {1, 2, ... , n} and also 
signn = signn- 1

• Thus, a:n:<n.:n:-I:n:(j) = ak,:n:-I(k) and, by rearranging the terms 
suitably, the last equation of Equation 2.1 becomes 

det(B) = L signn-1 
a 1,:n:-I(l)a2,:n:-I(z) .•• an,:n:-I(n) 

:n:ESn 

= L signn-1 
a 1,:n:-I(l)a2,:n:-I(z) .. . an,:n:-I(n) = det(A). 

:n:- 1ESn 

Since the rows of the matrix N are the columns of the matrix A, and the 
columns of N are the rows of A, Proposition 2.3.3 shows that the columns and 
rows of a matrix have the same rights relative to properties of determinants. The 
proposition implies that, for every assertion concerning the rows of a matrix, we 
can find a corresponding assertion concerning its columns at least as far as the 
determinant is concerned. We therefore formulate all determinant properties for 
rows and remember that corresponding assertions are valid for columns. 

Our next proposition presents a rather unusual property of determinants. We 
note that usually determinants do not exhibit such additive properties. 
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2.3.4. Proposition. Let A = [ aij] E Mn (JR:), and suppose that akj = b j + c j for 

some fixed k, where 1 :S k :S n. Let U = [ u;j] and V = [ Vij ], where 

u·· -la;j, ifi =/=k, 
lj - b if. k 

j· l l = . 

Then det(A) = det(U) + det(V). 

Proof. We have 

det(A) = L sign 7r ai,Jt(i)a2,Jt(2) ... ak-i.Jt(k-!)ak,Jt(k)ak+i,Jt(k+i) ... an,Jt(n) 

JtESn 

= L sign n ai,Jt(i)a2,Jt(2) ... ak-i,Jt(k-!)(bJt(k) 

rrESn 

+ CJt(k))ak+i,Jt(k+i) · • · an,Jt(n) 

= L sign 7r ai,Jt(i)a2,Jt(2) ... ak-i,Jt(k-i)bJt(k)ak+i,Jt(k+i) ... an,Jt(n) 

rrESn 

+ L sign 7r al,Jt(l)a2,Jt(2) •.• ak-i,Jt(k-J)CJt(k)ak+i,rr(k+i) ... an,Jt(n) 

rrESn 

= L sign 7r UJ,rr(l)U2,rr(2) •.. Un,Jt(n) 

rrESn 

+ L sign 7r VJ,Jt(l)V2,Jt(2) .•. Vn,Jt(n) 

rrESn 

= det(U) + det(V). 

2.3.5. Proposition. Let A = [ a;j] E Mn (JR:). Suppose that akj = ab j for some 

fixed k, where 1 :S k :S n and some fixed a E IR:. Let U = [ u;j ], where 

u·· -laij, ifi =j:.k, 
lj - b if. k 

j• l l = . 

Then det(A) = adet(U). 

Proof. We have 

det(A) = L sign 7r ai,Jt(i)a2,Jt(2) ... ak-i,Jt(k-i)ak,Jt(k)ak+i,Jt(k+i) ... an,Jt(n) 

JtESn 

= L sign 7r al,rr(l)a2,Jt(2) ... ak-i,rr(k-1) (abrr(k))ak+i,rr(k+i) ... an,Jt(n) 

rrESn 
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=a (I: sign nal,rr(l)a2,rr(2) ... ak-l,rr(k-l)brr(k)ak+l,rr(k+l) ... an,rr(n)) 

rrESn 

=a ( L sign Ir u l,rr(J)U2,rr(2) ... Un,rr(n)) = adet(U). 
rrESn 

Proposition 2.3.5 shows that if one column (or row) of a matrix A is multiplied 
by a constant a, then the determinant is also multiplied by a. In particular, by 
setting a = 0 we obtain the following corollary, although this could just be read 
off from the definition of determinant. 

2.3.6. Corollary. Let A = [ aij J E Mn (ffi() and suppose that akj = 0 for some 
fixed k, where 1 .:=:: k .:=:: n. Then det(A) = 0. 

Our next result tells us what happens when we interchange two rows of a 
matrix. 

2.3.7. Proposition. Let A = [ aij J E Mn (ffi(), and let k, t be fixed positive integers, 
where 1 .:=:: k, t .:=:: n. Let B = [bij], where 

Then det(B) = -det(A). 

Proof. Without loss of generality, we may assume that k < t. We have 

det(A) = L drr, 

rrESn 

where 

Furthermore, 

where 

det(B) = L signn Urr, 

rrESn 

Urr = bl,rr(l)b2,rr(2) ... bk-l,rr(k-l)bk,rr(k)bk+l,rr(k+l) ... ht-l,rr(t-1) 

X ht,rr(t)bt+l,rr(t+l) · · · bn,rr(n) 
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Consider the product a = TC o lkr. Suppose that i =f. k, t, then 
TC o lkr(i) = TC(lkr(i)) = n(i). 

Furthermore, 

a(k) = Jrotk1(k) = n(tk1(k)) = n(t) and a(t) = Jrotk1(t) = n(tk1(t)) = n(k). 

Since 
sign a = sign(n o lkr) = sign TC sign lkt 

and recalling that a transposition is an odd permutation, we obtain 

signa= -signn, or signn =-signa. 

Thus, 

sign TC bl,rr(l)b2,rr(2) ... bn,rr(n) = -sign a al,a(l)a2,a(2} ... an,a(n) = -da · 

We note that as TC varies over the elements of Sn, so does a and hence 

Since a = TC o lkt, Lemma 2.3.1 implies the following equation: 

det(B) = L(-da) =- L da = -det(A). 

This result tells us that if we interchange two rows (or columns) of a matrix 
then the sign of the resulting determinant changes. 

2.3.8. Corollary. Let A = [ aij] E Mn (~). If A has two equal columns, then 
det(A) = 0. 

Proof. Assume that the columns indexed by k and t are equal. If we interchange 
these columns we obtain a matrix B which is clearly the same as A. However, 
Proposition 2.3.7 shows that the determinant changes in sign so that det(A) = 
det(B) = -det(A). It follows easily from this that det(A) = 0. 

2.3.9. Corollary. Let A = [ aiJ] E Mn (~) and let k, t be fixed positive integers 
such that 1 .::; k =f. t .::; n. Let a be a fixed real number and let B = [ biJ ], where 

b·· _,aij. ifi =f.k, 
lj- .. 

akj + cxarj. ifz = k. 
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Proof. Let U = [ u iJ] where 
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ifi=j:.k, 

if i = k. 

By Propositions 2.3.4 and 2.3.5, det(B) = det(A) + adet(U). Corollary 2.3.8 
implies that det(U) = 0, since U has two identical columns and hence det(B) = 
det(A). 

This result shows that if we add a multiple of one row (or column) of a matrix 
to another row (respectively, column) of the matrix then the determinant does 
not change. 

The rows of the m x n matrix A are 

(a,,, a12, ... , a in), 

(azi, azz, ... , azn), 

Let a,, az, ... , am be real numbers and, for 1 :::; i :::; n, let b; =a, au+ azaz; + 
· · · +am am;. The n-tuple or row vector (b,, bz, ... , bn) is called a linear com
bination of the given rows with coefficients a,, az, ... , am. In this case, 

By using Corollary 2.3.9 repeatedly we see that we can keep adding multi
ples of different rows (or columns) to some row (respectively, column) without 
changing the determinant. 

2.3.10. Corollary. Let B be a matrix obtained from the matrix A by adding a 
certain linear combination of certain rows of A to some other row of A. Then 
det(B) = det(A). 

Next, we compute the determinant of an upper triangular matrix. This turns 
out to be the product of the diagonal elements. 

2.3.11. Proposition. Let A = [ aiJ] E Mn (JR) be an upper triangular matrix. Then 
det(A) = all azz . .. ann· 
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Proof. We have 

det(A) = L sign n GJ,rr(l)G2,Jr(2) 0 0 0 an,n(n)· 

rrESn 

Let n be a nonidentity permutation. Then, there is a positive integer m such that 
n(m) # m. Choose the largest positive integer k such that 1 s k s n with the 
property that n(k) # k. This means that 

n(k + 1) = k + 1, ... , n(n) = n, 

so n(k) ¢. {k, k + 1, ... , n}, and hence k > n(k). Since A is upper triangular 
it follows that ak,n(k) = 0. So, in the decomposition of det(A), only the sum
mand indexed by the identity permutation is nonzero. This means that det(A) = 
a11a22 ... Gnn· 

The properties that we have obtained above enable us to use a systematic 
method for computing the determinant of a matrix of large dimension. This 
method is the well-known method of Gaussian elimination which is used for 
solving systems of linear equations and which may be familiar to everybody 
from a high school algebra course. There it was probably called the method of 
substitution or elimination. We briefly describe this method here. 

Let A= [aiJ] E Mn(IR). To find its determinant we consider the matrix trans
formations described above that leave the determinant unchanged to within mul
tiplication by -1 and transform the matrix to its upper triangular form. In order 
to do this we consider the first column of A which consists of the elements 
ail, 1 s i s n. If all of these elements are zero, then the matrix has a zero col
umn and by Corollary 2.3.6 its determinant is equal to 0. Hence, we may assume 
that there exists an index k such that aki # 0 and without loss of generality we 
may suppose that a11 # 0. If this is not true we can just interchange the first 
and kth rows. By Proposition 2.3.7 A and the new matrix have determinants that 
differ only in sign. Next, we multiply the first row by -a; 1 and add the result 

Q)) 

to the ith row, for 2 s i s n. By Corollary 2.3.9 such a transformation does not 
change the determinant. In this way we obtain a matrix all of whose entries in 
the first column are 0, except for the entry in the first row. 

Now consider the second column and apply the same type of transformation as 
described for the first column. In this case, we only consider the rows 2 through 
n. Thus, if all entries ak2 are 0 for 2 s k s n or if a 22 # 0 we do nothing, 
otherwise we interchange a row below the second with the second row in order 
to make the entry in the second row and second column of the matrix nonzero. 
Thus, we may assume a22 # 0 and then we multiply the second row of the matrix 
by ~~;2 and add the result to the ith row for 3 s i s n to obtain a matrix whose 
second column has at most two nonzero elements, which occur in the first and 
second rows, and whose determinant is equal to the determinant of the original 
matrix to within multiplication by -1. Performing these operations repeatedly, 
on succeeding columns, we finally arrive at an upper triangular matrix whose 
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determinant differs by a factor of at most -1 from our original matrix. Since 
the upper triangular matrix obtained has a very easily computed determinant, by 
Proposition 2.3.11, this provides a theoretical method for the computation of any 
determinant. 

Now we will apply the properties proved above to compute the determinant 
of a skew-symmetric matrix A. First, we multiply every row of A by -1 to 
obtain the matrix -A. However, for a skew-symmetric matrix -A = A 1

, and 
Propositions 2.3.3 and 2.3.5 can be used repeatedly to obtain 

det(A) = det(A1
) = det(-A) = (-1)ndet(A). 

Thus, if the dimension of a skew-symmetric matrix A is odd then det(A) = 0. 
For even dimension nothing further will be deduced here. 

Here are some more fairly typical problems that deal with the computation of 
determinants based on the properties proved above. 

2.3.12. Example. We will find the determinant of the matrix 

X 

X 

X 

•.• X 

Subtracting the first row from all the others, we see that, by Corollary 2.3.9, 
det(A) = det(B), where 

a! X X X 

x -a1 a2- x 0 0 

B= x -a1 0 0 0 

x -a1 0 0 an -X 

Using Proposition 2.3.5 it follows that 

det(B) = (a1- x)(a2- x) ... (an- x)det(C), 

where 

a! X X X X 

a1 -x a2 -x a3 -x an-I- X an -x 
-1 1 0 0 0 

C= -1 0 1 0 0 

-1 0 0 0 
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We have __EL = 1 + _x_. We now add all columns to the first one. By Pro-
a1-x a1-x 

position 2.3.5, det(C) = det(D), where 

h 
X X X X 

a2 -x a3- x an-I- X an -x 
0 1 0 0 0 

D= 0 0 1 0 0 

0 0 0 0 

and 

X X X 
h= 1+--+--+···+--. 

a1- x az- x an- x 

Applying Propositions 2.3.5 and 2.3.11 we obtain 

det(A) = h(a1 - x) ... (an - x) 

( 
1 1 1 ) = x(a1 - x)(az - x) ... (an - x) - + -- + ... + -- . 
x a1 -x an- x 

2.3.13. Example. We will find the determinant of the matrix 

(

al +h1 
az +h1 

A= . 

an +h1 

... a1 +hn) 

. . . az + hn 
0 0 0 

0 0 

0 0 

0 0 0 an+ hn 

The simplest way to proceed here is to subtract row 1 of this matrix from 
each other row. When we do this Corollary 2.3.9 implies that the determinant 
does not change and we obtain the new matrix: 

(

al +h1 
az- a1 

B= . 

an- a1 

... a1 +hn) 

... az- a1 
0 0 0 

0 0 

0 0 

an- a1 

There is now a common factor of a1 - a1 in row j for j :::: 2. Consequently, if 
n :::: 2 then the matrix B has the same determinant as 
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Now if n :=:: 3, then Corollary 2.3.8 implies that the determinant of B and 
hence of A is 0. If n = 2, then the following easy direct calculation gives the 
determinant in that case. For, 

det(A) = (a, + b!)(a2 + b2) - (a2 + b!)(a, + b2) 

= a1a2 + a1b2 + b1a2 + b1b2- a2a1- a2b2- b,a,- b1b2 

= a1b2 + b1a2- a2b2- b,a, = (a2- a!)(b, - b2). 

EXERCISE SET 2.3 

Justify your answers where necessary with a proof or a counterexample. 

0 0 0 0 
0 0 0 a2n-! 

2.3.1. Using the definition only evaluate 0 0 a3n-2 a3n-! 

Gn! Gn2 Gnn-2 Gnn-! 

0 al2 al3 0 0 
a21 a22 a23 a24 a25 

2.3.2. Using the definition only evaluate 0 a32 a33 0 0 
a4! a42 a43 a43 a45 
0 a 52 a 53 0 0 

a b c 
b c a 

2.3.3. Evaluate the determinant of the matrix c a b 
b+c a+c b+a 
-- --

2 2 2 

a11 al2 al3 a14 a,s 
a21 a22 a23 a24 a25 

2.3.4. Using the definition evaluate a31 a32 0 0 0 
a4! a42 0 0 0 
as! a 52 0 0 0 

0 2 0 0 
3 0 -1 0 0 

2.3.5. Using the definition evaluate 2 0 3 0 0 
2 -1 3 

-1 7 2 -1 

Gin 
a2n 
a3n 

Gnn 

1 . 

2.3.6. If we rewrite the rows of a matrix in reverse order, then how is the 
determinant changed? 

2.3.7. If we rotate the entries of an n x n matrix counterclockwise through 90 o 

about the center of the matrix (the point of intersection of the principal 
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and secondary diagonals), then how is the determinant changed? (The 
principal diagonal is the diagonal from the top left comer of the matrix 
to the bottom right comer, whereas the secondary diagonal is the diagonal 
from the bottom left comer to the top right comer of the matrix.) 

2.3.8. If we move the first column of an n x n matrix to the last column and 
all other columns are moved one column to the left in order, then how 
is the determinant changed? 

2.3.9. Let A= [aiJ] E Ms(lR). Determine the numbers i, j, k such that the prod
uct alia23a3ja41 ask has a negative sign in its determinant decomposition. 

2.3.10. Let A= [aiJ] E Ms(lR). Determine the numbers i, j, k such that the prod
uct a12a2ia3sa4jask has a negative sign in its determinant decomposition. 

2.3.11. Let A= [aiJ] E M6(JR). Determine the numbers i, j, k such that the 
product alia j6a3sja44a51a6k has a negative sign in its determinant decom
position. 

2.3.12. Let A= [aij] E Mn(lR). What is the sign of a1,n-1a2na31a42 ... an,n-2 in 
its determinant decomposition? 

2.3.13. How does the determinant change in an n x n matrix if the matrix is 
reflected in its secondary diagonal? (See Problem 2.3.8 for the definition 
of secondary diagonal.) 

1 3 -1 

2.3.14. Using the properties of determinants prove that 
1 4 0 2 

is divis-
0 3 5 
6 -2 4 4 

ible by 9. 

2.3.15. Evaluate the determinant of the matrix A = [a jk] of degree 9, with entries 
ajk = min(j, k). 

-5 -7 -2 2 -2 16 
0 0 4 0 -5 0 

2.3.16. Evaluate 
2 0 -2 0 2 0 
6 4 6 -1 15 -5· 
5 -4 10 1 14 6 
3 0 -2 0 3 0 

1+x 1 
1 1+y 1 1 

2.3.17. Evaluate 
1 1 1+z 1 1 
1 1 1 1 - z 1 

1 1- y 
1 1-x 
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X y 0 0 0 0 
0 X y 0 0 0 
0 0 X y 0 0 

2.3.18. Evaluate 

0 0 0 0 X y 
y 0 0 0 0 X 

0 
1 0 X X 

2.3.19. Evaluate 1 X 0 X 

X X 0 

3 1 0 0 0 0 0 
1 3 1 0 0 0 0 
0 1 3 1 0 0 0 

2.3.20. Evaluate 0 0 1 3 1 0 0 

0 0 0 0 0 3 1 
0 0 0 0 0 1 3 

2.4 COMPUTING DETERMINANTS 

In Section 2.3, we saw one practical method for computing determinants, by 
means of row reduction. In this section, we offer an alternative approach to this 
problem which is based on the computation of determinants of submatrices of 
the given matrix. The ideas we introduce below are essential for this approach. 

2.4.1. Definition. Let A = [ a;i] E Mn (~) and let 1 S t S n. Select t rows and 
t columns in the matrix A and form the t x t submatrix B consisting of the ele
ments situated at the intersections of these chosen rows and columns. Suppose that 
the selected rows are those numbered k(1), k(2), ... , k(t) and that the selected 
columns are those numbered j(l), }(2), ... , j(t). The determinant of B is called 
the minor of degree t corresponding to rows k(l), k(2), ... , k(t) and columns 
j(l), }(2), ... , j(t), and it will be denoted by 

minor{k(1), k(2), ... , k(t);j(1),j(2), ... ,j(t)}. 

If the chosen rows and columns are deleted from the matrix A, we obtain a 
submatrix of dimension n - t. The determinant of this submatrix is called the 
complementing minor to the above constructed minor of degree t and it will be 
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denoted by 

comp{k(l), k(2), ... , k(t); j(l), j(2), ... , j(t)}. 

Finally, the cofactor or algebraic complement to the above constructed minor is 
the number 

Ak(t),k(2), ... ,k(t);j(ll,j(2l ..... j(tl = 

( -l)k(Il+·+k(r)+j(IJ+ .. +j(tlcomp{k(l), ... , k(t); j(l), ... , j(t) }. 

The following theorem is the basic result for our future considerations. 

2.4.2. Theorem. Let A = [ aij] E Mn (JR) and let 1 :-::; t :-::; n. Choose t rows and 
t columns in the matrix A. Then 

(i) the minor corresponding to these rows and columns is a sum oft! summands, 
each of which is a product (taken with the sign + or -) oft elements of A; 

(ii) the algebraic complement to this minor is a sum of (n - t)! summands, each 
of which is a product (taken with the sign + or -) of n - t elements of A; 

(iii) the product of the two numbers obtained in (i) and (ii) is a sum of terms each 
of which comes from the expansion of the determinant of A. 

Proof. Since (i) and (ii) are clear from the definition we simply prove 
(iii). First we assume that the chosen rows are the first t rows and that 
the chosen columns are the first t columns. In this case the selected 
minor, ~ = minor{l, 2, ... , t; 1, 2, ... , t}, is the determinant of the matrix 
B = [bij] E M1(JR), where bij = a;j, for 1 :-::; i, j :-::; t and the algebraic 
complement to it is r = Ak(l),k(2), ... ,k(t);j(l),j(2), ... ,j(t)· This coincides with the 
complementing minor, the determinant of the matrix C = [ cij] E Mn-r (JR), 
where c;j = ar+i,t+j• for 1 :-::; i, j :-::; n- t. Thus, we have 

~ = det(B) = L sign1r bl,rr(l)b2,rr(2) ... br,rr(t) and 
rrESr 

r = det(C) = L signa CJ,a(J)C2,a(2) ... Cn-t,a(n-t)· 

aESn-t 

Consider the product 

~f = ( L sign Jr b1,rr(l) ... br,rr(t)) ( L sign a CJ,a(l) ... Cn-t,a(n-t)) 

rrESr aESn-t 

= L L sign Jr signa bl,rr(l) ... br,rr(t)CJ,a(l)C2,a(2) ... Cn-tca(n-t) 

7rES1 aESn-t 

= L L sign1r signa al,rr(l)a2,rr(2) ... ar,rr(t)at+I,t+a(I) •.. an,t+a(n-t)· 

rrESr aESn-t 
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Now consider the transformation p = p(n, a) of the set {1, 2, ... , n} defined 
as follows. We let 

p(1) = n(1), p(2) = n(2), ... , p(t) = n(t) and 

p(t + 1) = t + a(1), p(t + 2) = t + a(2), ... , p(n) = t + a(n- t). 

We next prove that p is a permutation of the set { 1, 2, ... , n}, by considering the 
cases that arise. Let k, m be arbitrary positive integers from the set {1, 2, ... , n}, 
such that k < m. If m :::; t, then 

p(k) = n(k) =f. n(m) = p(m). 

When m > t and k :::; t we have 

p(k) = n(k):::; t < t + a(m- t) = p(m). 

Finally, if k > t, then 

p(k) = t + a(k- t) =f. t + a(m- t) = p(m). 

Hence p is injective and it follows from Corollary 1.2.1 that p is bijective. 
Hence p E Sn. 

We next determine the parity of p. Suppose that the pair k, m, where 1 :::; 
k < m:::; n, is an inversion pair relative top. Thus, p(k) > p(m). We shall again 
consider the possible cases. 

If m :::; t, then 

p(k) = n(k) =f. n(m) = p(m), 

and hence k, m is an inversion pair of n. 
If k :::; t < m we have 

p(k) = n(k) :::; t < t + a(m- t) = p(m), 

so in this case we do not obtain an inversion pair. 
Finally, if k > t, then 

p(k) = t + a(k- t) =f. t + a(m- t) = p(m), 

so that k - t, m - t forms an inversion pair relative to a. We let i (p) denote the 
number of inversion pairs for p. The argument above shows that 

i(p) = i(n) + i(a), 

and therefore 

signp = (-l)i(pJ = (-1)i(nJ+i(aJ = (-1)i(nJ(-1)i(a) = (signn)(signa). 
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Hence, as rc runs through all permutations of degree t and a runs through 
all permutations of degree n - t, the transformation p (rc, a) runs through some 
subset of Sn. We note that this is a proper subset of Sn since it is of cardinality 
(t!)(n- t)! < n!, for 0 < t < n. Going back to our product ~r. we can now 
write 

~r = L L sign rc sign a a1,n(l) ... at,n(t)Gt+l,t+<J(l) ... an,t+<J(n-t) 

nESr <JESn-t 

L sign p a1,p(l)a2,p(2) ... an,p(n) 

nESr,<JESn-r 

L sign p a1,p(l)a2,p(2) ... an,p(n). 

some 
permutations 

pESn 

So we obtain a part of the sum of the given decomposition of the determinant 
of the matrix A. 

We now consider the general case. We may suppose that 

k(l) < k(2) < · · · < k(t) and j(l) < j(2) < · · · < j(t). 

Recall that, by Proposition 2.3.7, if we interchange two rows or two columns of a 
matrix A, then the determinant of the new matrix will differ from the determinant 
of A only by sign. By applying a sequence of such interchanges we shall obtain a 
new matrix in which the selected rows and columns occur in the upper left comer 
of the matrix. To show how this is done we first take row k(l) and interchange it 
with row k(l) - 1, we then interchange it with row k(l) - 2, and so on. In this 
way row k(l) will be moved to the first row and below it, in order will lie rows 
1, 2, ... , k(l)- 1. We will do k(l)- 1 interchanges to do this. We then move 
row k(2) to the second row by using the same procedure. This will take a further 
k(2) - 2 interchanges. Continuing this procedure with rows k(3), ... , k(t) we 
shall need a total of 

(k(l)- 1) + ... + (k(t)- t) = (k(l) + k(2) + ... + k(t))- (1 + 2 + ... + t) 

row interchanges, a sum we denote by u(t). In a similar manner, we can gather 
the selected columns j (1), ... , j (t) in the left-hand columns of the matrix using 
a total of 

(j (1) - 1) + ... + (j (t) - t) = (j (1) + j (2) + ... + j (t)) - (1 + 2 + ... + t) 

column interchanges for this, a sum we denote by v(t). As a result, we obtain 
a new matrix D in which the selected rows and columns form a submatrix of 
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dimension t, situated in the upper left comer. All other rows and columns will 
be situated, relative to one another, as they were originally. This means that 
if we cross out the first t rows and first t columns, we obtain a matrix whose 
determinant is the complementing minor to the minor of A consisting of the rows 
numbered k(l), k(2), ... , k(t) and columns numbered j(l), j(2), ... , j(t). By 
Proposition 2.3.7 

det(D) = (-lt(tl+v(tldet(A) 

= ( -ll(ll+k(2)+··+k(tl+J(Il+J(2l+··-+J<tldet(A). 

It follows that 

det(A) = ( -l)k(ll+k(2l+··+k(tl+JOl+i<2l+··+J(tldet(D). 

The minor f}.D of the matrix D corresponding to the rows and columns 
numbered 1, 2, ... , t is equal to the minor of A whose rows are numbered 
k(l), k(2), ... , k(t) and whose columns are numbered j (1), j (2), ... , j (t), 

while its complementing minor f D is equal to 

comp{k(l), k(2), ... , k(t); j(l),j(2), ... ,j(t)}. 

We have already proved above that 

f}.vf D = minor{k(l), k(2), ... , k(t); j(l), j(2), ... , j(t)} 

x comp{k(l), k(2), ... , k(t); j(l), j(2), ... , j(t)} 

is a part of the sum of the decomposition of the determinant of D. Using the 
equation 

det(A) = (-l)k(l)+k<2l+·-+k(tl+JOl+i<2l+··+J(tldet(D) 

and the fact that 

A . . _ (-l)k(ll+k(2l+···+k<tl+JOl+ i<2l+··+ J(t) 
k(l), ... ,k(t);j(l), ... ,j(t) -

x comp{k(l), ... , k(t); j(l), ... , j(t)}, 

we deduce that 

minor{k(l), k(2), ... , k(t); j(l), j(2), ... , j(t)} Ak(l),k(2), ... ,k(t);j(l),j(2), ... ,j(tl 

is a part of the sum which is the decomposition of the matrix A. 
Theorem 2.4.2 gives us an alternative theoretical method for computing deter

minants, as we now show. In the matrix A = [ aiJ], choose the tth row (or 
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column). Each element arj (respectively, ajr) of this row (respectively, this col
umn) is considered as a minor of dimension 1 and we multiply it by its cofactor 
Atj (respectively, A jr ). 

2.4.3. Theorem (the decomposition of a determinant by a row or a column). Let 

A= [a;j] E Mn(~). Then 

det(A) = L arjArj (and, respectively, det(A) = L ajrAjr). 

Proof. By using Proposition 2.3.3, we need to consider only the case when row 
t is selected in A. Let 

Prj = {:rr E Sn I :rr(t) = }}. 

Using arguments similar to those used in the proof of Theorem 2.2.3, it is 
very easy to see that IPtjl = (n -1)!, Prj n Prm = 0 whenever j =I= m, and 
Sn = U Prj. It follows that 

!:5oj:5on 

det(A) = L sign :rr ai,Jr(l)a2,Jr(2) ... an,1r(n) 

JrESn 

L ( L sign :rr ai,Jr(l)a2,Jr(2) ... an,Jr(n)) . 
l:5oj:5on JrEPtj 

Every term of arj Atj has the factor arj. If sign :rr al,Jr(l)a2,Jr(2l ... an,1r(n) is such 
a term, then we have j = :rr(t). A cofactor is distinct from the determinant of a 
matrix of dimension n by only the factor ( -1 )r+ j. Therefore, the decomposition 
of atj Arj includes exactly (n - 1)! terms. It follows that 

and hence 

atjArj = L sign:rral,Jr(l)a2,Jr(2) .. . an,Jr(n)• 

JrEPtj 

det(A) = L arjArj· 

l:5oj:5on 

We sometimes say that we have expanded the determinant about row t (or 
column t) when we evaluate the determinant of a matrix using Theorem 2.4.3. 
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2.4.4. Corollary. Let A= [aij] E Mn(l~). Then 

for all 1 :S t, m :S n, where 81m is the Kronecker symbol. 

Proof. Let (c1, cz, ... , en) be an arbitrary tuple of n real numbers, and replace 
row t of A by this tuple to obtain a matrix that we denote by B. Thus, if 
B = [bij ], then 

By Theorem 2.4.3 we have 

l
aij, if i =I= t, 

b··-
lj- "f. 

Cj, I l = t. 

det(B) = L bjrBtj· 

1:Sj:Sn 

Evidently the cofactor Brj to the element b 1j in the matrix B coincides with Arj 

(in order to obtain it we just cross out the tth row so we eliminate the row that 
makes the difference between the matrices A and B). By the definition of the 
elements brj we have 

det(B) = L cjAtj· 

1:Sj:Sn 

Now let cj = amj• where 1 :S j :S n. If m = t, then B =A, and Theorem 2.4.3 
implies that 

L a 1j Arj = det(A). 
!:Sj:Sn 

On the other hand, if m =1= t, the matrix B has two identical rows and Corol
lary 2.3.8 implies that its determinant is zero. Thus, L!:Sj:Sn a 1jAmj = 0. The 
Kronecker symbol allows us to write the equations we obtained as follows: 

L arjAmj = 81mdet(A). 
1:Sj:Sn 

The second of our assertions can be obtained in a similar manner. 
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2.4.5. Example. To demonstrate the application of Theorem 2.4.3, we will find 
the determinant of the matrix: 

a, a2 a3 an-i 
a2 a2 a2 2 

An= I 2 3 an-i 

n-i a, n-i 
a2 

n-i 
a3 

n-i 
an-i 

This matrix is called a Vandermonde matrix. 

First, we consider the case when n = 2. We have 

We shall prove, by induction, that 

det(An) = n (at - ak). 

i:O:k<t:O:n 

an 
a2 n 

n-i an 

We suppose that this formula is true for all Am, where m < n. We apply the 
following transformations to the matrix A. First, we multiply row (n - 1) by 
-a1 and add the result to row n, then we multiply row (n - 2) by -a1 and add 
the result to row (n - 1), and so on. Finally, we multiply the first row by -a, 
and add the result to the second row. As a result of these transformations, we 
obtain the following matrix: 

0 a2- a, an-i- a, an -a, 

Bn = 0 a~- a1a2 2 
an-i -a,an-i 2 an -alan 

0 n-i -a1 a~-2 n-i -a an-2 n-i -a,a~-2 
a2 an-i I n-1 an 

0 a 2 - a 1 an-i- a, an -a, 

0 (a2- a,)a2 (an-i- a,)an-i (an - aJ)an 

0 ( ) n-2 a 2 - a, a 2 
( ) n-2 an-i -a, an-i ( ) n-2 an- a, an 

By Corollary 2.3.9, it follows that det(Bn) = det(An). Applying Theorem 2.4.3 
we expand the determinant of Bn about the first column, and using Proposition 
2.3.5 we obtain 
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where we take An-l to be the matrix An with the last row and first column 
deleted. We now apply our induction hypothesis to An-I• which gives us the 
equation 

det(An) = det(Bn) = (a2 - a1)(a3 - aJ) ... (an - aJ) n (at - ak) 
2:Sk<t:Sn 

n (at- ak)· 
l:Sk<t:Sn 

We have now obtained the determinant sought. 

2.4.6. Example. The sequence { Fn I n E N} is called the Fibonacci sequence, 
if F1 = F2 = 1 and Fn = Fn-l + Fn-2 whenever n > 2. A very brief history of 
this sequence is as follows. The first great mathematician of Medieval Europe, 
Fibonacci (Leonardo Pisano, 1170 to about 1250) studied the mathematical 
manuscripts written by the great Arabian and Indian mathematicians. He summa
rized this knowledge in his famous book Liber Abaci (The Book of Counting), 
published in 1202, and through this book introduced the arabic numerical 
system to Europeans. Prior to this time, Europeans used Roman numerals that, 
although useful in some ways, were very inconvenient. This revolutionary move 
to the arabic system of numeration had profound consequences for European 
civilization. 

Among others, Fibonacci placed the following problem in his book Liber 
Abaci: 

How many pairs of rabbits will be produced in a year, beginning with a single 
pair, if in every month each pair bears a new pair which becomes productive from 
the second month on? 

It is easy to see that one pair will be produced the first month, and one pair 
also in the second month (since the new pair produced in the first month is not yet 
mature), and in the third month two pairs will be produced, one by the original 
pair and one by the pair that was produced in the first month. In the fourth month 
three pairs will be produced, and in the fifth month five pairs. After this, things 
expand rapidly (as happens with mice and rabbits), and we get the following 
sequence of numbers: 

1, 1,2,3,5,8, 13,21,34,55,89, 144,233, ... 

This is an example of a recursive sequence, obeying the simple rule that to 
calculate the next term one simply adds the sum of the preceding two: 

F(l) = 1; F(2) = 1; F(n) = F(n- 1) + F(n- 2). 
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As was discovered later, the Fibonacci sequence has a very important place not 
only in mathematics but also in economics, architecture, the technical and natural 
sciences, arts and philosophy, medicine, and aesthetics. 

Let dn = det(Dn), for n E N, where 

-1 

Dn = 0 -1 

0 0 

0 
1 

0 

0 
0 
1 

0 

0 0 
0 0 
0 0 

When we expand the determinant of this matrix about the first column, we obtain 
dn = dn-1 + Cn-1 where Cn-1 = det(Cn-d and 

0 
-1 1 

Cn-1 = 0 -1 

0 0 

0 
1 

0 

0 
0 

0 

0 0 
0 0 
0 0 

Repeating this procedure and expanding the matrix Cn_ 1 about the first column, 
we see that Cn-1 = dn-2· Hence, we have dn = dn-1 + dn-2, where n EN. In 
particular, we have 

F1 = F2 = det(DJ), F3 = det(D2) and 

Fn+1 = det(Dn) = det(Dn-d + det(Dn-2), for n EN. 

In this way we obtain an interesting symmetrical characteristic of the Fibonacci 
sequence. 

Theorem 2.4.3 can be generalized in the following way. 

2.4.7. Theorem (Pierre-Simon Laplace). Let A= [aij] E Mn(l~). In the matrix 
A choose t rows (respectively, t columns). Multiply every minor of dimension t 
corresponding to the chosen rows (respectively, columns) by its algebraic com
plement. The sum of all these products is equal to det(A). 

Proof. By using Proposition 2.3.3 we need to consider only the case with rows. 
Let the selected rows be the rows numbered k(l), k(2), ... , k(t). We recall that 

det(A) = L sign:rr a1,Jr(l)a2,Jr(2) ... an,Jr(n)· 

JrESn 

Consider an arbitrary term sign :rr al,Jr(l)a2,Jr(2) ... an,1r(n) from this sum and 
within this consider the terms whose first indices belong to the selected rows. 
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Thus, we consider sign IT ak(I),Jr(k(l))ak(2),Jr(k(2)) .•• ak(t),Jr(k(t)). This product 
together with the sign + or - belongs to the decomposition 

minor{k(l), k(2), ... , k(t); n(k(l)), n(k(2)), ... , n(k(t))}. 

Clearly, the product of all other elements a},Jr(})• where j ¢ {k(l), ... , k(t)} 

(again with the sign + or -) belongs to the decomposition 

comp{k(l), k(2), ... , k(t); n(k(l)), n(k(2)), ... , n(k(t))}. 

By Theorem 2.4.2, the term 

belongs to the decomposition of the product of 

minor{k(l), k(2), ... , k(t); n(k(l)), n(k(2)), ... , n(k(t))} 

and 

Ak(lJ.k(2J, ... ,k(tJ; Jr(k(lJ),Jr(k(2ll .... ,Jr(k(tll. 

Consequently, every summand of the decomposition of det( A) involves a product 
of some minor, corresponding to the chosen rows multiplied by its algebraic 
complement. The decomposition 

minor{k(l), k(2), ... , k(t); n(k(l)), n(k(2)), ... , n(k(t))} 

includes t! terms, while the decomposition 

Ak(t),k(2J ..... k(tl;Jr(k(lll.Jr(k(2ll .... ,Jl"(k(tll 

includes (n- t)! terms. So the decomposition of the product of 

minor{k(l), k(2), ... , k(t); n(k(l)), n(k(2)), ... , n(k(t))} 

and 

Ak(t),k(2), ... ,k(tl;Jr(k(lll.Jr(k(2ll .... ,Jr(k(tll 

include t!(n- t)! terms. 
Next, we show that the decompositions of the products of two distinct minors 

corresponding to the chosen rows by their algebraic complements do not include 
identical terms. Let 

{j(l), }(2), ... , j(t)} =f. {s(l), s(2), ... , s(t)} 
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and let sign rr al,n(l)a2,n(2) ... an,n(n) belong to a decomposition of the product 

minor{k(l), ... , k(t); j(l), ... , j(t) }Ak(l), ... ,k(t);j(l), ... ,j(t); 

let sign a a 1,<J:rr(l)a2,<J(2) ... an,<J(n) belong to a decomposition of the product 

minor{k(l), ... , k(t); s(l), ... , s(t)}Ak(l}, ... ,k(t);s(l}, ... ,s(t)· 

This means that 

{rr(k(l)), rr(k(2)), ... , rr(k(t))} = {j(l), }(2), ... , j(t)} =1= 

{s(l), s(2), ... , s(t)} = {a(k(l)), a(k(2)), ... , a(k(t))}. 

The total number of minors of dimension t, which corresponds to the selected 
rows, is equal to the number of combinations (7) = t!(:~t)!. Thus the sum of the 
products of all the minors of dimension t that corresponds to the selected t rows 
by their algebraic complements gives us t!(n- t)! · t!(:~t)! = n! terms from the 
decomposition of det(A). Since the decomposition of det(A) includes exactly n! 
terms, we see that the sum of the products of all the minors of dimension t that 
corresponds to the selected t rows by their algebraic complements is det(A). 

This theorem of Laplace allows us to reduce the computation of determinants 
of matrices to the computation of determinants of smaller size. However, the 
number of corresponding smaller matrices could be very large. Therefore, it is 
most efficient to use this theorem when there are some rows (or columns) with 
a large number of zeros in the matrix. For example, let 

a11 al2 a it 0 0 
a21 a22 a2t 0 0 

A= atl at2 au 0 0 
at+l,l at+l,2 at+i,t at+l,t+l at+l,n 

ani an2 ant an,t+i ann 

A convenient shorthand is to write this matrix as (~ g), where 

c 
al2 a1

,) (0 
l). 

a2l a22 a21 0 
B= . ,0= . . . . . 

atl at2 a 11 0 

ell at+l,2 a,+IJ) c~·+l a,~Il 
C= : , and D = 

ani an2 ant an,t+l ann 
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Every minor{1,2, ... ,t;j(l),j(2), ... ,j(t)}, where {j(l),j(2), ... ,j(t)}=/= 
{ 1, 2, ... , t}, is a determinant of the matrix having a column of zeros and thus is 
equal to 0 by Corollary 2.3.6. Hence, by Theorem 2.4.7 we obtain the equation 
det(A) = det(B)det(D). 

A similar conclusion can be made for all matrices of the types 

( ~ ~) , ( ~ ~) , and ( ~ ~) . 

EXERCISE SET 2.4 

Justify your answers where necessary with a proof or a counterexample. 

2.4.1. Find all second-order minors of the matrix ( ~ -; 
1 b) . 

-2 1 4 

2.4.2. Find the cofactors to all elements of the second row of the matrix 

(~6 ~1 !). 
-2 

2.4.3. Find the cofactors to all elements of the third column of the matrix 

0~ ~3 t T} 
2.4.4. Using Laplace's theorem evaluate the determinant of the matrix 

(~ ~ ~ i). 
2 0 0 3 

2.4.5. Using Laplace's theorem evaluate the determinant of the matrix 

(
2 1 4 3 5) 
3 4 0 5 0 
3 4 5 2 l . 
1 5 2 4 3 
4 6 0 7 0 

2.4.6. Using Laplace's theorem evaluate the determinant of the matrix 
1 2 3 4 5 3 
6 5 7 8 4 2 
9 8 6 7 0 0 
3 2 4 5 0 0 
3 4 0 0 0 0 
5 6 0 0 0 0 
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2.4.7. Using Laplace's theorem evaluate the determinant of the matrix 
1 0 2 0 3 0 
5 1 4 2 7 3 
1 0 4 0 9 0 
8 1 5 3 7 6 
1 0 8 0 27 0 
9154 310 

2.4.8. Using Laplace's theorem evaluate the determinant of the matrix 

(
Oabc) 
1 X 0 0 
1 0 y 0 . 
1 0 0 z 

2.4.9. Using Laplace's theorem evaluate the determinant of the matrix 

(

1 X X X) 
1 a 0 0 
1 0 b 0 . 
1 0 0 c 

2.4.10. Using Laplace's theorem evaluate the determinant of the matrix 

( 
2 -1 3 4 -5) 4 -2 7 8 -7 
-6 4 -9 -2 3 . 
3 -2 4 1 -2 

-2 6 5 4 -3 

2.4.11. Using Laplace's theorem evaluate the determinant of the matrix 

(~4 ~: y 19 15). 
-7 7 6 8 4 
5 -3 2 -1 -2 

2.4.12. Using Laplace's theorem evaluate the determinant of the matrix 

(
2 1 2 3 2) 
3 -2 7 5 -1 
3 -1 -5 -3 -2 . 
5 -6 4 2 -4 
2 -3 3 1 -2 

2.4.13. Using Laplace's theorem evaluate the determinant of the matrix 

(~5 19 ~: ~I 15) . 
-1 -4 1 1 -2 
-3 7 5 2 3 
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2.5 PROPERTIES OF THE PRODUCT OF MATRICES 

In this section, we consider some important properties of multiplication of matri
ces. More precisely, we obtain criteria for a matrix to have an inverse and also 
establish some techniques for the computation of such an inverse. We introduce 
the idea of what we call a basic matrix and we study the effects of elementary 
transformations of matrices. We also introduce some other standard matrices. 

The following remarkable theorem will play a key role here. 

2.5.1. Theorem. Let A= [aij], B = [bij] E Mn(JR). 
Then det(AB) = det(A)det(B). 

Proof. Let AB = C = [cij] E Mn(JR). We consider the following auxiliary 
matrix D = [dij] of dimension 2n: 

a11 al2 al,n 0 0 
a21 a22 a2,n 0 0 

D= ani an2 an,n 0 0 
-1 0 0 bl,l b1,n 

0 0 -1 bn,l bn,n 

which we can write briefly as 

D=(A -/ ~)· 
By the arguments we used at the end of Section 2.4, we obtain det(D) = 
det(A)det(B). 

We will transform D using column transformations that do not change the 
determinant of D but which will allow us to fill the right lower comer of D with 
zeros. For this, we add the first column of D, multiplied by b11 to the (n + 1)th 
column. Next, we add the second column, multiplied by b21 and add this to the 
(n + 1 )th column, and so on. Finally, we add the nth column multiplied by bn, 1 

to the (n + 1)th column. Then we start to repeat this process, first adding the first 
column of D multiplied by b12 to its (n + 2)th column. Then we add the second 
column multiplied by b22, and so on. Finally, we add the nth column multiplied 
by bn2 . In general, we add to the (n + k)th column of D a linear combination 
of the first n columns with the elements multiplied, respectively, by the numbers 
b1k, b2k, ... , bnk· In general, we find, for i 2: 1, 

where Cj denotes the jth column of D. 
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We denote the matrix we obtain by H, so 

a11 a12 QI,n hll h1,n 

a21 a22 a2,n h21 h2,n 

H= an,1 an,2 an,n h1,n hn,n 

-1 0 0 0 0 

0 0 -1 0 0 

By Corollary 2.3.9, det(H) = det(D). 

Furthermore, if we recall the sequence of operations that we have performed, 
it follows that 

From this it follows also that the matrix A B is the upper right comer of H. Thus 

H=(A -/ 
AB) 0 . 

Applying the arguments that we developed at the end of Section 2.4, we obtain 

det(H) = minor{l, 2, ... , n; n + 1, n + 2, ... , 2n}A 1,2, ... ,n;n+l,n+2 .... ,2n· 

Furthermore, 

minor{1, 2, ... , n; n + 1, n + 2, ... , 2n} = det(AB), 

and 

A . (-1 )n _ (-1) 1 +2+ .. +n+(n+ ]J+ .. ·+2n _ 1 1,2, ... ,n;n+l,n+2, ... ,2n - - , 

since the exponent here is 2n2 + n + n. Hence, det(H) = det(AB) and we have 

det(A)det(B) = det(D) = det(H) = det(AB). 

We shall apply this theorem to the problem of whether or not a given matrix 
has an inverse. If the matrix A has an inverse, then by Theorem 2.5.1, we obtain 

1 = det(/) = det(AA- 1
) = det(A)det(A-1

), 

and hence det(A) # 0 in this case. 
This prompts the following definition. 
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2.5.2. Definition. The matrix A = [ aij] E Mn (~) is called nonsingular if 
det( A) =1- 0. 

Our short proof above shows that if a matrix has an inverse, then it must be 
nonsingular and we now show that the converse is also true. We recall that if 
A E Mn(~) is a matrix then Aij is the cofactor of A corresponding to the (i, j) 
entry of A. 

2.5.3. Theorem. Let A = [ aij] E Mn (~). Then A has an inverse if and only if it 
is nonsingular. Moreover, if A-I= B = [b;1] E Mn(~), then bij = d:.(~)' where 
1 :::; i, j :::; n. 

Proof. We observed above that if a matrix has an inverse, then the original 
matrix is nonsingular. Conversely, suppose that det(A) =1- 0. We shall apply 
Corollary 2.4.4 to find the inverse matrix. 

Put bij = d:.(~), where 1 :::; i, j :::; n, and let B = [ bij]. Consider the products 
AB = [uij] and BA = [vij]. We have 

where, as usual, 8ij denotes the Kronecker delta. It follows that AB = BA = I, 
which implies that B = A -I. 

In particular the inverse of a nonsingular 2 X 2 matrix e ~) is very easily 
seen to be 

1 ( d -ab). 
ad- be -c 

The set of nonsingular n x n matrices is very important in mathematics. We 
let GLn(~) (respectively, GLn(Q)) denote the subset of Mn(~) (respectively, 
Mn (Q)) consisting of all nonsingular matrices. 

Next we consider some other properties of matrix multiplication. There are a 
number of important special matrices and we here define some of these. 

Let Ekm = [u;jm)] E Mn(~) denote the matrix defined by 

u<km) = 11, whenever (i, j) = (k, m), 

'1 0, whenever (i, j) =1- (k, m). 
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Thus 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Ekm = 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 , 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

where the kth row and the mth column have been typeset in bold. 
The matrices Ekm are called basic matrices. 

We note that if A = [ aij] E Mn (l!l:.) then it is clear that 

n n 

A= LLaijEij. 

i=l j=l 

This means that every matrix is a linear combination of the basic matrices, which 
can be thought of as some justification for the term "basic." 

We shall find the product of two basic matrices. Let EkmErs = [ Wij]. Then 

'""" (km) (rs) 
Wij = ~ uit utj . 

l:::;t:S:n 

If i # k, then u};m) = 0 for each t, so that Wij = 0. When i = k, Uk~m) = 0, if t # 
d h (km) (rs) (rs) H "f ..../.. h 0 Wh m, an we ave Wkj = ukm umj = umj . ence, 1 m ..,.. r t en Wkj = . en 

rs 0 "f · ..../.. (rs) (rs) 1 d 0 f · ..../.. Th m = r, urj = 1 J -r s, so Wks = Ums = Urs = an Wkj = or J -r s. ese 
calculations establish the following simple rule for multiplying basic matrices: 

E E -I E ks, if m = r, 
km rs- O "f ..../.. , 1 m ..,.. r. 

We will use this immediately. 

2.5.4. Proposition. Let A = [ aij] E Mn (l!l:.). Then 
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where the column 
a1k 
a2k 

ank 

is the mth column of the matrix AEkm· Also 

0 0 0 

0 0 0 
EkmA = ami am2 amn 

0 0 0 

0 0 0 

where the row am 1 am2 amn is the kth row of the matrix Ekm A. 

Proof. We observed above that A= L::7=1 LJ=I aijEij. Then 

n 

= La;kEikEkm = L a;kEim 

Also 

i=l 

n n 

= LLa;jEkmEij = 
i=l j=l 

This proves the required result. 

n n 

= LLaijEkmEij 
i=l j=l 

97 
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It is useful to verbally describe this multiplication. If we multiply A on the 
right-hand side by Ekm (we say that we postmultiply A by Ekm), then we obtain 
the matrix whose mth column is the kth column of A, while all other columns are 
zero. If we multiply A on the left-hand side by Ekm (we say that we premultiply 
A by Ekm), then we obtain the matrix whose kth row is the mth row of A, while 
all other rows are zero. 

As we mentioned already matrix multiplication is not commutative. Indeed, 
commutativity is a very rare situation even for multiplication of special matrices. 

2.5.5. Definition. Let S be a subset of Mn (~). The centralizer of the set S is the 
set all matrices that commute with every matrix from S. Thus the centralizer of S 
is the set {A E Mn(~): AB = BAforall BE S}. 

The centralizer of the entire set Mn (~) is called the center of the matrix algebra 
(we formally define this latter term later). The center will be denoted by {(Mn (~)). 

The identity matrix commutes with every matrix and hence it belongs to the 
center of Mn(~). The diagonal matrix a/, where a is any real number, also 
belongs to this center. Indeed 

A(al) = a(Al) =a (I A)= (al)A =a A. 

The matrix a I is called a scalar matrix. Put 

~I = {a I I a E ~} 

and, respectively, 

Q/ ={a/ I a E Q}. 

Thus the set of all scalar matrices belongs to the center. Every scalar matrix is 
diagonal. However, not every diagonal matrix belongs to the center, as the fol
lowing result shows, which gives the effect of premultiplying (or postmultiplying) 
a matrix A by a diagonal matrix D. 

2.5.6. Proposition. Let A = [ aiJ] , D = [ diJ] E Mn (~), where D is a diagonal 
matrix. Left (respectively, right) multiplication of the matrix A by the matrix D is 
equivalent to multiplying the rows (respectively, columns) of A by the elements 
dJJ, d22, ... , dnn· 

Proof. When we premultiply A by D we obtain DA = C = [ciJ] and 

Cij = L dikakj = diiaij, 

i:C:k:C:n 
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which proves that the ith row of A is multiplied by dii. A similar computation 
shows the result for right multiplication. 

Now we can describe the center of the matrix algebra, Mn (l~). 

2.5.7. Theorem. ~(Mn(l~)) = l!U. 

Proof. We noted above that the center contains the set of all scalar matrices so 
l!U s; ~(Mn(l~). 

To prove the converse, let A = [ aiJ] E ~(Mn (l~)). The matrix A permutes 
with every matrix and hence with every basic matrix. Thus 

for each pair of indices k, m, where I ::; k, m ::; n. 
Put AEkm = [ Uij] and EkmA = [ Vij]. Suppose that k =f. m. Then Proposition 

2.5.4 implies that Ujm = a1k and v1m = 0, whenever j =f. k. Thus, if j =f. k, then 
a1k = 0, so the matrix A must be diagonal. Applying Proposition 2.5.6 we see 
that all elements of the main diagonal of A are equal. Consequently, A is a scalar 
matrix. The theorem follows. 

We now consider certain other special matrices related to the basic matrices. 

2.5.8. Definition. Let a be a fixed but arbitrary real number. The matrix tkm (a) = 
I+ aEkm· where k =f. m, is called a transvection. 

Clearly, every transvection is a triangular matrix and det(tkm (a)) = I. In 
particular, Theorem 2.5.3 implies that every transvection has an inverse. To 
determine such an inverse we consider the product of two transvections. We 
have 

From this equation it follows that tkm (a)tkm (-a) = I and hence (tkm (a))- 1 = 
tkm(-a). 

A more intuitive way of seeing this is to observe that tkm(a) can be thought 
of as adding a times row m to row k. With this interpretation the inverse of 
tkm (a) is obtained by just subtracting a times row m from row k, which is to 
say tkm (a) - 1 = tkm (-a). This latter idea-thinking of a transvection as adding a 
multiple of one row to another-can be seen formally in the next result. It shows 
that postmultiplication of A by tkm (a) is equivalent to adding a times column 
k to column m and premultiplication of A by tkm (a) is equivalent to adding a 
times row m to row k. 
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2.5.9. Proposition. Let A = [ aij] E Mn (JR). Then 

c 
al2 a!,m-1 a 1m+ aa1k al,m+l 

"'") a21 a22 a2,m-! a2m + aa2k a2,m+l a2n 
Atkm(a) = : 

an! an2 an,m-1 anm + aank an,m+l ann 

and 

a11 al2 a1n 

ak-1,1 ak-1,2 ak-!,n 
tkm(a)A = ak! + aaml ak2 + aam2 akn + aamn 

ak+l.l ak+l,2 ak+l,n 

an! an2 ann 

Proof. This assertion follows from the definition of transvection and Proposition 
2.5.4. 

The next theorem shows the major role that transvections play. Virtually all 
other matrices can be obtained from them. 

2.5.10. Theorem. Every matrix A = [ aij] E Mn (JR) can be written as a product 
of certain transvections and a diagonal matrix. 

Proof. Proposition 2.5.9 shows that when we postmultiply A by tkm(a) the effect 
is to add a times column k to column m and the same proposition shows that 
when we premultiply A by tkm(a) the effect is to add a times row m to row k. 
We now describe the process of decomposing A in the manner sought and note 
that we have already used some of these same arguments when transforming 
matrices. 

We assume that A =f. 0. If the first column of A consists entirely of zeros then 
it is already in a form that will make our final matrix upper triangular and we 
move to the next column. So we assume that the first column of A is not zero. 
If a,, = 0, then, since the first column of A is not zero, we add some row to the 
first, which is equivalent to premultiplying A by a transvection to obtain a matrix 
A, = [agl] whose first entry is nonzero. Now we can add multiples of row 1 of 
the matrix, in tum, to rows 2, 3, ... , n in order to make each entry of the first 
column of the new matrix, other than the ( 1, 1) entry, equal to 0. Having done this 
we now proceed to obtain an upper triangular matrix in the manner suggested in 
Section2.3, by adding multiples of the succeeding rows to form zeros below the 
leading diagonal. Each such matrix manipulation can be done by premultiplication 
by a transvection. Thus, there exist transvections tk(l),m(l) (a!), ... , tk(r),m(r) (a1) 

such that the matrix B = tk(t),m(t)(a1), ••• , tk(l),m(l)(a!)A is upper triangular. 
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Next, we reduce the matrix B to diagonal form by postmultiplying it by a 
sequence of transvections, adding first multiples of column 1 to the columns of 
B to make all entries in row 1 equal to 0 except possibly for the first. Then we add 
multiples of column 2 to the columns 3, 4, ... , n to make all entries in row 2 equal 
to 0, other than possibly the (2, 2) entry, and proceed in turn with the columns 
3, ... , n. This process produces transvections tq(l),r(IJ(.Bt), ... , tq(s),r(sJ(.Bs) such 
that 

is a diagonal matrix. We have already noted that (tkm(a))- 1 = tkm(-a). There
fore, from the above equation, we obtain, premultiplying and postmultiplying by 
the appropriate inverses, 

A= tk(l),m(l)(-aJ), ... , tk(t),m(t)(-at)Dtq(!),r(l)(-,BJ), ... , tq(s),r(s)(-,85 ). 

This completes the proof. 

We have also used transformations that interchange two rows or columns. Such 
a transformation is also equivalent to premultiplication or postmultiplication of 
the given matrix by the following kind of special matrix. Put 

1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 

Skm = 

0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 

Here, the first bold row is row k, the second is row m, and the first bold column 
is column k and the second is column m. 
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2.5.11. Proposition. Let A = [ail J E Mn (JR). Then 

an a12 aln 

a21 a22 a2n 

ak-1,1 ak-1,2 ak-l,n 

ami am2 amn 

ak+l.l ak+l.2 ak+l,n 
Askm = and 

am-1,1 am-1,2 am-l,n 

akl ak2 akn 

am+l,l am+l,2 am+l,n 

ani ami ann 

("" 
... al,k-1 a 1m al,k+l al,m-1 a1k a1,m+1 

a21 ... a2.k-l a 2m a2.k+l a2,m-1 a2k a2,m+l 
SkmA = 

ani an,k-1 anm am,k+l an,m-1 ank an,m+l 

1
1, ifi=j=f.k,m. 

(km) 
siJ = 1, if (i, j) = (k, m) or (i, j) = (m, k). 

0 in all other cases. 

Also set Askm = [ ViJ J and Skm A = [ Wij]. Then we have 

"'") a2n 

ann 

If j =1- k, m, then s 1jm) = 1, when t = j, and is otherwise 0. Therefore, vii = 
(km) · h' If · k h (km) 1 h d. h . a;isJJ = a;i m t IS case. 1 = t en s1k = , w en t = m, an IS ot erwise 

0 (km) If · th (km) 1 h · k d · h . so V;k = a;msmk =aim· 1 = m en s1m = , w en 1 = , an IS ot erwise 
0. Therefore, Vim = a;ks~:m) = aik· We can consider the product SkmA in a similar 
manner and the stated result follows. 
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EXERCISE SET 2.5 

Provide explanations for your work. Justify your answers with a proof or a 
counterexample where necessary. 

2.5.1. p;nd all matrke' that commute wdh the matrix (~ ~ ~ !) . 
2.5.2. Find all matrices A E M2 (ffi.) with the property A 2 = 0. 

2.5.3. Evaluate A- 1 where A= I+ E12 + 2£23· 

2.5.4. Let A E Mn (ffi.) be a nonsingular symmetric matrix. Is A - 1 also sym-

metric? 

2.5.5. Let A E Mn (ffi.) be a non singular skew-symmetric matrix. Is A - 1 skew 
symmetric? 

2.5.6. Obtain the formula for A - 1 if A = ( ~ ~). 
2.5.7. Find A-1 if A= (c?sa 

sma 
-sin a). 
cos a 

2.5.8. p;nd A-I ;fA= (! -1 ~~) 
-1 1 -1 0 

-1 -1 1 

2.5.9. Hnd A-I ;r A= (t 2 3 i} 3 1 
1 1 
0 -2 -6 

1 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 

2.5.10. Find A - 1 if A = 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
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1 
0 1 

2.5.11. Find A -I if A = 0 

0 

2.5.12. Solve the following matrix equation G ~)X= G ~). 
2.5.13. Solve the following matrix equation G =D X(; ~) = (~4 ~~). 
2.5.14. Solve the following matrix equation 

(; ; =!) x = (/o -;3 ~) . 
2 -1 0 10 7 8 

2.5.15. Find the centralizer of the set of all matrices of the kind 
a a a a 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 

2.5.16. Represent the matrix 

a 
0 
0 

0 
0 

, where a E JR. 

(

1 -1 
3 0 
4 3 

as a product of a transvection and a diagonal matrix. 

2.5.17. Represent the matrix 

( ~ ~7 ~1) 
-1 3 0 

as a product of a transvection and a diagonal matrix. 



CHAPTER3 

FIELDS 

3.1 BINARY ALGEBRAIC OPERATIONS 

In this chapter we consider one of the main concepts in algebra, namely the 
concept of a field. This chapter is the last chapter of the book that is dedicated to 
some preliminary concepts. The concept of a field is a key idea for linear algebra. 
Many books limit consideration of linear algebra to the fields of real and complex 
numbers. However, vector spaces over finite fields have recently found various 
important applications in cryptography and other branches of mathematics. For 
this reason, we think that it is feasible, indeed rather important, to consider vector 
spaces over arbitrary fields. In tum, in order to introduce fields we need to first 
consider binary algebraic operations. 

The idea of a binary algebraic operation is one of the most fundamental 
in mathematics. Indeed, we have already informally seen several examples of 
this concept, so there is a rich variety of concrete algebraic operations whose 
properties we understand quite well. This gives us a good opportunity to study 
these examples from a general point of view. The important parts of this concept 
are generalized in the following definition. 

3.1.1. Definition. Let M be a set. The mapping () : M x M ---+ M from the 
Cartesian square of M toM is called a binary (algebraic) operation on the set 
M. Thus, corresponding to every ordered pair (a, b) of elements, where a, bE M, 
there is a uniquely defined element ()(a, b) E M. The element ()(a, b) E M is 
called the composition of the elements a and b relative to this operation. 

Algebra and Number Theory: An Integrated Approach. By Martyn R. Dixon, Leonid A. Kurdachenko 
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Notice that there are two important ideas here. One is that f) (a, b) is an element 
of M; the other is that fJ(a, b) is uniquely determined by the ordered pair (a, b). 
Here, we need to say a few words about notation. It is often rather cumbersome 
to keep referring to the function f) and using the notation fJ(a, b). There are 
several shorthand symbols that are employed and fJ(a, b) is often written using 
such special notation. For example, the operation might be denoted by + and 
we might then write fJ(a, b)= a +b. We note that, in general, fJ(a, b) will be 
different from fJ(b, a), which is to say that there is no reason for it to be the case 
that a + b = b +a. However, quite often, even the notation a + b is confusing, 
and most often we would rather write the operation + using something more 
familiar. The most familiar binary operators are + and · and it is these symbols 
that are most often useful in writing such operations. Thus, instead of writing 
a+ b we may write a+ b or a ·b. It is important to understand that sometimes 
these symbols will have familiar meanings, but not always. 

In most cases, the operation denoted by the sign + is associated with addition, 
and the corresponding composition a + b is then called its sum. In this case, we 
talk about the additive designation of the binary operation. 

The operation denoted by the sign · usually is associated with multiplication, 
and the corresponding composition a · b is called its product. In this case, we talk 
about the multiplicative designation of the binary operation. Following tradition, 
we often omit the sign ·, and denote the product by just ab. 

We now consider some examples of binary operations. For the most part, it 
is quite easy to verify that these are binary operations but they serve to illustrate 
that binary operations are very familiar to the reader, as we observed earlier. 

(i) Addition on any one of the sets M = N, Z, Q, ~ is a binary operation. 
In this case, fJ(a, b) =a+ b and this is clearly an element of M. For 
example, when M = Z all this says is that the sum of two integers is a 
uniquely determined third integer. 

(ii) Multiplication on any one of the sets M = N, Z, Q, ~ is a binary oper
ation. In this case of course, we denote fJ(a, b) by ab. 

(iii) Next, let M be an arbitrary set and let P(M) be the set of all trans
formations of M. Then, for all f, g E P(M), the map f) defined by 
fJ(f, g) = fog is a binary algebraic operation on the set P(M). 

(iv) Let M be a set and let !.B(M) denote the Boolean of M. For each 
X, Y ~ M, each of the mappings 

(X, Y) t---+ X U Y, (X, Y) t---+ X n Y, 

(X, Y) t---+ X\Y, (X, Y) t---+ XL.Y, 

defines a corresponding binary algebraic operation on the set !.B(M). 
Note that in the first case, for example, it is more natural to denote 
the binary operation by U here than by + or ·. We will always use the 
natural notation when possible. 



FIELDS 107 

(v) Addition, multiplication, and commutation of matrices are each binary 
operations on the set Mn (ffi(). 

(vi) Addition and multiplication of real functions (which is to say trans
formations of the set ffi() are each binary operations on the set of real 
functions, P(JR(). 

(vii) The following mappings 

(n, k) t---+ nk and (n, k) t---+ nk + kn, where n, k E N, 

each define binary algebraic operations on the set N. 

(viii) The following mappings 

(n, k) t---+ GCD(n, k) and (n, k) t---+ LCM(n, k), 

where n, k E Z, 

define binary algebraic operations on the set Z (we make the proviso 
that we take GCD(n, k), LCM(n, k) 2:: 0). 

(ix) Addition and taking the cross (or vector) product on the space JR(3 are 
both binary operations. 

Certainly, there are also a host of operations that are not binary. For example, 
if a, b E N then the map {}(a, b) =a - b is not binary since the difference of 
two natural numbers need not be a natural number. 

We next consider some important properties of binary algebraic operations. For 
the sake of clarity, we will use the multiplicative form of writing a binary opera
tion but will also illustrate the additive form. However, we stress that our binary 
operations are very much more general than ordinary addition or multiplication. 

3.1.2. Definition. A binary operation on a set M is called commutative if ab = ba 
for each pair a, b of elements of M. 

For the additive form, commutativity of a and b would be written as 

a + b = b + a, where a, b E M. 

Notice that to show that an operation is commutative on M, we have to show 
that ab = ba is true for all a, b E M. If ab =!= ba for just one pair a, b E M, 
then the operation is not commutative. Many of the operations listed above are 
commutative but some are not. The operations of multiplication and addition on 
the sets of natural numbers, integers, rational, and real numbers are commutative. 
The operations n, U, and !:!.. on the Boolean s:B(M) are commutative but, since 
X \ Y =!= Y \ X in general, \ is not a commutative operation unless the underlying 
set is the empty set. Matrix addition, addition and multiplication of real functions, 
the operations GCD, LCM on Z and vector addition in JR(3 are all examples of 
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commutative binary operations. Note that the cross product of two vectors in ~3 

is not commutative and, as we have seen above, multiplication of transformations 
and multiplication of matrices are examples of important binary operations that 
are not commutative. 

If we have three elements a, b, c E M, then we can form the products a(bc) 
and (ab)c (where we do not change the order in which the elements are written 
in the product). In general, these two products may be different. For example, it 
normally matters whether we write a - (b- c) or (a -b) - c, when a, b, c E Z. 

3.1.3. Definition. A binary operation on a set M is called associative if (ab)c = 
a(bc) for each triple a, b, c of elements of M. 

Written additively, this becomes 

(a+ b)+ c =a+ (b +c). 

For four elements a, b, c, d, we can construct a number of different products. 
For example, we can determine each of the products 

((ab)c)d, (ab)(cd), (a(bc))d, a(b(cd)), and a((bc)d) 

to name but a few. When the operation is associative, however, all methods of 
bracketing give the same expression so that there is no need for any complicated 
bracketing. Thus, for example, 

((ab)c)d = (ab)(cd). 

As the next theorem shows, such equations hold in general and the theorem 
justifies the previous statement. This theorem alone makes associative operations 
very important. 

3.1.4. Theorem. If the binary operation · defined on the set M is associative and 
if a,, ... , an is any finite subset of M, then the product a1a2 ... an is unambiguous; 
any form of bracketing of this product always gives the same element of M. 

Proof. We proceed to prove the result by induction on n, the number of terms in 
the product. The entries in the product are a,, ... , an. If n = 1, 2 then the result 
is clear and if n = 3, the assertion follows from the associative property. 

Suppose now that n > 3 and that we have already proved our assertion 
for all finite products with fewer than n terms in the product. We will show 
that each product of elements a,, a2, ... , an bracketed in some way and 
in some fixed order coincides with a fixed product, namely the so-called 
left-normed order, ( ... (((a1a2)a3)a4) ... )an-d)an. If the product is of the 
form Lan where L is the product of the elements a,, ... , an-I bracketed in 
some way, then by the induction hypothesis applied to L, we can write L 
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as ( ... (((ataz)a3)a4) ... )an_z))an-t· Then Lan is the left-normed product 
( ... (((ataz)a3)a4) ... )an-t))an and the result follows in this case. Otherwise, 
the product has the form LM where for some natural number t such that 
t + 1 < n, L is a product of the elements at, ... , a1 (in that order) and M is a 
product of the elements a1+t ... an (in that order) and there is some bracketing 
among the terms. By the induction hypothesis and associativity, we have 

LM =(at ... ar)(ar+t ... an)= (at ... a1)((a1+t ... an-dan) 

=((at ... ar)(ar+t ... an-t))an = ( ... (((ataz)a3)a4) ... )an-t))an. 

This proves the result. 

By Theorem 3.1.4, the product at ... an is independent of the bracketing that 
may be assigned, provided the operation is associative. Consequently, there is 
no ambiguity when we write at ... an. and the parentheses will usually not be 
inserted although, of course, the order in which the elements are written will 
normally be important. As a convenient shorthand, we write at ... an as n a;. 

t<i<n 
In the case when at = az =···=an =a, we will denote the product 

at a2 . .• an by an, and we will call it the nth power of the element a. In this 
case, the usual "rules of exponents" are a special case of Theorem 3.1.4, which 
we give as the next corollary. 

3.1.5. Corollary. If a binary operation on a set M is associative, then for each 
element a E M, and arbitrary n, m E N, 

When we use additive notation for our binary operation, we use the usual 
I:: a; instead of n a; and instead of a power of an element, we will use its 

t<i<n t<i<n 
multiple --

na =a+··· +a. 
'-..--' 

n 

In additive notation, Corollary 3.1.5 takes the form 

na + ma = (n + m)a and m(na) = (mn)a. 

Two elements a and b are called permutable or commutable and they are said 
to commute if 

ab = ba. 

For such elements, we have 
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for any n E N, provided the operation is associative. To prove this, we first 
prove that abn = bna by induction on n, the case n = 1 being the commutativity 
statement concerning a and b. Taking our induction hypothesis to be that abn = 
bna and using Corollary 3.1.5, we have 

so this result follows by induction. Next, we note that 

(ab) 2 = abab = a(ba)b = a(ab)b = (aa)(bb) = a 2b2
• 

Using induction on n and assuming inductively that (ab)n = anbn, we have 

(abt+l = (abt(ab) = (anbn)ab = an(bna)b = an(abn(b)) 

= (ana)(bnb) = an+lbn+l. 

Using a similar induction argument, we can prove the following generalization. 

3.1.6. Proposition. Let M be a set with an associative binary operation. If 
at, a2, ... , an are elements of M such that aiaj = ajai for all pairs i, j, where 
1 :::; i, j :::; n, then 

for every m E N. 

In additive notation, this equation takes the form 

Let M be a set with a binary operation. An element z E M is called central 
if it commutes with every element of M. The set of all central elements of M is 
called the center of M and will be denoted by t;(M). 

3.1.7. Definition. A nonempty setS is called a semigroup if S has an associative 
binary operation defined on it. If this operation is commutative, we will say that 
S is a commutative semigroup. 

There are many natural examples of semigroups. 

(i) The sets of all natural numbers, integers, rational and real numbers 
form commutative semigroups under the operation of addition. These 
same sets also form commutative semigroups under the operation of 
multiplication. 
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(ii) Next, let M be a fixed but arbitrary set. Theorem 1.3.2 shows that the 
set P(M) of all transformations of the set M is a semigroup under the 
operation 

(f, g)~---+ fog, where f, g E P(M). 

As we have already seen, this sernigroup is not commutative. 

(iii) Let M be a set. Theorem 1.1.10 shows that the Boolean IB(M) of the set 
M is a commutative semigroup under each of the operations: 

(X, Y) ~---+X n Y, (X, Y) ~---+XU Y, (X, Y) ~---+ X~Y, 

whenever X, Y ~ M. 
(iv) By Theorem 2.15, the set MnOR) is a commutative semigroup under the 

operation of matrix addition and a noncommutative semigroup under the 
operation of matrix multiplication. 

(v) The set of all real functions, f : lR ---+ lR is a commutative semigroup 
under the operations of addition and multiplication. 

(vi) The set of all integers is a commutative semigroup under the operations 

(n, k) 1---+ GCD(n, k) and (n, k) 1---+ LCM(n, k), 

where n, k E Z. 

(vii) The vector space JR3 is a commutative semigroup under addition of vec
tors. 

Finally, we give one more important example. Let A be a nonempty set, 
which we will call the alphabet. The elements of A are called the letters of the 
alphabet. Let FA denote the set of all finite tuples of elements of A. Define a 
(binary) operation on FA by the rule 

where a;, bj E A, for 1 :S i :S n, 1 :S j :Sm. This operation is called concatena
tion and it is very easy to see that it is associative. Thus, FA is a semigroup 
under this operation called the free semigroup over the alphabet A. 

We can identify a tuple consisting of one element with the element itself. By 
doing this, we can identify the tuple (a 1, a2, ... , an) with the formal product 
a1a2 ... an. This allows us to write all the elements w of the free semigroup FA 
in the form w = a1 ... an, which we call a word in the alphabet. The number 
n is called the length of this word and two words a1a2 ... an and b1b2 ... bm, 
where a;, b j E A are defined to be equal if and only if n = m and a1 = b1 for 
each 1 :S t :S m. 
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3.1.8. Definition. Let M be a set with binary operation. The element e E M is 
called a neutral element under this operation if ae = ea = a for each element a 
of the set M. 

The neutral element is unique whenever it exists. Indeed, if e' is another 
element with the property ae' = e' a = a for all a E M then, setting a = e' in the 
definition of e gives e' e = ee' = e', whereas setting a = e in the definition of e' 
gives ee' = e' e = e and we obtain e = e'. 

If the operation on M is written multiplicatively, then the term identity element 
is usually used rather than neutral element and often e is denoted by 1 or lm. 
If we use the additive form, then the neutral element is usually called the zero 
element and is often denoted by OM, so that the definition of the zero element is 
a+ OM= OM+ a= a for each element a E M. When the context is clear, we 
may sometimes omit the subscript here. 

(i) The operation of addition on the sets of all natural numbers, integers, 
rational, and real numbers has a zero element, which is the number 0. 

(ii) The operation of multiplication on the sets of all natural numbers, inte
gers, rational, and real numbers has an identity element, which is the 
number 1. 

(iii) Let M be a set and let P(M) denote the set of all transformations M. We 
know that eM o f = f o eM = f for all f E P(M). Thus, P(M) under 
the operation of composition has an identity element, the permutation 
SM. 

(iv) Let M be a set and IB(M) the Boolean of the set M. The operations 

(X, Y) ~----+X n Y, (X, Y) ~----+XU Y, (X, Y) ~----+ X~Y, 

where X, Y EM, 

each have neutral elements. For the first operation, this is the set M 
since M n Y = Y n M = Y for allY s; M and, in a similar manner, for 
the other two operations it is the empty set. 

(v) The operation of addition on the set Mn (ffi.) of real matrices has a zero 
element; namely, the zero matrix 0, since 0 +A= A+ 0 =A for all 
A E Mn(ffi.). The operation of multiplication on the set Mn(ffi.) has an 
identity element, the matrix I, since AI= I A= A, for all A E Mn(ffi.). 

(vi) The operation of addition of all real functions has a zero element, the 
zero function, the function which is 0 for all arguments; the operation of 
multiplication of all real functions has an identity element, the function 
which is always equal to 1 for all arguments. 

(vii) The operation 

(n, k) ~----+ GCD(n, k), where n, k E Z, 

has a neutral element, the number 0, since GCD(n, 0) = n. 
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(viii) The operation of addition on the set JR3 has a zero element, the zero 
vector. 

3.1.9. Definition. A semigroup that has an identity element is called a semigroup 
with identity. 

3.1.10. Definition. Let M be a set with a binary operation. A subset S is called 
stable under this operation if for each pair of elements a, b E S the element ab 
also belongs to S. 

This means that the restriction to S of the binary operation on M is again a 
binary operation on S. For example, the subset of all even integers is a stable 
subset of Z under the operations of addition and multiplication, since the addition 
and multiplication of two even integers is again even. The proof of the next 
proposition is quite straightforward, but we illustrate it for the convenience of 
the reader. 

3.1.11. Proposition. Let M be a set with a binary operation and let 6 be a family 
of stable subsets of M. Then the intersection n6 = n{S: S c 6} of all subsets 
of this family is also stable. 

Proof. If a, bE n6 then a, bE S for all S E 6. Hence abE S for all S E 6, 
SO abE n6. 

However, we note that a union of even just two stable subsets need not be 
stable. To see this, consider the subset 2Z of all even integers and the subset 3Z 
of all integers divisible by 3. Both of these sets are stable under addition, but 
2Z U 3Z does not contain 5 = 2 + 3, and therefore is not stable. 

Let M be a set with a binary operation, let C be a subset of M, and let 6 be 
the family of stable subsets, each of which contains C. Then the intersection n6 
is the least stable subset containing C, called the stable subset generated by C. 

3.1.12. Definition. Let S be a semigroup. A stable subset R of S is called a 
subsemigroup if R is a semigroup in its own right under the operation defined 
on S. 

3.1.13. Definition. Let M be a set with a binary operation and suppose that there 
is an identity element e. The element x is called an inverse of the element a if 

ax= xa =e. 

If a has an inverse then we say that a is invertible. 

If the operation on M is associative and the element a is invertible, then a 
has a unique inverse. To see this, let y be an element of M that also satisfies 

ay = ya =e. 
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Then 
y = ey = (xa)y = x(ay) = xe = x. 

We denote the unique inverse of a by a- 1• We note that aa-1 = a-1a = e and 
so, evidently, 

If the operation on M is written additively, then we denote the inverse of a, 
should it exist, by -a, called the negative (or sometimes the opposite) of a. The 
definition of the negative element takes the form 

a + (-a) = (-a) + a = 0 M. 

3.1.14. Proposition. Let M be a set with an associative binary operation and 
suppose that M has an identity element e. 

(i) If the elements a,, a2, ... , an are invertible in M, then the product 
a, a2 ... an is also invertible and 

(ii) If a is invertible in M then an is invertible, for all n E N, and (an)-! = 
(a-l)n. 

Proof. (i) We prove this by induction on n. For the case n = 2, we have 

Likewise, (a:2 1a!1)(a1a 2) = e so that, by uniqueness of inverses, (a1a2)-1 = 
a;-'a;- 1 and the result holds for n = 2. Assuming that the result is true for n, 

h ( )-1 -1 -1 -1 h . h 2 d h sot at a, ... an =an an-! .. . a 1 we ave, usmg t e case n = an t e 
induction hypothesis, 

so that the result follows by induction. 
(ii) This is clear since (a-!)nan = (a- 1a)n = e = (aa-l)n = (an)(a-!)n, by 

Proposition 3.1.6, so the result follows by uniqueness of inverses. 
We let U ( P) denote the set of invertible elements of the semi group P. The 

following can be read off from Proposition 3.1.14. 

3.1.15. Corollary. Let P be a semigroup with identity. Then the subset V(P) of 
all invertible elements is stable. 
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The existence of an identity element and an inverse to the element a allows 
us to define all integer powers of a. To do this, we define 

In additive notation, these definitions take the form 

Oa = 0 and ( -n)a = n( -a). 

Our next result shows that the usual rules of exponents hold for all integer 
powers. 

3.1.16. Proposition. Let M be a set together with an associative binary operation 
and suppose that M has an identity element e. If a E M is invertible and m, n E Z 
then 

Proof. If n, m > 0, then the assertion follows from Corollary 3.1.5. Further
more, if one of m or n is 0 then the equalities hold in any case. If m, n < 0, 
then n = - p, m = -q, for certain p, q E N. Then, using the definitions we 
have, 

an am= a-pa-q = (a- 1)P(a- 1)q = (a- 1)p+q = a-(p+q) 

= a-p-q = an+m and 

using Proposition 3.1.14. 
Suppose now that n > 0, -q = m < 0, and n > -m = q. Then 

If n > 0, -q = m < 0, and n < -m = q, then 

n q q-n 

For the second equation, if n > 0 and -q = m < 0, then 

(an)m = ((an)-1)q = ((a-1t)q = (a-1tq = (a-1)-nm = a-(-nm) = anm. 

If -p = n < 0, m > 0, then 

(an)m = ((a-1)p)m = (a-1)pm = (a-1)-nm = a-(-nm) = anm. 

The result follows. 



116 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

We next define one of the most important algebraic structures. For now, we 
shall only give the definition and establish many properties in later chapters. 

3.1.17. Definition. A semigroup G with identity is called a group if every element 
of G is invertible. Thus, a group is a set G together with a binary algebraic 
operation (x, y) f---+ xy, where x, y E G, such that the following conditions (the 
group axioms) hold: 

(G 1) The operation is associative so that x(yz) = (xy)zforall x, y, z E G. 

(G 2) G has an identity element, an element e such that xe =ex = x for all 
x E G; often 1 or 1c is used in place of e. 

(G 3) Every element x E G has an inverse x- 1 such that xx-1 = x- 1 x =e. 

We note that saying that the operation is binary is really a fourth axiom here, 
the axiom of closure, which is an alternative way of saying that the operation is 
binary. If the group operation is commutative, then the group is called abelian (in 
honor of the great Norwegian mathematician Niels Henrik Abel (1802-1829)). 

It is common practice to use addition as the operation when the group is 
abelian. So, for abelian groups, the group axioms are as follows: 

(AG 1) the operation is commutative, so that x + y = y + x for all elements 
x,y E G; 

(AG 2) the operation is associative, so that x + (y + z) = (x + y) + z for all 
elements x, y, z E G; 

(AG 3) G has a zero element, an element Oc such that x + Oc = x for all 
X E G; 

(AG 4) every element x E G has a negative, an element -x, such that x + 
(-x) = Oc. 

Let G be an abelian group with additive operation. Then we can define the 
operation of subtraction by the rule that x - y = x + (-y). 

3.1.18. Definition. Let G be a group. A stable subset H ofG is called a subgroup, 
if H is a group in its own right, under the operation defined on G. 

Certain types of mapping between groups are very important. Indeed we shall 
use the terminology that we next introduce very often in different contexts. 

3.1.19. Definition. Let M, S be sets with binary operations that we denote by * 
and <>, respectively. Let f : M ---+ S be a mapping. Then f is called a homo
morphism, if 

f(x * y) = f(x) <> f(y) 

for arbitrary elements x, y E M. 
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We say that the mapping f respects the operations. An injective homomorphism 
is called a monomorphism A surjective homomorphism is called an epimorphism 
and a bijective homomorphism is called an isomorphism. 

If f : M --+ S is an isomorphism, then Theorem 1.3.5 shows that the map
ping f has an inverse f- 1 : S --+ M, which is also bijective. If u, v are arbitrary 
elements of the set S, then u = f (x) and v = f (y) for certain elements x, y E M, 
since f is surjective. Furthermore, we now have 

!-I (u <> v) =!-I (f(x) <> f(y)) = f-t (f(x * y)) 

= x * y = f- 1(u) * f- 1(v). 

This shows that the mapping f- 1 : S --+ M is also an isomorphism. 

3.1.20. Definition. Let M, S be sets with binary operations. Then M, S are called 
isomorphic if there exists an isomorphism from M to S and we then write M ~ S. 

When two structures M, S are isomorphic in this way, there is no difference 
between the structures other than the names we give to the elements of the two 
sets M and Sand the names* and<> that we give to the names of the operations. 
Other than this, the structures of M and S are identical. 

If M is a set with a binary operation, then the study of M has two aspects. 
The first aspect is concerned with the nature of the elements and the structure 
of M, while the second one concerns properties of the operation. This enables 
such a study to be conducted from different points of view. We can study the 
relationship between the elements and the subsets of M and also study individual 
properties with respect to the given operation. Such an approach is feasible for 
the study of concrete sets, such as permutations, transformations of the plane and 
space, symmetries, matrices, and so on. However, we can conduct a study of 
the properties that does not depend on the nature of the elements and which is 
completely defined by the operation. This approach is the key approach in alge
bra and it can be covered very efficiently, thanks to the fundamental notion of 
isomorphism. Making this more concrete, Gottfried Leibniz (1646-1716) intro
duced the general notion of an isomorphic relation (which he called a similarity) 
and pointed out the possibility of the identification of isomorphic operations and 
relations. He brought attention to a classical example of isomorphism, namely the 
mapping x f---+ log x from the set of all positive real numbers with the operation 
of multiplication to the set of all real numbers with the operation of addition. 
A great French mathematician, Evariste Galois (1811-1832), was also familiar 
with the idea of isomorphism. He understood that corresponding elements of 
isomorphic sets M and S have the same properties with respect to the given 
operation. This notion in its general form was developed in the middle of the 
nineteenth century. In abstract algebra, we study only such properties that are 
unchanged by isomorphisms. 
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EXERCISE SET 3.1 

Justify your answers with a proof or a counterexample. 

3.1.1. On the set G = IZ x { -1, I} we define an operation * by the rule (m, a) * 
(n, b) = (m +an, ab). Is this operation associative or commutative? Has 
it an identity element? Which elements have inverses? 

3.1.2. On a set of four elements define a commutative, associative binary oper
ation having an identity element. 

3.1.3. On the set IZ define an operation j_ by the rule al_b = a2 + b2 , where 
a, b E Z. Is this operation associative or commutative? Has it an identity 
element? 

3.1.4. On the set Q x Q define an operation • by (a, b) • (c, d) = (ac, b +ad). 
Is this operation associative or commutative? Has it an identity element? 

3.1.5. On the set ~ define an operation • by the rule a • b = a + b + ab. 
Prove the following: 

(i) a • (b • c)= (a • b) • c for all a, b, c E R 

(ii) a • b = b • a for all a, b E R 

(iii) If a =1 -I , then a • b = a • c if and only if b = c. 

(iv) Has this operation an identity element? 

(v) Which elements have inverses? 

3.1.6. On the set IZ define an operation l_ by a l_ b = 4a + b, where a, b E z. 
Is this operation associative or commutative? Has it an identity element? 

3.1.7. On the set ~ x ~ define an operation • by the rule (a, b) • (c, d) = 
(ac- bd, be+ ad). Is this operation associative or commutative? Has it 
an identity element? 

3.1.8. Let M = { u, x, y, z}. On M define a binary algebraic operation such that 
it will be commutative, associative and for which there is an identity 
element, but M is not a group. 

3.1.9. Let M = {u, x, y, z}. Define a binary algebraic operation on M such that 
M is a group. 

3.1.10. On the set M we define an algebraic binary operation .-, by a.-, b = a 
for arbitrary a, b E M. Prove that M is a sernigroup. Does it have an 
identity element? If yes, which elements have inverses? 

3.1.11. Let M be a set and let S = 23(M). Is S a sernigroup under the opera
tion n? Is S a semigroup under the operation U? Are these semigroups 
isomorphic? 
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3.1.12. Let M = {x, y, z}. A binary algebraic operation is defined by the table 
X y Z 

x x y z . Is M a group? 
y y Z X 
Z Z X y 

3.1.13. Define the binary operation t on JR. x JR. by the rule (a, b) t (c, d) = 
(ac- 2bd, be+ ad). Is the set JR. x JR.\{(0, 0)} a group under this opera
tion? 

3.1.14. Define binary operations T, &, and • on Q by the rules aT b = a - b + 
ab, a &b = 4<a +b +ab), a•b =~(a+ b). 
Of these operations which are associative or commutative? Which have 
an identity element? 

3.1.15. Define a binary operation T on JR. by the rule 
aT b = pa + qb + r. For which fixed p, q, r, is this operation associa
tive? 

3.1.16. Let Q* be the set of all nonzero rational numbers. Which of the following 
properties hold for the operation of division? 

(i) a 7 b = b 7 a. 
(ii) (a 7 b) 7 c =a 7 (b 7 c). 

(iii) ((a 7 b) 7 c) 7 d =a 7 (b 7 (c 7 d)). 

(iv) If a 7 b =a 7 c, then b =c. 

(v) If b 7 a = c-:- a, then b = c. 

3.2 BASIC PROPERTIES OF FIELDS 

Having introduced the concept of a binary algebraic operation in the previous 
section, we can now introduce further algebraic structures. However, since our 
very next goal is to introduce the main ideas of linear algebra, including vector 
spaces over fields, we will focus on the structures (fields) whose properties are 
needed for this. We will study other algebraic structures later in the book. 

3.2.1. Definition. A set D with two binary algebraic operations, addition and 
multiplication, is called a division ring if it satisfies the following properties: 

(i) the addition is commutative, so 

x+y=y+x 

for all elements x, y E D; 
(ii) the addition is associative, so 

x + (y + z) = (x + y) + z 

for all elements x, y, z E D; 
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(iii) D has a zero element, Ov, an element with the property that 

x + Ov = Ov + x = x 

for all elements x E D; 

(iv) each element x E D has an additive inverse (the opposite or negative 
element), -x E D, an element with the property that 

x + (-x) = Ov; 

(v) the distributive laws hold in D, so 

x(y + z) = xy + xz and (x + y)z = xz + yz 

for all elements x, y, z ED; 

(vi) the multiplication is associative, so 

x(yz) = (xy)z 

for all elements x, y, zED; 

(vii) D has a (multiplicative) identity element, e =f. Ov, an element with the 
property that 

xe =ex= x 

for each element x E D; 

(viii) each nonzero element x E D has a multiplicative inverse (the reciprocal), 
x- 1 E D, an element with the property 

-1 -1 
XX =X X= e. 

There are several points that we should mention here. When we think of D, 
together with the operation of addition only, then we often denoteD by D+ in this 
case and call D+ the additive group of the division ring. Likewise, when we only 
wish to consider the operation of multiplication we talk about the multiplicative 
group of the division ring D. This is the set of nonzero elements of D, which 
we denote by U (D) or Dx, under the operation of multiplication. 

We also make a remark concerning notation. When 0 D =f. x E D we think 
of x-1 as "x inverse." When D = Q, the set of rational numbers for example, 
then x- 1 is the usual reciprocal of x, namely ljx. In general, however, in a 
division ring D, it is usual to write the inverse of x as x- 1 and not as ljx. 

The existence of opposite elements allows us to introduce the operation of 
subtraction into division rings by means of the rule 

a- b =a+ (-b). 
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There are a number of elementary consequences of this definition which, 
although easy to prove, require rigorous proof, which we now supply. 

3.2.2. Proposition. Let D be a division ring. Then 

(i) a · Ov = Ov ·a = Ov; 

(ii) a( -b) = ( -a)b = -ab,for all a, bE D; 
(iii) a(b- c)= ab- ac and (a- b)c = ac- be, for all elements a, b, c E D. 

Proof. In fact, for each x E D we have x + Ov = x. By the distributivity prop
erty we have 

ax = a (x + 0 D) = ax + a · 0 v. 

Since the element ax has a negative, -ax E D, adding it to both sides of this 
equation and using the associative property appropriately, we have 

0 v = -ax +ax = -ax +ax + a · 0 v = 0 v +a · 0 v = a · 0 v, 

and, by a similar argument, Ov ·a = Ov. 
It follows from the definition of the negative and the distributive law that 

Ov =a· Ov = a(b +(-b))= ab +a(-b), for all a, bE D. 

Thus a( -b) is the negative of ab which means that a( -b) = -(ab) = -ab and 
we can show similarly that ( -a)b = -ab. 

We can now connect subtraction and multiplication using a variation of the 
distributive law since 

a(b- c)= a(b + (-c))= ab +a( -c)= ab + ( -ac) = ab- ac, 

and similarly 
(a- b)c = ac- be. 

Next we have some standard multiplicative properties. 

3.2.3. Proposition. Let D be a division ring. 

(i) If ab = Ov, then either a = Ov orb = Ov. 

(ii) If ab = ac and a =1- 0 v, then b = c (left cancellation). 

(iii) If ba = ca and a =1- Ov, then b = c (right cancellation). 
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Proof. 
(i) Suppose that a =f. 00 . Then a-1 exists and we now have 

so that (i) follows. 
(ii) If ab = ac, then 00 = ab- ac = a(b- c), by Proposition 3.2.2. Since 

a =f. Oo, it follows from (i) that b- c = 00 , and hence b =c. 
(iii) This can be proved similarly. 

Notice that Proposition 3.2.3(ii) tells us that we can cancel in the division 
ring D. 

3.2.4. Definition. A division ring D is called a field, if the multiplication of its 
elements is always commutative. Thus a field has the additional property that 
xy = yx for all elements x, y E D. 

The sets Q and lR of rational and real numbers with the natural operations of 
addition and multiplication are well-known important examples of fields. 

Our next example is that of the smallest field. Put lF 2 = {0, 1} and define the 
operation of addition and multiplication by the following rules: 

+ 0 
0 0 
1 1 

0 1 
1 and 0 0 0. 
0 1 0 1 

It is easy to prove that lF 2 is a field, our first example of a finite field. We can 
extend this as given below. 

Let p be a prime and let lF P = {0, 1, 2, ... , p - 1}. We now define the opera
tions of addition and multiplication (denoted by EB and®, for now, respectively), 
by the following rules: 

Let 0 =f. k, m S p- 1. If k + m < p, then put k EB m = k + m. Suppose 
that k + m:::: p. By Theorem 1.4.1, there exist positive integers b, r such that 
k + m = bp + r where 0 s r < p and moreover, the numbers b, r are uniquely 
defined. In this case, let k EB m = r. Similarly, if km < p, then let k ® m = km. 
Suppose that km:::: p. By Theorem 1.4.1, there exist positive integers c, u such 
that km = cp + u where 0 S u < p, and moreover, the numbers c, u are uniquely 
defined. In this case, let k ® m = u. 

The zero element here is the number 0. Clearly, also, the negative of k is p - k, 
since (p- k) + k = p, which has remainder 0 when divided by p. Furthermore, 
the equations 

(k + m) + t = k + (m + t), km = mk, (km)t = k(mt), k(m + t) = km + kt 
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imply 

(k EB m) EB t = k EB (m EB t), k 0 m = m 0 k, 

(k 0 m) 0 t = k 0 (m 0 t) and k 0 (m EB t) = (k 0 m) EB (k 0 t). 

Clearly, the number 1 is the identity element of IF p· Finally, let 0 < k < p. Since 
p is a prime, the integers k, p are relatively prime. Then, by Corollary 1.4.7, 
there are integers x, y such that kx + py = 1. It follows that kx = 1 + pz where 
z = -y. If x > p, then x = pc +a where 0 =f. a < p. Then kx = kpc + ka 
and ka = kx- kpc, so that ka = 1 + pz- pkc = 1 + p(z- kc). It follows that 
k 0 a = 1 and hence, a is the multiplicative inverse of k. 

In this way, all conditions of Definition 3.2.1 hold, which proves that IF P is a 
field under the operations EB and 0. 

We are always interested in "subobjects" in algebra. Here, we discuss subfields. 

3.2.5. Definition. Let F be a field. A subset H of F is called a subfield if H is 
stable under both the operation of addition and the operation of multiplication in 
the field F, and H is itself a field under the same operations. 

3.2.6. Theorem. Let F be a field. If H is a subfield ofF, then H satisfies the 
following conditions: 

(SF 1) if x, y E H, then x- y E Hand xy E H; 

(SF 2) if x E H, and x =f. OF, then x-l E H. 

Conversely, suppose that H has at least two elements. If H satisfies conditions 
(SF 1) and (SF 2), then His a subfield of F. 

Proof. Let H be a subfield of F. In particular, H is a stable subset under the 
addition and multiplication of the field F. Also H has a zero element 0 H. Thus, 
x + OH = x for each element x E H. By Definition 3.2.1, there is an element 
-x E F and we have -x + x + OH = -x + x. Hence OF+ OH =OF and it 
follows that 0 H = 0 F. By Definition 3.2.1 again, for each element x E H, there 
is an element y E H such that x + y = OH. As we saw above, OH =OF, and 
therefore y is the negative of x in F and hence y = -x. In particular, -x E H. 
Now if x, y are arbitrary elements of H, then -y E H. Since H is a stable 
subset under addition, x - y = x + (-y) E H. Since H is a stable subset under 
multiplication, xy E H, so that H satisfies (SF 1). By Definition 3.2.1, H has 
an identity element eH =f. OH and eHeH = eH. Since OF= OH, eH =f. OF, and by 
Definition 3.2.1, there is an element y such that yeH = eHy = eF. Then, 

Consequently, eF E H. By Definition 3.2.1, for each nonzero element x E H 
there is an element z E H such that xz = eH. By what we have proved so far 
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eH = eF and hence, z is the multiplicative inverse of x in F. Hence z = x-1 E H. 
Thus H satisfies (SF 2). 

Conversely, suppose that H contains at least two elements and satisfies 
(SF 1) and (SF 2). Then H contains some nonzero element u. By (SF 1) 
OF= u- u E H and by (SF 2) u-1 E H. Application of (SF 1) again implies 
that eF = uu-1 E H. Next, let x be an arbitrary element of H. By (SF 1), 
-x =OF- x E H. Let y be another arbitrary element of H. As above, -y E H. 
Applying (SF 1), we deduce that x + y = x- (-y) E H. Hence H is a stable 
subset under addition. The condition (SF 1) shows that H is a stable subset 
under multiplication. Thus, the restrictions of addition and multiplication to 
H are binary operations on H. Conditions (i), (ii), (v), (vi) of Definition 3.2.1 
and the commutativity of multiplication hold for H, since these laws are valid 
for all elements of F. We have proved that 0 F E H and hence 0 F is the zero 
element of H. We proved above that - x E H for each element x E H, and also 
that eF E H. Thus eF is the identity element for H. Finally, the condition (viii) 
of Definition 3.2.1 follows from the condition (SF 2). 

3.2.7. Corollary. Let F be a field and 6 be a family of subfields of F. The 
intersection n6 of all subfields from this family is also a subfield of F. 

Proof. Let S = n6. Since every subfield contains OF and e, it follows that 
OF, e E S. Next, let x, yES. If U is an arbitrary element of 6, then x- y, 
xy E U, and therefore x- y, xy lie in the intersection, S, of all elements of 6. 
Consequently, x- y, xy E S, which shows that S satisfies (SF 1). By a similar 
argument, S satisfies (SF 2) and we can now apply Theorem 3.2.6 to deduce the 
result. 

It is worth noting that the union of a collection of fields in general is not a 
field. However, suppose that M is a set. A family £ consisting of certain subsets 
of M is called local, if for each pair of subsets H, K E £, there exists a subset 
L E £such that H, K s; L. 

A special type of local family is a family that is linearly ordered. A family £ 
consisting of subsets of M is called linearly ordered if, for each pair of subsets 
H, K E £, either H s; K or K s; H. 

3.2.8. Corollary. Let F be a field and let£ be a local family of subfields of F. 
Then, the union U£ of all subfields from this family is also a subfield of F. 

Proof. Let V = U£ and let x, y E V. There exist subfields H, K E £such that 
x E H, y E K. We choose a subfield L E £that contains both subfields H, K and 
hence x, y E L. Since L is a subfield, x- y, xy E L by Theorem 3.2.6. Hence 
x- y, xy E V. Consequently, V satisfies (SF 1). A similar argument enables us 
to prove that V satisfies (SF 2). Now we can apply Theorem 3.2.6 to deduce the 
result. 
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3.2.9. Corollary. Let F be afield and let£ be a linearly ordered family of sub
fields of F. Then, the union U£ of all subfields from this family is also a subfield 
ofF. 

3.2.10. Corollary. Let F be a field and let 

be an ascending chain of subfields of F. Then U Hn is also a subfield of F. 
nEN 

The smallest fields are of some interest to us, as we observe with the following 
definition. 

3.2.11. Definition. Let F be afield. Then, the intersection Fo of all subfields ofF 
is called a prime subfield. A field F is called prime, ifF coincides with its prime 
subfield. 

It is then easy to see that if F is a prime field, then F has no proper subfields. 
The field Q of rational numbers is a prime field. To see this, let P be some 

subfield of Q. From Theorem 3.2.6, it follows that 1 E P. By (SF 1) we have 
2 = 1 + 1 E P, 3 = 2 + 1 E P, and similarly, for each n EN we haven= n1 E 

P. Again by (SF 1) we see that -n = 0- n E P for each n EN, so that n E P 
for each n E Z. Thus Z s; P. If 0 i= k E Z, then by (SF 2) t E P. Now, for all 
r, k E Z, where k i= 0, we have f = r(t) E P. Thus Q s; P so this shows that 
P=Q. 

The field lF P where p is a prime is a prime field. To see this, let P be some 
subfield of lF p· Theorem 3.2.6 implies that 1 E P. As in the previous paragraph, 
we see that 2, ... , p- 1 E P also and therefore lF P s; P, so P = lF p· 

The field ~ of real numbers is not prime since it contains Q. Between Q and 
~ there are many subfields. Here is a standard method for constructing certain 
subfields of ~ containing Q. However, the reader is cautioned that this by no 
means exhausts the subfields of ~ containing Q. 

Let r be a positive integer and suppose that Jr 'f. Q. Put 

Q(Jr) ={a +bJr I a,b E Q}. 

Let a, fJ be arbitrary elements of Q(Jr), say a =a+ bJr and fJ = a 1 + 
b1 ,Jr. Easy computations show that 

a- fJ =(a- aJ) + (b- bJ),Jr and a{J = (aa1 + bb1r) + (ab1 + baJ)Jr. 

It follows that a - {3, a{J E Q(Jr). Clearly, 1 E Q(Jr). Also if a i= 0, then 
a2 

- rb2 i= 0 since Jr 'f. Q so 

a ( -b ) y = 2 b2 + 2 b2 Jr E Q(Jr). a -r a -r 



126 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

By direct computation it is easy to verify that ay = ya = 1, soy = a- 1• Then 
Theorem 3 .2.6 shows that Q(.Jr) is a subfield of ffi. called a real quadratic field. 

The construction of Q(.Jr) can be generalized as follows: If F is a subfield 
of a field K, then we say that K is an extension of F. 

When F is a sub field of a field K and a is an element of K, let 9J1 be the 
family of subfields of K which contains both F and a. Put F(a) = n9J1. By 
Corollary 3.2.7, F(a) is a subfield of K and, by its definition, F(a) is the least 
subfield containing both F and a. Thus F(a) is an extension of F. 

3.2.12. Definition. Let F be a subfield of a field K and let a be an element of K. 
The subfield F(a) is called a simple extension of the field F. 

We also say that F(a) is the field obtained from F by adjoining a. 
Consequently, Q(.Jr) is an extension of the prime field Q, by adjoining the 

element Jr. It is very easy to generalize this idea. Let F be a subfield of a field 
K and let M be a subset of K. Let 9J1 be the family of subfields of K that 
contains F and M. Put F(M) = n9J1. By Corollary 3.2.7, F(M) is a subfield of 
K and, by its definition, F(M) is the smallest subfield which contains both F 
and M. 

3.2.13. Definition. Let F be a subfield of afield K and M be a subset of K. The 
subfield F(M) is called the extension of the field F, obtained by adjoining the set 
M to F. 

We now return to prime subfields and note that the structure of the prime sub
field significantly influences the structure of the entire field. To see this, consider 
the subset Ze = {ne I n E Z}, which we identify with the set of integer multi
ples of the identity. Two cases arise. If ne =f. ke whenever n =f. k, the equation 
ne = Op is possible only when n = 0. 

The second alternative is that there are integers n, m such that n =f. m but 
ne =me. One of n, m is greater than the other and we may suppose that n > m. 
Then n- m > 0 and from the equation ne =me we see that (n- m)e = Op. Let 

P = {k E N I ke = Op }. 

The subset P has a least element, t, say, so that t is the least positive integer 
such that te = Op. We note that t must be prime. Indeed, if this is not the case, 
then t = sr where 1 < s < t and 1 < r < t. It follows from the definition oft 
that se =f. Op andre =f. Op. Then 

(se)(re) = (sr)(ee) = (sr)e = te = Op, 

which gives a contradiction to Proposition 3.2.3. Consequently, t must be prime. 
In this case, for each element a E F, we have 

ta = t(ea) = (ea + · · · + ea) = (e + · · · + e)a = (te)a = Op. 
'-.,..--' 
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3.2.14. Definition. Let F be afield. lfne =1- ke whenever n =1- k, then we will say 
that the field F has characteristic 0 and write char( F) = 0. If there is a prime 
p such that pe =OF, then we will say that the field F has characteristic p and 
write char(F) = p. 

Suppose now that char( F) = p > 0. Let n be an arbitrary integer. By 
Theorem 1.4.1, there are integers q, r such that n = qp + r where 0::::; r < t. 
We have 

ne = (qp + r)e = qpe + re = q(pe) + re = qOF + re =OF + re = re. 

It follows that 

Ze ~ {Oe =OF, le = e, 2e, ... , (p- l)e}. 

Using the same argument we see that Oe =OF, le = e, 2e, ... , (p- l)e are all 
distinct and it follows that 

Ze = {Oe =OF, le = e, 2e, ... , (p- l)e}. 

Thus, the prime subfield of a field F of characteristic p is lF p· 

We next consider certain mappings of fields. It makes sense just to consider 
mappings of fields that keep the algebraic structure of the field intact. We have 
seen this kind of idea before. 

3.2.15. Definition. Let F, K be fields. The mapping f : F ---+ K is called a 
homomorphism if it satisfies the conditions 

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) 

for all elements x, y E F. 

An injective homomorphism is called a monomorphism and a surjective homo
morphism is called an epimorphism. A bijective homomorphism is called an 
isomorphism. 

Iff : F ---+ K is an isomorphism, then as we noted in Section 3.1 the map
ping f- 1 : K ---+ F is also an isomorphism. The fields F and K are called 
isomorphic if there exists an isomorphism mapping F to K and, in this case, we 
write F ;:::: K. Clearly, the identity permutation t: F : F ---+ F is one example of 
an isomorphism. 

It is very easy to see that if f : F ---+ K, g : K ---+ L are homomorphisms 
of fields then the product go f : F ---+ L is a homomorphism. If f : F ---+ K 
is the mapping defined by the rule f(x) =OK for each element x E F, then 
f is a homomorphism called the zero homomorphism. 

3.2.16. Theorem. Suppose that F, K are fields and let f : F ---+ K be a homo
morphism. The following assertions hold: 
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(i) /(OF)= OK. 

(ii) /( -x) =- f(x) for all x E F. 

(iii) f(x- y) = f(x)- f(y) for all x, y E F. 

(iv) Iff is a nonzero homomorphism, then f(e) is the identity element of the 
field K. 

(v) Iff is a nonzero homomorphism and x is a nonzero element of F, then 
f(x-1) = (f(x))-1. 

(vi) Let H be a subfield of F. Iff is a nonzero homomorphism, then f(H) is a 
subfield ofthefield K. In particular, Im f =/(F) is a subfield of K. 

(vii) Iff is a nonzero homomorphism, then f is a monomorphism. In particular, 
f(F) is isomorphic to some subfield of K. 

Proof. 
(i) We have x +OF = x for each x E f. Then 

f(x) +/(OF)= f(x +OF)= f(x). 

Since f(x) has a negative, - f(x), in K, we add - f(x) to each side of this 
equation to obtain 

from which we obtain /(OF)= OK. 
(ii) From the definition of negative element we have x + ( -x) =OF. Thus, 

OK= /(OF)= f(x + (-x)) = f(x) + f(-x) = f(-x) + f(x). 

This equation shows that the element f ( -x) is the negative of f (x ), which is 
to say that f(-x) =- f(x). 

(iii) We have 

f(x- y) = f(x + (-y)) = f(x) + /(-y) 

= f(x) + (-f(y)) = f(x)- f(y). 

(iv) Suppose that f(e) =OK. For each element x E F we have 

f(x) = f(xe) = f(x)f(e) = f(x)OK =OK, 

which is a contradiction, since f is not the zero homomorphism. Hence f(e) is a 
nonzero element of K and thus f(e) has a multiplicative inverse inK. We denote 
the identity element of K by e1• From the definition of the identity element, it 
follows that 

f(e) = f(ee) = f(e)f(e). 
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Multiplying both sides of this equation by f(e)- 1, we obtain 

f(e)- 1 f(e) = f(e)- 1 f(e)f(e) 

and hence conclude that f(e) = e,. 
(v) The proof is similar to the proof of (ii). 
(vi) Let u, v E f(H). Then, there are elements x, y E H such that u = f(x) 

and v = f(y). Using (iii), we obtain u- v = f(x)- f(y) = f(x- y). Since 
H is a subfield, x- y E H, so that f(x- y) = u- v E f(H). 

Similarly, uv = f(x)f(y) = f(xy). Since H is a subfield, xy E H, so that 
f(xy) = uv E f(H) and f(H) satisfies the condition (SF 1). 

Suppose now that u =f. 0 K. Then (i) shows that x =f. 0 F. Since H is a 
subfield, x-1 E H, and by (v), u-1 = f(x)- 1 = f(x- 1) E f(H) and therefore 
f(H) satisfies the condition (SF 2). By Theorem 3.2.6, f(H) is a subfield 
of K. 

(vii) Suppose, for a contradiction, that there are elements x, y E F such 
that x =f. y but f(x) = f(y). Then OK= f(x)- f(y) = f(x- y). Put 
z = x- y. Since x =f. y it follows that z =f. OF and hence z has an inverse. By 
(iv), 

which gives us the desired contradiction. The result follows. 

EXERCISE SET 3.2 

3.2.1. Let P = {x + y./2 I x, y E Q}. Prove directly that P is a subfield of R 
Find all isomorphisms f : P ~ P, satisfying the condition f (x) = x 
for every element x E Q. 

3.2.2. Let P = {x + y./2 I x, y E Q}. Solve the equation x 2 - x- 3 = 0 in P, 
if possible. 

3.2.3. On the set JR. x JR. we define operations of addition and multiplica
tion by (a, b)+ (c, d)= (a+ c, b +d), (a, b)(c, d)= (ac- 3bd, 
ad+ 2bd +be). Is JR. x JR. a field? Find solutions of the equation 
X 2 + 1 = 0 in JR. x R 

3.2.4. Let lFs = {0, 1, 2, 3, 4} be a field with five elements. Fill out the multi
plication and addition tables of its elements: 

+ 0 2 3 4 X 0 1 2 3 4 
0 0 2 3 4 0 0 0 0 0 0 

2 1 0 1 2 3 4 
2 2 2 0 2 3" 
3 3 3 0 3 
4 4 3 4 0 4 
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3.2.5. Let lF 4 = {0, 1, u, v} be a field. Fill out the multiplication and addition 
tables of its elements: 

+ 0 u v X 0 u v 
0 0 u v 0 0 

1 2 1 V. 

u u u u 
v v 0 v 0 u 

3.2.6. Let F be a field and let f : F ---+ F an isomorphism. Prove that the 
subset K = {x E F I f(x) = x} is a subfield of F. 

3.2.7. L(e~: ~ ili~:ub~)t o~::~:.~:,::t:n:i:i:i:~ =~c~ of ilie fonn 
-d -c -b a 

3.2.8. Let lFs = {0, 1, 2, 3, 4} be a field. In this field solve the equation 
17x = 3. 

3.2.9. Let P = {x + y,fS I x, y E Ql}. Prove directly that P is a subfield of R 
Prove that the mapping f: P ---+ P, defined by the rule f(x + y,fS) = 
x- y,JS, is an isomorphism. 

3.2.10. Let P be the subset of M2 (Ql), consisting of all matrices of the form 

( ;y ~). Prove that P is a field relative to the regular operations of 

matrix addition and multiplication. 

3.2.11. Prove that the fields of the problems 3.2.9 and 3.2.10 are isomorphic. 

3.2.12. Let a be a real root of the equation x 3 = 2. Put P = {x + ya + za 2 I 
x, y, z E Ql}. Prove directly that P is a subfield of R Prove that every 
element of P can be uniquely represented in the given form. Find (1 -
a+ a 2)-1 in the form x + ya + za2. 

3.2.13. Let F be a field of prime characteristic p and let q = pk where k is a 
positive integer. Prove that (x + y)q = xq + yq for all x, y E F. 

3.2.14. Let F be a finite field and let p = char(F). Prove that the mapping 
x ---+ x P, x E F, is an isomorphism. 

3.3 THE FIELD OF COMPLEX NUMBERS 

Probably the most important field, having various applications in distinct 
branches of mathematics, is the field of complex numbers. Complex numbers 
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were invented in connection with the problem of finding roots of polynomials 
with real coefficients. The polynomial x 2 + 1 is the simplest example of a 
polynomial having no real roots. Finding the roots of this polynomial inevitably 
leads us to consider the expression .J=T. 

Historically, however, Italian mathematicians flirted with the idea of complex 
numbers in connection with the formulae they developed expressing the roots 
of polynomials of degrees 3 and 4 in terms of real coefficients. These inves
tigations were conducted by the great Italian mathematicians Niccolo Fontana 
Tartaglia (1499-1557), Gerolamo Cardano (1501-1576), and Lodovico Ferrari 
(1522-1565). They formally worked (under certain restrictions) with expressions 
containing square roots of negative numbers, but it was a follower of Cardano, 
Rafael Bombelli (1526-1572), who exhibited complex numbers in a form that 
is close to the modem one. However, the notion of complex numbers was essen
tially ignored by most mathematicians of the time and there followed a very long 
episode of tension between mathematicians who supported the idea of a complex 
number and opponents who regarded the whole theory as hogwash. The key con
cept here is the concept of .J=T and only Carl Frederic Gauss was able to offer 
a reasonable and acceptable explanation for it. It was only when developments in 
mathematics and physics produced a variety of applications of complex numbers 
that complex numbers came into common use. 

The idea of a field extension, introduced in the previous section, allows us to 
define the complex field in the following natural way. 

3.3.1. Definition. The extension of the field of real numbers obtained by adjoining 
a root of the polynomial x 2 + 1 will be called the field of complex numbers. We 
denote this field by C and the root of the polynomial x 2 + 1 by i. In this notation, 
c = JR:.(i). 

When we first defined field extensions, we assumed that, to form the extension, 
we adjoined a set of elements to the original field in such a way that the original 
field and the set adjoined were subsets of some larger field. In the case of the 
field of complex numbers, however, we do not know beforehand if there actually 
exists a field containing the field of real numbers and the number i. Thus, the 
first question one could address here is the question concerning the existence of 
the field of complex numbers. For the moment, we assume that this field exists 
and find the form of its elements. So, let F be a field having a subfield JR:., and 
containing i as an element. If K is a subfield of F such that K 2 JR:. and i E K 
then, together with each real number x, the field K also contains the element xi. 
For the same reason, if x, y E JR:., then x + yi E K. In this way, the subfield C 
which, by our definition, is the intersection of all fields K containing the field JR:. 
and the element i, contains the element x + yi. Let 

S = {x + yi I x, y E JR:.}. 
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We shall show that S is a subfield using the criterion we proved in the previous 
section. If a = x + yi, f3 = u +vi then 

a - f3 = (x - u) + (y - v)i E S and 

af3 = (x + yi)(u +vi) = (xu- yv) + i(yu + xv) E S. 

We note that the latter computation uses the fact that i 2 = -1. From the definition 
of a field, it follows that the identity element (the number 1) of the field~ is the 
multiplicative identity of the entire field F. However, 1 = 1 + Oi E S. Similarly, 
i = 0+ liES. Finally, let 0 =f. a= x + yi E S. Then at least one of x, y is 
nonzero and hence x 2 + y2 =f. 0. We have 

(x + yi)(x - yi) = x 2 + i, 

which leads us to the equation 

. -1 X -y . 
(x + yt) = 2 2 + 2 2 1 E S. 

X +y X +y 

Thus, all conditions of Theorem 3.2.6 are valid for S, and hence S is a subfield of 
the field F. By the definition of S, we have that S 2 ~and i E S which means 
that S 2 C = ~(i). On the other hand, we proved that S s; C, which implies 
that 

C = {x + yi I x, y E ~}. 

Suppose that x + yi = u +vi for some real numbers x, y, u, v. Then x-u= 
( v - y )i. Since i ¢:. ~. this equality is possible only in the case when v - y = 0 
and x-u= 0. Therefore x = u and y = v. This shows that every complex 
number can be uniquely represented in the form x + yi, where x, y are real 
numbers. Here x is called the real part of the complex number x + yi, while yi 
is called its imaginary part. 

We shall use the arguments above to prove the existence of the field of complex 
numbers. We begin with a commonly used representation of complex numbers 
as points of the coordinate plane; this gives us a geometric model of the field 
of complex numbers. To do this, we consider the set ~ x ~ of all points a = 
(x, y), where x, y E ~. with operations of addition and multiplication given by 
the following rules. 

If a= (x, y), f3 = (u, v) E ~ x ~.then we define 

a+ f3 = (x + u, y + v) and af3 = (xu - yv, yu + xv). 

We will call the set ~ x ~. together with these operations, the complex plane. 
We now consider properties of these operations, which are induced by corre

sponding properties of real numbers. 
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The operation of addition is commutative since 

a + fJ = (x + u, y + v) = ( u + x, v + y) = fJ + a. 

The addition is associative. To see this, let y = (z, w). Then 

(a + {J) + y = ((x + u) + z, (y + v) + w) 

= (x + (u + z), y + (v + w)) =a+ ({J + y), 

using the fact that + is an associative operation in R 
There exists a zero element in ffi. x R the pair (0, 0), since 

(x, y) + (0, 0) = (x + 0, y + 0) = (x, y). 

For each pair (x, y) there exists an opposite element; this is the pair (-x, -y) 
since 

(x, y) + (-x, -y) = (x + (-x), y + (-y)) = (0, 0). 

The operation of multiplication is commutative since 

a{J = (xu- yv, yu + xv) and {Ja = (ux- vy, uy + vx), 

which means that 
a{J = {Ja. 

The multiplication is associative since 

(a{J)y =(xu- yv, yu + xv)(z, w) 

=((xu- yv)z- (yu + xv)w, (yu + xv)z +(xu- yv)w) 

= (xuz- yvz- yuw -xvw, yuz +xvz +xuw- yvw). 

On the other hand, 

a({Jy) = (x, y)(uz- vw, vz + uw) 

= (x(uz- vw)- y(vz + uw), y(uz- vw) + x(vz + uw)) 

= (xuz - xvw - yvz - yuw, yuz - yvw + xvz + xuw). 

By comparing the two expressions, it follows that 

(a{J)y = a({Jy). 
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Next, we note that there exists a multiplicative identity element, namely the 
pair ( 1, 0) since 

(x, y)(l, 0) = (xl- yO, yl + xO) = (x, y). 

For each pair (x, y) =I= (0, 0) we note that x 2 + y2 =I= 0 and there exists an 
inverse element, the pair 

since 

( 

X -y ) 
x2 + y2 ' x2 + y2 ' 

( ) ( x -y ) _ (x2 + y2 
yx- xy) _ (1 O) 

x' Y x2 + y2 ' x2 + y2 - x2 + y2 ' x2 + y2 - ' · 

The distributive property connects addition and multiplication as follows: 

Also, 

(a+ f3)y = ((x, y) + (u, v))(z, w) = (x + u, y + v)(z, w) 

= ((x + u)z - (y + v)w, (y + v)z + (x + u)w) 

= (xz + uz - yw- vw, yz + vz + xw + uw). 

ay + f3y = (x, y)(z, w) + (u, v)(z, w) 

= (xz - yw, yz + xw) + (uz - vw, vz + uw) 

= (xz - yw + uz - vw, yz + xw + vz + uw). 

By comparing these, we see that 

(a+ f3)y = ay + f3y. 

Consequently, ~ x ~ is a field with the given operations of addition and 
multiplication. 

The subset ~ x {0} = {(x, 0) I x E ~} is a subfield of ~ x R In fact, it is 
infinite and, using the definitions of addition and multiplication, we have 

(x, 0)- (y, 0) = (x- y, 0) E ~ x {0} and 

(x, O)(y, 0) = (xy- 0 · 0, Oy + xO) = (xy, 0) E ~ x {0}. 

Also, 

if (x, 0) =I= (0, 0), then x =1= 0 and (x, 0)-1 = (x- 1, 0) E ~ x {0}. 

It follows, using Theorem 3.2.6, that ~ x {0} is a subfield of ~ x R 
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Now we identify this subfield with the field R Such an identification of the 
points on the coordinate axes with the corresponding real numbers is a commonly 
used procedure, but here we formally justify it. 

We define a mapping f : ffi.-----+ ffi. x {0} by the rule f(x) = (x, 0). We have 

f(x + y) = (x + y, 0) = (x, 0) + (y, 0) = f(x) + f(y) and 

f(xy) = (xy, 0) = (x, O)(y, 0) = f(x)f(y). 

The mapping f is clearly bijective and therefore f is an isomorphism of these 
fields. Hence, the subfield ffi. x {0} is isomorphic to the field ffi. of real numbers 
and this allows us to identify the pair (x, 0) with the real number x. 

We note, using the definitions, that 

(x, y) = (x, 0) + (0, y) = (x, 0) + (0, l)(y, 0). 

Also, 
(0, 1)2 = (-1, 0), so (0, 1)2 + (1, 0) = (0, 0). 

Hence if we put i = (0, 1), then i 2 = (-1, 0). Identifying the pair (-1, 0) with 
the real number -1, we have 

(x, y) = (x, 0) + (0, l)(y, 0) = x + yi. 

Therefore, our recently constructed field, ffi. x ffi., contains ffi. (more precisely, an 
isomorphic copy of ffi.) as a subfield. In addition, this field contains a root of the 
polynomial x 2 + 1. Hence the field ffi. x ffi. contains the subfield ffi.(i) = C. By 
our construction, this field coincides with C. 

Now we introduce a further model of the complex field, based on matrices, 
so we call it the matrix model of the field of complex numbers. In order to do 
this we consider the subset P of the set of matrices, M2(ffi.), consisting of all 
matrices of the type 

The equations 

(
X y) + ( U 
-y x -v 

v) = ( x + u y + v) and 
U -y- V X+ U 

(~y ~) (~v v) ( xu - yv xv + yu) 
u - -xv- yu xu - yv 

( 
xu - yv xv + yu) 

- -(xv + yu) xu - yv 

show that the subset P is stable under both addition and multiplication of matri
ces. Therefore, these operation induce the respective binary operations on P. 
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Addition of elements of P is commutative and associative, because it is com
mutative and associative for all elements of M2(JR;). The zero matrix belongs to 
P and hence it is the zero element for P. Furthermore, 

_ (X y) =(-X 
-y X y 

-y) E P. 
-x 

The operations of addition and multiplication are connected using the distributive 
property of matrix multiplication over matrix addition. Since multiplication is 
associative in M2 (JR;), it is also associative in P. Moreover, 

(~y n (~v 
(~v ~) (~y 

v) (xu- yv 
u - -xv- yu 

y) ( ux- vy 
x - -vx- uy 

xv + yu) and 
xu- yv 

XV+ yu) 
ux- vy ' 

so multiplication is commutative in P. Let 

y = (X y) 
-y X 

be an arbitrary nonzero element of P. Then, at least one of the numbers x, y is 
nonzero and hence det(Y) = x 2 + y2 =I= 0. Thus every nonzero element of P is 
a nonsingular matrix and therefore, has a multiplicative inverse. Computing this 
inverse is very easy here, using the algorithm established in Section 2.5, and we 
see that 

where 
X -y 

u = x2 + y2' v = x2 + y2 . 

This shows that y-I E P and hence that P is a field. 
We now show that the fields P and <C are isomorphic by defining a mapping 

f : <C ~ P using the rule 

f(x+yi)=(x Y). -y X 

This map is easily seen to be bijective. Next, let a = x + yi and fJ = u + vi, 
where x, y, u, v E R Then 

f(a + {J) = f((x + u) + i(y + v)) = ( ~/-uv ~! ~), and 

f(a)+f({J)=f(x+iy)+f(u+iv)=(x y)+(u u)· 
-y x -v v 
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Since the two expressions are the same, we have 

f(a + {3) = f(a) + f(f3). 

Also, 

( . ) ( xu - yv xv + yu) f(af3) = f (xu- yv) + 1 (yu + xv) = 
-xv-yu xu-yv 

= ( x y) ( u u) = f(x + yi)f(u +vi) = f(a)f(f3). -y x -v v 

Thus f is an isomorphism since these equations show that the mapping f respects 
the operation of addition and multiplication. Consequently, the field C of complex 
numbers is isomorphic to the constructed field P. Here f (JR) = IlU is the set of 
all scalar matrices, which clearly is a subfield of P. Furthermore 

so we can identify the scalar matrix xI with the real number x and we can 
identify U with i since 

In particular, P contains a root of the matrix polynomial I X2 + I. Now we can 
obtain the usual matrix representation of a complex number: 

(~y ~)=(~ ~)+(~y ~) 
=(~ ~)+(~ ~)(~1 ~)=xi+(yl)U. 

Although complex numbers do not admit a natural ordering as the reals do, 
we can compare complex numbers according to their length. 

3.3.2. Definition. Let a = x + yi be a complex number. The nonnegative real 
number J x2 + y2 = lx + yi I is called the modulus or absolute value of the num
ber a. 

We next introduce the notion of complex conjugation. 

3.3.3. Theorem. Let !J..: C ---+ C be the mapping defined by a (x + yi) = x - yi. 
Then !J.. is an isomorphism. Moreover, !J..2 = ec and /::i(a) =a for each a E R 
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Proof. Indeed, 

~(x + yi + u +vi)= ~((x + u) + (y + v)i) = (x + y)- (y + v)i 

= (x- yi) + (u- vi) = ~(x + yi) + ~(u +vi). 

Also ~((x + yi)(u +vi))= ~(<xu- yv) + (xv + yu)i) 

= (xu- yv)- (xv + yu)i 

= (x - yi)(u - vi) = ~(x + yi)~(u +vi). 

The mapping ~ is easily seen to be injective and surjective so ~ is an iso
morphism. Finally, 

~2 (x + yi) = ~(~(x + yi)) = ~(x- yi) = x + yi = ec(x + yi), 

and from the definition of~ it follows that ~(a) =a for every a E R 

The numbers x + yi and x - yi are called complex conjugates. We will denote 
the complex conjugate of a complex number z by z. Thus if z = x + yi, then 
z = x- yi and 

~(x+yi) =x+yi. 

Clearly, 
(x + yi)(x- yi) = x 2 + l = lx + yil 2

. 

Let r = lx + yi I = J x 2 + y2 2: 0. We can write the complex number x + yi in 
the form 

. (X y ·) x + yz = r --; + --;z 

and 

Therefore, there exists a unique angle¢ such that cos¢ = ~ and sin¢ = ~, where 
0 S ¢ < 2n. The angle ¢ is called the argument of the complex number x + yi 
and is denoted by arg(x + yi). Thus we have 

x + y i = r (cos ¢ + i sin ¢). 

This form is called the trigonometric, or modulus-argument, form of the com
plex number x + yi. The value of r in this expression is uniquely determined by 
x andy. It is, however, well-known that if¢ is an angle then the trigonometric 
functions evaluated at ¢ and ¢ + 2kn are always the same, for each k E Z, which 
is our reason for restricting ¢ to lying in the interval [0, 2n). 
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This form is very convenient in problems connected with multiplication of 
complex numbers. Indeed, let 

Then 

x + y i = r (cos ¢ + i sin¢) and u + vi = q (cos 1/J + i sin 1/J). 

(x + yi)(u +vi)= r(cos¢ + i sin¢)q(cos 1/J + i sin 1/J) 

= rq((cos¢cos1/J- sin¢sin1/J) 

+ i (sin ¢ cos 1/J + cos¢ sin 1/J)) 

= rq(cos(¢ + 1/J) + i sin(¢+ 1/J)), 

using the well-known trigonometric identities for the angle sum. In this way, we 
obtain the very convenient formulae 

l(x + yi)(u + vi)l = rq = lx + yillu +vii and 

arg( (x + yi)(u +vi)) = ¢ + 1/J = arg(x + yi) + arg(u +vi). 

These formulae can be extended to account for an arbitrary number of factors. 
In particular, for all k E N, using induction we have 

(r(cos¢ + i sin¢))k = rk(cos¢ + i sin¢)k = rk(cosk¢ +sink¢), 

which can be written in the form 

l<x+yi/l = lx+yilk andarg((x+yi/) =karg(x+yi). 

These formulae constitute what is known as de Moivre's theorem and they 
allow us to take nth roots whenever n E N. 

3.3.4. Theorem. Let a = x + y i = r (cos ¢ + i sin ¢) be an arbitrary complex 
number. Then, there exist exactly k different complex numbers u + vi = q (cos; + 
i sin;) with the property that (u + vi)k = x + yi (the complex kth roots of x + 
yi ). Furthermore, the values of q and; are obtained via the formulae 

q = 1:/T, the positive kth root of r, 
and 

¢+2nt 
; = k , where 0 :S t < k. 

Proof. By de Moivre's theorem, (q(cos; + i sin;) )k = r(cos ¢ + i sin¢), so we 
obtain ~k = r and k; = ¢ + 2n s, where s E N. It follows that q = 1:/T and 
; = <P+k ns. By Theorem 1.4.1, we can writes= km + t, where 0 :S t :S k- 1. 
Therefore 

¢ + 2ns ¢ + 2n(km + t) ¢ + 2nt 
---= = +2nm. 

k k k 
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Then 

¢ + 2n s ¢ + 2m . ¢ + 2n s . ¢ + 2m 
cos = cos and sm = sm , 

k k k k 

where 0 s t s k - 1. If cos x = cos 1/t and simultaneously sin x = sin 1/t, then 
x - 1/t = 2n j for some integer j. This means that the numbers 

( 
¢+2m ¢+2m) l:lr cos k + i sin k , where 0 s t s k - 1, 

are distinct. Thus we have k different kth roots of x + yi. 
If k E N, then the solutions of i = 1 are called kth roots of unity. 

3.3.5. Corollary. The kth roots of unity are 

2nj . . 2nj 
"· = cos -- + 1 sm --51 k k , 

where 0 s j < k. 

Certain kth roots of unity are fundamental, in the sense that they generate the 
other kth roots of unity. 

3.3.6. Definition. A kth root of unity, e, is called primitive, if it is not a dth root 
of unity whenever d < k. 

3.3.7. Lemma. A kth root of unity, e, is primitive if and only if each kth root of 
unity, x, can be written as x =em, for some positive integer m. 

Proof. Indeed, let e be a primitive root and consider the set 

Suppose that some elements of this set coincide, so that er = es, for certain inte
gers r, s such that 0 s r < s s k - 1. Then es-r = 1 where 0 < s - r s k - 1, 
which contradicts the fact that e is a primitive kth root of unity. Thus the ele
ments e0 = 1, e1 = e, e2, ... , ek-I are all different. Since each of these elements 
is a kth root of unity and since there are precisely k distinct kth roots of unity it 
follows that each kth root of unity, x, is of the form x =em for some positive 
integer m. 

To prove sufficiency we assume that e is not a primitive kth root of unity 
so that there exists a least positive integer n < k such that en = 1. Using the 
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arguments above we see that 

and hence I { s1 I t E Z} I = n. On the other hand, our hypotheses imply that the 
set { s1 I t E Z} contains all kth roots of unity. However, as we saw above, there 
are precisely k distinct kth roots of unity so we obtain a contradiction which 
proves that s is a primitive kth root of unity. 

3.3.8. Theorem. Let k be a natural number and let s be a primitive kth root of 
unity. Then s1 is a primitive kth root of unity if and only ifGCD(k, t) = 1. 

Proof. We suppose first that s1 is a primitive kth root of unity. If d = 
GCD(k, t) =1- 1 then k = dl and t = dr for some r, l E Z. Then (s 1

)
1 = sdrt = 

(skY = 1, so s1 is an lth root of unity where l < k which is a contradiction. 
Thus GCD(k, t) = 1. 

Conversely, let GCD(k, t) = 1. By Corollary 1.4.7 there exist integers u, v 
such that 1 = ku +tv. We now have, since sk = 1, 

Hence s is a power of s1• However, every kth root of unity is a power of s, 

by Lemma 3.3.7, and hence every kth root of unity is a power of s1
• It follows, 

again by Lemma 3.3.7, that s1 is a primitive kth root of unity. 
Finally, we consider an important example of a noncommutative division 

ring, the ring of real quaternions, which was constructed by W. Hamilton in 
1843. This concept evolved from the need of mathematicians wanting to develop 
tools for describing rotations in three dimensional space. Since complex numbers 
effectively helped to understand rotations in the plane, it was natural to expect 
that some generalization of complex numbers would be effective in space. This 
generalization was called the quaternions and the theory behind them became 
important in the development of important concepts such as the vector and scalar 
product of vectors. The creation of the quatemions and other "hypercomplex 
systems" inspired mathematicians to work actively in this area. 

In order to construct the quatemions, we consider the subset IHI of the set 
M2 (CC) consisting of matrices of the type 

where now x, y E CC. Thus if x =a+ bi andy= c + di, then 

y) (a+ bi 
~x - -c+di 

c +di) 
a- bi · 
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We show that lHI is stable under addition and multiplication. Indeed 

( 
x+u y+v ) ( x+u y+v) 

- -(f<.(y) + f<.(v)) t<.(x) + t<.(u) - -t<.(y + v) f<.(x + u) E lHI 

and 

( 
xu- yf<.(v) xv + yt<.(u) ) 

- -f<.(y)u- f<.(x)t<.(v) -t<.(y)v + f<.(x)f<.(u) 

( 
xu- yf<.(v) xv + yf<.(u) ) 

= -t<.(y)t<.(t<.(u))- t<.(x)f<.(v) f<.(x)f<.(u)- f<.(y)t<.(t<.(v)) 

( 
xu- yf<.(v) xv + yf<.(u) ) lHI 

= -t<.(yt<.(u) +xv)) t<.(xu- yf<.(v)) E · 

Since, for all matrices of M2 (C), addition is commutative and associative, mul
tiplication is associative and multiplication is distributive over addition, the 
operations of addition and multiplication in lHI possess these same properties. 
Clearly, the identity matrix I and the zero matrix 0 belong to lHI. It easy to see 
that 

Finally, for an arbitrary nonzero element a of lHI 

and we have 

det(a) = xf<.(x) + yf<.(y) = [x[ 2 + [y[ 2 =I= 0. 
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In particular, the matrix a is nonsingular, and has a multiplicative inverse. By 
Theorem 2.5.3, which holds in the field C, 

-1 ( X 
a = -~(y) 

( 

~X 

y -I det(a) 
~(x)) = ~(y) 

det(a) 

det(a) det(a) 

( 

~X 

~ (y) 

(det(a)) 

-y ) 
E ll:ll, 

~ (det(a)) 
~X 

-y ) de; a) 

det(a) 

and it follows that lHI is a division ring. 
Next, we will determine the natural form to write the elements of ll:ll. Let 

x =a+ bi, y = c + di. Then 

Let 

y ) (a+ bi 
~(x) - -c+di 

c +di) 
a- bi 

(a 0) (bi 0 ) ( 0 c) ( 0 di) 
= 0 a + 0 -bi + -c 0 + di 0 

( 1 0) (i 0) ( 0 1) (0 i) =a 0 1 + b 0 -i + c -1 0 + d i 0 · 

( 1 0) (i 0) ( 0 1) (0 i) I= 0 1 'H = 0 -i 'J = -1 0 'and K = i 0 . 

By direct calculation we obtain the following multiplication chart for the matrices 
I, H, J, K: 

I H J K 
I I H J K 
H H -I K -J 
J J -K -I H 
K K J -H -I 

In particular, HJ = K and JH = - K, so that the multiplication in lHI is noncom
mutative. Hence lHI is a noncommutative division ring, called the ring of real 
quatemions and its elements are called the (real) quatemions. 
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EXERCISE SET 3.3 

Give an explanation of your work in the following exercises. 

3.3.1. Find necessary and sufficient conditions for the product of two complex 
numbers Z!Z2 to be a real number. 

3.3.2. Find Re(a) and lm(a), if a= (2- 3i)4 + (2 + 3i)4 . 

3.3.3. Find Re(a) and lm(a), if a= {J~;)'980 . 

3.3.4. Find (i + 2a2)(i3a 2 - 3), if a = i2l. 

3.3.5. Solve the equation X = -1 - 3X + 2i. 

3.3.6. Solve the equation X2 + X = 1. 

3.3.7. Solve the equation X2 + 5X + 5- 3i = 0. 

3.3.8. Solve the equation X2 +IX+ 11 + i = 0. 

3.3.9. Write in the trigonometric form the number -4 - 4i. 

3.3.10. Write in trigonometric form the number - cos a + i sin a. 

3.3.11. Find the sum of all the 15th roots of unity. 

3.3.12. Find the sum of the primitive 15th roots of unity. 

3.3.13. Given that 1
- ~v'3 is one root of ~- Find all other roots of ~-

3.3.14. Solve the equation X5 + 1 = 0. 

3.3.15. Let a be a complex number with the property ak = 1, where a =I= 1. 
Prove that 1 +a+ a 2 + ... + ak-i = 0. 

3.3.16. Prove the equation Ia + ,tll 2 = (Ia I+ 1,81)2 + 2(la/31 + Re(a/3)) for all 
complex numbers a, ,B. 

3.3.17. Let ¢ : C----+ C be the mapping defined by the rule ¢(z) = 
~~~~.a, b, c, dE C. Find conditions on a, b, c, d for which there are 
numbers z satisfying the equation ¢ (z) = z and find all such z. 

3.3.18. Prove that Q(i) = {a + bi I a, b E Q} is a subfield of C. 

3.3.19. Let x E C\~; prove that ~(x) =C. 



CHAPTER4 

VECTOR SPACES 

Linear algebra is one of the oldest branches of mathematics but it is also a 
branch of mathematics that is still vibrant and very much alive today. Ancient 
manuscripts include problems that could be solved by doing the basic mathemati
cal operations of addition, subtraction, multiplication, and division step-by-step 
so that a solution to an equation such as ax + b = 0 could be obtained. Of course, 
the mathematical language used there was very different from the language we 
use today, but the main ideas were formulated, between 284 and 298 CE, by 
Diophantus of Alexandria, a great Greek mathematician and he is sometimes 
called "the father of algebra." Investigation of properties of the linear function 
f(x) =ax+ b and solutions of the equation mentioned above are at the origins 
of linear algebra. Thus, linear algebra arose as a subject of study because of the 
practical everyday needs of people. For many years progress in linear algebra was 
mainly connected with the problems of solving systems of linear equations. Con
sequently, until the seventeenth century all manuals on algebra were concerned 
with these themes. Investigations of systems of linear equations in n variables 
led Leibniz and Cramer to the concept of a determinant. 

Linear algebra is also very useful in geometry. Inspired by the ideas of Apol
lonius, Fermat and, earlier, Descartes, arrived at the idea of analytical geometry 
and used it to classify plain curves by their degree. They also observed the main 
principle of representation of straight lines in the plane as linear equations and 
the conic sections as presentations of equations of the second degree. Fermat's 
ideas of classification led to the great development of analytical geometry in the 
eighteenth century because of the works of Clairaut, Euler, P. Cramer, Lagrange, 

Algebra and Number Theory: An Integrated Approach. By Martyn R. Dixon, Leonid A. Kurdachenko 
and Igor Ya. Subbotin. Copyright © 2010 John Wiley & Sons, Inc. 

145 



146 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

and others. Linear forms were investigated by the great Swiss mathematician and 
physicist, Euler (1707 -1783), who based his classification of plane curves and 
surfaces on it. Additionally, the theory of differential equations, at the very early 
stages of its development, requires deep study of systems of linear equations. It 
was a very logical step to extend these ideas to arbitrary n-dimensional space, 
which found very important applications in mechanics and physics. The need 
for an algebraic generalization of the theory of functional equations (differen
tial and integral equations) led to the idea of infinite-dimensional vector spaces. 
Currently, linear algebra is a foundation of almost all branches of mathematics, 
theoretical mechanics, physics, mathematical economics, and other sciences. 

4.1 VECTOR SPACES 

One of the main ideas of linear algebra is the concept of the action of a set on 
some other set, sometimes called an outer product or scalar multiplication. The 
origin of this concept is the operation of multiplying a vector by a number. 

4.1.1. Definition. Let M and Q be sets. We define an action (or outer operation 
or scalar multiplication) of Q on M if there is a mapping 

le: Qx M~ M. 

This means that for every ordered pair (a, a), where a E Q, a E M, there corre
sponds a uniquely defined element le(a, a) of M. The element le(a, a) is called 
the composition of the elements a and a. 

The terminology often used is that le(a, a) is a scalar multiple of a. Most 
of the time, we denote the action of the element a on the element a using 
multiplication on the left. Thus, we write le(a, a) more simply as a· a, or just 
aa, the dot usually being omitted. We may also sometimes write the action 
le( a, a) as a · a, where the multiplication is now done on the right. We may then 
refer to a left outer multiplication (respectively a right outer multiplication) or a 
left (right) scalar multiplication. Sometimes an exponential form of writing, a a, 

is used. 
Here are some examples of scalar multiplication. 
Let G be a group, written multiplicatively. Define the action of Z on G by 

(n, g) f---+ gn, where n E Z and g E G. 

If we use additive notation for the binary operation on G, then the scalar 
multiplication would be defined by 

(n, g) f---+ ng, where n E Z and g E G. 
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Next, let M be a set and let Q be a subset of P(M) which, we recall, is the 
set of transformations of M. Define the action of Q on M by 

(f, a)~---+ f(a), where a E M and f E Q. 

Finally, let F be a field and let K be a subfield of F (the case F = K Is 
allowed). Define the action of K on F by the rule 

(b, a)~---+ ba, where bE K and a E F. 

In this case the multiplication defined on F itself becomes the scalar multi
plication of K on F. This may seem a little bit confusing initially, but we hope 
that the context will make our meaning clear. 

4.1.2. Definition. Let M and Q be sets and suppose that a scalar multiplication of 
Q on M is defined. A subsetS of M is called stable under this scalar multiplication 
if a b E S for each element b E S and each element a E Q. 

This means that the restriction to S of a scalar multiplication is again a scalar 
multiplication on S. For instance, in the first example every subgroup of G is 
stable. 

One result that the reader will easily see to be true is the following: 

4.1.3. Proposition. Let M and Q be sets and suppose that a scalar multiplication 
of Q on M is defined. If 6 is a family of stable subsets of M, then the intersection 
n6 of all subsets of this family is also stable. 

The space ffi.3 from analytic geometry is the first natural example of a vector 
space. The elements of this space are called vectors (or free vectors) and in calcu
lus we learn to manipulate and picture these. We can multiply them by numbers 
(scalars) and add them by using the "parallelogram law of vector addition." In 
our general definition, we will substitute real numbers by elements of an arbitrary 
field. Of course, in this more general setting, geometric representations may not 
be as appropriate as they are for ffi.2 and ffi.3 . 

4.1.4. Definition. Let F be a field and let A be a set. Suppose that an additive 
binary operation is defined on the set A and that an action of F on A is also 
defined, which we call (left) scalar multiplication. Then A is a vector space over F 
or an F -space (or, more precisely, a left vector space), if the following conditions 
hold: 

(VS 1) the addition on A is commutative, so 

X+ y = y +X for all X, yEA; 
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(VS 2) the addition on A is associative, so 

x + (y + z) = (x + y) + zfor all x, y, z E A; 

(VS 3) A has a zero element OA, an element such that 

x + OA = x for all x E A; 

(VS 4) each element x E A has an additive inverse, -x E A, an element 
satisfying 

(VS 5) 

a(x + y) =ax+ ay and 

(a+ f3)x =ax+ f3x for all x, y E A, a, f3 E F; 

(VS 6) 

a(f3x) = (af3)x for all x E A, a, f3 E F; 

(VS 7) if e is the identity element ofF, then 

ex = x for all x E A 

Note that two axioms that do not receive explicit attention as such are the 
facts that the addition and scalar multiplication are both closed operations. The 
elements of A are often called vectors, whereas the elements of F are called 
scalars. Conditions (i)-(iv) show that A is an abelian group under addition. We 
will say that this is the additive group of the vector space A and denote it 
by A+. We note that the existence of additive inverses for each element of A 
allows us to introduce the operation of subtraction of two elements a, b E A by 
the rule 

a - b =a+ (-b). 

We also note that if, instead of a left scalar multiplication, we use a right 
scalar multiplication on A, then we use the terminology "right vector space." In 

. this case, conditions (VS 5)-(VS 7) are as follows: 

(VS 5) 

(x + y)a = xa + ya and 

x(a + f3) = xa +xf3 for all x, yEA, a, f3 E F; 
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(VS 6) 

(xa)f3 = x(af3) for all x E A, a, f3 E F; 

(VS 7) if e is the identity element of F, then 

x e = x for all x E A. 

In algebra, actions are often written on the right whereas in other branches of 
mathematics left actions are commonly used. For this reason, in this book, we 
will discuss only left vector spaces but all results proved for left vector spaces 
have a corresponding right vector space analog. 

We next obtain some elementary results, of the type that we have seen before 
when discussing fields. 

4.1.5. Proposition. Let F be a field and let A be a vector space over F. Then, 
for all a, b E A and all a, f3 E F, 

(i) OF· a= OA and aOA = OA; 
(ii) a(-a) = (-a)a = -aa; 

(iii) a(a -b) = aa - ab and (a - f3)a = aa - f3a. 

Proof. (i) For each a E A, we have a+ OA =a. Then 

Since aa has an additive inverse, -aa, we have, adding -aa to each side, 

OA = -aa + aa = -aa + (aa + aOA) = (-aa + aa) + aOA 

= OA + aOA = aOA, 

and similarly 

(ii) By the definition of additive inverses, we have 

OA = aOA = a(a +(-a))= aa + a(-a) and 

OA =OF· a= (a+ (-a))a = aa + (-a)a. 

These equations show that the products a (-a) and (-a )a are the additive inverse 
of aa. Since the additive inverse is unique, (ii) follows. 

(iii) We have 

a(a- b)= a(a +(-b))= aa + a(-b) = aa + (-ab) = aa- ab, 
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and similarly, 

(a - f3)a = aa - f3a. 

4.1.6. Definition. Let F be afield and let A be a vector space over F. The subset 
B of A is called a subspace if B is stable under the operations of addition and 
scalar multiplication and B is a vector space by restrictions of these operations. 
In this case, we write B S A. 

As is often the case, it is much easier to check that a nonempty subset is a 
subspace than would appear at first sight as we now see. 

4.1.7. Theorem. Let F be a field and let A be a vector space over F. If B is a 
subspace of A then B satisfies the following conditions: 

(SS 1) if a, b E B then a - b E B; 

(SS 2) if a E F and b E B, then ab E B. 

Conversely, suppose that B is not empty. If B satisfies conditions (SS 1) and 
(SS 2), then B is a subspace of A. 

Proof. Let B be a subspace of A. Then B is a stable subset under addition and 
scalar multiplication. It follows that B has a zero element 08 . Thus, x + 08 = x 
for each element x E B. By Definition 4.1.4, there is an element -x E A and 
we have 

It follows that 08 = OA. Again by Definition 4.1.4 and this observation, we see 
that for each element x E B there exists an element y E B such that x + y = OA, 
soy is the negative of x in A. As we know from Section 3.2, the negative element 
is unique, so that y = -x and hence -x E B. Next, let x, y be arbitrary elements 
of B. Then, as given earlier, -y E B and since B is stable under addition, 

X- y =X+ (-y) E B. 

Since B is a stable subset under scalar multiplication, ax E B, so that B satisfies 
(SS 1) and (SS 2). 

Conversely, suppose that B =1= 0 and that B satisfies (SS 1) and (SS 2). If 
u E B then, by (SS 1), OA = u- u E B. Further, if x E B then by (SS 1) 

-x = OA- x E B. 
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Also, if x, y are arbitrary elements of B then -y E B. Using (SS 1), we obtain 

X+ y =X- (-y) E B. 

Hence B is a stable subset under addition. Condition (SS 2) implies that B is a 
stable subset under scalar multiplication. Thus, the restriction of the addition on 
B is a binary operation on B and the restriction of the scalar multiplication on B 
is a scalar multiplication on B. Conditions (VS 1), (VS 2), (VS 5), (VS 6), and 
(VS 7) of Definition 4.1.4 are valid for B, since they are valid for all elements 
of A. We have already proved that OA E B, so OA is the zero element for B. 
Also, we proved that - x E B for each element x E B, so conditions (VS 3) and 
(VS 4) of Definition 4.1.4 are satisfied. 

4.1.8. Corollary. Let F be a field and let A be a vector space over F. If 6 is 
a family of subspaces of A, then the intersection n6 of all subspaces from this 
family is a subspace of A. 

Proof. Let S = n6. Since every subspace contains OA, we have OA E S, so 
S =1= 0. Let x, y E S. If U is an arbitrary element of 6 then x- y E U, and 
therefore, x - y lies in the intersection of all elements of 6. But this intersection 
is S, so that x - y E S. This shows that S satisfies (SS 1). Next let x E S and let 
a E F. If U is an arbitrary element of 6 then ax E U, and therefore, ax lies in the 
intersection of all elements of 6. Since this intersection isS, we have x E S. This 
shows that S satisfies (SS 2). Now we apply Theorem 4.1.7 to deduce the result. 

It is not hard to see that the union of two subspaces is not always a subspace. 
However, the following result holds. 

4.1.9. Corollary. Let F be a field and let A be a vector space over F. If£ is 
a local family of subspaces of A, then the union U£ of all subs paces from this 
family is a subspace of A. 

Proof. Let V = U£ and let x, y E V. Then, there exist subs paces H, K E £ such 
that x E H, y E K. Since£ is a local family, we choose a subspace L E £which 
contains both subs paces H, K. Then x, y E L and, since L is a subspace, x - y E 

L by Theorem 4.1. 7. Hence x - y E V so V satisfies (SS 1). Using a similar 
argument, we prove that V satisfies (SS 2) and we can then apply Theorem 4.1.7. 

4.1.10. Corollary. Let F be a field and let A be a vector space over F. If£ is 
a linearly ordered family of subs paces of A, then the union U£ of all subs paces 
from this family is also a subspace of A. 

4.1.11. Corollary. Let F be afield and let A be a vector space over F. If 

is an ascending chain of subs paces of A, then UnEN Hn is also a subspace of A. 
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Now we let A be an F -vector space, let a 1, ... , an E A and let a 1, ... , an E F. 
Then 

a1a1 + · · · + anan = L ajaj 
l:Sj:Sn 

is called a linear combination of the elements a 1, ... , an with coefficients 
a 1, ... , an. Using mathematical induction, we obtain the following corollary. 

4.1.12. Corollary. Let F be afield and let A be a vector space over F. If B is a 
subspace of A, then all linear combinations of finitely many elements of B belong 
to B. 

Note that every vector space A contains two subspaces A and {OA} (which 
will coincide if A= {OA}). 

We shall now look at some examples of vector spaces. First, we should mention 
that JR3 is a vector space over JR, but the particular construction appears in a more 
general context below, so we refrain from a formal proof just yet. 

Next let F be a field and let K be a subfield of F. The action of K on F is 
defined by the rule 

(b, a) 1----+ ba, bE K, a E F. 

Since F is a field, F is an abelian group under addition. Condition (VS 5) 
follows from the distributivity of multiplication over addition in F. Condition 
(VS 6) follows from the fact that multiplication in F is associative and condition 
(VS 7) follows from the definition of the identity element. Hence the field F 
can be considered as a vector space over its sub field K. For example, lR can be 
considered as a vector space over Q, and C can be considered as a vector space 
over R 

For our next example, let JR[a,b] be the set of all real functions defined on 
the closed interval [a, b]. Thus, f E JR[a,bl if and only iff : [a, b] ~ R This 
set is a vector space over lR using the operations of addition of real functions 
and multiplication of a real function by a real number. Thus, if f, g E JR[a,bl 

then f + g, defined by (f + g)(x) = f(x) + g(x), is also an element of JR[a,bl. 

Likewise, if a E lR then af is the function defined by (af)(x) = a(f(x)) and 
af E JR[a,bl also. It is then easy to verify that JR[a,bl is a vector space over R 
The subset of all continuous functions satisfies conditions (SS 1) and (SS 2), 
precisely because of the well-known facts that a difference of continuous 
functions is continuous and a scalar multiple of a continuous function is also 
continuous. Thus, Theorem 4.1.7 shows that this is a subspace of JR[a,bl. 

The following example is an important one for finite-dimensional vector spaces 
(where the notion of dimension is defined later). 

Let F be a field and let n be a positive integer. Put A = A1 x · · · x An where 
A j is a vector space over F, for all j, with 1 :::; j :::; n. (Sometimes the notation 



VECTOR SPACES 153 

A1 EB Az EB · · · EB An is used.) We define addition and scalar multiplication on A 
as follows: 

Let a= (a1, ... , an), b = (b1, ... , bn) E A and let a E F. Then let 

Thus, addition of n-tuples is defined via the addition of the components that 
are the elements of corresponding vector spaces. Therefore, addition of n-tuples 
inherits all properties of addition of elements of vector spaces, so addition of 
n-tuples is commutative, associative, and has a zero element which is the n-tuple 
OA = (OA 1 , ••• , OAn). Also each n-tuple a= (a!, ... , an) has an additive inverse, 
which is the n-tuple -a = ( -a1, ... , -an). 

For the scalar multiplication, we have 

a(a +b)= a(a1 + b1, ... , an+ bn) = (a(ai + bJ), ... , a(an + bn)) 

= (aa1 + ab1, ... , aan + abn) = (aa1, ... , aan) + (ab1, ... , abn) 

= a(a1, ... , an)+ a(b1, ... , bn) = aa +a b. 

Also, 

(a+ f3)a =(a+ f3)(a1, ... , an)= ((a+ f3)aJ, ... , (a+ f3)an) 

= (aa1 + f3a1, ... , a an + f3an) = (aa1, ... , a an)+ (f3a1, ... , f3an) 

= a(a1, ... , an)+ f3(aJ, ... , an)= aa + {3a. 

Furthermore, 

(a(f3a)) = a(f3(a1, ... , an)) = a(f3a1, ... , f3an) = (a(f3a1), ... , a(f3an)) 

= ((af3)a1, ... , (af3)an) = af3(a1, ... , an) = (af3)a. 

Finally, 

Hence all axioms for a vector space hold. 

4.1.13. Definition. Let F be a field and let A 1, ... , An be vector spaces over F 
for all j, where 1 :::; j :::; n. The vector space A = A 1 x · · · x An is called the 
external direct sum of the vector spaces A 1, ... , An. 

We remarked above that we can consider a field F as a vector space over 
itself. If A1 = · · · =An = F, then we obtain a vector space A which we denote 
by pn. This is the set of all n-tuples with coefficients in F, using componentwise 
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addition and scalar multiplication. We next consider a generalization of this. To 
this end, let F be a field and let FN denote the set of all sequences 

whose entries belong to the field F. 
Two sequences (an) and (bn) are called equal, if an = bn for each n E N. 
The addition and scalar multiplication of sequences are defined using the same 

model as stated above, namely, 

where Cn =an+ bn for all n EN and 

for each n EN. 
As stated above, it is easy to justify that FN is a vector space over F. Let 

It is not hard to show that F(k) satisfies conditions (SS 1) and (SS 2), so Theorem 
4.1.7 shows that F(k) is a subspace of FN. It is evident that F(kl appears not 
to be significantly different from the space Fk defined above. Later, we shall 
show that these subspaces are isomorphic. Clearly F(kl :=:: F(k+Il so F(kl :=:: F<ml 
whenever k :=:: m. 

We write F(N) = ukEN F(k) and note that Corollary 4.1.11 shows that F(N) is 
a subspace of FN. It is a proper subspace since the sequences in F(Nl necessarily 
terminate, whereas those in FN need not. 

The results of Section 2.1 imply that the set MkxnO~) of all k x n matrices 
with real coefficients is a vector space over R We will generalize this case. 
Let F be a field and let Mk x n (F) denote the set of all k x n matrices with 
coefficients in F. On the set Mkxn(F), we define the operations of addition and 
scalar multiplication as we did for numerical matrices. More precisely, let 

A= [atj], B = [.Btj] E Mkxn(F) and let A. E F. 

Then define 

A+ B = [ytj] E Mkxn(F), where Ytj = atj + f3rj. for 1 :S t :S k, 1 :S j :S n 

and 

A.A = [tL1j], where fLtj = A.a1j, for 1 :S t :S k, 1 :S j :S n. 
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As for numerical matrices, it is not difficult to prove that the following properties 
hold: 

A+B=B+A, 

A+ (B +C) = (A+ B)+ C. 

These follow because of the commutative and associative properties of addition 
in F. Next let 0 be the k x n matrix all of whose entries are OF. This is the 
additive identity of Mkxn(F) in the sense that 0 +A= A= A+ 0 for all 
A E Mkxn(F). Also, for every matrix A there is an additive inverse -A, the 
matrix such that A+ (-A)= 0. If A= [atJ] then -A= [-atj]. 

Furthermore, for all A, B E Mkxn(F) and all A, p, E F, we have 

(A+ p,)A = AA + p,A, A(A +B)= AA + AB 

A(p,A) = (Ap,)A and eA =A. 

These follow because of the componentwise definitions of addition and scalar 
multiplication and because the corresponding properties hold in F. Thus, 
Mkxn(F) becomes a vector space over F. 

If k = n, then we obtain the vector space Mn(F) of all square matrices of 
order n, with coefficients in F. 

We can also define the concept of the determinant of a matrix A = [at}] E 

Mn(F), analogous to that done earlier, by 

det(A) = L sign 1T at,n(l)a2,n(2) · · · an,n(n)· 

JrESn 

When we established the properties of determinants when the coefficients were 
real, we used the properties of the operations of addition and multiplication such 
as commutativity and associativity, not the idea that the numbers involved were 
real numbers. Consequently, the properties of determinants that we established 
in Sections 2.3 and 2.4 and Theorem 2.5.1 are valid for matrices in Mn(F). 

In a similar fashion, we define the product of matrices A = [atj] E Mkxn(F) 

and B = [,Btj] E Mnxq(F) by 

where 

AB = [ytj] E Mkxq(F), 

Ytj = att.Btj + at2.B2j + · · · + atn.Bnj = L att.Btj 

1:::;/:::;n 

for all pairs t, j, where 1 :::; t :::; k and 1 :::; j :::; q. 
We note that once again the product is only defined when the number of 

columns of A is equal to the number of rows of B. Using similar arguments to 
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those used with numerical matrices, it is possible to prove that 

(AB)C = A(BC), 

(A+ B)C = AC + BC, and 

A(B +C)= AB + AC. 

There exists a matrix I E Mn (F) such that AI = I A = A for each matrix 
A E Mn(F). Here 

e 0 0 0 0 0 
0 e 0 0 0 0 

I= 

0 0 0 0 e 0 
0 0 0 0 0 e 

is the n x n identity matrix. Let A E Mn(F). A matrix U is called the inverse 
(or reciprocal) of A, if AU = U A = I. The matrix A is called nonsingular, if 
det(A) =I= OF. As for numerical matrices, we can prove that a matrix A has an 
inverse if and only if A is nonsingular. Moreover, in this case, A -I = LBrJ] E 

Mn(F), where 

BtJ = A11 (det(A))-I, for 1 :::; i, j:::; n 

and A Jt is the cofactor corresponding to a Jt. Let Ekm denote the matrix, whose 
(k, m) entry is the identity, e, and all others entries are OF. As with numerical 
matrices, we can prove 

l
Eks, if m = r, 

Ek E -m rs- O "f .../.. , 1 m 1 r. 

Let r:: (F) denote the subset of Mn (F) consisting of all upper triangular 
matrices. It is clear that conditions (SS 1) and (SS 2) are satisfied. So Theorem 
4.1. 7 shows that r:: (F) is a subspace of Mn (F). 

For the same reasons, the sets of all zero-triangular and diagonal matrices are 
also subspaces of Mn(F). Put 

F I = {AI I ). E F}. 

As with numerical matrices, ).I is called a scalar matrix, so F I is the subset 
of all scalar matrices. 

Next let A 1, ... , An be subspaces of A and set 

AI+···+ An= {ai +···+an I ai E Aj, 1 :S j :S n}. 

The subset A 1 + · · · + An is called the sum of subs paces A 1, ... , An. 
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4.1.14. Proposition. Let F be a field and let A be a vector space over F. If 
A 1, ..• , An are subspaces of A, then their sum A 1 + · · · + An is a subspace 
of A. 

Proof. Let x, y E A 1 +···+An and let a E F. Then 

x = a1 +···+an andy= b, + ··· +bn, where a1,b1 E A1, for 1::::; j::::; n. 

We have 

Since A1 is a subspace, Theorem 4.1.7 implies that (aJ- bJ) E Ai, for 1 ::::; j ::::; 
n. It follows that x- y E A,+···+ An. Furthermore, 

Since A i is a subspace, Theorem 4.1.7 again implies that a a 1 E A i, for 
1 ::::; j ::::; n. It follows that ax E A, +···+An and hence A, +···+An 
satisfies conditions (SS 1) and (SS 2). Once again Theorem 4.1.7 shows that 
A 1 +···+An is a subspace of A. 

Certain sums of subspaces play a prominent role in the theory of vector spaces 
and we define such sums next. 

4.1.15. Definition. Let F be a field, let A be a vector space over F and let 
A 1, ... , An be subspaces of A. The subspace C = A 1 + · · · + An is called the 
internal direct sum of A 1, ... , An. if each element c of C can be represented as c = 
a, + · · · + an, where a i E A i, for 1 ::::; j ::::; n and this representation is unique. 

The internal direct sum can be characterized in several different ways as we 
now show. This allows us to feel free to pick and choose the best method in any 
given situation of showing that a subspace is a direct sum. 

4.1.16. Proposition. Let F be a field, let A be a vector space over F and 
let A,, ... , An be subspaces of A. Let C =A,+···+ An. The following are 
equivalent: 

(i) C is the internal direct sum of A,, ... , An; 

(ii) a,+···+ an= OA, where ai E AJ,for 1 :S j :S n, if and only if a, = · · · = 
an= OA; 

(iii) Ai n Lk#J Ak = {OA} for every j, where 1 :S j :S n. 

Proof. To prove that (i) implies (ii), note that every subspace contains OA, so 
that OA E A i• for 1 ::::; j ::::; n and we obtain 
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Then, by (i), the representation of OA is unique so 

For (ii) implies (iii), we suppose that x E A j n Lk#j Ak. It follows that x = 
Lk#j Yk. where Yk E Ak. for k =/= j. Then 

OA = Yi + · · · + Yj-i + (-x) + YHi + · · · + Yn· 

From (ii), we deduce that y, = · · · = Yj-i = -x = Yj+i = · · · = Yn = OA. 
Hence Aj n Lk#j Ak = {OA} for every j, where 1 :=: j::: nand (iii) follows. 

Finally, assume that c = a 1 +···+an= b1 + · · · + bn, where aj, bj E Aj, 
for 1 ::: j::: n. It follows that x = aj- bj = Lk#j(bk- ak)· Thus, x E Aj n 
Lk#j Ak. which is OA, by hypothesis (iii). Sox= aj- bj = OA and aj = bj. 
This is valid for all j, where 1 ::: j ::: n and hence (iii) implies (i). The result 
follows. 

EXERCISE SET 4.1 

Justify your answers with a proof or a counterexample where appropriate. 

4.1.1. Let A = llt2 , M = R Does the mapping (a, (/3, y)) ~----+ (a, {3, y ), 
a, {3, y E lit define a scalar multiplication? 

4.1.2. Let A = 11t2 , M = R Does the mapping (a, (/3, y)) ~----+ (a + {3, y ), 
a, {3, y E lit define a scalar multiplication? 

4.1.3. Let A= llt2 , M = R Does the mapping (a, (/3, y)) ~----+ (af3, y), 
a, {3, y E lit define a scalar multiplication? 

4.1.4. Let A= llt2, M = R Does the mapping (a, (/3, y)) ~----+(a, y), a, {3, y E 

lit define a scalar multiplication? 

4.1.5. Let B = {x E llt5 
1 x = (a, {3, 1, 0, 0), a, f3 E lit}. IsBa subspace of llt5? 

4.1.6. Let B = {x E llt5 
1 x =(a, 0, 1, -1, /3), a, f3 E lit}. Is B a subspace of 

llt5? 

4.1.7. Let A = llt[X] be the vector space of all polynomials with real coeffi
cients, B the subset of polynomials with no real roots. Is B a subspace? 

4.1.8. Let A be the vector space of all real functions f : [0, 2] ----+ lit, 
B = {f I f(l) = 3/(2)}. IsBa subspace? 

4.1.9. Let A be the vector space of all real functions f : lit ----+ lit, B = {f I 
f(2x) = (sinx)f(x)}. IsBa subspace? 

4.1.10. Let ~~tN be the set of all sequences of real numbers, indexed by N. Is 
the set ~~tN a vector space under regular addition of sequences and where 
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scalar multiplication by a real number is done componentwise? Is the 
subset B of all convergent sequences a subspace of JRN? 

4.1.11. Let JRN be the set of all sequences of real numbers, indexed by N. Let B 
be the subset of JRN consisting of all sequences satisfying the Cauchy con
dition (for every 8 > 0 there is a number n = n (8) such that lam - ak I < 8 

if m, k > n). Is the set B of all such sequences a subspace of JRN? 

4.1.12. Let eN be a set of all sequences of complex numbers, indexed by N. Is 
this set eN a vector space under regular addition of sequences and where 
scalar multiplication by a complex number is done componentwise? Let B 
be the subset of eN consisting of all sequences (an) such that LnEN ian I 
is convergent. Is the set B of all such sequences a subspace of eN? 

4.1.13. Let A = JR[X] be the vector space of all polynomials with real coeffi
cients and let B be its subspace with the following property: for every 
k, 0.:::: k.:::: t, B contains at least one polynomial of degree t. Prove that 
B coincides with the subspace of all polynomials of degree .:::: t. 

4.1.14. Let B, C, E be subspaces of a vector space A, and let C.:::: B. Prove 
that B n (C +E) = C + (B n E). Is the equation B n (C +E)= 
(B n C)+ (B n E) valid for arbitrary subspaces B, C, E? 

4.1.15. Let A= Q25 , B ={(a,, a2, ... , a2s) I a 1 = aJ+l· if j is even}. Prove 
that B is a subspace of A. Find a subspace C that complements B, so 
A= B EB C. 

4.1.16. Let A = JR5, B = {x E JR5 I x = (a, 0, fJ, 0, 0), a, fJ E JR}. C = {x E 
R 5 I x = (0, y, 0, 0, y), y E JR}. Find the sum of the subspaces B and C. 

4.1.17. Is the set of all nonsingular matrices a subspace of the space M47 (1R)? 

4.1.18. Is the set of all singular matrices a subspace of the space M47 (1R)? 

4.2 DIMENSION 

In this section, we consider one of the most important concepts in linear algebra, 
namely that of a basis and the connected concept of the dimension of a vector 
space. 

Let F be a field, let A be a vector space over F and let M be a subset of A. 
We consider the family 6 of all subspaces which contain M. By Corollary 4.1.8, 
n6 is a subspace of the vector space A. 

4.2.1. Definition. Let M be a subset of a vector space A and let 6 be the family of 
subspaces containing M. The subspace Le(M) = n6 is called the linear envelope 
of M or the subspace generated by the subset M. We also sometimes say that 
Le(M) is the subspace spanned by M. The subset M is called a set of generators 
or a spanning set for Le(M). In particular, if Le(M) =A, then we say that 
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M generates or spans A. The space A is called finitely generated, if there exists 
a finite subset M such that Le(M) = A. 

If B is a subspace containing M, then B contains Le(M), by Corollary 4.1.12. 
Thus Le(M) is the smallest subspace containing M. It is clear that if M is a 
subspace of A then Le(M) = M. So we have the following. 

4.2.2. Proposition. Let F be afield and let A be a vector space over F. Suppose 
that M is a subset of A. The following properties hold: 

(i) M ~ Le(M). 

(ii) If B is a subspace of A and M ~ B, then Le(M) :5: B. 

(iii) If B is a subspace of A, then Le(B) = B. In particular, Le(Le(M)) = 
Le(M) for every subset M. 

(iv) If M ~ S, then Le(M) :5: Le(S). 

We find out now what sort of elements belong to the linear envelope of a 
subset M. 

4.2.3. Proposition. Let F be a field, let A be a vector space over F and let M 
be a subset of A. Then, Le(M) consists of all linear combinations of all finite 
subsets of the set M. 

Proof. Let U denote the set of all linear combinations of all finite subsets of M 
and let a1, ... , an be arbitrary elements of M. If B is a subspace of A containing 
M, then by Corollary 4.1.12, every linear combination of elements of M belongs 
to B. Since this is true for every subspace containing M, every linear combination 
of the elements a1, ... , an belongs to Le(M). Thus U :5: Le(M). 

Now let x, y E U and let y E F. Then x = a 1 a 1 + · · · + an an and y = fh b1 + 
· · · + fhbk. where a1, ... , an, b1, ... , bk EM and a1, ... , an,f3J, ... , f3k E F. 
We have 

X- Y = (a1a1 + · · · + anan)- (f31b1 + · · · + f3kbk) 

= a1a1 + · · · + anan + (-f3J)b1 + · · · + ( -f3k)bk. 

Hence x - y is a linear combination of a1, ... , an, b1, ... , bk E M, so that x -
y E U. Furthermore, 

yx = y(a1a1 + · · · + anan) = y(a1a!) + · · · + y(anan) 

= (ya!)a1 + · · · + (yan)an, 

so that y x is a linear combination of the elements a1, ... , an E M and therefore 
yx E U. Hence U satisfies conditions (SS 1) and (SS 2); Theorem 4.1.7 shows 



VECTOR SPACES 161 

that U is a subspace of A. If cis an element of M then c = ec E U and it follows 
that M ~ U. By Proposition 4.2.2, Le(M) ~ U and, since U :::; Le(M), we have 
Le(M) = U, which proves the result. 

4.2.4. Corollary. Let F be afield, let A be a vector space over F and let M be 
a subset of A. If x E Le(M), then x E Le(S) for some finite subsetS of M. 

The next property is very useful. 

4.2.5. Lemma. Let F be a field, let A be a vector space over F and let M be a 
subset of A. Suppose that x, y are elements with the property that y E Le(M U 
{x}), but y rf. Le(M). Then x E Le(M U {y}). 

Proof. By Corollary 4.2.4, there are elements a 1, ... , an EM and a 1, ... , an, 
f3 E F such that y =a, a, + · · · + anan + f3x. If f3 =OF then y =a, a, + · · · + 
anan E Le(M), contrary to the hypothesis. Hence f3 =I= OF, so {3-i E F. We have 

so 

It follows that x E Le(M U {y}). 

The following concept is basic to the study of vector spaces. 

4.2.6. Definition. Let F be afield and let A be a vector space over F. A nonempty 
subset M of A is called free or linearly independent, if x ¢. Le(M\{x}) for each 
element x E M. 

Since the linear envelope of every subset is a subspace and therefore contains 
0 A, we see that a linearly independent subset cannot contain 0 A. It is also clear 
that the elements of a linearly independent subset are distinct. A subset that is 
not linearly independent is called linearly dependent. Part (iii) of the following 
result is usually the easiest one to check when determining linear independence. 

4.2.7. Proposition (criterion for linear independence). Let F be afield, let A be 
a vector space over F, and let M be a subset of A. 

(i) If M is linearly independent then every nonempty subset of M is linearly 
independent. 

(ii) An infinite subset M is linearly independent if and only if every finite 
nonempty subset of M is linearly independent. 

(iii) The finite subset S = {a,, ... , an} is linearly independent if and only if the 
equation a, a, + · · · + anan = OA always implies that a, =···=an =OF. 
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Proof. 
(i) Suppose that M is a linearly independent subset and let W be a nonempty 

subset of M. Suppose, for a contradiction, that W is not linearly independent. 
Then, by definition, there exists an element w E W such that w E Le( W\{ w}). 
The inclusion W s; M implies that W\{ w} s; M\{ w} and Corollary 4.2.2 shows 
that Le(W\{w}):::::: Le(M\{w}). It follows that w E Le(M\{w}), contradicting the 
fact that M is linearly independent. Thus, W must also be linearly independent. 

(ii) If M is linearly independent, then every finite nonempty subset of M is 
linearly independent by (i). Conversely, suppose that every nonempty finite subset 
of M is linearly independent, but that M is not linearly independent. Then there 
exists an element x E M such that x E Le(M\{x }). By Corollary 4.2.4, M\{x} 
contains a finite subset T such that x E Le(T). Let Y = T U {x}, and note that 
Y is finite, x E Y and x E Le(Y \ {x}). It follows that Y is linearly dependent 
and we obtain a contradiction. Therefore M is linearly independent. 

(iii) Suppose that s is linearly independent and let alai + ... + anan = OA. 
Suppose, for a contradiction, that there is a coefficient a j such that a j =I= 0 F. 

Then ajaj = Lk#j akak and, since F is a field, the nonzero element aj has 
a multiplicative inverse aj1. Therefore, aj = Lk#j(aj1ak)ak and it follows 
that a j E Le(S\{a j }), the desired contradiction, since S is linearly independent. 
Consequently, aj =OF for all j, where 1:::::: j:::::: n. 

Conversely, suppose that a1a1 + · · · + anan = OA always implies that a1 = 
···=an =OF. Assume, for a contradiction, that S is not linearly independent. 
Then there exists an element am such that am E Le(S\{amD· By Proposition 4.2.3, 
we obtain am = Lk#m f3kak for certain f3k E F. It follows that 

Here, the coefficient of am is nonzero and the contradiction ensues showing that 
the subset S is linearly independent. 

The following result shows how linearly independent subsets arise. 

4.2.8. Lemma. Let F be a field, let A be a vector space over F and let M be a 
linearly independent subset of A. If x is an element of A such that x 'f. Le(M), 
then the subset M U {x} is linearly independent. 

Proof. By Corollary 4.2.2, M s; Le(M), sox '}. M. Let S = M U {x} and sup
pose, for a contradiction, that S is not linearly independent. Then, by definition, 
there exists an element yES such that y E Le(S\{y}). Since yES= M U {x}, 
either y = x or y EM. If we suppose that y = x, then x E Le(S\{x}) = Le(M), 
which contradicts the hypothesis that x '}. Le(M). Thus, we may assume that 
y EM. PutT= M\{y}, so S\{y} = T U {x} and then y E Le(T U {x}). Since M 
is a linearly independent subset, y '}. Le(T) and from Lemma 4.2.5, we deduce 
that x E Le(T U {y}). However, T U {y} = M and we obtain a contradiction to 
the hypothesis. This shows that M U {x} is a linearly independent subset. 
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As we see in Corollary 4.2.12 whenever 0 =f. x E A, the set {x} is linearly 
independent. Then if y ¢ Le({x)), we have {x, y} is linearly independent and so 
on. We next define another fundamental notion, that of a basis. 

4.2.9. Definition. Let F be a field and let A be a vector space over F. 

(i) A nonempty subset M of A is called a basis if it is linearly independent and 
Le(M) =A. 

(ii) A subset M of A is called a minimal generating subset for A ifLe(M) = A 
but Le(S) =f. A for every proper subsetS of M. 

(iii) A linearly independent subset M of A is called a maxima/linearly indepen
dent subset if whenever S is a subset of A for which M ~ S and M =f. S then 
S is not linearly independent. 

4.2.10. Theorem. Let F be a field, let A be a vector space over F and let M be 
a subset of A. The following are equivalent: 

(i) M is a basis of A. 

(ii) M is a maxima/linearly independent subset of A. 

(iii) M is a minimal generating subset for A. 

Proof. 
(i) ===} (ii) Let M be a basis of A. Then, by definition, M is a linearly 

independent subset. If Sis a subset properly containing M then S\M is nonempty. 
Let x E S\M. Since M is a basis, Le(M) =A, so x E Le(M). Since x ¢ M, 
we have M ~ S\{x}. By Corollary 4.2.2, Le(M) :S Le(S\{x}), sox E Le(S\{x}), 
from the definition, which shows that S is linearly dependent. Hence M is a 
maximal linearly independent subset of A. 

(ii) ===} (i) Let M be a maximal linearly independent subset of A. If we 
suppose that Le(M) =f. A, then we can choose an element u ¢ Le(M). Lemma 
4.2.8 shows that then M U { u} is a linearly independent subset, contradicting the 
choice of M. Thus, M is a basis of A. 

(i) ===} (iii) Let M be a basis of A so that M is a generating set for A. Let 
T be a proper subset of M. Then M\T is nonempty, and we let v E M\T. Then 
T ~ M\{v} and, since M is linearly independent, v ¢ Le(M\{v}). By Corollary 
4.2.4, Le(T) :S Le(M\{ v }), so that v ¢ Le(T). Thus, Le(T) =f. A, so M is a 
minimal generating subset for A. 

(iii) ===} (i) Let M be a minimal generating subset for A and suppose that M 
is not linearly independent. Then, there exists an element w E M such that w E 

Le(M\{w}). By Corollary 4.2.4, M\{w} ~ Le(M\{w}), so that M = (M\{w}) U 
{ w} ~ Le(M\{ w }). Again using Corollary 4.2.4, we deduce that A = Le(M) :S 
Le(Le(M\{w})) = Le(M\{w}). Thus, M\{w} is a generating set contrary to the 
definition of M. This contradiction shows that M is linearly independent and 
hence is a basis for A. 
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Theorem 4.2.10 gives us several ways to characterize bases but does not 
answer the question of whether a basis exists or not. The answer to the question 
of existence is yes, all vector spaces do have a basis, but to prove this is beyond 
the scope of this book, since it requires a rather advanced axiom of set theory 
known as Zorn's Lemma. 

For finitely generated vector spaces, such deep results are not needed and it 
is those on which we concentrate. 

4.2.11. Theorem. Let F be a field, let A be a vector space over F and let M 
be a finite subset of A. Suppose that A = Le(M). If L is a linearly independent 
subset of M, then M contains a subset K such that L n K = 0 and L UK is a 
basis of A. 

Proof. Let 

6 ={XIX~ M, L n X= 0 and LUX is linearly independent}. 

Clearly 0 E 6, so that 6 is not empty. Since M is finite, 6 is also finite and 
it follows that 6 contains a subset K of M with the largest number of ele
ments. The subset L U K is linearly independent, by definition. Suppose, for a 
contradiction that Le(L UK) =f. A. If we suppose that M ~ Le(L UK) then, by 
Corollary 4.2.4, 

A = Le(M) :S Le(Le(L UK)) = Le(L UK), 

and we obtain a contradiction with our assumption concerning L U K. Con
sequently, M is not a subset of Le(L UK) so we can choose bE M such 
that b ¢. Le(L UK). Let T = K U {b}. Lemma 4.2.8 proves that L UK U {b} = 
L U T is linearly independent. The inclusion L U K ~ Le(L U K) shows that 
b ¢. (L UK), so that 

L n T = L n (K U {b}) = (L n K) U (L n {b}) = 0. 

It follows that T E 6. However, ITI = IKI + 1, and we obtain a contradiction 
with the choice of K which shows that Le(L UK)= A and therefore, L UK is 
a basis of A. 

4.2.12. Corollary. Let F be a field, let A be a vector space over F, and let M 
be a finite subset of A. Suppose that A= Le(M). Then for each nonzero element 
a, there exists a finite basis of A containing a. 

Proof. We will show that {a} is linearly independent and then deduce the result 
from Theorem 4.2.11. Indeed, if aa = OA, where 0 =f. a E F, then a-1 E F exists 
and we have 
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This is a contradiction to the choice of a, which shows that a =OF. By Propo
sition 4.2. 7, {a} is linearly independent and the result follows. 

4.2.13. Corollary. Let F be afield, let A be a vector space over F and let M be 
a finite subset of A such that A = Le(M). Then M contains a basis of A. 

Proof. Indeed, M is nonempty and therefore, M contains a nonzero element 
a. As stated above, the subset {a} is linearly independent and Theorem 4.2.11 
implies the result. 

The following theorem is central in linear algebra. It tells us that the number 
of elements in a basis of a vector space is an invariant of the space. 

4.2.14. Theorem. Let F be a field and let A be a vector space over F. Suppose 
that A has a finite basis B. If B1 is another basis of A, then B1 is also finite, and 
moreover, IBI = IBJI. 

Proof. Let m(B) = IBI -IBn B1l· We will use induction on m(B). If m(B) = 
0, then IBI =IBn B1l- It follows that B = B n B1 soB~ B1. However, by 
Theorem 4.2.10, every basis is a maximal linearly independent subset, so in this 
case, B = B1. 

Suppose now that m(B) = t > 0 and inductively that, for each basis X of 
some vector space, with the property that m(X) < t, we have already proved 
that X is finite and that lXI is invariant. Assume that B = {aJ, ... , an} and let 
k = n- t. By renumbering the elements a1, ... , an, if necessary we may suppose 
that B n B1 = {aJ, ... , ak}. Let B2 = B\{ak+d and note that, by Theorem4.2.10, 
Le(B2) =/= A. Suppose first that B1 ~ Le(B2). Then Corollary 4.2.4 implies that 

a contradiction which shows that Le(B2) does not contain B1. Hence, there 
exists an element x E B1 such that x ¢. Le(B2). Since B = B2 U {ak+I}, we 
have x E Le(B2 U {ak+l }), but x ¢. Le(B2). By Lemma 4.2.5, we deduce that 
ak+l E Le(B2 U {x}). Now B2 ~ Le(B2 U {x}) and ak+l E Le(B2 U {x}) soB~ 
Le(B2 U {x}). Hence 

A= Le(B) .:S Le(Le(B2 U {x})) = Le(B2 U {x}). 

Since x ¢. Le(B2), Lemma 4.2.8 shows that B2 U {x} is a linearly independent 
subset. This implies that B2 U {x} is a basis for A. Also, (B2 U {x}) n B1 = 
{a 1 , ••• , ak. x}, so that 

m(B2 U {x}) = IB2 U {x}l- I(B2 U {x}) n Bd = n- (k + 1) = t- 1. 

By the induction hypothesis IB2 U {x}l = IBJI. However, IB2 U {x}l = IBI, so 
that IBI = IB1I which proves the result. 
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Corollary 4.2.13 and Theorem 4.2.14 show that if A is a finitely generated 
vector space, then A has a finite basis B and that each basis of A is finite, of 
order equal to the order of B. In other words, the number of elements in every 
basis is an invariant of the vector space A. 

4.2.15. Definition. Let A be a finitely generated nonzero vector space over a field 
F. The number of elements in an arbitrary basis of A is called the dimension of 
A and will be denoted by dimF(A). If A is the zero space, then its dimension is 
defined to be zero. 

From this moment, instead of the term "finitely generated vector space," we 
will use the term finite-dimensional vector space. Thus, a finite-dimensional vec
tor space is a vector space with a finite basis. 

4.2.16. Proposition. Let A be a finite-dimensional vector space over a field F. 
Suppose that {a 1, ••• , an} is a basis of A and let x be an arbitrary element of A. 
Then 

for certain elements )q, ... , An E F. Moreover, this representation is unique. 

Proof. Since a basis is a subset of generators for A, the latter is the linear 
envelope of the subset {a1, •.. , an}. By Proposition 4.2.3, every element of A is a 
linear combination of the elements a 1, ••• , an, so that x =)..,a,+···+ An an for 
certain elements ).. 1, ... , An E F. Next suppose also that x = Jl-la! + · · · + Jl-nan, 
where 11-1, .•. , fl-n E F. We have 

It follows that 

Since a basis is linearly independent, Proposition 4.2. 7 implies that 

so 

which proves the proposition. 

We next identify the elements of a vector space with a row vector using the 
idea of coordinates. 

4.2.17. Definition. Let A be a finite-dimensional vector space over afield F and 
let {a,, ... , an} be a basis of A. If 



x=)qa,+···+A.nan= L Ajaj 
i:'Oj:'On 
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is a representation of the element x E A, then the (unique) elements A. 1, ... , An 
E F are called the coordinates of x relative to the basis {a 1, ... , an}. 

We must stress that usually a vector space can have more than one basis and 
that indeed, we will regard the basis {a,, ... , an} and the basis {b,, ... , bnl as 
different, if the ordered n-tuples (a,, ... , an) and (b1, ••• , bn) are different. In this 
sense, for example, the basis {a,, a2, ... , an} and the basis {a2, a,, a3, ... , an} 
are different. 

Let A be a finite-dimensional vector space over a field F and let {a 1 , ••• , an} 
and {b1, ••• , bn} be bases of A. We write 

b1 = L11a1 + L21a2 + · · · + lnian 

b2 = L12a1 + L22a2 + · · · + ln2an 

4.2.18. Definition. Let A be a finite-dimensional vector space over a field F, 
and let {a,, ... , an} and {b,, ... , bn} be two bases of A. Furthermore, let bk = 

Li:'Oj:'On Ljkaj. The matrix 

(

lll 

LJ2 

lin 

lni) ln2 

lnn 

is called the transition matrix from the first basis to the second basis. 

Thus, in transitioning from the old basis of a;' s to the new basis of b;' s, we 
write the new basis in terms of the old and use the coefficients obtained to form 
the rows of the transition matrix. 

Let A be a finite-dimensional vector space over F, let {a1, ••• , an}, 
{b,, ... , bnl. and {c,, ... , cn} be bases of A. Let T = [Ljk] E Mn(F) be the 
transition matrix from the first basis to the second basis, let R = [Pjkl E Mn(F) 
be the transition matrix from the second basis to the third one and letS = [ajkl E 

Mn(F) be the transition matrix from the first basis to the third one. Then, we 
have ck = Li:'Ojsn ajkaj. On the other hand, 
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=I: I: 

Using Proposition 4.2.16, we deduce that ajk = Ll<m<n ljmPmk. for 1 :S 
j, k ::=: n, which shows that S = T R. In particular, the following corollary holds. 

4.2.19. Corollary. The transition matrix from one basis to another is non
singular. 

Proof. Indeed put c j = a j for all j, where 1 ::=: j ::=: n. Then clearly S = I is 
the identity matrix, and we have T R = I from which it follows that T is 
nonsingular. 

Now, we will find out how the coordinates of an element change during a 
transition from one basis to another. 

Let {a1, ... , an} and {b1, ... , bn} be bases of A and letT= [ljk] E Mn(F) 
be the transition matrix from the first basis to the second one. For an arbi
trary element x of A, we have x = Ll:sj:sn Ajaj and x = L!::sj=sn ~jbj, where 
AI, ... ,An are the coordinates relative to {a,, ... ,an} and ~l·····~n are the 
coordinates relative to {b1, ••• , bn }. We have 

x = L ~kbk = L ~k ( L ljkaj) = L L ~kljkaj 
I =sk=sn I ::Sk::Sn I :Sj =sn I =sk=sn I :Sj =sn 

IE" (~ IJ''') "i 

By Proposition 4.2.16, Aj = Ll::sj=sn ljk~k. and we arrive at the matrix equation 

(
A') (t11 A2 _ 121 

. . . . 
An lnl 

Ll2 

tzz Lin) (~I) tzn ~2 
. . . 

lnn ~n 

We note that in this equation, the coefficients are being written as a column 
vector and in this case, we could express the equation in the matrix form a = T1b, 
where a, b represent the column vectors 

(~J and m· 
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respectively. Of course, we could also represent this equation using a row vector 
for the vector of coefficients in which case the equation becomes a1 = b1 T. 

We next consider the subspaces of finite-dimensional vector spaces. As we 
would intuitively suspect, the dimension of a subspace cannot be larger than the 
dimension of the original space. 

4.2.20. Theorem. Let A be a finite-dimensional vector space over a field F and 
let B be a subspace of A. Then B is finite dimensional and dimF(B):::; dimF(A). 
Furthennore, dimF(B) = dimF(A) if and only if B =A. 

Proof. If B = {OA}, then dimF(B) = 0:::; dimF(A). Therefore, we will assume 
that B is a nonzero subspace. Suppose that B does not have a finite basis 
and let OA =f:. a1 E B. As we have already seen {ad is linearly independent 
so, by our assumption, Le({ad) =f:. B. Therefore, we can choose an element 
a2 ¢ Le({aJ}). By Lemma 4.2.8, the subset {a1, a2 } is linearly independent, and 
again, Le({a 1, a2}) =f:. B. In this way, using the same argument, we construct an 
infinite subset {an In E N} such that for each n, the subset {a1, ... , an} is linearly 
independent and Le( {a 1 , ... , an}) =f:. B, for each n E N. If S is a finite subset of 
{anln EN}, then there exists a positive integer k such that S s; {aJ, ... , ak}. By 
Proposition 4.2.7, the subset S is linearly independent and again using Proposi
tion 4.2.7, we see that the set {anln EN} is also linearly independent. Since the 
space A is finite dimensional, Theorem 4.2.11 shows that there exists a finite 
linearly independent subset K such that {an In E N} U K is a basis of A. How
ever, Theorem 4.2.14 shows that each basis of A is finite. This contradiction 
shows that B has a finite basis { b1, ... , b1}. Theorem 4.2.11 shows that the sub
set { b1 , ... , b1 } can be extended to a basis of the entire space A and so it follows 
that dimF(B) :S dimF(A). 

Finally, suppose that dimF(B) = dimF(A) =nand let {b1, ••• , bn} be a basis 
of B. If B =f:. A then, since B = Le({bJ, ... , bn}), Lemma 4.2.8 implies that 
{ b1, ... , bn, c} is linearly independent for each element c ¢ B. Theorem 4.2.11 
shows that the subset {bJ, ... , bn, c} can be extended to a basis U of the entire 
space A. Consequently, the space A has a basis which contains at least n + 1 
elements and we obtain a contradiction with Theorem 4.2.14. This proves that 
B=A. 

Next we consider the question of the dimension of direct products. 

4.2.21. Lemma. Let A be a vector space over a field F and let C, B be subspaces 
of A. Suppose that B n C = {OA}. If M (respectively S) is a linearly independent 
subset of B (respectively C), then M U S is linearly independent. 

Proof. By Proposition 4.2.7, it is sufficient to prove that every finite subset of 
MUS is linearly independent. If K is a finite subset of MUS, then K = M1 U 
S1, where M1 (respectively SJ) is a finite subset of M (respectively S). Therefore, 
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we may assume that the subsets M and S are finite. Let M = {a1, ... , an} and 
S = {b1, ... , bk}. Choose a1, ... , an, f31, ... , f3k E F such that 

Then a1a1 +···+an an = ( -f3I)b1 + · · · + ( -f3k)bk, where a1a1 +···+an an 
is an element of the subspace B while ( -f3I)b1 + · · · + ( -f3dbk is an element 
of the subspace C. Since B n C = {OA}, it follows that 

The subsets M, S are linearly independent, so Proposition 4.2.7 implies that 

a1 =···=an= f31 = · · · = f3k =OF. 

Again by Proposition 4.2.7, the subset MUS is linearly independent. 

4.2.22. Proposition. Let A be a vector space over a field F, let A1, ... , An be 
subspaces of A and let M1, ... , Mn be linearly independent subsets of A1, ... , An, 
respectively. If C = A 1 + · · · + An is the internal direct sum of A 1, ... , An, then 
M 1 U · · · U Mn is a linearly independent subset. 

Proof. We use induction on n. If n = 2, the assertion follows from Lemma 
4.2.21. Suppose inductively that we have already proved that M1 U · · · U Mn-1 
is linearly independent. By Proposition 4.1.14, (AI+···+ An-d nAn = {OA} 
and Lemma 4.2.21 applies again to give the result. 

4.2.23. Corollary. Let A be a vector space over a field F and let A 1, ... , An 
be finite-dimensional sub spaces of A. If C = A 1 + · · · + An is the internal direct 
sum of A1, ... , An, then dimF(C) = dimF(AJ) + · · · + dimF(An)· 

Proof. Let Mj be a basis of Aj, for 1 S j S n. By Proposition 4.2.22, 
M1 U · · · U Mn is linearly independent. Also, if c E C, then c = c, + · · · + Cn, 
where Cj E Aj, for 1 S j S n. Since Mj is a basis of Aj, Cj is a linear 
combination of the elements of Mj, for 1 S j S n. It follows that cis a linear 
combination of the elements from M1 U · · · U Mn, so M 1 U · · · U Mn is a subset 
of generators for C. However, M 1 U · · · U Mn is linearly independent, so is a 
basis of the subspace C. The result now follows easily. 

4.2.24. Definition. Let A be a vector space over a field F and let B be a subspace 
of A. A subspace Cis called a complement to B, if A= B EB C. 

The following assertion is very useful. 

4.2.25. Proposition. Let A be a finite-dimensional vector space over a field F. 
Then every subspace of A has a complement. 
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Proof. Let B be an arbitrary subspace of A. By Theorem 4.2.20, B is finite 
dimensional so let {b1, ... , bk} be a basis for B. Since M = {b1, ... , bk} is 
linearly independent, Theorem 4.2.11 shows that M can be extended to a basis 
of the entire space A. Thus, there exists a finite subset S = { CJ, ... , cd such that 
MUS is a basis of A and we set C = Le(S). Let a be an arbitrary element of 
A. By Proposition 4.2.16, 

for certain elements fh, ... , f3k, y1, ... , Yt E F. Clearly, f31b1 + · · · + f3kbk E B 
and YJCJ + · · · + YtCt E C, so that a E B +C. It follows that A= B +C. 

Next, let y E B n C. Then y = )qb1 + · · · + Akbk. where ).. 1, ... , Ak E F. On 
the other hand, y = ~-t 1 c 1 + · · · + 1-ttCt. where /-LJ, ... , I-tt E F. We have 

AJbl + ... + Akbk = y = /-LJCJ + ... + 1-ttCt 

or 

Since {b1, ... , bk. c1, ... , cd is a basis, Proposition 4.2.7 shows that 

AJ = ... = Ak = /-tl = ... =I-tt= OF. 

Consequently, y = OA, so that B n C = {OA} and it follows that A= B EB C. 

We note that a subspace usually has more than one complement. For example, 
let A be the vector space, having basis {a!, a2} and let B be the subspace gene
rated by a1. We observe that the subset {a!, a1 + a2} is also a basis of A. If C 
(respectively D) is the subspace generated by a2 (respectively by a1 + a2), then 
C, D are complements to the subspace B. 

Finally, we would like to consider some important examples of finite dimen
sional spaces and subspaces. First we consider the most important example for 
us; namely, the space Fn. Put 

e1 = (e, OF, OF, ... , OF, OF), 

e2 =(OF, e, OF, ... , OF, OF), ... , 

ej=(OF,OF, ... ,OF, e ,OF, ... ,OF,OF), ... , 
'--.--' 

j 

en-1 =(OF, OF, OF, ... , OF, e, OF), 

en= (OF, OF, OF, ... , OF, e). 

These elements are linearly independent. For, let a1, ... , an be elements of 
F such that (OF, OF, OF, ... , OF, OF)= a1e1 + a2e2 + · · · + anen. We have 
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atet +···+an en =at (e, OF, ... , OF)+ a2(0F, e, OF, ... , OF)+··· 

+ an(OF, OF, ... , OF, e) 

=(at, OF, ... , OF)+ (OF, a2, OF, ... , OF, OF)+··· 

+(OF, OF, OF, ... , OF, an)= (at, a2, ... , an). 

It follows that at = a2 = · · · =an =OF, and by Proposition 4.2.7, the ele-
ments et, ... , en are linearly independent. Furthermore, for an arbitrary element 
(Yt, y2, ... , Yn) of Fn, we have 

(Yt, · · ·, Yn) = (yt, OF,···, OF)+ (OF, }'2, OF, ... , OF)+··· 

+(OF, OF, .. ·, OF, Yn) 

= Yt(e, OF, ... , OF)+ Y2(0F, e, OF, ... , OF)+··· 

+ Yn(OF, ... , OF, e) 

= Ytet + Y2e2 + · · · + Ynen. 

This proves that { et, ... , en} generates the vector space Fn and is linearly inde
pendent. Consequently, this subset is a basis of Fn called the standard or canon
ical basis of P. Thus, the space Fn is finite dimensional and dimF(Fn) = n. 

Now consider the space FN and its elements 

ej = (vjn)nEN, where Vjj = e and Vjn =OF whenever j # n. 

As proved above, we can show that the subset {ej I 1 ::; j ::; k} is linearly inde
pendent for every k E N. Proposition 4.2.7 implies that {en I n E N} is linearly 
independent. Hence, the vector space FN contains an infinite linearly independent 
subset and therefore, cannot be finite dimensional. In fact, the arguments stated 
above allow us to prove that {en I n E N} is a basis for the subspace F(N), but 
not of FN which has an uncountable basis. 

The vector space Mkxn (F) is also finite dimensional. Indeed, it is possible 
using arguments similar to those given above, to show that the subset {Erj I 
1 ::; t ::; k, 1 ::; j ::; n} is a basis of this vector space called the standard or 
canonical basis of the vector space Mkxn(F). Hence dimF(Mkxn(F)) = kn and 
dimF(Mn(F)) = n2, in particular. 

EXERCISE SET 4.2 

Justify your work, providing a proof or counterexample where necessary. 

4.2.1. Prove that the subset {(all,a12,al3,···'atn),(O,a22,a23, ... ,a2n), 
(0, 0, a33, ... , a3n), ... , (0, 0, 0, ... , akk, ak,k+t, ... , akn)} of the vector 
space A = «:t is linearly independent if and only if the numbers a11, 

a22, a33, ... , akk are nonzero. 
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4.2.2. Let {a 1 , a2, a3, ... , am} be a linearly independent subset of a vector space 
A. Is the subset {a1, a1 + a2, a2 + a3, ... , am-I +am} linearly indepen
dent? 

4.2.3. Let A be a finite set and let !AI = n. On the Boolean IJ3(A), we introduce 
the operation of addition and the operation of scalar multiplication by 
elements of the field F 2 = {0, 1} using the following rules: X + Y = 
(XU Y)\(X n Y), IX= X, OX= 0. Prove that the Boolean IJ3(A) is a 
vector space under these operations. Prove that if X 1 c Xz c · · · c Xn 
and X k =f. X j where k =f. j, then X 1 , X 2, ... , Xn are linearly independent. 
Find a basis and the dimension of IJ3(A). 

4.2.4. Let B be the subset of the vector space M2 (~) consisting of all matrices 

of the form (a 
0 

)·IsBa subspace? If yes, find dimJR(B). 
2a 3a 

4.2.5. Let A= Q 22 , B = {(a1, a2, ... , a22) I a1 + a2 + · · · + a22 = 0}. IsBa 
subspace? If yes, find dimJR(B). 

4.2.6. Let A = ~221 , B = { (a1, a2 , ... , a221) I 2a1 = a221 }. Is B a subspace? 
If yes, find dimJR(B). 

4.2.7. Let A= Q23 , B = {(a1, a2, ... , a23) I ai = az, a~= a3, ... , a~2 = 
a23}. IsBa subspace? If yes, find dimJR(B). 

4.2.8. Give an example of a nonstandard basis in M3 (~). 

4.2.9. Prove that the subset of all symmetric matrices is a subspace of the vector 
space M13 (~). Find a basis and the dimension of this subspace. 

4.2.10. Is the set of all skew-symmetric matrices a subspace of the vector space 
M41 (~)? If yes, find a basis and the dimension of this subspace. 

4.2.11. Let A= Q4 • Do the vectors (1, 2, 3, 4), (0, 1, -1, 3), (1, 2, 4, 3), (-1, 
-1, -4, 1) form a basis of this space? If yes, find the transition matrix 
from the standard basis. 

4.2.12. Is the subset { (~ -~), G ~), (~ ~), (~ ~)} a basis of the 

vector space M2(Q)? If yes, find the coordinates of the matrix ( _; ~) 
relative to this basis. 

4.2.13. Is the subset { (~ ~), G ~), (~ ~), G -u} a basis of the 

vector space M2(Q)? 

If yes, find the coordinates of the matrix ( _ i ~) relative to this basis. 
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4.2.14. In the vector space Mz(Q), find the transition matrix from 

the basis { G -~) , G ~) , G ~) , G ~) } to the basis 

{(~ n·G n.(~ ~)·G ~)l· 
4.2.15. In the vector space JR.4 , find a basis containing the vector (0, 1, 4, 3). 

4.2.16. In the vector space JR.4 , find a basis containing the vector (2, 1, 1, 0). 

4.2.17. Let A = Q4
. Is the matrix ( ~ ! -! i) a transition matrix from 

-1 -1 4 1 
the standard basis to another one? If yes, find the new basis. 

4.2.18. Let A = Q3, let B be the linear envelope of the subset 
{(1, 2, 1), (1, 1, -1), (1, 3, 3)} and let C be the linear envelope 
of the subset {(2, 3, -1), (1, 1, 2), (1, 1, -3)}. Find the bases of the sum 
and of the intersection of the spaces B and C. 

4.2.19. Let A= NT19(Q) be the subspace of all zero-triangular matrices. Find 
a basis and the dimension of this subspace. 

4.3 THE RANK OF A MATRIX 

Matrices are very important tools in linear algebra. In this section, we consider a 
concept known as the rank of a matrix. This concept is based on the dimension 
of a space. 

4.3.1. Definition. Let A be a vector space over a field F and let M be a finite 
subset of A. Then dimF (Le(M)) is called the rank of the subset M and is denoted 
by rank(M). 

From Corollary 4.2.13, we know that M contains some basis R of the subspace 
Le(M). By Theorem 4.2.10, R is a maximal linearly independent subset ofLe(M) 
and hence R is also a maximal linearly independent subset of M. Thus, we obtain 
the following characterization of the rank of a subset. 

4.3.2. Proposition. Let F be afield and let A be a vector space over F. Suppose 
that M is a finite subset of A. Then rank(M) is equal to the number of elements 
in every maxima/linearly independent subset of M. 

Proof. Let S = {a1, ••• , ak} be an arbitrary maximal linearly inde
pendent subset of M. Clearly, Le(M) is finite dimensional and we 
claim that S is indeed a basis of it, from which the result will fol
low by the definition. If x E M\S, then S U {x} is linearly dependent 
so by Proposition 4.2.7, there are scalars )q, ... , )..k. f3 E F, not all OF 
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such that 

(4.1) 

If f3 =OF, then the fact that S is linearly independent and Proposition 4.2.7 
imply that A., = A.z = · · · = Ak =OF, contrary to the choice of the scalars 
A. 1, ... , A.b {3. Thus, f3 =f. OF so, multiplying Equation 4.1 by {3-1 gives 
x = -{3- 1 A. 1a1 - · · ·- {3- 1 A.kak. Thus, every element of M is a linear combina
tion of the elements of S. Since every element of Le(M) is a linear combination 
of the elements of M, it follows that every element of Le(M) is a linear 
combination of the elements of S so that Sis indeed a basis of Le(M) as required. 

The following corollary is immediate. 

4.3.3. Corollary. Let F be afield and let A be a vector space over F. Suppose 
that M is a finite subset of A. Then rank(M) = IMI if and only if M is linearly 
independent. 

There is a very nice way of applying these results to matrices. Let F be a 
field and consider the k x n matrix A E Mkxn(F), where 

c 
a,z CV13 CVJ,n-1 a,.) 

az1 azz az3 az,n-i CVzn 
A= . . . 

CVki akz ak3 ak,n-i CVkn 

Every row of this matrix is an n-tuple consisting of elements of F, so, we may 
consider each row as an element of the vector space Fn. Similarly, every column 
of this matrix is a k-tuple, with entries in F and so each column can be considered 
as an element of the vector space Fk. 

4.3.4. Definition. Let F be a field and let A = [at}] be a k x n matrix over the 
field F. Let R(A) (respectively C(A)) denote the set of all rows (respectively 
columns) of the matrix A. Then R(A) (respectively C(A)) is a subset of the vector 
space P (respectively Fk ). The numbers rank(R(A)) andrank(C(A)) are called 
the row rank and the column rank of A, respectively. 

We are going to prove that these ranks coincide and exhibit a method for 
computing them. 

4.3.5. Theorem. Let F be a field and let A = [a1j] be a k x n matrix over the 
field F. Suppose that t is a positive integer satisfying the conditions: 

(i) the matrix A has a nonzero minor of degree t; 

(ii) each minor of degrees> t is equal to OF. 

Then rank(C(A)) = t. 
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Proof. We suppose first that minor{1, 2, ... , t; 1, 2, ... , t} is nonzero and that 
the corresponding cofactor is denoted by Ll. As we will see later, this will not 
affect the generality of the result but will significantly simplify the notation. Let 
a1 denote the jth column of the matrix A and consider the matrix 

a 11 alt a,1 
a21 a21 a21 

B= 
a 11 au at} 

ami amt am} 

where k + 1 ::; j ::; n and 1 ::; m ::; k. If m ::; t then the matrix B has two iden
tical rows, those numbered m and t + 1, so, by Corollary 2.3.8, det(B) =OF. If 
m > t, then 

det(B) =minor {1, 2, ... , t, m; 1, 2, ... , t, j}. 

This minor has degree t + 1, and by hypothesis (ii), det(B) =OF so, in 
any case, det(B) =OF. Using Theorem 2.4.3, we may expand the deter
minant of B about the last row. The cofactor corresponding to ami is 
±minor{l, 2, ... , t; 1, 2, ... , t} = Ll, whereas the minor corresponding to ams 

is the determinant of 

C' 
aJ,s-J al,s+J alt alj) 

a21 a2,s-J a2,s+J a21 a21 
Bs = . . . 

an at,s-J at,s+J au at} 

We denote the corresponding cofactor by Ll5 • As we can see, the elements of 
the row numbered m do not belong to the matrix B5 • Therefore, det(Bs) and 
consequently, Lls is independent of m. By Theorem 2.4.3, 

am1Ll1 + · · · + amtLlt + amjLl =OF. 

Since Ll is a nonzero element of the field F, Ll has a multiplicative inverse, Ll-1, 

so we have 

Since this equation is valid for each m, where 1 ::; m ::; k, we obtain the following 
linear combination of the columns considered as elements of the vector space pk: 

It follows that Le(C(A)) is generated by the columns a,, ... , a1• We next show 
that the set {a,, ... , atl is linearly independent, which implies that it is a basis 
of Le(C(A)). Suppose that the contrary is true. Then there exists an index q 



VECTOR SPACES 177 

such that the column Clq is a linear combination of the other columns, say Clq = 
LJ::ojs_t,qi-J AjClj· Let aj denote the column 

(
ft)j) 
ctzj 
. . 

CXtj 

For these "shortened" columns, the same linear combination aq = 

LJ::oj::ot,qi-J Ajaj is true. However, Corollary 2.3.10 shows that in this 
case, the matrix 

has determinant zero, a contradiction which proves that {a 1, ••• , ar} is a basis of 
Le(C(A)). Thus, dimFLe(C(A)) = t, which proves the result. 

Computation of the rank of a matrix appears to require the computation of 
a possibly very large (but finite!) number of minors of the matrix. However, if 
we look carefully at the proof of the previous theorem, we see that we did not 
use the fact that all minors of degree s > t are equal to zero. We actually used 
only the fact that the minors of degree s including the given nonzero minor of 
degree t are equal to zero. We may infer from this fact that t is the number of 
columns in a maximal linearly independent subset of the set of all columns. This 
fact implies that all other minors of degree s > t are equal to zero. 

4.3.6. Corollary. Let F be afield and let A= [atj] beak x n matrix over the 
field F. Then, the row rank of this matrix coincides with its column rank. 

Proof. Suppose that the column rank of A is denoted by w. By Theorem 4.3.5, 
there exists a nonzero minor 

Ll = minor{p(1), p(2), ... , p(w); j(1), j(2), ... , j(w)} 

of degree t. Let At= [,Bij] E Mnxk be the transpose of A, so .Bij = CXji· Then 
R(At) (respectively C(AI)) is the set of all columns (respectively rows) of the 
matrix A. Therefore, the column rank of AI is equal to the row rank of A, and con
versely. We will find the column rank of the matrix At. By Proposition 2.3.3, the 
minor of the matrix At corresponding to the rows numbered j ( 1), j (2), ... , j ( w) 
and the columns numbered p(l), p(2), ... , p(w) is nonzero. Next, choose s 
arbitrary columns and rows in AI, where s > w. We suppose that the chosen 
rows are rows m(1), ... , m(s) and the chosen columns are d(1), ... , d(s). By 
Proposition 2.3.3, the minor of the matrix AI corresponding to these rows and 
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columns is equal to the minor of the matrix A consisting of the rows numbered 
d(1), ... , d(s) and columns numbered m(l), ... , m(s), and therefore it is equal 
to zero. Hence, every minor of the matrix AI of degree s > w is equal to zero. 
By Theorem 4.3.5, the column rank of AI is therefore w. Hence the row rank of 
A is also w, and in particular, the column and the rows ranks of A are equal. 

Because of Corollary 4.3.6, we call the common value of the row rank and 
column rank of a matrix A simply the rank of A and denote it by rank(A). It 
will normally be clear what ranks we are talking about. 

The rank of a matrix has important applications in solution of systems of 
linear equations. To see this, we consider the system of linear equations 

<X11X1 + <X12X2 + · · · + <XInXn = fJ1 

<X21X1 + <X22X2 + · · · + <X2nXn = fJ2 

<Xk-I,IXI + <Xk-1.2X2 + · · · + <Xk-l,nXn = f3k-1 

<Xk1X1 + <Xk2X2 + · · · + <XknXn = f3k· 

(4.2) 

The coefficients atj, for 1 :::; t :::; k, 1 :::; j :::; n and elements {31, for 1 :::; t :::; k 
belong to F. 

4.3.7. Definition. An n-tuple (YI, ... , Yn) consisting of elements of a field F is 
called a solution of the system (Eq. 4.2) if every equation from Equation 4.2 
becomes an identity after replacing the variables x j by the corresponding elements 
Yj· for 1 :::; j :::; n, so Ll~j~n <XtjYj = f3t for all t, where 1 :::; t :::; k. 

Note that the elements Yl, ... , Yn form only one solution (y1, ... , Yn) of the 
given system, not n solutions. Also a system of linear equations need not have 
a solution. We next consider the question of the existence of a solution to such 
a system. 

The matrix 

c a12 al,n-1 a!,) 
<X21 <X22 a2,n-l <X2n 

A-- . 
<Xkl ak2 ak,n-1 <Xkn 

consisting of the coefficients of the variables x j, where 1 :::; j :::; n, is called the 
coefficient matrix of the system (Eq. 4.2). The matrix 

c al2 al,n-1 <X1n ~I) <X21 a22 a2,n-l <X2n f32 
A*= . 

<Xkl ak2 ak,n-1 <Xkn f3k 

is called the extended or augmented matrix of the system (Eq. 4.2). 
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4.3.8. Theorem ( Kronecker-Capelli). The system of linear equations has a solu
tion if and only if the rank of the coefficient matrix of the system is equal to the 
rank of the augmented matrix of the system. 

Proof. Suppose that the system (Eq. 4.2) has the solution (y1, ••• , Yn). We 
have 

<l11Y1 + <l12Y2 + ... + a1nYn = f31 

a21 Yl + a22Y2 + · · · + <XznYn = f3z 

<Xk-1,1 Y1 + <Xk-1,2Y2 + · · · + ak-l,nYn = f3k-1 

<Xk1 Y1 + <Xk2Y2 + · · · + aknYn = f3k 

Let n 1 denote the jth column of the matrix A, where 1 ::; j ::; n, and let b denote 
the column consisting of the elements fJ1, ... , f3k. Then, this system of equations 
can be written in the form 

Y1Cl1 + YzClz + · · · + YnCln = b, 

as a linear combination of the columns. This equation shows that the column b 
belongs to Le(C(A)). Thus, Le(C(A)) = Le(C(A*)) and therefore 

rank(A) = dimF(Le(C(A)) = dimF(Le(C(A*)) = rank(A*). 

Conversely, suppose that rank(A) = rank( A*) in which case, we have dimF 
(Le(C(A)) = dimF(Le(C(A*))). Since Le(C(A)) is a subspace of Le(C(A*)), 
Theorem 4.2.20 shows that Le(C(A)) = Le(C(A*)). It follows that the column 
b belongs to Le(C(A)). By Proposition 4.2.3, every element of Le(C(A)) is a 
linear combination of the elements of C(A), so 

YtCl1 + YzClz + · · · + YnCln =b. 

for some elements Y1, •.. , Yn E F. This leads us to the system of equations, 

a11Y1 + <XJ2Y2 + ... + <l1nYn = /31 

a21 Yl + azzYz + · · · + <Xzn Yn = f3z 

<Xk-l,IY1 + <Xk-1,2Y2 + · · · + <Xk-l,nYn = f3k-1 

<Xk1 Yl + <Xk2Y2 + · · · + <Xkn Yn = f3k, 
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which shows that the n-tuple (YI, ... , Yn) is a solution of the system 
(Eq. 4.2). 

Finally we obtain the following result. 

4.3.9. Theorem. Let F be afield, let A= [a1j] E Mkxn(F), and let B = [,8jm] E 

Mnxs(F). Then rank(AB) ::: rank(A) and rank(AB) ::: rank(B). 

Proof. Let AB = [y1m] E Mkxs(F). We consider the mth column of AB which is 

all/31m+ a12f:32m + ... + alnf:3nm = Ylm 

a2If:3Im + a22f:32m + ... + a2nf:3nm = Y2m 

Let aj denote the jth column of the matrix A, for 1 ::: j ::: n, and let 9m 
denote the mth column of the matrix AB, for 1 ::: m::: s. Then, the system 
above leads to the following linear combination of columns (as elements of the 
vector space Fk): 

This equation shows that every column of the matrix AB belongs to Le(C(A)), 
which means that Le(C(AB)) ::: Le(C(A)) and therefore 

rank(AB) = dimF(Le(C(AB))) ::: dimF(Le(C(A))) = rank(A). 

We note in a similar manner that each arbitrary row of the matrix AB is a linear 
combination of the rows of the matrix B. Hence every row of the matrix AB 
belongs to Le(R(B)). This means that Le(R(AB)) ::: Le(R(B)) and therefore 

rank(AB) = dimF(Le(R(AB))) ::: dimF(Le(R(B))) = rank(B). 

4.3.10. Corollary. Let F be afield, let A= [a1j] E Mn(F) and let B = [/3jm] E 

Mnxs(F). If A is a nonsingular matrix, then rank(AB) = rank(B). 

Proof. Let C = AB. By Theorem 4.3.9, rank(C) ::: rank(B). Since A is non
singular, A has a multiplicative inverse, A -I and we have 

Using Theorem 4.3.9, again we deduce that rank(B) ::: rank(C), and therefore 
rank(C) = rank(B). 

A similar method of proof implies the following corollary also. 

4.3.11. Corollary. Let F be afield, let A= [atj] E Mkxn and let B = [,8jm] E 

Mn(F). If B is a nonsingular matrix, then rank(AB) = rank(A). 
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EXERCISE SET 4.3 

4.3.1. Let A= Q5 . Find the rank of the subset M = {(0, 1, 1, 0, 2), (1, 0, 3, 

-1, 3), (1, 0, -3, 2, -2), (2, 3, 4, 3, 1), (3, -1, 3, 1, 0)}. 

4.3.2. Let A = Q3. Find the rank of the subset M = {(1, 1, 1), (a, {J, y), 

(a2, {32, y2)}. 

4.3.3. Let A= JR5 . Find the rank of the subset M = {(0, 0, 1, 1, 2), (-1, 1, 0, 

0, 1), (2, -1, 0, 1, -1), (1, 3, -1, 3, 1), (3, 2, 3, 3, 3)}. 

4.3.4. Find the mnk of the matrix (! 3 -2 0 

~} 
1 5 3 

-1 2 1 
0 3 -1 
3 -3 8 

4.3.5. Find the rank of the matrix (! 3 -2 0 

~} 
1 0 3 

-1 2 1 
0 0 -1 
3 -5 8 

4.3.6. Find the rank of the matrix (! 3 -2 0 

~} 1 5 3 
-1 2 1 

0 3 -1 
3 -3 8 

4.3.7. Find the rank of the matrix (! 3 -2 0 

~} 
1 0 3 

-1 2 
0 0 -1 
3 -5 8 

4.3.8. Find the rank of the matrix (! 3 0 0 

~} 
1 -4 3 

-2 2 0 
0 0 -1 
3 -3 8 

4.3.9. Find the rank of the matrix (! 3 -2 0 

i} 1 -1 3 
-1 2 1 

0 0 -1 
3 -3 8 
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4.3.10. Find the values of a, such that the matrix 

has the minimal rank and find this rank. 

4.4 QUOTIENT SPACES 

The planes and straight lines of regular three dimensional space are important 
subjects of investigation and certain of them are subspaces of this space. Note 
that Theorem 4.1.7 implies that a subspace of a vector space always contains a 
zero element, so only such straight lines and planes that pass through the origin 
are subspaces. We consider how lines and planes not passing through the origin 
are related to these subspaces in the following example. 

Let P be a straight line in JR2 with the equation y = kx +b. Then 

P = { (x, kx +b) I x E JR}, 

and we let Po= {(x, kx) I x E R}, which is a subspace of JR2. If (u, v) is an 
arbitrary element of P, then (u, v) = (u, ku +b) = (u, ku) + (0, b). Thus, to 
obtain all points of P, we add (0, b) to each of the points of the subspace Po. 

4.4.1. Definition. Let A be a vector space over afield F and let B be a subspace 
of A. For each element x E A, let x + B = {x + y I y E B}. The subset x + B is 
called an affine subspace of A or a coset of the subspace B, and the element xis 
called its coset representative . 

. We note that x + B is uniquely determined by each of its elements. This 
means that if y E x + B, then x + B = y + B. In fact, y = x + bo for some 
element bo E B. If z E y + B, then z = y + b, for some element b, E B so that, 
by Theorem 4.1.7, 

Z = y + b, = (x + bo) + b, =X+ (bo + b1) EX+ B. 

Hence y + B ~ x + B. On the other hand, x = y - bo, and repeating the same 
arguments, we obtain the inclusion x + B ~ y + B, which proves that y + B = 
x+B. 

Suppose now that there are two cosets x + B, y + B and that (y + B) n 
(x +B) =f. 0. Let z E (y +B) n (x +B). As stated above, the inclusion z E y 
+ B (respectively, z Ex+ B) implies that z + B = y + B (respectively z + B = 
x +B). In particular, x + B = y +B. The equation x = x + OA implies that 
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x E x + B. This shows that the family of all affine subspaces of A, relative to 
B, is a partition of A. Indeed, there is an underlying equivalence relation defined 
on A in which the equivalence classes are precisely the cosets of the subspace 
B. (See Section 7.2 for details concerning equivalence relations.) 

We define an addition and scalar multiplication on the set of all affine sub
spaces of B using the rules 

(x + B) + (y + B) = x + y + B 

and 

a(x+B)=ax+B, 

where x, y E A, a E F. These operations are well defined since if also x 1, Yi are 
elements of A such that x + B = x, + B and y + B = Yi + B, then we have 
x1 = x + u, Yl = y + v for certain elements of u, v E B. Thus, 

x, + Yi = (x + u) + (y + v) = (x + y) + (u + v) 

and 

ax, = a(x + u) =ax+ au. 

Since B is a subspace, (u + v), au E B. Therefore 

x + y + B = Xi + Yi + B and ax + B = ax, + B. 

Next we show that the set of cosets itself forms a vector space over F with this 
definition of addition and scalar multiplication. First, we note that if x, y E A, 
then 

(x + B) + (y + B) = x + y + B = y + x + B = (y + B) + (x + B); 

and 

Also 

(x +B)+ ((y +B)+ (z +B))= (x +B)+ (y + z +B) 

= x + (y +z) + B 

=((x+y)+z)+B 

= (x + y + B) + (z + B) 

= ((x +B)+ (y +B))+ (z +B). 

(x +B)+ (OA +B) = x + OA + B = x + B; 

so that the coset OA + B = B is the zero element under addition of cosets. 
Clearly, 

(x +B)+ (-x +B)= (x + (-x)) + B = OA + B = B, 
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so that 

-(x +B) = ( -x +B). 

Also, if a, f3 E F, then 

a(x + B + y +B) = a(x + y +B) = a(x + y) + B 

= ax + ay + B = ax + B + ay + B 

= a(x +B)+ a(y +B); 

(a+ f3)(x +B) = (a+ f3)x + B =ax+ f3x + B 

= (ax+ B)+ (f3x +B) = a(x +B)+ f3(x +B); 

a(f3(x +B)) = a(f3x +B) = a(f3x) + B = (af3)x + B 

= (af3)(x +B); and 

e(x + B) = ex + B = x + B. 

This means that the set of all affine subspaces over B is a vector space, using 
the operations of addition and scalar multiplication defined above. 

4.4.2. Definition. The space of all affine subspaces over the subspace B is called 
the factor space, or the quotient space, of A over B and is denoted by A/B. 

Note that if B = {0 A} is the zero subspace, then x + B = {x} and 

{x} + {y} = {x + y}, a{x} ={ax}, 

for all x, y E A, a E F. 
This shows that in this case, the quotient space A/ B is, to all intents and 

purposes, the same as A. We will see later that A and A/ B are "isomorphic" as 
vector spaces in this case. If B =A, then x + B =A for each x E A. Hence, in 
this case, A I B = {A} is the zero vector space. 

4.4.3. Proposition. Let F be afield, let A be a vector space over F and let B be a 
subspace of A. Suppose that M is a subset of A with the property that Le(M) = A. 
Then, the subset {a+ B I a E M} generates the quotient space A/ B. 

Proof. Indeed, for each element x of A, we have x = A1a1 + · · · + Akak for 
certain elements AI, ... , Ak E F and a 1, ... , ak E M. Then 

x + B =Alai + · · · + Akak + B = (Alai +B)+···+ () .. kak +B) 

=AI (a! +B)+···+ Ak(ak +B). 

The result now follows. 

For finite-dimensional vector spaces we obtain. 
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4.4.4. Theorem. Let F be a field, let A be a finite-dimensional vector space over 
F and let B be a subspace of A. Then the quotient space A/ B is finite dimensional 
and dimF(Aj B)= dimF(A)- dimF(B). 

Proof. By Theorem 4.2.20, B is finite dimensional. Let M = {b1, ••• , bk} be 
a basis of the subspace B. Since M is linearly independent, Theorem 4.2.11 
shows that this subset can be extended to a basis of the entire space A. Hence, 
there exists a finite subset S = {c,, ... , cr} such that M U S is a basis of A. 
By Proposition 4.4.3, the quotient space A/ B is generated by b, + B, ... , bk + 
B, c1 + B, ... , c1 +B. However, bj + B = B for all j, where 1 ::=: j ::=: k. Hence 
A/ B is generated by c 1 + B, ... , c1 +B. 

Next we show that c, + B, ... , c1 + B are linearly independent. If y,, ... , Yr 
are elements of F such that 

Y1 (c, +B)+···+ Yr(cr +B)= B, 

then we have 

y1(c1 +B)+···+ y1(c1 +B)= (y1c1 +B)+.·.+ (y1c1 +B) 

= y,c, + ... + Yrcr +B. 

It follows that y, c, + · · · + y1c1 E B, and since {b,, ... , bk} is a basis of B, there 
exist elements fh, ... , fh E F such that y,c, + · · · + y1c1 = fhb1 + · · · + fhbk. 
Then 

Since {b1, ••• , bk. c1, ••• , cr} is a basis of A, Proposition 4.2.7 shows that 

fh = · · · = fh = Y1 = · · · = Yr = OF 

and hence, again using Proposition 4.2.7, we deduce that {c1 + B, ... , c1 + B} 
is linearly independent. Thus, {c1 + B, ... , c1 + B} is a basis of A/ B and 

t = dimF(Aj B) = (t + k)- t = dimF(A)- dimF(B), 

which proves the result. 

In the next chapter, we start to discuss mappings between vector spaces. 
To illustrate what we shall be doing, we consider a straightforward example. 
Accordingly, let A be a vector space over the field F and let B be a subspace 
of A. Consider the mapping aB : A ~ A/ B, defined by 

aB(x) = x + B, for x EA. 
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Then 

a B (x + y) = x + y + B = x + B + y + B = a B (x) + a B (y), 

and 

ctaB(x) = a(x +B)= ax+ B = aB(ctx), 

whenever x, y E A, a E F. 
The stage is now set for us to discuss the next concept that is important in 

linear algebra, the idea of mappings that respect the operations of addition and 
scalar multiplication. 

EXERCISE SET 4.4 

Justify your work, using a proof or counterexample where appropriate. 

4.4.1. Let A = <Cf2
, B = { (a1, a2, ... , a22) I a1 + a2 + · · · + a22 = 0}. Find a 

basis of A/ B. 

4.4.2. Let A= JF~ 1 , B = {(a1, a 2, ... , a 21 ) I 2a1 = a 2J}. Find the order of A/ B. 

4.4.3. Let A=Q221
, B={(a1,a2 , ••• ,a221 )12a1 =a221 }. Find a basis of 

A/B. 

4.4.4. Let A be the subspace of all symmetric matrices and let B be the subset 
of all diagonal matrices of the vector space M11 (JR.). Find the dimension 
of AjB. 

4.4.5. Let A= Q4 and let B be the linear envelope of the subset {(I, 2, 3, 4), 
(0, I, -1, 3)}. Find a basis of A j B. 

4.4.6. Let A = M2(Q) and B be the linear envelope of the subset consisting of 

the matrices ( ~ - ~) , (! ~) . Find a basis of A I B. 

4.4.7. Let A = M2(Q) and let B be the linear envelope of the subset consisting 

of the matrices ( ~ ~) , C ~). Find a basis of A I B. 

4.4.8. Let A= M2(lF3) and let B be the linear envelope of the subset consisting 

of the matrices ( ~ ~) ' c -n 0 Find a basis, and the order' of A I B 0 



CHAPTERS 

LINEAR MAPPINGS 

5.1 LINEAR MAPPINGS 

For each algebraic structure there is a specific type of mapping which respects 
that structure. Such a mapping is called a homomorphism of the given structure. 
For example, in ring theory we deal with ring homomorphisms, in group theory 
we deal with group homomorphisms, and so on. The term homomorphism is a 
general term for all areas of algebra but, unfortunately in some respect, the term 
never caught on in linear algebra, where we use the term linear mapping. 

5.1.1. Definition. Let A and V be vector spaces over the same field F. The 
mapping f : A ~ V is called a linear mapping, or a homomorphism of vector 
spaces, if it satisfies the following properties: 

f(x + y) = f(x) + f(y) and f(ax) = af(x) 

for all x, y E A, a E F. An injective linear mapping is called a monomorphism, 
a surjective linear mapping is called an epimorphism, and a bijective linear map
ping is called an isomorphism. 

Iff: A ~ Vis an isomorphism, then Theorem 1.3.5 shows that the mapping 
f has an inverse mapping f- 1 : V ~ A. If u, v are arbitrary elements of V, 
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then u = f(x), v = f(y) for certain elements x, y E A. If a E F we have 

f- 1(u + v) = /- 1(/(x) + f(y)) = f- 1(/(x + y)) 

= x + y = f- 1(u) + f- 1(v) and 

!-\au)= f- 1(af(x)) = f- 1(/(ax)) =ax= af-1(u). 

This implies that the mapping f- 1 : V -----+ A is also an isomorphism. 

5.1.2. Definition. Let A, V be vector spaces over the field F. Then, A and V are 
called isomorphic if there exists an isomorphism from one of them to the other 
and we can write A ~F V or A~ V, when the field is understood. 

Clearly, the identity mapping £A : A -----+ A is an isomorphism. Also the map
ping f} : A -----+ V, the zero mapping, defined by f} (a) = Ov for all a E A is 
linear. 

Next, let a E F be fixed. The mapping ha : A -----+ A defined by ha (x) = ax 
for all x E A is linear and is called a homothety. Clearly, he= c:A and ho = ff. 

Furthermore, if f : A -----+ V and g : V -----+ W are linear mappings, then their 
product go f is also a linear mapping, as can easily be seen. 

5.1.3. Proposition. Let A, V be vector spaces over a field F and let f : A -----+ V 
be a linear mapping. Then the following properties hold: 

(i) f(OA) = Ov. 

(ii) f( -x) = - f(x) for all elements x E A. 

(iii) f(x- y) = f(x)- f(y) for all x, y E A. 

(iv) /(at XI + · · · + anXn) = atf(xt) + · · · + anf(xn) for all Xt, ... , Xn E 

A and at, .. . an E F. 

(v) If B is a subspace of A, then its image f(B) is a subspace of V; in 
particular, f(A) = lmf is a subspace of V. 

(vi) If U is a subspace of V, then its preimage f- 1 (U) is a subspace of A; in 
particular, 

Kerf= {x E A I f(x) = Ov} = /- 1({0v}) 

is a subspace of A. 

(vii) If M is a subset of A, then Le(f(M)) = f(Le(M)). 

Proof. 
(i) We have x + OA = x for each x E A. Then 

f(x) + f(OA) = f(x + OA) = f(x). 
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Since f (x) has an additive inverse in V, adding it to both sides of the equation 
above and using the associative law gives 

Ov = - f(x) + f(x) =- f(x) + f(x) + f(OA) = Ov + f(OA) = f(OA). 

(ii) By definition of additive inverses, x + ( -x) = OA, so that 

Ov = f(OA) = f(x + (-x)) = f(x) + f(-x). 

This shows that f( -x) is the additive inverse of f(x). 
(iii) We have 

f(x- y) = f(x + (-y)) = f(x) + f(-y) = f(x) + (-f(y)) = f(x)- f(y). 

(iv) We use induction on n. For n = 2 we have 

Suppose, inductively, that we have already proved that 

Then 

f(a!X! + · · · + anXn) = f((a!X! + · · · + an-!Xn-d + anXn) 

= f(a!X! + · · · + an-!Xn-!) + f(anXn) 

= alf(x!) + · · · + an-d(Xn-d + anf(xn), 

by the induction hypothesis. 
(v) Let x, y E B, a E F, u = f(x) and v = f(y). Then, by Theorem 4.1.7, 

x- y,ax E B, so that 

u- v = f(x)- f(y) = f(x- y) E f(B) and au= af(x) = f(ax) E f(B). 

Thus, by Theorem 4.1.7, f(B) is a subspace of V. 
(vi) Let x, y E f-1(U) and a E F. Then f(x), f(y) E U. Since U is a 

subspace of V, f(x)- f(y) = f(x- y) E U and af(x) = f(ax) E U. This 
implies that x- y, ax E f- 1 (U) and Theorem 4.1.7 implies that f- 1 (U) is a 
subspace of A. 

(vii) Let u E Le(f(M)). Then, by Proposition 4.2.3, u =a, w, + · · · + anwn 
for certain elements w 1, ... , Wn E f(M), a,, ... , an E F. Hence, there exist 
y,, ... , Yn EM such that w, = f(y,), ... , Wn = f(Yn). Therefore 
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It follows that Le(f(M)) :S f(Le(M)). Applying these arguments in reverse 
order, we obtain the reverse inclusion which proves Le(f(M)) = f(Le(M)). 

The subspace Kerf is called the kernel of the linear mapping f. 

5.1.4. Theorem (The monomorphism theorem). Let A, V be vector spaces over a 
field F and let f : A ---+ V be a linear mapping. Then f is a monomorphism if 
and only ifKer f = {OA}. Furthermore, iff is a monomorphism, then A~ lmf. 

Proof. Indeed, iff is a monomorphism, then from x =!= OA it follows that f(x) =!= 

f (0 A) = Ov. This means that no nonzero element x of A belongs to Kerf, so 
Kerf= {OA}. 

Conversely, let Kerf= {OA} and let x, y be elements of A such that f(x) = 
f(y). Then 

f(x- y) = f(x)- f(y) = Ov, 

so that x - y E Kerf. It follows that x - y = 0 A so that x = y. This proves that 
f is injective and hence is a monomorphism. Finally, when f is a monomorphism 
then f also maps A onto Im f so in this case A ~ Im f. 

5.1.5. Corollary. Let A, V be vector spaces over afield F and let f :A ---+ V 
be a monomorphism. If M is a linearly independent subset of A, then f(M) is a 
linearly independent subset of V. 

Proof. LetS be a finite subset of f(M). Then S = f(R) for some finite subset 
R of M. To show that f (M) is linearly independent, let R = {YI, ... , Yn} and 
let a 1, ••• , an be elements of F such that aif(yi) + · · · + anf(Yn) = Ov. By 
Proposition 5.1.3, 

which shows that a1Y1 + · · · + anYn E Kerf. By Theorem 5.1.4, Kerf= {OA}, 
so that a 1y1 + · · · + anYn = OA. By Proposition 4.2.7, R is a linearly indepen
dent subset and therefore, a1 = · · · =an =OF. Using Proposition 4.2.7 again we 
deduce that S is linearly independent and hence, f(M) is linearly independent. 

5.1.6. Corollary. Let A, V be vector spaces over afield F and let f: A ---+ V 
be a monomorphism. If A, V have finite dimensions then dimF(A) :S dimF(V). 

Proof. Let X be a finite basis of A. By Corollary 5.1.5, /(X) is a linearly 
independent subset of V. By Proposition 5.1.3, f(X) is a set of generators for 
lmf, so f(X) is a basis for lmf. By Theorem 4.2.20, dimF(Imf) :S dimF(V) 
and, since f is injective, dimF(Imf) = lf(X)l = lXI = dimF(A). 

5.1.7. Theorem (The epimorphism theorem). Let A, V be vector spaces over a 
field F and let f : A ---+ V be an epimorphism. Then the space V is isomorphic 
to the quotient space AjKer f. 
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Proof. Put B = Kerf and consider the mapping 1/J 1 : A I B ~ V defined by 
1/J f(X +B) = f(x). We need to be sure that 1/J 1 is well defined, which means 
here that it does not depend on the choice of representative of the affine subspace 
x + B. To see this, let y be an element of the space A such that x + B = y + B. 
Then y Ex+ B, so that y = x + b, for some element bE B and 

f(y) = f(x +b) = f(x) + f(b) = f(x) + Ov = f(x), 

which proves that 1/J 1 is well defined. 
The mapping 1/11 is bijective since, for each element u E lmf, there exists 

an element a E A such that u = f(a) and hence 1/IJ(a +B)= f(a) = u, which 
shows that 1/J 1 is surjective. If 1/J 1 (a + B) = 1/J 1 ( c + B), then by the definition of 
1/IJ we have f(a) = f(c), so Ov = f(a)- f(c) = f(a- c) and therefore a
c E Kerf = B. It follows that a + B = c + B, so 1/J 1 is injective and therefore 
bijective. 

We still need to prove that 1/J 1 is a homomorphism. However, 

1/IJ((x +B)+ (y +B))= 1/IJ(x + y +B)= f(x + y) 

= f(x) + f(y) = 1/IJ(X +B)+ 1/IJ(Y +B) 

and 
1/IJ(a(x +B))= 1/IJ(ax +B)= f(ax) = af(x) = al/JJ(X +B), 

for all x, y E A, a E F. 

5.1.8. Corollary. Let A, V be vector spaces over afield F and let f: A~ V 
be an epimorphism. If A has finite dimension, then V is also finite dimensional 
and dimp(V) ::::; dimp(A). 

Proof. Let X be a basis of A. By Proposition 5.1.3, f(X) is a set of generators for 
V. By Corollary 4.2.13, f(X) contains a basis of the space V, so that dimp(V)::::; 
lf(X)I. Since lf(X)I ::::; lXI = dimp(A), the result is proved. 

5.1.9. Corollary. Let A, V be vector spaces over afield F and let f: A~ V 
be an isomorphism. If A has finite dimension and X is a basis of A, then f (X) is 
a basis of V and dimp(V) = dimp(A). 

Proof. By Proposition 5.1.3, f(X) is a set of generators for V and, by Corol
lary 5.1.5, f(X) is a linearly independent subset of V. Hence f(X) is a basis of 
the space V so that 

dimp(V) = lf(X)I = lXI = dimp(A). 

5.1.10. Theorem (The first isomorphism theorem). Let A, V be vector spaces 
over a field F and let f : A ~ V be a linear mapping. Then A/Kerf ~ 
lmf::::; V. 
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Proof. Indeed, the restriction of f to the mapping A -----+ lmf is an epimor
phism and from Theorem 5.1.7 we deduce that Im f ~A/Kerf. Finally, by 
Proposition 5.1.3, lmf is a subspace of V. 

For finite-dimensional spaces we obtain the following result. 

5.1.11. Corollary. Let A, V be vector spaces over a field F and let f : A -----+ 
V be a linear mapping. If dimF(A) is finite, then dimF(A) = dimF(Kerf) + 
dimF(Imf). 

Proof. By Theorem 5.1.10, A/Kerf~ lmf. Corollary 5.1.9 shows that dimF 
(A/Kerf)= dimF(Imf) and Theorem 4.4.4 implies that dimF(A/Kerf) = 
dimF(A)- dimF(Kerf). Thus, 

For finite-dimensional vector spaces we obtain the following method of defin
ing linear mappings. 

5.1.12. Proposition. Let A, V be vector spaces over a field F. Suppose that 
dimF(A) is finite and let {a,, ... ,an} be a basis of A./f{u,, ... ,un} are n 
arbitrary elements of the space V, there exists one and only one linear mapping 
f: A-----+ V such that f(aj) = Uj,for 1 _:::: j _:::: n. 

Proof. Let x be an arbitrary element of A. By Proposition 4.2.16, x = 
L!:sj:sn ~jaj, where ~j E F for 1 _:::: j _:::: n. Define the mapping f: A-----+ V 
by f(x) = L!:sj:sn ~jUj. If yEA and y = L!:sj:sn r/jaj, where 'f/j E F for 
1 _:::: j _:::: n, then 

By Proposition 4.2.16, this representation is unique. Then 

= L ~jUj + L 'f/jUj = f(x) + f(y). 
l:Sj:Sn l:Sj:Sn 

Also, if a E F, then 
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It follows that 

This shows that the mapping f is linear. Suppose also that g : A ---+ V is a linear 
mapping with the property g(aj) = Uj, for 1 .::; j.::; n. Then for each element 
x E A, x = Li:oj:on ~jaj and we have 

Thus f = g, as required. 

Consequently, a linear mapping is uniquely determined by assigning images 
to the basis elements. The following theorem shows that the dimension of a space 
defines the space up to isomorphism. 

5.1.13. Theorem. Let A, V be vector spaces over afield F. Then A and V are 
isomorphic if and only ifdimF(A) = dimF(V). 

Proof. If A and V are isomorphic then, by Corollary 5.1.9, dimF(A) = 
dimF(V). Conversely, suppose that dimF(A) = dimF(V). Let {a,, ... , an} be 
a basis of A and let { v 1, ••• , Vn} be a basis of V. If x is an arbitrary element 
of A then, by Proposition 4.2.16, x = LJ:oj:':n ~jaj, for certain ~j E F, where 
1 .::; j .::; n. Proposition 5.1.12 shows that the mapping f : A ---+ V defined by 
f(x) = Li:oj:on ~jVj is linear. 

Let u be an arbitrary element of V. Then u = Li:oj:on IJjVj, where IJj E F 
for 1 .:S j .:S n, and we let y = Li:oj:on IJjaj so that f(y) = u. This shows that 
f is an epimorphism. 

To show that f is a monomorphism, let c E Kerf and let c = L 1 :Oj :on yja j 
be a representation of c relative to the basis {a,, ... , an}, where Yj E F for 
1 .:S j .:S n. Then Ov = f(c) = Li:oj:on YjVj· Since the subset {v,, ... , Vn} is a 
basis, it is linearly independent and Proposition 4.2.7 implies that y1 = · · · = 
Yn =OF. Hence c = OA, and Kerf= {OA}. Theorem 5.1.4 shows that f is a 
monomorphism and therefore f is an isomorphism. 

The following result illustrates the special role of the space Fn. 

5.1.14. Corollary. Let A be a finite-dimensional vector space over the field F. 
Then A ';;:!;F P where n = dimF(A). 
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Let {a1, ... , an} be a basis of A and let x = LI::hn t;1a1, where t;1 E F, for 
1 ::::; j ::::; n. From Theorem 5 .1.13 we see that an isomorphism between A and pn 
is defined by k(x) = LI::sJ:snliJei, where {eJ, ... ,en} is the standard basis of 
Fn. We remarked in Section 4.2 that LI:sJ:sn t;1e1 = (l;J, ... , lin). Thus, k maps 
each element x of the space A to an n-tuple of the coordinates of x in the basis 
{a 1, ... , an}. The mapping k is called the canonical isomorphism between A and 
pn. We should emphasize that the mapping k depends heavily on the choice of 
the basis in A. 

Let A, V be vector spaces over a field F and let HomF(A, V) denote the set 
of all linear mappings from A to V. Define addition of linear mappings by if 
f, g E HomF(A, V), then (f + g)(a) = f(a) + g(a) for every element a EA. 

We have 

(f + g)(a +b)= f(a +b)+ g(a +b) = f(a) + f(b) + g(a) + g(b) 

and 

= f(a) + g(a) + f(b) + g(b) = (f + g)(a) + (f + g)(b) 

(f + g)(aa) = f(aa) + g(aa) = af(a) + ag(a) 

= a(f(a) + g(a)) = a(f + g)(a), 

for all a, bE A, a E F. It follows that f + g is a linear mapping and that the 
mapping 

(f, g)~ f + g, where f, g E HomF(A, V) 

defines a binary operation on the set HomF(A, V). 
The set HomF(A, V) is an abelian group under this operation since 

(f + g)(a) = f(a) + g(a) = g(a) + f(a) = (g + f)(a), 

(f + (g + h))(a) = f(a) + (g + h)(a) = f(a) + (g(a) + h(a)), and 

((f +g)+ h)(a) = (f(a) + g(a)) + h(a) = (f(a) + g(a)) + h(a) 

for each element a E A. It follows that 

f + g = g + f and f + (g +h)= (f +g)+ h 

for arbitrary f, g, hE HomF(A, V). 
The zero mapping tJ is the zero element for this operation of addition. Indeed, 

for each element a E A we have 

(f + ff)(a) = f(a) + ff(a) = f(a) + Ov = f(a), 

so that f + tJ = f for arbitrary f E HomF(A, V). Finally, let (- f)(a) = 
- f (a) for each a E A. Clearly f + (-f) = tJ. So all axioms for an abelian 
group are valid. 
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Next, let f E HomF(A, V) and let a E F. Define the mapping af: A ---+ V 
by (af)(a) = af(a), for all a E A. Iff, g E HomF(A, V), a, f3 E F, then 

(a(f + g))(a) = a((f + g)(a)) = a(f(a) + g(a)) = af(a) + ag(a) 

= (af)(a) + (ag)(a) = (af + ag)(a), 

so that a(f +g)= af + ag. 
Furthermore, 

((a+ {J)f)(a) =(a+ {J)(f(a)) = af(a) + {Jf(a) 

= (af)(a) + ({Jf)(a) = (af + {Jf)(a) 

and it follows that (a+ {J)f = af + {Jf. 
Also, 

((a{J)f)(a) = (a{J)(f(a)) = a({Jf(a)) = a(({Jf))(a) = (a({Jf))(a), 

so that (a{J)f = a({Jf). Finally, 

(ef)(a) = e(f(a)) = f(a), 

and hence ef =f. 
Consequently, all conditions of Definition 4.1.4 are valid and the set 

HomF(A, V) becomes a vector space over the field F. Next, we consider some 
important special cases. 

5.1.15. Definition. Let A be a vector space over the field F. The linear mapping 
f : A ---+ A is called a linear transformation of A or a linear operator on A. In 
this case, we also say that f is an endomorphism of A. 

We write HomF(A, A) = EndF(A) and, as above, EndF(A) is a vector space 
over F. Besides the operations of addition and scalar multiplication, introduced 
above, the mapping 

(f, g) 1---+ fog, where f, g E EndF(A), 

introduces a further binary operation on the set EndF(A). This follows from 
our remark at the start of this section that a product of two linear mappings is 
again a linear mapping. Thus, a product of two linear transformations is a linear 
transformation. 

Let f, g, h E EndF(A) and let a E A. We have 

(f o (g + h))(a) = f((g + h)(a)) = f(g(a) + h(a)) = f(g(a)) + f(h(a)) 

= (fog)(a) + (foh)(a) =(fog+ foh)(a). 
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It follows that 

f 0 (g +h) = f 0 g + f 0 h. 

In a similar manner, we can also prove that (g +h) of= go f + h of. By 
Theorem 1.3.2, multiplication of mappings is associative and the permutation t:A, 

which is a linear transformation of A, is a multiplicative identity. It is also easy 
to see that 

a(fog) = (af)og = fo(ag), 

where f, g E EndF(A), a E F. 

5.1.16. Definition. Let A be a vector space over a field F. A linear mapping f : 
A~ F is called a linear functional of A. The vector space HomF(A, F)= A* 
is called the dual (or conjugate) space of A. 

5.1.17. Theorem. Let A be a finite-dimensional vector space over a field F and 
let dimF(A) = n. Then dimF(A*) = n, and hence A and A* are isomorphic. 

Proof. Let {aJ, ... , an} be a basis of A. If xis an arbitrary element of A then, 
by Proposition 4.2.16, x = L!:<=J:<=n ~iai, for certain ~i E F with 1 :::; j:::; n. 
We define the mapping Pi : A ~ F by Pi(x) = ~i• 1 :::; j :::; n. Using Proposi
tion 5.1.12 we see that pi is a linear functional. 

To show that PI, ... , Pn are linearly independent, let YI, ... , Yn be elements 
ofF such that Li:<=i:<=n YiPi = tf. Then 

and Proposition 4.2. 7 shows that PI, ... , Pn are linearly independent. 
Next, let f be an arbitrary linear functional. Then 

so that f = Li:<=i:<=n f (ai) Pi· Hence, every linear functional is a linear combi
nation of PI, ... , Pn, which shows that the subset {PI, ... , Pn} is a basis of A*. 
Thus, dimF(A*) =nand Theorem 5.1.13 implies that A and A* are isomorphic. 

The basis {p1, ••• , Pn} constructed above is called the dual of the basis 
{a1, ••• , an} of A. By Theorem 5.1.17, dimF((A*)*) = n also and therefore the 
vector spaces A and (A*)*= A** are isomorphic. Unlike the isomorphism of A 
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with A*, the isomorphism between A and A** does not depend on the basis of 
A; for this reason, there is a "canonical" isomorphism between A and A** and 
we now see why this is so. 

We define a mapping 8 : A --+ A** as follows. For every element x E A we 
define Wx: A*--+ F by Wx(f) = f(x), whenever f E A*. Iff, g E A* and 
a E F, then 

Wx(f +g)= (f + g)(x) = f(x) + g(x) = Wx(f) + Wx(g) and 

Wx(af) = (af)(x) = af(x) = aWx(f), 

which shows that Wx is linear. Hence Wx E A**. We now set 8(x) = Wx, where 
x EA. If x, yEA then, for each f E A*, we have 

Wx+y(f) = f(x + y) = f(x) + f(y) = Wx(f) + Wy(f) = (Wx + Wy)(f), 

which shows that Wx+y = Wx + Wy. If a is an arbitrary element ofF, then 

WaxU) = f(ax) = af(x) = aWx(f) = (aWx)(f), 

which shows that Wax = aWx. Hence we have 

8(x + y) = Wx+y = Wx + Wy = 8(x) + 8(y) and 

8(ax) =Wax= aWx = a8(x). 

These equations show that the mapping 8 is linear. 
Let {a1, ••• , an} be a basis of A, let {p,, ... , Pn} be a basis of A* dual to 

{a,, ... ,an}, and let {P,, ... ,Pn} be a basis of A** dual to {p,, ... ,pn}. We 
have 8(aj) = Waj' for 1 S j S n. Iff is an arbitrary functional then, as proved 
above, f = Li_:::k_:::n f (ak) Pk· Hence 

= L f (ak) Pk(aj) = f(aj)e = f(aj). 
i_:::k_:::n 

By definition, Pj(f) = f(aj). so Wa/f) = Pj(f), for all f E A*. Thus, Waj = 
Pj and hence 8(aj) = Pj. for 1 S j S n. From the proof of Theorem 5.1.13 we 
deduce that 8 is an isomorphism. 

We note that if A is not finite dimensional then the mapping 8 is a monomor
phism; but it is not always an epimorphism. 

We next show that the external direct sum and the internal direct sum can be 
viewed as being identical. Let A 1, ... , An be vector spaces over a field F and 
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let D denote the external direct sum of A 1, •.. , An. In the vector space D define 
the subset D j by 

a= (aJ, ... , an) E Dj if and only if ak =OAk whenever k-=/= j. 

It is easy to see that D j is a subspace of D, for 1 _::::: j _::::: n. For an arbitrary 
n-tuple (a!, ... , an) we have 

which shows that D = D1 + · · · + Dn. We next consider the intersection D j n 
Lk#j Dk. If x = (XJ, ... , Xn) E Dk for k-=/= j, then Xj =OAr Hence, if y = 
(YI, ... , Yn) E Lk#j Db then Yj =OAr If y = (YI, ... , Yn) E Dj n Lk#j Db 
then Yk =OAk fork-=/= j, so that y = (0A 1 , ••• , OAJ· This shows that D is the 
internal direct sum of the subspaces D1, ... , Dn. 

Clearly, the mapping 

is an isomorphism of Aj onto Dj, for 1 _::::: j _::::: n. Consequently, the external 
direct sum of the spaces A 1, ... , An is isomorphic to the internal direct sum of 
the subspaces D1, ... , Dn where Dj ~F Aj, for 1 _::::: j _::::: n. 

Conversely, let A be the internal direct sum of the subspaces A1, ... , An and 
let E denote the external direct sum of A 1, ... , An. Every element a E A has 
a representation of the form a= a1 +···+an, where aj E Aj, for 1 _::::: j _::::: n 
and this representation is unique. The mapping v: A ~ E defined by v(a) = 
(a!, ... , an) is linear. For, if c is another element of A and c = CJ + · · · + Cn, 
where Cj E Aj, for 1 _::::: j _::::: n, then 

a+ c =a!+···+ an+ CJ + · · · + Cn =(a!+ CJ) +···+(an+ Cn), 

so that 

v(a +c) = (a! + CJ, ... , an + Cn) = (a!, ... , an)+ (CJ, ... , Cn) 

= v(a) + v(c). 

Furthermore, if a is an arbitrary element of F, then 

aa = a(a! +···+an)= aa1 + · · · + aan, 

so that 

v(aa) = (aa1, ... , aan) = a(a!, ... , an) = av(a). 

It follows that the mapping v is linear. 
Let (x1, ... , Xn) be an arbitrary element of E. Then Xj E A j _::::: A, for 1 _::::: j _::::: 

n, and therefore we can form the sum of the elements XJ, ... , Xn in the space A. 
Let x = x 1 + · · · + Xn, then v(x) = (x 1, ••• , Xn) and the mapping vis injective. 
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Finally, let y E Ker v. Then y = Y1 + · · · + Yn· where Yj E Aj, for 1 S j S n. 
The choice of y implies that v (y) = (0 A, ... , 0 A). On the other hand, v (y) = 
(y1, ... , Yn) and we deduce that Yj = OA for each j, where 1 S j S n. Hence 
y = OA and Theorem 5.1.4 shows that v is a monomorphism and therefore an 
isomorphism. Consequently, the internal direct sum of the subs paces A 1, ••• , An 
is isomorphic to the external direct sum. Thus, we no longer need to use the 
qualifiers "internal" and "external" when discussing direct sums and so refer 
simply to the "direct sum." It will be clear from the context as to which of the 
cases, internal or external, is being discussed. 

EXERCISE SET 5.1 

Justify your work with a proof or a counterexample where necessary. 

5.1.1. Let f: JR3 ---+ JR2 be the mapping defined by f(a, {3, y) =(a- {3, a+ 
y). Is this mapping linear? 

5.1.2. Let f: JR5 ---+ JR3 be the mapping defined by f(a, {3, y, A, /1) = 
(yA, a+ {3, fL). Is this mapping linear? 

5.1.3. Let f : JR2 ---+ JR4 be the mapping defined by f(a, {3) = (a, 0, a+ 
{3, 0). Is this mapping linear? 

5.1.4. Let f : JR4 ---+ JR3 be the mapping defined by f(a, {3, y, A) =(a, {3, y + 
A). Is this mapping linear? If yes, find lmf and Kerf. 

5.1.5. Let f : JR5 ---+ JR3 be the mapping defined by f(a, {3, y, A, /1) = (0, a+ 
{3, fL). Is this mapping linear? If yes, find lmf and Kerf. 

5.1.6. Let A = JR[X] be the vector space of all polynomials with real coeffi
cients and let f : A ---+ A be the mapping defined by f (g (X)) = g' (X) 
[the derivative of the polynomial g(X)]. Prove that f is a linear trans
formation of the space A. Find Kerf and lmf. 

5.1.7. Let A = JR[X] be the vector space of all polynomials with real coeffi
cients, let ¢ : A ---+ A be the mapping defined by cp (g (X)) = g' (X) [the 
derivative of the polynomial g(X)] and let 1/J : A ---+ A be the mapping 
defined by the rule cp(g(X)) = Xg(X). Find¢ o 1jJ 10 - 1jf 10 o ¢. 

5.1.8. Let A be a vector space over a field F and let f, g E Endp(A). Prove 
that dimp(Ker(f o g)) s dimp(Ker f)+ dimp(Kerg). 

5.1.9. Let A be a vector space over a field F and let f, g E Endp(A). Prove 
that dimp(lm(f +g)) S dimp(lmf) + dimp(lmg). 

5.1.10. Let A be a vector space over a field F and let f E Endp(A). Are the 
subspaces Kerf and lmf invariant relative to f? [A subspace B is 
called invariant relative to f if for every b E B we have f(b) E B]. 
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5.1.11. Let A be a vector space over a field F, let f, g E EndF(A) and let B be 
a subspace of A containing lmf. Is B invariant relative to f? 

5.1.12. Let A be a vector space over a field F and let B be a subset of A. Put 
B* = {f E A* I f(x) =OF for each x E B}. Prove that B* is a subspace 
of A*. If B is a subspace of A, then prove that dimF(B) + dimF(B*) = 
dimF(A). 

5.2 MATRICES OF LINEAR MAPPINGS 

In Section 5.1 we began the study of linear mappings of vector spaces. In this 
section we continue this study in the case of finite-dimensional vector spaces. In 
this case, matrix techniques can be employed, which prove to be very effective. 

Let A, V be finite-dimensional vector spaces over a field F and let f : A ~ 
V be a linear mapping. Let {a1, .•. , an} be a basis of A and { VJ, ... , vk} be a basis 
of V. In Proposition 5.1.12 we proved that a linear mapping f is uniquely defined 
by assigning the images f(aJ), ... , f(an) to the basis elements {aJ, ... , an}. By 
Proposition 4.2.16, each element of V is uniquely defined by its coordinates 
relative to the basis {vi, ... , vk}. This holds in particular for f(aJ), ... , f(an) 
so we have 

f(aJ) = a11 VJ + a21 vz + · · · + aki vk 

f(az) = a12v1 + azzvz + · · · + akzvk 

5.2.1. Definition. Let A, V be finite-dimensional vector spaces over a field F 
and let {aJ, ... , an}. and {vi, ... , vk} denote bases of A and V, respectively. Let 
f: A~ V be a linear mapping and suppose that f(am) = LI:sj:::k ajmVj,for 
1 s m s n. The matrix 

a12 . . . a1n) 
a22 . . . azn 

0 0 0 

0 0 0 

0 ° 0 

ak2 . . . akn 

is called the matrix of the linear mapping f relative to the bases {aJ, ... , an} and 
{vJ, ... , vk}. 

We observe the following important properties of matrices of linear mappings. 

5.2.2. Proposition. Let A, V be finite-dimensional vector spaces over a field F 
and let {aJ, ... , an}, and {VJ, ... , vk} denote bases of A and V, respectively. Let 
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f, g E HomF(A, V) and letS= [oj1], R = [PJtl E Mkxn(F) denote the matrices 
off and g relative to the pair of bases {a,, ... , an}, { v,, ... , vk }. Then 

(i) S + R is the matrix of f + g relative to the bases {a,, ... , an} and 
{v,, ... ,vk}; 

(ii) If a E F, then aS is the matrix of the mapping af relative to the bases 
{a,, ... , an} and {v,, ... , vk}. 

Proof. 
(i) We have 

(f + g)(am) = f(am) + g(am) = L OjmVj + L PjmVj 
!~j~k !~j~k 

= L (Ojm + Pjm)Vj 
!~j~k 

for every m, where 1 :::: m :::: n. It follows that [Oj1 + Pitl = S + R is the matrix 
of the linear mapping f + g relative to the bases {a,, ... , an} and {v,, ... , vk}. 

(ii) Likewise, we have 

for every m, where 1 :::: m :::: n. It follows that [aoj 1] =aS is the matrix of the 
linear mapping af relative to the bases {a1, ••• , an} and {v,, ... , vk}. 

5.2.3. Corollary. Let A, V be finite-dimensional vector spaces over a field F and 
suppose that dimF(A) = n, dimF(V) = k. Then the vector space HomF(A, V) 
is isomorphic to Mkxn(F). 

Proof. Let {a1, .•• , an} and { v1, ..• , vk} be bases of A and V respectively. 
We define the mapping r: HomF(A, V)----+ Mkxn(F) as follows. For each 
f E HomF(A, V) let r(f) = S where Sis the matrix off relative to the bases 
{a,, ... , an} and {v1, ••• , vk}. Proposition 5.2.2 shows that this mapping is linear. 

Let R = [PJtl E Mkxn(F) and define elements u,, ... , Un of V by Um = 
L!~J~k PJmVJ, for 1 :::: m :::: n. By Proposition 5.1.12, there exists a unique linear 
mapping g: A ----+ V such that g(am) = Um = L!~J~k PJmVJ, for 1 ::S m ::S n. 
Thus, R is the matrix of g relative to the bases {a,, ... , an} and { v,, ... , vk}. 
Hence the mapping r is surjective. 

Finally, let f, g: A ----+ V be linear mappings and letS= [oj1], R = [pj1] E 

Mkxn(F) be the matrices of f and g relative to the bases {a,, ... , an} and 
{v,, ... , vk} respectively. Suppose that r(f) = r(g), so that S = R. Then 

g(am) = L PJmVj = L OjmVj = f(am), for 1 ::S m ::S n. 
!~j~k !~j~k 
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Let x be an arbitrary element of A. By Proposition 4.2.16, x = Li::;j::;n ~ja j• for 
certain ~ j E F. Then 

which proves that f =g. Hence, the mapping r is injective and therefore r is 
an isomorphism. 

5.2.4. Corollary. Let A, V be finite-dimensional vector spaces over a field F. 
Then the vector space HomF (A, V) is finite dimensional and 

Proof. Let dimF(A) = n and dimF(V) = k. From Corollary 5.2.3 we have the 
isomorphism HomF(A, V) ~F Mkxn(F) and, by Corollary 5.1.9, dimF(HomF 
(A, V)) = dimF(Mkxn(F)). However, dimF(Mkxn(F)) = nk so 

Let {a,, ... , an} and {v,, ... , vk} be bases of the spaces A and V respectively. 
LetS= [aj 1] E Mkxn(F) denote the matrix off relative to the bases {a,, ... , an} 
and {v,, ... , vk}. Let x be an arbitrary element of A. By Proposition 4.2.16, 
x = Li::;m::;n ~mam and f(x) = Li::;j::;k AjVj, for certain ~m, Aj E F. Then 

f(x) =IE" ~mf(am) =IE" <m (E, UjmVj) 

= L L ~majmVj = L ( L ajm~m) Vj· 
i::;m::;n i::;j::;k i::;j::;k i::;m::;n 

By Proposition 4.2.16, Aj = Li<m<n ajm~m, for j =I, ... , k and we arrive 
at the matrix equation - -

(
).._') (a11 a12 . . . a1n) (~') A.2 a21 a22 . . . a2n ~2 
. - . . . . . . . . . . . . . 

Ak ak 1 ak2 akn ~n 

This equation tells us how the coordinates of x relative to {a 1, ••• , an} are 
related to the coordinates of f (x) relative to { v1, ... , vk} in terms of the matrix of 
the linear transformation. There is one further characterization of linear mappings 
that we wish to consider. 
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5.2.5. Proposition. Let A, V be finite-dimensional vector spaces over a field F 
and let {a,, ... , an}, { v1, ••• , vk} be bases of A and V, respectively. Suppose that 
f E HomF(A, V) and that S = [aJt1 E Mkxn(F) is the matrix off relative to the 
bases {al, ... , an} and {vi, ... , vk}, respectively. Then rank(S) = dimF(Imf). 

Proof. Since A is generated by the elements a 1, ••• , an, lmf is generated 
by their images f(aJ), ... , f(an). Let K : V ~ pk be the canonical isomor
phism. By Corollary 5.1.9, dimF(Imf) = dimF(K(Imf)). We have f(am) = 
Li:sJ:sk aJmV i• so that 

It follows that K(j(am)) is generated by all the columns of the matrix S. Con
sequently, dimF(K(Imf)) = rank(S), as required. 

The result proved above shows that the rank of a matrix of a linear mapping 
f does not change with a basis change and hence is an invariant of the linear 
mapping, which we denote by rank(/). 

Multiplication of matrices was introduced in Section 2.1 with little justifica
tion. The next proposition suggests why we multiply matrices the way we do. 

5.2.6. Proposition. Let A, V, W be finite-dimensional vector spaces over a 
field F and let {aJ, ... , an}, {v,, ... , vk}, {WJ, ... , wr} be bases of A, V, and 
W, respectively. Suppose that f : A ~ V, g : V ~ W are linear mappings. 
LetS= [a;j] E Mkxn(F) be the matrix of the mapping f relative to the bases 
{aJ, ... , an} and {VJ, ... , vk} and let R = [pij] E Mrxk be the matrix of the 
mapping g relative to the bases {vi, ... , Vk} and {w1, ... , wr}. Then RS is the 
matrix of the mapping go f relative to the bases {a1, ... , an} and { w 1, ... , wr}. 

Proof. Let M = [p,iJ] E Mrxn(F) denote the matrix of go f relative to the bases 
{a1, ••• , an} and {w1, ••• , wr}. Then we have 

(gof)(am) = L ILsmW5 , for 1 :S m :S n. 
l::SS::st 

On the other hand, 

(go f)(am) = g(f(am)) = g ( L ajmVj) = L ajmg(vj) 
I::Sj::Sk l:SJ:Sk 

(5.1) 
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By Proposition 4.2.16, the decomposition of (go f)(am) given in Equation 5.1 
is unique, so that 

Jlsm = L PsjCYjm• for 1 :;:: s :;:: t and 1 :;:: m :;:: n. 
l~j~k 

It follows that M = RS. 

The matrix of a linear mapping depends significantly on which bases are being 
used. If we change the bases chosen in spaces A, V this matrix will be changed 
also. Our next theorem tells us how this basis change is effected. 

5.2.7. Theorem. Let A, V be finite-dimensional vector spaces over a field F. 
Let {a1, ... , an}, {b1, ... , bn} be bases of A and let {vi, ... , wk}, {w1, ... , wd 
be bases of V. Suppose that f: A ~ V is a linear mapping. Let S = [rrij] E 

Mkxn(F) be the matrix off relative to the bases {a1, ... , an} and {VI, ... , vd 
and let R = [pij] E Mk xn (F) be the matrix off relative to the bases {b1, ... , bn} 
and {WI, ... , wk}. LetT= [t;j] E Mn(F), Q = [?J;j] E Mk(F) be the transition 
matrices from {a1, ... , an} to {b1, ... , bn} and from {vi, ... , Vk} to {w], ... , wd 
respectively. Then R = Q-1 ST. 

Proof. We have f(am) = LI~j~k CYjmVj and f(bm) = LI~j~k PjmWj, for 1 ::: 
m :;:: n. On the one hand, 

f(bm) = L PjmWj = L Pjm ( L ?JsjVs) 
l~j~k l~j~k 19~k 

= L L Pjm?JsjVs = L ( L ?JsjPjm) Vs. 
l~j~k l~s~k 19~k l~j~k 

On the other hand, 

f(bm) = f ( L Ljmaj) = L Ljmf(aj) = L Ljm ( L CYsjVs) 
l~j~n l~j~n l~j~n l9~k 

= L L LjmCYsjVs = L ( L CYsjLjm) Vs· 
l~j~nl~s~k l~s~k l~j~n 

By Proposition 4.2.16, the representation of an element as a linear combination 
of the basis vectors is unique; so 

L ?Jsj Pjm = L CYsjLjm, for 1 :;:: s :;:: k, 1 :;:: m :;:: n. (5.2) 
l~j~k l~j~n 
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Let 

QR = [tlsml E Mkxn(F) and ST = [Ysml E Mkxn(F). 

Then, by the definition of multiplication of matrices we obtain 

tlsm = L t1sjPjm and Ysm = L asjljm· 
I::;j::;k I::;j::;n 

From Equation 5.2 we deduce that tlsm = Ysm• for 1 S s S k and 1 S m S n, 
which implies that QR =ST. By Corollary 4.2.19, the matrix Q is nonsingu1ar, 
so Q- 1 exists, and multiplying both sides of the last equation by Q- 1, we obtain 
R = Q- 1sT. 

We consider next an important special case of linear mappings, namely, the 
linear transformations. 

Let A be the vector space over a field F and let f be a linear transformation of 
A. Suppose that A is finite dimensional and let {a,, ... , an} be a basis of A. We 
write each of the elements f(ai), ... , f(an) in terms of the basis {a,, ... , an}, so 

f(aJ) = a11a1 + a21a2 +···+an! an 

f(a2) = a21a1 + a22a2 + · · · + an2an 

5.2.8. Definition. Let A be a finite-dimensional vector space over a field F and 
{a,, ... , an} be a basis of A. Let f be a linear transformation of A and let 
f(am) = LI::;j::;k ajmVj,for 1 S m S n. The matrix 

c 
al2 ... 

aJ") a2! a22 ... a2n 

an! an2 ... ann 

is called the matrix off relative to the basis {a1, ••• , an}. 

From the results proved above for linear mappings we derive the following 
properties of matrices of linear transformations. 

5.2.9. Proposition. Let A be a finite-dimensional vector space over a field F 
and let {a,, ... , an} be a basis of A. Let f, g E EndF(A) and letS= [aj 1] E 

Mn(F), R = [Pjr] E Mn(F) be the matrices off and g relative to the basis 
{a,, ... , an}. Then 
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(i) S + R is the matrix off+ g relative to {a1, ... , an}. 

(ii) RS is the matrix of go f relative to {a 1, ••• , an}. 

(iii) /fa E F then aS is the matrix ofaf relative to the basis {aJ, ... , an}. 

This proposition follows from Propositions 5.2.2 and 5.2.6. 

5.2.10. Corollary. Let A be a finite-dimensional vector space over afield F and 
let dimF(A) = n. Then there is an isomorphism r : EndF(A) --+ Mn(F) such 
that f(g of) = r(g)f(f). 

Proof. Let {a I ' 0 0 0 ' an} be a basis of A 0 We define the mapping r : 
EndF(A) --+ Mn(F) by setting f(f) = S where f is a linear transformation 
and S is the matrix of f relative to the basis {aJ, ... , an}. Proposition 5.2.9 
shows that this mapping respects multiplication and scalar multiplication. As in 
the proof of Corollary 5.2.3 we can show that r is bijective. 

5.2.11. Corollary. Let A be a finite-dimensional vector space over afield F. Then 
EndF(A) is finite dimensional and dimF(EndF(A)) = dimF(A)2. 

Finally, Theorem 5.2.7 implies the following result. 

5.2.12. Corollary. Let A be a finite-dimensional vector space over afield F and 
let {a1, ... , an}, {b1, ... , bn} be bases of A. Suppose that f is a linear transfor
mation of A, and letS= [aj 1], R = [Pjr] E Mn(F) be the matrices off relative 
to {aJ, ... , an} and {bJ, ... , bn} respectively. LetT= [ljr] E Mn(F) be the tran-
sition matrix from {a1, ... , an} to {bJ, ... , bn}. Then R = T- 1ST. 

5.2.13. Definition. Let A be a vector space over afield F. An isomorphism f of 
A onto itself is called an automorphism of A. 

Thus, an automorphism of A is a bijective linear transformation of A. 

5.2.14. Proposition. Let A be a finite-dimensional vector space over a field F 
and let f be a linear transformation of A. The following are equivalent: 

(i) f is a monomorphism. 
(ii) f is an automorphism. 

(iii) f is an epimorphism. 

Proof. 
(i) =::::::} (ii) Suppose first that f is a monomorphism. By Corollary 5.1.11, 

dimF(A) = dimF(Kerf) + dimF(Imf). Theorem 5.1.4 implies that Kerf= 
{OA}, so that dimF(A) = dimF(Imf). Theorem 4.2.20 shows that in this case, 
lmf = A. It follows that the mapping f is surjective, so f is bijective and f is 
an automorphism of A. 
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The implication (ii) ===} (iii) is clear. 
(iii) ===} (i). We again apply Corollary 5.1.11 and deduce that dimF(A) = 

dimF(Kerf) + dimF(Imf). Since A= lmf, dimF(A) = dimF(Imf), so that 
dimF(Kerf) = 0 and hence Kerf= {OA}. Theorem 5.1.4 shows that f is a 
monomorphism. 

5.2.15. Corollary. Let A be a finite-dimensional vector space over afield F and 
let f be a linear transformation of A. Then, f is an automorphism of A if and 
only ifrank(f) = dimF(A). 

Thus if f is an automorphism of A, then the matrix of f relative to any 
basis is nonsingular; and conversely, if the matrix of f relative to some basis is 
nonsingular, then f is an automorphism. 

Corollary 5.2.15 follows from Proposition 5.2.5. 

EXERCISE SET 5.2 

Justify your work where appropriate using a proof or a counterexample. 

5.2.1. Let f: ~3 ~ ~2 be the mapping defined by f(a, {3, y) =(a- {3, 
a+ y). Find the matrix of f relative to the standard bases over the 
spaces ~3 and ~2 . 

5.2.2. Let f: ~2 ~ ~4 be the mapping defined by f(a, {3) =(a, 0, a+ 
{3, 0). Find its matrix relative to the standard bases over the spaces ~2 

and ~4 . 

5.2.3. Let f : ~4 ~ ~3 be the mapping defined by f(a, {3, y, A.)= (a, {3, y + 
A.) . Find the matrix of f relative to the standard bases over the spaces 
~4 and ~3 . 

5.2.4. Let f: ~5 ~ ~3 be the mapping defined by f(a, {3, y, A., p.,) = (0, a+ 
{3, p.,). Find the matrix off relative to the standard bases over the spaces 
~5 and ~3 . 

5.2.5. What dimension has the vector space HomiQI(A, U) where A = M2(Q), 
u =Q4. 

5.2.6. What dimension has the vector space HomiQI(A, U) where A= Q9 , U = 
M,,(Q). 

5.2.7. Prove that the matrices of a linear transformation f relative to two dif
ferent bases coincide if and only if the transition matrix from the first 
basis to the second basis permutes with one of the matrices of f relative 
to one of the given bases. 

5.2.8. Let A be a vector space over a field F and let f, g E A*. Prove that f, g 
are linearly independent if and only if Kerf n Kerg = {OA}. 
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5.2.9. Let 

(
1 1 0) 0 0 0 

M= 3 1 0 . 

0 1 0 

Is there a linear transformation f : JR3 ---+ JR4 , such that M is its matrix 
relative to the standard bases of these spaces? 

5.2.10. Let f be a linear transformation of the space A = Q3 having the matrix 

relative to the standard basis. Find all f -invariant subspaces. (A subspace 
B is called invariant relative to f if for every bE B we have f(b) E B.) 

5.2.11. Let f be a linear transformation of the space A = Q3 having the matrix 

relative to the standard basis. Find the matrix of f relative to the bases 
(l,l,o), (0,1,1), (0,0,1). 

5.2.12. Let f be a linear transformation of the space A = Q3 having the matrix 

relative to the standard basis. Find the matrix off relative to the bases 
(1,0,0), (1,1,1), (0,1,1). 

5.2.13. Let f be a linear transformation of the space A = lF~ having the matrix 

relative to the standard basis. Find the matrix off relative to the bases 
(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1). 
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5.2.14. Let f be a linear transformation of the space A = Q3 having the matrix 

2 
-1 

1 
3 

2 
3 
5 

-1 

-~) 
-2 
-2 

relative to the standard basis. Find lmf and Kerf. 

5.2.15. Let f be a linear transformation of a space A of dimension n. Let M 
be the matrix of f relative to the basis a1, ... , an. Find the matrix of f 
relative to the basis b1, ... , bn, where b1 = a2, b2 = a1 and b1 = a1 for 
j >2. 

5.2.16. Let f be a linear transformation of a space A of dimension n. Let M 
be the matrix off relative to the basis a1, ... , an. Find the matrix off 
relative to the basis bJ, ... . , bn, where b1 =an, b2 = an-J, ... , bn = a1. 

5.3 SYSTEMS OF LINEAR EQUATIONS 

Systems of linear equations frequently appear in different branches of mathe
matics and now the subject is very well developed. Several standard methods of 
solving systems of linear equations have been established. A universal method 
here is Gaussian elimination and a further well-known technique is Cramer's 
method, which gives us formulas for the solution of a system of n linear equations 
in n variables if the corresponding coefficient matrix of the system is nonsingular. 
In Section 4.3, we began the consideration of systems of linear equations and 
clarified the question of the existence of a solution of such a system. Now we 
are in a position to develop a general theory of finding solutions of a system of 
linear equations. 

Let A be a finite-dimensional vector space and let f be a linear transformation 
of A. Let b be an arbitrary element of A. We consider the question of finding all 
elements x of the space A, which satisfy the equation f (x) = b. Let {a 1, ... , an} 
be a basis of A. By Proposition 4.2.16, every element of A is a linear combination 
of the elements a1, ... , an and this representation is unique. So, 

b = L f3kak, where f3k E F, for 1 S k S n. 
l:;:k:;:n 

A solution x of the equation f (x) = b can be represented as a linear combination 
of the basis elements. Since we do not yet know this element, or indeed its 
expression as a linear combination of the basis vectors, we will write 

x = L ~1a1 
l:;:j:;:n 
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where ~j E F are unknown, for 1 .::: j .::: n. When we find these coefficients we 
will find the element x. 

Let S = [ajd E Mn(F) denote the matrix of f relative to the basis 
{a1, ... , an}. We have 

f(x) = f (E" '1"1) =IE" <Jf(a1) =IE" <1 (.~" "*1"') 

= ,E" 1~" "'
1
'
1
"' = 1~" (E" "'1' 1) a, 

On the other hand, 

f(x) = b = L fJkak. 
I:::k:::n 

By Proposition 4.2.16, the representation of an element as a linear combination 
of the basis vectors is unique, so we obtain 

f3k = L akj~j· 
I:::j:::n 

This corresponds to the system 

a11~1 + a12~2 + · · · + a1n~n = fJ1 

a21~1 + az2~2 + · · · + azn~n = fJz 

an-1,1~1 + an-1,2~2 + ... + an-l,n~n = f3n-1 

anl~l + an2~2 + · · · + ann~n = f3n· 

Thus the coordinates of x satisfy the following system of linear equations 

a11x1 + a12xz + · · · + a1nXn = fJ1 

aziXI + azzxz + · · · + aznXn = fJz 

an-I,!X] + an-],2X2 + · · · + an-],nXn = fJn-1 

an]X] + anzXz + · · · + annXn = f3n· 

(5.3) 

Conversely, System 5.3 has coefficient matrix S = [aj1] E Mn(F) and, using 
S, we can define a linear transformation f of A such that the matrix of f 
relative to the basis {a1, ••• , an} coincides with S. Repeating the arguments above 
in reverse, we deduce that any solution of this system gives us a solution of 
f(x) = b that is ann-tuple, formed by the coordinates in the basis {a1, ... , an}. 
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Thus, we have established a one-to-one relation between equations of the form 
f (x) = b and systems of linear equations with coefficients from a field F. To 
solve f(x) = b we need to solve a system of linear equations. 

In the case when f is bijective, Proposition 1.2.8 shows that every element of 
A has one and only one preimage relative to f and it follows that the equation 
f(x) = b has one and only one solution. 

Suppose next that the matrix S of System 5.3 is nonsingular. By Corollary 
5.2.15, f is an automorphism of A and, as proved above, the equation f(x) = b 
has exactly one solution for each element bE B. It follows that System 5.3 has 
exactly one solution and therefore, we obtain the following statement. 

5.3.1. Theorem. If the matrix of the system of linear equations ( Eq. 5.3) is non
singular, then this system has exactly one solution. 

Now consider the arbitrary system of k linear equations in n unknowns, 

a11X1 + a12x2 + · · · + a!nXn = fh 

a21x1 + azzXz + · · · + aznXn = fh 

ak-J,JXJ + ak-!,2X2 + · · · + ak-J,kXn = f3k-l 

ak!XJ + akzXz + · · · + aknXn = f3k 

(5.4) 

whose coefficients atj. where 1 ~ t ~ k, 1 ~ j ~ n and constant terms f3t. 1 ~ 
t ~ k, belong to the field F. Theorem 4.3.8 gives us necessary and sufficient 
conditions for the existence of solutions of this system. Therefore, we will assume 
that System 5.4 always has solutions. 

Many methods of solving systems of linear equations are based on replacing 
the given system by an equivalent one. 

5.3.2. Definition. Two systems of linear equations in the same number of vari
ables (but possibly a different number of equations) are called equivalent if the 
sets of their solutions coincide. Thus, every solution of the first system is a solu
tion of the second system, and conversely, every solution of the second system is 
a solution of the first system. 

We note that when we interchange two equations in System 5.4 we obtain 
an equivalent system and this corresponds to interchanging two rows of the 
corresponding augmented matrix. Let S = [aj 1] E Mkxn(F) be the matrix of 
System 5.4 and suppose that rank(S) = r. Let 

c 
a12 al3 

a21 a22 a23 
S* = . 

akl akz ak3 

f3I) f3z 

f3k 
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be the augmented matrix of System 5.4. Theorem 4.3.8 shows that 
rank(S) = rank(S*) = r and, without loss of generality, we can suppose that 
the first r rows of the matrix S are linearly independent, by interchanging 
rows if necessary. Then the first r rows of the matrix S* are also linearly 
independent, since every linear combination of the first r rows of S* implies 
a corresponding linear combination of the first r rows of S. Hence, the first 
r rows of S* form a maximal linearly independent subset of the set of all 
rows of S*. Thus, every row of S* is a linear combination of the first r rows. 
Then, each equation from System 5.4 can be represented as a sum of the first 
r equations with certain coefficients. This means that every solution of the 
system 

a11X1 + a12x2 + · · · + a1nXn = fh 

a21X1 + azzxz + · · · + aznXn = fh 

(5.5) 

is a solution of System 5.4 and since every solution of System 5.4 is a solution 
of System 5.5, the Systems 5.4 and 5.5 are equivalent. 

Let S1 be the matrix of System 5.5 and let Sj be the corresponding augmented 
matrix. Then rank(SI) = rank(Sj) :::; n. If r = n then, by Theorem 5.3.1, System 
5.5 has a unique solution and therefore System 5.4 also does. 

Suppose now that r < n. Again, by interchanging the order of the equations 
and by possibly renumbering the variables, we can suppose that minor 
{1, 2, ... , r; 1, 2, ... , r} is nonzero. By transferring the variables Xr+l• ... , Xn 

to the right-hand side in all the equations of System 5.5 and by designating 
values Yr+ 1, ... , Yn E F for these variables, we obtain the system 

a11X1 + a12x2 + · · · + alrXr = f3I - al,r+l Yr+l · · · - alnXn 

a21X1 + a22x2 + · · · + az,Xr = f3z- a2,r+l Yr+l · · ·- aznXn 

a, lXI + a,zxz + · · · + a,,x, = f3I - ar,r+l Yr+l · · · - arnXn 

(5.6) 

in r variables XI, ... , x,. The coefficient matrix of this system is nonsingular. 
Therefore, by Theorem 5.3.1, it has a unique solution YI, ... , y,. Clearly, 
the n-tuple (YI, ... , y,, Yr+l, ... , Yn) is a solution of System 5.5. Since 
the values Yr+l• ... , Yn for the variables Xr+l• ... , Xn, the so-called free 
variables, can be chosen in an arbitrary way, we can obtain many solutions of 
System 5.5. 

On the other hand, every solution of System 5.5 can be obtained as follows. 
Let (YI, ... , y,, Yr+l, ... , Yn) be a solution of System 5.5. We choose the values 
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Yr+ 1 , ••• , Yn for the free variables. Then, the elements Yt , ... , y, will satisfy 
System 5.6 and will form the unique solution of this system. 

So if r < n, then the set of solutions can be quite large, particularly if F is 
infinite (in the cases when F = ~ or F = C, for example) when the solution set 
is also infinite. A natural question arises as to how we can describe the set of 
solutions. We answer this question next. 

We consider System 5.5 again. The number of equations there is less than 
the number of variables. We add n - r equations with zero coefficients and zero 
constant terms to this system to obtain a system of n equations in n variables, 
namely, 

a11X1 + a12x2 + · · · + atnXn = f3t 

a21X1 + a22X2 + · · · + a2nXn = /32 

(5.7) 

Again, let S denote the coefficient matrix of this system and let S* denote the 
corresponding augmented matrix. 

Now consider the associated system 

a11X1 + a12x2 + · · · + atnXn =OF 

a21X1 + a22X2 + · · · + a2nXn =OF 

(5.8) 

5.3.3. Definition. System 5.8 is called the homogeneous system associated with 
System 5.7. 

Let (y,, ... , Yn) and (v,, ... , vn) be two solutions of System 5.7. Then 

for I ::: k ::: n. Hence, the difference of two solutions of System 5.7 is a solution 
of System 5.8. 

Now let (y,, ... , Yn) be a solution of System 5.7 and let (1Jt, ... , 1Jn) be a 
solution of System 5.8. Then 
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for 1 :::: k :::: n. Hence the sum of a solution of System 5.7 and a solution of 
System 5.8 is a solution of System 5.7. From these simple properties we deduce 
the following result. 

5.3.4. Proposition. Let ( YI , ... , Yn) be some fixed solution of System 5. 7. 
Then the set of all solutions of System 5. 7 coincides with the set of all sums 
(yJ, ... , Yn) + (1)J, ... , 1Jn), where (1)J, ... , 1Jn) is an arbitrary solution of 
System 5.8. 

Thus, in order to obtain all solutions of System 5.7 it is necessary to obtain 
one solution of System 5.7 and all solutions of System 5.8. We next find all 
solutions of System 5.8. 

Let A be a vector space over a field F, such that dimp(A) = n. In A, 
choose a basis {a 1 , ••• , an}. As above, we can construct a linear transformation 
f of A, such that the matrix off relative to the basis {aJ, ... , an} is S. Let 
K : V ---+ pk be the canonical isomorphism. If x = L l::J::n g ja j E Kerf, 
where gj E F for 1 :::; j :::; n, then as above (g1, ... , gn) = K(x) is a solution 
of System 5.8 and conversely. This implies that K(Ker f) is the set of all 
solutions of System 5.8. By Proposition 5.1.3, K(Ker f) is a subspace of 
pn. Thus, the set of all solutions of the homogeneous system (Eq. 5.8) is a 
subspace of pn, By Corollary 5.1.11, dimp(Kerf) = dimp(A)- dimp(lmf). 
Proposition 5.2.5 implies that dimp(lmf) = rank(S) = r. Therefore, 
dimp (Kerf) = n - r and since K is an isomorphism, Corollary 5.1.9 implies 
that dimp (Kerf) = dimp (K (Kerf)). Hence, the subspace of all solutions of 
System 5.8 has dimension n- r. So we need to find n- r linearly independent 
solutions of System 5.8 and then all other solutions will be a linear combination 
of these. 

5.3.5. Definition. A basis of the subspace of all solutions of the homogeneous 
system (Eq. 5.8) is called a fundamental set of solutions. 

The next question is how to find a fundamental set of solutions of System 5.8. 
To see how to answer this, let 

1)12 

1)22 

1Jn-r,2 

1Ji,n-r ) 
1J2,n-r 

1Jn-~,n-r 
be an arbitrary nonsingular matrix in M(n-r)x(n-r)(F). As above, we can sup
pose that minor{ 1, 2, ... , r; 1, 2, ... , r} is nonzero, for the coefficient matrix 
of System 5.8. In each of the equations from System 5.8 we move the parts 
of the equation involving Xr+I, ... , Xn to the right-hand side and assign the 
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coefficients of the jth row of the matrix Y to these variables for their values, 
where 1 ::::; j ::::; n - r. We obtain the following system 

a11X1 + a12X2 + · · · + a!rXr = -al.r+llJjl · · ·- alnlJj.n-r 

a21X1 + a22x2 + · · · + a2rXr = -a2,r+llJjl · · ·- a2nlJj,n-r 

(5.9) 

in r variables x 1, ... , x,. The coefficient matrix of this system is nonsingular. 
Therefore, by Theorem 5.3.1, it has a unique solution Yjt •... , Yjn where 1::::; 
j :S n- r. We now form then-tuple (Yjl• ... , Yjn lJjl• ... , lJj,n-r) which, by 
construction, is a solution of System 5.8. The system of solutions 

(yll, · · ·, Ytr, fJll, · · ·, fJl.n-r), 

(Y2l, · · ·, Y2n fJ2!, · · ·' lJ2,n-r), 

(Yn-r, l' · · ·' Yn-r,r' fJn-r, l' · · ·' fJn-r,n-r) 

is a fundamental set of solutions for System 5.8. Indeed, this set is linearly 
independent, because the matrix consisting of these vectors as rows has a nonzero 
minor, namely, minor{ I, 2, ... , r; r + 1, r + 2, ... , n}, of order n- r. 

EXERCISE SET 5.3 

Show your work. Where appropriate, write a proof or give a counterexample. 

5.3.1. Find a fundamental system of solutions for the system 

-4xt + (2 + 2A.)x2 + 2h3 + 2h4 = 0 

ht + (1 + A.)x2 + Ax3 + Ax4 = 0 

ht + (1 + A.)x2 - 2x3 + Ax4 = 0 

-ht + (1 + A.)x2 - Ax3 - (2 + 2A.)x4 = 0 

5.3.2. Find a fundamental system of solutions for the system 

3xt - 2x2 + X3 - X4 = 0 

- Xt + x2 + 4x3 - 2x4 = 0 

- 2Xt + 3x2 - X3 = 0 
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5.3.3. Find a fundamental system of solutions for the system 

xi -x3 +xs = 0 

x2 -x4 +x6 = 0 

Xi - X2 + X5 - X6 = 0 

X2- X3 +x6 = 0 

Xi -x4 +xs = 0 

5.3.4. For which values of A. does the following system have solutions? 

-xi+ (I+ A.)x2 + (2- A.)x3 + Ax4 = 3 

Xi - X2 + (2 - A)X3 + Ax4 = 2 

Axi + h2 + (2- A.)x3 + Ax4 = 2 

Axi + A.x2 + (2- A.)x3- x4 = 2 

5.3.5. Find a fundamental system of solutions for the system below, where the 
coefficients belong to the field lF 13 = Zj 13Z. 

4xi - Sx2 - 8x3 - 9x4 = 0 

Xi + 12X2 - X3 = 0 

8xi + llx2- x3 + ?x4 = 0 

5.3.6. Find a fundamental system of solutions of the system below, where the 
coefficients belong to the field lF 5 = Zj5Z. 

3xi - 2x2 + x3 - x4 = 0 

-Xi + x2 + 4x3 - 2x4 = 0 

-2xi + 3x2 - x3 = 0 

5.3.7. Find a fundamental system of solutions for the system below, where the 
coefficients belong to the field lF3 = Zj3Z. 

2xi - x2 + 2x3 - x4 = 0 

2x2 +x4 = 0 

Xi - X2 + 2X3 - X4 = 0 
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5.4 EIGENVECTORS AND EIGENVALUES 

In Section 5.2 we saw that every linear transformation¢ corresponds to a matrix 
relative to some basis. Change of basis naturally implies that this matrix changes 
and the natural question arises as to which basis gives rise to the matrix of 
this linear transformation that has the simplest form. We are also interested in 
determining this basis. The notion of an invariant subspace plays a key role here. 

5.4.1. Definition. Let A be a vector space over a field F and let ¢ be a linear 
transformation of A. The subspace B of A is called ¢-invariant, if ¢(b) E B for 
each element bE B. 

Trivial examples of ¢-invariant subspaces include the entire space A and the 
zero subspace {OA}. Other examples of ¢-invariant subspaces are given in the 
next proposition. 

5.4.2. Proposition. Let A be a vector space over a field F and let ¢ be a linear 
transformation of A. Then Im ¢ and Ker ¢ are ¢-invariant subs paces of A. 

Proof. If x E Im ¢, then x = ¢(y) for some element y E A and 

¢(x) = ¢(¢(y)) E Im¢ 

also. Hence Im ¢ is a ¢-invariant subspace of A. Next, let z E Ker ¢. Then 
¢(z) = OA E Ker¢, so that Ker¢ is also ¢-invariant. 

Let B be a ¢-invariant subspace of a finite-dimensional space A and let 
{b,, ... ,bk} be a basis of B. By Theorem 4.2.11, the linearly independent 
subset {b,, ... , bk} can be extended to a basis of the entire space A, so that 
there exist elements bk+!, .•. , bn such that {b,, ... , bn} is a basis of A. Let 
S = [ujt] E Mn(F) be the matrix of the linear transformation ¢ relative to the 
basis {b,, ... , bn}. Then ¢(bj) E B, for 1 _::: j _::: k, so 

and <Ttj =OF for t > k, 1 _::: j _::: k. Therefore, the matrix S has the following 
form: 

IT II ITJ2 O"Jk O"J,k+l O"Jn 

0"2J uzz 0"2k IT2,k+1 Uzn 

UkJ ukz Ukk Uk.k+! UkJ 

OF OF OF O"k+1,k+1 Uk+!,n 

OF OF OF Un,k+! Unn 
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Thus, we can see that the existence of a ¢-invariant subspace significantly simpli
fies the structure of the matrix S. In particular, if A = A 1 EB · · · EB Ak is a direct 
sum of ¢-invariant subspaces, then the matrix S has the following form: 

0 
Sz 

0 

... ) 
0 0 0 

0 ' 

sk 

where certain square submatrices lie on the main diagonal and all other entries 
(which are themselves submatrices) are the appropriate size zero matrix. We will 
say that this matrix has cellwise-diagonal form. 

The one-dimensional ¢-invariant subspaces play a special role. Let B be a 
¢-invariant subspace and suppose that dimF(B) = 1. If b is a nonzero element 
of B, then { b} is a basis of B. Proposition 4.2.16 shows that every element of B 
has the form ab for some a E F. Since lj>(b) E B, lj>(b) = yb for some y E F. 

5.4.3. Definition. Let A be a vector space over a field F and let ¢ be a linear 
transformation of A. A nonzero element a of A is called an eigenvector of¢, if 
lj>(a) = yafor some y E F. The element y is called an eigenvalue of the linear 
transformation ¢. 

We see that every nonzero element of a ¢-invariant subspace of dimension one 
is an eigenvector of¢. Every nonzero element c of Ker¢ is also an eigenvector, 
because lj>(c) = OA = OFc. 

Let y E F and set 

A(y) = {x I x E A and lj>(x) = yx}. 

Of course, OA E A(y). The subset A(y) is a subspace of A, called the eigenspace 
of A corresponding to the eigenvalue y. Indeed, if x, y E A(y) and a E F then 

lj>(x- y) = lj>(x)- lj>(y) = yx- yy = y(x- y) 

and 

lj>(ax) = alj>(x) = a(yx) = (ay)x = (ya)x = y(ax). 

It follows from Theorem 4.1.7 that A(y) is a subspace of A. Note that the 
subspace A(y) could be the zero subspace, but not when y is an eigenvalue. 
Moreover, as we will see later, for a finite-dimensional vector space A, there 
exist only finitely many elements y such that the subspace A(y) is nonzero. 

Now, we will find the elements of A(y). Let OA =I= x E A(y) so that lj>(x) = 
yx. On the other hand, yx = ysA(x), so that lj>(x) = ysA(x) and(¢- ysA) 
(x) = OA. Hence the element x belongs to A(y) if and only if x E Ker(¢
ysA). Choose a basis {aJ, ... , an} of the space A and letS= [ajd E Mn(F) 
be the matrix of the linear transformation ¢ relative to the basis {a I, ... , an}. 
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Then, S- y I is the matrix of the linear transformation¢- yc:A relative to this 
basis. Let x = LJ<m<n ~mam be the representation of x in terms of the basis 
{a,, ... , an}. As in Section 5.3, we can show that x E Ker(¢- yc:A) if and only 
if the n-tuple (~ 1 , .•• , ~n) is a solution of the system 

(all - y) XJ + a12X2 + · · · + a1nXn =OF 

a21X1 + (a22- y)x2 + · · · + a2nXn =OF 

(5.10) 

Clearly, the zero n-tuple is always a solution of System 5.10. If we suppose that 
the matrix S- y I is nonsingular, then by Theorem 5.3.1, System 5.10 has exactly 
one solution. It follows that the zero n-tuple is the unique solution of System 
5.10 and therefore A(y) = {OA}, contrary to our assumption, which proves that 
det(S- y I) =OF. Expanding det(S- y 1), we obtain a linear combination of 
the elements y 0 = e, y 1 = y, y 2, ... , yn with coefficients from the field F. Thus, 
det(S- y I) is obtained from a polynomial of degree n with coefficients in F, 
when we substitute y for X (see Section 7.5). 

5.4.4. Definition. Let F be afield and letS E Mn(F). The polynomial xs(X) = 
det(S- X I) is called the characteristic polynomial of S. 

Under certain types of transformation xs(X) remains invariant. This is the 
content of the next proposition. 

5.4.5. Proposition. Let F be a field and let S E Mn(F). Suppose that T is a 
nonsingular matrix of degree nand let L = T- 1 ST. Then xL(X) = xs(X). 

Proof. We have 

L-XI= T- 1ST- XI= T- 1ST- (T- 1T)XI = T- 1ST- T- 1(TXI) 

= T- 1ST- T- 1(Xl)T = T- 1(S- Xl)T. 

It follows that xL(X) = det(L- X/) = det(T- 1 (S- X l)T). Using Theorem 
2.5.1 we obtain 

xL(X) = det(T- 1(S- Xl)T) = det(T- 1)det(S- XE)det(T) 

= det(S- X E) = Xs(X). 

There is a similar definition for the characteristic polynomial of a linear trans
formation, but we now need Proposition 5.4.5 to make this a well-defined concept. 

5.4.6. Definition. Let A be a finite-dimensional vector space over a field F and 
let¢ be a linear transformation of A. If S is the matrix of¢ relative to some basis 
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of A, then xs(X) is called the characteristic polynomial of¢ and will be denoted 
by X¢(X). 

This concept is well defined since it does not depend on the choice of basis 
of A. In fact, if L is the matrix of¢ relative to another basis then, by Corollary 
5.2.12, L = T- 1sT where Tis the transition matrix from the first basis to the 
second one. Proposition 5.4.5 implies that xL(X) = xs(X). 

5.4.7. Theorem. Let A be a finite-dimensional vector space over a field F and 
let ¢ be a linear transformation of A. The element y E F is an eigenvalue of¢ 
if and only if y is a root of the characteristic polynomial X¢ (X) of the linear 
transformation ¢. 

Proof. If y is an eigenvalue of the linear transformation ¢, then there is a 
nonzero element x of A with the property ¢ (x) = y x. We have already proved 
above that in this case, det(S- y I) =OF, which means that y is a root of 
X¢(X). 

Conversely, suppose that y is a root of X¢(X). Then X¢(Y) = det(S- yl) = 
OF, where S is the matrix of¢ relative to some basis. It follows that rank(S
yl) < n. Using the work of Section 5.3, we see that System 5.10 has more 
than one solution. In particular, System 5.10 has a nonzero solution (l;t, ... , l;n). 
Put x = Ll<m<n l;mam. The results of Section 5.3 imply that x E Ker(¢- yeA), 
which implies that ¢(x) = yx. Thus y is an eigenvalue of¢. 

This gives us a method of finding the eigenvalues and eigenvectors of ¢. 
By Corollary 7.5.11, the number of roots of the polynomial X¢(Y) is at most 
deg(X¢(y)) = dimF(A). However, the weakness of this method lies in finding 
the roots of X¢(y), since there are no good general methods of finding roots 
of polynomials over fields. Therefore, every particular case requires its own 
consideration. In the case of finite fields it is possible to use computers to find 
roots, while for the fields ffi. and C there are numerous very well-developed 
approximate methods. 

We next note the following important property. 

5.4.8. Proposition. Let A be a finite-dimensional vector space over a field F and 
let ¢ be a linear transformation of A. Suppose that y1 , ••• , Yk are the eigenvalues 
of¢, where Yj =f. Ym whenever j =f. m. If a1, ... , ak are nonzero elements of A 
such that ¢(a j) = yja j ,for 1 ::S j ::S k, then {a 1 , ••• , ad is a linearly independent 
set. 

Proof. We note that a j is an eigenvector corresponding to the eigenvalue Yj and 
use induction on k. If k = 1, then the subset {at} is linearly independent, because 
a1 is nonzero. 

Suppose that k > 1 and that we have already proved that the elements 
a1, ... , ak-1 are linearly independent. Let a 1, ••. , ak be elements of F such 
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OA = YkOA = Yk(a,a, +···+ak-Iak- I + akak) 

= Yka1a1 + · · · + Ykak-Iak-1 + Ykakak. 

On the other hand, 

It follows that 

OA = ¢(0A) = ¢(a1a1 +···+ak-Iak- I + akak) 

= a1¢(ai) + · · · + ak-1¢(ak-d + ak¢(ak) 

= a1 Y1a1 + · · · + ak-1 Yk-lak-1 + akYkak 

= Y1a1a1 + · · · + Yk-1ak-1ak-1 + Ykakak. 

OA=OA-OA 

= (Yka1a1 + · · · + Ykak-1ak-1 + Ykakak) 

- (y1a1a1 + · · · + Yk-1ak-1ak-1 + Ykakak) 

= (Yk- yi)a1a1 + · · · + (Yk- Yk-I)ak-Iak-1· 

By the induction hypothesis, the elements a,, ... , ak-I are linearly independent 
and therefore Proposition 4.2.7 implies that 

Since Yk =/= Yj· for 1 :::; j :::; k- 1, we obtain a, = · · · = ak-1 =OF. Then 
we have akak = OA. Since ak =!= OA, we obtain ak =OF and it follows from 
Proposition 4.2.7 that the subset {a!, ... , ak} is linearly independent. 

5.4.9. Theorem. Let A be a finite-dimensional vector space over a field F, let 
dimF(A) = n, and let ¢ be a linear transformation of A. Suppose that in the 
field F the characteristic polynomial X,p(X) has the roots y1, ••• , Yn such that 
Yj =/= Ym whenever j =/= m. Then A has a basis {a,, ... , an} such that the matrix 
of¢ relative to this basis is diagonal. 

Proof. For each Yj we find a nonzero eigenvector a j so that ¢(a j) = yja j, for 
1 :::; j :::; n. By Proposition 5.4.8, the elements a1, ... , an are linearly independent 
and since dimF(A) = n, the subset {a,, ... , an} is a basis of A. The equations 
¢(a j) = yja j, for 1 :::; j :::; n, show that the matrix of¢ relative to this basis is 

(l 
The result follows. 

0 
Y2 

0 

''') ... 
. . 

Yk 
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5.4.10. Corollary. Let F be a field and letS E Mn(F). Suppose that in F the 
characteristic polynomial xs(X) of the matrix S has the roots y,, ... , Yn such that 
Yj =/= Ym whenever j =/= m. Then, there exists a nonsingular matrix T E Mn (F) 
such that the matrix T- 1 ST is diagonal. 

Proof. Let A be a vector space over F such that dimp(A) = n (we may choose 
A = Fn, for example). Choose some basis {c1, ••• , cn}. As above, we can define 
a linear transformation ¢ of A such that the matrix of ¢ relative to the basis 
{c,, ... , cn} is equal to S. Then X¢(X) = xs(X). By Theorem 5.4.9, there exists 
a basis {a,, ... , an} such that the matrix L of¢ relative to this basis is diagonal. 
By Corollary 5.2.12, L = T- 1sT, where Tis the transition matrix from the first 
basis to the second. 

This relatively nice case that we considered does not always apply. If the 
characteristic polynomial X¢(X) has no roots in the field F, then ¢ has no 
eigenvectors. For example, let A be a vector space over IR of dimension 2 and 
suppose that ¢ is a corresponding linear transformation. Let S = [aj 1] E M2 (IR) 
be the matrix of ¢ relative to some basis. Then 

If 

then S has no eigenvalues in R Therefore, a basis of A for which the matrix 
corresponding to ¢ is diagonal does not exist. However, over <C it is possible to 
make such a diagonal matrix, as the reader may verify. 

As another example, let A be a vector space over <C of dimension 2 and let 
¢be a linear transformation of A with corresponding matrix S = [ajr] E M2(<C) 
relative to some basis. Then 

and its roots can be found using the quadratic formula to be 

(
a,,+ a22) 

y,, Y2 = 
2 

± 

If y, =1= Y2, then by Theorem 5.4.9, A has a basis in which the matrix of ¢ is 
diagonal. 

If y, = Y2 = y then ¢ may have one or two mutually linearly independent 
eigenvectors. When there is only one linearly independent eigenvector then there 
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is no basis of A in which the matrix of ¢ is diagonal. A corresponding example 
is the matrix 

Thus, not all linear transformations have a basis relative to which the cor
responding matrix is diagonal. However, something can be salvaged in this 
situation. It is beyond the scope of this book to give the full details here; so, we 
briefly indicate what happens. 

5.4.11. Definition. Let F be afield. The matrix Jn(Y) E Mn(F) of the form 

... OF) 
0 0 0 OF 

: e 
... y 

is called a Jordan block with eigenvalue y. A cellwise-diagonal matrix whose 
blocks are Jordan blocks is called a Jordan matrix. 

The following theorem shows the importance of these matrices, where we say 
nothing more concerning the notion of an algebraically closed field, but the main 
example is <C. 

5.4.12. Theorem. Let A be a finite-dimensional vector space over a field 
F and let ¢ be a linear transformation of A. Suppose that the field F is 
algebraically closed. Then A has a basis such that the matrix L of¢ is a Jordan 
matrix, and the matrix L is defined with respect to a permutation of its Jordan 
blocks. 

EXERCISE SET 5.4 

5.4.1. Let f be a nonsingular linear transformation of a space A. Prove that f 
and f- 1 have the same eigenvectors. 

5.4.2. Find the eigenvalues of the linear transformation f of the vector space 
A = JFi having the matrix 

relative to the standard basis. 
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5.4.3. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = F~ having the matrix 

relative to the standard basis. 

5.4.4. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = F~ having the matrix 

relative to the standard basis. 

5.4.5. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = F~ having the matrix 

G ~) 
relative to the standard basis. 

5.4.6. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = ~3 whose matrix relative to the standard basis is 

5.4.7. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = ~3 whose matrix relative to the standard basis is 

5.4.8. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = ~3 whose matrix relative to the standard basis is 
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5.4.9. Find the eigenvalues and eigenvectors of the linear transformation f of 
the vector space A = JR3 whose matrix relative to the standard basis is 

(-~ -1 

-3 
-6 
-4 

5.4.10. Given the eigenvalues of a mapping f, find the eigenvalues of f 2 • 

5.4.11. Let f, g be a linear transformations of a finite-dimensional vector space 
A. Suppose that f is nonsingular. Prove that fog and go f have the 
same characteristics polynomial. 



CHAPTERS 

BILINEAR FORMS 

6.1 BILINEAR FORMS 

In three-dimensional space, JR3, there is a well-known product called the scalar 
(or dot or inner) product of two vectors. This scalar product is linear in each 
variable and gives rise to a real number, which enables us to define and compute 
lengths, angles between vectors, angles between straight lines and planes, and so 
on. Indeed the notion of a scalar product allows us to define an entire geometry 
on a space. Bilinear forms, which we consider in this chapter, are a natural 
generalization of the scalar product idea in arbitrary vector spaces. These forms 
are very useful not only in linear algebra but also in other different branches of 
mathematics such as functional analysis, probability theory, quantum mechanics, 
special relativity theory, and so on. 

6.1.1. Definition. Let A be a vector space over a field F. The mapping 
<I> : A x A - F is called a bilinear form if it is linear in each variable, which 
means that 

<P(x + y, z) = <l>(x, z) + <l>(y, z) and <!>(ax, y) = a<l>(x, y), 

<P(x, y + z) = <P(x, y) + <l>(x, z) and <l>(x, ay) = a<l>(x, y) 

for all x, y, z E A, a E F. 
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If a is an element of A, then consider the mappings a<t> :A ---+ F and 
<t>a :A---+ F defined by a<t>(x) = <t>(a, x) and <t>a(x) = <l>(x, a) for all x EA. 
In this case, these mappings are both linear functionals and using some well
established techniques and Proposition 5.1.3, we obtain the following result. 

6.1.2. Proposition. Let A be a vector space over afield F and let <t> be a bilinear 

form on A. Then, the following assertions hold: 

(i) <l>(x,OA) = <I>(OA,X) =0Fforallx E A; 

(ii) <I>( -x, y) = <t>(x, -y) = -<t>(x, y) for all x, y E A; 

(iii) <t>(x- y, z) = <t>(x, z)- <t>(y, z) for all x, y, z E A; 

(iv) <l>(x, y- z) = <l>(x, y)- <t>(x, z)for all x, y, z EA. 

For the vector space A over the field F, let BiiF(A) denote the set of all 
bilinear forms on A. Define addition of bilinear forms by 

(<I>+ \ll)(x, y) = <t>(x, y) + \ll(x, y) for all x, yEA, 

whenever <t>, \II E BiiF(A). As with linear mappings, we can prove that the sum 
of two bilinear forms is again bilinear. We can also check that addition of forms 
satisfies the conditions 

<t> +\II = \II+ <t> and <t> +(\II + r) = (<t> +\II)+ r, 

for all <1>, \11, r E BiiF(A). Clearly the mapping 8: A x A ---+ F defined by the 
rule G(x, y) =OF for all x, y E A is bilinear, and from the definition we have 

<t> + 8 = <t> for each <t> E BiiF(A). 

Furthermore, put ( -<t>)(x, y) = -<t>(x, y) for all x, y E A. It is easy to see that 
- <t> is a bilinear form and that <t> + (- <t>) = 8. Hence, the set Bil F (A) is an 
abelian group under the operation of addition. 

Let <t> E BiiF(A) and let a E F. Define the mapping a<t> :A x A ---+ F by 
(a<t>)(x, y) = a<t>(x, y) for all x, y E A. As for linear mappings, we can show 
that this scalar multiplication satisfies the conditions 

a(<t> +\II)= a <I>+ a \II, (a+ (3)<1> =a <I>+ (3<1>, (a(3)<t> 

= a((3<1>), and e<t> = <t>, 

for all <1>, \II E BiiF (A), a, (3 E F. 
Consequently, all the conditions of Definition 4.1.4 are satisfied and the set 

BiiF(A) becomes a vector space over the field F. 
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6.1.3. Definition. Let A be a vector space over a field F and let <I> be a 
bilinear form on A. Then, <I> is called symmetric, if <I> (x, y) = <I> (y, x) for all 
elements x, y E A. Also <I> is called skew symmetric or symplectic or alternating, 
if <l>(x, y) = -<l>(y, x) for all elements x, y E A. 

If <I> is a symmetric (respectively symplectic) form, then clearly a<l> is also 
symmetric (respectively symplectic) for each a E F. We note that if <I> is a 
symplectic form, then <l>(x, x) = -<l>(x, x) so 2<1>(x, x) =OF. If char F =f. 2, it 
follows that <I> (x, x) = 0 F. 

Before proceeding, we make some slight notational changes. Suppose first that 
char F = 0. Then, ne =f. OF for each positive integer n and it follows that ne has 
a multiplicative inverse (ne) - 1. For each element a E A we obtain (ne) - 1 (na) = 
(ne)- 1 (ne)a = ea =a. So, we shall write ~a instead of (ne)- 1a. 

Suppose now that char F = p > 0 and let n be a positive integer such that 
GCD(n, p) = 1. Then ne =f. OF and hence, ne has a multiplicative inverse (ne)- 1• 

For each element a E A we again obtain (ne)- 1 (na) = (ne)-1 (ne)a = ea =a. 
Therefore, in this case also, we write .!.a instead of (ne)- 1a. n 

The following theorem justifies the importance of symmetric and symplectic 
forms. 

6.1.4. Theorem. Let A be a vector space over a field F and let <I> be a 
bilinear form on A. Suppose that char F =f. 2. Then, <I> = <1>1 + <1>2 where <1>1 is 
a symmetric form and <1>2 is a symplectic form. This representation is unique. 

Proof. Put <i>(x, y) = <l>(y, x) for all x, y E A and consider the forms 

<1>3 = <I> + <i> and <I> 4 = <I> - <i>. 

We have 

<l>3(y, x) = <l>(y, x) + <i>(y, x) = <l>(y, x) + <l>(x, y) = <i>(x, y) + <l>(x, y) 

= <f>3(X, y) 

and 

<l>4(y, x) = <l>(y, x)- <i>(y, x) = <l>(y, x)- <l>(x, y) = -(<l>(x, y)- <l>(y, x)) 

= -<f>4(X, y). 

Thus <1>3 is a symmetric bilinear form and <1>4 is symplectic. Furthermore, 

<l>3(x, y) + <l>4(x, y) = <l>(x, y) + <i>(x, y) + <l>(x, y)- <i>(x, y) = 2<1>(x, y). 

Since char F =f. 2, it follows that 
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As we remarked above, the form ~<1>3 is symmetric and the form ~<1>4 is sym
plectic so let 

To prove uniqueness, suppose that <I> = <1>5 + <1>6, where <1>5 is a symmetric form 
and <1>6 is a symplectic form. Then 

cP(x, y) = <l>(y, x) = <l>s(y, x) + <1>6(y, x) = <l>s(x, y)- <1>6(x, y). 

Therefore, 

<l>3(x, y) = <l>(x, y) + cP(x, y) = <l>s(x, y) + <1>6(x, y) + <l>s(x, y)- <1>6(x, y) 

= 2<1>s(x, y), 

and 

<l>4(x, y) = <l>(x, y)- cP(x, y) = <l>s(x, y) + <1>6(x, y)- <l>s(x, y) + <1>6(x, y) 

= 2<1>6(X, y). 

It follows that 

which proves the uniqueness desired. 

Suppose now that the vector space A is finite dimensional. Let {a1, .•. , an} 
be a basis of A. If x, y are elements of A then, by Proposition 4.2.16, 
x = LI:o;j:o;n ;Jai and y = LI:o;r:o;n TJ1a1, where ;}, TJr E F, for 1 ::::; j, t ::::; n. If 
<I> is a bilinear form on A, then 

<l>(x, y) ~<I> (E" <jaj. IE" q,a.) ~IE" <I> (<jaj. IE" q,a,) 
= L L <I>(;Jaj, TJrar) = L L ;J<I>(aj, TJ1a1) 

= L L ;}TJr<l>(aj, ar). 
I:o;j:o;n I:o;r:o;n 

This equation shows that the value of <I> (x, y) is completely determined by 
the coordinates of the elements x, y and the elements <l>(a1, a1 ), for 1::::; j, t::::; n. 
Thus the elements <l>(a1, a1), for 1 ::::; j, t::::; n, determine the form <I> uniquely. 

As usual, it is possible to associate a matrix with a bilinear form <1>. 
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6.1.5. Definition. Let A be a finite-dimensional vector space over a field F 
and let {a,, ... , an} be a basis of A. If <P is a bilinear form on A then put 
Oj1 = <P(aj, a1), for 1 ~ j, t ~ n. The matrix 

is called the matrix of <P relative to the basis {a 1, ... , an}. 

Here are some important properties of the matrix of a bilinear form. 

6.1.6. Proposition. Let A be a finite-dimensional vector space over a field F and 
let {a,, ... , an} be a basis of A. If <P, \II E BiiF(A) and S = [aj 1], R = [Pjr] E 

Mn (F) are the matrices of <P and \II relative to the basis {a,, ... , an}, then 

(i) S + R is the matrix of the form <P +\II relative to the basis {a,, ... , an}; 

(ii) if a E F, then aS is the matrix of the form a<P relative to the basis 
{a,, ... , an}. 

Proof. 

(i) We have 

It follows that [a11 + P}tl = S + R E Mn(F) is the matrix of <P +\II relative to 
the basis {a,, ... , an}. 

(ii) We have 

It follows that [aa1tl =aS E Mn(F) is the matrix of a<P relative to the basis 
{a,, ... ,anl· 

6.1.7. Corollary. Let A be a finite-dimensional vector space over a field F and 
let dimF(A) = n. Then, the vector space BiiF(A) is isomorphic to Mn(F). 

Proof. Let {a1, ... , an} be a basis of A. Let <P E BiiF(A) and define the mapping 
r : BiiF(A) ~ Mn(F) by f(<P) = S, where S is the matrix of <P relative to 
the basis {a,, ... , an}. Proposition 6.1.6 shows that this mapping is linear. 
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Let R = [pjtJ E Mn(F). Define the mapping Ill: Ax A~ F as follows: If 
x = Li::J:::n ~jaj andy= L!:::t:on TJ1a1 are elements of A, then put 

W(x, y) = L L ~jT/tPjt· 
l:Oj:Onl:::t:::n 

We will show that Ill is bilinear. To this end, let z be another element of A, say 
z = L!:::j:::n l;jaj and let a E F. Then x + z = L!:::j:::n(~j + l;j)aj, and 

W(x + z, y) = L L (~j + l;j)T/tPjt 
l::j::n l:::t::n 

= L L ~jT/tPjt + L L l;jT/tPjt = W(x, y) + W(z, y). 

Similarly, we can show that W(x, y + z) = W(x, y) + W(x, z). Furthermore, 
ax= L!:::j:::n a~jaj, and 

=a ( L L l;jT/tPjt) = aW(x, y). 
I ::j :::n I :Of :::n 

We can show that W(x, ay) = aW(x, y) in a similar manner. 
By definition of Ill, 

which shows that R is the matrix of Ill relative to the basis {a,, ... , an}. Hence 
the mapping r is surjective. 

Finally, let <1>, Ill be bilinear forms on A and letS= [aj 1], R = [pj 1] E Mn(F) 
be the matrices of <I> and Ill relative to the basis {a 1, ••. , an}. For each pair of 
elements x = L!:::j:::n ~jaj andy= L!:::t:::n TJ1a" we have 

<l>(x, y) = L L ~jT/tajt and W(x, y) = L L ~jT/tPjt· 

Suppose that r(<l>) = r(W), so that S = R. Then ajt = Pjt for all j, t, where 
1 :S j, t :S n. It follows that <l>(x, y) = W(x, y) for all x, yEA, which proves 
that <I> = Ill. Hence, the mapping r is injective and therefore, r is an isomor
phism. 

The structure of the matrix of a bilinear form is very dependent on the chosen 
basis. The following theorem describes how a change of basis affects the matrix 
of the form. 
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6.1.8. Theorem. Let A be a finite-dimensional vector space over a field F, and 
let {at, ... , an}, {bt, ... , bn} be bases of A. Suppose that <I> is a bilinear form on 
A and letS= [aj 1], R = [Pjrl E Mn(F) denote the matrices of <I> relative to the 
bases {at, ... , an} and {bt, ... , bn}, respectively. LetT= [ljr] E Mn(F) denote 
the transition matrix from {at, ... , an} to {bt, ... , bn }. Then R = T 1 ST. 

Proof. We have 

= L L ljmltkajt = L L ljmajtltk· 
t~j~nt~t~n t~j~nt~t~n 

Let yt = [8j 1 ] E Mn(F) so that 8j1 = t1j, where 1 :S j, t :S n. We compute the 
product T 1 ST. Let T 1 ST = [Ymkl E Mn(F) and let ST = [,Bjrl E Mn(F). Then, 

= L L t jmajtltk. for 1 :S m, k :S n. 
t~j~n t~t~n 

Comparing this with Pmk we deduce that R = Tt ST, which proves the result. 

6.1.9. Corollary. Let A be finite-dimensional vector space over afield F and let 
{at, ... , an}, {bt, ... , bn} be bases of A. Suppose that <I> is a bilinear form on 
A and that S = [aj 1], R = [pj 1 ] E Mn(F) are the matrices of <I> relative to the 
bases {at, ... , an} and {bt, ... , bn} respectively. Then rank(S) = rank(R). 

Proof. By Theorem 6.1.8, R = T 1 ST where T is the transition matrix from the 
first basis to the second. By Corollary 4.2.19, the matrix T is nonsingular, so 
Corollaries 4.3.10 and 4.3.11 together imply that rank(R) = rank(S). 

We introduce the following concept based on these results. 

6.1.10. Definition. Let A be a finite-dimensional vector space over a field F and 
let {at, ... , an} be a basis of A. Suppose <I> is a bilinear form on A and Sis the 
matrix of <I> relative to the basis {at, ... , an}, then rank(S) is called the rank of 
<I> and will be denoted by rank( <I>). 

6.1.11. Proposition. Let A be a finite-dimensional vector space over the field 
F and let <I> be a bilinear form on A. If <I> is symmetric (respectively skew 
symmetric), then the matrix of <I> relative to any basis is symmetric (respectively 
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skew symmetric). Conversely, suppose that the matrix of¢> relative to some basis 
is symmetric (respectively skew symmetric). Then ¢> is symmetric (respectively 
skew symmetric). 

Proof. Let {ai, ... , an} be an arbitrary basis of A and letS= [aj 1] E Mn(F) be 
the matrix of ¢> relative to this basis. If ¢> is symmetric (respectively skew sym
metric) then a11 = ¢>(a1, a1) = ¢>(ar. a1) = a11 (respectively a}r = ¢>(a1, a1) = 
-¢>(a1 , a1) = -atJ), for 1 ::.:; j, t::.:; n, so Sis also symmetric (respectively anti
symmetric). 

Conversely, let {ci, ... , cn} be a basis of A such that the matrix R = [PJr1 E 

Mn (F) of¢> relative to this basis is symmetric (respectively antisymmetric). For 
each pair of elements x = LI:::J:::n ~JCJ, y = LI:::r:::nJt 1]1C1 , we have 

¢(x, y) = L L ~JIJrPJt = L L 1Jr~}Pti = ¢(y, x), 

and, respectively, 

¢(x, Y) = L L ~}1JrP}r = L L 1Jr~j{-ptj) 

=- ( L L 1Jr~}Pti) = -¢(y, x). 
I::O}::On I:::t:::n 

In the case of symmetric forms, the language of bilinear forms can be translated 
into the language of quadratic forms. 

6.1.12. Definition. Let A be a finite-dimensional vector space over the field F 
and let ¢> be a bilinear form on A. The mapping f : A ---+ F defined by the rule 
f (x) = ¢> (x, x) is called the quadratic form associated with the bilinear form ¢>. 

By Theorem 6.1.4, ¢>=¢I + ¢z where ¢I is a symmetric form and ¢z is a 
symplectic form. Then ¢(x, x) =¢I (x, x) + ¢>z(x, x). As we observed above, if 
charF =I= 2, then ¢z(x, x) =OF. Therefore, it suffices to consider only quadratic 
forms associated with bilinear symmetric forms. 

Let {a I, ... , an} be a basis of the space A and let S = [aJr1 E Mn (F) be the 
matrix of¢> relative to this basis. For each element x = LI:::J:::n ~Jai, we have 

f(x) = ¢(x, x) = L L ~J~ra}r· 
I:::}:::n I:::r:::n 

The matrix S = [a1r] is called the matrix of the quadratic formf relative to 
the basis {a I, ... , an}. The rule for changing the matrix of a quadratic form at the 
transition from one basis to another will still be the same as it was for bilinear 
forms, namely if {bi, ... , bn} is another basis and R is the matrix of f relative 
to this basis, then R = T 1 ST where T is the transition matrix from the first basis 
to the second. 
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EXERCISE SET 6.1 

Write out a proof or give a counterexample. Show your work. 

6.1.1. Let f: ffi.3 -----+ ffi.3 be a mapping defined by f((a, {3, y), (A., JL, v)) = 
aA. + f3JL. Is this mapping bilinear? 

6.1.2. Let f: ffi.3 -----+ ffi.3 be a mapping defined by f((a, {3, y), (A., JL, v)) = 
a A. + y v. Is this mapping bilinear? 

6.1.3. Relative to the standard basis of the vector space A = Q3 we define a 
bilinear form <I> using the matrix 

( i ~ -~). 
-1 2 -1 

Find <l>(x, y) for x = (1, -2, 0), y = (0, -1, -2). 

6.1.4. Relative to the standard basis of the vector space A = Q3 we define a 
bilinear form <I> using the matrix 

Find <l>(x, y) for x = (1, -5, 0), y = (0, -3, -2). 

6.1.5. Let A = JF~ where lF 3 is a field of three elements. We define a bilinear 
form <I> using the matrix 

Find <l>(x, y) for x = (1, 1, 0), y = (0, 1, 2). 

6.1.6. Let A= JF~, where lFs is a field of five elements. We define a bilinear 
form <I> using the matrix 

Find <l>(x, y) for x = (4, 1, 0), y = (3, 0, 2). 
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6.1.7. Relative to the standard basis of the vector space A = Q5, we define a 
bilinear form <I> using the matrix 

(

0 0 
1 2 
0 1 
1 0 
2 2 

~ !!). 
0 1 2 
1 0 0 

Decompose this form into the sum of a symmetric and an alternating 
form. 

6.1.8. Relative to the standard basis of the vector space A = Q4, we define a 
bilinear form <I> using the matrix 

Decompose this form into the sum of a symmetric and an alternating 
form. 

6.1.9. Relative to the standard basis of the vector space A = JF~, we define a 
bilinear form <I> using the matrix 

Decompose this form into the sum of a symmetric and an alternating 
form. 

6.1.10. Let A= JF~ where JF3 is the field consisting of three elements. A bilinear 
form <I> is given relative to the standard basis, as 

G -~ n 
Find the matrix of the form relative to the basis (1, 1 ,0), (0, 1, 1), (0, 0, 1). 

6.2 CLASSICAL FORMS 

In geometry, the important concept of an orthogonal basis has been introduced 
with the aid of the scalar product. This concept can be extended to a vector space, 
on which a bilinear form is defined, in the following way. 
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6.2.1. Definition. Let A be a vector space over a field F and let <l> be a bilinear 
fonn on A. We say that an element x E A is left orthogonal to y E A if <l> (x, y) = 
Op. In this case, we say that that y is right orthogonal to x. 

In the general case, left orthogonality does not coincide with right orthogonal
ity. For example, let dimp(A) = 2 and suppose that A has the basis {a,, a2} and 

let the matrix (oaF ; ) correspond to the bilinear form <1>. Then <l>(a,, a2) = e 

and <l>(a2, a!) = Op, so a1 is left, but not right, orthogonal to a2. Of course, if a 
form <l> is symmetric or symplectic then left orthogonality coincides with right 
orthogonality. 

6.2.2. Definition. Let A be a vector space over a field F and let <l> be a bilinear 
fonn on A. For a subspace M of A we put 

J.M ={xI x E A and <l>(x, a)= Op for each a EM} 

and 

MJ. = {x I x E A and <l>(a, x) = Op for each a E M}. 

The subset J. M (respectively MJ.) is called a left (respectively right) orthogonal 
complement toM. The subset J. A (respectively AJ.) is called a left (respectively 
right) kernel of <1>. 

6.2.3. Proposition. Let A be a vector space over a field F and let <l> be a bilinear 
fonn on A. If M is a subset of A, then J.M and MJ. are subspaces of A. 

Proof. Clearly J. M =1= 0 since 0 A E J. M. Let x, y E J. M, let a be an arbitrary 
element of M and let a E M. By Proposition 6.1.2, 

<l>(x- y, a)= <l>(x, a)- <l>(y, a)= Op- Op = Op and 

<l>(ax, a)= a<l>(x, a)= Op. 

This shows that x - y, ax E J. M. Theorem 4.1. 7 implies that J. M is a subspace 
and similarly we can deduce also that M J. is a subspace. 

As we have already seen, the subs paces J. A and A J. can be different. However, 
the following result holds. 

6.2.4. Theorem. Let A be a finite-dimensional vector space over a field F and 
let <l> be a bilinear fonn on A. Then dimp(J. A) = dimp(A) -rank( <I>). 
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Proof. Let M = {a 1 , ••• , an} be a basis of A and note that it is clearly the case 
that j_ A :::; j_ M. Let y E j_ M and let x = L, 1 :::Oj =:on ~ j a j be an arbitrary element 
of A, where ~j E F, for 1 :::; j :::; n. Then, 

Thus y E j_A, so j_A = j_M. 

Let S = [ujtl E Mn(F) denote the matrix of <t> relative to the basis 
{a1, ... , an}. Let z = Ll:::oj:::on l;jaj be an arbitrary element of j_M, where 
l;j E F, for 1 :::; j :::; n. Then 

= L l;jUjk. for 1 :::; k :::; n. 
I:::Oj9 

Thus, the n-tuple (t;1, ••• , l;n) is a solution of the system 

U11X1 + U21X2 + · · · + UniXn =OF 

UJ2X1 + U22X2 + · · · + Un2Xn = OF 
(6.1) 

Conversely, every solution of Equation 6.1 gives the coordinates of some element 
of j_ M. We observe that the matrix of the system (Eq. 6.1) is S1

• 

Let K : A ---+ Fn be the canonical isomorphism. By the above, K(j_ A) is the 
subspace of all solutions of the system (Eq. 6.1). From the results of Section 
5.3, we deduce that dimF(K(j_ A)) = n - rank(S1

) and by Corollary 4.3.6, 
rank(S1

) = rank(S). Therefore, dimF(K(j_ A)) = n- rank(S) = n- rank( <I:>). 
Since K is an isomorphism, Corollary 5.1.9 implies that dimF (K (j_ A)) = 
dimF(j_A), so that dimF(j_A) = n- rank(¢)= dimF(A)- rank(¢). 

The proof for the fact about the right kernel is essentially the same as that 
given above for the left kernel. 

6.2.5. Definition. Let A be a finite-dimensional vector space over a field F 
and let <t> be a bilinear form on A. The number dimF(j_ A)= dimF(Aj_) = n
rank( <t>) is called the defect of <t>. A form <t> is called nonsingular, if its defect is 
0. When B is a subspace of A, we say that B is nonsingular, if the restriction of 
<t> to B is a nonsingular form. 
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Thus, the form <f> is nonsingular if and only if the matrix of the form is 
nonsingular. The next result is very easy to prove and is left to the reader. 

6.2.6. Proposition. Let A be a finite-dimensional vector space over afield F and 
let <f> be a bilinear form on A. Then, the form <f> is nonsingular if and only if for 
each nonzero element x there is an element y such that <f>(x, y) i= OF. 

6.2.7. Definition. Let A be a vector space over afield F and let <f> be a bilinear 
form on A. The form <f> is called classical if the equation <f>(x, y) =OF always 
implies that <f> (y, x) = 0 F. 

Thus, for a classical form left and right orthogonality coincide. 
We saw above that symmetric and symplectic forms are classical. Now we 

will prove that, in the case when char F i= 2, there are no classical forms other 
than these. We first prove this for nonsingular forms. 

6.2.8. Lemma. Let A be a vector space over a field F and let <f> be a bilinear 
classical form on A. Suppose that char F i= 2. If <f> is nonsingular, then <f> is 
symmetric or symplectic. 

Proof. Let x be an arbitrary nonzero element of A. By Proposition 6.2.6, there 
exists an element y such that <f> (x, y) = a i= 0 F. Of course, the element y is also 
nonzero. Put u = a-1 y; then 

Let z be an arbitrary element of A and let <f> (x, z) = fJ. Then, 

<f>(x, z- {Jy) = <f>(x, z)- {J<f>(x, y) = fJ- {Je =OF. 

It follows, since <f> is classical, that 

OF= <f>(z- fJy, x) = <f>(z, x)- {J<f>(y, x) and so 

<f>(z, x) = {J<f>(y, x) = <f>(x, z)<f>(y, x). 

Let <f>(y, x) = y(x). Then we have <f>(z, x) = y(x)<f>(x, z). The element y(x) 
does not depend on z and next, we show that it does not depend on x either. 

To this end, choose two nonzero elements x 1, x2 E A. By Proposition 6.2.6, 
there exist nonzero elements VJ, v2 such that <f> ( v1, xJ) i= 0 F and <f> ( v2, x2) i= 0 F. 

If <f>(vJ, x2) i= OF, then put v = v1; if <f>(VJ, x2) =OF but <f>(v2, xJ) =OF, then 
put v = v2. Suppose that <f>(v1, x2) =OF and <f>(v2, XJ) =OF. Set v = VJ + v2. 
In this case, 

<f>(v, xJ) = <f>(v1 + v2, xJ) = <f>(vJ, xJ) + <f>(v2, xJ) = <f>(v1, xJ) i= OF, 

and <f>(v, X2) = <f>(VJ + V2, X2) = <f>(VJ, X2) + <f>(v2, X2) = <f>(v2, X2) i= OF. 
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Hence, there is a v such that <l>(v, xJ), <l>(v, x2) #OF. Now put A= <l>(v, xJ) 
<l>(v, x2)-1, and w = A.x2. Then, 

<l>(v, w) = <l>(v, <l>(v, xJ)<I>(v, x2)- 1 x2) = <l>(v, XJ)<I>(v, x2)- 1 <l>(v, x2) 

= <l>(v, xJ) #OF. 

It follows that OF= <l>(v, xJ)- <l>(v, w) = <l>(v, x 1 - w), and therefore, OF= 
<l>(x1 - w, v) = <l>(x1, v)- <l>(w, v). Hence, <l>(x1, v) = <l>(w, v) # 0. 

Furthermore, 

and 

<l>(v, w) = <l>(v, h2) = A.<l>(v, x2) = A.y(x2)<l>(x2, v) 

= y(x2)<l>(h2, v) = y(x2)<l>(w, v). 

The equation <l>(v, xJ) = <l>(v, w) implies that y(xJ)<I>(x1, v) = y(x2)<l>(w, v) 
and, since <l>(xJ, v) = <l>(w, v) #OF, we see that y(xJ) = y(x2). Because XJ 
and x2 are arbitrary nonzero elements of A, it follows that there exists a nonzero 
element y E F such that <l>(z, x) = y<I>(x, z) for all nonzero elements x, z EA. 

Finally, let x, z be nonzero elements of A such that <I> (z, x) # 0 F. Then 

<l>(z, x) = y<l>(x, z) = y 2<1>(z, x). 

It follows that y 2 - e =OF. Since char F =1 2, e =1 -e, we have only two pos
sibilities for y, namely y = e or y =-e. In the first case, <l>(z, x) = <l>(x, z) for 
all x, z E A and in the second case, <l>(z, x) = -<l>(x, z) for all x, z EA. Hence, 
<I> is symmetric or symplectic. 

6.2.9. Proposition. Let A be a finite-dimensional vector space over a field F and 
let <I> be a classical bilinear form on A. Then A = A j_ E9 B and the restriction of 
<I> to B is a classical nonsingular bilinear form. 

Proof. By Proposition 4.2.25, the subspace Aj_ has a complement B. Suppose 
that b is an element of B such that <I> ( b, y) = 0 F for all y E B. If x is an arbitrary 
element of A, then x = u + v where u E A j_ and v E B. Then 

<l>(b, x) = <l>(b, u + v) = <l>(b, u) + <l>(b, v) =OF+ OF =OF. 

It follows that bE Aj_, so that bE Aj_ n B = {OA}. By Proposition 6.2.6, this 
means that the restriction of <I> to B is nonsingular and this restriction is clearly 
a classical form. 

We now generalize Lemma 6.2.8 to all cases, not just nonsingular ones. 
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6.2.10. Theorem. Let A be a finite-dimensional vector space over a field F and 
let <I> be a bilinear classical form on A. If char F i= 2 then <I> is symmetric or 
symplectic. 

Proof. By Proposition 6.2.9, there is a direct decomposition A= A.l EBB such 
that the restriction of <I> to B is a classical nonsingular form. By Lemma 6.2.8, 
either <l>(u, v) = <l>(v, u) or <l>(u, v) = -<l>(v, u) for all u, v E B. Let x, y be 
arbitrary elements of A. Then x = a1 + u andy= a2 + v, where a1, a2 E A.l, 
u, v E B. In the case when <I> restricted to B is symmetric, we have 

<l>(x, y) = <l>(a! + u, a2 + v) = <l>(a!, a2) + <l>(a1, v) + <l>(u, a2) + <l>(u, v) 

= <l>(u, v) and 

<l>(y, x) = <l>(a2 + v, a1 + u) = <l>(a2, a!)+ <l>(a2, u) + <l>(v, a!)+ <l>(v, u) 

= <l>(v, u). 

Therefore, <I> (x, y) = <I> (y, x) and it follows that the form <I> is symmetric. 
In the case when <I> restricted to B is symplectic, we obtain 

<l>(x, y) = <l>(u, v), <l>(y, x) = <l>(v, u) = -<l>(u, v), 

so that <I> (x, y) = -<I> (y, x), and the form <I> is symplectic on A. 

We next consider the structure of those spaces on which a classical bilinear 
form is given. As in the case of linear transformations, our goal is to choose a 
basis in which the matrix of the form is as simple as possible, in some sense. 

6.2.11. Proposition. Let A be a finite-dimensional vector space over afield F and 
let <I> be a bilinear classical form on A. If <I> is nonsingular, then dimF(B.l) = 
dimF(A) - dimF(B) for each subspace B. 

Proof. If B = {OA}, then B.l =A and dimF(B.l) = dimF(A)- 0 so we may 
suppose that B is a nonzero subspace. Let N = {a1, ... , ad be a basis of B. By 
Theorem 4.2.11, there are elements {ak+l, ... , an} of A such that {a!, ... , an} 
is a basis of A. As in the proof of Theorem 6.2.4, we can show that B.l = N.l. 
LetS= [aj 1] E Mn(F) denote the matrix of <I> relative to {a!, ... , an}. Let x = 
LI::I:sn ~jaj be an arbitrary element of N.l, where ~j E F, for 1 ::::: j ::::: n. Then, 
for 1 ::::: m ::::: k, we have 
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Therefore, we deduce that the n-tuple (.!; 1, ••• , l;n) is a solution of the system 

all X!+ a12x2 + · · · + a!nXn =OF 

az1x1 + azzXz + · · · + aznXn =OF 
(6.2) 

Conversely, every solution of the system (Eq. 6.2) gives the coordinates of some 
elements of Nl.. We remark that the matrix of the system (Eq. 6.2) consists of 
the first k rows of the matrix S. 

Let K :A --+ pn be the canonical isomorphism. As above, K(Bl.) is the sub
space of all solutions of the system (Eq. 6.2). By the results of Section 5.3, 
dimF(K(Al.)) = n- r where r is the rank of the system (Eq. 6.2). By our 
hypotheses the matrix S is nonsingular, which implies that the set of all rows of 
S is linearly independent. In particular, the set of the first k rows of S is also lin
early independent and it follows that the matrix of the system (Eq. 6.2) has rank 
k, so r = k. Hence dimF(K(Bl.)) = n- k. Since K is an isomorphism, Corol
lary 5.1.9 shows that dimF(K(Bl.)) = dimF(Bl.), so that dimF(Bl.) = n- k = 
dimF(A) - dimF(B), as required. 

6.2.12. Corollary. Let A be a finite-dimensional vector space over a field F and 
let <I> be a classical bilinear fonn on A. If <I> is nonsingular, then B = (Bl. )l. for 
each subspace B. 

Proof. For all elements bE B and x E Bl., we have <l>(b, x) =OF. Since <I> is 
a classical form, OF= <l>(x, b) and therefore, bE (Bl.)l.. Hence, B :S (Bl.)l.. 
Furthermore, Proposition 6.2.11 implies that 

dimF((Bl.)l.) = dimF(A)- dimF(Bl.) 

= dimF(A)- (dimF(A)- dimF(B)) = dimF(B). 

Now the inclusion B :=: (Bl.)l., together with Theorem 4.2.20, proves that 
B = (Bl.)l.. 

6.2.13. Corollary. Let A be a finite-dimensional vector space over afield F and 
let <I> be a classical bilinear fonn on A. If <I> is nonsingular then, for each subspace 
B, the intersection B n Bl. is the kernel of the restriction of <I> to the subspaces 
Band Bl.. 

Proof. Let C denote the kernel of the restnctton of <I> to B. If x E C, 
then <l>(b, x) =OF for all bE B. Thus X E Bl., so that X E B n Bl.. Hence, 
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c :s B n Bj_. Conversely, if X E B n Bj_, then X belongs to the kernel of the 
restriction of <I> on B. It follows that Bj_ n (Bj_ )j_ is the kernel of the restriction 
of <I> on Bj_. By Corollary 6.2.12, (Bj_)j_ = B, which proves that B n Bj_ :S C. 
This proves the result. 

6.2.14. Theorem. Let A be a finite-dimensional vector space over afield F and 
let <I> be a classical bilinear form on A. If <I> is nonsingular, then A = B EB Bj_ 
for each nonsingular subspace B. Moreover, Bj_ is also nonsingular. 

Proof. Since B is nonsingular, the kernel of the restriction of <I> on B is zero. 
By Corollary 6.2.13, the kernel coincides with B n Bj_, so that B n Bj_ = {OA}. 
By Corollary 4.2.23, dimF(B EB Bj_) = dimF(B) + dimF(Bj_). By Proposition 
6.2.11, dimF(B EB Bj_) = dimF(B) + dimF(A) - dimF(B) = dimF(A) and 
Theorem 4.2.20 implies that A = B EB Bj_. 

6.2.15. Definition. Let A be a vector space over afield F and let <I> be a classical 
bilinear form on A. Suppose that the subspace C is a direct sum of subspaces 
A,, ... , An. This direct sum is orthogonal, if <l>(x, y) =OF for all x E Aj and 
y E A1, where 1 :S j, t :S n. 

The following theorem describes the structure of vector spaces on which a 
classical bilinear form exists. 

6.2.16. Theorem. Let A be a finite-dimensional vector space over a field F and 
let <I> be a symmetric bilinear form on A. If char F =I= 2, then A is the orthogonal 
direct sum of the kernel and one-dimensional spaces. 

Proof. First, consider the case when <I> is nonsingular and let a be a nonzero 
element of A. By Proposition 6.2.6, there exists an element b such that <l>(a, b) =I= 
OF. If <l>(a, a) =I= OF, then put a, =a. If <l>(a, a)= OF but <l>(b, b) =I= OF. then 
put a1 =b. If <l>(a, a)= OF and <l>(b, b) =OF and if a1 =a+ b, then 

<l>(a,, a1) = <l>(a + b, a+ b) 

= <l>(a, a)+ <l>(a, b)+ <l>(b, a)+ <l>(b, b) = 2<1>(a, b). 

Since <l>(a, b) =1= OF and char F =1= 2, we know 2<1>(a, b) =I= OF. Hence, in any 
case, there exists an element a1 such that <l>(a1, a!) =I= OF. Let A, be the subspace, 
generated by a1 so that A 1 is nonsingular. From Theorem 6.2.14 we deduce 
that A= A, EB Af and the subspace Af is nonsingular. As above, there exists 
an element az E Af such that <l>(az, az) =I= OF and we let Az be the subspace 
generated by a2• Clearly, every element of A 1 is orthogonal to every element of 
A2• Put B = A 1 EB A2• Then, by Proposition 4.2.22, {a,, az} is a basis of B. The 
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matrix 

is the matrix of the restriction of <I> to B, relative to this basis. Since this matrix 
is nonsingular, B is nonsingular. Again using Theorem 6.2.14, we obtain the 
orthogonal direct decomposition A = B EB Bj_ = A 1 EB A 2 EB Bj_, where the sub
space Bj_ is nonsingular. The argument above can be repeated as often as we like 
and, after finitely many steps, we obtain a decomposition of A into an orthogonal 
direct sum of one-dimensional spaces. 

Next we consider the general case. By Proposition 6.2.9, A = Aj_ EB C where 
C is a nonsingular subspace. As above, C is an orthogonal direct sum of subs paces 
of dimension 1, which proves the result. 

6.2.17. Definition. Let A be a vector space over a field F and let <I> be a 
symmetric bilinear form on A. A subset {a 1, ••• , am} of A is called orthogo
nal, if <I>(a j, a1) =OF for all j, t where 1 _:::: j, t _:::: n. If an orthogonal subset 
{ a1, ... , an} is a basis of A, then we say that {a 1, ... , an} is an orthogonal basis 
of A. 

6.2.18. Corollary. Let A be a finite-dimensional vector space over a field F and 
let <I> be a symmetric bilinear form on A. If char F # 2, then A has an orthogonal 
basis. 

Proof. By Theorem 6.2.16, A= Aj_ EB A1 EB · · · EB Ak where this direct sum is 
orthogonal and dimF(Aj) = 1, for 1 _:::: j _:::: k. In each subspace Aj choose a 
nonzero element aj, where 1 _:::: j _:::: k, and let {ak+J, ... , an} be a basis of Aj_. 
Proposition 4.2.22 shows that {aJ, ... , an} is a basis of A. By this choice, this 
basis is orthogonal. 

6.2.19. Corollary. Let A be a finite-dimensional vector space over afield F and 
let <I> be a bilinear symmetric form on A. If char F # 2, then A has a basis 
{a!, ... , an}, relative to which the matrix of <I> has the form 

Y1 OF OF OF OF 
OF Y2 OF OF OF 

OF OF Yr OF OF 
OF OF OF OF OF 

OF OF OF OF OF 

where Yj #OF, 1 _:::: j _:::: r, and r =rank( <I>). 
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6.2.20. Corollary. Let F be afield and letS be a symmetric matrix of degree n. 
If char F =f. 2, then there exists a nonsingular matrix T E Mn(F) such that the 
matrix T 1 ST is diagonal. 

Proof. Let A be a vector space over a field F such that dimF(A) = n (we may 
choose A = Fn, for example). Choose some basis {a1, •.. , an}. By Corollary 
6.1. 7, there exists a bilinear form <P such that the matrix of <P relative to the 
basis {a 1 , ••• , an} is S. By Proposition 6.1.11, <P is symmetric and by Corollary 
6.2.19, there exists a basis of A such that the matrix L of <P relative to this basis 
is diagonal. By Theorem 6.1.8, L = T 1 ST where T is the transition matrix from 
the first basis to the second one. 

Next, we describe the spaces with a symplectic bilinear form. We cannot use 
orthogonal bases here since, as we have seen above, for such forms <P we have 
<P(x, x) =OF. However symplectic planes, as defined below, are fundamental to 
our study. 

6.2.21. Definition. A vector space of dimension 2 over a field F with char F =f. 2, 
on which a nonsingular symplectic bilinear form is given, is called a symplectic 
plane. 

Let A be a symplectic plane and let {b1, b2} be a basis of A. Then 
<P(b,, b2) =a =f. OF. Put a,= b,, a2 = a-1b2. Then {a,, a2} is also a basis of 
A and <P(a 1, a2) =e. Hence, the matrix of <P relative to the basis {a1, a2} is 

6.2.22. Theorem. Let A be a finite-dimensional vector space over a field F and 
let <P be a symplectic bilinear form on A. If char F =f. 2, then A is an orthogonal 
direct sum of the kernel and symplectic planes. 

Proof. First, consider the case when the form <P is nonsingular. Let a be a 
nonzero element of A. By Proposition 6.2.6, there exists an element b such 
that <P(a, b) =f. OF. Let A 1 be the subspace, generated by a, b. Then A 1 is a 
nonsingular subspace of dimension 2. From Theorem 6.2.14, we deduce that 
A= A1 EB Af and that Af is nonsingular. We apply the same arguments to the 
subspace Af and continue in this way. Repeating these arguments, we see that 
in finitely many steps we obtain a decomposition of A into an orthogonal direct 
sum of symplectic planes. 

For the general case, Proposition 6.2.9 implies that A = A.l EB C where C is 
a nonsingular subspace. As above, C is an orthogonal direct sum of symplectic 
planes, which proves the result. 

6.2.23. Corollary. Let A be a finite-dimensional vector space over afield F and 
let <P be a symplectic bilinear form on A. If char F =f. 2, then A has a basis 
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{a 1, ... , an}, relative to which the matrix of cp has the form 

OF e OF OF OF OF OF OF OF OF OF OF OF 
-e OF OF OF OF OF OF OF OF OF OF OF OF 
OF OF OF e OF OF OF OF OF OF OF OF OF 
-e OF -e OF OF OF OF OF OF OF OF OF OF 

OF OF OF OF OF OF OF e OF OF OF OF OF ' 
OF OF OF OF OF OF -e OF OF OF OF OF OF 
OF OF OF OF OF OF OF OF OF OF OF OF OF 

OF OF OF OF OF OF OF OF OF OF OF OF OF 

where 2r = rank( cp) and the boldface rows are the rows numbered 2r - 1 
and 2r. 

6.2.24. Corollary. Let F be a field and let S be a skew-symmetric matrix of order 
n. /fchar F =/= 2, then there exists a nonsingular matrix T E Mn(F) such that the 
matrix T 1 ST has the form 

OF e OF OF OF OF OF OF OF OF OF OF OF 
-e OF OF OF OF OF OF OF OF OF OF OF OF 
OF OF OF e OF OF OF OF OF OF OF OF OF 
-e OF -e OF OF OF OF OF OF OF OF OF OF 

OF OF OF OF OF OF OF e OF OF OF OF OF ' 

OF OF OF OF OF OF -e OF OF OF OF OF OF 
OF OF OF OF OF OF OF OF OF OF OF OF OF 

OF OF OF OF OF OF OF OF OF OF OF OF OF 

where 2r = rank(S) and the boldface rows are the rows numbered 2r- 1 
and 2r. 

Above, we proved the existence of an orthogonal basis for a space with 
a given symmetric bilinear form, and the proof is constructive in that it can 
be used to actually find such a basis. However, the proof suggests that this is 
a very long and tedious process. Thus, the first step is to find an orthogonal 
complement for the element a1 and for this, we need to find a fundamental 
system of solutions of a system of n - 1 equations; at the second step we need 
to solve a system of n - 2 equations, and so on. The language of quadratic 
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forms helps us to develop more efficient methods of finding an orthogonal basis. 
One of these methods is a classical method of the great French mathematician, 
Lagrange (1736-1813) involving the reduction of a quadratic form to a 
diagonal form. If {a,, ... , an} is an orthogonal basis, and f is a quadratic form 
associated with a symmetric bilinear form <1>, then f(x) = L!:J~n ~Jyj. where 
x = L!~j~n ~jaj and Yj = <l>(aj, aj). for 1 :::; j:::; n. Such a quadratic form 
is called a diagonal or normal form. In the general case, a quadratic form is 
a function of the coordinates of an element. The main idea of the Lagrange 
method is step-by-step transformation of coordinates. As we saw in Section 4.2, 
transformation of coordinates is realized by the rule 

(~;) - (:;: :;: :~) (~;) . 
An Ln I Ln2 Lnn ~n 

In this way, for each coordinate transformation we can find a corresponding 
transition matrix from one basis to the other. 

For the basis {a,, ... , an}, the quadratic form f takes the form 

f(x) = L L XjXrajr. (6.3) 

where the entries in the n-tuple (x1, .•• , Xn) are the coordinates of x relative 
to {a1, ••• , an}. We assume, as usual, that charF =!= 2. Suppose first that there 
is a positive integer j such that ajj =!=OF. By relabeling, if necessary, we may 
suppose that a11 =!=OF. Then, we can write Equation 6.3 as 

f(x) = a 1! 1 
(a11x1 + a12x2 + · · · + a,nxn)2 + g(xz, ... , Xn), 

where g(xz, ... , Xn) is a quadratic form in x 2, ... , Xn· Put 

Yl = a,,x, + a12x2 + · · · + a!nXn 

Yz = xz 

Yn = Xn. 

The corresponding transition matrix is 

which is nonsingular. Thus f(y,, ... , Yn) = a 1!
1Yf + g(yz, ... , Yn). Suppose 

now that ajj =OF for all j, where 1 :::; j :::; n. Since the form f is nonsingular, 
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there are indices j, t such that CYjr =I= OF and, by relabeling the basis vectors 
if necessary, we may assume that cr12 =1= OF. We now consider the following 
transformation of variables: 

Xi= Zi + Z2 

X2 = Zi- Z2 

X3 = Z3 

Xn = Zn· 

Then, 2cr,2x1x2 = 2cr12zf- 2cr12z~ and the quadratic form is now of the same 
type as the one we considered in the previous case. Now apply similar transfor
mations to the quadratic form g(x2 , ... , Xn) and repeat this process. In a finite 
number of steps we obtain the expression 

where r .:=:: n. The corresponding basis is orthogonal. 

EXERCISE SET 6.2 

Show your work, giving a proof or counterexample, where necessary. 

6.2.1. Let f: Q2 x Q2 ---+ Q be a bilinearform defined by f((a, {3), (y, A.)) = 
ay + 2aA. + 3f3y + 6f3A.. Find the right kernel. 

6.2.2. Let f: Q2 x Q2 ---+ Q be a bilinear form defined by f((a, {3), (y, A.)) = 
ay + 2aA. + 3f3y + 6f3A.. Find the left kernel. 

6.2.3. A bilinear form f : ~3 x ~3 ---+ ~is given relative to the standard basis 
using the matrix 

Find the left kernel. 

6.2.4. A bilinear form f : ~3 x ~3 ---+ ~is given relative to the standard basis 
using the matrix 

Find the right kernel. 
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6.2.5. Over the space A = Q3 a bilinear form with the matrix 

G H) 
relative to the standard basis is given. Find the left orthogonal comple
ment to the subspace Qa where a = (0, 2, 5). 

6.2.6. Over the space A = JR4 a bilinear form with the matrix 

relative to the standard basis is given. Find the left orthogonal comple
ment to the subspace Qa where a = (0, 1, 3, 5). 

6.2.7. Over the space A = JR4 a bilinear form with the matrix 

relative to the standard basis is given. Find the right orthogonal comple
ment to the subspace Qa where a = (0, 1, 3, 5). 

6.2.8. Over the space A = Q3 a bilinear form with the matrix 

relative to the standard basis is given. Find the right orthogonal comple
ment to the subspace Qa where a = (0, 2, 5). 

6.2.9. Over the space A = Q3 a bilinear form with the matrix 

relative to the standard basis is given. Find the right orthogonal comple
ment to the set {(1, 1, 0), (0, -1, 1)}. 
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6.2.10. Over the space A = ~3 a bilinear form with the matrix 

G H) 
relative to the standard basis is given. Find the right orthogonal comple
ment to the set {(1, 1, 0), (0, 1, 2)}. 

6.2.11. Over the space A = ~3 a bilinear form with the matrix 

relative to the standard basis is given. Find the left orthogonal comple
ment to the set {(1, 1, 0), (0, 1, 2)}. 

6.2.12. Find an orthogonal basis of the space A = Q3 with a bilinear form given 
relative to the standard basis by the matrix 

( ; -i -~) . 
-1 0 0 

6.2.13. Find an orthogonal basis of the space A = Q3 with a bilinear form given 
relative to the standard basis by the matrix 

( i ~ -;) . 
-1 2 -1 

6.2.14. Over the space A = ~3 a bilinear form with the matrix 

(-~ ~ ;) 
-3 -2 -1 

relative to the standard basis is given. Do the elements (1, 1, 1) and 
(2, 3, 0) generate a hyperbolic plane? 

6.2.15. Over the space A = Q3 an alternating form with the matrix 

(-~ ~ ~) 
-1 -3 0 

relative to the standard basis is given. Decompose the space A into a 
direct sum of a hyperbolic plane and the kernel of the form. 
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6.2.16. Over the space A = Q4 a bilinear form with the matrix 

(-~ 5 7 0) -1 0 3 
0 2 -1 
3 -1 6 

relative to the standard basis is given. Find an orthogonal basis of the 
space. 

6.2.17. Over the space A= F4 , where F = Zj3Z, a bilinear form with the 
matrix 

relative to the standard basis is given. Find an orthogonal basis of the 
space. 

6.3 SYMMETRIC FORMS OVER lR 

In this section, we consider symmetric bilinear forms over the field lR of real num
bers. Let A be a finite-dimensional vector space over JR, on which a symmetric 
bilinear form <t> is given. As we proved in Corollary 6.2.18, the space A has an 
orthogonal basis, say {a1, ••• , an} and <t>(a j, a j) is a real number for 1 :::: j :::: n. 
Hence, we have the three possibilities; namely, <t>(a j, a j) > 0, <t>(a j, a j) < 0, or 
<t> (a j, a j) = 0. The number of elements of the basis satisfying this latter equation 
is clearly equal to the dimension of the kernel of the form, so it is the same for 
every orthogonal basis. We now show that the number of elements a j for which 
<t> (a j, a j) > 0 is also an invariant of the space. 

6.3.1. Proposition. Let A be a vector space over lR and let <t> be a nonsingular 
symmetric bilinear form on A. Let {a,, ... , an} and {c,, ... , Cn} be two orthogonal 
basesofA.Letp={j 11 :::;} ::;nand<t>(aj,aj)>O}andletp, ={} 11 :::;} :::: 
nand <t>(cj, Cj) > 0}. Then IPI = lp!l. 

Proof. By relabeling the basis vectors, if necessary, we can suppose that p = 
{1, ... , k} and Pi = {I, ... , t}. Consider the subset {a,, ... , ak. Cr+i· ... , cnl· We 
shall show that it is linearly independent. To this end, let a,, ... , ak, Yt+l, ... , Yn 
be real numbers such that a, a, + · · · + akak + Yr+!Ct+l + · · · + YnCn = 0. It fol
lows that Yt+!Ct+l + · · · + YnCn = -a,a, - · · ·- akak. Then 

<l>(Yt+JCt+l + · · · + YnCn, Yt+!Ct+l + · · · + YnCn) 

= <t>( -a,a, - · · ·- akak. -a,a, - · · ·- akak). 
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Since both bases are orthogonal, 

and 

so that 

<f>(Yr+JCt+l + · · · + YnCn, Yt+JCt+l + · · · + YnCn) 

= Yt~] <f>(cr+l· Cr+d + ... + r1'<t>Ccn, Cn) 

<I>(-aiai- · · ·- akak, -a1a1- · · ·- akak) 

= a;<t>(ai, aJ) + · · · + a~<f>(ak, ak), 

a;<t>(aJ, a1) + · · · + a~<f>(ak. ak) 

= Yt~] <f>(cr+l, Cr+d + ... + r1'<t>Ccn, Cn)· 
(6.4) 

However, <f>(a1, a1) > 0, for 1 .::; j .::; k and <f>(c1, c1) < 0, for t + 1 S j S n. 

Thus Equation 6.4 shows that 

a;= ... = a~= Yr~I = ... = Y1' = 0, 

which implies that a1 = · · · = ak = Yr+I = · · · = Yn = 0. Proposition 4.2.7 
shows that the subset {a 1 , ••• , ak. c1+ 1 , ••• , c n} is linearly independent and 
Theorem 4.2.11 implies that this subset can be extended to a basis of the entire 
space. However, by Theorem 4.2.14, each basis of A has exactly n elements 
and it follows that l{aJ, ... , ak. cr+l• ... , cn}l = k + n- t S n. Then k- t S 0 
and hence, k .::; t. 

Next, we consider the subset {ak+I, ... , an, CJ, ... , cr} and proceed as above. 
Those arguments show that this subset is also linearly independent and that t .::; k. 
Consequently, k = t. 

6.3.2. Theorem (Sylvester). Let A be a vector space over ffi. and let <I> be a sym

metric bilinear form on A. Let {a1, ••• , an} and {c1, ••• , Cn} be two orthogonal 

bases of A. Let 

p = {j I 1 S j S nand <f>(aJ, aJ) > 0}, PI = {j I 1 S j S n 

and <I> ( c 1 , c 1) > 0}; 

v = {j I 1 .:::: j S n and <I> (a i, a 1) < 0}, VJ = {j I 1 S j S n 

and <f>(c1, c1) < 0}; 

; = {j I 1 S j S nand <f>(aJ, aJ) = 0}, ;I = {j I 1 S j.:::: n 

and <f>(c 1, c1) = 0}. 
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Proof. By relabeling the basis vectors, if necessary, we may suppose that 
p={l, ... ,k}, PJ={l, ... ,t), v={k+l, ... ,r), VJ={t+l, ... ,s}, 
~ = {r + 1, ... , n), and ~ 1 = {s + 1, ... , n). As we mentioned above, the 
number of basis elements a j for which <t> (a j, a j) = 0 is equal to the dimension 
of the kernel of the form, so n - r = n - s and hence r = s. The result now 
follows for nonsingular forms using Proposition 6.3.1. 

Let K denote the kernel of the form <t> and consider the quotient space A I K. 
Define a mapping <t>*: A/ K x A/ K---+ lR by <t>*(x + K, y + K) = <t>(x, y). 
We show first that this mapping is well defined, which here means that it does not 
depend on the choice of cosets representatives. Let x 1, y1 be elements such that 
XI + K = x + K and YI + K = y + K. Then, XJ = x + z 1, YI = y + Z2 where 
ZJ, Z2 E K and we have 

<l>(XJ, YI) = <t>(x + ZJ, y + Z2) = <t>(x, y) + <t>(x, Z2) + <l>(ZJ, y) + <l>(ZJ, Z2) 

= <t>(x, y). 

This shows that <t>* is a well-defined mapping. We next show that <t>* is bilinear. 
We have 

<t>*(x + K + u + K, y + K) = <t>*(x + u + K, y + K) = <t>(x + u, y) 

= <t>(x, y) + <t>(u, y) 

= <t>*(x + K, y + K) + <t>*(u + K, y + K), 

and similarly 

<t>*(x + K, u + K + y + K) = <t>*(x + K, u + K) + <t>*(x + K, y + K). 

Furthermore, if a E lR then 

<t>*(a(x + K), y + K) = <t>*(ax + K, y + K) = <t>(ax, y) = a<t>(x, y) 

= a<t>*(x + K, y + K) 

and, similarly, 

<t>*(x, a(y + K)) = a<t>*(x + K, y + K). 

This shows that <t>* is a bilinear form. Furthermore, 

<t>*(x + K, y + K) = <t>(x, y) = <t>(y, x) = <t>*(y + K, x + K), 

so that <t>* is a symmetric form. 
We next show that {a1 + K, ... , a,+ K) is a basis of A/ K. Let a 1, ••• , a, 

be real numbers such that 

a 1(a 1 + K) + ··· +a,(a, + K) = 0+ K. 
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Since 

we deduce that a1a1 +···+a, a, + K = 0 + K. Hence, there exist real numbers 
ar+l, ... , an such that 

or 

Since the elements a1, ... , an are linearly independent, Proposition 4.2.7 implies 
that 

a1 = · · · = a, = ar+I = · · · = an = 0. 

Applying Proposition 4.2.7 again, we see that the cosets a1 + K, ... , a,+ K are 
linearly independent. Now let x = LI::U:::n ~1 a 1 be an arbitrary element of A, 
where ~J E ~.for 1 s j s n. Then, since a1 + K = K for j E {r + 1, ... , n}, 
we have 

which proves that the cosets a1 + K, ... , a,+ K form a basis of the quotient 
space A/ K. Clearly this basis is orthogonal, by definition of <I>*. 

Employing the same arguments, we see that the cosets b1 + K, ... , bs + K 
also form an orthogonal basis of the quotient space A/ K. 

Finally, 

<l>*(a1 + K, a1 + K) = <l>(a1, a1) > 0 for j E {1, ... , k}, 

<l>*(a1 + K, aj + K) = <l>(aj, aJ) < 0 for j E {k + 1, ... , r}, 

<l>*(bj + K, b1 + K) = <l>(b1, b1) > 0 for j E {1, ... , t}, 

<l>*(b1 + K, b1 + K) = <l>(b1, b1) < 0 for j E {t + 1, ... , r}. 

This shows that <I>* is nonsingular and Proposition 6.3.1 implies that k = t 
and this now proves the result. 

6.3.3. Definition. Let A be a vector space over ~ and let <I> be a symmetric 
bilinear form on A. Let {a1, ... , an} be an orthogonal basis of A. Set 

p = {j I 1 s j s n and <l>(a 1, a 1) > 0}, 

v = {j I 1 s j s n and <l>(a 1, a J) < 0}, 

~ = {j I 1 s j s nand <l>(a1, a1) = 0}. 
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By Theorem 6.3.2, I Pl. I vi, and I~ I are invariants ofcl>. The number IPI = pi(ct>) 
is called the positive index of inertia of 4> and the number I vi = ni(ct>) is called 
the negative index of inertia of 4>. 

A form 4> is called positive definite (respectively negative definite) if pi(ct>) = 
dimF(A) (respectively, ni(ct>) = dimF(A)). 

6.3.4. Corollary. Let A be a vector space over lR and let 4> be a symmetric 
bilinear form on A. Then, A has an orthogonal direct decomposition A = A(+l EB 
A(-) EB K where K is the kernel of 4>, the restriction of 4> to A<+l is a positive 
definite form, and the restriction of 4> to A<-l is a negative definite form. In all 
such decompositions the dimensions of A<+l and A(-) are invariants. 

Proof. Let { a1, ••• , an} be an orthogonal basis of A. As above, we can suppose 
that 4>(a1, aj) > 0 whenever I ::; j::; k, 4>(a1, a1) < 0 whenever k +I ::; j::; r, 
and ct>(a1, a1) = 0 whenever r +I ::; j::; n. Let A(+l denote the subspace 
generated by a1, ••• , ako let A(-) denote the subspace generated by ak+ 1, ••• , a, 
and let K be the subspace, generated by a,+ 1, ..• , an. The result IS now 
immediate. 

Let {a1, .•• , an} be an orthogonal basis of A. Assume that ct>(a 1, a 1) > 0 
whenever I ::; j::; k, 4>(a1, aj) < 0 whenever k +I ::; j::; r, and 4>(a1, aj) = 0 
whenever r +I ::; j ::; n. Put ct>(aj, aj) = aj, for I ::; j ::; n. Then aj > 0 for 
I ::; j ::; k, so ylaj is a real number. Further, a j < 0 for k + I ::; j ::; r, so .;=a} 
is a real number. Now let 

1 
c j = /i'V;a j whenever I ::; j ::; k, 

vai 

1 
Cj = --aj whenever k +I ::; j ::; r, and .;=a; 
Cj = aj whenever r +I::; j::; n. 

Then ct>(c · c-)= 4>((-1-a · - 1-a ·) = - 1- • - 1- • ct>(a · a ) =__!__·a = I 
' 1' 1 .;aT. 1' val 1 val val 1• 1 C1j 1 

whenever I ::; j ::; k and, similarly, 

4>(c1, Cj) = -1 whenever k +I::; j::; rand 

ct>(cj, Cj) = 0 whenever r +I ::; j ::; n. 

6.3.5. Definition. Let A be a vector space over lR and let 4> be a symmetric 
bilinear form on A. An orthogonal basis {a1, ••• , an} of A is called orthonormal, 
if ct>(a j, a j) is equal to one of the numbers 0, I or -I. 

A consequence of the work above is the following fact. 

6.3.6. Corollary. Let A be a vector space over lR and let 4> be a symmetric 
bilinear form on A. Then A has an orthonormal basis. 



BILINEAR FORMS 255 

Using an orthonormal basis allows us to write a symmetric bilinear form rather 
simply. To see this, let {a1, ••• , an} be an orthonormal basis of A. Assume that 
<l>(aj, aj) =I whenever IS j S k, <l>(aj, aj) = -1 whenever k + 1 S j S r, 
and <l>(aj, aj) = 0 whenever r + 1 s j s n. Let x, y be arbitrary elements of A, 
and let x = LI::;j::;n ~jaj andy= LI::;j::;n rJjaj be their decompositions relative 
to the basis {a 1 , ... , an}. Then it is easy to see that 

<l>(x, y) = ~1'71 + · · · + ~krJk- ~k+l'1k+I · · ·- ~rrJr, 

where ~j, rJk E R This is sometimes called the canonical form of the symmetric 
bilinear form <I>. 

The usual scalar product in JR;3 gives us an example of a positive definite 
symmetric form and the following theorem provides us with conditions for a 
symmetric form to be positive definite. 

6.3.7. Proposition. Let A be a vector space over JR; and let <I> be a symmetric 
bilinear form on A. Then, <I> is positive definite if and only if <I> (x, x) > 0 for each 
nonzero element x of A. 

Proof. Suppose that <I> is posttlve definite. Let {a1, •.. , an} be an orthog
onal basis of A. Then aj = <l>(aj, aj) > 0 for all j, where 1 S j s n. If 
x = LI::;j::;n ~jaj is an arbitrary element of A, then 

Conversely, assume that <l>(x, x) > 0 for each nonzero element x. Let 
{a 1 , ••• , an} be an orthogonal basis of A. Then, our assumption implies that 
<l>(aj, aj) > 0 for all j, where I S j s n. This means that pi( <I>)= n = 
dimF(A), so that <I> is positive definite. 

6.3.8. Definition. Let F be afield and letS= [aj 1] E Mn(F). The minors 

a 11 , minor{l,2; 1,2}, minor{l,2,3; 1,2,3}, ... , 

minor{ I, 2, ... , k; 1, 2, ... , k}, ... , minor{1, 2, ... , n; 1, 2, ... , n} 

are called the principal minors of the matrix S. 

6.3.9. Theorem (Sylvester). Let A be a vector space over JR; and let <I> be a sym
metric bilinear form on A. If <I> is positive definite, then all principal minors of 
the matrix of <I> relative to an arbitrary basis are positive. Conversely, if there is 
a basis of A such that all principal minors of the matrix of <I> relative to this basis 
are positive, then the fonn <I> is positive definite. 

Proof. Suppose that <I> is positive definite and let {a I, ... , an} be an arbitrary 
basis of A. We prove that the principal minors are positive by induction on n. 
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If n = 1, then the matrix of <I> relative to the basis {ad has only one coefficient 
<l>(a1, a1) which is positive, since <I> is positive definite. Since this is the only 
principal minor, the result follows for n = 1. 

Suppose now that n > 1 and that our assertion has been proved for spaces of 
dimension less than n. Let S = [a11 ] E Mn (I~) denote the matrix of <I> relative 
to the basis {a1, ••• , an}. Let B denote the subspace generated by a1, ... , an-1· 

Then, the matrix of the restriction of <I> to B relative to the basis {a1, ... , an-d is 

( 

all 

az1 

an~1.1 an-1,2 

al,n-1 ) 
az,n-1 

an-~,n-1 . 

By Proposition 6.3.7, <l>(x, x) > 0 for each nonzero element x EA. In particular, 
this is valid for each element x E B and, by Proposition 6.3.7, the restriction 
of <I> to B is positive definite. The induction hypothesis shows that all princi
pal minors of the matrix of this restriction relative to the basis {a1, ... , an-d 

are positive. However, all these principal minors are principal minors of the 
matrix S. We still need to prove that the last principal minor of S is positive, 
which means that we need to prove that det(S) > 0. Theorem 6.2.22 shows that 
A has an orthogonal basis {c1, ... , en} and we let <l>(c1, c1) = y1, for 1 S j S n. 
Since <I> is positive definite, YJ > 0 for all j E { 1, ... , n}. The matrix L of 
<I> relative to {cl, ... , en} is diagonal, the diagonal entries being Yl, yz, ... , Yn 
and, by Proposition 2.3.11, det(L) = Yl Yz ... Yn > 0. Theorem 6.1.8 shows that 
L = T 1 ST where T is the transition matrix from the first basis to the second. By 
Theorem 2.5.1, det(L) = det(T1)det(S)det(T), whereas Proposition 2.3.3 shows 
that det(T 1

) = det(T). Therefore, det(L) = det(T) 2det(S) and since det(L) > 0, 
we deduce that det(S) > 0. This completes the first part of the proof. 

We now assume that the space A has a basis {a1, ••• , an} such that all principal 
minors of the matrix S of <I> relative to this basis are positive. Let S = [aJrl E 

Mn (ffi.). We again use induction on n to prove that <I> is positive definite. If 
n = 1, then the matrix of <I> relative to the basis {ad has only one coefficient 
a11, which is its only principal minor. By our assumption, a11 = <I> (a1, a1) > 0, 
which means that <I> is positive definite so the result follows for n = 1. 

Suppose now that n > 1 and that we have proved our assertion for spaces 
having dimensions less than n. Let B denote the subspace generated by the 
elements a 1, ... , an-l· Then, the matrix of the restriction of <I> on B relative to 
the basis {a1, ... , an-d is 

( 

all 

az1 

an~1,1 

al,n-1 ) 
az,n-1 

an-~,n-1 . 
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Clearly, the principal minors of this matrix are also principal minors of the matrix 
S and hence, all principal minors of this matrix are positive. By the induction 
hypothesis, it follows that the restriction of <I> to the subspace B is positive 
definite. Theorem 6.2.22 shows that B has an orthogonal basis {c1, ..• , Cn-d 
and we let <l>(cj, Cj) = yj, for 1 ::::; j::::; n- 1. Since the restriction of <I> to B is 
positive definite, Yj > 0 for all j E { 1, ... , n - 1}. 

The last principal minor det(S) is positive, so it is nonzero. Hence <I> is non
singular. The subspace B is also nonsingular, so Theorem 6.2.14 implies that A = 
B EB BJ... Then, by Proposition 6.2.11, dimF(BJ..) = dimF(A)- dimF(B) = n
(n - 1) = 1. Let Cn be a nonzero element of BJ.. so that {en} is a basis of BJ... 
From the choice of Cn we have <l>(cj, en)= 0 for all j E {1, ... , n- 1} and since 
{c1, ... , Cn-l} is an orthogonal basis of B, {CJ, ... , en} is an orthogonal basis of 
A. We noted above that <l>(cj, Cj) > 0 for all j E {1, ... , n- 1} and it remains 
to show that <l>(cn, en) = Yn > 0, since this means that pi( <I>)= n from which 
it follows that <I> is positive definite. To see that Yn > 0, note that the matrix 
L of <I> relative to the basis { c1, ... , en} is diagonal, the diagonal entries being 
YI, )12, ••• , Yn· By Proposition 2.3.11, det(L) = YIY2 . .. Yn· Also, Theorem 6.1.8 
implies that L = T 1 ST, where T is the transition matrix from the first basis to 
the second one. As above, we obtain det(L) = det(T)2det(S). The last prin
cipal minor of S is det(S), so our conditions imply that det(S) > 0. Hence, 
det( L) = YI Jl2 ... Yn > 0 and Yj > 0 for all j E { 1, ... , n - 1} so that Yn > 0, as 
required. 

EXERCISE SET 6.3 

6.3.1. Over the space A = Q4 a bilinear form with the matrix 

( 
1 2 -1 0) 
2 -1 0 1 

-1 0 0 2 
0 1 2 -1 

relative to the standard basis is given. Find an orthonormal basis of the 
space. 

6.3.2. Over the space A = Q4 a bilinear form with the matrix 

( -! 
1 -1 2) 0 2 4 
2 -1 3 
4 3 0 

relative to the standard basis is given. Find an orthonormal basis of the 
space. 
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6.3.3. Over the space A = Q3 a bilinear form with the matrix 

relative to the standard basis is given. Find an orthonormal basis of the 
space. 

6.3.4. Over the space A = Q3 a bilinear form with the matrix 

( 3 0 -1) 
-~ 2 -i 

relative to the standard basis is given. Find an orthonormal basis of the 
space. 

6.3.5. Prove that a symmetric bilinear form over ffi. is negative definite if and 
only if all principal minors of this form in some basis have alternating 
signs as their order grows and the first minor is negative. 

6.3.6. Let <I> be a nonsingular bilinear symmetric form over ffi. whose negative 
inertial index is I, let a be an element with the property that <I> (a, a) < 0 
and let B = ffi.a. Prove that the reduction of this form over the space B 
is a nonsingular form. 

6.3.7. Change the form f(x) = xf- 2xi- 2x~- 4x,xz + 4x,x3 + 8xzx3 to its 
canonical form over the field of rational numbers. 

6.3.8. Change the form f(x) = xf +xi+ 3x~ + 4x,xz + 2x1x3 + 2x2x3 to its 
canonical form over the field of rational numbers. 

6.3.9. Change the form f(x) = x 1xz + x1x3 + x1x4 + xzx3 + xzx4 + x3x4 to its 
canonical form over the field of rational numbers. 

6.3.10. Change the form f(x) = xf- 3x~- 2x,xz + 2x1x3- 6xzx3 to its 
canonical form over the field of real numbers. 

6.3.11. Change the form f(x) = xf + Sxi- 4x~ + 2x,xz- 4XJX3 to its canon
ical form over the field of real numbers. 

6.3.12. Change the form f(x) = 2x,xz + 2x3x4 to its canonical form over the 
field of rational numbers. 

6.3.13. Change the form f(x) = 2x,xz + 2x,x3- 2x1x4- 2xzx3 + 2xzx4 + 
2x3x4 to its canonical form over the field of rational numbers. 

6.3.14. Change the form f(x) = ixf +xi+ x~ + xl + 2xzx4 to its canonical 
form over the field of rational numbers. 
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6.3.15. Find all values of the parameter A for which the quadratic form f (x) = 
5xf +xi+ Axj + 4XJX2- lx1x3 - lx2x3 is positive definite. 

6.3.16. Find all values of the parameter A for which the quadratic form f (x) = 
xf + 4xi + xj + 2AXJX2 + l0x1x3 + 6x2x3 is positive definite. 

6.4 EUCLIDEAN SPACES 

In previous sections we considered bilinear forms as a generalization of the 
concept of a scalar product defined on IR:.3. Although we considered different 
types of bilinear forms and their properties and characteristics, we did not cover 
some important metric characteristics of a space such as length, angle, area, 
and so on. The existence of a scalar product allows us to introduce the geometric 
characteristics mentioned above. In three dimensional geometric space, the scalar 
product is often introduced in calculus courses to define the length of a vector 
and to find angles between vectors. We can also proceed in the reverse direction 
and define the concepts of length and angles which then allow us to define the 
scalar product. In this section, we first extend the concept of a scalar product to 
arbitrary vector spaces over R 

6.4.1. Definition. Let A be a vector space over ffi.. We say that A is a Euclidean 
space if there is a mapping(,) : A x A ---+ ffi. satisfying the following properties: 

(E1) (x+y,z)=(x,z)+(y,z); 

(E 2) (ax, z) = a(x, z); 

(E 3) (x, y) = (y, x); 

(E 4) if x =f. OA, then (x, x) > 0. 

Also (x, y) is called the scalar or inner product of the elements x, y E A. 

If we write <I> (x, y) = (x, y), then <I> is a positive definite, symmetric bilinear 
form defined on A. Thus, a Euclidean space is nothing more than a real vector 
space on which a positive definite, symmetric bilinear form is defined, using 
Proposition 6.3.7. 

The main example of a Euclidean space is the space IR:.3 with the usual scalar 
product (x, y) = I x II y I cos a where a is the angle between the vectors x and y. 
The following proposition shows that an arbitrary finite-dimensional vector space 
over ffi. can always be made into a Euclidean space. 

6.4.2. Proposition. Let A be a finite-dimensional vector space over ffi.. Then, 
there is a scalar product defined on A such that A is Euclidean. 

Proof. Let {aJ, ... , an} be an arbitrary basis of A. In Corollary 6.1.7, we showed 
how to define a bilinear form on A using an arbitrary matrix S relative to 
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this basis. Let S be the identity matrix I in that construction. By Corollary 
6.1.7, the mapping (,) :Ax A---+~ defined by (x, y) = Lt::;j::;n ~jT/j where 
x = Lt::;j::;n ~jaj and y = Lt::;t::;n T}1a1 , is a bilinear form on A. Since I is a 
symmetric matrix, Proposition 6.1.11 implies that this form is symmetric. Finally, 
Theorem 6.3.9 shows that this form is positive definite. Hence A is Euclidean, 
by our remarks above. 

As another example, let Cra.b] be the set of all continuous real functions defined 
on a closed interval [a, b]. As we discussed in Section 4.1, Cra.bl is a subspace 
of ~[a,hl. However, this vector space is not finite dimensional. For every pair of 
functions x(t), y(t) E Cra.b] we put 

(x(t), y(t)) = 1b x(t)y(t) dt. 

By properties of the definite integral, (,) is a symmetric bilinear form on 
Cra,bl· If x(t) is a nonzero continuous function, then 

(x(t), x(t)) = 1b x(t)2 dt. 

We recall that the definite integral of a continuous nonnegative, nonzero function 
is positive. Hence, this bilinear form is positive definite and therefore, the vector 
space C[a,bJ is an infinite-dimensional Euclidean space. 

We note the following useful property of orthogonal subsets. 

6.4.3. Proposition. Let A be a Euclidean space and let {at, ... , am} be an 
orthogonal subset of nonzero elements. Then {at, ... , am} is linearly independent. 

Proof. Let at, ... , am be real numbers such that at at + · · · + am am = 0 A. Then 

0 = (OA, aj) =(at at+···+ amam, aj) 

= at(a1, aj) + · · · + aj_t(aj-t, aj) + aj (aj. aj) + aj+t(aj+t• aj) 

+ .. · + am(am, aj) = aj(aj, aj), for 1 :S j :Sm. 

Since aj =f. OA, (aj. aj) > 0 and so aj = 0, for 1 ::; j ::; m. Proposition 4.2.7 
shows that the elements {at, ... , am} are linearly independent. 

6.4.4. Definition. Let A be a Euclidean space over ~ and let x be an element 
of A. The number +.J\X,XI is called the norm (or the length) of x and will be 
denoted by llxll. 

We note that llx II 2: 0 and llx II = 0 if and only if x = OA. If a is an arbitrary 
real number, we have 

llaxll = j(ax,ax) = )a2 (x,x) = lal ~ = lalllxll. 
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6.4.5. Proposition (The Cauchy-Bunyakovsky-Schwarz Inequality). Let A be a 
Euclidean space and let x, y be arbitrary elements of A. Then, l(x, y)l ::; llxllllyll 
and I (x, y) I = llx II II y II if and only if x, y are linearly dependent. 

Proof. We consider the scalar product (x + Ay, x + Ay), where A E R We have 

(x + Ay, x + Ay) = (x, x) + 2A(X, y) +A 2 (y, y). 

Since (x + Ay, x + Ay) ::=: 0, the latter quadratic polynomial in A is always non
negative and this implies that its discriminant is nonpositive. Thus, using the 
quadratic formula, 

(x,y) 2
- (x,x)(y,y)::;O. 

It follows that 

l(x, y)l:::: ~/(y,)0 or l(x, y)l:::: llxllllyll. 

If x = AY for some real number A, then 

l(x, y)l = I(Ay, y)l = IAII(y, y)l = 1AIIIyll 2 = IAIIIyllllyll 

= CIAIIIyll) llyll = IIAyllllyll = llxllllyll. 

If x, y are linearly independent, then x + AY is nonzero for all A, so that 
(x + Ay, x + Ay) > 0 and hence l(x, y)l < llxllllyll. 

6.4.6. Corollary (The Triangle Inequality). Let A be a Euclidean space and let 
x, y be arbitrary elements of A. Then llx + yll :::: llxll + llyll, and llx + yll = 
llxll + llyll if and only if y =Ax where A::=: 0. 

Proof. We have 

llx + yll 2 = (x + y,x + y) = (x,x) +2(x, y) + (y, y). 

By Proposition 6.4.5, l(x, y)l :::: llxllllyll and also (x, x) = llxll. So we obtain 

and hence llx + yll :::: llxll + llyll. 
Again by Proposition 6.4.5, (x, y) = llxllllyll if and only if y =Ax and A ::=: 0, 

so only in this case we have llx + yll = llxll + llyll. 

We next describe the Gram-Schmidt process, which allows us to transform 
an arbitrary linearly independent subset {a!, ... , am} of a Euclidean space into 
an orthogonal set {bJ, ... , bm} of nonzero elements. 

Put b1 = a1 and bz = ~1b1 + az, where ~ is some real number to be deter
mined. Since the elements b1 (=a!) and az are linearly independent, bz is nonzero 



262 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

for all ~ 1. We choose the number~ 1 such that b2 and b1 are orthogonal as follows: 

Since (b1, b1) > 0, we deduce that ~~ = (b~~;,~)). 
Now suppose that we have inductively constructed the orthogonal subset 

{hi, ... , b1} of nonzero elements and that for every j E { 1, ... , t} the 
element b j is a linear combination of a 1, ... , a j. This will be valid for 
bt+I if we define b1+I = ~1b1 + · · · + ~1 b1 + a 1+I· Then the element b1+I is 
nonzero, because ~1b1+···+~1b1 E Le({bJ, ... ,b1})=Le({aJ, ... ,a1 }) and 
a 1+1 ¢. Le({a1, ... , at}). The coefficients ~ 1 , ... , ~~ are chosen to satisfy the 
condition that b1+1 must be orthogonal to all vectors b1 , ... , b1 so that 

0 = (bj, bt+I) = (bj, ~1b1 + · · · + ~tbt +at+!) 

= ~~ (bj, b1) + · · · + ~1 (bj, b1) + (bj, a 1+J), for 1 :::=: j :::=: t. 

Since the subset {b1, •.• , btl is orthogonal, 

It follows that ~j = -(bj, a1+1)/(bj, bj), for 1 :::=: j :::=: t. Thus, in general, we 
have 

Continuing this process, we construct the orthogonal subset {hi, ... , bm} of 
nonzero elements. 

Employing this process to an arbitrary basis of a finite-dimensional Euclidean 
space of dimension n, we obtain an orthogonal subset consisting of n nonzero 
elements. Proposition 6.4.3 shows that this subset is linearly independent and it 
is therefore, a basis of the space. Thus, in this way we can obtain an orthogonal 
basis of a Euclidean space. Applying the remark related to the first step of the 
process of orthogonalization and taking into account that every nonzero element 
can be included in some basis of the space, we deduce that every nonzero element 
of a finite-dimensional Euclidean space belongs to some orthogonal basis. 

As in Section 6.3, we can normalize an orthogonal basis, so that the vectors 
have norm 1. Let {a 1 , ••• , an} be an orthogonal basis. Put c j = a j a j where a j = 
~· for 1 :::=: j :::=: n. Then, we have (cj, ck) = 0 whenever j i= k, and 

(cj, Cj) = 1, for 1 :::=: j, k :::=: n. This gives us an orthonormal basis. Hence we 
have proved. 

6.4.7. Theorem. Let A be afinite-dimensional Euclidean space. Then A has an 
orthonormal basis {cJ, ... , en}. If x = Lisjsn ~jaj andy= Lisjsn l]jaj are 
arbitrary elements of A, where ~j, l]j E R then (x, y) = ~1'71 + · · · + ~n'1n· 
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The above formula will be familiar as the usual dot product defined on ffi.3 

when we use the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. 

6.4.8. Corollary. Let a,, ... , an, {3,, ... , f3n be real numbers. Then 

Proof. Let A be a finite-dimensional Euclidean space and choose an orthonormal 
basis {c,, ... , Cn} of A. Let x = Li:Sj:Sn a jaj and y = Li:Sj:Sn {3jaj, where 
aj, {3j E ffi., for 1 s j s n. By Theorem 6.4.7 

(x, y) = L aj{3j. llxll = ~ = Jcaf + ... +a~), 
I :Sj :Sn 

By Proposition 6.4.5, (x, y) s llxiiiiYII; this implies the required inequality. 

There are various standard mappings defined on Euclidean spaces; those pre
serving the scalar product are now the ones of interest since these are the ones 
which preserve length and angle. 

6.4.9. Definition. Let A, V be Euclidean spaces. A linear mapping f : A ---+ V 
is said to be metric if (f (x), f (y)) = (x, y) for all elements x, y E A. A metric 
bijective mapping is called an isometry. 

6.4.10. Theorem. Let A, V be finite-dimensional Euclidean spaces. Then, there 
exists an isometry from A to V if and only if dimiR (A) = dim!R (V). 

Proof. Assume that f : A ---+ V is an isometry. Then, f is an isomorphism 
from A to V and Corollary 5.1.9 shows that dimJR(A) = dimiR(V). 

Conversely, assume that dimJR(A) = dimJR(V). By Theorem 6.4.7, the spaces 
A and V have orthonormal bases, say {c,, ... , cn} and {u 1, ••• , un} respectively. 
Let x = L.: 1:Sj:Sn ~jCj, be an arbitrary element of A, where ~j E ffi., for 1 s j s n. 
Define a mapping f: A---+ V by f(x) = L.: 1:Shn ~juj. By Proposition 5.1.12, 
f is a linear mapping. As in the proof of Theorem 5.1.13, we can show that f 
is a linear isomorphism. If y = L 1 :Sj :Sn 11 ja j is another element of A then, by 
Theorem 6.4.7, (x, y) = ~1111 + · · · + ~n'1n· We have f(y) = Li:Sj:Sn rJjUj and 
again using Theorem 6.4.7 we obtain 

(f(x), f(y)) = ~1111 + · · · + ~nl1n = (x, y). 

Thus f is an isometry. 
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6.4.11. Definition. Let A be a Euclidean space. A metric linear transformation 
f of A is called orthogonal. 

Here are some characterizations of orthogonal transformations. 

6.4.12. Proposition. Let A be a finite-dimensional Euclidean space and let f be 
a linear transformation of A. 

(i) Iff is an orthogonal transformation of A and {c1, ... , cn} is an arbitrary 
orthonormal basis of A, then {f(ci), ... , f(cn)} is an orthonormal basis of 
A. In particular, f is an automorphism of A. 

(ii) Suppose that A has an orthonormal basis {c1, ... , Cn} such that 
{f(c1), ... , f(cn)} is also an orthonormal basis of A. Then f and f- 1 are 
orthogonal transformations. 

(iii) If S is the matrix of an orthogonal transformation f relative to an arbitrary 
orthonormal basis {c1, ... , Cn}, then Sf = s-1• 

(iv) Iff, g are orthogonal transformations of A, then fog is an orthogonal trans
formation. 

Proof. 

(i) We have (f(c1), f(c1)) = (c1, c1) = 1 for all j E {1, ... , n} and (f(cj). 
f(q)) = (c1, q) = 0 whenever j =!= k and j, k E {1, ... , n}. It follows that 
{f(ci), ... , f(cn)} is an orthonormal basis of A. In particular, lmf =A and 
Proposition 5.2.14 proves that f is an automorphism. 

(ii) Let x = L:1::oJ:=on ~JCJ and y = L: 1::oJ:=on 17JCJ be arbitrary elements of A, 

where ~J. 17J E ffi., for I :::; j :::= n. Since f is linear, f(x) = L 1::oJ:=on ~Jf(cj) 
and f(y) = L 1::oJ:=on 17Ji(cj). By Theorem 6.4.7, (x, y) = ~1111 + · · · + ~n17n and 
(f(x), f(y)) = ~1171 + · · · + ~n17n• so that (f(x), f(y)) = (x, y). This shows that 
f is an orthogonal transformation. 

Since f- 1 transforms the orthonormal basis {f(ci), ... , f(cn)} into the 
orthonormal basis {c1, ... , cn}, f- 1 is also an orthogonal transformation. 

(iii) Let S = [aJtl E Mn(IR:) denote the matrix of f relative to the basis 
{c1, ... , cn}. By (i), the subset {f(ci), ... , f(cn)} is an orthonormal basis of 
A. Then, we can consider S as the transition matrix from the basis {c1, ••• , cn} 
to the basis {f(c1), ... , f(cn)}. Clearly, in every orthonormal basis the matrix of 
our bilinear form (,) is E. Corollary 5.2.12 gives the equation I = st IS= st S, 
which implies that Sf = s- 1• 

Since assertion (iv) is straightforward, the result follows. 

6.4.13. Definition. Let S E Mn (ffi.). The matrix S is called orthogonal if 
st = s-1. 

The following proposition provides us with some basic properties of 
orthogonal matrices. 

6.4.14. Proposition. LetS= [ajt] E Mn(ffi.) be an orthogonal matrix. Then the 
following holds true: 
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(i) Li:::;r::::n ajrakr = OJb Li:::;r::::n a1prk = OJk.for 1 :S j, k :S n. 
(ii) det(S) = ±1. 

(iii) s-J is also an orthogonal matrix. 

(iv) If R is also orthogonal then SR is orthogonal. 

(v) Let A be a Euclidean space of dimension n. Suppose that {a,, ... , an} and 
{c1, ••• , Cn} are two orthonormal bases of A. If T is the transition matrix 
from {a,, ... , an} to {c,, ... , Cn}, then Tis orthogonal; 

(vi) Let A be a Euclidean space of dimension n and let f be a linear trans
formation of A. Suppose that {a,, ... , an} is an orthonormal basis of A. If 
S is the matrix of f relative to this basis, then f is an orthogonal linear 
transformation of A. 

Proof. 

(i) follows from the definition of orthogonal matrix. 
(ii) We have SS1 =I. Theorem 2.5.1 implies that 1 = det(/) = det(S)det(S1

). 

By Proposition 2.3.3, det(S) = det(S1), so det(S) 2 = 1. It follows that 
det(S) = ±1. 

(iii) We have (S- 1/ = (S1
/ = S = (S- 1)-1• 

(iv) By Theorem 2.1.10, we obtain (SR) 1 = R1S1 = R-'s- 1 = (SR)- 1• Hence 
S R is orthogonal. 

(v) By Proposition 5.1.12, there exists a linear transformation f of A such 
that f(a1) = c1, for 1 ::<:= j ::<:= n. By definition, the matrix off relative to 
the basis {at, ... , an} is T. By Proposition 6.4.12(ii), f is an orthogonal 
transformation. Again using Proposition 6.4.12(iii), we see that T is an 
orthogonal matrix. 

(vi) We have 

(f(aj), f(am)) = ( L arjar. L akmak) = L L atjakm(ar, ak) 
i:::;t:::;n I:::;k:::;n i:::;t:::;n i:::;k:::;n 

using (i). Therefore, the set {f(aJ), ... , f(an)} is an orthonormal basis of 
A and Proposition 6.4.12(ii) shows that f is an orthogonal transformation. 

Next we consider another important type of linear transformation of Euclidean 
spaces. 

6.4.15. Definition. Let A be a Euclidean space. A linear transformation f of A 
is called symmetric (or self-conjugate), if (f(x), y) = (x, f(y)) for all elements 
x,y EA. 
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It is easy to see that if f and g are symmetric transformations, then f + g is 
also a symmetric transformation. Also, if a is a real number then af is also a 
symmetric transformation. There is, of course, a connection between these types 
of transformations and symmetric matrices. 

6.4.16. Proposition. Let A be a Euclidean space of dimension n. 

(i) Let {a1, ••• , an} be an arbitrary orthonormal basis of A. Iff is a symmetric 
transformation of A, then the matrix off relative to the basis {a I, ... , an} 
is symmetric. 

(ii) Let f be a linear transformation of A. Suppose that {a I, ... , an} is an 
orthonormal basis of A such that the matrix of f relative to this basis is 
symmetric. Then f is a symmetric linear transformation of A. 

Proof. 

(i) Let S = [ajr] E Mn(ffi.) denote the matrix of f relative to the basis 
{aJ, ... , an}. Since the basis is an orthonormal basis, we have 

(f(aj), am)= ( L O'rjar, am)= L O'tj(ar, am)= O'mj and, 
l~t~n l~t~n 

for 1 :=: j, m :=: n. Since (f(aj), am)= (aj, f(am)), we have O'mj = O'jm• for 1 :=: 
j, m :=: n, which shows that S is symmetric. 

(ii) Let x = LI~j~n ~jaj andy= LI~hn 'f/jaj be arbitrary elements of A, 
where ~j. 'f/j E ffi. for 1::: j::: n. Then 

f(x) = ,E" <;J(aJ) = ,E" <1 (E aua,) 

,E" (E" 'J"<J) "·· 
and similarly, 



BILINEAR FORMS 267 

It follows that 

(f(x), Y) ~ (E (E" <;a<i) a,, 1~" "'"') 

= I: I: I: ~jD'tJIJk!at, ak) = I: I: ~jD'kjiJb 

and 

= I: I: I: ~jiJk(Jtk(aj,at) 
l:C:}:C:n l:c:t:C:n l:C:k:C:n 

Since Sis symmetric, a 1k = ak1, for 1 :=::: j, k :=::: n, which implies that (J(x), y) = 
(x, f(y)). 

The following result gives an important property of symmetric matrices. 

6.4.17. Theorem. LetS= [a11 ] E Mn(l~). If Sis symmetric, then its characteris
tic polynomial xs(X) has only real roots. Thus the eigenvalues of a real symmetric 
matrix are real. 

Proof. Since the polynomial xs(X) has real coefficients, it follows from 
Theorem 7.5.14 (see the next chapter) that each of its roots is complex. Let A.o 
denote one such root. Thus det(S- A.o/) = 0. Then the matrix of the system 

(ail - A.o)XJ + a12x2 + · · · + rJ]nXn =OF 

aziXJ + (a22 - A.o)xz + · · · + aznXn =OF 
(6.5) 

is singular, and the results of Section 5.3 shows that this system has a nonzero 
solution (~I, ... , ~n). We remark that the numbers~~, ... , ~n are complex. So we 
have 

L atJ~i = A.o~1 , for 1 :=::: t :=::: n. 

I :CO} :COn 
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Multiplying both sides of the tth equation of Equation 6.5 by the conjugate f 1 

of ~~ and adding these equations, we obtain 

The latter is a sum of nonnegative real numbers, at least one of which is positive 
and so it is nonzero. We will prove that A.o is a real number. For this, we 
will prove that L!g:::on L!:::oj:::on atj~jft is real by showing that it coincides with 

its complex conjugate, L!:::ot:::on L!:::oj:::on a
1
/jf1• To see this, we will use the 

symmetric property of the matrix S and the fact that S has real entries. We have 

!g;Sn I;Sj;Sn I :;9;Sn I ;Sj ;Sn I ;St;Sn I ;Sj ;Sn 

!g;Sn I;Sj;Sn 

= I: I: atj~jft· 
lg;Sn I;Sj;Sn 

The second-to-last equation is obtained by a simple juxtaposition of the summa
tion indices t and j. The result follows. 

6.4.18. Corollary. Let f be a symmetric linear transformation of a finite
dimensional Euclidean space. Then, its characteristic polynomial xs(X) has 
only real roots. 

Now, we are in a position to formulate the following characterization of sym
metric transformations of Euclidean space. 

6.4.19. Theorem. Let A be a Euclidean space of dimension n and let f be a 
transformation of A. Then, f is symmetric if and only if A has an orthonormal 
basis consisting of eigenvectors of this transformation. 

Proof. If A has an orthonormal basis {a,, ... , an} such that f(aj) = yjaj, for 
l :=:: j :=:: n, then the matrix of f relative to the basis {a,, ... , an} is diagonal. 
Since a diagonal matrix is clearly symmetric, Proposition 6.4.16 implies that f 
is symmetric. 

Conversely, let f be a symmetric linear transformation of A. We will use 
induction on the dimension, n, of the space A. Certainly, if n = l, then every 
linear transformation of A will transform every vector a into some multiple of 
a. It follows that if a i= 0, then a is an eigenvector for f and it is easily seen 
that each linear transformation of A is symmetric. By forming aj llall, we obtain 
an orthonormal basis of A. 
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Suppose that the theorem is proved for all Euclidean spaces of dimension at 
most n- 1. By Corollary 6.4.18, the characteristic polynomial Xt(X) has a real 
root y, which is an eigenvalue for f. Let a be an eigenvector corresponding to y, 
so that f(a) = ya. Let a = (a, a) and let a1 = Jaa. Then clearly, (a,, a!) = 1 
and f(aJ) = ya,. 

Let A1 be the subspace generated by the element a,. Since (a,, a!)= 1, the 
restriction of the bilinear form on A1 is nonsingular. By Theorem 6.2.14, there 
exists a decomposition A = A 1 EB A f. Let x E A f. Then 

(a,,f(x)) = (f(aJ),x) = (ya,,x) =y(a,,x) =0. 

Thus, f(x) E Af and it follows that the restriction of f to Af is a linear 
transformation of A f. Since f is symmetric, the restriction of f to A f is also 
symmetric and the induction hypothesis implies that A f has an orthonormal basis 
{ a2, ... , an}, consisting of eigenvectors of f. All these elements are orthogonal to 
a 1, and therefore, {a 1 , ••• , an} is an orthonormal basis of the space A consisting 
of eigenvectors of the transformation f. 

The results of this section can be extended to vector spaces over the complex 
numbers. Such a complex linear space, A, is called unitary if there is a scalar 
multiplication, axioms (E 1), (E 2), and (E 4) hold, with the proviso that (x, y) is 
a complex number and in the last axiom the scalar square of a nonzero vector is 
real and positive. Axiom (E 3) should be substituted by the axiom: (x, y) = (y, x). 
Almost all the results of this section can be extended to unitary spaces. 

EXERCISE SET 6.4 

6.4.1. Let A be a finite-dimensional Euclidean space and let K, L be sub
spaces of A. Suppose that dimJR(L) < dimJR(K). Prove that K contains 
an element a, which is orthogonal to all elements of L. 

6.4.2. Let A = JR4 and let a 1, a 2 , a3 , a4 be an orthonormal basis of A. Let b, c be 
elements of A whose coordinates relative to this basis are (1, -2, 2, -3) 
and (2, -3, 2, 4), respectively. Prove that b, c are orthogonal and find a 
complement to the set {b, c} which, together with {b, c}, gives an orthog
onal basis of A. 

6.4.3. Let A = JR4 and let a 1, a 2 , a3 , a4 be an orthonormal basis of A. Let b, c be 
elements of A, whose coordinates relative to this basis are ( 1, 1, 1, 2) and 
(1, 2, 3, -3), respectively. Prove that b, care orthogonal and find a com
plement to the set {b, c} which, together with {b, c}, gives an orthogonal 
basis of A. 
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6.4.4. Let A = IR3 and let a 1, a2, a3 be an orthonormal basis of A. Let b, c be 
elements of A, whose coordinates relative to this basis are (2/3, 1/3, 2/3) 
and (1/3, 2/3, -2/3), respectively. Prove that b, c are orthogonal and 
find a complement to the set {b, c}, which together with {b, c}, gives an 
orthogonal basis. 

6.4.5. Let A= IR4 and let a 1, a2, a3, a4 be an orthonormal basis of A. Let 
b, c be elements of A, whose coordinates relative to this basis are 
(1 /2, 1/2, 1/2, 1 /2) and (1 /2, 1/2, -1 j2, -1 /2). Prove that b, c are 
orthogonal and find a complement to the set {b, c}, which together with 
{b, c}, gives an orthogonal basis. 

6.4.6. Let A = IR4 and let a 1 , a2, a3, a4 be an orthonormal basis of A. Let 
b, c, d be elements of A, whose coordinates relative to this basis are 
(1, 2, 2, -1), (3, 2, 8, -7), and (1, 1, -5, 3), respectively. Construct an 
orthonormal basis of the linear envelope of the set {b, c, d}. 

6.4.7. Let A= IR4 and let a 1, a2, a3, a4 be an orthonormal basis of A. Let 
b, c, d be elements of A, whose coordinates relative to this basis are 
(1, 1, -1, -2), (5, 8, -2, -3), and (3, 9, 3, 8), respectively. Construct 
an orthonormal basis of the linear envelope of the set {b, c, d}. 

6.4.8. Let A = IR4 and let a 1, a2, a3, a4 be an orthonormal basis of A. Let 
b, c, d, u be elements of A, whose coordinates relative to this basis are 
(2, 1, 3, -1), (7, 4, 3, -3), (1, 1-6, 0), and (5, 7, 7, 8), respectively. 
Construct an orthonormal basis of the linear envelope of the set 
{b, c, d, u}. 

6.4.9. Let A be a finite-dimensional Euclidean space and L be a subspace 
of A. Prove that every element x of A can be uniquely represented as 
x = y + z where y E L and z is orthogonal to L. The element y is called 
the orthogonal projection of x on the subspace L and the element z is 
called the orthogonal component of x relative to L. 

6.4.10. Let A= IR4 and let a1, a2, a3, a4 be an orthonormal basis of A. Let b, c, d 
be elements of A, whose coordinates relative to this basis are (1, 1, 
1, 1), (1, 2, 2,-1), and (1, 0, 0, 3). Let x be an element whose coordi
nates relative to the given basis are (4, -1, -3, 4). Find the orthogonal 
projection y and the orthogonal component z of the element x on the 
linear envelope L of the subset {b, c, d}. 

6.4.11. Let A= IR4 and let a 1, a2, a3, a4 be an orthonormal basis of A. Let 
b, c, d be elements of A, whose coordinates relative to this basis are 
(2, 1, 1, -1), (1, 1, 3, 0), and (1, 2, 8, 1). Let x be an element whose 
coordinates relative to the given basis are (5, 2, -2, 2). Find the orthog
onal projection y and the orthogonal component z of the element x on 
the linear envelope L of the subset {b, c, d}. 



BILINEAR FORMS 271 

6.4.12. Let A= JR4 and let a 1 , a2 , a3 , a4 be an orthonormal basis of A. Let 
x be an element whose coordinates relative to the given basis are 
(7, -4, -1, 2). Let L be a subspace, whose coordinates relative to 
{a1, a2, a3, a4 } satisfy the following system of equations: 

2X] + X2 + X3 + 3X4 = 0, 

3xl + lx2 + 2x3 + X4 = 0, 

XJ + lx2 + 2x3 - 9x4 = 0. 

Find the orthogonal projection y and the orthogonal component z of the 
element x on L. 

6.4.13. Let A= JR3 and let a 1, a2 , a3 , be an orthonormal basis of A. Let f be a 
linear transformation of A, whose matrix relative to the given basis is 

Find the orthonormal basis consisting of eigenvectors of the linear trans
formation f and the matrix of f relative to this basis. 

6.4.14. Let A be a finite-dimensional Euclidean space and let f be a symmet
ric linear transformation of A. Then f is called positively (respectively 
nonnegatively) defined, if its eigenvalues are positive (respectively non
negative). Show that f is positively (respectively nonnegatively) defined, 
if (f(a), a) > 0 (respectively (f(a), a) ::::_ 0) for every nonzero element 
a of the space A. 



CHAPTER 7 

RINGS 

7.1 RINGS, SUBRINGS, AND EXAMPLES 

In mathematics, we often deal with sets that involve several algebraic operations 
that are connected to each other in some way, typically by some kind of distribu
tive law. Natural examples of this, with which the reader is familiar, include the 
sets of numbers Z, Ql, and JR., the set of real functions, and the sets of matrices 
Mn (Z), Mn (Ql), Mn (JR.). These sets have some important common properties that 
enable us to classify them as a type of algebraic structure called a ring. Rings are 
one of the most important algebraic structures. In Chapter 3 we discussed fields, 
which are very special types of rings. However, a very basic and motivating 
example of a ring is the ring of integers. The study of natural extensions of the 
ring of integers, such as rings of "algebraic numbers", began the subject of ring 
theory. Another fundamental type of ring that has received a lot of attention is 
the ring of polynomials. 

A German mathematician, Richard Dedekind ( 1831-1916), introduced the 
concept of a ring. The term ring (Zahlring) is due to another great German math
ematician, David Hilbert (1862-1943). The axiomatic approach to the study of 
rings is due to Adolph Fraenkel (1891-1965) and the German born mathemati
cian, Emmy Noether (1882-1935), known for her groundbreaking contributions 
to abstract algebra and theoretical physics. She was described by David Hilbert, 
Albert Einstein, and others as the most important woman in the history of math
ematics. She revolutionized the theories of rings, algebras, and fields. 

Algebra and Number Theory: An Integrated Approach. By Martyn R. Dixon, Leonid A. Kurdachenko 
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7.1.1. Definition. A set R together with two algebraic binary operations, which 
we shall call addition and multiplication, is called a ring if the following properties 
hold: 

(R 1) The operation of addition, denoted by +, has the properties 

(i) addition is commutative, so a+ b = b +a, for all a, b E R; 

(ii) addition is associative, so a+ (b +c)= (a+ b)+ c, for all 
a,b,c, E R; 

(iii) there exists a zero element OR E R such that a+ OR =a, for all 
a E R; 

(iv) each element a E R has an additive inverse, -a E R, called an 
opposite (or negative), such that a + (-a) = 0 R· 

(R 2) Addition and multiplication are connected by the distributive laws: (a + 
b)c = ac +be and a(b +c) = ab + ac for all a, b, c E R. 

We call R, together with just the operation of addition, the additive group of 
the ring R. 

The existence of negative elements allows us to introduce the operation of 
subtraction in R by making the definition that a - b =a+ (-b). 

There are a number of elementary consequences, which follow from the defi
nition of a ring and which we now list. 

7.1.2. Proposition. Let R be a ring and let a, b, c be elements of R. Then the 
following properties hold: 

(i) a ·OR =OR ·a =OR, 

(ii) a(-b) = (-a)b = -ab, 

(iii) a(b- c)= ab- ac and (a- b)c = ac- be. 

In particular (-a)( -b) = ab. 

Proof. For each b E R we have b +OR = b. By the distributive law, 

ab =a· (b +OR)= ab +a· OR. 

Since the element ab E R has a negative, -ab, we can add it to both sides 
and the equality becomes 

-ab+ab = -ab+ab+a ·OR, 

so OR =a· OR, since -ab + ab =OR and, likewise, OR· a =OR, by a similar 
argument. Therefore (i) follows. 
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To prove (ii), from the definition of the negative element and the distributive 
laws we obtain 

OR= a· OR= a(b +(-b))= ab +a(-b) and 

OR= OR· b =(a+ (-a))· b = ab +(-a)· b. 

These equations show that a(-b) is the negative of ab and (-a)b is also the 
negative of ab and hence (ii) follows. Also by replacing a by -a we see that 
(-a) (-b) = (- (-a) )b = ab since the negative of -a is a itself. 

These equations show that subtraction and multiplication are also connected 
by the distributive laws since 

a(b- c)= a(b +(-c))= ab +a(-c) = ab- ac 

and likewise (a - b)c = ac- be. 

7.1.3. Definition. Let R be a ring. 

(R 3) R is called associative if the multiplication in R is associative so a (be) = 
(ab)c for all a, b, c E R. 

(R 4) R is called commutative, if the multiplication in R is commutative so 
ab = bafor all a, bE R. 

(R 5) R is a ring with identity if R has an identity element e relative to the 
operation of multiplication so ae = ea = a for all a E R. 

While we consider only associative rings in this book, it is worth noting 
that the theory of some nonassociative rings that are, in some sense, close to 
associative rings has been studied in some depth. We here mention some of the 
most important examples of these types of rings. As usual we denote the product 
a· a by a2• 

A ring R is called a Lie ring, if it satisfies the conditions: 

(LR 1) a2 =OR for each a E R. 

(LR 2) (ab)c + (bc)a + (ca)b =OR for all a, b, c E R. 

The condition (LR 2) is called the Jacobi identity. 
A ring R is called a Jordan ring, if it is commutative and satisfies the condition 

(JR)((a · a)b)a =(a· a)(b ·a) for all elements a, bE R. 

Finally, a ring R is called an alternative ring, if it satisfies the conditions: 

(AR 1) (aa)b = a(ab) and 

(AR 2) (ba)a = b(aa), for arbitrary elements a, b E R. 
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Further important information concerning nonassociative rings can be found 
in the classical books of Bahturin (1986), Bourbaki (2004), and Serre (1992). 

[Bahturin Yu. Identical relations in Lie algebras. Utrecht, Netherlands: Brill 
Academic Publishers; 1986.] 

[Bourbaki N. Lie groups and Lie algebras. Berlin: Springer; 2004. Chapters 
1-9.] 

[Serre JP. Lie algebras and Lie groups. New York: Springer; 1992.] 

Since our goal is to understand something about the theory of associative 
rings, we, from this point on, use the term ring to mean an associative ring. 
Thus, we assume that our rings satisfy properties (R 1), (R 2), and (R 3) and 
use the term ring in this respect without necessarily mentioning that the ring is 
an associative ring. 

Let R be a ring with identity and suppose that OR =e. Then we have 

for each a E R. Hence, a ring in which the zero and identity elements coincide 
consists only of the zero element. We term the ring {OR} the trivial ring and we 
consider only nontrivial rings below. 

From the definition, it follows that a ring R with identity is a semigroup with 
identity under multiplication. Therefore, R contains the subset U(R) consisting 
of all invertible elements of this semigroup. By Corollary 3.1.15, this subset is 
stable and we shall see later that U(R) is a group under multiplication, when this 
multiplication is restricted to V(R). We note that OR 1- U(R). 

7.1.4. Definition. A nonzero element a of a ring R is called a left (respectively 
right) zero divisor, if there is a nonzero element b such that ab =OR (respectively 
ba =OR). 

For commutative rings, if ab =OR then ba =OR, so every left zero-divisor is 
a right zero-divisor and conversely, and we just talk about zero-divisors in this 
case. If ab =OR and a E U(R) then a-1 exists and 

Thus, an invertible element cannot be a zero-divisor. 

7.1.5. Proposition. lRt R be a ring and let a, x, y E R. 

(i) If a is not a left zero-divisor and if ax = ay then x = y. 

(ii) If a is not a right zero-divisor and if xa = ya then x = y. 
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Proof. Since the proofs of (i) and (ii) are similar, we merely prove (i). If ax = ay, 
it follows that ax- ay =OR. By the distributive law, we obtain a(x- y) =OR. 
Since a is not a left zero-divisor, this implies that x- y =OR and hence x = y. 

Proposition 7.1.5 is called the left (or the right) cancellation law. We obtain 
the following immediate consequence. 

7 .1.6. Corollary. Let R be a ring with no zero-divisors. If a, x, y E R and ax = 
ay (respectively xa = ya) then x = y. 

We here remind the reader that a ring means an associative ring. The ring of 
integers has some very standard properties that are common to certain types of 
rings, which we now introduce. 

7.1.7. Definition. A ring R is called an integral domain if R is commutative, has 
a multiplicative identity, and has no zero-divisors. 

We are naturally interested in subsets of rings that are themselves rings. 

7.1.8. Definition. Let R be a ring. A subset H of R is called a subring, if H is 
stable under the operations of addition and multiplication and H is also a ring 
under the restrictions of these operations to the set H. When H is a subring of 
R, we write H :::; R. 

We next give a criterion for a nonempty subset of a ring to be a subring. It is 
very similar to the criterion for a subset of a vector space to be a subspace. 

7.1.9. Theorem. Let R be a ring. If H is a subring of R, then H satisfies the 
following conditions: 

(SR 1) if x, y E H, then x- y E H; 

(SR 2) ifx, y E H, then xy E H. 

Conversely, suppose that His a nonempty subset of R. If H satisfies the conditions 
(SR 1) and (SR 2), then His a subring of R. 

Proof. Let H be a subring of R. Certainly H is a stable subset under addition 
and multiplication and it also follows that H has a zero element 0 H. Thus, 
x + OH = x for each element x E H. By Definition 7.1.1, there is an element 
-x E Rand we have -x + x + OH = -x + x so that OR+ OH =OR. It follows 
that OH =OR. By Definition 7.1.1, for each element x E H there is an element 
y E H such that x + y = OH and since OH =OR it follows that y is a negative 
of x. As seen in Section 3.2, each negative element is uniquely determined and 
hence y = -x. In particular, -x E H. Now if x, y are arbitrary elements of H 
then - y E H and, since H is a stable subset under addition, we have 

X- y =X+ (-y) E H. 

Hence H satisfies the condition (SR 1). 
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Since H is a stable subset under multiplication, xy E H, so that H satisfies 
(SR 2). 

Conversely, suppose that H is not empty and satisfies (SR 1) and (SR 2). 
If u E H then, by (SR 1), OR = u- u E H. If x is an arbitrary element of H 
then, by (SR 1), -x =OR- x E H. If also y is an arbitrary element of H, then 
-y E H and, using (SR 1), we obtain x + y = x- ( -y) E H. Hence, H is a 
stable subset under addition. The condition (SR 2) shows that H is a stable subset 
under multiplication. Thus, the restrictions of addition and multiplication to H 
are binary operations on H. All the other conditions of (R 1)-(R 3) are valid 
for H because they are valid for all elements of R. 

We note that even when a ring contains a multiplicative identity, as is true in 
the ring Z, the subrings need not contain a multiplicative identity, as seen when 
considering the subring 2Z = {2rlr E Z} of Z. Indeed, it is possible for a ring 
and a subring to contain different multiplicative identities, as we shall see later. 

A subring H of a ring R with multiplicative identity is called unitary if H 
contains the identity of the ring R. 

Every ring R always contains at least two subrings, the subset {OR} and the 
entire ring R. It is very easy to generate further generic examples of subrings. 

7.1.10. Corollary. Let R be a ring and let 6 be a family of sub rings of R. The 
intersection n6 of all sub rings of this family is also a subring in R. 

Proof. Let S = n6. Since OR E U for all U E 6 it follows that S =f- 0. Let 
x, yES. Then x- y, xy E U, for all subrings U E 6 and therefore x- y, xy 
belongs to the intersection of all such subrings. Thus, x- y, xy E Sand Theorem 
7.1.9 implies that Sis a subring of R. 

We note that a union of subrings is not necessarily a subring. For example, if 
n is a fixed positive integer then the subset 

nZ = {nk I k E Z} 

satisfies both conditions (SR 1) and (SR 2), and therefore is a subring. In particu
lar, the subsets 2Z and 3Z are subrings, but 2Z U 3Z does not contain the integer 
5 = 2 + 3, and therefore is not a subring. However, there are some instances 
when unions of subrings are again subrings, as we see next. We recall that £ is a 
local family if whenever H, K E £there is a subring L E £such that H, K :::=: L. 

7.1.11. Corollary. Let R be a ring and let£ be a local family of sub rings of R. 
Then the union, U£, is a subring of R. 

Proof. Let V = U£ and let x, y E V. There are subrings H, K E £ such that x E 
H, y E K. We choose a subring L E £with the property that H, K :::=: L. Then 
x, y E L. Since L is a subring, x- y, xy E L, by Theorem 7.1.9, and therefore 
x- y, xy E V. Now we apply Theorem 7.1.9 to deduce that V is a subring. 

There are a number of further special cases that we mention here. 
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7.1.12. Corollary. Let R be a ring and let £ be a linearly ordered family of 
subrings of R. Then the union U£ of all subrings from this family is a subring 
of R. 

7.1.13. Corollary. Let R be a ring and let 

be an ascending system of sub rings of R. Then the union UnEN Hn is a sub ring 
of R. 

Let M be a subset of the ring R and let 6 be the family of all subrings which 
contains the subset M. By Corollary 7.1.10, the intersection r(M) = n6 is a 
subring of R. 

7.1.14. Definition. The subring r(M) is called the subring generated by the 
subset M, and the subset M is called a set of generators for r(M). In particular, 
ifr(M) = R, then we say that M generates the ring R. 

A ring R is called finitely generated if there exists a finite subset M such that 
r(M) = R. The following lemma is very easy to deduce. 

7.1.15. Lemma. Let R be a ring and let H be a subring of R. If M ~ H then 
r(M) ::S H. 

If H is a subring containing the set M then Lemma 7 .1.15 implies that H also 
contains r(M). In this sense r(M) is the minimal subring containing the subset 
M. Clearly, if M is a subring of a ring R then r(M) = M. 

We now consider a very useful construction, the Cartesian (or direct) product 
of finitely many rings. Let R1, ... , Rn be rings and let D = R1 x · · · x Rn be 
the Cartesian product of the underlying sets R1, ... , Rn. We define an addition 
and multiplication on D by 

(YJ' ... ' Yn) + (XJ' ... 'Xn) = (YJ +X]' ... 'Yn + Xn) and 

(yJ, ... , Yn)(XJ, ... , Xn) = (YJXJ, ... , YnXn), 

where yj. Xj E Rj, for l ::=: j ::=: n. Thus, we add and multiply componentwise. 
Since y j, x j are elements of the ring R j, their sum and product are defined 

in the ring Rj, where 1 ::=: j ::=: n. Thus, the addition and multiplication of D are 
binary operations on D. The addition is associative since 

((wJ, ... , Wn) + (XJ, ... , Xn)) + (yJ, ... , Yn) 

= ((w! + XJ) + Yi· ... , (wn + Xn) + Yn) 

= (wi + (XJ + YJ), ... , Wn + (Xn + Yn)) 

= (WJ, ... , Wn) + ((XJ, ... , Xn) + (yJ, ... , Yn)). 
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Using the same type of argument, we can prove that multiplication is also 
associative in D. 

The addition is commutative since we have, using the commutativity of the 
addition in each of the component rings, 

(WJ, ... , Wn) + (XJ, ... , Xn) = (WJ + XJ, ... , Wn + Xn) 

= (XJ + WJ, ... , Xn + Wn) = (XJ, ... , Xn) + (WJ, ... , Wn). 

There is a zero element, namely (OJ, ... , On), where 0 j is the zero element of 
the ring R j, for 1 :::; j :::; n. In addition, the negative of (YI, ... , Yn) is 

If R j is a ring with identity and e j is the identity element of R j, for 1 :::; j :::; n, 
then clearly (e1, ... , en) is the identity element of D. 

Finally, we show that addition and multiplication are connected by the dis
tributive laws. Indeed, 

((yJ, · · ·, Yn) + (XJ, ... , Xn))(ZJ, ... , Zn) 

= (YI +X!,···, Yn + Xn)(ZJ, · · ·, Zn) 

= ( (YI + xdz!' ... ' (Yn + Xn)Zn) = (YIZI + X!Z!' ... 'YnZn + XnZn) 

= (YIZJ, · · ·, YnZn) + (XJZJ, · · ·, XnZn) 

= (yJ, .. ·, Yn)(ZJ, · · ·, Zn) + (XJ, · · ·, Xn)(ZJ, ... , Zn). 

The other distributive law can be proved similarly. Thus, all the ring axioms are 
valid for D and D, together with the operations just defined, is called the Carte
sian (or the direct) product of the rings R 1, ••• , Rn. It is also possible to define 
the Cartesian product of infinitely many rings, by using similar (componentwise) 
laws of addition and multiplication. This Cartesian product is sometimes called 
the unrestricted direct product, since there is also a slightly different "restricted 
direct product." In the case of finitely many rings these different concepts (which 
we have only loosely discussed here) coincide. If the rings R 1, ••• , Rn are com
mutative, then it is very easy to see, using the type of methods used above, that 
their Cartesian product is also commutative. We note that Z x Z is a ring with 
multiplicative identity (1, 1) that contains the subring Z x {0} that has identity 
element ( 1, 0), thus justifying our earlier claim that a ring and a subring can have 
different multiplicative identities. 

We next consider the structure of V(D), the set of invertible elements of D, 
in the case when the rings R; contain multiplicative identities. Let (YJ, ... , Yn) E 

U(D). Then there exists (ZJ, ... , Zn) such that 

(YI, · · ·, Yn)(ZJ, · · ·, Zn) = (YIZI, · · ·, YnZn) 

= (eJ, ... 'en)= (ZJ, ... ' ZnHYI •... ' Yn). 
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Thus, YJZJ = ei = ZJYJ· so that Yi E U(Rj) for each j, where 1 .:::; j .:::; n. Con
versely if Yi E U(Rj) for every j, where 1 .:::; j.:::; n we can repeat the previous 
arguments in the reverse order, to see that (y,, ... , Yn) E U(D) and hence we 
obtain the equality 

U(R! X··· X Rn) = U(R!) X ···X U(Rn). 

We next consider some important examples of rings. 

Number rings 

From the definitions it is clear that a field is a very special type of commutative 
ring. Thus, the set lR of all real numbers is a commutative ring, since lR is a field, 
as seen in Chapter 3. The set Q of all rational numbers is a subfield of JR, and 
the set Z of all integers is a unitary subring. The subring Z is finitely generated, 
generated by the number 1. We have already noted that, for every n 2: 0, the 
subset nZ = {nk I k E Z} is a subring of Z. Conversely, let H be a subring of Z. 
If H = {0}, then H =Oz. Suppose now that H contains nonzero elements. Note 
that if x E H then -x E H and hence H must contain positive integers. Let n be 
the least positive element of H. Then 2n = n + n E H, 3n = 2n + n E H, and 
similarly, kn E H for each positive integer k. If k < 0 then -k > 0 and hence 
(-k)n E H. Since His a subring, kn = -(-k)n E Hand from this it follows 
that nZ .:::; H. Next, let m be an arbitrary element of H. By Theorem 1.4.1, there 
are integers q, r such that m = qn + r where 0.:::; r < n. Since nZ.:::; H, we have 
r = m- qn E H. Since n is the least positive element of Hand, since 0.:::; r < n, 
we deduce that r = 0. Thus, m = qn E nZ, which proves that H = nZ. Thus, the 
subrings of Z are precisely of the form nZ, where n is some fixed, but arbitrary, 
element of Z. 

Next, let p be a prime and let Qp = {; I m, k E Z}. A fraction of the type 
~ is called a p-adic fraction. The equation 
p 

m r 

pk ps pk+s 

shows that Qp satisfies the condition (SR 1). Since Qp clearly satisfies (SR 2), 
it is a unitary subring of Q by Theorem 7.1.9, the ring of p-adic fractions. These 
examples constitute just a small fraction of rings of numbers. 

Rings of Matrices 

In what follows, we use similar notation to that used in Chapter 2. Let R be an 
integral domain. We let Mn (R) denote the set of all square matrices of dimen
sion n whose entries belong to the ring R. If A= [a;1] and B = [b;1] are two 
matrices from Mn (R), then the sum A + B is a matrix C = [c;1 ], whose elements 
are defined by c;1 = aij + bij for each pair of indices i, j, where 1 .:::; i, j.:::; n. 
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The product AB of these matrices is the matrix D = [diJ], whose entries are 
defined by 

dij = ailhj + a;2b2j + · · · + a;nbnj = L a;kbkj 
1::;k::;n 

for each pair of indices i, j, where 1 :::; i, j :::; n. 
Thus, we keep the rules of addition and multiplication introduced earlier for 

matrices with numerical entries. 
The same arguments that we used in Section 2.1 show that Mn(R) is a ring, 

using the operations that we introduced above. Note that as with numerical matri
ces, this ring is also noncommutative. 

We define the determinant of a matrix in the same way as we did for numerical 
matrices. Thus, if A= [a;j] E Mn(R) then 

det(A) = L sign .7r a1,rr(l)a2,rr(2) ... an.rr(n). 
rrESn 

It is easy to see that all properties of determinants that we proved in Sections 
2.3, 2.4 and Theorem 2.5.1 are valid for an integral domain R. Let A E U(Mn(R)) 
and let a = det(A). Since 

e = det(I) = det(AA- 1) = det(A)det(A-1) = adet(A-1), 

it follows that a E U(R). Conversely, let A be a matrix such that det(A) E U(R) 
and let B = [b;j] E Mn (R), be the matrix whose entries are defined by 

biJ = Aj;/det(A) for 1 :::; i, j :::; n, 

where A j; is the cofactor corresponding to a;j It is easy to see that A B = B A = 
I, so B is the inverse of the matrix A. Therefore, 

U(Mn(R)) ={A E Mn(R) I det(A) E U(R)}. 

As with numerical matrices, we call the group U(Mn(R)) the general linear 
group of degree n over the ring R. In particular, if R is a field, then U(Mn(R)) 
is again the set of all nonsingular matrices. 

We let Ekm denote the matrix whose (k, m) entry is the multiplicative identity 
of R and in which all other entries are zero. As with numerical matrices we can 
easily prove that 

E E -I Eks, if m = r, 
km rs- O 'f .../.-

' 1 m 1 r. 

For example, £ 12 £ 11 = 0, the zero matrix, and £11£12 = £12, so it follows that 
the ring Mn(R) is noncommutative if n ::=:: 2. Furthermore, this example shows 
that Mn(R) has zero-divisors. 
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We let Tn°(R) denote the subset of Mn(R), that consists of all upper triangular 
matrices. It is clear that the difference of two upper triangular matrices is also 
upper triangular. Furthermore, let A, B E Tn°(R), where A= [aij], and B = [bij]. 
Set C = AB = [cij] and suppose that i > j. Then we have 

Since 

ail = a;2 = · · · = a;,i-1 = 0 and bij = b;+I,J = · · · = bnJ = 0, 

it follows that Cij = 0 for i > j and hence A B E Tno ( R). Observe that 

Using Theorem 7.1.9 we see that Tn°(R) is a subring of Mn(R). 
An upper triangular matrix is called zero triangular if all its entries on the 

main diagonal are zeros. 
The set of all zero triangular matrices of dimension n with entries belonging 

to the ring R is denoted by NTn(R). It is easy to see that the subset NTn(R) 
satisfies the conditions (SR 1) and (SR 2), so that Theorem 7.1.9 implies that 
NTn(R) is a subring of Mn(R). 

We let D~(R) denote the subset of all diagonal matrices of dimension n with 
entries belonging to the ring R and set 

RI = {U I A E R}. 

Thus, R I is the subset of Mn ( R) consisting of the set of all scalar matrices. Using 
Theorem 7.1.9 it is possible to show that D~(R) and RI are unitary subrings of 
Mn(R). Of course Tn°(R) is also unitary. Finally, let 

RE;; = {AE;; I A E R}. 

We have 

AE;; -f-iE;; =(A- !-i)E;; and AE;; ·f-iE;; = Af-iE;;. 

Theorem 7.1.9 implies that RE;; is a subring of Mn(R). Furthermore, 

AE;; · eE;; = eE;; · AE;; = AE;;. 

This equation shows that eE;; = E;; is the multiplicative identity element of 
the subring RE;;, so RE;; is nonunitary, but has its own multiplicative identity 
element. Furthermore, if A E U(R) then AE;; has an inverse in RE;;, namely 
A -IE;;, even though AE;; is not invertible in Mn(R). 
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Rings of Functions 

In what follows we use the fact that two functions are equal precisely when they 
both take the same value at every point in the domain of the function. Let R be 
an arbitrary ring and let M be an arbitrary set. As usual we let RM denote the set 
of all functions f : M ----+ R and define a sum and product on RM by the rules 

(f + g)(a) = f(a) + g(a) and (Jg)(a) = f(a)g(a), 

for every element a E M. We note that the product here is not defined using 
composition of mappings. 

Iff, gERM, then 

(f + g)(a) = f(a) + g(a) = g(a) + f(a) = (g + f)(a), 

for each element a E M. It follows that f + g = g + f, so that addition is 
commutative. Similarly, for f, g, h E RM we have, using the associative law 
of addition in R, 

(! + (g + h))(a) = f(a) + (g + h)(a) = f(a) + (g(a) + h(a)) 

= (!(a)+ g(a)) + h(a) = (f + g)(a) + h(a) 

= (U +g)+ h)(a), 

for an arbitrary element a E M. Thus, f + (g + h) = (f + g) + h and the asso
ciative law of addition holds in RM 

Let {} be the mapping defined by iJ(a) =OR for each a E M. Then 

(f + iJ)(a) = f(a) + iJ(a) = f(a) +OR= f(a). 

Thus, f + {} = f for every f E RM and hence{} is the zero element of RM. In 
addition, we define the mapping - f by (-f) (a) = - f (a), for all a E M. Then 

(! + (- J))(a) = f(a) + (- J)(a) = f(a)- f(a) =OR, 

for all a E M so that f + (-f) = {}. 
Next, let f, g, h E RM and let a EM. Then, using the distributive law of R, 

(/(g+h))(a) = f(a)((g+h))(a) = f(a)(g(a)+h(a)) = f(a)g(a)+ f(a)h(a) 

= (Jg)(a)+(Jh)(a) = (fg+ fh)(a), 

so f(g +h)= fg + fh. Similarly, (f + g)h = fh + gh, so the distributive 
laws hold in RM. 
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Multiplication of functions is associative since 

(J(gh))(a) = f(a)(gh)(a) = f(a)(g(a)h(a)) 

= (J(a)g(a))h(a) = (fg)(a)h(a) = (<Jg)h)(a), 

using the associative law of R. 
The function I defined by the rule I (a) = e, for all a E M serves as a multi

plicative identity since 

(f /)(a) = f(a)I (a)= f(a)e = f(a), for all a EM. 

Thus, f I = f and, similarly, If= f, which proves our claim. 
It follows that RM, together with the operations of addition and multiplication 

as defined above, is a ring. Furthermore, if R is commutative then the ring RM 
is also commutative since 

(fg)(a) = f(a)g(a) = g(a)f(a) = (gf)(a). 

Next we consider U(RM). This set consists of those functions f such that 
f(a) E U(R) for all a E M. In this case the inverse g of f is the function 
defined by g(a) = (/(a)r1

; to avoid confusion with certain other notation, we 
so not denote the inverse of f here by f- 1• 

The ring RM has zero-divisors. To see this, let L be a proper nonempty subset 
of M and define functions f, g by the rules: 

f l
e, if a E L 

(a)= 
OR, if a rf. L, 

d ( l
OR, if a E L 

an g a)= 
e, if a ¢ L. 

The functions f, g are nonzero, but f(a)g(a) =OR for every a E M and hence 
fg = 7J. 

In calculus courses we usually deal with the situation when the set M is 
either ffi. or an interval [a, b] ~ ffi. and R = ffi. is the field of real numbers. Thus, 
RM = ffi.lR (respectively RM = ffi_[a,bl) is the ring of all functions defined on ffi. 
(respectively on [a, b]) whose range is a subset of the field of real numbers. The 
ring ffi.lR has numerous well-known unitary subrings, including the subring of all 
continuous function, the subring of all differentiable functions, the subring of all 
twice differentiable functions and so on. 

Boolean Rings 

Let M be a set and, as usual, let A = ~(M) denote its Boolean. Thus, A is the 
set of all subsets of M. If a, b E A, then put 

a+ b =(aU b)\(a n b) and ab =an b. 
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There are some easy, but at times tedious, computations required to verify 
that A is a ring. The zero element of A is 0 and the multiplicative identity of 
A is M. Thus, M is the only invertible element of this ring. Moreover, for each 
element a we have a2 = a, 2a = 0 = 0 A. Rings with these properties are called 
Boolean rings. 

The Center of a Ring 

If R is a ring, then we let ~(R) denote the set of all elements of R that commute 
with every element of R. Thus, 

~(R) = {x E Rlxy = yx, for ally E R}. 

Clearly ORE ~(R). If a, bE ~(R) and x E R then 

(a- b)x =ax - bx = xa - xb = x(a -b) and 

(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). 

These equations show that a- b, abE ~(R) and, by Theorem 7.1.9, ~(R) is 
therefore a subring of R. The subring ~(R) is called the center of the ring R. 

If R is a ring with identity e, let Ze = {ne I n E Z}, where ne = 
e + e + · · · + e, if n > 0, Oe =OR and ne = -( -ne) if n < 0. Then, for all 

n 
k, n E Z we have 

ne- ke = (n - k)e and (ne)(ke) = (nk)e. 

By Theorem 7.1.9, Ze is therefore a subring of R. 
Since 

(ne)a = n(ea) = na = a(ne), 

it follows that neE ~(R) and hence Ze =::: ~(R). 

Nilpotent Elements in Rings 

Let R be a ring. An element a is called nilpotent if an =OR, for some n E N. If 
R is a commutative ring, then the subset of all nilpotent elements is a subring. 
To see this, we note that the binomial theorem of algebra still holds, namely, 
for all a, b E R, it is the case that, for all uatural numbers m, (a+ b)m = LJ=O 
G) aibm-J. This can be proved by induction on m. Then, if an= OR, b1 =OR 
for some n, t E N we consider (a - b )n+t. This element is a linear combination 
of the elements akbm where k + m = n + t. Hence if k 2: n, then akbm =OR. If 
k < n, then m > t and again akbm =OR. Hence, 
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Further, 

The Ring of Endomorphisms of an Abelian Group 

Let A be an abelian group under addition. A homomorphism f from A to itself is 
called an endomorphism of A. Thus, by Definition 3.1.20, this means that f(x + 
y) = f(x) + f(y) for each element x E A. We let End(A) denote the set of all 
endomorphisms of A and iff, g E End( A) we define addition of endomorphisms 
by (f + g)(a) = f(a) + g(a) for every element a EA. 

We have, using the facts that f, g are endomorphisms and that A is abelian: 

(f + g)(a +b)= f(a +b)+ g(a +b) = f(a) + f(b) + g(a) + g(b) 

= f(a) + g(a) + f(b) + g(b) = (f + g)(a) + (f + g)(b). 

It follows that f + g is an endomorphism of A. Hence, the mapping (f, g) ~----+ 
f + g, where f, g E End(A) is a binary operation on the set End(A). The set 
End(A) is an abelian group under the operation defined above since 

Also, 

(f + g)(a) = f(a) + g(a) = g(a) + f(a) = (g + f)(a). 

(! + (g + h))(a) = f(a) + (g + h)(a) = f(a) + (g(a) + h(a)), 

(U +g)+ h)(a) =(!(a)+ g(a)) + h(a) =(!(a)+ g(a)) + h(a), 

for each element a E A. It follows that 

f + g = g + f and f + (g + h) = (f + g) + h, 

for arbitrary f, g, h E End(A). 
As above, we define a mapping iJ : A ---+ A by iJ(a) = OA for each element 

a EA. Then 

(f + iJ)(a) = f(a) + iJ(a) = f(a), so f + iJ = f, 

for arbitrary f E End(A). This shows that iJ is the zero element of End(A). 
Finally, put (- f)(a) = - f(a) for each a E A. Clearly f + (-f) = iJ and 

all the axioms for an abelian group hold. 
Next for f, g E End(A) and a, b E A we have 

(fog)(a +b)= f(g(a +b))= f(g(a) +g(b)) = f(g(a)) + f(g(b)) 

= (f o g)(a) + (f o g)(b). 
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This equation shows that f o g is an endomorphism of A and hence the mapping 

(f, g) 1-------+ fog, where f, g E End(A) 

is a binary operation on A. 
Let f, g, hE End(A) and a EA. We have 

(! o (g +h) )Ca) = f( (g + h)(a)) = f(g(a) + h(a)) = f(g(a)) + f(h(a)) 

= (fog)(a) + (foh)(a) =(fog+ foh)(a). 

It follows that 
f 0 (g + h) = f 0 g + f 0 h. 

Similarly we can prove that (f +g) o h = f o h +go h. As we know from 
Theorem 1.3.2, multiplication of mappings is associative. The mapping eA, 
defined by the rule e A (a) = a for all a E A, is the multiplicative identity under 
multiplication and hence End(A) is a ring called the ring of endomorphisms of 
the abelian group A. 

EXERCISE SET 7.1 

Justify your work by writing a proof or by giving a counterexample. 

7.1.1. On the set R = Z x Z we define operations of addition and multiplica
tion by (a, b)+ (at, bt) =(a+ at, b + ht), (a, b)(at, bt) = (0, 0). Is R 
a ring under these operations? If yes, does R have an identity element 
or zero divisors? 

7.1.2. On the set R = Z x Z we define operations of addition and multiplica
tion by (a, b)+ (at, bt) =(a+ at, b + bt), (a, b)(at. bt) =(a+ at+ 
b + bt, 0). Is R a ring under these operations? If yes, does R have an 
identity element or zero-divisors? 

7.1.3. On the set R = Z x Z we define operations of addition and multiplication 
by (a, b)+ (at, bt) = (aat, bbt), (a, b)(at. bt) =(a +at, b + bt). Is R 
a ring under these operations? If yes, does R have an identity element 
or zero-divisors? 

7.1.4. On the set R = Z x Z we define operations of addition and mul
tiplication by (a,b)+(at,bt)=(a+at,b+bt), (a,b)(at,bd= 
(aat + 3bbt, abt +bat). Is R a ring under these operations? If yes, 
does R have an identity element or zero-divisors? 

7.1.5. On the set R = Z x Z we define operations of addition and mul
tiplication by (a,b)+(at,bt)=(a+at,b+bt), (a,b)(at,bd= 
(aat - 3bbt, abt +bat). Is R a ring under these operations? If yes, 
does R have an identity element or zero-divisors? 
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7.1.6. On the set R = Z x Z we define operations of addition and multiplica
tion by (a, b)+ (a1, bi) =(a+ a 1, b + b,), (a, b)(a,, bi) = (aa,, bbi). 
Prove that R is a ring with identity and find its zero-divisors. 

7.1.7. Let R be a ring and let a, b E R. Prove that the equation a+ x = b has 
a unique solution. 

7.1.8. Let R be a ring, let a, b E U(R) and let a+ b =f. OR. Does the element 
a + b have an inverse?. 

7.1.9. Let A be an abelian group with an additive operation. If we define mul
tiplication by one of the rules: (i) ab = a - b; (ii) ab = b; and (iii) 
ab = 2a - b, then is A a ring? 

7.1.10. Let K be the ring of all real functions and let f E K. Suppose that f is 
not a zero-divisor. Prove that f E U(K). 

7.1.11. Let A E M2(JR) and suppose that A is not a zero-divisor. Prove that the 
matrix A is nonsingular. 

7.1.12. Let R be a finite ring and let a E R. Prove that either a E U(R) or a is 
a zero-divisor. 

7.1.13. Let R be a ring and let H1, H2 be subrings of R. Find necessary and 
sufficient condition for H1 U H2 to be a subring. 

7.1.14. Find the subring of C, generated by the subset Z U {H}. Find all 
invertible elements of this subring. 

7.1.15. Find the subring oflR, generated by the subset Z U {J7}. Find all invert
ible elements of this subring. 

7.1.16. Find the subring ofQ, generated by the subset Z U {~}.Find all invertible 
elements of this subring. 

7.1.17. Let L be the subset of M2(Q) consisting of all matrices of the form 

Prove that L is a subring of M2(Q). Is L commutative? 

7.1.18. Give examples of zero-divisors in the ring M2(Z). 

7.1.19. Let R be a commutative ring and suppose that R has no zero-divisors. 
Prove that if R is finite, then R is a field. 

7.2 EQUIVALENCE RELATIONS 

The idea of a correspondence and the particular case that is the concept of a 
relation are some of the most commonly used ideas in mathematics. One of the 
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most useful concepts here, that of an equivalence relation, is discussed in this 
section. 

We recall from Chapter 1 that a binary relation on a set A is a subset of the 
Cartesian product A x A. If <1> is a relation on A and if a= (x, y) E <1>, then we 
say that elements x and y (in this given order) correspond to each other via <1>. 

Instead of the notation (x, y) E <1> it is often usual to write x <1> y and we shall 
adhere to this convention. The notation x <1> y is meant to convey the idea that x 
is related to y via <1>. This form of notation is called infix. 

At its most basic level the study of binary relations is actually the study of 
subsets of a Cartesian product. In particular, this means that it is possible to 
include one binary relation in another, or we may take the union or intersection 
of binary relations and so on. 

Here are the most important properties of binary relations. 

7.2.1. Definition. Let A be a set with a binary relation <I>. 

(i) <1> is called reflexive if (a, a) E <1> (or a <1> a ),for each a E A; 

(ii) <1> is called transitive if, whenever a, b, c E A and (a, b), (b, c) E <1>, then 
(a, c) E <1> (or, alternatively, a <1> b and b <1> c imply that a <1> c); 

(iii) <1> is called symmetric if, whenever a, bE A and (a, b) E <1>, then (b, a) E 

<1> (or, alternatively, a <1> b implies b <1> a); 

(iv) <1> is called antisymmetric if, whenever a, b E. A and (a, b), (b, a) E <1> 

then a = b (or, alternatively, a <1> b and b <1> a imply a = b). 

Since a relation is a certain type of set, we can use the same notation for 
relations that we use for sets. We mention here some notation that is often used 
for relations on finite sets. If A is a finite set we make a pair of perpendicular 
axes and label the axes with points representing the elements of A. If a, b E A 
and (a, b) E <1>, then we can plot the point (a, b), as we do in the usual regular 
coordinate system, by finding the point on the horizontal axis labeled a and the 
point on the vertical axis labelled b and putting a mark (cross or circle) at the 
place where the lines drawn from these points would intersect. 

Another well-known method of representing a relation on a finite set is based 
on the use of oriented graphs. Here we represent the elements of A by the 
vertices of a directed graph, and if a, b E A then we represent the fact that a <1> b 
by drawing an arrow from the vertex a to the vertex b. 

It is also useful to represent a relation on a finite set by means of square 
matrices. In this case the matrix will be an n x n matrix, where A = {a 1, ... , an} 
has n elements. Let <1> denote a binary relation on A and let the matrix M(<t>) = 
[ajk] be the matrix corresponding to this binary relation, defined as follows. Let 
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For example, let A = { 1, 2, 3, 4, 5} and let 

¢ = {(1, 1), (1, 3), (2, 2), (2, 4), (4, 1), (5, 3)} 

Then we can describe the relation ¢ with the help of the matrix 

(

1 0 1 0 0) 0 1 0 1 0 
00000. 
1 0 0 0 0 
0 0 1 0 0 

Such a matrix is often called a Boolean matrix to underline the fact that all 
its elements are 0 and 1. 

If a relation is represented by a graph and if the relation is reflexive, then 
there will be a loop at each vertex of the graph, from the vertex to itself. The 
corresponding Boolean matrix of a reflexive relation will have a main diagonal 
whose entries are all 1. 

There are many examples of reflexive relations and here we give only a few: If 
A is the set of all straight lines in the plane then the relation of "being parallel" is 
certainly reflexive; the relation "looks alike" on a certain set of people is clearly 
reflexive since everyone looks alike themselves; the relation of "having the same 
gender" on a set of animals is certainly reflexive, and so on. 

In the graph of a symmetric relation, for every arc from the vertex a to the 
vertex b, there is a corresponding arc from b to a. Thus, for a symmetric relation, 
we can use nondirected graphs (that is, graphs without arrows) to illustrate the 
relation. The matrix of a symmetric relation clearly will have a line of symmetry 
along the main diagonal and the matrix itself will be an example of a symmetric 
matrix. Thus, the matrix A = [aij] represents a symmetric relation on a finite set 
precisely when aij = a1;, for all i, j such that 1 ::=: i, j ::=: n. As an example we 
note that the relation "x is the brother of y" is a symmetric relation on the set of 
all male humans, but is not symmetric on the set of all humans. It is important 
to be precise as to the set involved, as these examples make clear. 

Next we note some examples of transitive relations: the relation "to be divisible 
by" on the set of whole numbers; the relation "to be greater than" on the set of 
real numbers; the relation "to be older than" on a set of people; the relation "to 
have the same color as" on the set of toys, and so on. 

Equivalence relations are closely connected to the idea of a partition of a set, 
which we now describe. 

7.2.2. Definition. A family 6 of subsets of a set A is called a covering if A = U6 
(thus, for each x E A there exists S E 6 such that x E S ). A covering 6 is called 
a partition of the set A, if X n Y = 0, whenever X, Y E 6 and X =f. Y; thus, all 
pairs of distinct subsets of the partition have empty intersection. 
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Let 6 be a partition of the set A and define a binary relation r(6) on A by 
the rule that (x, y) E r(6) if and only if the elements x and y belong to the 
same set S from the family 6. The relation r(6) has various properties which 
we now exhibit. 

Since A = U6 then, for each element x E A, there exists a subset S E 6 
such that x E S. Thus, (x, x) E r(6) and hence the relation r(6) is reflexive. 
It is clear that the relation r(6) is symmetric. Finally, let (x, y), (y, z) E r(6). 
It follows that there exist subsets S, R E 6 such that x, y E S andy, z E R. In 
particular, y E S n R and using the definition of a partition, we see that S = R. 
Hence the elements x, z belongs to S which is an element of the partition 6. 
Thus, (x, z) E r(6) so the relation r(6) is transitive. 

7.2.3. Definition. A binary relation <I> on a set A is called an equivalence relation 
or an equivalence if it is reflexive, symmetric and transitive. 

We give some examples next. First we say that two polygons are equivalent 
if they have the same number of vertices. Thus, for example, under this relation 
all triangles are equivalent, and it is easy to see that this relation is an equiva
lence relation. The family of all triangles can itself be partitioned into the subsets 
of acute, right angled, and obtuse triangles and this partition helps to define an 
equivalence relation on the set of all triangles; the relation "the sides of the trian
gle are all equal" is also an equivalence relation on the set of all triangles, as is the 
relation "the figure A is similar to the figure B" on the set of all geometric figures. 

Every equivalence relation on a set is very closely connected to a partition 
of that set into classes which we call equivalence classes. One main reason for 
studying equivalence relations is that such relations allow us to construct new 
mathematical objects quite rigorously. For example, the relation of colinearity 
of rays is a partition of the plane or space into classes of colinear rays. Each 
of these classes is called a direction or a path. In this way, we can transform 
the intuitive idea of direction into a rigorously defined concept. In a similar way 
given a collection of figures we can define a relation on this set of figures by 
saying that figure A is related to figure B if and only if A has the same shape as 
B. Although the concept of an equivalence relation is quite deep there are many 
elementary examples. For example, one common type of exercise that young 
children undertake is to classify a set of toys by their color. This classification 
involves setting up a partition of the toys into different colors, which in tum can 
be obtained by the equivalence relation that toy A is related to toy B if and only 
if A has the same color as B. 

We now develop a rigorous relationship between partitions and equivalence 
relations. 

7.2.4. Definition. Let <I> be an equivalence relation on the set A and let x E A. 
The subset [x]cp = {y E A I (x, y) E <I>} is called the equivalence class of x. 

It is important to note that each equivalence class is uniquely defined by each of 
its elements. Indeed, let y E [x]cp so that (x, y) E <1>. If z E [y]cp, then (y, z) E <I> 
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also. Since the equivalence relation is transitive it follows that (x, z) E <t> also and 
hence z E [x]<t>. Thus, [y]<t> ~ [x]<t>. Because equivalence relations are symmetric 
we also have [x]<t> ~ [y]<t> and hence [x]<t> = [y]<t>. 

Since (x, x) E <t>, it follows that x E [x]<t> and hence the family of all equiv
alence classes forms a covering set of A. Next we consider the intersection, 
[x ]<t> n [y ]<t>, of two equivalence classes and suppose that this intersection is 
not empty. Let z E [x]<t> n [y]<t>. Then, as we noted above, [Z]<t> = [y]<t> and 
[Z]<t> = [x]<t> from which it follows that [x]<t> = [y]<t>. Therefore every pair of 
distinct equivalence classes has empty intersection and we deduce that the family 
of all equivalence classes is a partition, P(<t>), of the set A. 

7.2.5. Theorem. Let A be a set. Then the mapping p: <t> 1---+ P(<t>) is a bijection 
from the set of all equivalence relations defined on A to the set of all partitions 
of A. 

Proof. We have just observed that every equivalence relation defined on A does 
indeed give rise to a partition of A, via the equivalence classes of the relation. 
To show that p is injective let <t>, e be two distinct equivalence relations on 
A. Then we may assume that there exists a pair (x, y), with x, y E A, such 
that (x, y) E <I>\ 8. Since (x, y) E <I>, y E [X]<t> and, since (x, y) ¢ 8, y ¢ [x]e. 
Assume, for a contradiction, that P(<t>) = P(8). Then there exists an element 
z E A such that [z]e = [x]<t>. In particular, x E [z]e. Since an equivalence class 
is represented by each of its elements, we have [z]e = [x]8 . Hence [x]e = [x]<t>. 
However, y ¢ [x]e so y ¢ [x]<t> and we obtain the desired contradiction. This 
contradiction shows that P(<t>) =I= P(8) and hence the mapping p is injective. 

We next prove that p is surjective and it will then follow that p is bijective. 
To this end, let 6 be an arbitrary partition of A. As seen above, each partition 
6 gives rise to an equivalence relation <1>(6). If x E A then x E S for some 
subset S of the partition 6 and the definition of <t> (6) then implies that S is a 
subset of the equivalence class of x. Conversely, let y E A be an element of the 
equivalence class of x. Thus, (x, y) E <1>(6) which means that there is a subset 
Q of 6 such that x, y E Q. In this case x E S n Q and, since distinct subsets of 
a partition are disjoint, we see that Q = S. Hence y E S. Thus, the equivalence 
class of x in <1>(6) coincides with an element of the partition of 6. This shows 
that P(<t>) = 6 and the result follows. 

We now consider some further examples of equivalence relations. 
If A is an arbitrary set then there are two extreme cases, namely, the case 

when <t> = A x A, which is the largest equivalence relation on the set A and the 
case when <t> = {(x, x) I x E A} (the diagonal of the Cartesian product A x A), 
which is the smallest equivalence relation on the set A. All other equivalence 
relations on A are situated between these two extreme cases. 

Other examples of equivalence relations, which can easily be checked, are as 
follows: 

(i) the relation of "being parallel" on the set of all straight lines of a plane; 
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(ii) the relation of similarity on the set of all geometrical figures; 

(iii) the relation "to be equivalent equations" on the set of equations; 

(iv) the relation "to belong to the same species" on the set of animals; 

(v) the relation "to be relatives" on the set of people; 

(vi) the relation "to be the same height" on the set of people; 

(vii) the relation "to live in the same city" on the set of people; 

(viii) the relation "has the same birthday as" on the set of all people; 

(ix) the relation "is similar to" or" is congruent to" on the set of all triangles; 

(x) the relation "has the same image" on the elements of the domain of a 
fixed function. 

We often use the symbols ~. =, ~.,....., and others to help denote equivalence 
in an equivalence relation. Thus, x ,....., y denotes that x is equivalent to y. 

Here are some more mathematical examples. 
(i) Let a> 0 and in the first quadrant P = {(x, y) I x > 0, y > 0} consider the 

set of all hyperbolas Ga = {(x, y) I xy =a}. As a is allowed to vary, the system 
{Ga I a> 0} gives a partition of the set P and hence defines an equivalence 
relation on P, using Theorem 7 .2.5. 

(ii) Let M be the set of all sequences s = (xn)nEN of rational numbers. Con
sider the relation <I> on M defined by the rule: (s, r) E <I> if and only if 

lim (Xn - Yn) = 0. 
n---+oo 

Here r = (yn)nEN· It easy to see that <I> is an equivalence relation. 
(iii) Let M = [0, 1]. Define a relation P on M by (x, y) E P if and only if 

x - y is a rational number. It easy to see that P is an equivalence relation. 
There is one further very important example, which we consider now. 
Let m be a fixed, but arbitrary, integer. Two integers a, b are said to be 

congruent modulo m if a - b is divisible by m. Congruence modulo m is denoted 
by a= b (mod m). Thus, a= b (mod m) if and only if ml(a- b). This relation 
is easily seen to be an equivalence relation, using the properties of divisibility 
and it will be considered in detail later. 

We consider next the very important concept of factorization of mappings. 

7 .2.6. Definition. Let <I> be an equivalence relation on the set A. The set A/ <I> of 
all equivalence classes of A by the relation <I> is called the factor-set of A by <I>. 

We may define a mapping 

a<l>: A----+ Aj<I>. 

by 

a<l>(a) = [a]<l>, for all a E A. 

The mapping a<l> is called an infinite surjection of A on the factor-set Aj<I>. 
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Let A, B be sets and let f : A -----+ B be a mapping. We connect this mapping 
with a binary relation 11 (f) defined by 

(x, y) E /1(f) if and only if f(x) = f(y), where x, yEA. 

Clearly, the relation /1(f) is reflexive since f(x) = f(x). The relation is 
symmetric since the equations f(x) = f(y) and f(y) = f(x) are equivalent. In 
addition, the relation is transitive since the equations f (x) = f (y) and f (y) = 
f(z) imply f(x) = f(z), for all x, y, z EA. Hence, /1(f) is an equivalence 
relation on the set A. 

Now consider the factor-set A/ !1(f) and define the mapping 

1./f 1 : A I 11 (f) -----+ lmf 

by ljf1 ([a]t.(f)) = f(a) for each equivalence class [a]t.(f) E Aj!1(f). 
First we note that 1./f 1 is well defined. This means that 1./f 1 does not depends on 

the choice of representative of the equivalence class. Indeed, let c be an element 
of the set A such that [c]t.(f) = [a]t.(f)· Then by the definition of the relation 
/1(f) we have f(a) = f(c) and it follows that o/t is well-defined. 

The mapping 1./f 1 is bijective. If b E lmf there exists an element a E A such 
that b = f(a), so we have 1./fJ([a]t.(f)) = f(a) = b, and o/t is surjective. If o/t 
([a]t.(f)) = 1./f1 ([c]t.(f)), then by the definition of o/t we have f(a) = f(c), so 
(a, c) E /1(f) and therefore [c]t.(f) = [a]t.(f)· Thus, o/t is injective and therefore 
bijective. 

Finally, we consider the following product of the mappings jv o 1./f 1 o a t.(f)' 
where D = lmf and jv is the canonical injection of D into B. For an arbitrary 
element a E A we obtain 

Since the domain of the mapping jv o 1./f 1 o a t.(f) is A, and the range of 
jv o 1./f 1 o a t.(f) is B, we see that f = jv o 1./f 1 o a t.(f) and hence obtain the fol
lowing theorem. 

7.2.7. Theorem. Let A, B be sets and let f : A -----+ B be a mapping. Then the 
following assertions hold: 

(i) The relation !1(f) defined by 

(x, y) E /1(f) if and only if f(x) = f(y), where x, yEA, 

is an equivalence relation on the set A. 

(ii) The mapping o/t: Aj!1(f)-----+ lmf, defined by the rule 

o/t([a]t,(f)) = f(a)foreach equivalence class [a]t,(f) E Aj!1(f) 

is bijective. 

(iii) f = jv o 1./f 1 o a t.(f)· 
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In particular, an arbitrary mapping is a product of a surjection, a bijection, 
and an injection. The decomposition of the mapping in Theorem 7.2.7 is called 
canonical. 

EXERCISE SET 7.2 

Justify your work with a proof or a counterexample. 

7.2.1. For a, b E ffi. define a :::::: b to mean that ab = 0. Prove or disprove each 
of the following: 

(a) The relation :::::: is reflexive. 

(b) The relation :::::: is symmetric. 

(c) The relation :::::: is transitive. 

7.2.2. For a, b E ffi. define a :::::: b to mean that ab # 0. Prove or disprove each 
of the following: 

(a) The relation :::::: is reflexive. 

(b) The relation :::::: is symmetric. 

(c) The relation :::::: is transitive. 

7.2.3. For a, bE ffi. define a :::::: b to mean that Ia- bl < 7. Prove or disprove 
each of the following: 
(a) The relation :::::: is reflexive. 

(b) The relation :::::: is symmetric. 

(c) The relation :::::: is transitive. 

7.2.4. Define a mapping f : ffi. ~ ffi. by the rule f(x) = x2 + 1, where x E R 
For a, bE ffi. define a:::::: b to mean that f(a) = f(b). 

(a) Prove that :::::: is an equivalence relation on R 

(b) List all elements in the set {x E ffi. I x :::::: 5}. 

7.2.5. For points (a, b), (c, d) E ffi.2 define (a, b):::::: (c, d) to mean that a 2 + 
b2 = c2 + d2. 

(a) Prove that :::::: is an equivalence relation on ffi.2. 

(b) List all elements in the set {(x, y) E ffi.2 I (x, y):::::: (0, 0)}. 

(c) List five distinct elements in the set {(x, y) E ffi.2 I (x, y):::::: (1, 0)}. 

7.2.6. Determine whether the relations represented by the following sets of 
ordered pairs are reflexive, symmetric, or transitive. Which are equiva
lence relations? 

(a) {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} 

(b) {(1, 2), (1, 3), (2, 3), (2, 1), (3, 2), (3, 1)} 

(c) {(1, 1), (1, 3), (2, 2), (3, 2), (1, 2)}. 
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7.2.7. Fractions are numbers of the form ~ where a and b are integers and 
b =I= 0. Fraction equality is defined by ~ = J if and only if ad = be. 
Determine whether fraction equality is an equivalence relation. 

7.2.8. Determine whether the relations represented by the following sets and 
descriptions are reflexive, symmetric, or transitive. Which are equivalence 
relations? 

(a) "Has the same shape as" on the set of all triangles. 
(b) "Is a factor of' on the set {1, 2, 3, 4, .. }. 

(c) "Has the primary residence in the same state as" on the set of all 
people in the United States. 

7.2.9. The equivalence class of an element x E S is the set of all elements that 
are equivalent to x: [x] ={yES I y ~ x}. 

(a) Suppose that ~ is an equivalence relation on a set S. 
Show that for every x andy inS, [x] = [y] if x ~ y and [x] n [y] = 
0 otherwise. 

(b) Show that UxES[x] = S. 

7.2.10. Suppose that Sis a nonempty set. Show that equality (=) is an equiva
lence relation on Sand that [x] = {x} for each xES. 
The trivial relation ~ on S is defined by x ~ y for all x and y in S. 
Show that ~ is an equivalence relation on S with only one equivalence 
class, namely S itself. 

7.2.11. Define a relation on Z x N by (j, k) ~ (m, n) if and only if jn = km. 

(a) Show that ~ is an equivalence relation. 

(b) Define ~ to be the equivalence class generated by (m, n). Show that 
this definition agrees with the usual notion of equality of rational 
numbers. 

(c) Show that the usual definitions for addition and multiplication of 
rational numbers are consistent. That is, these definitions are inde
pendent of the particular representatives used for the equivalence 
classes. 

7.2.12. Let MmxnO~) denote the set of m x n matrices with real entries. 
The following are called row operations on a matrix: 
1. Multiply a row by a nonzero real number. 
2. Interchange two rows. 

3. Add a multiple of a row to another row. 
If A and B are m x n matrices, then A and B are said to be row equivalent 
if A can be transformed into B by a finite sequence of row operations. 
Show that row equivalence is an equivalence relation on Mmxn (1~). 
Hint: Note that each row operation can be reversed by another row 
operation. 
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7.2.13. Two n x n matrices A and B are said to be similar if there exists an 
invertible n x n matrix P such that p-I AP = B. Show that similarity 
is an equivalence relation on MnxnOR). 

7.3 IDEALS AND QUOTIENT RINGS 

The concept of an ideal arose in the study of rings in which uniqueness of 
factorization into products of prime elements did not hold. The search to discover 
some form of "weak uniqueness" property led mathematicians to the concept of 
an ideal. Ideals were first introduced by Dedekind in 1876 in the third edition 
of his book Vorlesungen tiber Zahlentheorie (Lectures on Number Theory). The 
theory of ideals, a generalization of the concept of ideal numbers developed 
by Ernest Kummer, was later expanded by David Hilbert and especially Emmy 
Noether. 

7.3.1. Definition. A subring H of a ring R is called an ideal of R if, for each 
element x E Rand every element h E H, both products xh and hx lie in H. 

The concept of an ideal is often developed using more general notions as 
follows. A subring H of a ring R is called a left ideal (respectively a right ideal), 
if for each element x E R and every element h E H the product xh (respectively 
hx) lies in H. Every subset of the ring, which is both a left and a right ideal 
simultaneously, is an ideal. Thus, one can talk about the "two-sided" ideals of a 
ring. If R is a commutative ring, then all these concepts coincide. 

Using Theorem 7.1.9 we obtain the following criterion for a subset to be an 
ideal. This is often used as the working definition of ideal. 

7.3.2. Proposition. Let R be a ring. A non empty subset H of a ring R is an ideal 
if and only if the following conditions hold: 

(I 1) if x, y E H, then x- y E H; 

(I 2) if x E Rand h E H then the products xh and hx both belong to H. 

In every ring R the subsets {OR} and Rare always ideals, as is easily verified. 

7.3.3. Definition. A ring R is called simple if its only ideals are {OR} and R. 

The following corollaries are analogs of the corresponding assertions for sub
rings and we therefore omit their proofs. 

7.3.4. Corollary. Let R be a ring and let 6 be a family of ideals of R. The 
intersection n6 of all ideals from this family is also an ideal of R. 

7.3.5. Corollary. Let R be a ring and let£ be a local family of ideals of R. Then 
their union U£ is also an ideal of R. 
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7.3.6. Corollary. Let R be a ring and let£ be a linearly ordered family of ideals 
of R. Then the union U£ of all ideals from this family is also an ideal of R. 

7.3.7. Corollary. Let R be a ring and let 

be an ascending system of ideals of R. Then the union UnEN Hn is also an ideal 
of R. 

If M is a subset of a ring R and 6 is the family of all ideals of R containing 
M then the intersection, id(M) = n6, is an ideal of R, by Corollary 7.3.4. 

7.3.8. Definition. The ideal id(M) is called the ideal that is generated by the 
subset M, and M is called a set of generators for this ideal. 

If M ={a}, then we write id(a) instead of id({a}) for the ideal that is gener
ated by a. Such ideals are called the principal ideals of the ring R. 

Certainly if a, x E R then ax E id(a). Let 

aR ={ax I x E R} and Ra = {xa I x E R}. 

It is easy to see that a R is a right ideal of R and that Ra is a left ideal of R. 
We next prove that when R is commutative thenaR= id(a). We already know 
that aR s id(a), so it remains to prove that id(a) s aR. To show this we prove 
that aR is an ideal of R and since it contains a it must then contain id(a) also. 
Hence, we must prove that aR satisfies the conditions (I 1) and (I 2). To this 
end, let u, v EaR. Then u = ay and v = az for certain elements y, z E R. We 
now have 

u- v = ay- az = a(y- z) EaR and gu = ug = (ay)g = a(yg) EaR 

for all elements g of the ring R. Thus, aR is an ideal of R. Since a = ae, we 
have a EaR and therefore id(a) s aR. This proves that aR = id(a). 

We have already shown that an arbitrary subring of the ring Z is of the form 
nZ where n 2:: 0 is fixed. Hence every subring of Z is a principal ideal. 

If R is a ring and H, K are subrings of R let 

H + K = {x + y I x E H, y E K}. 

The subset H + K = {h + k I hE H, k E K} is called the sum of the subrings 
H and K. From the definition it follows that H, K s; H + K. We note that a 
sum of two subrings is not always a subring. However, if one of the component 
subrings, H say, is an ideal then H + K is a subring. Indeed, let a, bE H + K. 
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Then a= x + y and b = x, + Yi for certain elements x, x, E H, y, y, E K. We 
have 

a- b = (x + y)- (x1 + y 1) = (x- xJ) + (y- y 1) E H + K and 

ab = (x + y)(x, + y,) = xx, + xy, + yx, + YYi· 

Since H is an ideal, then xx 1 + xy1 + yx 1 E H, so that 

Hence H + K satisfies the conditions (SR 1) and (SR 2) of Theorem 7.1.9 so 
that H + K is a subring of R. Moreover, if H, K are both ideals of R, then 
H + K is also an ideal of R. For, if x E H, y E K, z E R, then 

z(x + y) = zx + zy E H + K and (x + y)z = xz + yz E H + K, 

so that H + K satisfies the conditions (I 1), (I 2) and, by Proposition 7.3.2, it is 
an ideal of R. 

7.3.9. Proposition. Let R be a ring and let H an ideal of R. If H contains an 
invertible element of R, then H = R. 

Proof. Suppose that x E H n U(R). Since H is an ideal, e = x-1 x E H and if 
a is an arbitrary element of R, then a= ae E H. This means that H = R. 

7.3.10. Corollary. Every division ring, and hence every field, is a simple ring. 

However, the following theorem shows that the converse assertion is not true. 
Not every simple ring is a division ring. 

7.3.11. Theorem. The ring Mn(F) over the field F is simple. 

Proof. We have to show that the only nonzero ideal of Mn(F) is the ring itself. 
To this end, let L be a nonzero ideal of the ring Mn (F) and suppose that B = [biJ] 
is a nonzero matrix that is an element of L. Then there are indices k, m such that 
bkm =f. OF. We write B = Li:o:i,J:O:n biJEiJ and note that 

Hence 
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Since Lis an ideal of Mn(F), it follows that Es1BEqr E L for any s, t, q, r. 
Now let A= [aij] be an arbitrary matrix. Since E;kBEmj = bkmEij E L we see 
that 

for every pair of indices i, j and this proves that A= LI_:::i,j:On aijEij E L. We 
deduce that L = Mn(F). 

As we have already seen in Section 7.1, Mn(F) has zero-divisors if n 2: 2 and 
it cannot therefore be a division ring. However, as the following theorem shows, 
the converse statement to Corollary 7.3.10 is true for commutative rings. 

7.3.12. Theorem. Every simple commutative ring is a field. 

Proof. Let a be an arbitrary nonzero element of R. The nonzero ideal a R contains 
a and hence a R = R, since R is simple. Therefore, there is an element x E R 
such that ax = e, so a is invertible. Consequently every nonzero element is 
invertible, so that R is a field. 

Let R be a ring, let H be a subring of R and let x, y E R. We define a relation 
LH on R by (x, y) E LH if and only if x- y E H. 

The relation LH is reflexive since x- x =OR E H, which means 
that (x, x) E Lw The relation LH is symmetric. For, if (x, y) E LH 
then x - y E H and, since H is a subring, it follows that H contains 
-(x- y) = y- x, so that (y, x) E LH· The relation LH is transitive. For, if 
(x, y), (y, z) E LH then x- y, y- z E H and since H is a subring it contains 
(x - y) + (y- z) = x- z. Thus, (x, z) E LH· Hence LH is an equivalence 
relation on R. 

We now determine the equivalence class of the element x E R under the 
relation LH· If (x, y) E LH• then x- y = h E H and it follows that y = x + 
(-h). Let x + H = {x + u I u E H}. The subset x +His called the coset of the 
element x relative to the subring H and x is called a representative of this coset. 
Thus, every element equivalent to x (under LH) belongs to the coset x +H. 
Conversely, if z E x + H, then z = x + u for some element u E H. Then we 
have 

x- z = -u E H, 

and this means that (x, z) E LH· Consequently, the equivalence classes under 
the relation LH are exactly the cosets relative to the subring H. It follows that 
the coset x + H is defined by each of its elements. Thus, if y E x + H then 
y + H = x + H and, by the argument following Definition 7.2.4, two cosets 
either coincide or have empty intersection. Furthermore, the ring R is the union 
of all the cosets. Thus, the family of all cosets under H is a partition of R. If 
H ={OR}, then x + H = {x} for each element x E R and we obtain the largest 



RINGS 301 

partition of R consisting of all one-element subsets; if H = R, then we obtain 
the smallest partition consisting only of the set R. 

Now let H be an ideal of the ring R. We define addition and multiplication 
on the set of all cosets of H by the rules: 

(x + H) + (y + H) = x + y + H and 

(x + H)(y +H)= xy +H. 

These operations are well defined, as we now show. If also XI, YI are elements 
of the ring R such that x + H = XI + H and y + H = YI + H, then XI = x + 
u, YI = y + v for some elements u, v E H. Hence 

XI+ Yl = (x + u) + (y + v) = (x + y) + (u + v), 

XiYI = (x + u)(y + v) = xy + uy + xv + uv. 

Since H is an ideal, it follows that (u + v), uy, xv, uv E H. Therefore, 

x + y + H =XI+ YI +Hand xy + H = XIYI + H, 

which shows that the operations are well defined. 
Next, 

(x + H) + (y + H) = x + y + H = y + x + H 

= (y + H) + (x + H) and 

(x + H) + ( (y + H) + (z + H)) = (x + H) + (y + z + H) 

= x + (y + z) + H 

=((x+y)+z)+H 

= (x + y + H) + (z + H) 

= ((x +H)+ (y +H))+ (z +H), 

which shows that the operation of addition of cosets is commutative and asso
ciative. Also 

(x +H)+ (OR +H) = x +OR+ H = x + H 

and hence OR + H = H is the zero element under addition of cosets. Clearly, 

(x +H)+ (-x +H)= (x + (-x)) + H =OR+ H = H, 

and hence 

-(x+H)=(-x)+H. 
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Furthermore, 

(x + H)(y + H + z +H)= (x + H)(y + z +H)= x(y + z) + H 

= xy +xz + H 

= xy + H +xz+ H 

= (x + H)(y + H) + (x + H)(z +H) 

and, similarly, 

(x + H + y + H)(z +H)= (x + H)(z +H)+ (y + H)(z +H). 

Also 

(x + H)((y + H)(z +H))= (x + H)(yz +H)= x(yz) + H 

= (xy)z + H = (xy + H)(z +H)= (Cx + H)(y + H))(z +H) and 

(e + H)(x +H) =ex + H = x + H = xe + H = (x + H)(e +H), 

so under the operations of addition and multiplication the set of cosets is a ring. 

7.3.13. Definition. Let R be a ring and let H be an ideal of R. The set of all 
cosets of the ideal H is called the quotient (or factor) ring of R over H and is 
denoted by R/ H. 

We observe that if the ring R is commutative, then every quotient ring of R 
is also commutative. 

As an important example we consider the quotient rings of the ring Z of all 
integers. Let H be an ideal of Z. We have already observed that an arbitrary 
ideal of Z is of the form nZ, where n > 0 is fixed. When H = {0} the quotient 
ring is again Z, so we suppose that n > 0. Consider the set of cosets 

91 = {nZ, 1 + nZ, ... , (n- 1) + nZ}, 

and suppose that among these there are two cosets that are the same. Thus, 
k + nZ = t + nZ, for some k, t where 0::::; k, t ::::; n- I. Let us assume, without 
loss of generality, that k :::: t. Then k E t + nZ so k = t + nm, for some integer m. 
It follows that k - t = nm. Since k - t :::: 0, we have m :::: 0. However, k - t ::::; 
n- 1, which implies that m = 0 and k = t. Thus, the cosets of the family 91 are 
distinct. 

Next, lets be an arbitrary integer. By Theorem 1.4.1, s = qn + r where 0::::; 
r < n and it follows that s + nZ = r + nZ. This means that the set of all cosets 
of nZ coincides with 91. Consequently, when n > 0 the quotient ring ZjnZ is 
finite and indeed IZ/ nZI = n. 



RINGS 303 

Finally, if R is a ring and H is an ideal, consider the mapping aH : R --+ 

R/ H, defined by the rule: 

Then 

aH (x) = x + H where x E R. 

aH(x + y) = x + y + H = x + H + y + H = aH(x) + aH(Y) and 

aH(xy) = xy + H = (x + H)(y +H)= aH(x)aH(y). 

This observation leads us to consider mappings of rings, which preserve the 
operations of addition and multiplication. 

EXERCISE SET 7.3 

Justify your work with a proof or a counterexample where required. 

7.3.1. On the set R = lF3 x Z we define operations of addition and multiplication 
by (a, b)+ (a1, bJ) = (a+ a1, b + bJ), (a, b)(a1, bJ) = (aa1, bbJ). Prove 
that R is a ring with identity. Find all ideals of R. 

7.3.2. Let R be a commutative ring and let n EN. Is the set nR = {nx I x E R} 
an ideal of R? 

7.3.3. Write the multiplication table for the ring Z16 = Zj16Z. 

7.3.4. Write the multiplication table for the ring Z14 = Zj14Z. 

7.3.5. Let M = {2k + 2ti I k, t E Z}. Prove that M is an ideal of the ring Z[i]. 
Find all elements of the quotient ring Z[i]/ M. 

7.3.6. Let M = {2k + 2ti I k, t E Z}. Find all zero-divisors of the quotient ring 
Z[i]/ M. 

7.3.7. Let M = 3Z[i]. Prove that the quotient ring Z[i]/ M is a field of order 9. 

7.3.8. Let M = nZ[i]. Prove that the quotient ring Z[i]/ M is a field if and only 
if n is a prime and n is not equal to the sum of the squares of two integers. 

7.3.9. Let F be a field and let M be the subset of all polynomials from the ring 
F [X 1 , X 2l having zero constant term. Prove that M is an ideal of the ring 
F [X 1 , X 2]. Prove that M is a not a principal ideal of F [X 1, X 2]. 

7.4 HOMOMORPHISMS OF RINGS 

In this section, we consider mappings of rings that respect (or preserve) the 
operations. In Section 3.1 we introduced the general concept of homomorphism 
and applying this to rings we obtain the following definition. 
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7.4.1. Definition. Let R, S be rings. The mapping f: R -+ Sis called a ring 
homomorphism if it satisfies the conditions 

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) 

for all elements x, y E R. 

In this section we only consider rings, so the term homomorphism will always 
be understood to mean "ring homomorphism." 

As usual an injective homomorphism is called a monomorphism, a surjective 
homomorphism is called an epimorphism and a bijective homomorphism is called 
an isomorphism. 

Iff: R-+ Sis an isomorphism then, as in Section 3.1, the natural mapping 
f- 1 : S-+ R is also an isomorphism. 

7.4.2. Definition. Let R, S be rings. Then RandS are called isomorphic if there 
exists an isomorphism from R to S or, equivalently, from S to R. This will be 
denoted by R ~ S. 

The easiest example of an isomorphism is the identity permutation s R : R -+ 
R. It is also easy to show that iff: R-+ S and g : S-+ U are homomor
phisms, then their product g o f is likewise a homomorphism. 

7.4.3. Proposition. Let R, S be rings and let f : R -+ S be a homomorphism. 
Then the following properties hold: 

(i) f(OR) = Os; 

(ii) f( -x) = - f(x) for every element x E R; 

(iii) f(x- y) = f(x)- f(y) for all x, y E R; 

(iv) if H is a subring of R, then its image f(H) is a subring of S. In partic
ular, f(R) = lmf is a subring of S; 

(v) ifV is a subring of S, then its preimage f- 1(V) is a subring of R; 

(vi) if V is an ideal of S, then its preimage f- 1 (V) is an ideal of R. In 
particular, 

Kerf= {x E R I f(x) = Os} = f-\Os) 

is an ideal of R; 

(vii) if R has a multiplicative identity, e, then f(e) is the identity element of 
the subring lmf; 

(viii) if R is commutative, then lmf is commutative. 

Proof. 
(i) We have x +OR = x for each x E R. Then 

f(x) + f(OR) = f(x +OR)= f(x). 
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Since the element f(x) has a negative in S, we may add this negative to both 
sides of these equations to obtain 

Os = - f(x) + f(x) = - f(x) + f(x) + f(OR) = Os + f(OR) = f(OR). 

(ii) From the definition of the negative element we have x + (-x) =OR, so 
that 

Os = f(OR) = f(x + (-x)) = f(x) + f(-x). 

This equation show that f(-x) is the negative of f(x). 
(iii) We have 

f(x- y) = f(x + (-y)) = f(x) + f(-y) = f(x) + (- f(y)) = f(x)- f(y). 

(iv) Let x, y E Hand let a= f(x), b = f(y). Then 

a +b = f(x) + f(y) = f(x + y) E /(H) and 

ab = f(x)f(y) = f(xy) E f(H). 

It follows from Theorem 7.1.9 that f(H) is a subring of S. 
(v) Let x, y E f- 1(V). Then f(x), f(y) E V. Since V is a subring of S, 

f(x)- f(y) = f(x- y) E V, and f(x)f(y) = f(xy) E V, which imply that 
x- y,xy E f- 1(V). From Theorem 7.1.9 it follows that f- 1(V) is a subring 
of R. 

(vi) As in the proof of (v), if x, y E f- 1(V) then x- y E f- 1(V). If also 
r E R then f(xr) = f(x)f(r) E V, since V is an ideal of S and hence xr E 

f- 1(V). Likewise rx E f- 1(V) and it follows that f- 1(V) is an ideal of R. Of 
course {05 } is an ideal of S, so the statement concerning Kerf is clear. 

(vii) If a E lmf, then a = f(x) for some element x E R. Therefore 

a = f(x) = f(xe) = f(x)f(e) = af(e) and a = f(x) = f(ex) 

= f(e)f(x) = f(e)a, 

which means that f(e) is the identity element of the subring lmf. 
(viii) Finally, let R be a commutative ring and let a, bE lmf. Then a= f(x) 

and b = f (y) for some elements x, y E R. We now have 

ab = f(x)f(y) = f(xy) = f(yx) = f(y)f(x) = ba. 

The ideal Kerf is called the kernel of the homomorphism f. 

7.4.4. Theorem (The Theorem on Monomorphisms). Let R, S be rings. A homo
morphism f : R ~ S is a monomorphism if and only if Kerf = { 0 R}. If f : 
R ~Sis a monomorphism, then R ~ lmf. 



306 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

Proof. Iff is a monomorphism, and if x =I= OF then f(x) =I= f(OR) = Os. This 
means that no nonzero element x belongs to Kerf and hence Kerf= {OR}. 
Conversely, let Kerf= {OR} and let x, y be elements of R such that f(x) = 
f(y). Then 

f(x- y) = f(x)- f(y) = Os, 

and hence x- y E Kerf. It follows that x- y =OR, so that x = y. Thus, f is 
an injective homomorphism and hence it is a monomorphism. 

7.4.5. Theorem (The First Isomorphism Theorem, Version I). Let R, S be rings 
and let f: R---+ S be an epimorphism. Then Sis isomorphic to RjKerf. 

Proof. For the sake of convenience put H =Kerf. As in Section 7.2 we define 
an equivalence relation !:l(f) on R by (x, y) E !:l(f) if and only if f(x) = 
f(y). As in the previous theorem, this is equivalent to f(x- y) = 0. Thus, 
(x, y) E !:l(f) if and only if x- y E H. Consequently !:l(f) = LH and, by the 
results of Section 7.2, we see that [x]c,ul = x + H for each x E R, and therefore 
Rj !:l(f) = Rj H. We now consider the mapping \ll 1 : Rj H ---+ S, defined by 
\ll f(x +H)= f(x). By Theorem 7.2.7, \ll 1 is a bijection so the proof will be 
complete once we prove that \ll 1 is a homomorphism. We have 

and 

\ll f(X + H + y +H) = \ll f(x + y +H)= f(x + y) = f(x) + f(y) 

= \ll f(x +H)+ \ll J(Y + H), 

\ll f((x + H)(y +H)) = \ll f(xy +H) = f(xy) = f(x)f(y) 

= \ll f(X + H)\ll J(Y +H). 

The first isomorphism theorem now follows. 

7.4.6. Theorem (The First Isomorphism Theorem, Version 2). Let R, S be rings 
and let f: R---+ S be a homomorphism. Then RjKerf ~ lmf S S. 

Proof. The restriction of f to the mapping R ---+ lmf is an epimorphism and 
hence, from Theorem 7.4.5, we see that lmf ~ RjKerf. Finally, by Proposition 
7.4.3, lmf is a subring of S. 

We now consider some applications of these results. 

The Characteristic of a Ring 

Let R be a ring and let f : Z---+ R be the mapping defined by f(n) = ne, 
where n E Z. Clearly, 

f(n + k) = (n + k)e = ne + ke = f(n) + f(k) and 

f(nk) = (nk)e = n(ke) = (ne)(ke) = f(n)f(k), 
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for all n, k E Z. By Proposition 7.4.3, 

lmf = {ne I n E Z} = Ze 

is a subring of R. By Theorem 7 .4.6, Ze = lmf ~ ZjKer f. By Proposi
tion 7.4.3, Kerf is an ideal of Z. From the description of ideals of the ring Z 
we have Kerf = nZ, for some fixed, but arbitrary, n 2: 0. 

If Kerf = {0}, then Ze ~ Z. In this case we say that the ring R has character
istic 0 and write charR = 0. If Kerf= nZ, where n > 0, then Ze ~ ZjnZ and 
in this case we say that the ring R has characteristic n > 0 and write char R = n. 
In this case if a is an arbitrary element of R, then 

If n is not prime, then n = kt, where 1 < k, t < n. Certainly k, t fl. nZ. There
fore ke =/=-OR and te =/=-OR. However, 

(ke)(te) = (kt)e = ne =OR. 

So if char R is not prime then the ring R has zero-divisors. 

7.4.7. Proposition. If a ring R has no zero-divisors then either charR = 0 or 
char R = p for some prime p. In particular, if R is a division ring or an integral 
domain, then either charR = 0 or charR = p for some prime p. 

In Section 3.2 we considered examples of prime fields. These were the field 
Q of all rational numbers and the field lF P• for some prime p. Now we are in a 
position to give a different definition of the field lF p· It turns out that this is none 
other than the quotient ring Z/ pZ where p is a prime. 

We show first that the quotient ring Z/ pZ is a field. Let pZ =/=- x + pZ E 

Zj pZ. Since x fl. pZ the integers x and p are relatively prime and hence there 
exist integers k, r such that xk + pr = 1. We have 

1 + pZ = xk + pr + pZ = xk + pZ = (x + pZ)(k + pZ). 

This shows that every nonzero coset x + pZ is invertible and therefore lF P = 
Z/ pZ is a field. As we proved in Section 7.3, IJF PI = p. The fact that lF P is a 
prime field has been proved in Section 3.2. 

7.4.8. Theorem. Let F be afield and let Fo be the prime subfield of F. 

(i) If char F = p is a prime then Fo ~ lF p· 

(ii) If char F = 0, then Fo ~ Q. 

Proof. Consider the mapping f: Z ~ F defined by f(n) = ne, where n E Z. 
As we proved above, this mapping is a homomorphism. If char F = p is a 
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prime, then Kerf = p'!L and, as in the proof of the first isomorphism theorem, 
the mapping 1/J: 7Ljp7L-----+ F defined by the rule 1/J(n + p'!L) = f(n), where 
n E 7L, is also a homomorphism and this homomorphism is nonzero, because 
1/J(l + p'!L) = f(l) = e =f. OF. Clearly, Im 1/J = Im f = 7Le and we deduce the 
result in this case by applying Theorem 3.2.16. 

Suppose now that charF = 0. In this case, Kerf= {0} and Theorem 7.4.4 
implies that f is a monomorphism. Since e E Fo it follows that 7Le is a subring of 
Fo. We extend the mapping f to a mapping !I : Q -----+ F in the following way. 
Let '; be an arbitrary element of Q. Then n =f. 0 and hence f(n) = ne =f. OF. 
Since F is a field, its nonzero element ne is invertible in F. We now set 

f1 (:) = (me)(ne)- 1
• 

The function !I is well defined. For, if ~ = '; then we have 

kn = tm so (ke)(ne) = (te)(me) and hence 

(me)(ne)- 1 = (ke)(te)- 1 = (te)- 1(ke). 

Thus /1 (mjn) = (me)(ne)- 1 = (ke)(te)- 1 = f 1 (k/t), 

and that !I is well defined follows. The mapping !I is an extension of f since 
if n E 7L, then n = 'f so that 

!I (n) =!I G-) = (ne)(e)- 1 = (ne)(e)(e)-1 = ne = f(n). 

The mapping !I is a homomorphism since 

!I(:+~)= !I (mt ~kn) = ((mt +kn)e)((nt)er' 

= ((mt)e + (kn)e)((ne)(te)r' 

= ((me)(te) + (ke)(ne))(ne)- 1(te)- 1 

= (me)(te)(ne)- 1 (te)- 1 + (ke)(ne)(ne)- 1 (te)- 1 

= (me)(ne)-
1 + (ke)(te)- 1 = f1 (:) + f1 (~). 

Also 

!I ( (:)(~))=!I(::)= ((mk)e)((nt)er' = (me)(ke)((ne)(te)r' 

= (me)(ke)(ne)- 1 (te)- 1 = (me)(ne)- 1 (ke)(te)- 1 

=11(:)11(~)· 
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By Theorem 3.2.16, Q ~ lm!J. Since lm/J is a subfield of F, it follows 
that lm!J 2:: Fo. On the other hand, ne E Fo for every n E Z and if n =f. 0, then 
(ne)- 1 E F0• Therefore (me)(ne)- 1 E Fo for every pair m, n E Z, where n =f. 0. 
Thus, lm!J :::; F0 , and then lm/J = F0 . 

The following theorem allows us to construct new ring extensions. 

7.4.9. Theorem. Let R, K be rings and let f : R----* K be a monomorphism. 
Then there exists a ring S such that S is isomorphic to K and R is a subring 
of S. If e R· e K are the multiplicative identities of R and K respectively, and if 
f(eR) = eK, then eR is the multiplicative identity of S. Finally, if R and K are 
fields, then R is a subfield of S. 

Proof. We may assume that K n R = 0. Indeed, if this is not true we can replace 
K by an isomorphic image having empty intersection with R. For example, we 
can put K 1 = K x { 1} and define operations by the rules 

(x, 1) + (y, 1) = (x + y, 1) and (x, l)(y, 1) = (xy, 1). 

Let U = lmf. By Theorem 7.4.4, U is a subring of K and U ~ R. Let A= 
K \ U and S = R U A. Let g: S----* K be the mapping defined by 

g(x) = ~f~x) if x E R, 
X lf X EA. 

It is easy to check that g is a bijection from S onto K. We now define operations 
of addition, $, and multiplication, ®, on S by 

x$y = g- 1 (g(x) + g(y)) and x ® y = g- 1 (g(x)g(y)), 

for arbitrary x, y E S. Then, 

g(x EJ1 y) = g(g- 1(g(x) + g(y))) = g(x) + g(y) and 

g(x ® y) = g(g- 1(g(x)g(y))) = g(x)g(y). 

We have to show that S is a ring and to this end we have 

x EJ1 y = g-1 (g(x) + g(y)) = g-1 (g(y) + g(x)) = y El1 x, 

so El1 is commutative. Also 

(x El1 y) El1 z = g-1 (g(x El1 y) + g(z)) = g-1 
( (g(x) + g(y)) + g(z)) 

= g-1 (g(x) + (g(y) + g(z))) = g-1 (g(x) + g(y El1 z)) 

= x E!1 (y El1 z); 
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so EB is associative. Further, if x E R then 

Also, if x E R then 

If x E A, then -x ¢:. U, because U is a subring. Thus, 

and it follows that S is an abelian group under the operation EB. 
Moreover, 

(x EB y) ® z = g- 1 (g(x EB y)g(z)) = g-1 ( (g(x) + g(y))g(z)) 

= g- 1 (g(x)g(z) + g(y)g(z)) = g-1 (g(x ® z) + g(y ® z)) 

= (x ® z) EB (y ® z). 

We can prove the equation 

x ® (y EB z) = (x ® y) EB (x ® z) 

in a similar manner. Also, ® is associative since 

(x ® y) ® z = g-1 (g(x ® y)g(z)) = g- 1 ( (g(x)g(y))g(z)) 

= g-1 (g(x)(g(y)g(z))) = g-1 (g(x)g(y ® z)) = x ® (y ® z). 

Furthermore, 

x ® g-1 (eK) = g- 1 (g(x)g(g-\eK))) = g-1(g(x)eK) = g-1 (g(x)) = x and 

g- 1(eK)®x =g-1(g(g-1(eK))g(x)) =g-1(eKg(x)) =g-1(g(x)) =x. 

so that g- 1 (eK) is the identity element of S. In particular, if f(eR) = g(eR) = eK, 
then eR is the identity element of S. It follows that S is a ring. We have already 
proved that 

g(x EB y) = g(x) + g(y) and g(x ® y) = g(x)g(y), 

which shows that g is an isomorphism. 
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If x, y E R, then 

x EB y = g-1 (g(x) + g(y)) = g-1 (f(x) + f(y)) 

= g-1(/(x + y)) = g-1(g(x + y)) = x + y and 

x 0 y = g-1 (g(x)g(y)) = g-1 (f(x)f(y)) = g-1 (f(xy)) = g-1 (g(xy)) = xy 

Hence, the restriction of these operations to R give rise to the original operations 
on R. Thus, by Theorem 7.1.9, R is a subring of S. 

Finally suppose that R, K are fields. By Theorem 3.2.6 it is sufficient to check 
the condition (SF 2) only. If x is a nonzero element of R, then it has a multi
plicative inverse in R. Since the multiplicative identity of R is also the identity 
element in S, the inverse of x in R is the inverse element to x in the field S. 

This theorem shows that to construct an extension E of the ring R it is 
sufficient to construct a monomorphism of R into some ring E isomorphic to the 
ring K. 

We next consider some applications of the results we obtained above. Recall 
that in Section 7.1 we decided to consider associative rings only. The following 
remarkable theorem, sometimes called the Dorroh extension Theorem, shows that 
every ring is a subring of some ring with identity. 

7.4.10. Theorem. For every ring R there exists a ring K with multiplicative iden
tity such that R is a sub ring of K. 

Proof. If R has an identity element then we take K = R. Therefore suppose 
that R does not have a multiplicative identity. By Theorem 7.4.9, it is enough 
to construct a monomorphism f: R ~ K where K is a ring with identity. Let 
K = R x Z. Define operations on K by 

(x, n) + (y, k) = (x + y, n + k) and (x, n)(y, k) = (xy + kx + ny, nk), 

for all x, y E R and n, k E Z. 
Since the addition on K is defined componentwise, using the addition in R 

and Z, K inherits all the properties of addition from R and Z. Thus, K is an 
abelian group under addition. Also it is easy to see that 

OK= (OR, 0) and - (x, n) = (-x, -n). 

Furthermore, multiplication is distributive over addition since, 

(Cx, n) + (y, k))(z, m) = (x + y, n + k)(z, m) 

= ( (x + y)z + (n + k)z + m(x + y), (n + k)m) 

= (xz + yz + nz + kz + mx +my, nm + km) 
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and 

(x, n)(z, m) + (y, k)(z, m) = (xz + nz + mx, nm) + (yz + kz +my, km) 

= (xz + nz + mx + yz + kz +my, nm + km), 

so that 

( (x, n) + (y, k) )(z, m) = (x, n)(z, m) + (y, k)(z, m). 

Similarly, 

(x, n)((y, k) + (z, m)) = (x, n)(y, k) + (x, n)(z, m). 

The multiplication in K is associative since, 

( (x, n)(y, k) )(z, m) = (xy + ny + kx, nk)(z, m) 

whereas 

= ((xy + ny + kx)z + m(xy + ny + kx) + (nk)z, (nk)m) 

= ((xy)z +n(yz) +k(xz) +m(xy) + (mn)y 

+ (mk)x + (nk)z, (nk)m) 

(x,n)((y,k)(z,m)) = (x,n)(yz+kz+my,km) 

= (x(yz + kz +my)+ n(yz + kz +my)+ (km)x, n(km)) 

= (x(yz) + k(xz) + m(xy) + n(yz) + (nk)z 

+ (nm)y + (km)x, n(km)). 

Since the multiplications in R and Z are associative, it follows that 

((x, n)(y, k))(z, m) = (x, n)((y, k)(z, m)). 

Consequently K is a ring. Finally, 

(x, n)(OR, 1) = (x, n) =(OR, 1)(x, n), 

so that (0 R, 1) is the multiplicative identity element of K. Thus, K is a unitary 
ring. 

We next define the mapping f: R -----+ K by f(x) = (x, 0), where x E R. 
Clearly, 

f(x + y) = (x + y, 0) = (x, 0) + (y, 0) = f(x) + f(y) and 

f(xy) = (xy, 0) = (x, O)(y, 0) = f(x)f(y), 

for all x, y E R. Evidently, Kerf= {OR} and, by Theorem 7.4.4, f 1s a 
monomorphism. The result follows. 
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The following theorem indicates that there are some types of "universal" 
objects for rings. 

7.4.11. Theorem. Let R be a ring with identity. Then there exists a monomor
phism from R into the endomorphism ring of some abelian group. 

Proof. By Theorem 7.4.10, we may assume that R has a multiplicative identity. 
Let a E Rand consider the mapping Ta: (R, +) ~ (R, +)defined by Ta(x) = 
ax, where x E R. We have 

Ta(X + y) = a(x + y) =ax+ ay = Ta(x) + Ta(Y) 

and hence Ta is an endomorphism of the additive group of the ring R. Of course 
End(R, +) is a ring. 

We next consider the mapping f: R ~ End(R, +), defined by the rule 
f(a) = Ta for each a E R. If x E R, then 

Ta+b(x) = (a+ b)x =ax+ bx = Ta(x) + Tb(x) = (Ta + Tb)(x) 

and 

Tab(x) = (ab)x = a(bx) = Ta(bx) = Ta(Tb(x)) = Ta 0 Tb(x). 

From this it follows that Ta+b = Ta + Tb and Tab =Tao Tb, for all a, bE R. 
We therefore have 

f(a +b)= Ta+b = Ta + Tb = f(a) + f(b) and 

f(ab) =Tab= Ta 0 Tb = f(a) 0 f(b) 

for all a, b E R. These equations show that f is a ring homomorphism. Finally, 
if a =f. b, then 

Ta(e) = ae =a =f. b =be= Tb(e), 

so that f(a) = Ta =f. Tb = f(b) and hence f is a monomorphism. 

EXERCISE SET 7.4 

7.4.1. On the set~ x ~ x ~we define operations of addition and multiplication 
by (a, b, c)+ (a 1, b1, c1) =(a +a1, b + b1, c + ci), (a, b, c)(a1, b,, 
ci) = (aa,- bb,, ab, + ba,, ac, + ca1). Is ~ x ~ x ~ a ring? If yes, 
is there a monomorphism from the field of complex numbers to this 
ring? 

7.4.2. On the set~ x ~we define operations of addition and multiplication by 
(a, b)+ (c, d) = (a+ c, b +d); (a, b)(c, d) = (ac- 3bd, ad+ 2bd + 
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be). Is ffi. x ffi. a field? If yes, is this field isomorphic to the field of 
complex numbers? 

7.4.3. Let K = Z[J2] ={a+ bJ21 a, bE/£} and let L be the subset of 
M2 (/£) consisting of all matrices of the form 

Prove directly that K is a subring of ffi., that L is a subring of M2 (/£), 
and that K and L are isomorphic. 

7.4.4. Let P1 = {x + yJ2 I x, y E Q}, P2 = {x + y,JSI x, y E Q}. Prove 
directly that P1 and P2 are subrings of R Is the map f : P1 ~ P2 
defined by the rule f(x + yJ2) = x + y,JS an isomorphism of P1 to 
P2? 

7.4.5. Let K = /Z[i,J3] ={a+ ib.J3 I a, bE/£}. Prove directly that K is a 
subring of C. Define the mapping f : K ~ M2 (/£) by the rule 

h (a -3ab). f(a + ibv 3) = b 

Is f a monomorphism? 

7.4.6. Prove that the rings (/Zj6/Z)j(3/Zj6/Z) and /Zj3/Z are isomorphic. 

7.4.7. Prove that the rings (/Zj8/Z)j(4/Zj8/£) and /Zj4/Z are isomorphic. 

7.4.8. Let R be an integral domain. Suppose that the additive subgroup (e) is 
finite. Prove that I (e) I is a prime. 

7.4.9. Let R be an integral domain and let a, b E R. Prove that the additive 
cyclic subgroups (a), (b) have the same orders. 

7.4.10. Let R = {a+ bi I a, b E /£} = /Z[i] and let H = 4i R. Find the order of 
the quotient ring Rj H. Find all zero-divisors and invertible elements of 
RjH. 

7.4.11. Let R = {a+ bi I a, b E /£} = /Z[i] and let H = 3R. Find the order of 
the quotient ring Rj H. Find all zero-divisors and invertible elements of 
RjH. 

7.4.12. On the set F = ffi. x ffi. we define operations of addition and 
multiplication by (a, b)+ (e, d)= (a+ e, b +d), (a, b)· (e, d)= 
(ae- 3bd, ad+ 2bd +be). Is F a field? If yes, is this field isomorphic 
to the field of complex numbers? Find a root of the polynomial X2 + 1 
in F. 

7.4.13. Let Q[_JP] = {x + y_JP I x, y E Q} where p is a prime. Is Q[_JP] a 
subring of ffi.? Is Q[_JP] a subfield of ffi.? Are Q[ J7] and Q[ ,JS] iso
morphic? 
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7.4.14. Prove that every field F of characteristic 0 contains one and only one 
field isomorphic to Q. 

7.4.15. Let R be a commutative ring. Prove that R is a field if and only if every 
epimorphism f : R -----+ L where L is a nonzero ring is an isomorphism. 

7.4.16. Let F be a field and let M be the subset of all polynomials from the 
ring F [X 1 , X 2l having zero constant term. Prove that the quotient ring 
F[X1, X2]/M is isomorphic to the field F. 

7.4.17. Let F be a field and let M be the ideal of the polynomial ring F[X1, X2], 
generated by X1- X2. Prove that the quotient ring F[X1, X2]/M is 
isomorphic to the ring F[X J]. 

7.5 RINGS OF POLYNOMIALS AND FORMAL POWER SERIES 

Of all rings, the ring of polynomials is one of the most important and plays 
a fundamental role in commutative ring theory. Many important mathematical 
problems have been solved using this theory. Here we consider one example that 
requires us to consider the ring of polynomials. 

Let K be a commutative ring with identity and let R be a unitary subring of 
K, containing no zero-divisors. Let M be a subset of K and consider the family 

9J1 = {H I H is a subring of K containing both R and M}. 

Put R[M] = n9J1, which we call the subring of K generated by Rand M, or the 
subring generated over R by M. By Corollary 7.1.10 R[M] is a subring. By its 
definition R[M] is the least subring, which contains both the subring R and the 
subset M. 

The simplest case to consider here is the case when M consists of one element 
y. In this case, we write R [y] instead of R [ {y}] and we next determine the 
elements of R[y]. By Theorem 7.1.9 we note that yn E R[y] for all n EN and 
hence, for ao, a1, ... an E R, all possible sums of the type 

belong to R[y]. Such an element is nothing more than a polynomial in y 
with coefficients in R. Moreover, the subring R[y] consists of all these 
sums. Indeed, for two arbitrary such sums a0 + a1y + a2y2 + · · · + anyn and 
bo + b1 y + b2Y2 + · · · + bkYk where n ::: k we have 

(ao + a1y+ ... +anyn) + (bo + b1y + · · · + bk/) = (ao + bo) + (a1 + bJ)y 

+ ... (ak + bk)/ 

k+l n. +ak+IY +···+any, 
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and 

(ao + a1y + · · · + anyn)(bo + b1y + · · · + bk/) = aobo + (aob1 + a1bo)y 

+ (aob2 + a1b1 + a2bo)i 

+ ... + anbkyn+k. 

By Theorem 7.1.9, the set of all sums of the type ao + a1y + · · · + anyn forms a 
subring. Since this subring contains Randy, it coincides with R[y]. Note that y 
is an element of the ring K and, for this reason, some polynomials in y that look 
different can actually give the same polynomial, which is clearly inconvenient. 
In order to overcome this indeterminacy, we need to remove multiple ways of 
writing an element somehow. The term variable arises in this way and needs to 
be denoted by some symbol. There is a better way to proceed here, where the 
main idea lies in using the operations defined above to construct polynomials. For 
example, every polynomial can be defined by its coefficients and if we formally 
define operations between coefficients then it is possible to formally retrieve 
the ring of polynomials. Here we will be a little bit more general and define 
polynomials as a certain subring of some larger ring, namely, the ring of formal 
power series. Let R be an integral domain and consider the set R[X] of all 
sequences 

where a; E R. We shall often write (an)nENo as simply (an) for brevity. 
Two sequences (an)nENo and (bn)nENO are called equal, if an = bn for each 

n E No. We define the following operations of addition and multiplication in 
R[X]: 

and 

where 

dn = aobn + a1bn-1 + ... + anbo = L:: ajbn-j = L:: ajbk. 
O~j~n j+k=n 

for each n E No. 
In this way addition in R[X] is reduced to the addition of corresponding 

elements of the ring R, so it is commutative and associative. Clearly, the zero 
element is the sequence 
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Every sequence (an) has a negative, (-an), which is the additive inverse of 
(an). So, this set of sequences is an abelian group under addition. 

It is easy to prove that multiplication of sequences is commutative, so we need 
to prove the distributivity rule: 

Let 

Then, for arbitrary n E No, we have 

Un = L (aj + bj)Ck = L aJCk + L bJCk and 
J+k=n J+k=n J+k=n 

Vn = L ajCk + L bjCk. 
J+k=n J+k=n 

Hence, Un = Vn for each n E No so the distributive law follows. 
The multiplication is associative. To see this let 

For arbitrary n E No we have 

Wn = L ( L ajbk) Cr = L (ajbk)Cr and 
m+t=n J+k=m J+k+t=n 

Zn = L ai ( L bk) Cr = L aj(bkcr). 
J+m=n k+t=m J+k+t=n 

Hence Wn = Zn for each n E No, so the multiplication is associative. 
The element e = (e, OR, OR, ... , OR, ... ) is the multiplicative identity, as is 

easily seen. 
Consequently, R[X] is a commutative ring with identity and, indeed, R[X] 

is an integral domain. To see this latter fact, let (an) =1- 0 and (bn) =1- 0 be two 
sequences in R[X]. Then there are indices j, k such that ai =1- OR, bk =1- OR but 
an= OR for 0 ~ n ~ j, and bn =OR for 0 ~ n ~ k. If 

then 

which proves that R[X] is an integral domain. 
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7.5.1. Definition. A sequence (an)nENo is called a polynomial of degree m 2: 1, if 
there exists a positive integer m such that an =OR whenever n > m, but am =I= OR. 
In this case the coefficient am is called the leading coefficient of the polynomial. 

If an =OR for all n E No, then the polynomial is called the zero polynomial. 
Sometimes the zero polynomial is considered to be a polynomial of infinite 
degree. We denote the subset of R[X] consisting of all polynomials by R[X]. 
Next, let (an). (bn) be two polynomials of degree m, t, respectively. Then an= 
bn =OR for n > max{m, t} and 

for n > m + t. Theorem 7.1.9 therefore shows that R[X] is a subring of the ring 
R[X] and clearly R[X] is a unitary subring. 

Now let X = (OR, e, OR, ... , OR, ... ). By the definition of multiplication, we 
obtain 

xn =(OR. OR, ... ' OR. e, OR, ... , OR, ... ). -._,.-
n 

For an arbitrary element a E R we let 

Then 

axn =(OR, OR, ... , OR, a, OR, ... , OR, ... ). 
-._,.-

n 

We next let (an)nENo be a polynomial of degree m. We can write this polynomial 
in the form 

(an)= (ao, OR, OR, ... , OR. OR, OR, ... )+ (OR, a,, OR, ... , OR, OR, OR, ... ) 

+···(OR, OR, OR, ... , OR, am, OR, ... ) 

=ao+a,X+···+amxm. 

Furthermore, 

a+ b = (a, OR, ...• OR •... )+ (b, OR •... , OR •... ) 

= (a+ b, OR, ... , OR, ... ) =a+ band likewise 

ab = (ab, OR, ... ' OR, ... ) = ab. 

These equations show that the mapping a 1---+ a, where a E R, is a homomor
phism of R into R[X], which is clearly injective. In particular, R is isomorphic 
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to its image in R[X]. In algebra, we often consider isomorphic objects as iden
tical, so we identify R with its image and instead of a we just write a. Thus, 
a E R is identified with the corresponding element a of R[X]. In this way, we 
can write a polynomial in the form 

which, of course, is the normal way of writing a polynomial and we have now 
formally justified this process. We denote the degree of the polynomial f(X) 
by degf(X). From the properties mentioned above, we observe the following 
relations: 

deg(f(X) ± g(X))::::; max{degf(X), degg(X)} and 

{deg(f(X)g(X)) = degf(X) + degg(X)}. 

From the second equation, we deduce that U(R[X]) = U(R) and that R[X] has 
no zero-divisors if R has no such elements. 

We now return to formal power series. Just as with polynomials we can write 
them as a sum of powers of X; however, the way we write such power series 
involves infinite sums. Since we cannot usually talk about limits of sequences 
in arbitrary rings, we must agree on some rules for adding an infinite set of 
sequences. 

A collection of sequences, {A j I j E No}, where A j = (a jn)nENo and a jn E R, 

is called summable if the set {a jn I j E N0} contains only a finite set of nonzero 
elements, for each n E No. In this case, the sum LjENo A j of the collection of 
sequences {A j I j E No} is the sequence (bn)nENo• where bn is the sum of all the 
nonzero elements of the sequence {a jn I j E No}. 

We now show that the collection {anXn In E N0} is summable and that its 
sum is equal to (an)nENo· To see this we write these sequences one under another 
and check if every column of the resulting infinite matrix contains only finitely 
many nonzero elements. By adding the sequences, we will add finitely many 
elements in each column. We have 

(ao, OR. OR, OR, OR, OR, OR, 0 0 0) + 
(OR, a], OR. OR, OR, OR, OR, 0 0 0 ) + 

(an)nENo = 
(OR, OR, OR, OR, OR, am OR, 0 0 0) + 

In this way, the formal power series (an)nENo can be written in the more regular 
form as LnENo an xn 0 

Finally, we will find which series lie in the group U(R[X]). Let f(X) = 
LnENo anxn' g(X) = LnENo bnXn and suppose that f(X)g(X) =e. It follows 
that aobo = e = boao, since R is commutative and hence ao E U(R). 
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Conversely, suppose that ao E U(R). Suppose that f(X)g(X) = e = 
g(X)f(X) and let us use this equation to determine the coefficients of g(X) in 
terms of those of f(X). In this case it will follow that f(X) has a multiplicative 
inverse and then /(X) E U(R[X]). We have aobo = e, so that bo = a01

. Further 
aob1 + a,b0 =OR. It follows that b, = a1a02

. If the coefficients bo, b,, ... , bn 
have been defined then the coefficient bn+ 1 can be found from the equation 

and we see that 

Thus, the group U(R[X]) consists of all series of the form LnENo anxn where 
ao E U(R). In particular, if R is a field, then U(R[X]) consists of series of the 
type LnENo anxn' in which ao =f. OR. 

We next determine the ideals in the ring of formal power series. The follow
ing important theorems describe their structure. We first prove a version of the 
division algorithm of Z in F[X], in the case when F is a field. 

7.5.2. Theorem. Let F be a field, let f(X), g(X) E F[X] and suppose 
that g(X) =f. Op. Then there exist polynomials q(X), r(X) E F[X] such that 
f(X) = q(X)g(X) + r(X), where either r(X) = Op or degr(X) < degg(X). 
This representation is unique. 

Proof. Let 

where bk =f. Op. We will use induction on n to prove the theorem. Ifdegf(X) < 
degg(X) then put r(X) = f(X) and q(X) = Op. Thus, we may assume that 
degf(X) 2: degg(X). If degf(X) = 0 then we set r(X) = Op, q(X) = aob0

1. 
Suppose now that n > 0 and suppose that our theorem has been proved for all 
polynomials of degree less than n. The polynomial anbJ: 1 xn-k g(X) has degree n 
and its leading coefficient is an. Then the degree of the polynomial f (X) -
anbJ: 1 xn-k g(X) = f1 (X) is less than n and, by induction, 

f1 (X) = q, (X)g(X) + r(X), 

where either r(X) = Op or degr(X) < degg(X). We now have 

f(X) = anbJ: 1 xn-k g(X) + f1 (X) = q(X)g(X) + r(X), 

where 

and the first part follows. 
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Suppose also that 

f(X) = qz(X)g(X) + rz(X), 

where either rz(X) =OF or degrz(X) < degg(X). Then 

q(X)g(X) + r(X) = qz(X)g(X) + rz(X), 

and it follows that 

g(X)(q(X)- qz(X)) = rz(X)- r(X). 

The polynomial rz(X)- r(X) is either zero or its degree is less than degg(X). 
On the other hand, if q(X)- qz(X) =j:. OF, then 

deg(g(X)(q(X) - q2 (X)) = degg(X) + deg(q(X)- qz(X)) 2: degg(X), 

which gives a contradiction if r2(X)- r(X) =j:. OF. Thus, rz(X)- r(X) =OF, 
which implies that q (X) - qz (X) = 0 F and hence rz (X) = r (X). This establishes 
the uniqueness portion of the result. 

7.5.3. Corollary. Let F be afield. Then every ideal of the ring F[X] is principal. 

Proof. Let H be an ideal of the ring F[X]. If H ={OF}, then H = OFF[X], 
which is a principal ideal. Assume next that H contains nonzero polynomials. 
Among these we choose a polynomial g(X) of least degree. Let f(X) be an 
arbitrary element of H. By Theorem 7.5.2, we know that 

f(X) = q(X)g(X) + r(X), 

where either r(X) =OF or degr(X) < degg(X). 
If we suppose that r(X) =j:. OF, then r(X) = f(X)- q(X)g(X) E H, which 

contradicts the choice of the polynomial g(X). This contradiction proves that 
r(X) =OF, so that f(X) = q(X)g(X).It follows that H = g(X)F[X] and again 
H is a principal ideal. The result follows. 

Here is a further example of a ring all of whose ideals are principal. 

7.5.4. Theorem. Let F be afield. Then every ideal of the ring F[X] is principal. 

Proof. Let H be an ideal of F[X]. If H ={OF}, then H = OFF[X] is a prin
cipal ideal. 

Assume next that H contains a nonzero formal power series. If LnENo anxn E 

H and ao =j:. 0 F, then, as mentioned earlier, 

L anxn E U(F[X]). 
nENo 
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By Proposition 7.3.9, H = F[X], so that H = eF[X], a principal ideal. Next 
consider the case when the constant term ao of every power series LnENo an xn 
in H is zero. This means, that every element f(X) of H can be written as 
Xg(X) for some g(X) E F[X]. We choose a natural number m such that for 
some f(X) E H we have f(X) = xm g(X), where g(X) is a series with nonzero 
constant term. Thus, g(X) E U(F[X]). Let h(X) be a power series such that 
g(X)h(X) =e. Since H is an ideal of the ring F[X], then 

f(X)h(X) = xm g(X)h(X) = xm E H. (7.1) 

Hence xm F[X] :S H. We choose m least such that xm E H. If f(X) E 

H then f(X) = xnk(X) for some n ::: m and k(X) E F[X]. Thus, f(X) E 

xm F[X] and hence H = xm F[X]. 

We now return to the ring R [y] which we discussed at the start of this section. 
Let K be a commutative ring and let R be a unitary subring of K. Suppose that 
R has no zero-divisors and that y E K. If f(X) E R[X] then 

f(X) = ao +a, X+ 0 0 0 + anxn, where ao, a,, 0 0 0' an E R. 

Let 

f (y) = ao + a 1 y + · · · + an yn. 

Clearly, f(y) E R[y]. 

7.5.5. Definition. An element y is said to be a root, or a zero, of a polynomial 
f(X), if f(y) =OR. 

A root might or might not be an element of the ring R. For example, the 
polynomial X 2 - 2 E Q[X] has no rational roots; its roots are real numbers and 
belong to the field IR; the polynomial X 2 + 1 E Q[X] has no real roots. It is easy 
to check the following. 

7.5.6. Proposition. Let K be a commutative ring and let R be a unitary subring 
of K. Suppose that R is an integral domain. Ify is a fixed element of K, then the 
mapping 1J : R[X] ---+ K, defined by l](f(X)) = f(y) for each f(X) E R[X], is 
a homomorphism, sometimes called the evaluation homomorphism. 

Consider now Im lJ· By Proposition 7.4.3, Im lJ is a subring of K. If f(X) =a 
is a polynomial of zero degree, then 1](/(X)) =a. It follows from this that 
R ::; Im lJ· On the other hand, 

Im 1J = {l](f(X)) I f(X) E R[X]} = {f(y) I f(X) E R[X]}, 

and, as we noted above, f(y) E R[y] for any f(X) E R[X]. This means that 
Im 1J = R[y] = {f(y) I f(X) E R[X]}. 

Next we consider Ker lJ· 
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7.5.7. Definition. An element y is said to be transcendental over the ring R, 
if there is no polynomial with coefficients in R for which y is a root of that 
polynomial. 

This means that if an element y is transcendental over R, then Ker 1J = {OF}. 
Theorem 7.4.4 shows that 1J is then a monomorphism and in this case R[X] ;::::: 
R[y]. 

We next consider the case when Ker 1J =!= {0 F}. By Proposition 7 .4.3, Ker 1J 

is an ideal of the ring R[X] and Ker 1J consists only of those polynomials f (X) 
for which f (y) = 0 F. Thus, Ker 1J consists of all polynomials that have y as a 
root. 

7.5.8. Definition. An element y is said to be algebraic over the ring R if there 
exists a polynomial f(X) E R[X] such that y is a root of f(X). 

If R is a field then, from Corollary 7.5.3 we deduce that Ker 1J = h(X)R[X] for 
some polynomial h(X) E R[X]. If r(X) is another polynomial with the property 
that Ker 1J = r(X)R[X], then 

h(X) = r(X)u(X) and r(X) = h(X)v(X), 

for some u(X), v(X) E R[X]. It follows that 

h(X) = r(X)u(X) = h(X)v(X)u(X), 

so v(X)u(X) =e. Since U(R[X]) = U(R), this means that v(X) = c E U(R) 
and u(X) = c- 1• Hence r(X) = ch(X) where c E U(R). 

Among all the polynomials generating the ideal Kerry, we choose the one 
whose leading coefficient is the identity element and we denote this polynomial 
by my(X). The polynomial my(X) is called the minimal polynomial of y over 
the field R. By Theorem 7 .4.6, we have 

R[y] = lmry;::::: R[X]jKerry and Kerry= my(X)R[X]. 

Let F be a field and let y E F. From Theorem 7.5.2 we obtain the 
decomposition f(X) = q(X)(X- y) + r(X) where either r(X) =OF or 
degr(X) < deg(X- y) = 1. Hence, in any case, r(X) E F, so r(X) =bE F. 
By Proposition 7.5.6, 

f(y) = q(y)(y- y) + b =b. 

Thus, f(X) = (X- y)q(X) + f(y). 
We say that a polynomial f(X) is divisible by a polynomial g(X) if there 

exists a polynomial q(X) such that f(X) = g(X)q(X). We have now proved. 

7.5.9. Proposition. Let F be afield and let f(X) E F[X]. The element y E F is 
a root of a polynomial f(X) if and only if (X- y) divides f(X). 
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7.5.10. Corollary. Let F be afield and let f(X) E F[X]. Then 

/(X)= (X- cd 1 ••• (X- Cm)kmq(X), 

where the polynomial q(X) has no roots in the field F, Cj =f. c1 whenever j =f. t 
andkJ, ... ,kmEN. 

7.5.11. Corollary. Let F be afield, let f(X) E F[X] and let M ={a E F I a is 
a root of a polynomial f(X)}. Then IMI ::::; deg /(X). 

This draws attention to certain fields in which every polynomial has a root. 
We make the following definition. 

7.5.12. Definition. A field F is called algebraically closed if every polynomial 
f(X) E F[X] has a root in F. 

7.5.13. Corollary. Let F be afield. Then F is algebraically closed if and only if, 
for any polynomial f(X) E F[X], 

/(X) = a(X- cd1 ••• (X- Cm)km, 

where a is the leading coefficient of the polynomial f(X), CJ, ... , Cm E F, Cj =f. c1 

whenever j =f. t and k1, ... , km E N. 

From this corollary, we obtain the following set of equations, collectively 
known as the Viete formulas. They reflect important relations between the roots 
and the coefficients of a polynomial. 

Let 

where an =f. 0 F and also suppose that 

/(X)= a(X- cJ)(X- c2) ... (X- Cn)· 

Then we have 

ao = (-ltac1c2 ... cn; 

a1 = ( -lta(CJC2 ... Cn-1 + CJC3 ... Cn-!Cn + · · · + C2C3 ... Cn-!Cn); 

an-2 = a(c1c2 + CJC3 + · · · + CJCn + C2C3 + · · · + Cn-JCn); 

an-1 = -a(CJ + c2 + · · · + Cn); 
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The following important theorem gives us our first example of an algebraically 
closed field, but its proof is omitted. 

7.5.14. Theorem (Gauss). The field C of complex numbers is algebraically closed. 

A complex number a is called algebraic if a is an algebraic element over the 
field Q. A complex number a is called transcendental if a is a transcendental 
element over the field Q. 

It is easy to find examples of algebraic numbers. However, it is not easy to 
prove that a given number is transcendental. 

In the nineteenth century, Lindeman proved that e is a transcendental number. 
In the same century, Liouville proved that 7r is transcendental. The Russian math
ematician, Gelfond ( 1906-1968), developed an advanced theory, allowing us to 
determine the transcendency of a wide class of numbers appearing in analysis. 
Many of the proofs of these facts use powerful analytic methods, so we do not 
consider them here. However, we illustrate how to construct certain examples of 
transcendental numbers using a technique due to Liouville. The following result 
is the basis of this method. 

7.5.15. Proposition. Let a be an algebraic number and let f (X) E Q[X] be the 
minimal polynomial of a. Suppose that n = deg f (X). Then there exists a number 
!L = /L(n), independent of p, q, such that for each rational number ~ =f. a the 
following inequality holds 

Proof. Let 

f(X) = ao +a, X+···+ anXn E Q[X]. 

Without loss of generality, we can suppose that ao, a1, ... , an E Z and we note 
also that f(~) =f. 0, since f(X) is irreducible over Q. Also we note that 

f ( ~) = ao + a, ( ~) + · · · + an ( ~) n 

aoqn + a,pqn-1 + ... + anpn 

qn 

so that If (~)I 2: q'• , since aoqn ... an pn E Z. If I~ - a I > 1 then we take !L = 1. 
Since f(X) has a as a root we have f(X) =(X- a)/J (X) so that f(~) = 
( ~ - a) /J ( ~). If I~ - a I S 1 then let 

A.> Max{/J (x) I where lx- al S 1}. 
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In this case, 

It follows that 

If A < 1 then qt" < I ~ - a I and again we take f.L = 1. If A ::: 1 then 

so we may take f.L = A in this case. 

One consequence of Proposition 7.5 .15 is that it is not possible, for all rationals 
pjq, for Ia- E. I to be less than Kjqn+i for some fixed K independent of p, q. 

q 

Otherwise, we would have Kjqn+i > tL/qn, which implies that K > f.1,q for all 
integers q, which is false. 

Now it is easy to observe, for example, that the number y = Lm~i 1~ 1 is 

transcendental. Suppose that y is algebraic. Let Yr = L~=l tdm!. Then y, = -dfrr, 
say, a rational number. We have 

1 1 
0 < Y- Yr = 10(r+l)! + 10(r+2)! + ... 

1 1 1 
< 10(r+l)! + 10. 10(r+l)! 102 . 10(r+l)! · · · · (7.2) 

2 
< ----;-.:-;-

10(r+l)! 

However, if n is arbitrary and r > n then 10'1n < 10'1' < 10<r+ll! so that 
,;," > to<~+I)!. Hence (7.2) implies that 

p 2 
Y - Yr = Y - - < -, 

q qn 

where q = 1 0'1• By our remark above, it now follows that if the minimal polyno
mial of y is of degree n - 1, then we obtain a contradiction. Since n is arbitrary 
this also gives a contradiction. Consequently, y is transcendental. 
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EXERCISE SET 7.5 

7.5.1. Prove that the polynomials j(X), g(X) E lFs[X] are equal, where 
/(X) = (X+ 3)5 and g(X) = X5 + 3. 

7.5.2. For which values of a, b, care the following polynomials f{X), g(X) E 

Z[X], j(X) = aX2(X + l) + b(X2 + l)(X- 6) + cX(X2 + 1), g(X) 
= X2 + 5X + 6 equal? 

7.5.3. For which values of a, b, care the following polynomials f(X), g(X) E 

Z[X], f(X) = aX2(X + 3) + b(X - l)(X - 6) + c(X + 1), g(X) = 
2X3 + 5X2 + 8X + 7 equal? 

7.5.4. For which values of a is the polynomial f(X) E Z[X], f(X) = X4 + 
6X3 + 11X2 +aX+ 1 the square of some polynomial g(X) E Z[X]. 
Find all such g(X). 

7.5.5. For which values of a, b is the polynomial j(X) E Z[X], f(X) = X4 + 
6X3 + llX2 +aX+ l the cube of some polynomial g(X) E Z[X]. 

7.5.6. Can the polynomial /(X) = 8X6 - 36aX5 + 66a 2 X4 - 63a 3 X3 + 
33a4 X2 - 9a5 X + a6 E JR[X] be the cube of a polynomial g(X) E Z[X], 
where a E JR? 

7.5.7. Let F be a finite field and p : F ---+ F be a mapping. Prove that there 
exists a polynomial f(X) E F[X] such that p(a) = f(a) for each a E F. 

7.5.8. Prove that the ring Z[X] does not contain a polynomial f(X) such that 
/(7) = 11 and f(l1) = 13. 

7.5.9. For which values of a does the polynomial g(X) = X2 -a E Z[X] 
divide the polynomial f(X) = 3X4 - 2X2 - 5 E Z[X]? 

7.5.10. For which values of a does the polynomial g(X) = X2 - a E Q[X] 
divide the polynomial f(X) = 3X4 - 2X2 - 5 E Q[X]? 

7.5.11. For which values of a, b, c does the polynomial g(X) = X2 +a- 1 E 

lR[X] divide the polynomial f(X) = X3 - bX - c E lR[X]? 

7.5.12. Divide the polynomial f(X) = 4X5 - 6X3 + 2X2 - 4 by g(X) = 
2X2 - 5X + 1 in the ring Q[X]. 

7.5.13. Divide the polynomial f(X) = (2i + 3)X3 - 4iX + i- 24 by g(X) = 
X2 + i in the ring <C[X]. 

7.5.14. Divide the polynomial j(X) = 4X3 + 2X2 -X+ 1 by g(X) = 2X + 3 
in the ring lFs[X]. 

7.5.15. For which values of a, b do the polynomials g1 (X)= X- 1, g2 (X) = 
X+ 1 E JR[X] simultaneously divide the polynomial f(X) = X5 - a2 

X2 + bX + l E lR[X]? 
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7.5.16. Let R be an integral domain, let a E R and let f(X) = xn -an, n E N. 
Prove that f(X) is divisible by g(X) = X -a. 

7.5.17. The subset M of the ring Z[X] contains the number 0 and all polynomials 
of the form f(X) = aoX2 + a1X3 + · · · + an_2xn. Prove that M is an 
ideal of Z[X]. Is M a principal ideal? 

7 .5.18. Let F be a subfield of a field P and let a E P be algebraic over F. Let 
H = {f(X) E F[X] I j(a) =OF}. Prove that His an ideal of F[X]. 

7.5.19. Let a be an irrational root of the polynomial pX2 + qX + r, where 
p, q, r E JR; and p =f. 0. Is the subset Q[a] = {x + ya I x, y E Q} a sub
field of JR;? 

7.5.20. If a is a root of the polynomial xn - 1 E C[X], then prove that an-i+ 
an-2 + ... + a + 1 = 0. 

7.6 RINGS OF MULTIVARIABLE POLYNOMIALS 

In Section 7.5 we constructed the ring of polynomials in one variable over a 
commutative ring R. In this section, we extend this construction, quite naturally, 
to the case of multivariable polynomials. As in Section 7.5, we suppose that the 
commutative ring R does not have zero-divisors. 

Let K = R [X] be the ring of polynomials in one variable X, as constructed in 
Section 7.5 and recall that K also has no zero-divisors. In tum, we can consider 
the ring Q = K[Y] of polynomials in the variable Y over the ring K. Here the 
variable Y plays the same role relative to K as the variable X played relative to 
R. Elements of Q can be written in the form: 

and this form is unique. Every element b j can be written in the form 

It follows from the construction that the variable permutes with each element 
of the ring over which the polynomials have been constructed. In particular, the 
variables X and Y permute. Therefore, every element of Q has a presentation in 
the form 

L L ajkxkyj, where ajk E R, for 1 :::: k:::: n(j) and 1 :::: j:::: m. 
i:S.j:S.m i:S.k:S.n(j) 

This ring, Q = R[X, Y], is called the ring of polynomials in the two (inde
pendent) commuting variables X and Y over the ring R. 

We may repeat this argument as many times as we need to obtain the 
ring R[X 1, ... , Xn] of polynomials in the (independent) commuting variables 
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X1, ... , Xn over R. An element f E R[X 1, ... , Xn] is a sum of elements of 
the kind ack,, ... ,knlX~ 1 

••• X~" where ack,, ... ,knl are elements of the ring R. The 
expressions ack,, ... ,knlX~ 1 

••• X~n are called monomials. The number kj is called 
the degree of the monomial relative to the variable X j and the sum k1 + · · · + kn 
is called the complete degree of this monomial. 

Two polynomials in R[X] are equal precisely when the corresponding coeffi
cients are equal. Then two polynomials f, g E R[X1, ... , Xn] are equal precisely 
when the sets of monomials making the decompositions of f and g are the 
same. Thus, if ack,, ... ,knlX~ 1 

••• X~n is a monomial in the decomposition of f 

then a(k,, .... knlX~1 
••• X~n is the corresponding monomial in g and conversely. In 

particular, both polynomials contain a monomial of the form X~' ... X~n and the 
coefficient of this monomial is a(k, ..... knl in both cases. 

7.6.1. Definition 

(i) The degree of a polynomial f E R[X 1, ... , Xn] relative to the variable 
X j is the maximal degree relative to X j of all nonzero monomials from 
the decomposition of f. This number is denoted by degjf(XI, ... , Xn) or 
degj f for short. 

(ii) The complete degree of a polynomial f E R[X 1, ... , Xn] is the maximal 
complete degree of the nonzero monomials from the decomposition of f. 
We denote this number by degf(X1, ••• , Xn) or degf for short. 

As in the case of polynomials in one variable, we do not prescribe any degree 
to the zero element. Sometimes for the sake of convenience, the zero element is 
considered as a polynomial of infinite degree. It no longer makes sense to talk 
about the leading coefficient of a multivariable polynomial since the decomposi
tion may include several monomials all of the same maximal degree. 

7.6.2. Definition. A polynomial f E R[X 1, ... , Xn] is called homogeneous (or 
uniform) or a form of degree t, if each monomial in its decomposition has the 
same complete degree t. 

Linear polynomials are of degree one, whereas quadratic and cubic polynomi
als are of degrees two and three, respectively. By combining monomials of the 
same complete degree, we can write the polynomial f (X 1 , ... , X n) as a sum of 
forms of different degrees, say 

where k = degf (X 1 , ••• , X n) and f; is homogeneous of degree i. We note that 
this representation is unique. 

In Section 7.5 we proved that the ring R[X] of polynomials over an integral 
domain has no zero divisors and hence that R[X] is also an integral domain. It 
follows, by induction, that the ring R[X 1, ... , Xn] of multi variable polynomials 
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over an integral domain R also has no zero-divisors and hence is itself an integral 
domain. However, the following more general result holds. 

7.6.3. Theorem. Let R be an integral domain and let f, g E R[X 1, ... , Xn]. 
Then 

for every j, where I :=:: j :=:: n and 

deg(fg) = deg f + degg. 

Proof. The first assertion was proved in Section 7.5. 
Let f = fo + f1 + · · · + fk be a decomposition off as a sum of forms where 

k = deg f and let g = g0 + g1 + · · · + gm be a decomposition of g as a sum of 
forms where m = deg g. Thus, 

Forms fk. gm are nonzero and, since the ring R[X 1, ... , Xn] has no zero-divisors, 
the polynomial fkgm is nonzero. It is clearly the case that every monomial of 
the decomposition has complete degree less than k + m and it follows that 

deg(fg) = k + m = degf + degg. 

7.6.4. Definition. Let K be a commutative ring and let R be a unitary subring of 
K. Iff E R[X1, ... , Xn], where f = L:>(k 1, .•• ,kn)X~ 1 

••• X~n, and ifyl, ... , Yn E 
K then let 

f( ) _ '""" kt kn Yl, · · ·' Yn - L...,a(kt, ... ,kn)YI · · · Yn · 

The element f (YI, ... , Yn) of the ring K is called the value of the polynomial 
f(XI, ... , Xn) at the point (yl, ... , Yn), or its value at X1 = Yl, ... , Xn = Yn· 
We say that (yl, ... , Yn) is a root of f(XI, ... , Xn), if f(yl, ... , Yn) =OR. 

As in the case of one variable, we have the following result. 

7.6.5. Proposition. Let K be a commutative ring, let R be a unitary subring of 
K and let Yl, ... , Yn E K. Then the mapping 

ry[y1, ... , Yn]: R[X1, ... , Xn] ~ K, 

defined by 

ry[yl, ... , Ynl<f) = f(yl, ... , Yn), whenever f(XI, ... , Xn) E R[X1, ... , Xn], 

is a homomorphism. 
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This result follows from Proposition 7.5.6 and with the help of a simple 
induction argument. As in the case of a single variable, Im 1J[YI, ... , Yn] = 
R[yi, ... , Yn] is a subring, generated by the elements Yl, ... , Yn over R. 

7.6.6. Definition. The elements Yl, ... , Yn E K are called algebraically 
dependent over R, if Ker 1J[YI, ... , Yn] =J {OR}, and, algebraically independent, 
ifKer1J[YI, ... , Yn] ={OR}. 

In particular, if the elements Yl, ... , Yn are algebraically independent 
over R, then the subring R[y1, ... , Yn] is isomorphic to the polynomial ring 
R[X1, ... , Xn]. Proposition 7.6.5 shows the universality of the polynomial ring. 

We consider now the standard form of writing a multivariable polynomial 
which is often called the lexicographic form, since it is reminiscent of the way 
a dictionary works. 

7.6.7. Definition. A monomial a(k1 .... ,knlX~
1 ... X~n is higher than the monomial 

a(m1, ... ,mn)X~ 1 ... x;:zn if there is a number d such that kl = ml, ... ' kd-1 = 
md-1· but kd > md. We call d the height of the monomial. 

We point out that if one monomial is higher than another this does not mean 
that its corresponding degree must be bigger. Thus, the lexicographic order is not 
connected with the polynomial degree. For each pair of monomials in a given 
polynomial, one is always higher than the other and the relationship of "being 
higher than" is a transitive relation. In this way all members of the decompo
sition of a polynomial f can be situated in lexicographic order. The monomial 
that is highest in this lexicographic order is called the highest member of the 
polynomial f. 

7.6.8. Theorem. Let R be an integral domain and let f, g E R[X 1, ... , Xn]. Then 
the highest member of the polynomial f g is the product of the highest members 
off and g. 

Proof. Let a(k1, ... ,knlX~ 1 ... X~n and b(11 , ... ,tnlX~1 ... X~n be the highest monomials 
in the polynomials f and g, respectively. Let 

X ml xmn db XTI xrn a(m1, .... mn) 1 · • • n an (q, ... ,rn) I · · · n 

be arbitrary monomials from the corresponding decompositions off and g. Then 
there exist positive integers d (respectively q) such that k 1 = m 1, ... , kd-1 = 
md-1, but kd 2: md and t1 = r1, ... , tq-1 = rd-1, but tq 2: rq. We compare the 
products 
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and 

(a(m 1, ••• ,mn)X~ 1 
••• X;;'")(b(r1, ... ,rnlX~ 1 

••• X~") 

=a b xm,+r, xmn+rn (m,, ... ,mn) (q, ... ,rnl I · · · n • 

We may assume, without loss of generality, that d 2: q. Then we have 

but 

Thus, 

is higher than 

which means that the product 

is the highest monomial of f g. 

Next we consider some important specific types of polynomial. 

7.6.9. Definition. Let R be a commutative ring, let n be a permutation of degree n 
and let 

f(XJ, ... , Xn) E R[XJ, ... , Xn], where 

f(XJ, ... ,Xn) = I>(k1, ... ,kn)X~1 
... X~"· 

Define the mapping 

by 

SrrCf(XJ, ... ' Xn)) = I>(k,, ... ,knlx!'ol ... x!"(n)' 

A polynomial f(XJ, ... , Xn) is called symmetric, if 

for every permutation JT E Sn. 
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Clearly the polynomials that do not change upon permuting any of the variables 
are symmetric. Also every element of R is a symmetric polynomial, since it does 
not depend on any variable. Here are some examples of symmetric polynomials 

a1CX1, ... , Xn) = X1 + ··· + Xn, 

az(XI, ... , Xn) = X1X2 + X1X3 + · · · + Xn-IXn, 

a3(X1, ... , Xn) = X1XzX3 + X1X2X4 + · · · + Xn_zXn-IXn, 

an-I (XI, ... , Xn) = X1 Xz ... Xn-1 + X1 Xz ... Xn-zXn + · · · + XzX3 ... Xn, 

an(XI, ... , Xn) = X1X2 ... Xn-IXn. 

These polynomials are called the elementary symmetric polynomials. By 
Theorem 2.2.7, every permutation is a product of certain transpositions. 
Therefore, in order to check that a polynomial is symmetric, it is sufficient to 
check that the polynomial does not change under the action of any transposition. 

7.6.10. Proposition. Let R be an integral domain. Then the subset of all symmet
ric polynomials of R[X1, ... , Xn] is a subring of R[X1, ... , Xn]. 

This assertion is left to the reader. It is quite straightforward to prove. 
Note that all the variables X 1, ••• , Xn are included in the decomposition of 

each symmetric polynomial and all variables must have the same degree. By the 
Viete formulas, we deduce that the coefficients of a polynomial in R[X] with 
leading coefficient one are elementary symmetric polynomials of the polynomial 
roots. 

Proposition 7 .6.1 0 implies the following. 

7.6.11. Corollary. Let R be an integral domain and let f(XJ, ... , Xn) denote 
an arbitrary polynomial over R. Then the polynomial 

is symmetric. 

Conversely, the following theorem holds. 

7.6.12. Theorem. Let R be an integral domain and let f(XJ, ... , Xn) be 
an arbitrary symmetric polynomial over R. Then there exists a polynomial 
g(XJ, ... , Xn) E R[XJ, ... , Xn] such that 
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Proof. Let a0X~ 1 ••• X~" be the highest monomial in the lexicographic order
ing of the polynomial f(X,, ... , Xn). First we show that k1 ::::_ k2 ::::_ · · · ::::_ kn. 
Suppose the contrary and let k1 < kJ+I for some j. Since f(X,, ... , Xn) is a 

· 1 · 1 · h · 1 xk1 xkHI xkj xk H symmetnc po ynomta tt as a monom1a ao 1 • • • 1 J+l . . . n". owever, 

this latter monomial is higher than a0X~ 1 ... x~HI X~~~ ... X~n, a contradiction 
which shows that k, ::::_ k2 ::::_ · · · ::::_ kn. 

We next consider the polynomial 

By Corollary 7.6.11, h1 is a symmetric polynomial in the variables X 1, ... , Xn. 
The highest monomials of the polynomials a1, a2, ... , an are X 1, X 1 X 2. 

X 1X2X3, ... , x, ... Xn, respectively, and therefore by, Theorem 7.6.8, the 
highest monomial of the polynomial h, is 

Xki-k2(X X )k2-k3 (X X X )kn-1-k"(X X X )k" ao 1 I 2 · · · I 2 · · · n-! I 2 · · · n 

- xkl xkn - ao I · · · n · 

It follows from this that the highest member of the symmetric polynomial f -
h 1 =!I is lower than the monomial a0 X~1 

••• X~", the highest member of the 
polynomial f. Repeating the same argument for the polynomial /J, we see that 
f 1 = h2 + h. where h2 is a product of elementary symmetric polynomials with 
coefficient in R and h is a symmetric polynomial whose highest member is 
lower than the highest member of fi. We now have f = h, + h2 +h. 

As we continue this process, at some stage the process terminates, which is 
to say that for some positive integer t we shall have ft =OR and then 

where h 1 is a product of elementary symmetric polynomials with coefficient in 
R, for 1::; j::; t. Indeed, if this process does not terminate then we would obtain 
an infinite series of symmetric polynomials Un I n E N} in which every highest 
member of each of these polynomials will be lower than the highest members 
of the preceding polynomials and therefore will be lower than aoX~ 1 ... X~". 
However, if bX~ 1 

••• X;;'" is the highest member of /j, then as we showed 
above m1 ::::_ m2 ::::_ · · · ::::_ mn. On the other hand, since aoX~1 ... X~n is higher 
than bX~ 1 ••• X;;'", we have k1 ::::_ m 1• However, it is easy to observe that there are 
only finitely many systems of whole numbers m 1, m2, ... , mn with the properties 
m 1 ::::_ m2 ::::_ · · · ::::_ mn and k, ::::_ m I· It follows from this that our sequence of 
polynomials is finite. 

The following result is a natural complement to Theorem 7 .6.12. 
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7.6.13. Theorem. Let R be an integral domain and let f(X,, ... , Xn) be an 
arbitrary symmetric polynomial over R. Then f can be uniquely expressed as a 
polynomial in the elementary symmetric polynomials. 

Proof. If the polynomial f(X 1, ••• , Xn) has two distinct representations 

then the difference 

would be a nonzero polynomial in a 1, a2, ... , an. At the same time the substi
tution in this polynomial of the variables a 1, a2, ... , an in terms of X,, ... , Xn 
would lead us to the zero polynomial in the ring R[X 1, ... , Xn]. We have there-
fore only to prove that if the polynomial r(a,, a2, ... , an) is nonzero, then the 
polynomial q(X 1, ... , Xn) obtained from r(a,, a2, ... , an) by substituting for 
a,, a2, ... , an in terms of X 1, ... , Xn is also nonzero. 

If aat' ... a~" is one of the members of r(a,, a2, ... , an), and a =/=OR then, 
after substitution of all a 1, a2, ... , an by their expressions we will get a polyno
mial in X1, ... , Xn, the highest member of which is, by Theorem 7.6.8, 

Xk'(X X )k2 (X X ·)ki (X X )kn - Xm' XmJ+I Xmi xmn a I 1 2 . . . 1 . . . J • • • 1 . • • n -a I • • . j J+l . . . n , 

where 

It follows that 

m, = k, + k2 + · · · + kn, 

m2 = k2 + ... + kn, 

Thus, if we know the exponents m 1, ••• , mn we can deduce the exponents 
k,, ... , kn of the original polynomial r(a1, a2, ... , an). 

Now consider all members of the polynomial r(a,, a2, ... , an) and for each of 
them find the highest member in its representation as a polynomial in X 1, ... , Xn. 
Select the highest of these monomials. This member does not have any like terms 
among other members and that is why having nonzero coefficient it appears only 
one time. This implies that not all coefficients of q(X,, ... , Xn) are zeros, so 
this polynomial is not the zero element of R[X 1, ... , Xn]. This completes the 
proof. 
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EXERCISE SET 7.6 

Justify your work, giving a proof or counterexample where necessary. 

7.6.1. Let F be a field and let M be the subset of all homogeneous polynomials 
of the ring F[X1, ... , Xn]. Prove that M is a subring of F[X1, ... , Xn]. 

7.6.2. How many homogeneous polynomials of degree 2 are there in the ring 
lF2[X1, X2, X3]? 

7.6.3. How many homogeneous polynomials of degree 2 are there in the ring 
lF3[X1, X2, X3]? 

7.6.4. Order the following polynomial lexicographically: f(X 1, X2, X3) = 2Xi 
(X2 + X3)- 3(X? + X5)Xf X~+ 5X{ X2X5 E Z[X1, X2, X3). 

7.6.5. Does the polynomial g(X1, X2, X3, X4) =(XI- X4)(X2 + X3) divides 
the polynomial j(X1, X2, X3, X4) = (X1X2- X3X4)5 + (X1X3- X2 
X4)5 in the ring Z[X 1, X2, X3, X4)? 

7.6.6. Is the polynomial j(X1, X2, X3) = x?x2 + x?x3 + X~X1 + X~X3 + 
X1 + X2 + X3 symmetric? 

7.6.7. Is the polynomial j(X1, X2, X3) = 2XI + 2XI + 2X~ + X1X2X3- 1 
symmetric? 

7.6.8. Is the polynomial j(X1, X2, X3, X4) = (X1X2 + X3X4)(X1X4 + X2X3) 
(X I x3 + X2X4) symmetric? 

7.6.9. Using the minimal number of monomials complete the polynomial 
j(X1, X2) =X~+ 2X2 to a symmetric one. 

7.6.10. Using the minimal number of monomials complete the polynomial 
j(X1, X2, X3) =Xi+ 2X1X2 + 2X2X3 + 5 to a symmetric one. 

7.6.11. Using the minimal number of monomials complete the polynomial 
j(X1, X2, X3) = (X1 + X2)2 + 2X1X3 + X1X2X3 to a symmetric one. 

7.6.12. Express the polynomial j(X1,X2,X3)=XiX2+X1X~+2Xf+2X~ 
in terms of elementary symmetric polynomials. 

7.6.13. Express the polynomial j(X1, X2, X3) = 2X{X2- 5XfX2 + 2X1Xi-
5X 1 X~ in terms of elementary symmetric polynomials. 

7.6.14. Express the polynomial j(X1, X2, X3) = 2XI +X~+ X~- X1- X2-
x3 in terms of elementary symmetric polynomials. 

7.6.15. Express the polynomial j(X1, X2, X3) = XiX2X3 + X1X~X3 + 
X1X2X~ + 2X1X2X3 in terms of elementary symmetric polynomials. 

7.6.16. Express the polynomial j(X1, X2, X3) = (XI- X2)2 +(XI- X3)2 + 
(X2 - X3)2 in terms of elementary symmetric polynomials. 
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7.6.17. Let Sn(Xi, X2) =X~+ X2. Prove that for each k > 2 we have 
Sk(Xi, X2) = ai(Xi, X2)Sk-i(Xi, X2)- a2(Xi, X2)Sk-2· 

7 .6.18. Find real solutions of the following system: 

xi+ x~ = 35, 

Xi+ X2 = 5. 

7.6.19. Find real solutions of the following system: 

3 3 3 1 xi +x2 +x3 = , 

x? +xi +x~ = 9, 

Xi + X2 + X3 = 1. 



CHAPTERS 

GROUPS 

8.1 GROUPS AND SUBGROUPS 

In Section 8.1, we briefly introduce the concept of a group and give some 
examples of groups and subgroups. The term group belongs to the great French 
mathematician, Evariste Galois. The theory of permutations had its beginnings in 
the investigation of roots of algebraic equations, which had been developed by 
the likes of Lagrange, Vandermonde, Gauss, Ruffini, Cauchy and it is this idea 
that led to the concept of an abstract group. Some initial results in group theory 
were obtained by these mathematicians. 

However, Evariste Galois is considered to be the founder of group theory, 
since he reduced the study of algebraic equations to the study of permutation 
groups. He introduced the concept of a normal subgroup and understood its 
importance. He also considered groups having special given properties and intro
duced the idea of a "linear presentation" of a group that is very close to the 
concept of homomorphism. His brilliant work was not understood for a long 
period of time; his ideas were disseminated by Serre and Jordan, later, after his 
tragic death. 

Results by Galois anticipated the study of finite groups of permutations. In this 
initial stage, group theory was represented using groups of permutations only. 
The definition of an abstract group was introduced by Cayley ( 1821-1895) in the 
middle of the nineteenth century. However, for a long period of time, the inves
tigation of abstract groups was considered as a part of permutation group theory. 

Algebra and Number Theory: An Integrated Approach. By Martyn R. Dixon, Leonid A. Kurdachenko 
and Igor Ya. Subbotin. Copyright© 2010 John Wiley & Sons, Inc. 
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Only at the end of the nineteenth century, did the real development of group 
theory begin. The development of geometry, topology, differential equations, and 
other mathematical disciplines required the study of groups of transformations. 
It took quite a long time to understand the relationship between groups and the 
ideas of invariance and symmetry. Everywhere in which a key role is played by 
a symmetrical property of an object (algebraic or differential equations, crystal 
lattices, geometric figures, and so on), a group of transformations (movements, 
substitutions of variables, permutations of indices, and so on) appears. Groups 
are some kind of measure of the symmetry of an object, which is why they are 
so important for the classification of such objects. These are the main reasons 
why groups are of vital importance in different branches of mathematics, physics, 
chemistry, and so on. 

We will repeat the definition of a group for the sake of completeness. 

8.1.1. Definition. A group is a set G, together with a given binary operation 

(x, y) f---+ xy, where x, y E G, 

satisfying the properties (the group axioms) 

(G 1) the operation is associative, so for all elements x, y, z E G, the equation 

x(yz) = (xy)z holds; 

(G 2) G has an identity element, an element e having the property 

xe=ex=x, 

for all x E G; 

(G 3) every element x E G has an inverse, x- 1 E G, an element such that 

-1 -1 
XX =X X= e. 

8.1.2. Definition. Let G be a group. If the group operation is commutative, then 
the group is called abelian. Often, an additive notation is used for abelian groups 
so, in this case, the group axioms take the following form: 

(AG 1) the operation is commutative, so 

x+y=y+x 

for all x, y E G; 

(AG 2) the operation is associative, 

x + (y + z) = (x + y) + z 

for all x, y, z E G; 
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(AG 3) G has a zero element, an element OG having the property that 

X + OG = OG +X = X 

for all x E G; 

(AG 4) every element x E G has an opposite element, -x E G, an element 
such that 

X + (-X) = (-X) + X = OG. 

We can weaken the definition of a group somewhat, as follows. 

8.1.3. Theorem. Let G be a semigroup. Then, G is a group if and only if G 
satisfies 

(i) G has a right identity element, an element e, E G such that xe, = x for 
each element x E G; 

(ii) for each element x E G there exists a right inverse, an element x, E G 
such that xx, = e,. 

Proof. If G is a group, then its identity element is a right identity element, and 
the inverse of x is a right inverse element. Conversely, let the sernigroup G 
satisfy conditions (i) and (ii). We have 

Multiplying both sides of the equation e,xx, = xx, on the right by the right 
inverse of x,, we obtain e,xe, = xe,, so that e,x = x, because xe, = x. Thus, 
e, is a left identity element also and hence e, is the unique right and left identity 
of G. 

From the equation xx, = e,, we obtain x,xx, = x,e, = x,. We multiply both 
sides of the last equation on the right by the right inverse of x, and obtain 
x,xe, = e,. Thus, x,x = e, and hence x, is a left inverse of x, from which it 
follows that x, = x-1• 

8.1.4. Theorem. Let G be a semigroup. Then, G is a group if and only if for 
arbitrary elements a, b E G the equations ax =band xa = b have solutions. 

Proof. If G is a group, then the equation ax = b has the solution x = a-1b and 
the equation xa = b has the solution x = ba-1• Conversely, let G be a semigroup 
in which the given equations have solutions. In particular, the equation ax = a 
has a solution e. Let b be an arbitrary element of G and let c be a solution of 
the equation xa =b. Then we have 

be = (ca)e = c(ae) = ca = b, 
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so e is a right identity for G. For an arbitrary element a E G, the solution 
of the equation xa = e is a right inverse element and the result follows by 
Theorem 8.1.3. 

We note that the solution, x, of ax = b is uniquely determined. 
A group G is called finite if it contains only finitely many elements and a group 

that is not finite is called infinite. We let IGI denote the number of elements in 
the finite group G and call this number the order of G. 

8.1.5. Theorem. Let G be a finite semigroup. Then, G is a group if and only if 
for arbitrary elements a, b, c E G, the equations ab = ac and ba = ca together 
imply b =c. 

Proof. If G is a group, then the element a has an inverse. From the equation 
ab = ac, we obtain 

and similarly we can prove that if ba = ca then again b = c, so the given con
clusions hold. 

Conversely, let G = {g1, ... , gnl· From the hypotheses, it follows that 

are n distinct elements of G and hence G = {ag1, ... , agn}. Thus, b E {ag1, ... , 
agn} and hence the equation ax= b has a solution in the group G. Similarly, the 
equation xa = b also has a solution in G and Theorem 8.1.4 implies the result. 

Now, we will consider the very important concept of a subgroup, an idea that 
was introduced in Section 3.2. 

8.1.6. Definition. Let G be a group. A stable subset H of a group G is called a 
subgroup of G if H is a group relative to the operation given in G. The fact that 
His a subgroup of G will be denoted by H :S G. 

As usual there is a short method for determining whether a nonempty subset 
of a group is a subgroup, which we present in the next theorem. 

8.1.7. Theorem (subgroup criterion). Let G be a group. If H is a subgroup of G, 
then H satisfies the conditions 

(SG 1) ifx, y E H, then xy E H; 

(SG 2) if x E H, then x-1 E H. 
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Conversely, if H is a nonempty subset of G satisfying conditions (SG 1) and (SG 
2), then H is a subgroup of G. 

Proof. If H is a subgroup, then condition (SG 1) follows from the fact that the 
operation is closed. Let e H be the identity element of H. Then, for an arbitrary 
element x E H, we have xeH = x. Since the element x has an inverse in G, we 
have, multiplying on the left by this inverse, 

-i -i X XeH =X X= e. 

Hence e E H and e = e H. Also, it follows that the inverse elements to x in H 
and in G coincide. In particular, condition (SG 2) holds. 

Conversely, let the nonempty subset H satisfy conditions (SG 1) and (SG 2). 
From condition (SG 1), it follows that H is a stable subset of G. In particular, 
the operation of G induced on H is a binary operation on H. This operation is 
associative, since the original operation on G is associative. If x E H then, by 
(SG 2), x-i E H. By (SG 1), e = xx-i E H and hence e is an identity element 
for H. Finally, every element of H has a multiplicative inverse, by (SG 2). 

We can reduce the number of conditions to check still further as follows. It is 
important to realize that we must also check that H =f. 0. 

8.1.8. Corollary. Let G be a group. If His a subgroup ofG, then H satisfies the 
following condition: 

(SG3) If x, y E H, then xy-i E H. 
Conversely, if H is a nonempty subset of G satisfying condition (SG3), then 

H is a subgroup of G. 

Proof. We will show that condition (SG 3) is equivalent to conditions (SG 1) 
and (SG 2). Clearly, (SG 3) is a consequence of (SG 1) and (SG 2). 

If (SG 3) holds and x E H, then e = xx-i E H. Furthermore, x-i = ex-i E 

H, so that (SG 2) holds. Finally, let y E H. In this case, we have already proved 
that y-i E H. Therefore, xy = x(y-i)-i E H. Hence (SG 1) holds. 

Let G be an abelian group with additive notation. We define an operation of 
subtraction on G by x - y = x + (-y) and, in this case, Corollary 8.1.8 is as 
follows: 

A nonempty subset H of an additive group G is a subgroup if and only if the 
condition 

(SG 3) if x, y E H, then x - y E H holds. 

8.1.9. Corollary. Let G be a group and let H be a subgroup of G. A subset K 
of H is a subgroup of G if and only if K is a subgroup of H. 

We use Corollary 8.1.9 to deduce that an intersection of subgroups is again a 
subgroup. 
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8.1.10. Corollary. Let G be a group and let 6 be a family of subgroups of G. 
Then the intersection n 6 of the subgroups of this family is a subgroup of G. 

Proof. Let T = n 6, let X, yET, and let u be an arbitrary subgroup of the 
family 6. Then xy-i E U, by (SG 3), and therefore xy-i E T. Corollary 8.1.8 
gives the result. 

One important means of constructing subgroups is provided by the next defi
nition. 

8.1.11. Definition. Let G be a group, let H be a subgroup of G, and let M a 
subset of G. Set 

CH(M) = {x E H I xg = gx for every gEM}. 

The subset C H (M) is called the centralizer of the subset M in the subgroup 
H. The subset ~(G)= Cc(G) is called the center of G. If M ={a}, then instead 
ofCH({a}), we will write CH(a). 

8.1.12. Corollary. Let G be a group, let H be a subgroup of G, and let M be a 
subset of G. The centralizer, CH (M), is a subgroup of G. In particular, the center 
~ (G) is also a subgroup of G. 

Proof. Certainly, e E CH(M) =f. 0. Next, let x, y E CH(M) and let gEM. By 
the associative law, 

(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) 

and hence xy E CH(M). Next xg = gx so, multiplying on the right and left sides 
by x-i, we have x-i xgx-i =x-i gxx-i, which implies that gx-i =x-i g since 
x-ix = xx-i =e. Thus x-i E CH(M) and Theorem 8.1.7 completes the proof. 

Unions of subgroups need not be subgroups in general, but in certain cases, 
unions may sometimes be subgroups. We give some examples in the next few 
corollaries. 

8.1.13. Corollary. Let G be a group and let £ be a local family of subgroups of 
the group G. Then the union, U £, of the subgroups of this family is a subgroup 
of G. 

Proof. Let V = U £ and let x, y E V. There exist subgroups H, K, belonging to 
the family £, such that x E H, y E K. We choose a subgroup F E £, containing 
both subgroups Hand K. Then x, y E F. Since F is a subgroup, xy-i E F by 
Corollary 8.1.8. Hence xy-i E V and Corollary 8.1.8 finishes the proof. 
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8.1.14. Corollary. Let G be a group and let £ be a family of subgroups of G, 
linearly ordered by inclusion. Then the union, U £, of the subgroups of this family 
is a subgroup of G. 

8.1.15. Corollary. Let G be a group and let 

be an ascending series of subgroups of G. Then the union, UnEN Hn, of the sub
groups of this series is a subgroup of G. 

Another standard way to construct subgroups is via generating sets. To explain 
this idea, let M be a subset of a group G and let 6 be the family of all 
subgroups containing M. Then the intersection (M} = n 6 is a subgroup, by 
Corollary 8.1.8. 

8.1.16. Definition. The intersection (M} = n 6 is a subgroup that is called the 
subgroup generated by the subset M, and the subset M is called a system of 
generators of the subgroup (M}. In particular, if (M} = G, then we say that M 
generates the group G. A group G is called finitely generated, if there is a finite 
subset M such that G = (M}. 

The following proposition is quite easy to prove and is left for the reader. 

8.1.17. Proposition. Let G be a group and let H be a subgroup of G. If M ~ H, 
then (M}::;: H. 

If H is a subgroup of G, containing a subset M, then H also contains (M}. 
This means that (M} is the smallest subgroup of all the subgroups containing M. 
It is clear that if M is a subgroup of a group G, then (M} = M. 

It is worth understanding what exactly characterizes the elements of (M}. The 
simplest situation occurs when M consists of a single element x, so let x be an 
element of a group G and let H be a subgroup containing x. It follows from 
Theorem 8.1.7 and induction that xn, e = x 0 , x-n E H for arbitrary n E N, which 
means that 

{xn I n E Z} ~ H. 

On the other hand, xnx-m = xn-m, by Proposition 3.1.16. By Corollary 8.1.8 
this implies that {xn 1 n E Z} is a subgroup of the group G. This means that 
{xn I n E Z} = (x} is the subgroup generated by the subset {x}, or the subgroup 
generated by the element x. Thus, subgroups generated by a single element are 
quite transparent. 

8.1.18. Definition. The subgroup {xn I n E Z} = (x} is called a cyclic subgroup. 
An element y with the property that (y} = (x} is called a generator of (x}. A 
group G is called cyclic if it coincides with at least one of its cyclic subgroups. 
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Later, we shall see that several different elements may generate a cyclic group. 
We now consider the subgroup (x) further. There are two cases: 

(i) xn =!= xm, whenever n =!= m. 

(ii) There exist integers n, m, such that n =!= m but xn = xm. 

In case (i), (x) is an infinite group. We say that the element x has infinite 
order. In case (ii), suppose that n > m. From the equation xn = xm, we obtain 
xn-m = e, which means that some positive power of x is the identity element. 
Let t be the least positive integer for which xt = e and let n be an arbitrary 
integer. By Theorem 1.4.1, n = tq + r where 0 .:S r < t and we have 

Similarly, we can prove that 

are distinct and it follows, in this case, that 

In this case, we say that the element x has finite order. The order of the element 
x is the least positive integer t such that xt =e. We will denote this by lxl and 
note that here lx I = t. Also, by definition, lx I = I (x) I, so the two meanings of 
order coincide in this case. Observe, that lei = 1. 

8.1.19. Definition. 

(i) A group G is called periodic if each of its elements have finite order. 

(ii) A group G is called torsion free, if each of its nontrivial elements has 
infinite order. 

(iii) A group G is called mixed, if it has nontrivial elements of both finite and 
infinite orders. 

8.1.20. Theorem. Let G = (g) be a cyclic group and let y E G. 

(i) If G is an infinite group, then (y) = G if and only if y = g or y = g-1. 

(ii) If G is a finite group of order t, then the element y = gm has order 
t jGCD(m, t). 

(iii) If G is finite and IGI = t, then (y) = G if and only if y = gm where 
GCD(m, t) = 1. 

Proof. 
(i) First let G = (g) be an infinite cyclic group and let y also generate G. 

Since y E (g), then y = gm for some m E Z. On the other hand, (y) = G, so 



346 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

that g = yd, for some d E Z. Thus we have 

d ( m)d md g=y = g =g . 

Multiplying both sides of this equation by g-1, we obtain gmd- 1 =e. Since (g) 
is an infinite cyclic group, this means that md - 1 = 0, so that m, d E {l, -1}. 
Therefore, we have only two possibilities, that y = g or y = g-1• 

(ii) Now, let G be finite of order t. Let y = gm and let GCD(m, t) = k. Then 

Thus y has order at most t / k. Next suppose that yr =e. Then gmr = e. By 
Theorem 1.4.1, there exist integers a, b such that mr = at + b, where 0 ::::; b < t. 
Then 

Since g has order t, it follows that b = 0. Hence mr = at and '[ r = a f. Since 
GCD( '[, I) = 1, it follows that '[ divides a so that a = c( '[) for some c ::::_ 1 
and C'[)r = c('[)(tk). Thus r = c(I) ::::_ I· It now follows that y = gm has the 
stated order. 

(iii) This part of the theorem follows easily from part (ii). 

8.1.21. Theorem. Let G = (g) be a cyclic group. If H is a subgroup of G, then 
H is also cyclic. 

Proof. Since His a subgroup, e E H. If H = {e}, then H =(e) is cyclic. Sup
pose now that H contains nontrivial elements. All elements of G are powers of 
g. Therefore, there exists an integer m such that e 1- gm E H. If m < 0, then 
by condition (SG 2), we have (gm)-1 = g-m E H. This means that H contains 
positive powers of g that are nontrivial. Let 

Q = {k > 0 I e 1-l E H}. 

We let d to be the least natural number in Q. In particular, gd E H and, by Propo
sition 8.1.17, (gd)::::; H. We show that in fact H = (gd). Let x be an arbitrary 
element of H. Then x = gn for some n E Z. By Theorem 1.4.1, n = dq + r, 
where 0 ::::; r < d and it follows that 

By (SG 3), gr E H and therefore r E Q if r 1- 0, which contradicts the choice 
of d. Thus, r = 0 and hence x = gn = (gd)q. This implies that H ::::; (gd) and, 
since H ::::_ (gd), H = (gd), a cyclic group. 

We now consider generating sets a bit more generally. 
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8.1.22. Theorem. Let G be a group and let M be a subset of G. Then the subgroup 
(M) consists of elements of the form x, x2 ... Xn, where x J E M or x j 1 

E M, for 
1 ::; j ::; n and n is arbitrary. 

Proof. Let Y be the subset of all elements of the form x, x2 ... Xn where x J E M 
or xj1 EM, for l ::; j::; n. By Theorem 8.1.7, Y ~ (M). On the other hand, 
we have M ~ Y and next we show that Y satisfies (SG 3). Then Corollary 8.1.8 
will imply that Y is a subgroup. 

To this end, suppose that g 1,g2EY. Then g,=XJX2···Xn,gz= 

Xn+iXn+2 ... Xm, where Xj EM or xj1 EM, for 1::; j::; m. We have 

We note that, of course, xj1 EM or x1 = (xj 1)-1 EM and hence Y is a sub
group containing M. It follows that (M) ::; Y. Hence Y = (M). 

A group G is called finitely generated, if there exists a finite subset M of G 
such that (M) = G. Finite and finitely generated groups were the very first sub
jects of investigation in group theory. Very important problems were formulated 
by Burnside at the start of the twentieth century concerning finitely generated 
groups. These problems, although easy to be stated, proved to be extremely 
difficult and for many group theorists, these problems of Burnside played a 
role similar to the role that Fermat's Last Theorem played for number theorists. 
These problems played a significant role, not only in group theory but also in the 
development of the theory of associative algebras and the theory of Lie algebras. 

The first "general" Burnside problem can be stated very simply: is every 
periodic finitely generated group finite? The negative answer to this problem was 
obtained by Golod in 1964. After that, some other examples of infinite periodic 
finitely generated groups were constructed, most notably the elegant and clear 
examples constructed by Grigorchuk. 

The "second" Burnside problem is more limiting still. Although the examples 
of Golod and Grigorchuk are periodic, there is no bound on the orders of the 
elements occurring. Thus the second Burnside problem asks if G is a finitely 
generated group and if there is a positive integer m such that gm = e for each 
element g E G, then is G finite? In 1968, Adyan and Novikov obtained a negative 
solution to this problem. Thus, among the groups with condition gm = e, there are 
infinite groups. So the following "restricted" Burnside problem is very natural. 
Let G be a finite group, generated by the finite subset M, suppose that IMI ::; k 
and that there is a positive integer m such that gm = e for each element g E G. 
Is there a function b(k, m) such that IGI ::; b(k, m)? This restricted Burnside 
problem was finally solved affirmatively by Zelmanov and, for this achievement, 
in 1996, he was awarded the highest mathematical honor, the Fields Medal. 

Finally, we consider the useful construction of the Cartesian (direct) product of 
a finite set of groups. Let G 1, ••• , G n be groups and let D = G 1 x · · · x G n be its 
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Cartesian product as sets. On the set D, we define an operation of multiplication 
by the rule 

where gj. x j E G j. for 1 ::::; j ::::; n. Since gj, Xj are elements of G j• their product 
is also an element of G j, for 1 ::::; j ::::; n. Therefore, this is a binary operation 
defined on D. This operation is associative since 

((gi, · · ·, 8n)(X], X2, · · ·, Xn))(YI, · · ·, Yn) = ((gixJ)yl,. · ·, (gnXn)Yn) 

= (gJ(X]yJ), · · ·, 8n(XnYn)) = (gJ, · · ·, 8n)((XJ, · · ·, Xn)(YJ, · · ·, Yn)). 

If e j is the identity element of G j, for 1 ::::; j ::::; n, then the tuple (ei, ... , en) is 
easily seen to be the identity element for D and it is also easy to see that 

( ) -] ( -1 -]) 
81 • · · · • 8n = g 1 , · · · • 8n · 

Therefore, all the group axioms hold for D and D is called the Cartesian product 
of the groups G1, ... , Gn. The group D is also called the direct product of the 
groups G1, ... , Gn. In general, when infinitely many groups G; are concerned, 
the constructions of Cartesian and direct products are different and lead to differ
ent groups, but for finitely many groups G 1, ••• , Gn, the two concepts coincide. 

If all groups G 1, ... , Gn are abelian, then their Cartesian product is also an 
abelian group since 

(gJ, ... , gn)(X], X2, ... , Xn) = (gJX], ... , 8nXn) 

= (XI81, · · ·, Xn8n) = (XI,···, Xn)(g], · · ·, 8n). 

If the operation is additive in each of G 1, ••• , Gn, then we use additive notation 
for the operation in the direct product, which is sometimes called a direct sum 
in this case, and we write 

(gJ, · · ·, 8n) +(XI, X2, · · · Xn) = (gi +X], · · ·, 8n + Xn). 

EXERCISE SET 8.1 

8.1.1. Let G = {a+ bi ../5 I a, b E Q, a2 + b2 =1= 0}. Is G a subgroup of U(<C)? 

8.1.2. Define an operation on G = Z x Z by (n 1, mJ) * (n2, m2) = (n 1 + n2, 

( -l)n2m1 + m2). Is this operation commutative? Is G a group? 

8.1.3. Let G = (g) be a group and let lgl = 32. Find all elements x E G with 
the property G = (x}. 
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8.1.4. Is the set of complex numbers {a I Ia I = r} a subgroup of U(C)? Is the 
set of complex numbers {a I 0 =f. lal ~ r} a subgroup of U(C)? Is the 
set of complex numbers {a I 0 =f. Ia I ::: r} a subgroup of U(C)? 

8.1.5. Let z be a 600th root of unity in C of order 6 in the multiplicative group 
U(C). Find all the possibilities for z. 

8.1.6. Suppose that g2 = e for all elements g of a group G. Prove that G is 
abelian. 

8.1.7. Let G be an abelian group. Prove that the subset of all elements of G 
having finite order is a subgroup. 

8.1.8. The mapping cp : x + iy ---+ x - iy is an isomorphism of C onto C. Find 
the order of cp as an element of S(C). 

8.1.9. On the set G = Z x {-1, 1}, we define the operation * by (m, a)* 
(n, b) = (m +an, ab). Is G a group? Is this operation commutative? 

8.1.10. On the set G = Z x { -1, 1}, we define the operation <> by (m, a) <> 
(n, b) = (bm + n, ab). Is G a group? Is this operation commutative? 

8.1.11. On the set G = Z x { -1, 1}, we define the operation o by (m, a) o 

(n, b) = (m + n, ab). Is G a group? Is this operation commutative? 

8.1.12. On the set G = Z x {-1, 1}, we define the operation I:8J by (m, a) l:8l 
(n, b) = (bm +an, ab). Is G a group? Is this operation commutative? 

8.1.13. On the set G = Z x Z, we define the operation t by (a, b) t (c, d) = 
(a+ c, (-l)cb +d). Is G a group? Is this operation commutative? Are 
the sets H ={(a, 0) I a E Z} and K = {(0, a) I a E Z} subgroups of G? 

8.1.14. On the set G = Z x Q, we define the operation + by (a, b)+ (c, d)= 
(a + c, 2c b +d). Is G a group? Is this operation commutative? Are the 
sets H ={(a, 0) I a E Z} and K = {(0, a) I a E Q} subgroups of G? 

8.1.15. On a set with four elements, define commutative and associative opera
tions each having an identity element. 

8.1.16. Let M = {x, y, z}. Define an algebraic binary operation on M such that 
M becomes a semigroup with identity but not a group. 

8.2 EXAMPLES OF GROUPS AND SUBGROUPS 

Groups Consisting of Numbers 

We begin this section by giving some examples, by no means all, of the groups 
occurring in the complex number system. The set ffi. of all real numbers is a 
group under the operation of addition. The additive identity element is 0, in this 
case. This group is torsion free, since if x E ffi. and n E Z then nx = 0 implies 
immediately that x = 0. The subsets Q, of all rational numbers and Z, of all 
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integers, are clearly subgroups of ~. under the naturally induced operation of 
addition since, for example, the difference of two rational numbers is again a 
rational number. The group Z is an example of an infinite cyclic group, generated 
by the number 1. If n 2:: 0 is a fixed integer, the subset n/Z = {nk I k E Z} is also 
a subgroup of Z. Indeed, if k, t E Z, then nk - nt = n(k - t), which shows that 
n/Z satisfies condition (SG 3) and Corollary 8.1.8 implies that n/Z is a subgroup 
of Z. Furthermore, Theorem 8.1.21 shows that each subgroup of Z coincides 
with one of the subsets n/Z, for some n 2:: 0. 

Now, let p be a prime and let 

A fraction of the type ~ is called p-adic. The equation 
p 

shows that Qlp, under addition, satisfies condition (SG 3). Corollary 8.1.8 implies 
that Qlp is a subgroup of Ql called the additive group of p-adic fractions. 

The set~\ {0} = ~x of all nonzero real numbers is a group under the operation 
of multiplication. The multiplicative identity is the number 1, in this case. The 
subset, Ql\ {0} = Qlx, of all nonzero rational numbers and the subset {1, -1} are 
subgroups of~ x. Moreoever, {1, -1} is an example of a finite cyclic group. We 
note that the only two elements of ~ x that have finite order are 1 and -1, since 
these are the only real solutions of the equation xn = 1. 

Boolean Sets 

Let A be an arbitrary set and let IJ3 (A) be the Boolean of A. From Theorem 1.1.1 0, 
we see that IB(A) is a group under the operation ~ defined by C ~B = (C\B) U 
(B\C)). This group is abelian with identity element 0 and the equation B~B = 0 
shows that every element of this group has order 2. 

Groups of Invertible Elements of a Semigroup 

Many important examples of groups have their origins in semigroups. Let S be 
a semigroup with identity. As in Section 3.1, we let U(S) denote the subset 
of all invertible elements of S. By Corollary 3.1.15, U(S) is stable in S. Thus 
the restriction of the binary operation given on S to the set U(S) is a binary 
operation on U(S). This operation is associative because it is associative in S. 
By definition, the identity element belongs to U(S) and every element has an 
inverse in U(S). Therefore, axioms (Gl)-(G3) hold in U(S). 

The group U(S) is called the group of invertible elements of S. 
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In Section 3.1, we noted that the set P(A) of all transformations of a set A 
is a semigroup with identity. In particular, since U(P(A)) = S(A), the set S(A), 
the set of all permutations of A, is a group under the operation of multiplication 
of functions. This group is called the group of permutations of the set A. For the 
group Sn, we reserve a special term, namely, the symmetric group of degree n. 

In Section 2.5, we observed that V(Mn(~)) = GLn(~). In particular, the sub
set G Ln (~) of all non singular square matrices of dimension n with real entries 
is a group under the operation of matrix multiplication, called the general linear 
group of degree n over R The subset G Ln (Q) is easily seen to be a subgroup of 
G Ln (~). Indeed, by definition, the product of two matrices with rational entries 
is a matrix with rational entries. If A E G Ln (Q), then Theorem 2.5.3 shows 
that A-1 E GLn(Q). Hence GLn(Q) satisfies conditions (SG 1)-(SG 2) and 
Theorem 8.1.7 implies that GLn(Q) is a subgroup of GLn(~). 

Permutation Groups 

Let A be an arbitrary set. We observed above that the set S(A) of all permutations 
of A is a group. We now consider some important examples of subgroups of this 
group. 

The Stabilizer of Subset 

Let B be a subset of A and let 

St(B) = {n E S(A) I n(b) = b for each element b E B}. 

If n, u E St(B) then, for every element bE B, we have 

n ou(b) = n(u(b)) = n(b) = b, 

so that no u E St(B) and also 

Thus n- 1 E St(B) also. Consequently, the subset St(B) satisfies both conditions 
(SG 1) and (SG 2) and, by Theorem 8.1.7, it is a subgroup of S(A). In particular, 
the subset St(a) is a subgroup for each element a E A. We also note that St(B) = 
nbEB st(b). 

Now, let 

Inv(B) = {n E S(A) I n(B) = B}. 

This set is the set of permutations leaving B invariant. If n, u E Inv(B) and 
bE B, then u(b) = b1 E B. Therefore, 

n ou(b) = n(u(b)) = n(b1) = bz E B, 
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so that n oa E Inv(B). Since n(B) = B, there exists an element b3 E B such 
that b = n(b3). Then 

b3 = £A(b3) = (rr- 1 o;r)(b3) = (rr- 1(rr(b3)) = 7r-
1(b), 

so rr- 1 E Inv(B). Consequently, the subset Inv(B) satisfies conditions (SG 1) 
and (SG 2). By Theorem 8.1.7, Inv(B) is a subgroup of S(A). We note that 
St(B) .:::; Inv(B) while Inv(a) = St(a) for each a E A. 

Finitary Permutations 

Let n E S(A). The subset 

Supprr ={a E A ln(a) =I= a} 

is called the support of the permutation n and its complement A \Supp n is called 
the set of fixed points of n. A permutation n is called finitary if its support, 
Supp n, is finite. We let FS(A) denote the subset of all finitary permutations of 
the set A. If rr, a E FS(A) and b E A\(Supp n U Suppa), then 

n oa(b) = n(a(b)) = n(b) = b, 

so that Supp(rr o a) s; Supp n U Suppa. Thus, Supp(rr o a) is finite and no a E 
FS(A). Furthermore, if bE A\Supprr, then 

which implies that Supp n - 1 s; Supp n. Since n = (n - 1) - 1, Supp n s; 
Supp n - 1 also and hence Supp n - 1 = Supp n. In particular, Supp n - 1 is 
finite and hence rr-1 E FS(A). Consequently, the subset FS(A) satisfies both 
conditions (SG 1) and (SG 2) and Theorem 8.1.7 implies that it is a subgroup 
of S(A). The group FS(A) is called the group of finitary permutations of A. 

Groups of Symmetries 

Let E = ]Rn, and let d (x, y) denote the distance between the points x, y of the 
space E. As we saw in Chapter 6, a bijective mapping f E S(E) is called an 
isometry of the space E, if f fixes the distance between the points of E, which 
means that 

d(f(x), f(y)) = d(x, y), 

for every pair of points x, y of E. The set of all isometries of E is denoted by 
Isom(E). Iff, g E Isom(E) and x, y E E, then 

d(f o g(x), f o g(y)) = d(f(g(x)), f(g(y))) = d(g(x), g(y)) = d(x, y), 



GROUPS 353 

so that fog E Isom(E). Furthermore, 

and hence f- 1 E Isom(E). Consequently, the subset Isom(E) satisfies both con
ditions (SG 1) and (SG 2) and, by Theorem 8.1.7, it is a subgroup of S(E). 

Now, let M be a subset of E and set 

Sym(M) = Isom(E) n Inv(M). 

Thus, Sym(M) consists of those isometries of E that transform the set M into 
itself. By Corollary 8.1.10, Sym(M) is a subgroup of Isom(E). This subgroup 
is called the symmetry group of M. 

Figuratively speaking, the group Sym(M) measures the level of symmetry 
of M. For example, the fact that an isosceles triangle looks more symmetrical 
than a scalene triangle can be interpreted as follows. The group of symmetries 
of an isosceles triangle consists of the identity permutation and a reflection in its 
axis of symmetry while the group of symmetries of a scalene triangle consists of 
only the identity permutation. The group of symmetries of an equilateral triangle 
consists of six isometries, the identity rotations through 120° and 240°, about the 
center of the triangle and three reflections in its three axes of symmetry. Thus 
the size of the symmetry group tends to reflect the amount of symmetry (or lack 
thereof) that the particular figure has. 

The symmetry of a molecule is an isometry of the space that transforms 
each atom of the molecule to an atom of the same type and keeps all valency 
connections between atoms. For example, the molecule of phosphor consists of 
four atoms situated in the vertices of a regular tetrahedron. An important role of 
symmetry lies in crystallography. Here by symmetry of a crystal, we understand 
an isometry of the space that keeps the disposition of atoms of the crystal and all 
their connections and transforms every atom into an atom of the same element. 

Symmetry is also important in certain laws of physics. In this case, symme
tries are transformations of the coordinates that keep the law invariant. Thus the 
laws of mechanics should be kept under translation from one inertial system to 
another. The transformation of coordinates in Galileo-Newtonian mechanics for 
movement in a line look like 

x'=x-vt, t'=t, 

whereas in the mechanics of special relativity, they are 

x' 
x - vt 
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where c is the speed of light. The group of symmetries is called the group of 
Galileo-Newtonian mechanics in the first case and the Lorentz group in the 
second. 

Symmetry groups of finite objects can be connected with subgroups of a 
permutation group of finite degree. For example, let P3 be an equilateral triangle 
whose vertices are labeled as 1, 2, and 3. Each symmetry transforms the vertices 
in some way and we can assign a permutation of degree 3 to this symmetry. The 
identity transformation corresponds to the identity permutation 

2 3) 
2 3 ° 

The (counterclockwise) rotation of the triangle by 120° about the center corre
sponds to the permutation 

n 1 = G i i) , whereas 

the rotation of the triangle by 240° about the center corresponds to the permuta
tion 

(1 2 3) 
7rz = 3 1 2 ° 

Each of the reflections in a line through a vertex and the midpoint of the opposite 
side corresponds to one of the following permutations: 

7r3 - (1 - 1 
2 3) (1 3 2 , Jr4 = 3 2 3) (1 2 1 , Jrs = 2 

2 3) 
1 3 ° 

From this it follows that the group S3 is the group of symmetries of an 
equilateral triangle. 

We also observe that the group of symmetries of a square consists of the 
identity permutation 8 as follows: 

(i) counterclockwise rotations about the center of the square through angles 
90°, 180°, 270° -with corresponding permutations 

(
1 2 3 4) (1 2 3 4) (1 2 3 4) 

7rl = 2 3 4 1 ' 7rz = 3 4 1 2 ' 7rJ = 4 1 2 3 ' 

(ii) two reflections in the diagonals of the square-with corresponding per
mutations 

7r4- (1 - 1 
2 3 4) (1 
4 3 2 'ns = 3 

2 3 
2 1 
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(iii) two reflections through lines connecting midpoints of opposite 
sides-with corresponding permutations 

(1 2 3 4) (1 2 3 4) 
]'[6 = 2 1 4 3 ']'[7 = 4 3 2 1 . 

We can write the multiplication table for Sym(P 4) as a matrix. In the first row 
and in the first column, we write the group elements and at the intersection of 
the row beginning with an element x and the column beginning with an element 
y, we will write the element xy. This table is the Cayley table of the group and 
for the symmetry group of the square, it is as follows: 

['; :rrl :rrz ]'[3 ]'[4 :rrs ]'[6 ]'[7 

['; ['; :rrl :rrz ]'[3 ]'[4 :rrs ]'[6 ]'[7 

]'[! ]'[! ]'[2 ]'[3 £ ]'[7 ]'[6 ]'[4 :rrs 

:rrz :rrz ]'[3 ['; :rrl :rrs ]'[4 ]'[7 ]'[6 

]'[3 ]'[3 ['; ]'[! :rrz ]'[6 ]'[7 :rrs ]'[4 

]'[4 ]'[4 ]'[6 :rrs ]'[7 ['; :rrz ]'[I ]'[3 

:rrs :rrs ]'[7 ]'[4 ]'[6 :rrz ['; ]'[3 ]'[! 

]'[6 ]'[6 :rrs ]'[7 ]'[4 ]'[3 ]'[! ['; :rrz 
]'[7 ]'[7 ]'[4 ]'[6 :rrs ]'[! ]'[3 :rrz ['; 

Observe that the element a = :rr1 has order 4, that :rrz = a 2 and that :rr3 = a 3 . 

Let t = :rr4. Then t2 = E and from the Cayley table, it follows that Sym(P4 ) = 
(a, t). The elements a, t do not commute since ta = a 3t. This group is called 
the dihedral group of order 8. Here, we have considered only the most basic 
examples of symmetry groups. 

Linear Groups 

Linear groups (more precisely finite-dimensional linear groups) are subgroups 
(including the group itself) of the group GLn(lR). We next consider some impor
tant subgroups of GLn (lR). As we have already noted, the set GLn (Q) of all 
invertible matrices of degree n with rational coefficients is a subgroup of GLn (lR). 

Next let 

GLn(Z) ={A E Mn(Z) I det(A) E {1, -1}}. 

By definition, the product of two matrices with coefficients in Z again has integer 
coefficients. If A E GLn(Z), then since det(A) = ±1, Theorem 2.5.3 implies that 
A-! E GLn(Z). Consequently, GLn(Z) satisfies conditions (SGl) and (SG2) and, 
by Theorem 8.1.7, it is a subgroup of GLn(lR). 

For the next example, let 

SLn(lR) ={A E Mn(lR) I det(A) = 1} 
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and let A, B E SLnO~). Theorem 2.5.1 shows that 

det(AB) = det(A)det(B) = 1. 

It follows that AB E SLnO~). By the same reasoning, 

1 = det(J) = det(AA -I) = det(A)det(A -I), 

and hence det(A- 1) = 1 so that A-1 E SLn(l~). Consequently, SLn(l~) satisfies 
conditions (SG 1) and (SG 2) and, by Theorem 8.1.7, it is a subgroup of GLnO~), 
called the special linear group of degree n over R In a similar fashion, the 
subgroups SLn (Q) and SLn (Z) can also be defined. 

We denote by TnO~), the set of all nonsingular triangular (more precisely, 
upper triangular) matrices of degree n with real entries. Let A, B E Tn(l~), where 
A = [ aiJ], B = [ biJ] and C = A B = [ ciJ]. Suppose that A, B are upper triangular 
so that if i > j, then aiJ = biJ = 0. We have 

Since 

ail = a;2 = · · · = ai,i-1 = 0 and biJ = bi+I,j = · · · = bnj = 0, 

it follows that ciJ = 0. Hence AB E Tn(l~). We note that 

=aub;;. 

Next, we consider the matrix A-1 = [xij]. Theorem 2.5.3 shows that XiJ = 

d~(~l' for 1 ~ i, j ~ n, where Aj; = (-1)i+jdet(Sj;) and Sji = [Ykm] is the sub
matrix of A constructed by eliminating the jth row and the ith column. Let i > j 
and consider an arbitrary column of the matrix S ji, say the kth column. If k < j, 
then the kth column of Sj; consists of the coefficients 

Ylk = G]k, · · ·, Yk-l,k = Gk-l,k. Ykk = Gkk, Yk+l,k = 0, · · ·' Yn-l,k = 0. 

If j = k, then the kth column consists of the elements 

Ylk = G]k, · • ·, Yk-l,k = Gk-l,ko Ykk = 0, Yk+l,k = 0, · · ·, Ynk = 0. 

If i > k > j, then the kth column consists of the coefficients 

Ylk = G]k, ... ' Yj-l,k = Gj-I,k, Yjk = Gj+l,k, ... ' 

Yk-l,k = akk, Ykk = 0, ... , Yn-I,k = 0. 
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If k ::: i, then the kth column consists of the coefficients 

Ylk = al,k+l· ... , YJ-l,k = aJ-l,k+l• YJk = aJ+l,k+l· ... , 

Yk-l,k = ak,k+l• Ykk = ak+l.k+l· Yk+l,k = 0, · · ·, Yn-l,k = 0. 

This means that the matrix S1; is upper triangular. If j < n - 1 then YJJ = 0 and, 
by Proposition 2.3.11, we see that A1; = (-1)i+idet(S1;) = 0. If j = n- 1, then 
i = n; and in this case, all entries of the last row are zero. By Corollary 2.3.6, 
A 1; = ( -1)i+idet(S1;) = 0. So, if i > j, then XiJ = ct~{~l = 0, which means that 
A- 1 E Tn(l~). Consequently, Tn(l~) satisfies both conditions (SG 1) and (SG 2). 
Thus, Tn(l~) is a subgroup of GLn(l~), by Theorem 8.1.7. It then follows that 
Tn(Q) = GLn(Q) n Tn(l~) and Tn(Z) = GLn(Z) n Tn(l~) are also subgroups. 

Next, let UTn (~) denote the set of all unitriangular matrices of degree n 
with real entries. If A, B E UTn(~), where A= [aij]. B = [bij], and C = AB = 
[ciJ] then the arguments above show that C is a triangular matrix. Since c;; = 
a;;b;;, it follows that c;; = 1 for each i, where 1 ::; i ::; n. From this, it also 
follows that the inverse of a unitriangular matrix is unitriangular. Consequently, 
UTn(~) satisfies both conditions (SG 1) and (SG 2) and, by Theorem 8.1.7, it 
is a subgroup of GLn(~). Then UTn(Q) = GLn(Q) n UTn(~) and UTn(Z) = 
GLn(Z) n UTn(~) are also subgroups. 

We denote the set of all nonsingular diagonal matrices of degree n with 
real entries by Dn(~). If A, BE Dn(~), where A= [a;j], B = [bij], and if 
C = AB = [ciJ], then the previous arguments show that C is a diagonal matrix. 
Also, c;; = a;;b;; for every i, where 1 ::; i ::; n and hence AB = BA. From this 
equation, we see that the inverse of a diagonal matrix is also diagonal. Con
sequently, Dn (~) satisfies both conditions (SG 1) and (SG 2) and, by Theorem 
8.1.7, it is an abelian subgroup of GLn(~). Then Dn(Q) = GLn(Q) n Dn(~) and 
Dn (Z) = GLn (Z) n Dn (~) are both subgroups. If A E Dn (Z), then a;; E { 1, -1} 
for each i, where 1 ::; i ::; n and it follows that Dn (Z) is a finite abelian group 
of order 2n. 

We recall from Chapter 6 that a matrix A E Mn (~) is called orthogonal if 
AA1 =I, so that A- 1 =AI. If AA1 =I, Proposition 2.3.3 and Theorem 2.5.1 
imply that 

1 = det(/) = det(AA1
) = det(A)det(A1

) = (det(A))2
• 

Thus, an orthogonal matrix is always nonsingular. Let On(~) denote the sub
set of Mn (~) consisting of all orthogonal matrices. If A, B E On(~) then, by 
Theorem 2.1.1 0, 

From this, we see that ABE On(~) and A-1 EOn(~), so Theorem 8.1.7 implies 
that On(~) is a subgroup of GLn (~). 
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Quasicyclic (or Prufer) p groups 

Let p be a prime and let 

k 
Cpoo = {x E CCI xP = 1 for some kENo}. 

We show that C Poo is a subgroup of the multiplicative group U (CC). Let x, y E 

C Poo and let k, t be positive integers such that x Pk = 1, y p' = 1. If m = max { k, t} 
then ( ~ )Pm = 1 and we deduce from Corollary 8.1.8 that C Poo is a subgroup of 
U(CC). 

Let x E C Poo and let k be the least natural number for which x Pk = 1, so that 
x, of order pk, is a primitive pkth root of unity. Thus C Pk = (x) is a cyclic group 
of order pk. Clearly 

c < c 2 < ... < c k < ... < u c k =coo. P- p- - p- - p p 

kEN 

Now let H be a subgroup of C Poo. Then either the orders of the elements of 
H are bounded or they are not. In the former case, there is a number k, such that 
yPk = 1 for every y E H and H contains an element x, such that I (x) I = pk. 
This means that H s C Pk = (x), so H = C Pk. 

In the latter case, for each k E N, there exists an element z E H such that 
I (z) I = pm, where m ?: k. From I (z) I = pm, it follows that (z) = C Pm. Since 
m ?: k, C Pk s C Pm = (z) s H. So for each k E N0, the subgroup H contains 
C Pk and this means that H = C Poo. Thus, every proper subgroup of C Poo is finite 
and cyclic. 

This group C Poo is called a quasicyclic or a Priifer p group. As shown above, 
C Poo is an infinite group, but all its proper subgroups are finite. In 1938, Schmidt 
raised the problem of describing the infinite groups all of whose proper subgroups 
are finite. Chemikov proved that for many important types of infinite groups, 
only the Priifer groups have all proper subgroups finite. However, in 1978, the 
first example of such a group distinct from the Priifer group was constructed by 
Olshanskii. 

EXERCISE SET 8.2 

Justify your work with a proof or a counterexample when necessary. 

8.2.1. Which of the following sets are subgroups in S(IR. x JR.): 

A= {ta Ita: (x, y)----+ (x +a, y +a), a E JR.}, B = {ta I a E Q}, 

C = {ta I a E Z}, D = Ua I }a: (x, y)----+ (ax, ay), a E JR.}, 

E = Ua I a E Q, a =f. 0}? 
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8.2.2. Prove that the set of matrices 

is a subgroup of GL2(Z). 

8.2.3. Consider the following permutations of the set ~\{0, 1}: u 1 (x) = x, 

u2(x) = ~' u3(x) = 1- x, u4(x) = x~i, us(x) = (x~l), U6(x) = i~x· 
Is the set {u,, u2, u3, u4, us, u6} a subgroup of S(~\{0, 1})? 

8.2.4. Let H = {n In E As, n(l) = 1}. Prove that His a subgroup of As. Find 
I HI. 

8.2.5. Find the order of the element 

A=(~ ~1) 
in the group GL2(Q). 

8.2.6. Find the center of the group A4 . 

8.2.7. Prove that the group A4 has no subgroups of order 6. 

8.2.8. Let x, y E Q. Prove directly that (x, y) is a group under addition. 

8.2.9. Let A be a vector space over a field F. A linear transformation f of a 
space A is called finitary, if the subspace A(f- 1) = {a(f- 1) I a E A} 
has finite dimension. Is the subset FGL(F, A) of all finitary isomor
phisms of A a subgroup in the group GL(F, A) of all isomorphisms 
from A onto A? 

8.2.10. Are the following mappings isometries of R a : x ~ x + 2, f3 : x ~ 
nx, n rJ. {1, -1}, y: x ~ x 2, lJ: x ~ -x? 

8.3 COSETS 

In this section, we consider some important equivalence relations on groups 
analogous to those used in ring theory. To this end, let G be a group and let H 
be a subgroup of G. We define a relation "J:,H by the rule: 

Let x, y E G. Then (x, y) E '£H if and only if xy-i E H. 

The relation '£H is reflexive since xx-1 = e E H, so that (x, x) E '£H. The 
relation '£H is symmetric since if (x, y) E '£H then xy-1 E H so (xy-1)-1 = 
(y- 1)- 1x-1 = yx- 1 E H, because H is a subgroup of G. Thus (y, x) E '£H. 
Finally, the relation "J:,H is transitive. If xy- 1, yC 1 E H then, since H is a sub
group, it contains the product, xy- 1 yz- 1 = xz- 1, of these two elements. Hence, 
if (x, y), (y, z) E '£H then, (x, z) E '£H. Consequently, '£H is an equivalence 
relation. 
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If (x, y) E "i:.H, then xy-i =hE H. Multiplying both sides of this equation 
on the left by h-i and on the right by y gives y =h-i x. Let 

Hx = {ux I u E H}. 

8.3.1. Definition. The subset H x is called a right coset of H in G, or a right 
H -coset, and the element x is called its coset representative. 

Thus, each element equivalent to x (relative to "i:.H) belongs to Hx. Con
versely, if z E Hx then, z = ux, for some element u E Hand we have 

Therefore (x, z) E "i:. H, so the equivalence classes of "i:. H are precisely the right 
cosets of H. This implies that the right coset H x is defined by each of its 
representatives x; thus, if y E H x, then H y = H x. Because they are equivalence 
classes, two right cosets either coincide or have an empty intersection and the 
group G is the union of all its right cosets. Thus the family of all right cosets of G 
by a subgroup H is a partition of G. If H = (e}, then H x = { x} for each element 
x E G, so we obtain the largest partition of G, consisting of one element sets. If 
H = G, then we obtain the smallest partition consisting of only one set, G. 

Similarly, now let 

xH ={xu I u E H}. 

8.3.2. Definition. The subset x H is called a left coset of H in G, and the element 
x is called its left coset representative. 

As stated above, we can define an equivalence relation AH on G by defining 
(x, y) E AH if and only if y-i x E H. In this case, the left cosets form the 
corresponding equivalence classes. Thus the left coset x H is defined by each of 
its elements x in the sense that if y E x H, then y H = x H. Therefore, two left 
cosets either coincide or have an empty intersection and G is the union of all the 
left cosets. Hence the family of all left cosets of H in G is a partition of G. 

As an example of such a partition we consider the group Sn. Let 

P; = {;rr E Sn I ;rr(n) = i}. 

It is easy to prove that P; n P1 = 0 whenever i =I= j and that 

Sn = U P; = Pi U P2 U ... U Pn. 
i:Si:Sn 

Since Pn = St(n) is the stabilizer of n, it is a subgroup of Sn. Also, it is not hard 
to prove that P; = r:;n o Pn, where r:;n is the transposition interchanging i and n. 
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As one might expect, there is a connection between left and right cosets. 

8.3.3. Proposition. Let G be a group and let H be a subgroup of G. The mapping 

v: Hx f---+ x-i H 

is a bijection from the set of all right cosets of H in G onto the set of all left 
cosets of H in G. 

Proof. First, we must show that v is a mapping, in the sense that it does not 
depend on the choice of the representative x. To this end, let y be another 
representative of the coset Hx. Then Hx = Hy, so y = ux for some element 
u E H. By Proposition 3.1.16, y-i = x-iu-i E x-i H, and so y-i H =x-i H. 

Furthermore, the mapping vis injective. For, if Hx, Hy are right cosets and 
if v(Hx) = v(Hy) then 

x-i H = v(Hx) = v(Hy) = y-i H. 

Then y-i = x-iv for some element v E H, andy= v-ix E Hx. It follows that 
H x = H y and that v is injective follows. 

Finally, v is surjective since if zH is a left coset then 

Hence v is a bijective mapping, as required. 

Let G be a group and let H be a subgroup of G. In every left (respectively 
right) coset of G by H, we choose a representative and let lt(G, H) (respectively, 
rt(G, H)) denote the sets of all these selected representatives. 

8.3.4. Definition. The subset lt(G, H) (respectively rt(G, H)) is called a left 
transversal (respectively right transversal) to H in G. 

It follows that G = UxEit(G,H) xH (and also that G = UxErt(G,H) Hx). Fur
thermore, the equation xH = yH (respectively Hx = Hy) for x, y E lt(G, H) 
(respectively, x, y E rt(G, H)) implies that x = y. 

8.3.5. Definition. Let G be a group and let H be a subgroup of G. The number 
of distinct right cosets of H in G is called the index of H in G and it is denoted 
by IG : HI. If the set of all right cosets of H in G is finite then the subgroup H 
is said to have finite index in G. We say that H has infinite index in G if the set 
of all right cosets of H in G is infinite. 

Proposition 8.3.3 implies that the index of H in G is also equal to the number 
of distinct left cosets of H in G. This simply means that 

IG: HI= lrt(G, H)l = llt(G, H)l. 
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Clearly, in the case when H = G, IG: HI= 1. If G is a finite grouP. G and 
H =(e), then IG: HI= IGI. 

8.3.6. Theorem. Let G be a group, let H, K be subgroups ofG and suppose that 
K ::::; H. PutT= lt(G, H) and U = lt(H, K). Then the subset 

R = {tu I x E T, u E U} 

is a left transversal to K in G. 

Proof. We have 

G=UtH,H= UuK. 
tET uEU 

If x is an arbitrary element of G, then x E t H for some element t E T, so that 
x = t h where h E H. Also, there exists an element u E U such that h E u K, so 
h = uv for some v E K. Thus, x = tuv which implies that 

G = U tuK = U tuK. 
tET,uEU tuER 

Suppose now that tuK = zwK, where t, z E T and u, wE U. Then tu = 
zwv for some element v E K. Since u, w, v E H, the cosets tH and zH have 
nonempty intersection and therefore coincide, since they both contain the element 
tu. By definition ofT, it follows that t = z. Multiplying both sides of the equation 
tu = zwv on the left by t- 1, we obtain u = wv. This means that u E wK and, 
since u E u K, the cosets u K and w K have nonempty intersection. Therefore, 
u K = w K and from the definition of U, it follows that u = w. Thus the equation 
tuK = zwK is true if and only if t = z and u = wand together with the equation 
G = uyER y K it follows that the subset R is a left transversal to the subgroup 
Kin G. 

We place the following important rephrasing of Theorem 8.3.6 on record. 

8.3.7. Corollary. Let G be a group, let H, K be subgroups ofG and let K::::; H. 
Then, I G : K I is finite if and only if the indices I G : HI and I H : K I are both 
finite. In this case, IG: Kl = IG: HIIH: Kl. 

Next we have one of the most important theorems in finite group theory. 

8.3.8. Corollary (Lagrange's Theorem). Let G be a finite group and let H be a 
subgroupofG. Then IGI = IG: HIIHI. /nparticular, theorderofasubgroupof 
a finite group is a divisor of the order of the group. 

To see this, let K =(e) in Theorem 8.3.6 so that IH: Kl = IHI. 
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8.3.9. Corollary. Let G be a finite group and let x be an element of G. Then the 
order of x is a divisor of the order of G. 

To see this, we note that the order of an element is the order of the cyclic 
group that this element generates. Lagrange's theorem can then be used to prove 
the result. 

8.3.10. Corollary. Let G be a finite group. If IGI is a prime, then G is a cyclic 
group. 

Proof. To see this, let e =!= g E G. Then (g) has at least one nontrivial element, so 
that I (g) I> 1. By Corollary 8.3.8, we see that the equation I (g) I = IGI follows 
since I G I is prime. This implies that G = (g). 

8.3.11. Corollary. Let G be a group and let H, K be subgroups of G. If the 
indices I G : HI and I G : K I are finite then the index I G : H n K I is also finite. 
Moreover, IG: H n Kl ~ IG: HIIG: Kl. 

Proof. Let L = H n K, let T = lt(H, L), and let x, yET, where x =!= y. If 
xK = yK, thenx- 1y E K. Since x, y E H, we have x- 1y E H n K = L, so that 
xL = yL. From the choice of x andy, it follows that x = y. Thus if xL =!= yL 
then x K =!= y K. Since I G : K I is finite, this implies that I H : L I is finite and that 
\H: L\ ~ \G : K\. Corollary 8.3.7 implies that 

IG: H n Kl = IG: HIIH: H n Kl ~ IG: HIIG: Kl. 

This has the following interesting consequence. 

8.3.12. Corollary (Poincare's Theorem). The intersection of a finite set of sub
groups each having finite index in a group is a subgroup of finite index. 

As we proved in Theorem 8.1.21, every subgroup of a cyclic group is cyclic. 
Now we are ready for some further details. 

8.3.13. Theorem. Let G = (g) be a cyclic group and let H be a subgroup of G. 

(i) If G is infinite and H = (gn), where n =!= 0, then H is infinite and 
IG : HI = n; ifn = 0, then the index IG : HI is infinite. 

(ii) If G has finite order r, then IHI is a divisor of r. Conversely, for each 
divisor d of the number r, there is one and only one subgroup of order d 
and it coincides with (g~). 
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Proof. 
(i) Let x be an arbitrary element of G. Then, x = gk for some k E Z and 

Theorem 1.4.1 implies that k = nq + s where 0 _::: s < n. We have 

l = gnq+s = (gn)q gs E gs H. 

It follows that 

Next if gs H = gf H where 0 _::: t _::: s < n then we have gf = gs u, for some 
element u E H. Since u = gnm, for some m E Z, we have 

Since G is an infinite cyclic group, g has infinite order so t = s + nm. From 
the choice of s, t we conclude that m = 0 and hence s = t. Therefore, the cosets 
gs H are distinct from each other for 0 _::: s < n. It follows that IG : HI = n. 

(ii) Now let IGI = r < oo. By Lagrange's Theorem, Corollary 8.3.8, IHI is 
a divisor of r. Conversely, let d be a divisor of r, say r =db, where bEN. If 
we suppose that lgbl = u < d, then gbu = e and bu < bd = r, which contradicts 
the fact that g has order r. Thus lgbl =d. Let (gv) be another subgroup of order 
d. Then, gvd = e and therefore vd is divisible by r =db, so v is divisible by b. 
Thus (gv) _::: (gb). However, d = l(gv)l and d = l(gb)l, so that (gv) = (gb). 

8.3.14. Corollary. A group G has only two subgroups ((e) and G) if and only if 
IGI is a prime. 

Proof. Let g be a nontrivial element of G. If G has only two subgroups then 
(g) = G and G is a cyclic group. If we suppose that lgl is infinite, then 

a contradiction, which shows that lgl is finite. By Theorem 8.3.13, IGI is a prime 
number. 

EXERCISE SET 8.3 

8.3.1. Prove that a group G is a cyclic group of order p 2 where p is a prime 
if and only if G has exactly three subgroups. 

8.3.2. Prove that a finite group of even order has an odd number of elements 
of order exactly 2. 

8.3.3. Prove that if A and B are finite subgroups of a group G and if 
GCD(IAI, IBI) = 1 then An B = {e}. 
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8.3.4. Let A, B be subgroups of a group G. Give an example to show that 
AB = {abla E A, b E B} need not be a subgroup of G. 

8.3.5. Let A, B be subgroups of a group G. Define f :A x B ----+ AB by 
f(a, b)= ab. Prove that if abE AB then (p- 1(ab) = {(ac, c- 1b)lc E 

An B}. Deduce that IABI · lA n Bl = IAI · IBI. Note that AB need not 
be a group. 

8.3.6. Compute the set of left cosets and the set of right cosets for the subgroup 
generated by the cycle (1 2 3 4) in the group S4. 

8.3. 7. Compute the set of left cosets and the set of right cosets for the subgroup 
{e, (12)(3 4), (13)(2 4), (14)(2 3)} in the group S4 . 

8.3.8. Let G be a group and let H, K be subgroups such that GCD(IG: HI, IG : 
Kl) = 1. Prove that G = H K. 

8.3.9. Prove that if H, K are subgroups of a group G, then H UK is a subgroup 
of G if and only if either H S K or K S H. Hence show that no group 
is a union of two proper subgroups. 

8.3.10. Give an example of a group that is a union of three proper subgroups. 

8.3.11. Find all groups of order at most 5. 

8.4 NORMAL SUBGROUPS AND FACTOR GROUPS 

In Section 8.3, we considered partitions of a group into left and right cosets. 
The natural questions arise as to whether the partitions are significantly different 
and whether they can coincide. Thus, is it ever the case that L.H and AH are 
the same and when does this happen? For what types of subgroups H does this 
happen? Of course, for abelian groups G, it is always the case that xh = hx for 
all elements x E G and h E H. Therefore, in this case, x H = H x for all x E G 
and hence L,H = AH for all subgroups H of an abelian group G. 

The following proposition gives a further special case when L-H = AH. 

8.4.1. Proposition. Let G be a group and let H be a subgroup of G. /fiG: HI= 
2, then xH = Hx = G\H,for each x ¢.Hand xH = Hx = H for each x E H. 

Proof. Indeed, we have G = H U g H for some element g E G. It follows that 
g H = G\H. If x ¢. H then x H =/= H and x H = g H = G\H. A similar argument 
is valid for right cosets. Thus x H = H x = G \ H when x ¢. H. On the other 
hand, if x E H then x H = H = H x and the result follows. 

We now consider the example of the group S3 and a couple of its subgroups. 
We let 
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First we note that, since IHI = 3, Corollary 8.3.8 implies that IS3 : HI = 2. Con
sequently, the family of all left cosets of A3 in S3 coincides with the family of 
right cosets of this subgroup and hence ~A3 = AA3 • However, for the subgroup 
K, there are the following three right cosets, obtained by direct calculation, 

and the following three left cosets, 

These two sets are different of course, so in this case ~ K =I= A K. 

Let G be a group and let H be a subgroup of G such that the family of all 
left cosets of H in G coincides with the family of all right cosets of H in G. If 
x E G, then there exists an element y E G such that xH = Hy. Since x E xH, 
it follows that x E H y n H x and since right cosets are equal or disjoint, we have 
that Hy = Hx so xH = Hx. 

8.4.2. Definition. Let G be a group. The subgroup H is called normal in G, if 
x H = H x for each element x E G. We denote the fact that H is normal in G by 
H <l G. 

8.4.3. Definition. Let G be a group and let A, B be two subsets of G. The product 
AB is defined to be the subset {ab I a E A, b E B}. 

In the case, when A consists of the single element a, we write aB instead 
of {a}B and a similar convention holds for Ab, whenever B = {b}. In a similar 
fashion, we can define the product of any finite set of subsets of a group. Since the 
operation in a group is associative, this subset multiplication is also an associative 
operation. 

8.4.4. Definition. Let G be a group and let A, B be two subgroups of G. The 
subgroups A, Bare said to be permutable if AB = BA. 

8.4.5. Proposition. Let G be a group and let A, B be two subgroups of G. The 
product AB is a subgroup if and only if the subgroups A, Bare permutable and 
in this case, 

AB = (AU B) = (A, B). 

Proof. Assume that AB is a subgroup of G. Since A = Ae S AB and B = e B s 
AB, we have BA ~ (A, B) S AB. Let x be an arbitrary element of AB. Since 
AB is a subgroup of G, then by Theorem 8.1.7, x-1 E AB and hence x-1 = uv 
for elements u E A, v E B. We now have 
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Again by Theorem 8.1.7, u- 1 E A and v- 1 E B. Hence v-lu- 1 E BA, which 
proves that AB ~ BA and therefore AB = BA = (A, B). 

Conversely, suppose that AB = BA. If x, y E AB, then x = a1b1 and y = 
a2b2, for some elements a1, a2 E A, b1, b2 E B. We have 

Since B is a subgroup, Corollary 8.1.8 implies that b1b2 1 
E B and hence 

(blb2. 1)a2. 1 
E BA = AB. Therefore (blb2. 1)a:;_ 1 = a3b3, where a3 E A and 

b3 E B. Hence 

and A B is a subgroup, by Corollary 8.1.8. 

The following proposition is very useful. 

8.4.6. Proposition (De de kind Modular Law). Let G be a group and let A, B, C 
be subgroups of G. Suppose that A :S C. Then (AB) n C = A(B n C). 

Proof. In fact, A(B n C)~ AB, and A(B n C)~ AC =C. Hence 

A(B n C) ~ (AB) n C. 

Conversely, let x E (AB) n C. Then x = ab, where a E A and bE B. We 
have b = a-1x E AC = C, so that bE B n C and hence x E A(B n C). This 
implies that (AB) n C ~ A(B n C) and we have 

A(B n C)= (AB) n C, 

which completes the proof. 

Note that from the inclusion A ::; C, we have A n C = A, so we can rewrite 
the equation in the statement of Proposition 8.4.6 in the form 

(AB) n C = (An C)(B n C). 

However, A(B n C) ~ (AB) n C is not valid in general. 

8.4.7. Definition. Let G be a group. A subgroup Pis called permutable (or quasi
normal) in G, if PH = H P for each subgroup H of G. 

The most important examples of permutable subgroups are normal subgroups. 
Here are some criteria for normality. 

8.4.8. Proposition. Let G be a group and let H be a subgroup of G. The following 
are equivalent: 
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(i) H is a normal subgroup of G. 

(ii) (xH)(yH) = xyH for all x, y E G. 

(iii) x-1 Hx ~ H for every element x E G. 

(iv) x-1 Hx = H for every element x E G. 

Proof. 
(i) ==} (ii). We have 

(xH)(yH) = x(Hy)H = x(yH)H = (xy)(H H)= xyH. 

This latter equality follows from the fact that if u, v E H, then Theorem 8.1.7 
implies that uv E H, so H H ~ H. On the other hand, since e E H, H = eH ~ 
H H, and hence H H = H. 

(ii) ==} (iii). For each x E G, we have 

x-1 Hx = (x-1 Hx)e ~ (x-1 Hx)H = (x-1 H)(xH) = x-1xH = eH = H, 

using the given hypothesis. 
(iii) ==} (iv). Let x E G. Then x-1 Hx ~ H, by hypothesis. Also 

(x- 1)- 1 Hx- 1 = xHx-1 ~H. Therefore 

and so x- 1 Hx =H. 
(iv) ==} (i). We have 

xH = x(x-1 Hx) = (xx- 1)Hx = eHx = Hx. 

We next consider some examples of normal subgroups. Certainly, (e) <l G 
and G <l G. 

8.4.9. Definition. A group G is called simple, if it has only two normal subgroups, 
namely, (e) and G. 

By contrast, a group of all whose subgroups are normal is essentially the direct 
opposite of a simple group. Such groups are called Dedekind groups and their 
structure was described (in the case of finite groups) in the following paper of 
Dedekind (1897). 

[Dedekind Ober R. Gruppen deren sammtliche Teiler Normalteiler sind. Math 
Annalen 1897;48:548-561.] 

Clearly, every abelian group is a Dedekind group. Every simple abelian group 
is a finite group of prime order, by Corollary 8.3.14. 

We also note that every subgroup of the center l;(G) of a group G is normal 
in G. To see this, note that if hE l;(G) and g E G, then g-1hg = hg-1g =hE 
l;(G) so if H ~ l;(G) then g-1 Hg ~H. 
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8.4.10. Proposition. Let G be a group and let 6 be a family of normal subgroups 
of G. Then the intersection, n6, of all subgroups of this family is also normal 
in G. 

Proof. LetS= n6. By Corollary 8.1.10, S is a subgroup of G. Let x E S and 
g E G. If U is an arbitrary subgroup of the family 6 then x E U and, since U is 
normal in G, it contains the element g- 1xg.lt follows that g- 1xg belongs to the 
intersection of all subgroups of the family 6 and hence to S. Proposition 8.4.8 
completes the proof. 

8.4.11. Corollary. Let G be a group and let ,C be a local family of normal sub
groups ofG. Then the union, U,C, of subgroups of this family is normal in G. 

Proof. Let V = U£. By Corollary 8.1.13, V is a subgroup. Let x E V, g E G 
and choose a subgroup L E £, which contains x. Since L is a normal subgroup, 
it also contains g- 1xg. It follows that g- 1xg E V and, by Proposition 8.4.8, V 
is normal in G. 

8.4.12. Corollary. Let G be a group and let ,C be a linearly ordered family of 
normal subgroups of G. Then the union, U,C, of subgroups ofthisfamily is normal 
in G. 

8.4.13. Corollary. Let G be a group and let 

be an ascending series of normal subgroups of G. Then the union, UnEN Hn, of 
the subgroups from this series is a normal subgroup of G. 

Let M be a subset of a group G and let 6 be the family of all normal 
subgroups that contain M. Then the intersection, (M)G = n6, is normal in G, 
by Proposition 8.4.10. 

8.4.14. Definition. Let G be a group and let M be a subset of G. The subgroup 
(M) G is called the normal subgroup generated by the subset M or the normal 
closure of M in G. 

If H is a normal subgroup containing the subset M then, by definition, H 
contains the normal subgroup (M)G and, in this sense, (M)G is the least normal 
subgroup containing M. It is clear that if M is a normal subgroup of G, then 
(M)G = M. 

If H is a subgroup of G, then the subset x- 1 H x is a subgroup for each 
element x E G. Indeed, let a, bE x- 1 Hx. Then 
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for some elements u, v E H. We now have 

Since H is a subgroup, uv-i E H. Therefore x-i Hx satisfies (SG 3) and, by 
Corollary 8.1.8, x-i Hx is a subgroup. We say that the subgroups Hand x-i Hx 
are conjugate. By Proposition 8.4.8, a subgroup H is normal if and only if H 
coincides with each of its conjugates. 

8.4.15. Proposition. Let G be a group and let H be a subgroup of G. Then 

n x-i Hx = Corec(H) 
xEG 

is a normal subgroup of G. If H contains a subgroup K that is normal in G then 
K::::; Corec(H). Thus, Corec(H) is the largest normal subgroup ofG contained 
in H. 

Proof. We proved above that x-i Hx is a subgroup of G for every x E G. By 
Corollary 8.1.10, Corec(H) is also a subgroup. Now let u E Corec(H) and let 
x, g E G. Then u E (xg-i)-i H(xg-i) = gx-i Hxg-i, so u = gx- 1vxg-i for 
some element v E H. This implies that g-iug = x-ivx E x-iHx. Since xis an 
arbitrary element of G, g-iug E Corec(H). By Proposition 8.4.8, Corec(H) is 
a normal subgroup of G. Furthermore, since the subgroup K is normal, K = 
x-i Kx :S x-i Hx. Thus, K :S nxEG x-i Hx = Corec(H). 

8.4.16. Definition. Let G be a group. We say that the elements g, y are conjugate 
in G if there exists an element u E G such that g = u-i yu. More precisely, we 
shall say that the elements y and g = u-i yu are conjugate in the group G with 
the help of the element u. 

Note that this relation of conjugacy is an equivalence relation. Indeed, g = 
e-i ge and this relation is therefore reflexive. If g = u-i yu, then 

(u-i)-igu-i = ugu-i = u(u-iyu)u-i = (uu-i)y(uu-i) = y. 

Thus, y and g are conjugate with the help of u-i and hence, conjugacy is a 
symmetric relation. Finally, if g = u-iyu andy= v-izv, then 

g = u-iyu = u-i(v-izv)u = u-iv-izvu = (vu)-iz(vu), 

and therefore conjugacy is a transitive relation. 

8.4.17. Definition. Let G be a group. If x is an element of G then the equivalence 
class of x under the relation of conjugacy is called the conjugacy class of x and 
is denoted by xG. Thus xG = {g-i xg I g E G}. 

Since conjugacy is an equivalence relation, the conjugacy classes form a par
tition of G. 
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8.4.18. Proposition. Let G be a group and let x, u, v E G. The elements u-1xu 
and v-1xv coincide if and only ifuv- 1 E Cc(x). 

Proof. Indeed, if u-1xu = v- 1xv, then we obtain vu-1xuv- 1 = x or 
(uv- 1)- 1x(uv- 1) = x. This means that uv- 1 E Cc(x). The converse can be 
established by arguing in reverse. 

8.4.19. Corollary. Let G be a group and let x E G. There is a bijection from xG 
onto the set {gCc(x) I g E G}. 

Proof. Indeed, consider the mapping <P : xG ---+ {gCc(x) I g E G}, defined by 
the rule 

<P: u-1xu f---+ uCc(x), where u E G. 

The mapping <Pis injective since if uCc(x) = vCc(x), then uv-1 E Cc(x), 
and Proposition 8.4.18 implies that u-1xu = v-1xv. The fact that the mapping 
<P is surjective is clear. 

8.4.20. Corollary. Let G be a group and let x E G. If the subset xG is .finite, then 
the index IG: Cc(x)l is also .finite. Moreover, lxGI = IG: Cc(x)l. 

Let G be a group. Put 

FC(G) = {x E G I xG is finite}. 

8.4.21. Corollary. Let G be a group. The subset FC(G) is a subgroup of G. 

Proof. Indeed, from (g- 1xg)- 1 = g- 1x- 1g, it follows that (x- 1)G = (xG)- 1• 

Thus, if xG is finite then (x- 1 )G is also finite. Furthermore, g-1 (xy)g = 
g- 1xgg- 1yg, which implies that (xy)G ~ xcyc. Therefore, if xG and yG are 
finite, then (xy)G is finite. The fact that FC(G) is a subgroup follows by 
Theorem 8.1.7. 

We next consider the family £(G), of all subgroups of the group G. We 
can prove that the relation "the subgroups H and K are conjugate in G" is an 
equivalence relation on £(G). Here, to say that His conjugate to K means that 
there exists g E G such that g -I H g = K. As with our discussion concerning the 
conjugacy of elements, we consider equivalence classes of conjugate subgroups. 
The set of subgroups conjugate to a subgroup H in a group G, will be denoted 
by clc(H). Thus clc(H) = {g-1 Hglg E G}. By Proposition 8.4.8, the subgroup 
His normal if and only if clc(H) = {H}. 

8.4.22. Definition. Let G be a group and let H be a subgroup of G. The subset 

Nc(H) = {x E G I x-1Hx = H} 

is called the normalizer of H in G. 
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8.4.23. Proposition. Let G be a group and let H be a subgroup of G. The nor
malizer Nc(H) is a subgroup of G. 

Proof. Let x E Nc(H). Then, x- 1 Hx = H and hence, H = xHx-1 follows 
easily by premultiplying the equation by x and postmultiplying it by x- 1• Thus 
x- 1 E Nc(H). Next, if x, y E Nc(H), we have 

(xy)- 1 H(xy) = y-! x- 1 Hxy = y- 1(x- 1 Hx)y = y- 1 Hy =H. 

Hence x- 1• xy E Nc(H) for all x, y E H and Nc(H) is therefore a subgroup of 
G, by Theorem 8.1.7 

We note that Nc(H) is the largest subgroup of G in which H is normal. 

8.4.24. Proposition. Let G be a group and let H be a subgroup of G. The sub
groups u-1 Hu and v-1 Hv coincide if and only ifuv-1 E Nc(H). 

The proof of this is similar to the proof of Proposition 8.4.18, so we leave the 
proof to the reader. 

8.4.25. Corollary. Let G be a group and let H be a subgroup of G. There is a 
bijection from the set clc(H) to the set {Nc(H)g I g E G}. 

Proof. We let¢: clc(H) ----+ {Nc(H)g I g E G} be the mapping defined by 

¢: u-1 Hu f--+ Nc(H)u, where u E G. 

The mapping ¢ is injective, since if Nc(H)u = Nc(H)v, then uv- 1 E Nc(H) 
and Proposition 8.4.24 implies that u- 1 Hu = v- 1 Hv. It is clear that¢ is surjec
tive and hence bijective. 

We can also deduce the following result analogous to Corollary 8.4.20 

8.4.26. Corollary. Let G be a group and let H be a subgroup of G. If the set 
clc(H) is finite, then the index IG : Nc(H) I is also finite and, in this case, 
lclc(H)I = IG: Nc(H)I. 

In Proposition 8.4.8, we saw that the left cosets of a normal subgroup H 
of a group G satisfy the equation x H y H = x y H. If we take different coset 
representatives x 1H, y1H of xH and yH, respectively, then x = x 1h andy= y1k 
for elements h, k E H. Then 

xHyH = x,hHy,kH = x,hy,kH = x,hy1H = x1y1 (i! 1hy,)H = x,y,H, 

because H is normal, so Y!' h y, E H. Proposition 8.4.8(ii) therefore implies that 
the set of all left cosets of a normal subgroup H of G is stable relative to the 
operation of multiplication of subsets, since the argument given above shows that 
this operation of multiplication is well defined. Moreover, when H is normal in 
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G, the set of left H -cosets forms a group under this operation of multiplication 
defined on the left H -cosets. Indeed, as we mentioned above, the operation of 
multiplication of subsets is associative. The identity element is H itself, since 

(xH)H = xHH = xH and H(xH) = (Hx)H = (xH)H = xH. 

The reciprocal element to xH is x- 1 H, since 

(xH)(x- 1 H)= (xx- 1)H = eH = (x- 1 x)H = (x- 1 H)(xH). 

8.4.27. Definition. Let G be a group and let H be a normal subgroup of G. The 
group of all left H -cosets is called the factor group of G by H and it is denoted 
by GIH. 

It is interesting to note that some properties of a group are inherited by its 
factor groups. For example, if G is an abelian group, then each of its factor 
groups is also abelian. To see this, note that if H is normal in G and if x, y E G 
then xHyH = xyH = yxH = yHxH. However, some properties of a group 
are not inherited by factor groups as happens, for example, with the property 
of being infinite. For example, consider the additive group Z of all integers and 
its subgroup nZ, where n is a fixed integer. In Section 7.3 we showed that 
!ZinZI = n, which implies that the infinite group Z has finite factor groups. On 
the other hand, it is obvious that every factor group of a finite group is finite. 
We use the notion of factor groups a lot in our study of groups. This concept is 
very important in group theory. 

There is another question related to factor groups. If H = (e}, then for each 
element x E G, we have xH = x (e} = {x}, and xHyH = {x}{y} = {xy}. This 
means that the factor group G I (e) is no different from G. In particular, the 
algebraic properties of G and G I (e) are identical. 

8.4.28. Definition. The factor group G I H is called proper, if H is a nontrivial 
normal subgroup. 

More than 50 years ago, the study of the influence of properties of proper 
factor groups on a group was started. A summary of the main results obtained in 
this area can be found in the book by Kurdachenko et al. (2002) [Kurdachenko 
LA, Otal J, Subbotin IY. Groups with prescribed quotient groups and associated 
module theory. New Jersey: World Scientific Publishing Company; 2002.] 

8.4.29. Definition. Let G be a group and let x, y be elements of G. The element 
[x, y] = x- 1 y-1 xy is called the commutator of the elements x, y. 

If xy = yx, then x- 1 y- 1 xy =e. Performing these arguments in reverse, we 
obtain xy = yx from [x, y] =e. Thus, x andy commute if and only if [x, y] = e, 
which is to say that two elements commute if and only if their commutator is 
the identity. We note that [x, y]- 1 = [y, x]. Thus the inverse of a commutator is 
also a commutator. 
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8.4.30. Definition. Let G be a group. The subgroup of G generated by the subset 
{[x, y] I x, y E G} is called the derived subgroup or the commutator subgroup of 
the group G and is denoted by [G, G] or G'. An element of[G, G] is therefore a 
product of commutators. 

Observe that 

[g-1 xg, g-1 yg] = (g-1 xg)-1 (g -1 yg)-1 (g-1 xg)(g-1 yg) 

= g-1x-1gg-1y-1gg-1xgg-1yg 

= g-1x-1y-1xyg = g-1[x, y]g 

and from this it follows that [ G, G] is a normal subgroup of G. 

8.4.31. Proposition. Let G be a group. Then 

(i) The factor group GI[G, G] is abelian. 

(ii) If H is a normal subgroup of G such that G I H is abelian, then [ G, 
G] :::: H. 

Proof. 
(i) To see this, let D = [ G, G] and consider the cosets x D, yD. We have 

[xD, yD] = (xD)- 1 (yD)- 1 (xD)(yD) = (x- 1 D)(y- 1 D)(xD)(yD) 

= x- 1y- 1xyD = [x, y]D = D, 

which shows that G I D is abelian, since the commutator of two arbitrary elements 
of G I D is the identity element of G I D. 

(ii) Let H be a normal subgroup of G such that G I H is abelian. This means 
that for all elements x, y E G, we have xHyH = yHxH and hence [x, y]H = 
H. However, this means that [x, y] E H. Thus, every commutator is in H and 
so [ G, G] :::: H follows. 

EXERCISE SET 8.4 

8.4.1. Prove that every factor group of a cyclic group is also cyclic. 

8.4.2. Let G be a group and let N be a normal subgroup of G. Prove that if 
N :::: H :::: G then HI N is a subgroup of GIN and that every subgroup 
of GIN arises in this way. Thus, also prove that if X is a subgroup of 
GIN then X = HI N, for some subgroup H of G containing N. 

8.4.3. Prove that if G has a normal subgroup N of index k then gk E N for all 
g E G. 
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8.4.4. Prove that if N is a normal subgroup of G and if H is a subgroup of G 
then H N is a subgroup of G. 

8.4.5. In problem 8.4.4, further prove that if H is also normal in G then H N 
is normal in G. 

8.4.6. Give an example of a nonabelian group G which has an abelian factor 
group. 

8.4.7. Let G be a group and let H ::: G be such that IG : HI = 2. Prove that 
H is a normal subgroup of G. 

8.4.8. Let G be a finite group of odd order and let x be the product of all the 
elements of G, in some order. Prove that x E G'. 

8.4.9. Prove that An is a normal subgroup of Sn. Describe the group Sn!An. 

8.4.10. Prove that if G is a group, N is a normal subgroup of G, and H is a 
subgroup of G then H n N is a normal subgroup of H. 

8.4.11. Let N be a cyclic normal subgroup of G. Prove that every subgroup of 
N is normal in G. 

8.4.12. Give an example to show that if A ::: B ::: C and if A is normal in B 
and B is normal in C then A need not be normal in C. (Thus normality 
is not a transitive relation.) 

8.4.13. Let N be a normal subgroup of the finite group G and let GCD(INI, IG: 
Nl) = 1. Prove that if INI = k and x E G, the equation xk = e implies 
that x EN. 

8.4.14. Prove that SLn (lR) is a normal subgroup of GLn (lR) and describe the 
group GLn(lR)/SLn(lR). 

8.4.15. Prove that every subgroup of the center of a group is normal in the group. 

8.4.16. Show that the converse of Lagrange's theorem is false by showing that 
A4 has no subgroup of order 6. 

8.5 HOMOMORPHISMS OF GROUPS 

We next consider homomorphisms of groups. We begin with the elementary 
properties of homomorphisms. For the convenience of the reader, we recall the 
definition of a group homomorphism. 

8.5.1. Definition. Let G, H be groups and let f : G ------+ H be a mapping. Then 
f is called a homomorphism if 

f(xy) = f(x)f(y) for all x, y E G. 
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An injective homomorphism is called a monomorphism, a surjective homo
morphism is called an epimorphism and a bijective homomorphism is called an 
isomorphism. Iff: G ---+ His an isomorphism then, as we saw in Section 3.1, 
the mapping f- 1 : H ---+ G is also an isomorphism. 

8.5.2. Definition. Let G, H be groups. Then, G and H are called isomorphic if 
there exists an isomorphism from G onto H, and we write this as G ~H. 

It is easy to see that the identity mapping sc : G ---+ G is an isomorphism 
and also that if f : G ---+ H and g : H ---+ K are homomorphisms then their 
product g o f is also a homomorphism. 

8.5.3. Proposition. Let G, U be groups and let f : G ---+ U be a homomor
phism. Then 

(i) f(e) = eu is the identity element ofU; 

(ii) if f(x) = u, then f(x- 1) = u-1; 

(iii) if H is a subgroup of G then its image, f(H), is a subgroup of U; in 
particular, f(G) = lmf is a subgroup of U; 

(iv) if V is a subgroup of U then its preimage, f- 1 (V), is a subgroup of G; 

(v) if V is a normal subgroup of U then its preimage, f- 1 (V), is a normal 
subgroup of G; in particular, f-1 ((e)) is a normal subgroup of G. 

Proof. 
(i) By definition of the identity element, ex = x for every x E G and hence, 

ee =e. It follows that 

f(e) = f(ee) = f(e)f(e). 

Since f(e) has an inverse, we obtain, multiplying on the right (or left) by f(e)- 1, 

eu = eu f(e) = f(e). 

(ii) By definition of inverses, we have xx-1 = e = x- 1x. It follows that 

Thus uf(x-1) = e = f(x- 1)u so u-1 = f(x- 1). 

(iii) Let u, v E f(H). Then there exist elements a, bE H such that u = f(a) 
and v = f(b). We have 

because H is a subgroup of G. By Corollary 8.1.8, f (H) is a subgroup of U. 
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eiv) Let x, y E f- 1eV). Then Jex), Jey) E V and so Jex)Jey)- 1 E V. Thus 

and hence xy- 1 E f- 1ev). By Corollary 8.1.8, f- 1ev) is a subgroup of G. 
ev) Let g be an arbitrary element of G and let x E f- 1eV). Then Jex) E V 

and 

Jeg- 1xg) = Jeg- 1)Jex)Jeg) = Cfeg))- 1 Jex)Jeg) E V, 

because V is normal in U. It follows that g- 1 xg E f- 1 ev) and by Proposition 
8.4.8, f- 1 ev) is a normal subgroup of G. 

We note that, by contrast with ev), the image of a normal subgroup need not be 
normal in U unless the map f is an epimorphism. We saw in ev) that f- 1e(e)) 
is a normal subgroup of G whenever f : G ------* U is a homomorphism. This 
important subgroup is known as the kernel, which we now formally define in a 
similar fashion to that used for rings. 

8.5.4. Definition. Let G, U be groups and let f : G ------* U be a homomorphism. 
The normal subgroup Kerf = {x E G If ex) = e} is called the kernel of the homo
morphism f. The subgroup lmf = {fex)lx E G} is called the image of f. 

We next give a number of classical theorems on homomorphisms similar to 
those appearing in Chapter 7. We have supplied the proofs, even though they are 
very similar to the corresponding proofs in the previous chapter. 

8.5.5. Theorem (The Theorem on Monomorphisms). Let G, U be groups. Then, 
a homomorphism f : G ------* U is a monomorphism if and only ifKer f = (e). In 
this case, G ~ lmf. 

Proof. Indeed, iff is a monomorphism, then x =f e implies that Jex) =f fee) = 
eu. This means that no nontrivial element x belongs to Kerf and hence Kerf = 
(e). 

Conversely, let Kerf= (e), and assume that x, yare elements of G such that 
Jex) = Jey). Then Jex)Jey)- 1 = Jey)Jey)- 1 = eu and 

eu = Jex)Jey)- 1 = Jex)Jey- 1
) = Jexy- 1

), 

so xy-1 E Kerf= (e). This means that xy- 1 = e and hence x = y. Therefore 
f is an injective mapping. 

The next theorem is analogous to Theorem 7 .4.5 and could be proved in a 
similar fashion, but here, we give an alternative rendition of this proof. 
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8.5.6. Theorem (First Isomorphism Theorem, Version I). Let G, U be groups and 
let f : G -----+ U be an epimorphism. Then U is isomorphic to the factor group 
G/Kerf. 

Proof. We let N = kerf and define a mapping 1/11 : GIN -----+ U by 1/11 (x N) = 
f(x). First, we must show that this mapping is well defined. If xN = yN then 
y = xn, for some n E N and we have 

1/lt(yN) = f(y) = f(xn) = f(x)f(n) = f(x)e = f(x) = 1/lt(xN). 

Now 1/11 is a homomorphism since 

1/lt(xHyH) = 1/lt(xyH) = f(xy) = f(x)f(y) = 1/lt(xH)o/t(YH). 

Also 1/Jt is an epimorphism since f is. Furthermore, if 1/Jt(xN) = eu then the 
definition of 7 shows that f(x) = eu and hence x E kerf = N. By Theorem 
8.5.5, 1/J 1 is a monomorphism and hence 1/J 1 is an isomorphism. 

8.5.7. Theorem (First Isomorphism Theorem, Version 2). Let G, U be groups and 
let f : G -----+ U be a homomorphism. Then G /Kerf ~ lmf ::; U. 

Proof. The restriction of f to the mapping G -----+ lmf is an epimorphism. Then 
by Theorem 8.5.6, we deduce that lmf ~ G /Kerf. By Proposition 8.5.3, lmf 
is a subgroup of U. 

As the first application of the above theorems, we describe all cyclic groups. 

8.5.8. Theorem. Let G = (g) be a cyclic group. 

(i) If G is infinite then G is isomorphic to the additive group Z of all integers. 

(ii) IfG is finite and IGI = m, then G ~ ZjmZ. 

Proof. Let f : Z -----+ G be the mapping defined by f (n) = gn, where n E Z. 
We have 

f(n +k) = gn+k = gnl = f(n)f(k), 

so that f is a homomorphism. Since every element of G is an integer power 
of g, f is an epimorphism. Suppose that G is infinite. Then n =/= k implies that 
f(n) = gn =/= gk = f(k), so the mapping f is an injection and therefore it is an 
isomorphism. 

Suppose now that G is a finite group. In this case, lg I = m and hence 
gm =e. Thus, mE Kerf and Theorem 8.1.7 implies that (m) = mZ::; Kerf. 
By Theorem 8.1.21, Kerf= (t) = tZ, for some t E Z and since mE tZ, we 
see that m = ts, for somes E Z. By Theorem 8.5.6, G ~ ZjKerf and hence 
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IG/Kerfl = m. On the other hand, Theorem 8.3.13 implies that IZ/mZI = m 
and IZ/tZI = t, which show that t = m. Consequently, G ~ Z/mZ. 

Here are some further interesting examples. 

8.5.9. Example. Let a be a real number, where a > 1. Define the mapping f : 
~---+ ~x by f(x) =ax, for each x E R We have 

f(x + y) = ax+y = axay = f(x)f(y), 

so that f is a homomorphism. Clearly, f is injective and lmf consists of all 
positive real numbers. Thus, f is an isomorphism from the group of additive real 
numbers onto the multiplicative group of all positive real numbers. Of course, 
the inverse map in this case is loga : ~ x ---+ R 

8.5.10. Example. Define the mapping f: GLn(~)---+ ~x by f(A) = det(A), 
whenever A E GLn(~). By Theorem 2.5.1, 

f(AB) = det(AB) = det(A)det(B) = f(A)f(B), 

so f is a homomorphism. Also, 

Kerf= {A E GLn(~) I det(A) = 1} = SLn(~), 

and hence SLn (~) is normal in GLn (~). It is clear that the mapping f is sur
jective so, by Theorem 8.5.6, 

Similarly, 

8.5.11. Example. Define the mapping f : T n (~) ---+ Dn (~) by 

all al2 al3 aln-1 a1n all 0 0 0 0 
0 a22 a23 a2n-I a2n 0 a22 0 0 0 
0 0 a33 a3n-I a3n f 0 0 a33 0 0 1---+ 

0 0 0 0 ann 0 0 0 0 ann 

From Section 8.2 it follows that f is a homomorphism (sometimes called 
an erasing homomorphism). The mapping f is clearly surjective and 
Kerf= UTn(~). Thus, UTn(~) is a normal subgroup of Tn(~) and, by 
Theorem 8.5.6, Tn(~)/UTn(~) ~ Dn(~). However, we note that UTn(~) is not 
normal in GLn(~). 
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8.5.12. Example. Let G be a group. A homomorphism cp : G ---+ G is called an 
endomorphism of G. The set of all endomorphisms of G is denoted by End(G). 
A bijective endomorphism cp of G (thus cp is also a permutation of G) is called 
an automorphism of the group G and we denote the set of all automorphisms 
of G by Aut(G). We note that Aut(G) is a subgroup of S(G), the group of 
permutations of the set G. To see this, let cp, 1/J E Aut(G). Then 

(cp o 1/J)(xy) = cp(1/J(xy)) = cp(1/J(x)1/J(y)) = cp(1/J(x))cp(1/J(y)) 

= (cp o 1/J)(x)(cp o 1/J)(y). 

This means that cp o 1/J E Aut( G). In Section 3.1 we showed that the inverse of an 
automorphism is again an automorphism. Thus, Aut(G) satisfies Theorem 8.1.7 
and hence it is a subgroup of S(G). 

In a group G we choose an arbitrary element g and define the mapping ing : 
G---+ G by ing(x) = g- 1xg for each x E G. We have 

• ( ) -1 -1 -1 • ( )" ( ) IDg xy = g xyg = g xgg yg = IDg X IDg y , 

so that ing is an endomorphism. If x is an arbitrary element of G then 
ing(gxg- 1) = g-1(gxg- 1)g = x which implies that ing is surjective. If 

Multiplying these equations on the right by g-1 and on left by g, we obtain 
x = y. Thus, ing is injective and hence is an automorphism of G. The mapping 
ing is called the inner automorphism of G induced by g. 

Next, we define a further mapping <t> : G ---+ Aut(G) by <t>(g) = ing-1 for 
each element g E G. From the equations 

ingh(x) = (gh)- 1x(gh) = h-1g-1xgh = h-1(g- 1xg)h = inh(g- 1xg) 

= inh(ing(x)) = (inh oing)(x), 

it follows that ingh = inh o ing. Also 

and this shows that <t> is a homomorphism. If u E Ker <t>, then <t> ( u) = inu -I = 
Be. Hence 

inu-1 (x) = uxu- 1 = Bc(x) = x, 

for each element x E G. Note that uxu-1 =xis equivalent to ux =xu, for each 
x E G, and thus u E ~(G), so Ker <t> :::; ~(G). Since it is clear that ~(G) :::; Ker <t>, 
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we have Ker<l> = s(G). We will denote Im <l> by Inn( G). By Proposition 8.5.3, 
Inn( G) is a subgroup of Aut( G) which we call the group of inner automorphisms 
of G. By Theorem 8.5.7, Inn(G) ~ G/s(G). 

8.5.13. Example. Let G be a group, let H be a subgroup of G and let 9'\H = 
{x H I x E G} be a partition of G into the left H -cosets. If g E G then there is a 
mapping t8 :9tH-----+ 9'\H defined by t8 (xH) = (gx)H. This mapping is easily 
seen to be well defined. The mapping tg is surjective since xH = g(g- 1xH) = 
t8 (g- 1xH) and injective since if t8 (xH) = t

8
(yH), then gxH = gyH, from 

which it follows easily that x H = y H. Consequently, t g is a permutation of the 
set 9'\H. We next consider the mapping \II : G -----+ S(9lH ), defined by \ll(g) = t8 
for each g E G. We have 

lgv(xH) = (gv)(xH) = g(vxH) = t8 (vxH) = lg(lv(xH)) = t8 otv(xH), 

so lgv = lg o lv. Thus 

\ll(gv) = lgv = lg o lv = \ll(g) o \ll(v), 

so that \II is a homomorphism. Let g E K = Ker \11. Then \II (g) = t g = E, where 
E is the identity permutation of the set 9l H. Thus t g (x H) = g x H = x H for 
every x E G. Hence gx = xh for some hE H dependent upon x. Multiplying 
both sides on the right by x- 1 we see that g = xhx-1 E xHx-1, for all x E G. 
Hence g E nxEG xHx-1 = Corea(H). It follows that K :S Corea(H). Since 
the above chain of reasoning can be reversed, we also have Corea(H) :=:: K and 
hence Ker\11 = Corea(H). 

If H = (e), then K = (e) and, by Theorem 8.5.5, \II is a monomorphism. We 
have proved the following results. 

8.5.14. Theorem (Cayley's Theorem). Every group G is isomorphic to some sub
group of a permutation group on some set. 

Cayley's Theorem is particularly pleasing in the finite case since it suggests 
that studying and understanding the finite symmetric groups enables us to get 
further information about all finite groups. 

8.5.15. Corollary. If G is a finite group of order n then G is isomorphic to some 
subgroup of the symmetric group, Sn. 

Finally, we state the following result. It shows that if G has a subgroup H of 
finite index n, then the set of cosets of H is permuted by the elements of G in 
the manner described in Example 8.5.13. Thus, G acts on this set of cosets as 
an appropriate element of a small permutation group. There is a homomorphism 
from G into Sn in this case, where n = I G : H 1. 
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8.5.16. Corollary. Let G be a group and let H be a subgroup of G. Suppose that 
H has finite index in G and that IG : HI = n. Then, H contains a subgroup K 
such that K is normal in G and I G I K I :::; n !. 

EXERCISE SET 8.5 

Show your work by exhibiting a proof or a counterexample where necessary. 

8.5.1. Let G = {aab I aab : lR -----+ JR}, where the mapping aab is defined by 
aab(x) =ax+ b, a =/= 0, a, b E R 
(a) Prove that G is a subgroup of S(JR). 

(b) Prove that the mapping () : aab aao is an endomorphism of G. Find 
Im () and Ker (). 

8.5.2. Define the mapping lab : lR -----+ lR by the rule fab(x) =ax+ b where 
a, b E JR, a =/= 0. Prove that the subset G = Uab I a, b E lR, a =/= 0} is a 
subgroup of S(JR). Put H = Uib I b E JR}. Prove that H is a normal 
subgroup of G and that G I H ~ U(JR) ~ Uao I a =/= 0, a E JR}. 

8.5.3. Define the mapping E> : Z -----+ U(Q) by the rule 

E>(x) = { 1, i~ xi~ even } . 
-1, If X IS odd. 

Prove that E> is a homomorphism. Find Im E> and Ker E>. 

8.5.4. Prove Corollary 8.5.16 in detail. 

8.5.5. Decide which of the following mappings constitute group homomor
phisms and find the kernels for those which are. Which of them are 
isomorphisms? 

(a) f: G-----+ G defined by f(x) = x 3 , where G is the group of nonzero 
real numbers under multiplication. 

(b) f: lR-----+ lR defined by f(x) = x 2• 

(c) f: Mn(lR)-----+ lR defined by f(A) = det(A). 

(d) f: G x G -----+ G defined by f(a, b) =a+ b, where G is an abelian 
group, written additively. 

(e) f: G-----+ GIN defined by f(x) =xN, where G is a group and N 
is a normal subgroup of G. 

8.5.6. Let G = <C* denote the group of complex numbers under multiplication 
and let JR+ denote the group of positive real numbers under multiplication. 
Let N = {x + iylx2 + y2 = 1}. Prove that Gl N ~ JR+. 

8.5.7. Use the first isomorphism theorem to prove the second isomorphism 
theorem, that if G is a group, H :::; G, and N is a normal subgroup of G 
then HNIN ~ HI(H n N). 
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8.5.8. Use the first isomorphism theorem to prove the third isomorphism 
theorem, that if G is a group and N, K are normal subgroups of G such 
that N:::; K then (G/N)j(KjN) ~ GjK. 

8.5.9. Let G be the additive group of Z[X] and let H be the multiplicative 
group Q+ of all positive rationals. Prove, using the fundamental theorem 
of arithmetic that G ~H. 

8.5.10. Determine all the homomorphisms from Z12 to itself and decide which 
ones are actually isomorphisms. 

8.5.11. Verify that the mapping sign : Sn ---+ {-I, 1} is a homomorphism and 
find its kernel. 

8.5.12. Let f: Q---+ C* be defined by f (~) = e2rrimfn. Prove that f is a 
homomorphism and find the kernel of f. Determine the group with which 
Q/ker f is isomorphic. 

8.5.13. Let p be a prime and let Qp = {m/ pklm E Z, kENo}. Prove that the 
mapping f: Qp---+ C* defined by f(mjpk) = e2rrimfpk is a homomor
phism and find its kernel and image. 

8.5.14. Let G, H be groups. Prove that ;r : G x H ---+ G defined by ;r (g, h) = 
g is a homomorphism, find its kernel and use the first isomorphism 
theorem to deduce what G x H jker f is isomorphic to. 

8.5.15. Let G be a group containing two normal subgroups H, K such that 
H n K = { e}. Let H K = { hk I h E H, k E K}. Prove that H K ~ H x K. 

8.5.16. Prove that if G = G Ln (JR) then G' 2:: S Ln (lR). 

8.5.17. Let G be a finite group and let p be the least prime dividing the order 
of G. Prove that if H is a subgroup of G and if I G : HI = p then H is 
a normal subgroup of G. 

8.5.18. Let G be a group and let H, K be normal subgroups of G. Prove that 
Gj(H n K) is isomorphic to a subgroup of G I H x G/ K. 



CHAPTER 9 

ARITHMETIC PROPERTIES OF RINGS 

9.1 EXTENDING ARITHMETIC TO COMMUTATIVE RINGS 

This section is concerned with extending the usual arithmetic in the ring Z 
of integers to other types of commutative rings. The rings that we consider 
here are very special and form a small subset of rings in general. However, 
among them there are very useful and important types of rings such as certain 
rings of polynomials. Additionally, mathematicians working in other branches of 
mathematics often need to work with polynomial rings and other types of rings 
considered here. Such rings are, therefore, an essential part of any algebra text. 

We begin with the notion of divisibility and observe how this concept is 
studied in rings other than Z. 

9.1.1. Definition. Let R be a commutative ring and suppose that R has no zero 
divisors. Let a, b E R. We say that a divides b orb is divisible by a or that b is 
a multiple of a, if there exists c E R such that b = a c. We denote this by a I b. 

Let R be a commutative ring with no zero divisors. Suppose that a I b and b I 
a, sob= ac and a= bd for some elements c, dE R. Then a = (ac)d = a(cd), 
so that OR =a - acd = a(e- cd) and hence cd =e. Thus, c, d E U(R). We 
shall sometimes say that a has been cancelled or that a has been divided out in 
this sort of situation. 
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9.1.2. Definition. Elements a, b of the ring R are called associates (in R), if 
b =au for some element u E U(R). 

9.1.3. Theorem. Let R be an integral domain. The relation "to be associate ele
ments" is an equivalence relation on R. 

Proof. Indeed, the equation a = ae shows that the relation is reflexive. If b = 
au where u E U(R), then a = bu-1 and also u- 1 E U(R), which shows that 
the relation is symmetric. Finally, also let c = bv, where v E U(R). Then c = 
(au)v = a(uv) and uv E U(R), so that the relation is transitive. 

The equivalence classes of the relation "to be associate elements" are called 
the associate classes of R. If u E U(R), then u is a divisor of each element a 
since a = u(u-1a). Also note that u-1a is an associate of a. 

9.1.4. Definition. For the integral domain R and the element a E R, the asso
ciates of a and the elements of U ( R) are called improper divisors of a. Also, if 
a =be, where b, c E R \ U(R), then the elements b, care called proper divisors 
of the element a. 

We observe the following properties of divisibility. 

9.1.5. Proposition. Let R be an integral domain and let a, b, c E R. 

(i) If a divides b and b divides c, then a divides c. 

(ii) If a divides both b and c, then a divides b + c. 

(iii) If a divides b, then a divides be. 

(iv) If a divides each of the elements b1, ... , bn and c1, ... , Cn are arbitrary 
elements of R, then a divides b1c1 + · · · + bncn. 

The proofs of these results follow using the definitions. For example, (i) works 
because we can write b =au and c = bv for some u, v E R so that c = auv. 
Since uv E R it follows that a divides c. 

The notion of divisibility can be translated into the language of ideals, an idea 
that will be useful later. 

9.1.6. Proposition. Let R be an integral domain and let a, b E R. Then a divides 
b if and only if bR ~ aR. 

Proof. If a I b, then b = ac for some element c E R and hence bEaR. Since 
aR is an ideal, it follows that bR ~ aR. Conversely, if bR ~ aR, then b EaR 
and, therefore, b = ac for some element c E R. 

9.1.7. Corollary. Let R be an integral domain and let a, bE R. 

(i) a, bare associates if and only if bR = aR. 

(ii) If a is a proper divisor of b, then bR ~ aR. 



386 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

We now extend the notion of the greatest common divisor to arbitrary integral 
domains. 

9.1.8. Definition. Let R be an integral domain and let a, b E R. The "element d 
of R is called the greatest common divisor (or the highest common factor) of a, b 
if d satisfies the conditions: 

(GCD 1) d divides a and d divides b; 

(GCD 2) if cis a common divisor of both a and b then c divides d. 

We denote the fact that d is a greatest common divisor of a and b by d = 
GCD(a, b). 

Clearly every associate of d also satisfies (GCD 1) and (GCD 2). Conversely, 
if an element d1 E R satisfies the conditions (GCD 1) and (GCD 2) then d, d1 
divide each other and therefore they are associates. Thus, the greatest common 
divisors of a, b are precisely the associates of one another. It is quite common 
language to refer to the greatest common divisor. 

The concept of the least common multiple is dual to the concept of the greatest 
common divisor. 

9.1.9. Definition. Let R be an integral domain and let a, b E R. The element m 
of R is called a least common multiple of a and b, if m satisfies the conditions: 

(LCM 1) both a and b divide m; 

(LCM 2) if cis a common multiple of both a and b then m divides c. 

We denote the fact that m is a least common multiple of a and b by m = LCM 
(a, b). 

Clearly, every associate of m also satisfies (LCM 1) and (LCM 2). Conversely, 
if an element m 1 E R satisfies (LCM 1) and (LCM 2), then m, m1 divide each 
other, and therefore they are associates. Thus, the least common multiples of a, b 
are precisely the associates of one another. Again it is common language to refer 
to the least common multiple. In an arbitrary commutative ring, not all pairs 
of elements need have a greatest common divisor or a least common multiple. 
In this section, we consider rings where the existence of the greatest common 
divisors and the least common multiples is always guaranteed, although there 
may not be an easy way to find such in general. 

9.1.10. Definition. An integral domain R is called a principal ideal domain ( PID) 
if every ideal of R is principal; thus, if I <J R then I= aR for some a E I. 

9.1.11. Theorem. Let R be a principal ideal domain. For every pair, a, b, of 
elements of R there is a greatest common divisor and a least common multiple. 
Moreover, 
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(i) d = GCD(a, b) if and only if dR = aR + bR; 

(ii) m = LCM(a, b) if and only if mR = aR n bR. 

Proof. In Section 7.3 we observed that the sum of two ideals is an ideal, so 
that aR + bR is an ideal of R. Since R is a PID, there is an element d E R 
such that dR = aR + bR. Of course, aR:::; dR and bR:::; dR so Proposition 
9.1.6 shows that d I a and d I b. Next if c is a common divisor of a and b, 
then, again by Proposition 9.1.6, we see that aR:::; cR and bR:::; cR. Thus, 
dR = aR + bR:::; cR, so that cis a divisor of d. Thus, the element d satisfies 
the conditions (GCD 1), and (GCD 2). Conversely, if d1 is a greatest common 
divisor of a and b, then, as mentioned above, the elements d and d1 are associates. 
In particular, Corollary 9.1.7 shows that d1R = dR = aR +hR. 

For the least common multiple, since every ideal of R is principal, there 
exists an element m E R such that m R = a R n b R. The inclusions m R :::; a R 
and mR:::; bR together with Proposition 9.1.6 show that a I m and b I m. If cis 
another common multiple of the elements a, b then Proposition 9.1.6 this time 
implies that cR:::; aR and cR :::; bR, so cR:::; aR n bR = mR. Therefore, m is 
a divisor of c and m satisfies the conditions (LCM 1) and (LCM 2). Conversely, 
if m 1 is another least common multiple of the elements a, b, then, as mentioned 
above, the elements m and m 1 are associates. In particular, Corollary 9.1.7 proves 
that m 1 R = m R = a R n b R. 

The following rather long result is really quite elementary and summarizes 
many of the properties of greatest common divisors and least common multiples. 

9.1.12. Corollary. Let R be a principal ideal domain and let a, b be elements of 
R. Then the following assertions hold: 

(i) a = GCD(a, b) if and only if a I b; 

(ii) GCD(a, OR)= a; 

(iii) GCD(ax, bx) = xGCD(a, b); 

(iv) GCD(GCD(a, b), c) = GCD(a, GCD(b, c)); 

(v) a = LCM(a, b) if and only if b I a; 

(vi) LCM(a, OR)= OR; 

(vii) LCM(ax, bx) = xLCM(a, b); 

(viii) LCM(LCM(a, b), c) = LCM(a, LCM(b, c)); 

(ix) if d = GCD(a, b), then there exist x, y E R such that d =ax+ by; 

(x) if a, b are both nonzero then GCD(a, b) and LCM(a, b) are also 
nonzero. 

Proof. These assertions are mostly clear. We illustrate by giving a proof of the 
last one. Let d = GCD(a, b) and let m = LCM(a, b). By Theorem 9.1.11, dR = 
a R + b R and m R = a R n b R. It is therefore immediate that d R is nonzero, 
since, for example, a EaR:::; dR. If m =OR thenaR n bR ={OR}. However, 
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ab E a R n b R so that ab = 0 R. This is a contradiction since R is an integral 
domain and a, b =I= OR. This contradiction shows that the element m must be 
nonzero. 

We say that elements a, b of a PID R are relatively prime if the multiplicative 
identity is one of the greatest common divisors. 

9.1.13. Corollary. Let R be a principal ideal domain. The elements a, b of Rare 
relatively prime if and only if there exist elements x, y E R such that e = ax + by 
(where e is the multiplicative identity of the ring R). 

Proof. Corollary 9.1.12 implies the necessity of this assertion. Suppose now 
that the ring R has elements x, y with the property that e = ax + by. Then 
e EaR+ bR. By Proposition 7.3.9 eR = R = aR + bR and Theorem 9.1.11 
implies that e = GCD(a, b). 

9.1.14. Corollary. Let R be a principal ideal domain, a, b be nonzero elements of 
R, d = GCD(a, b), and a= da,, b = dh. Then, the elements a,, hare relatively 
prime. 

Proof. By Corollary 9.1.12, there exist elements x, y E R such that d =ax+ 
by = da 1x + da2y. Since R has no zero divisors and since d is nonzero, by 
Corollary 9.1.12, we can divide both sides of this equation by d and obtain 
e = a,x + hy. Corollary 9.1.13 implies that a, and b, are relatively prime. 

The following properties hold for relatively prime elements. 

9.1.15. Proposition. Let R be a principal ideal domain and let a, b, c E R. 

(i) If a, b are relatively prime and a, c are also relatively prime, then a and 
be are relatively prime. 

(ii) If a divides be and a, b are relatively prime, then a divides c. 

Proof. 
(i) By Corollary 9.1.13, there exist elements x,, x2, y,, Y2 in R such that 

e = ax, + bx2 and e = ay, + cy2. Now we have 

By Corollary 9.1.13 the elements a and be are relatively prime. 
(ii) By Corollary 9.1.13, there exist x,, x2 E R such that e = ax, + bx2. We 

have c = ce = cax, + cbx2 and since a divides be and ca, it follows that a 
divides c. 

Next we indicate the relationship between the greatest common divisor and 
the least common multiple. 

9.1.16. Theorem. Let R be a principal ideal domain and let a, b be nonzero 
elements of R. 
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(i) Ifm = LCM(a, b) and ab = md then d = GCD(a, b). 

(ii) If d = GCD(a, b), where a= da, and b =db,, then m = da1h is a least 
common multiple of a and b. 

Proof. 
(i) Since m is a common multiple of a and b, we have m = a2a, m = b2b 

for elements a2 , b2 of R. Then ab = md = aa2d and, dividing by the nonzero 
element a, we obtain b = a2d, which shows that b is divisible by d. Similarly, 
we can prove that d divides a. Next suppose that c is an arbitrary common 
divisor of a and b, so a= a3c, b = b3c for some a3, b3 E R. The element a3b3c 
is therefore a common multiple of both a and b and, hence, by the definition 
of least common multiple, there exists an element z E R such that a3b3c = mz. 
Hence, by hypothesis, md = ab = (a3c)(b3c) = mzc. By Corollary 9.1.12, m is 
nonzero, so we can divide both sides by m to obtain d = zc. Hence, c I d and, 
consequently, d satisfies the conditions (GCD 1), (GCD 2). 

(ii) It is clear that m divides a and b. Suppose that c is an arbitrary common 
multiple of a and b, say c = aa4, c = bb4 for some a4, b4 E R. Then, 

so da 1a4 = db 1b4. By Corollary 9.1.12, dis nonzero and dividing both sides by 
d we obtain a 1a4 = b1b4 • By Corollary 9.1.14, a, and b, are relatively prime, 
so Proposition 9.1.15 implies that a, divides b4, say b4 = a,x, where x E R. 
Hence, c = dhb4 = db,a,x = mx, since m = dhJa,. Consequently, m divides 
c and hence m satisfies the conditions (LCM 1) and (LCM 2). 

9.1.17. Definition. Let R be an integral domain. A nonzero element p of R is 
called a prime element if p t;t U(R) and p cannot be written as a product of two 
proper divisors. Thus, an element p is a prime if and only if in every decomposition 
p = ab at least one of the factors a, b is invertible. 

Prime elements of integral domains are closely connected to maximal ideals. 
An ideal M is called a maximal ideal of the ring R if for each ideal H that is 
situated between M and R (so M ::: H ::: R) either M = H or H = R. 

9.1.18. Lemma. Let R be a ring. An ideal M is maximal in R if and only if Rl M 
is a simple ring. In particular, an ideal M of a commutative ring R is maximal if 
and only if RIM is a field. 

Proof. Let M be a maximal ideal of R and let Q be an arbitrary ideal of R 1M. 
Let H be the preimage of Q under the natural homomorphism aM : R ----+ Rl M. 
Then His an ideal of R containing M = KeruM, by Proposition 7.4.3.It follows 
that either M = H or H = R. In the first case, Q = uM(H) =HIM= MIM 
is the zero ideal of Rl M, whereas in the latter case, Q = uM(R) = Rl M. This 
means that Rl M is a simple ring. 
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Conversely, let Rl M be a simple ring and let H be an ideal, situated between 
M and R. Since aM is an epimorphism, Proposition 7.4.3 implies that aM(H) 
is an ideal of RIM. It follows that either aM (H) is the zero ideal of RIM or 
aM(H) =RIM. In the first case, H:::; KeraM = M and hence H = M~ For the 
latter case, note that aM (H) = HIM = RIM so H = R. Hence M is a maximal 
ideal of R. When the ring R is commutative, we use Theorem 7.3.12 to deduce 
that R 1M is a field. 

We next consider some important properties of prime elements. 

9.1.19. Lemma. Let R be a principal ideal domain. 

(i) If p is a prime element of R and a is an arbitrary element of R, then either 
p divides a or a and p are relatively prime. 

(ii) The element p of R is prime if and only if the ideal p R is maximal in R. 

Proof. 
(i) Let d = GCD(a, p). Since d is a divisor of p, either the elements p and 

d are associates or d E U(R). In the first case, p = GCD(a, p) so p divides a. 
In the second case, p and a are relatively prime. 

(ii) Let p be a prime of Rand let H be an ideal of R such that pR:::; H :::; R. 
Since R is a PID, choosey E R such that H =yR. Then pR:::; yR sop= yx 
for some x E R. Since p is a prime element either y and p are associates (when 
pR = yR =H), or y E U(R) (when H = yR = R). Thus, pR is a maximal 
ideal. Conversely, let pR be a maximal ideal of R. If p = zw for certain elements 
z, w E R then, by Proposition 9.1.6, we have pR :::; zR. It follows that either 
pR = zR or zR = R. In the first case, p and z are associates. In the latter case 
z E U(R). Hence p is a prime element of R. 

We can now establish the main results of this section. The following result is 
sometimes known as the Fundamental Theorem of Arithmetic. 

9.1.20. Theorem. Let R be a principal ideal domain and let OR =/=a E R. 

(i) If a ¢ U(R) then a can be written as a product of primes of R. 

(ii) If a ¢ U(R) and a =PI ... Pn = q, ... qm are two decompositions of a 
into products of prime elements of R, then n = m and we can renumber 
the elements of the second decomposition so that q1 = u 1 p 1 for some u 1 E 

V(R),for alll :::; j :::; n. 

Proof. 
(i) Suppose, for a contradiction, that this is not true and let D denote the 

subset of nonzero elements of R\V ( R) that cannot be decomposed as a product 
of primes. By our assumption, D =/= 0. 

Suppose first that there is an ascending chain of ideals 
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such that dn E D for each n EN. By Corollary 7.3.7, H = UnEN dnR is an ideal 
of Rand, since R is a PID, there is an element d E R such that H = dR. By the 
choice of H, there exists k E N such that d E dk R, which implies that d R ::::; dk R. 
On the other hand, dkR ::::; H = dR, so that dkR = dR = d1 R, for all j 2: k. 
Thus, every such chain is a finite chain and terminates in finitely many steps. 

Now let a = a 1 be an arbitrary element of D. Then a 1 is not a product of 
primes and so, in particular, a 1 is not prime. Hence, it is possible to write a 1 = 
be where b, c E R \ U(R). Note that this also means, by Proposition 9.1.6 and 
Corollary 9.17, that a 1R ~bRand a 1R ~cR. Now if b, care both not in D then 
both b and c are products of primes and hence a 1 is also a product of primes, so 
that a 1 fj D, contrary to the choice of a 1. Hence either b E D or c E D and in any 
case there is an element a2 E D such that a 1 R ~ a2 R. However, this argument 
can now be repeated for the element a2 and consequently there is an element 
a3 E R such that a2R ~ a3 R. In this way, we can construct an infinite ascending 
chain of ideals 

such that an E D for each n E N, which contradicts our initial argument. Hence, 
D is empty and assertion (i) follows. 

(ii) For this assertion we use induction on n. If n = 1, then a = Pi is a 
prime element. By the definition of a prime, one of the factors of the second 
decomposition, say q,, is an associate of Pi· By cancelling the nonzero element 
p 1, it follows that there is an element u E U(R) such that e = uq2 ... qm. Hence 
each remaining q; is an element of U(R), contrary to the definition of a prime. 
Hence the result holds when n = 1. 

Suppose now that n > 1 and assume that our assertion is true for all elements 
that decompose into a product of fewer than n primes. Then m 2: n and we have 

Pi··· Pn = q1 · · · qm. (9.1) 

By Lemma 9.1.19, either the elements p 1 and q1 are associates or these ele
ments are relatively prime. In the latter case, Proposition 9.1.15 implies that Pi 
divides the product q2 ... qm. By repeating this argument we see that either p 1 

and q2 are associates or Pi divides q3 ... qm. Since m 2: n we see upon repeat
ing the argument sufficiently often that p 1 is an associate of some q; or that Pi 
divides qm, in which case Pi is an associate of qm. In any case, p 1 is an asso
ciate of some q; and, by renumbering if necessary, we may assume that Pi, q, are 
associates, say q, = u,p,, where u 1 E U(R). By cancelling Pi in Equation 9.1 
we see that 

Now we can apply the induction hypothesis to the element P2 ... Pn· Hence 
n- 1 = m- 1, son= m and after some renumbering we obtain q1 = u1p1 for 
some u i E U(R), where 2 ::::; j ::::; n. The result follows. 
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We often say that the decomposition of Theorem 9.1.20 is unique in the sense 
that the primes occurring in the decomposition are unique up to the order that 
the factors are written in and to within multiplication by invertible elements of 
R. Moreover, the prime factors occurring need not be distinct, so we can write 
the product more succinctly in the form 

a = up7' ... p~m' 

where PI, ... , Pm are pairwise different primes and k1, ... , km are nonzero inte
gers. 

For the ring R, we let u (R) denote a set of representatives of prime elements, 
one for each associate class. 

9.1.21. Corollary. Let R be a principal ideal domain, let a, b be nonzero elements 

ifR 1 k! km b II tm h d. . 1 t o , eta= up1 ... Pm , = vp1 ... Pm w ere PI, ... , Pm are 1stzncte emen s 
of the set u(R) and u, v E U(R). 

(i) The element a divides the element b if and only if kJ :::; t1 for each j, 
where 1 :::; j :::; m. 

(ii) GCD(a, b) = p~1 
••• p~m where d1 = min{k1, t1} for each j, such that 

1 :::; j :::; m. 
(iii) LCM(a, b)= p(1 

••• p~m where qi = max{k1, t1} for each j, such that 
1 :::; j :::; m. 

In particular, the elements a and b are relatively prime if none of the prime factors 
of a are prime factors of b. 

Although the previous corollary gives us a method in principle for finding the 
greatest common divisors, it is dependent upon being able to factor an element of 
a principle ideal domain into products of primes and this can be an exceedingly 
difficult task to perform in general, even in the ring of integers. 

9.1.22. Definition. Let R be an integral domain. Then R is said to be a unique 
factorization domain or a factorial domain if it satisfies the conditions: 

(i) If a is a nonzero element of R and a 1. U ( R), then a is a product of prime 
elements of R. 

(ii) If a = PI ... Pn = q1 ... qm are two decompositions of a into a product of 
prime elements of R, then n = m and we can renumber the elements of the 
second decomposition in such way that q 1 = u 1 p 1 for some u 1 E U ( R), 
where 1 :::; j :::; n. 

By Theorem 9.1.20, every PID is a unique factorization domain. If R is a 
unique factorization domain, then for every pair of its elements (and hence for 
each finite set of elements) there exists a greatest common divisor and a least 
common multiple, which can be obtained as in Corollary 9.1.21 (ii) and (iii). 



ARITHMETIC PROPERTIES OF RINGS 393 

Now we show that not every unique factorization domain is a PID and in 
passing we consider some important examples of such domains. In order to 
do this, we consider polynomial rings in some more detail. We begin with the 
following generalization of Theorem 7.5.2. 

9.1.23. Theorem. Let R be an integral domain, let f(X), g(X) E R[X] and let 
g(X) =f. OR. Let 

k = max{degf(X)- degg(X) + 1, 0}, 

and let d be the leading coefficient of the polynomial g(X). Then there exist 
polynomials q(X), r(X) E R[X] such that dk f(X) = q(X)g(X) + r(X) where 
either r(X) =OR or degr(X) < degg(X). This presentation of the polynomial 
dk f(X) is unique. 

Proof. Let 

where am = c =j:. OF, bn = d =j:. OF. We apply induction on m. If degg(X) > 
degf(X), then put r(X) = f(X) and q(X) =OF. Thus, we may assume that 
degf(X):::: degg(X). If degf(X) = 0 then set r(X) =OR and q(X) =c. Sup
pose next that m > 0 and suppose, inductively, that the theorem is true for all 
polynomials of degree less than m. The degree of the polynomial cxm-ng(X) 
is m and the coefficient of xm is cd. Therefore, the degree of the polynomial 
df(X)- cxm-ng(X) is less than m and the induction hypothesis implies that 
there are polynomials q1 (X), r(X) E R[X] such that 

d<m-l)-n+l (df(X)- cxm-n g(X)) = q1 (X)g(X) + r(X), 

where either r(X) =OR or degr(X) < degg(X). Now we have 

dk f(X) = q(X)g(X) + r(X), 

where 

The uniqueness of this presentation can be proved in the same way as in 
Theorem 7.5.2. 

9.1.24. Definition. Let R be a unique factorization domain. A polynomial f (X) E 

R[X] is called primitive, if the greatest common divisor of all its coefficients is 
the multiplicative identity element. 
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Every polynomial f(X) E R[X] can be represented in the form f(X) = 
cg(X), where c E R, g(X) E R[X] and g(X) is a primitive polynomial. Here we 
take c to be a greatest common divisor of all the coefficients of the polynomial 
f(X). Conversely, if f(X) = c1g1 (X) where g1 (X) is a primitive polynomial, 
then clearly c1 is also a greatest common divisor of all coefficients of the poly
nomial f(X). Thus, the elements c and c1 are associates. The element cis called 
the content of f(X) and is denoted by c(f(X)) or c(J). Thus, the content is 
just the greatest common divisor of the coefficients. As a greatest common divi
sor, the content of a polynomial is not unique, since it can only be determined 
up to multiplication by an element of U(R). A polynomial f(X) is primitive if 
and only if c(J) E U(R). 

9.1.25. Proposition (Gauss's Lemma). Let R be a unique factorization domain 
and let f(X), g(X) E R[X]. Then c(Jg) = c(J)c(g). Hence if f(X) and g(X) 
are both primitive then f(X)g(X) is also a primitive polynomial. 

Proof. Let 

/(X)= ao + aJX + ... + amxm' g(X) = bo + bJX + ... + bnXn' and 

f(X)g(X) =co+ CJX + · · · + Cm+nxm+n. 

First suppose that f(X), g(X) are primitive polynomials and assume that 
the product is not primitive. Choose a prime element q that is a divisor of 
c(Jg). Then q divides every coefficient of f(X)g(X), so q I Cj for each j, 
where 0.:::: j .:::: m + n. Since f(X) is primitive, there exists a positive integer k 
such that q divides ao, a1, ... , ak-J, but q does not divide ak and, similarly, 
there exists a positive integer t such that q divides bo, b1, ... , bt-J but q does 
not divide b1• We have 

Then 

and, since q divides each term on the right-hand side, q divides akb1 • Since q is 
prime and q does not divide ak. Lemma 9.1.19 implies that q and ak are relatively 
prime. Hence q must divide b1 , by Proposition 9.1.15, which is a contradiction 
to the choice oft . This proves that f(X)g(X) is a primitive polynomial. 

More generally, 

f(X) = c(J)/J(X) and g(X) = c(g)g1(X), 
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where !J (X), g1 (X) are pnm1trve polynomials. Furthermore, f(X)g(X) = 
c(f)c(g)f1 (X)gi (X). Since !J (X)gi (X) is a primitive polynomial, it follows 
that c(f)c(g) is the content of f(X)g(X). 

9.1.26. Lemma. Let R be a unique factorization domain and suppose that 
f(X), g(X) E R[X]. Suppose that g(X) is a primitive polynomial. If g(X) 
divides df(X) for some nonzero element d E R, then g(X) divides f(X). 

Proof. We have df(X) = g(X)h(X) for some polynomial h(X) E R[X]. By 
Proposition 9.1.25, dc(f) = c(g)c(h). Since c(g) E U(R) it follows that c(h) = 
duc(f) where u = (c(g))- 1. Furthermore, h(X) = c(h)hi (X) where hi (X) is a 
primitive polynomial. We now have 

df(X) = g(X)h(X) = g(X)c(h)hi (X) = g(X)duc(f)h 1 (X). 

Since R is an integral domain and d =f. 0 we have, upon cancelling d, 

f(X) = c(f)ug(X)hi (X) 

and the result follows. 

We next need a technical lemma. 

9.1.27. Lemma. Let R be a unique factorization domain and let a, bE R. Sup
pose that p E R is prime. If p divides ab then either p divides a or p divides b. 

Proof. We know that there is an element c E R such that ab = cp. If a = 
PI ... Pk and b = qi ... q1 as products of primes, then it follows that PI ... 

Pkqi ... qt = cp. However, R is a unique factorization domain so p =up;, for 
some i or p = uq1 for some j and some invertible element u. If p = up; then 
a= u-I PI ... Pi-IPPi+I and hence p divides a. Otherwise, by a similar argu
ment, p divides b. 

We are now led to the following very pleasing result, which enables us to 
construct other unique factorization domains. 

9.1.28. Theorem. Let R be a unique factorization domain. Then R[X] is a unique 
factorization domain. 

Proof. To begin we prove that every nonzero and noninvertible element f(X) 
of the ring R [X] can be written as a product of prime elements. If deg f (X) = 
m = 0, then f(X) is an element of R and the hypothesis implies that f(X) 
can be so written. Let m > 0 and assume that the theorem is valid for all 
polynomials of degree less than m. Rewrite the polynomial f(X) as f(X) = 
c(f)fi (X) where !I (X) is a primitive polynomial. If !J (X) is a product of 
primes, then the result holds. Therefore, suppose that !J (X) = g(X)h(X). If 
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degg(X) = deg !1 (X) then degh(X) = 0 and hence h(X) is an element of 
R. Thus, since !1 (X) is primitive, h(X) is invertible. So we may assume that 
degg(X) < degfi (X) and degh(X) < deg f 1 (X). However, we may now apply 
the induction hypothesis to g(X) and h(X), which implies that they are products 
of prime elements of R[X]. Hence, !I (X) and f(X) are also products of primes 
in R[X]. 

Uniqueness can be proved with the help of Lemma 9.1.27 using the same 
arguments that were developed in the proof of Theorem 9.1.20. 

A simple induction allows us to extend this result easily as follows. 

9.1.29. Corollary. Let R be a unique factorization domain. Then R[X 1, ... , Xn] 
is a unique factorization domain. 

In particular, every field is, by default, a unique factorization domain, so we 
have the following corollary. 

9.1.30. Corollary. IfF is afield, then F[X1, ••. , Xn] is a unique factorization 
domain. 

Z is the standard example of a unique factorization domain, so we also can 
state the following corollary. 

9.1.31. Corollary. Z[X 1, ... , Xn] is a unique factorization domain. 

Using the results that we have recently obtained, it is easy to show that 
there are unique factorization domains that are not PIDs. To see this let F 
be a field and note that by Corollary 9.1.30 F[X, Y], the polynomial ring in 
two variables X and f, is a unique factorization domain. Consider the ideal 
H =X F[X, Y] + f F[X, Y] and suppose that H = f(X, Y)F[X, Y], for some 
polynomial f(x, y) of degree at least 1. Then we have X= h(X, Y)f(X, f) 
and f = g(X, f)j(X, Y), where h(X, f), g(X, Y) E F[X, f]. By Theorem 
7.6.3, degh(X, Y) = 0 = degg(X, f), so that h(X, Y) = u and g(X, Y) = v 
are nonzero elements of the field F. Thus, f(X, f) = u- 1 X = v- 1 f, which 
contradicts the fact that X and f are independent variables. Hence, F[X, Y] is 
a unique factorization domain that is not a PID. 

Finally, we construct an example of a ring in which the decomposition into 
prime factors exists but which is not unique. To do this, we consider the following 
construction of quadratic fields and rings. Let r be an integer with the property 
that .jr ¢ Q and let 

Q[.Jr] ={a+ b.jr I a, bE Q}, Z[.ji] ={a+ b.jr I a, bE Z}. 

Let a, f3 be arbitrary elements of Q[ .ji], say a =a + b.jr, f3 = a1 + b1.jr. 
Then 

a- f3 =(a- aJ) + .jr(b- bJ) and af3 = (aa1 + bb1r) + .jr(ab1 + baJ). 
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Thus, a- {3, af3 E Q[.y'r] and, if a, f3 E Z[.y'r], then a- {3, af3 E Z[.y'r]. By 
Theorem 7.1.9, Q[.y'r], Z[.y'r] are subrings of C. Clearly, 1 E Z[.y'r]. If a =1- 0 
then it is easy to see that 

a ( -b ) 
a-1 = 2 b2 + .y'r 2 b2 E Q[.y'r], a -r a -r 

and Theorem 3.2.6 shows that Q[.y'r] is a subfield of C. If r > 0, then Q[.y'r] is 
called a real quadratic field; if r < 0, then Q[ .y'r] is called an imaginary quadratic 
field. 

If a= a+ b.y'r E Q[.y'r], then the rational number N(a) = a 2 - rb2 is called 
the norm of a. If N (a) = 0, then fz = r. Since .y'r rt Q, we conclude that a = 0, 
and hence b = 0. Then N(a) = 0 if and only if a= 0. 

Simple calculations show that N(a{J) = N(a)N({J). 
In particular, 

so that 

-1 1 N(a ) = --. 
N(a) 

We note that for elements of the ring Z[ .y'r] the norm is an integer; moreover 
in the case when r < 0, we have N(a) ::::: 0 for each element a E Z[.y'r]. 

9.1.32. Proposition. Let r E Z and r < 0. 

(i) U(Z[.y'r]) = {1, -1} ifr =/:- -1 and V(Z[i]) = {1, -1, i, -i}. 
(ii) Let a be a nonzero element ofZ[ .y'r]. If a rt U (Z[ .y'r]), then a is a product 

of prime elements. 

Proof. 
(i) Let d = -r, where d > 0. If a= a+ b.y'r E U(Z(.y'r)) then, since N(a) 

is an integer, the equation 1 = N(a)N(a- 1) implies that N(1) = 1. However, the 
equation a 2 + db2 = 1 has the following integer solutions: 

a= 0, b = 1; a= 0, b = -1; a= 1, b = 0; a= -1, b = 0 in the case when 
d = 1; and a = 1, b = 0; a = -1, b = 0, in the case when d =1- 1. 

(ii) We use induction on N(a). Since a rt U(Z(.y'r)), N(a) > 1. The equation 
N(a) = 2 is valid only if d = 1 or 2. If d = 1, then 

a E {1 + i, 1 - i, -1 + i, -1 - i}. 

If d = 2, then 

a E {iJ2, -iJ2}. 
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The equation N(a) = 3 is valid only if d = 2 or 3. If d = 2, then 

a E {1 + ih, 1- ih, -1 + ih, -1- ih}. 

If d = 3, then 

a E {iv'3, -iv'3}. 

Consider the equation N(a) = 4. If d = 1, then 

a E {2, -2, 2i, -2i}; 

if d = 2, then 

a E {2, -2}; 

if d = 3, then 

a E {2, -2}; 

if d = 4, then 

a E {2, -2, i, -i}; 

if d > 4, then again 

a E {2, -2}. 

It is easy to check that when a E Z[ .Jr] and N (a) ::: 4 then a can be written 
as a product of primes, so now let a E Z[.Jr] be such that N(a) 2: 4. Assume 
inductively that the result holds for all f3 E Z[ .Jr] for which N ({3) is less than 
some natural number k and let a be such that N(a) = k. If a is a prime then 
certainly a is a product of primes. Therefore, we may assume that a = f3y, where 
{3, yare proper divisors of a. Then {3, y rf. U(Z[.Jr]) so N(f3) > 1 and N(y) > 1. 
It follows from the equation N(f3y) = N(f3)N(y), that N(f3) < N(a) and N(y) < 
N(a). By the induction hypothesis, {3, y, and hence a can be decomposed into a 
product of prime elements. This completes the proof. 

Now we find a concrete value of r for which, in the ring Z[ .Jr], there exist 
elements having two distinct decompositions into primes. One such value is 
r = -5. Indeed, 

9 = 3 X 3 = (2 + iv'5)(2- iv'S). 
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By Proposition 9.1.32, the elements 3 and (2 + i ,fS), 3 and (2 - i ,[5) are 
not associates. Also, 3, 2 + i,JS, 2- i,JS are primes in the ring Z[H]. To see 
this let 

a E {3,2+iVs,2-iVs}, 

and suppose that a= f3y. We have 9 = N(a) = N(f3y) = N(f3)N(y). This 
implies that N(f3) = 3 = N(y). However, if f3 = x + y.J=S then N(a) = 
x2 + 5y2 and the equation x 2 + 5y2 = 3 has no integer solutions. Consequently 
9 has two different prime factorizations in the ring Z[ .J=S]. 

EXERCISE SET 9.1 

In each of the problems justify your reasoning, using a proof or counterexample. 

9.1.1. Prove that 30 I n5 - n for all positive integers n. 

9.1.2. Prove that 42 I n7 - n for all positive integers n. 

9.1.3. Prove that 8 I n2 - 1 for all odd positive integers n. 

9.1.4. Suppose that 3 f n. Prove that 6 I n2 - 1. 

9.1.5. Find an element that generates the ideal 4Z + 6Z + 8Z + 10Z + 15Z + 
20Z. 

9.1.6. Find integers n, k such that 5Z + 7Z = nZ, 5Z n 7Z = kZ. 

9.1.7. Find integers n, k such that -3Z + 12Z = nZ, -3Z n 12Z = kZ. 

9.1.8. Find integers n, k such that 5Z + 11Z = nZ, 5Z n 11Z = kZ. 

9.1.9. In the ring Z[i] find the prime decomposition of the element 5 + 9i. 

9.1.10. In the ring Z[i] find the prime decomposition of the element 12 + 5i. 

9.1.11. In the ring Z[i] find the prime decomposition of the element 3 - 2i. 

9.1.12. In the ring Z[i] find the prime decomposition of the element 2 + 5i. 

9.1.13. In the ring Z[i] find the prime decomposition of the element -2 + 1li. 

9.1.14. In the ring Z[i] find the prime decomposition of the element 2 + 9i. 

9.1.15. Let a E Z[i] and suppose that N(a) =pis a prime. Is a a prime element 
of the ring Z[i]? 

9.1.16. Let x, y E Z. Suppose that GCD(x, y) = 1. Prove that GCD(x + y, x -
y) = 1 or 2. 

9.1.17. Let x, y, z E Z. Suppose that GCD(x, y) = 1 and GCD(x, z) = 1. Prove 
that GCD(x, yz) = 1. 
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9.1.18. Let x, y, z E Z. Prove that GCD(zx, zy) = zGCD(x, y). 

9.1.19. Let x, y, z E Z. Prove that GCD(GCD(x, y), z) = GCD(x, GCD(y, z)). 

9.1.20. In the ring Z(i.Jfl] = {x + yi.JlTi x, y E Z} find an element that does 
not have a unique prime factorization. 

9.2 EUCLIDEAN RINGS 

In the previous section, we extended some common arithmetic concepts and 
results to PIDs. In particular, we proved the existence of greatest common divisors 
and least common multiples of elements of such rings. We also showed that in 
such rings elements can always be written as a product of primes in a unique 
way. However, there is a difference between the existence of some object and 
obtaining an algorithm that allows us to construct such an object. In this section, 
we consider a smaller class of rings for which we can construct such algorithms. 

9.2.1. Definition. Let R be an integral domain. Then R is said to be a Euclidean 
ring if there exists a function 8 : R\{OR} -----+ N satisfying the following conditions: 

(E 1) 8(xy) 2: 8(x)forall x, y E R\{OR}; 

(E 2)forall x, y E R where y =f. OR there exist w, z E R such that x = wy + z 
and either z =OR or 8(z) < 8(y). 

We often call w the quotient and z the remainder. Note that if 8(xy) = 
8(x)8(y) then 8(xy) 2: 8(x) since 8(y) 2: 1. As we have seen in Section 1.4, 
the first natural example of a Euclidean ring is the ring Z of all integers, where 
the function 8 is taken to be the absolute value. The reason for the term Euclidean 
here lies in the fact that in his famous book, "The Elements," Euclid proved that 
the set of integers form what we now call a Euclidean ring by proving property 
(E 2) in that case. By Theorem 7.5.2, the ring of polynomials in one variable 
over a field is Euclidean. We now consider some other examples. 

9.2.2. Proposition. The ring Z[i] is Euclidean. The function 8 is defined by 
8(a) = N(a) for every element a E Z[i]. 

Proof. In Section 9.1 we proved, in a more general setting, that Z[i] is a subring 
of the field C and hence Z[i] is an integral domain. If a = a + bi, where a, b E Z, 
then 8(a) = N(a) = a2 + b2. In Section 9.1, we saw that N(a/3) = N(a) N(/3) 
holds in Z[i] and this implies that (E 1) holds. 

Now let a =a+ bi and /3 = c + di =f. 0 where a, b, c, d E Z. Then ~ = x + 
yi, where x, y E Q and hence there exist integers u, v such that lx- ul ::; 1 and 
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IY- vi :=:: 4· Let y = u +vi and p =a- f3y. By definition, y, p E Z[i] and 
either p = 0 or 

N(p) = N(a- f3y) = N (/3 (~- y)) = N(f3)N (~- y) 

= N(f3)N((x - u) + (y - v)i) = N(f3)((x - u)2 + (y- v) 2
) 

::: N(/3) (~ + ~) = ~N(/3) < N(/3). 

This proves (E 2) from which it follows that Z[i] is a Euclidean ring, called 
the ring of Gaussian integers, named after Gauss who introduced this ring and 
studied its properties 

We now discuss another example. Let w = -1+/'=3, which is a root of the 
polynomial X2 + X + 1 E Z[X]. Hence w- 2 + m + 1 = 0 and from the equation 
(X - l)(X2 +X+ 1) = X3 - 1 we see that w is a primitive third root of unity. 
Notice also that 

2 -1- J=3 
ID = -ID- 1 = . 

2 

By the results of Section 7.5, the set Z[m] consists of all numbers of the type 
x + ym, where x, y E Z. Furthermore, Z[ w] is a subring of C, so it is an integral 
domain and therefore has no zero divisors. Also note that Z[ m] is closed under 
complex conjugation. Indeed if A denotes complex conjugation, then 

and therefore A(w) = w- 2. Thus, if a= x + ym, then 

A(a) = x + yA(w) = x + yw- 2 = (x- y)- ym E Z[m], 

since w- 2 = -w - 1. 
For a =a+ bm E Z[m], we let N(a) = aA(a) = (a+ bw)(a + bw-2) = 

a 2 - ab + b2, since 1 + w + w- 2 = 0. We define 8: Z[w] \ {0}---+ N by 
8(a) = N(a). 

9.2.3. Proposition. Z[m] is a Euclidean ring with this definition of 8. 

Proof. We have already noted that Z[ w] is an integral domain. If a = a + bm, 
where a, bE Z, then we know that N(a) = a 2 - ab + b2 and also that N(af3) = 
N(a)N(f3) so (E 1) follows. 
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Now let a= a+ bUJ and f3 = c + dUJ =I= 0 where a, b, c, dE Z. Since 
f3 A (/3) = N (/3) E N and a A (/3) E Z[ UJ] it follows that 

a A (/3) a 
fJA(/3) = fi =X+ yUJ, 

where x, y E Q. There are integers u, v such that lx- ui :::; 4 and ly- vi :S 4· 
Put y = u + VUJ and p =a- f3y. By definition, y, p E Z[ID] and either p = 
0 or 

N(p) = N(a- f3y) = Nf3(a/f3- y) = N(fJ)N (~- y) 

= N(fJ)N((x- u) + (y- v)UJ) 

= N(fJ)((x- u)2
- (x- u)(y- v) + (y- v)2

) 

(
1 1 1) 3 

:::; N(/3) 4 + 4 + 4 = 4N(f3) < N(/3). 

Thus, (E2) is also valid. 

In the book (LeVeque, 1956), the reader can find the proof of the following 
interesting theorem: The ring Z[ .jr"] is Euclidean if and only if r is one of the 
numbers from the set 

{-11,-7,-3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73, 97}. 

[LeVeque WJ. Topics in Number Theory. Vol. 2. Addison-Wesley: Reading, MA, 
1956.] 

The following property of Euclidean rings is fundamental. 

9.2.4. Theorem. Every Euclidean ring is a principal ideal domain. 

Proof. Let R be a Euclidean ring and let H be an ideal of R. If H is the zero 
ideal, then H is generated by the zero element, so that H is principal. Therefore, 
we need to consider only the case when H is nonzero. Let 

f'...(H) = {8(x) I OR =I= x E H}. 

Since f'...(H) is a subset of N, f'...(H) has a least element m. In H we choose an 
element y with the property that 8(y) = m. Let x be an arbitrary element of H. 

By (E 2), there exist elements w, z such that x = wy + z, where either z =OR 
or 8(z) < 8(y). Since His an ideal, wy E Hand hence z = x- wy E H. If we 
suppose that z =I= OR then 8(z) < 8(y), which contradicts the choice of y. Thus, 
z =OR and therefore x = wy. Hence H :::; yR and since yR :::; H in any case, 
we have y R = H. The result follows. 
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By Theorem 9.1.20 we see that Euclidean rings are also unique factorization 
domains. 

9.2.5. Corollary. Let R be a Euclidean ring and suppose that OR =f. a E R. 

(i) If a fj_ U(R), then a can be written as a product of prime elements of the 
ring R. 

(ii) If a fj_ U(R) and a = PI ... Pn = q1 ... qm are two decompositions of a 
into products of prime elements of the ring R, then n = m and we can 
renumber the elements of the second decomposition such that qj = u j p j 
for some u j E U(R), where 1 S j S n. 

The next assertion follows from Theorems 9.1.11 and 9.2.4 

9.2.6. Corollary. Let R be a Euclidean ring. Every pair of elements of R has a 
greatest common divisor and a least common multiple in R. 

For any two elements a, b of a PID, we proved the existence of GCD(a, b) and 
LCM(a, b). A practical algorithm for finding GCD(a, b) is not readily available 
in PIDs in general, because it is generally not easy to factor. However, for 
Euclidean rings, the Euclidean algorithm that follows represents one technique 
for finding such greatest common divisors. 

Let R be a Euclidean ring and let a, b be arbitrary elements of R. If a =OR, 
then GCD(a, b) =b. Therefore, we can assume that a, bare both nonzero. We 
divide a by b to obtain a= bq1 + r1 where either r1 =OR or 8(rJ) < 8(b) and 
q1, r1 E R. Next, if r1 =f. OR we divide b by r1 to obtain b = r1q2 + r2 where 
either r2 =OR or 8(r2) < 8(rJ). If r2 =f. OR, then we divide r1 by r2 to obtain 
r1 = r2q3 + r3 where either r3 =OR or 8(r3) < 8(r2). Continuing this process, 
in the general case, if rj =j:. OR, we divide rj-1 by rj to obtain a quotient qHI 
and remainder rHI· Since we have 8(rj+J) < 8(rj) and, since 8(rj) is a natural 
number, this process must terminate in finitely many steps. This means that at 
some stage the corresponding remainder rk+l is the zero element. Thus, we have 
the following chain of equations. 

a=bq1+r1, 

b = r1q2 + r2, 

r1 = r2q3 + r3, 

rk-3 = rk-2qk-l + rk-1, 

rk-2 = rk-lqk + rk. 

(9.2) 



404 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

We claim that rk = GCD(a, b). To see this note that 

so that rk divides rk-2· Furthermore, 

rk-3 = rk-2qk-I + rk-I = rk(qk+Iqk + e)qk-I + rkqk+I 

= rk(qk+Iqkqk-I + qk-I + qk+I), 

so that rk divides rk-3· Continuing in this manner, working up Equation 9.2 and 
employing a suitable induction argument if necessary, we see that rk divides both 
a and b. Thus, rk is a common divisor of a and b. 

Next, let u be an arbitrary common divisor of a and b. From the equation r 1 = 
a - bq1, we see that u divides r1. From the equation r 2 = b - r 1 q2, u divides r 2 
and continuing in this way we obtain, finally, that rk is divisible by u. It follows 
that rk is the greatest common divisor of a and b. Having obtained GCD(a, b), 
we can find LCM(a, b) using Theorem 9.1.16. 

From Corollary 9.l.l2 it follows that, for the element d = GCD(a, b), there 
are elements x, y of the Euclidean ring R such that d = ax + by. The Euclidean 
algorithm also helps us to find these elements x, y. Indeed from the chain 
(Eq. 9.2), we have 

so that 

d = rk-2- (rk-3- rk-2qk_J)qk = rk-2- rk-3qk + rk-2qk-Iqk 

= rk-2(e + qk-Iqk)- rk-3qk = rk-2YI - rk-3XJ. 

Continuing in this way, going up the chain (Eq. 9.2) we finally obtain 
d =ax+ by. 

EXERCISE SET 9.2 

Justify your work. 

9.2.1. Find GCD(-1 + i, 2- i), LCM(-1 + i, 2- i). 

9.2.2. Find GCD( -3- i, 2 + 1i), LCM( -3- i, 2 + 1i). 

9.2.3. Find GCD(5- w, 7 + 2w), LCM(5- w, 7 + 2w). 

9.2.4. Find GCD(7 + i, 3 + 5i), LCM(7 + i, 3 + 5i). 
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9.2.5. Find GCD(5 + 9ur, 15 + 8v:r), LCM(5+9v:r, 15+8v:r), if ur = -l+/=3. 

9.2.6. Find GCD(2 + i, 3- i), LCM(2 + i, 3- i). 

9.2.7. Find GCD(3 + 2v:r, 1 - 3v:r), LCM(3 + 2v:r, 1 - 3v:r), if ur = -l+2v'=-3. 

9.2.8. Let f(X) = X4 + 5X2 + 6, g(X) =4X3 + 3 E lF7[X] where lF7 = 7L.j77L. 

and n denotes n + 77L.. Find a polynomial that generates the ideal f(X) 

lF7[X] n g(X)lF7[X]. 

9.2.9. Let f(X) = X3 + 4X2 + 3, g(X) = 3X3 + 2X + 4 E lFs[X] where lFs = 
7L.j57L., n = n + 57L.. Find a polynomial that generates the ideal f(X) 

lF5 [X] + g(X)lFs[X]. 

9.2.10. If X - d divides f(X) = ao + a1 X + · · · + anXn, then prove that d 

divides ao. 

9.2.11. Find the reminder when f(X) is divided by (X- a)(X- b). 

9.2.12. Without using the Euclidian algorithm find GCD(f(X), g(X)) where 
f(X) = X3 + 3X2 - 2, g(X) = X3 + 3X2 - X - 3. 

9.2.13. Prove that the polynomials f(X) = ao + a1 X+ azX2 + · · · + anXn and 
g(X) = a1 X+ azX2 + · · · + anXn are relatively prime if ao =I 0. 

9.2.14. Use the Euclidean algorithm to find GCD(f(X), g(X)), if f(X), g(X) E 

Q[X] where f(X) = X3 + X2 - 4X- 6, g(X) = X3 + X2 - lOX- 6. 

9.2.15. Use the Euclidean algorithm to find GCD(f(X), g(X)), if f(X), g(X) 

E Q[X] where f(X) = 3X4 - 3X3 + 4X2 - X+ 1, g(X) = 2X3 - X2 

+X+l. 

9.2.16. Use the Euclidean algorithm to find GCD(f(X), g(X)), if f(X), 

g(X) E C[X] where f(X) = X4 + 2iX3 - 2X2 - 2iX + 1, g(X) = 
X3 +(i+l)X2 +iX. 

9.2.17. Find LCM(f(X), g(X)), if f(X), g(X) E Q[X] where f(X) = X4 -

4X3 + 4X2 - 5X - 2, g(X) = X2 -X - 2. 

9.2.18. Find LCM(f(X), g(X)), if f(X), g(X) E Q[X] where f(X) = 2X3 + 
7X2 + 4X- 3, g(X) = X3 + X2

- 3X + 1. 

9.2.19. Find LCM(f(X), g(X)), if f(X), g(X) E C[X] where f(X) = X4 + 
2iX3 - 2X2 - 2iX + 1, g(X) = X3 + (i + l)X2 + iX. 

9.2.20. Let f(X), g(X) E Q[X] where /(X)= X3 + 5X2 + 6X + 2, g(X) = 
X2 + 6X + 5. Find the polynomials u(X), v(X) E Q[X] such that 
GCD(f(X), g(X)) = u(X)f(X) + v(X)g(X). 
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9.3 IRREDUCIBLE POLYNOMIALS 

As we mentioned in the previous section, the polynomial ring F[X], over a field 
F, is Euclidean. From Corollary 9.2.6 we obtain the following. 

9.3.1. Proposition. Let F be afield. Then all pairs of polynomials f(X), g(X) E 

F[X] have a greatest common divisor and a least common multiple belonging to 
F[X]. 

9.3.2. Definition. Let R be an integral domain. A polynomial f(X) of degree at 
least 1 with coefficients belonging to R is called irreducible or indecomposable 
over R, if it is not possible to represent this polynomial as a product f(X) = 
u(X)v(X) of two polynomials u(X), v(X) E R[X], satisfying the conditions 0 < 
degu(X) < degf(X) and 0 < degv(X) < degf(X). A polynomial that is not 
irreducible is called reducible. Thus, a reducible polynomial can be factored as a 
product of two other polynomials of smaller degree, but of degree at least 1. 

It follows from this definition that every polynomial of first degree is irre
ducible. We need to point out that irreducibility is determined relative to the ring 
under consideration. Thus, for example, the polynomial X2 - 2 is irreducible 
over the field Q, while over the field lR it can be represented as a product of 
two polynomials of first degree, namely, X- -J2 and X+ -Jl. Likewise, the 
polynomial X2 + 1 is irreducible over JR, whereas over C it is reducible into the 
form (X+ i)(X- i). The polynomial X4 + 4 is reducible over Q: X4 + 4 = 
(X2 + 2X + 2)(X2 

- 2X + 2), while both its factors are irreducible not only 
over Q but also over R 

In Section 7.5 we proved that U(F[X]) = U(F). Thus, a polynomial of degree 
at least 1 in F[X] is never invertible in F[X]. Hence, the irreducible polynomials 
of F[X] are precisely the prime elements of F[X]. From Theorem 9.1.28 we 
know that the polynomial ring F[X], over a field F, is a unique factorization 
domain and hence every polynomial of degree at least 1 with coefficients in F 
can be written as a product of irreducible polynomials with coefficients in F. 
Since this is such an important result, we have decided to write the polynomial 
version of Theorem 9.1.20 next. For F[X] we usually take the set a(F[X]), 
which consists of a set of representatives of the various associate classes, to be a 
set of monic polynomials, where a polynomial is monic if its leading coefficient 
is equal to e, the multiplicative identity of F. 

9.3.3. Proposition. Let F be a field and let f (X) be a polynomial of degree at 
least 1. Then 

where a is the leading coefficient of the polynomial f(X), and PI (X), ... , Pm (X) 
are distinct irreducible polynomials whose leading coefficients belong to U(F). 
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This representation is unique, up to the order that the polynomials are written in 
and to within multiplication by elements ofV(F). 

The following property is also important and its proof is reminiscent of the 
proof of the theorem that Z has infinitely many primes. 

9.3.4. Theorem. Let F be a field. The set of associate classes of irreducible poly
nomials in F[X] is infinite. 

Proof. If the field F is infinite, the polynomials of first degree of the form 
X - a, are irreducible, and are not associates, as a is allowed to vary over F. 
The theorem therefore follows in this case. Thus, suppose that F is finite. Assume 
that we have already found m distinct irreducible polynomials PI (X), ... , Pm (X). 
We may assume that each of these is monic. Let q(X) = PI(X) ... Pm(X) +e. 
By Proposition 9.3.3, q(X) has an irreducible monic divisor u(X). Assume that 
u(X) coincides with one of the polynomials above, so u(X) = Pj(X), say. The 
equation e = q(X) -PI (X) ... Pm (X) and Corollary 9.1.13 imply that q(X) is 
relatively prime to p 1 (X), ... , Pm (X). Thus, u(X) is relatively prime to each 
polynomial from the set {p1(X), ... , Pm(X)}. Hence, given a finite set of irre
ducible polynomials, there is always an irreducible polynomial that is relatively 
prime with each of the selected polynomials. This means that the set of irreducible 
monic polynomials of the ring F[X] is infinite. 

One interesting fact that arises from the proof of the previous result is the 
following corollary. 

9.3.5. Corollary. Let F be a finite field. The degrees of the irreducible polyno
mials of the ring F[X] are unbounded. 

We show that Corollary 9.3.5 is also true in the ring Q[X]. For this we will 
consider irreducible polynomials with rational coefficients. 

First observe that if f(X) E Q[X] has some noninteger coefficients, then mul
tiplying f(X) by the least common multiple s of the denominators of all the 
coefficients of f(X), we obtain a polynomial sf(X), with all integer coeffi
cients. It is clear that f(X) and sf(X) have the same roots and we note that, in 
addition, if one of them is irreducible over Q then the second is also irreducible 
over this field. On the other hand, if f(X) is a polynomial with integer coeffi
cients that is irreducible over the ring Z, then it is irreducible over the field Q. 
However, the following is also true. 

9.3.6. Theorem. A polynomial f(X) E Z[X] is irreducible over the ring of inte
gers Z if and only if it is irreducible over the field Q of all rational numbers. 

Proof. Obviously, if f(X) is irreducible over Q, then it is irreducible 
over Z. Conversely, suppose that f(X) is irreducible over Z, but not 
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over Q, so that f(X)=/J(X)fz(X), where /J(X),fz(X)EQ[X] and 
0 < deg !I (X), deg h (X) < deg f (X). Multiplying both sides by the least com
mon multiple ofthe denominators of the coefficients of !I (X) and fz(X), we have 
af(X) = /3(X)j4(X) where /3(X), j4(X) E Z[X] and deg fi (X) = deg /3(X), 
degfz(X) = degj4(X). Furthermore, af(X) = bfs(X)f6(X), where b is 
the content of /3(X) j4(X) and fs(X), /6(X) E Z[X], are primitive with 
degfs(X) = deg/3(X) and degf6(X) = degj4(X). By Lemma 9.1.26, fs(X) 
divides /(X). In addition, deg!J(X) = degfs(X), and 0 < degfs(X) < 
degf(X). Thus, f(X) has the factor fs(X), which contradicts the fact that 
f(X) is irreducible over Z[X]. Consequently, f(X) is irreducible over Q. 

Thus, all questions regarding the irreducibility of polynomials over Q become 
questions as to whether they are irreducible over Z. The question regarding the 
irreducibility of a given polynomial f(X) E Z[X] over Q is quite complicated. 
There is a method, due to Kronecker, which allows us to determine if f(X) is 
irreducible over Q, but this method is rather cumbersome and quite limited. How
ever, there are many results giving sufficient conditions for irreducibility over Q, 
one standard one being the following, usually called Eisenstein's criterion. 

9.3.7. Theorem. Let f(X) = ao + a1X + · · · + anXn E Z[X] and suppose that 
there exists a prime p such that the following conditions hold: 

(i) the leading coefficient an is not divisible by p; 

(ii) all other coefficients of f(X) are divisible by p; 

(iii) ao is not divisible by p 2. 

Then the polynomial f(X) is irreducible over Q. 

Proof. Assume, for a contradiction, that f(X) is reducible over Q. Theorem 
9.3.6 shows that then f(X) is reducible over Z, so f(X) = /J(X)fz(X) where 
fi (X), fz(X) E Z[X] and 0 < deg fi (X), deg fz(X) < deg f(X). Let fi (X) = 
bo + b1X + · · · + bkXk and fz(X) =co+ CJX + · · · + crXt, where b;, c; E Z. 

We have ao = boc0 . By conditions (ii), (iii), either p divides bo and p does not 
divide co, or p divides c0 and p does not divide b0 . Without loss of generality, 
assume that p divides i b0 . Now, upon multiplying and equating coefficients we 
see that, for each l, 

at= btco + bt-ICI + · · · + boct, 

where we set br = 0 if r > k and Cs = 0 if s > t. Since p does not divide an 
and an = bkcr, it follows that p does not divide bk either. Hence, there is a least 
integer r such that p divides br but p does not divide br+ I· However, 
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Since p divides ar+l - (brc 1 +···+boer+!) we have that p divides br+lco and, 
since p does not divide br+l it follows that p divides co. We conclude that p 2 

divides boco = ao, contrary to hypothesis (iii). Thus, f(X) is irreducible. 

Since, for all natural numbers n and all primes p, xn + p is irreducible by 
Eisenstein's criterion we have the following. 

9.3.8. Corollary. The degrees of the monic irreducible polynomials over Q are 
unbounded. 

By contrast, a classical theorem of Gauss shows that the field C of complex 
numbers is algebraically closed, which means that every irreducible polynomial 
in C[X] has degree 1 and one consequence is that every irreducible polynomial 
in IR[X] has degree at most 2. 

9.3.9. Corollary. Let p be a prime number. The polynomial 

/p(X) = 1 +X+···+ xp-! E Z[X] 

is irreducible over Q. 

Proof. We note that XP- 1 = (XP-l + XP-2 +···+X+ 1)(X- 1) so the 
roots of xp-l + ... +X+ 1 are complex pth roots of unity. Together with 1, 
these roots lie on the unit circle in the complex plane, which is the reason why 
the polynomial /p(X) is sometimes called a cyclotomic polynomial. 

Consider g(X) = /p(X + 1). If we suppose that 

and 

0 < degg 1(X), degg2(X) < degfp(X) 

then 

with 

g3(X), g4(X) E Z[X] and 0 < degg3(X), degg4(X) < degg(X), 

Hence, /p(X) is irreducible if and only if g(X) is irreducible. We have 

(X+ 1)P- 1 
g(X) = /p(X + 1) = X+ 1 - 1 

=Xp-!+CPxp-2 +···+CP X+CP 
I p-2 p-l' 
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where Cf = k!(:~kl! are binomial coefficients. Now 

p! = k!(p- k)!Cf. 

However, p divides p! but not k!(p- k)! (since the factors, which are all less 
than p, are relatively prime to p); so, Cf is divisible by p. The last coefficient 
is c;_, = p and hence g(X) satisfies the conditions of Theorem 9.3.7. Hence 
g(X) and, therefore, /p(X) is irreducible over Q. 

By Proposition 9.3.3, every polynomial decomposes into a product of powers 
of irreducible polynomials. As we noted already, there are no truly satisfactory 
ways of determining the irreducibility of polynomials with rational coefficients. 
The question of obtaining a decomposition of a polynomial into a product of 
powers of irreducible polynomials is not easy. One technique of interest involves 
the concept of the derivative of a polynomial. 

9.3.10. Definition. Let R be a commutative ring and let f(X) E R[X]. If 

then the polynomial 

is called the derivative of the polynomial f (X). 

Note that this is a purely formal definition. We are not taking limits of any kind. 
As in calculus, there is a product rule and a chain rule, among other derivative 
rules. 

9.3.11. Lemma. Let R be a commutative ring and let f(X), g(X) be arbitrary 
polynomials over R. Then 

(i) (f(X) + g(X))' =/'(X)+ g'(X); 

(ii) (f (X)g(X))' = f' (X)g(X) + f (X)g' (X). 

Proof. Let 
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To prove (i) we may assume that n = k, by making some coefficients OR, if 
necessary. We have 

(f(X) + g(X))' = ( (ao + bo) +(at + ht)X +···+(an+ bn)Xn)' 

= (at + bt) + 2(a2 + b2)X + · · · + n(an + bn)Xn-t 

=at+ 2a2X + 0 0 0 + nanxn-t + bt + 2b2X + 0 0 0 + nbnxn-t 

= f'(X) + g'(X). 

To prove (ii) we use induction on k, the degree of g(X). If g(X) =OR then (ii) is 
clear. If k = 0 then 

and 

f(X)g(X) = boao +boat X+···+ boanXn, 

(f(X)g(X))' =boat+ 2boa2X + · · · + nboanxn-t = f'(X)bo 

= f'(X)g(X) + f(X)g'(X). 

Suppose now that k > 0 and assume that the lemma is true for all polynomials 
with degree less than k. Let 

h(X) = bo + btX + · · · + bk-tXk-t. 

Then g(X) = h(X) + bkXk and, therefore, 

This equation and (i) imply that 

(f(X)g(X))' = (f(X)h(X) + f(X)bkXk)' = (f(X)h(X))' + (f(X)bkXk)'. 

By the induction hypothesis, (f(X)h(X))' = f'(X)h(X) + f(X)h'(X). Further
more, we have 

so 

The derivative of an arbitrary member of the last sum is 

(bkajxk+j)' = (k + j)bkajxk+j-t = kbkajxk+j-t + jbkajxk+j-t 

= (kbkxk- 1)ajXj + bkXk(jajxj-t). 
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Hence 

(f(X)bkXk)' = (kbkxk- 1)ao + (k + l)bka1Xk + · · · + (k + n)bkanxk+n-! 

=(a,+ 2a2X + · · · + nanxn- 1)bkXk + (ao +a, X+··· 

+ anXn)(kbkxk-!) 

= f'(X)bkXk + f(X)(bkXk)'. 

Finally, 

(f(X)g(X))' = (f(X)h(X))' + (f(X)bkXk)' 

= f'(X)h(X) + f(X)h'(X) + f'(X)bkXk + f(X)(bkXk)' 

= j'(X)(h(X) + bkXk) + f(X)(h'(X) + (bkXk)') 

= f'(X)(h(X) + bkXk) + f(X)(h(X) + bkXk)' 

= f'(X)g(X) + f(X)g'(X). 

A further induction allows us to deduce the "chain rule." 

9.3.12. Corollary. Let R be a commutative ring and let !J (X), ... , fn (X) E 

R[X]. Then 

(/J (X) ... fn(X))' = L /J (X) ... /j-1 (X)fj(X)fj+1 (X) ... fn(X) 
1:'0j:'On 

and, in particular, 

9.3.13. Definition. Let R be an integral domain and let f(X) E R[X]. Suppose 
that f(X) is divisible by the irreducible polynomial p(X). Then p(X) has multi
plicity min f(X) if p(X)m divides f(X) but p(X)m+! does not divide f(X). In 
particular if, for some a E F, p(X) = X -a has multiplicity m then a is said to 
be a root of f(X) of multiplicity m. 

9.3.14. Proposition. Let F be afield of characteristic zero and let f(X) E F[X]. 
If p(X) is an irreducible divisor off (X) with multiplicity m then p(X) is a divisor 
of f'(X) with multiplicity m- 1. 

Proof. We have f(X) = (p(X))mu(X) where p(X) does not divide u(X). By 
Lemma 9.1.19, u(X) and p(X) are relatively prime. Corollary 9.3.12 shows 
that f'(X) = (p(X))m-! (mp'(X)u(X) + p(X)u'(X)). If we suppose that p(X) 
divides (mp'(X)u(X) + p(X)u'(X)), then p(X) must divide mp'(X)u(X). Since 
char F = 0, then degp'(X) = degp(X)- 1, so p'(X) is a nonzero polynomial 
and this also shows that p(X) does not divide p'(X). Then, by Lemma 9.1.19, 
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p'(X) and p(X) are relatively prime. Using Proposition 9.1.15 we see that p(X) 
and mp' (X)u(X) are relatively prime, which proves that p(X) divides f' (X) 
with multiplicity m - 1. 

We now give some applications of these results. Let F be a field of charac
teristic zero and suppose that f(X) E F[X]. By Proposition 9.3.3, 

where a is the leading coefficient of the polynomial f(X), and PI (X), ... , Pm (X) 
are distinct monic irreducible polynomials. By Proposition 9.3.14 and Corollary 
9.1.21, we have 

We can apply the Euclidean algorithm to find the polynomial g(X). Furthermore, 
f(X) = g(X)w(X) where, clearly, w(X) = ap1 (X) ... Pm(X). Thus, dividing 
the polynomial f(X) by g(X), we obtain the polynomial w(X), whose decom
position includes all the irreducible factors of the polynomial f (X) but with 
multiplicity 1. This can sometimes be used as a tool for finding the decompo
sition of f(X), since w(X) will typically have somewhat smaller degree than 
f(X). Thus, essentially, we need to find only the decomposition of w(X). 

Note that for fields of characteristic p, for the prime p, Proposition 9.3.14 
does not hold. For example, suppose that the field F has prime characteristic 
p > 0 and that f(X) = XP. Then 

In other words, a polynomial of degree larger than 1 could have zero derivative. 
However, in the general case, the following theorem holds. 

9.3.15. Theorem. Let F be afield and let f(X) E F[X]. An element c E F is a 
multiple root of f(X) if and only if f(c) =OF and f'(c) =OF. 

Proof. Let b be an arbitrary element of F. By Theorem 7.5.2, f(X) =(X
b)2q(X) + r(X) where either r(X) =OF or degr(X) < 2. In particular, the poly
nomial r(X) is of the form r(X) = d(X- b)+ w for some elements d, w E F. 
We note that r(b) = f(b) = w. Hence 

f(X) =(X- b)2q(X) + d(X- b)+ w. 

Using Lemma 9.3.11 and Corollary 9.3.12, we obtain 

f'(X) =(X- b)(2q(X) +(X- b)q'(X)) + d, 
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and we note that d = f'(b). So, finally, 

f(X) =(X- b)2q(X) + f'(b)(X- b)+ f(b) 

and 

f'(X) =(X- b)(2q(X) +(X- b)q'(X)) + f'(b). 

If c is a multiple root of f(X), then (X - c)2 divides f(X). It follows that 
f'(c) = f(c) =OF. Conversely, if f'(c) = f(c) =OF, then the equations above 
show that (X - c)2 divides f(X). 

To conclude this section, we tum again to polynomials with rational coeffi
cients and clarify the question of finding the rational roots, using a process known 
as the rational root test. 

As we mentioned above we can always multiply a polynomial f(X) E Q[X] 
by the least common multiple s of the denominators of the coefficients. In this 
way, we obtain the polynomial sf(X) with all integer coefficients and clearly 
the polynomials f(X) and sf(X) have the same roots. So we need to explore 
the question of finding rational roots of a polynomial with integer coefficients. 
Let 

and let c be an integer root of the polynomial f(X). By Proposition 7.5.9, 

f(X) =(X- c)q(X)where q(X) = bo + b 1X + · · · + bn_,xn-l. 

Thus, 

an = bn-i, an-i = bn-2- cbn-i, ... , a, = bo- cb,, ao = ( -c)bo. 

These equations show that all the coefficients b0 , b,, ... , bn-i are integers and 
that c is a divisor of ao. Hence, if the polynomial f(X) has an integer root then 
the possibilities for such roots must be the integer divisors of a0 , where both 
negative and positive divisors are used. We then need to check which of these is 
a root by evaluating f(X) at the proposed root. If the evaluation gives OF then 
we have located a root. In order to simplify this procedure, we can proceed as 
follows. 

Of course, 1 and -1 are divisors of ao. Thus, we always need to find f(l) 
and f( -1). So 

f(l) = (1- c)q(l) and f(-1) = (-1- c)q(-1). 
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Since the coefficients of q(X) are integers, q(l) and q( -1) are also integers. 
Thus, we need to check only such divisors d of ao for which {~~ and 1Ic_;dl are 
integers. 

Now we can apply the following 

9.3.16. Theorem. Let f (X) = ao +a I X + · · · +an-I xn-I + xn E Z[X]. If c is 
a rational root of f(X), then cis an integer. 

Proof. Suppose, for a contradiction, that c is not an integer. Then c = T and we 
can assume that the integers m and k are relatively prime. We have 

(m) (m)n-I (m)n 
O=ao+ai k +···+an-I k + k , 

and therefore, 

Since m and k are relatively prime, mn and k are also relatively prime. This means 
that on the left-hand side of the last equation we have a rational noninteger, while 
on the right-hand side we have an integer, which is the contradiction sought. 

Now let /(X) = ao + aiX + · · · + anXn E Z[X]. Consider the polynomial 
g(X) =a~- I f(X), so 

Put Y = anX, then 

(y) n-I n-2 y yn-I yn g =an ao +an ai + ... +an-I + . 

By Theorem 9.3.16, each rational root of g(Y) must be an integer and we saw 
earlier how to find all integer roots of g(Y). Finally, if c is an integer root of 
g(Y) then £ is a root of the polynomial f(X). 

an 

EXERCISE SET 9.3 

9.3.1. In the ring R = lFs[X], lFs = Zj5Z find the prime factorization of the 
polynomial 3X3 + 2X2 + X + 1 where n = n + 5/Z. 

9.3.2. In the ring R = lF3[X], where lF3 = Zj3Z, find the prime factorization 
of the polynomial X4 + 2X3 + 1 where n = n + 3/Z. 

9.3.3. Prove that the polynomial f (X)= X3 - 2 is irreducible over the field Q. 
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9.3.4. Prove that the polynomial f (X) = X2 + X + 1 is irreducible over the 
field Q. 

9.3.5. Prove that the polynomial j(X) = X4 + 1 is irreducible over the field Q. 

9.3.6. Prove that the polynomial f(X) = X2 +X+ 1 is irreducible over the 
field IF 5 . 

9.3.7. Using Eisenstein's criterion, prove that the polynomial f(X) = X4 -

8X3 + 12X2 - 6X + 2 is irreducible over the field Q. 

9.3.8. Using Eisenstein's criterion, prove that the polynomial f(X) = X4 -

X3 + 2X + 1 is irreducible over the field Q. 

9.3.9. In the ring Q[X] factor 2X5 - X4 - 6X3 + 3X2 + 4X - 2 into irre
ducible factors. 

9.3.10. Prove that the polynomial j(X) = X5 - X2 + 1 E Z[X] is irreducible 
over Z. 

9.3.11. Prove that the polynomial /(X) = X3 - X2 +X+ 1 E Z[X] is 
irreducible over Z. 

9.3.12. Prove that the polynomial f(X) = X2
n + xn + 1 E Z[X] is irreducible 

over Z for each n EN. 

9.3.13. Find the rational roots of the polynomial X4 + 2X3 - 13X2 - 38X - 24. 

9.3.14. Find the rational roots of the polynomial 2X3 + 3X2 + 6X- 4. 

9.3.15. Find the rational roots of the polynomial X4 - 2X3 - 8X2 + 13X - 24. 

9.3.16. Let f(X) = X3 + X2 +aX+ 3 E ~[X]. For which real number a does 
this polynomial have multiple roots? 

9.3.17. Let j(X) = X3 + 3X2 + 3aX- 4 E ~[X]. For which real number a 
does this polynomial have multiple roots? 

9.3.18. Let f(X) = X3 + 3X2 + 4 E ~[X]. Find all the irreducible factors of 
f(X), together with their multiplicity. 

9.3.19. Let f(X) =X5 + 4X4 + 7X3 + 8X2 + 2E ~[X]. Find all the irreducible 
factors of the polynomial j(X), together with their multiplicity. 

9.3.20. Let j(X) = X5 - iX4 + 5X3 - iX2 + 4i E C[X]. Find the irreducible 
factors of the polynomial j(X). 

9.4 ARITHMETIC FUNCTIONS 

In this section, we consider some important number-theoretic functions that are 
of the form f : N ---+ C, whose domain is the set of natural numbers. 
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9.4.1. Definition. A number-theoretic function whose domain is N and whose 
range is a subset of the complex numbers is called an arithmetical function or an 
arithmetic function. 

We first consider some important examples of number-theoretic functions. 

9.4.2. Definition. Let v : N ----+ N be the function defined in the following way: 
v(l) = 1, and v(n) is the number of all positive divisors of n if n > 1. 

9.4.3. Definition. Let a : N ----+ N be the function defined by a (1) = 1 and a (n) 
is the sum of all the positive divisors of n if n > 1. 

The next proposition provides us with certain formulae, allowing us to find 
the values of these functions. 

9.4.4. Proposition. Let n be a positive integer and suppose that n = p~ 1 p~2 

p~' is its prime decomposition where p j is a prime for 1 S j S t and Pk =I= p j 
whenever k =I= j. Then 

(i) v(n) = (ki + 1) ... (k1 + 1); 

( kt+I- 1) ( k,+I- 1) 
( .. ) ( ) PI Pt u an= ----

(PI - 1) (Pt - 1) 

Proof. Let m be an arbitrary divisor of n. Then m = p~ 1 p~2 
••• p:', where 0 S 

s j S k j, for 1 s j s t. Since Z is a unique factorization domain, the decompo
sitions of m and n are unique. It follows that the mapping 

m f---+ (si, ... , s1), where 0 S Sj S kj. for 1 S j S t 

is bijective. Consequently, the number of all divisors of n is equal to the number 
of all t-tuples (si, ... , s1) of positive integers sj. where 0 S Sj S kj. and 1 S 
j S t. It is evident that for each j there are k j + 1 choices for s j and hence a 
total number of (ki + 1) ... (kt-1 + l)(k1 + 1) choices for the tuple (si, ... , s1). 

Therefore, 

v(n) = (ki + 1) ... (k1 + 1). 

To justify the formula for a (n) we will use induction on t. If t = 1, so n = p~ 1 , 
then 
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k1 kz kr-1 d Suppose that t > 1, let r =pi p2 •.. p1_i, an suppose we have already 
proved that 

cll+i- I) 
a (r) = -----'i'------

(Pi - 1) 

( kr-1+i _ l) 
Pt-i 

(Pt-i- 1) 

Let S be the set of all t -tuples (si, ... , s1 ) of positive integers s j, where 0 :::: 
Sj:::: kj, for 1:::: j:::: t, and let M be the set of all (t- I)-tuples (si, ... , s1-i) 
of positive integers Sj, where 0:::: Sj :::: kj, for 1 :::: j :::: t- 1. Then we have 

a(n) = 
(sl, ... ,sr)ES 

Sl Sz Sr-I 
Pi P2 · · · Pt-i Pt 

(sl , ... ,Sr- t)EM (si, ... ,Sr-I)EM 

+ 
(sl , ... ,Sr-I)EM (s1, ... ,sr-1lEM 

( 
"'\' Sl Sz Sr-I) 1 2 kr 

= ~ Pi P2 · · · Pt-i ( + Pt + Pt + · · · + Pt ) 
(s1, ... ,sr-1lEM 

(p~l+i- 1) (p;:_ii- 1) (p~r+i - 1) 

(Pi - 1) (Pt-i - 1) (Pt- 1) ' 

using the induction hypothesis. 

There is a very interesting number-theoretical problem connected with the 
function a(n). A positive integer n is called peifect, if a(n) = 2n. For example, 
the positive integers 6 and 28 are perfect. Proposition 9.4.4 implies that if 
2k+i - 1 is a prime, then n = 2k(2k+i - 1) is perfect. Euler proved that every 
even perfect number has such a form. Thus, the problem of finding all even 
perfect numbers is reduced to finding primes of the form 2k+i - 1. 

9.4.5. Definition. A prime pis called a Mersenne prime if p = 2k- 1 for some 
positive integer k. 

The following two important problems about perfect numbers remain unsolved 
at the time of writing: 

1. Are there infinitely many peifect numbers? 

2. Is there an odd peifect number? 

We want a method for constructing further number-theoretic functions from 
given ones. There are many ways to do this but one particularly interesting 
method is as follows. 
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9.4.6. Definition. The Dirichlet product of two number-theoretic functions f and 
g is the function f ~ g defined by 

(f ~ g)(n) = Lf(k)g(t). 
kt=n 

We note that f ~ g is again a number-theoretic function. The following propo
sition lists some of the important properties of the Dirichlet product. 

9.4.7. Proposition. 

(i) Dirichlet multiplication of number-theoretic functions is commutative. 

(ii) Dirichlet multiplication of number-theoretic functions is associative. 

(iii) Dirichlet multiplication of number-theoretic functions has an identity ele
ment. This is the function E defined by the rule E(l) = 1 and E(n) = 0 
for n > 1. 

Proof. Since multiplication of complex numbers is commutative, assertion (i) is 
easy. To prove (ii) we consider the products (f~g)~h and f~ (g~h). We have 

((f ~g)~ h)(n) = L (f ~ g)(k)h(t) 
kt=n 

~ ,'f., c~ f (u)g(v)) h(l) ~ '"~" (f (u)g(v))h(t) and 

(f ~ (g ~ h))(n) = L f(u)(g ~ h)(m) 
um=n 

Since multiplication of complex numbers is associative, 

((f ~g)~ h)(n) = (f ~ (g ~ h))(n), for each n EN, 

which means that (f ~g)~ h = f ~ (g ~h). 
Finally, 

(f ~ E)(n) = Lf(k)E(t) = f(n)E(l) = f(n) for each n EN, 
kt=n 

and hence f ~ E = f. 
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Another important number-theoretic functionS is defined by the rule S(n) = 1 
for each n E N. We have 

(f [gl S)(n) = L f(k)S(t) = Lf(k), for each n EN, 
kt=n kin 

where the sum is taken over all divisors k of n. 

9.4.8. Definition. The function f [gl Sis said to be the summator function for the 
function f. 

The next important number-theoretic function that we consider is the Mobius 
function fl. 

9 4 9 D fi •t• L k1 kz k, h d' . . . . . e m ton. et n = p 1 p2 ••• p1 , w ere PI, ... , p1 are zstznct przmes. 
The Mobius function 11 is defined as follows. 

l1,ifn=1; 

f.l(n) = 0, if there exists j such that kj ::=:: 2; 

( -1 )1
, if k j S 1 for all j. 

The summator function for 11 turns out to be E as our next proposition shows. 

9.4.10. Proposition. 11 [gl S = E. 

Proof. We have 11 [gl S(l) = fl{l) = 1. Next, let n = p~ 1 p;2 
... p~' > 1 be the 

prime decomposition of n where p; =I= p j whenever i =I= j. Choose an arbitrary 
divisor m of n. Then 

If there exists an index j such that Sj ::=:: 2, then /l(m) = 0. Let T denote the 
set of all tuples (sJ, ... , s1) of length t such that 0 S Sj S 1, for 1 S j St. Then 

i'Vls ) " ( Sl Sz St-1 St) /l~L>J (n = ~ 11 P1 Pz · · · Pr-! Pr · 
(sl , ... ,s,)ET 

Let Supp(sJ, ... , s1) = {j 11 S j S t, Sj = 1}. By the definition of the 
Mobius function 

s 1 s2 s,_ 1 s, 11 if ISupp(s!, ... , s1) I is even; 
/l(P! Pz · · · Pr-! Pr ) = . · -1If ISupp(sJ, ... , s1)1 IS odd. 



ARITHMETIC PROPERTIES OF RINGS 421 

We prove that the number of tuples (s1, ••• , sr) of length t [where (0 :::: s j :::: 

1)] such that ISupp(s,, ... , sr )I is even, coincides with the number of tuples for 
which ISupp(s,, ... , sr)l is odd. It will follow that JL(n) = 0. 

To prove the required assertion, we apply induction on t. First let t = 2. 
In this case, ISupp(O, 0)1 and ISupp(l, 1)1 are even and ISupp(O, 1)1 and 
ISupp(l, 0)1 are odd. Hence fort= 2, the result holds. Suppose next that t > 2 
and that our assertion is true for all tuples of length t - 1. Let U denote the 
set of all tuples of numbers (s1, ••• , sr) of length t where 0 :::: s j :::: 1 such that 
sr = 0 and let V denote the corresponding set when sr = 1. Clearly, lUI = lVI 
and is equal to the number of (t- I)-tuples (s,, ... , sr-J), where 0:::: Sj :::: 1 and 
1 :::: j :::: t - 1. Hence, the number of t -tuples (s,, ... , sr) of the subset U such 
that ISupp(s,, ... , sr)l is even coincides with the number of tuples (s,, ... , sr-J) 
of length t- 1 such that ISupp(s,, ... , sr-J)I is also even. Similarly, the 
number of t-tuples (s,, ... , sr) of the subset U such that ISupp(s,, ... , sr)l 
is odd coincides with the number of (t - I)-tuples (s,, ... , sr-d such that 
ISupp(s,, ... , sr-i) I is also odd. Also, the number of t-tuples (s,, ... , sr) of 
the subset V such that ISupp(s,, ... , sr)l is even coincides with the number of 
(t- I)-tuples (s,, ... , sr-J) such that ISupp(s,, ... , sr-J)I is also odd. Finally, 
the number of t-tuples (s,, ... , sr) of the subset V such that ISupp(s,, ... , sr) I 
is odd coincides with the number of (t - 1 )-tuples (s1, ••• , sr-i) such that 
ISupp(s,, ... , sr-J)I is even. Using the induction hypothesis, we deduce that the 
number of t-tuples (s1, ••• , sr) of the subset U (respectively V) such that 
ISupp(s,, ... , sr) I is even coincides with the number of t-tuples (s,, ... , sr) 
such that ISupp(s,, ... , sr) I is odd. This proves the assertion. 

The following important result can now be obtained. 

9.4.11. Theorem (The Mobius Inversion Formula). Let f be a number-theoretic 
function and let F be the summator function for f. Then 

f(n) = LJL(k)F(~) 
kin 

for each n E N. 

Proof. We have F = f ~ S. Proposition 9.4.10 implies that 

F ~ JL = (f ~ S) ~ JL = f ~ ( S ~ JL) = f ~ (JL ~ S) = f ~ E = f. 

The next number-theoretic function plays a very important role in many areas 
of mathematics. 

9.4.12. Definition. The Euler function qJ is defined by qJ(l) = 1 and ifn > 1 then 

qJ(n) = {k IkE N, 1 :::: k < n, GCD(n, k) = 1}. 
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The next theorem provides us with an alternative approach to the Euler Func
tion, which shows one of its important use in group theory. 

9.4.13. Theorem. 

(i) Let G be a finite cyclic group of order n. Then the number of generators 
of G coincides with cp(n ). 

(ii) If k is a positive integer, then k + n7L E U(7Ljn7L) if and only if 
GCD(k, n) = 1. In particular, cp(n) = IU(7Ljn7L)I. 

Proof. 
(i) Since G is cyclic, G =(g) for some element g E G. By Theorem 8.1.20, 

an element y = gk E G is a generator for G if and only if GCD(k, n) = 1. From 
Section 8.1, it follows that 

( ) { 
0 I 2 n-1} g = g,g,g, ... ,g 0 

Consequently, by its definition, cp(n) is equal to the number of generators of G. 
(ii) Let k + n7L E U(7Ljn7L). Then there exists a coset s + n7L such that 

(ks + n7L) = (k + n'll)(s + n7L) = 1 + n7L. 

Thus, ks + nr = 1 for some r E 7L and Corollary 1.4.7 implies that GCD(k, n) = 
1. Conversely, if GCD(k, n) = 1 we can reverse these arguments to see that 
k + n7L E U(7Ljn7L). It follows that IU(7Ljn7L)I = cp(n). 

9.4.14. Corollary (Euler's Theorem). Let n be a positive integer and suppose that 
k is an integer such that GCD(k, n) = 1. Then k"'(n) = 1 (mod n). 

Proof. Since GCD(k, n) = 1, it follows that k + n7L E U(7Ljn7L). Corollary 8.3.9 
and Theorem 9.4.13 together imply that (k + n7L)"'(n) = 1 + n7L. However, 

(k + n7L)"'(n) = krp(n) + n7L, 

so the result follows. 

9.4.15. Corollary (Fermat's Little Theorem). Let p be a prime and let k be an 
integer. If p does not divide k then kp-i = 1 (mod p). 

Proof. Since p is a prime, cp(p) = p- 1 and we can apply Corollary 9.4.14. 

Corollary 9.4.15 can also be written in the following form: 
Let p be a prime and k be an integer. Then kP = k(mod p). 
We next consider the summator function for the Euler function. Let G be a 

group. Define the binary relation o on G by the rule: xoy if and only if lxl = lyl, 
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for x, y E G. It is easy to check that o is an equivalence relation and, if n is a 
positive integer, let 

Gn = {x I x E G and lxl = n}. 

The subset Gn is an equivalence class under the relation o. Let G00 denote 
the subset of all elements of G whose orders are infinite. By Theorem 7.2.5 the 
family of subsets { G n I n E N U { oo}} is a partition of G. We note that G n can 
be empty for some positive integer n or n = oo. In particular, if G is a finite 
group, then G00 = 0. Moreover, if y is an arbitrary element of a finite group 
G, then Corollary 8.3.9 implies that lyl is a divisor of IGI. Thus, the family of 
subsets { G k lk is a divisor of I G I} is a partition of the finite group G. It follows 
that if IGI = n then G = Ukln Gk. It will often be the case that Gk will also be 
empty. However, the one exception here is that of a cyclic group. In fact Gk is 
nonempty for all k I IGI if and only if G is a finite cyclic group. 

These observations allows us to obtain the following interesting identity. 

9.4.16. Theorem. Lkln q;(k) = n. 

Proof. Let G = (g) be a cyclic group of order n. We noted above that G = 
ukln Gk. Let k be a divisor of n and put d =I· Also let X= gd. We have 
xk = (gd)k = gdk = gn =e. If we suppose that x 1 = e for some positive integer 
t < k, then e = x 1 = (gd)t = gdt. Since dt < n, we obtain a contradiction to the 
fact that lgl = IGI = n. Thus, lxl = k. Hence, the subset Gk is not empty for 
every divisor k of n. 

Let z be an element of G having order k. Then z = gm for some positive 
integer m, and e = l = (gm)k = gmk. It follows that n = dk divides mk and 
hence d divides m, so m = ds for some positive integers. We have 

which proves that z E (x). Furthermore, l(z)l = lzl = lxl = k, so that (z) = (x). 
Thus, every element of order k is a generator for the subgroup (x). By Theorem 
9.4.13, the number of all such elements is equal to rp(k). Hence for each divisor 
k of n, we have IGkl = q;(k). Therefore, 

n = IGI = LIGkl = Lq;(k). 
kin kin 

9.4.17. Corollary. Let G be a finite group of order n. If k is a divisor of n, then 
let G[k] = {x I x E G and xk = e}. Suppose that IG[k]l .:::; kfor each divisor k of 
n. Then the group G is cyclic. 

Proof. We have already noted above that the family of subsets {Gk I kin} is a 
partition of a finite group G. This implies that G = ukln Gk and IGI = Lkln Gk. 
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Suppose that the subset Gk is not empty for some divisor k of n and let y E Gk. 
By Corollary 9.3.10, if z E (y) then lzl divides k, and therefore zk =e. Now, 
the equations lyl = I (y) I = k together with the conditions of this corollary imply 
that Gk ~ (y). Moreover, each element of order k is a generator for a subgroup 
(y). Applying Theorem 9.4.13, we deduce that the number of all such elements 
is equal to q;(k). Consequently, if the subset Gk is not empty for some divisor 
k of n, then IGkl = q;(k). Comparing the following two equations n = IGI = 
Lkln IGk I and n = Lkln q;(k), we see that Gk is nonempty for each divisor k of 
n. In particular, Gn =f. 0. Let g E Gn. The equation n = lgl = l(g)l implies that 
(g)= G. 

9.4.18. Corollary. Let F be afield and let G be afinite subgroup ofU(F). Then 
G is cyclic. 

Proof. Let IGI = n and let k be a divisor of n. If an element y of G satisfies 
the condition l = e, then y is a root of Xk- e E F[X]. By Corollary 7.5.11, 
this polynomial has at most k roots. By Corollary 9.4.17, G is a cyclic group. 

9.4.19. Corollary. Let F be a finite field. Then its multiplicative group U (F) is 
cyclic. 

We know already that Z/ pZ is a field whenever p is a prime, so we deduce 
the following fact. 

9.4.20. Corollary. Let p be a prime. Then U (Zj pZ) is cyclic. 

We showed in Theorem 9.4.16 that the identity permutation of the set N is 
the summator function for the Euler function. This allows us to obtain a formula 
for the values of the Euler function. Employing Theorems 9.4.11 and 9 .4.16 we 
have 

" n "tL(k) q;(n) = L...IL(k)k = n L...-k-, 
kin kin 

for each n EN. Now let n = p~ 1 p~2 
••• p~' be the prime decomposition of n 

where p; =f. p j whenever i =f. j. If m is a divisor of n, then m = P? p~2 
••• p:' 

where 0:::; Sj :::; kj, 1 :::; j:::; t. If there exists j such that Sj 2: 2, then tL(m) = 0. 
Hence 
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Consequently, 

~(n) = n (1- ;J (1- ;J ... (1- :J 
In particular, if pis a prime and k E N, then ~(pk) = pk-1 (p- 1) = pk - pk-1. 

Moreover, from the above formula we deduce that 

~(nk) = ~(n)~(k), whenever GCD(k, n) = 1. 

9.4.21. Definition. The number-theoretic function f is called multiplicative if 

(i) there is a positive integer n such that f (n) =I= 0; 
(ii) ifGCD(k, n) = 1, then f(nk) = f(n)f(k). 

Thus, ~ is a multiplicative function. The next theorem gives us an important 
property of multiplicative functions. 

9.4.22. Theorem. If a number-theoretic function f is multiplicative, then the 
summator function for f is also multiplicative. 

Proof. Let k and t be positive integers such that GCD(k, t) = 1. If dis a divisor 
of kt, then clearly d = uv where ulk, vlt. Let F = (f t8J S) be the summator 
function for f. Then 

F(kt) = L f(uv) = L f(u)f(v) 
uik,vlt uik,vit 

= (L f(u)) (L f(v)) = F(k)F(t). 
uik vit 

At the end of this section, we discuss some applications of the above results. 
Recently the Euler function has found applications in cryptography. A giant leap 
forward occurred in cryptography in the second half of the twentieth century, 
with the invention of public key cryptography. The main idea is the concept of 
a trapdoor function-a function that has an inverse, but whose inverse is very 
difficult to calculate. In 1976, Rivest, Shamir, and Adleman succeeded in finding 
such a class of functions. It turns out that if you take two very large numbers and 
multiply them together, a machine can quickly compute the answer. However, if 
you give the machine the answer and ask it for the two factors, the factorization 
cannot be computed in a useful amount of time. The public key system, built 
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upon these ideas, is now known as the RSA (Rivest, Shamir, and Adelman) 
key after the three men who created it. The main idea in RSA cryptography is 
as follows. One chooses two arbitrary primes p and q and calculates n = pq 
and q;(n) = (p- l)(q- 1). Next, one picks an arbitrary number k < cp(n) that 
is relatively prime with cp(n). As we can see by the proof of Theorem 9.4.13, 
k + cp(n)Z E U(Z/q;(n)Z). Consequently, there exists a positive integer t such 
that kt = 1 (mod q;(n)). We can find t using the Euclidian algorithm, which 
has been described in Section 9.2. the numbers n and k determine the coding 
method. They are not secret and they form the open (or public) key. Only the 
primes p, q and the number t are kept secret. First, the message should be written 
in numerical form with the help of ordinary digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 
After that, one divides this message into blocks M1, ••• Ms of a certain length w. 
The number m should satisfy the restriction 1 Ow < m. Usually one chooses the 
numbers p and q up to 100 or more digits each. Each block Mj can be considered 
as a representative of the coset Mj + nZ. Encryption of the block Mj is done 
by substituting it by the block E(Mj), where E(Mj) = Mj (mod n). Since the 
number n is large, only a computer can perform this computation. Decryption 
is done using the following procedure. The choice of the number t requires that 
kt = 1 + rcp(n). Now one can apply Euler's theorem (Corollary 9.4.14). In this 
case, Mj and n are required to be relatively prime. Nevertheless, we can show 
that this application is valid in any case. Let m be an arbitrary positive integer. 
If GCD(m, n) = 1, then Corollary 9.4.14 shows that m'P(n) = l(mod n), and 

mkr = m 1+r'P(n) = m(m'P(n))' = m(mod n). 

Suppose now that GCD(m, n) =I= 1. Since n = pq, then either p divides m 
and q does not divide m, or conversely, q divides m and p does not divide m. 
Consider the first case; the consideration of the second case is similar. 

We have 

m = pu and mkr - m = (pu)kr - pu. 

On the other hand, 

Since GCD(m, q) = 1, Corollary 9.4.15 leads us to m<q-i) = l(mod q). 
Therefore, 

Hence q divides mkr - m. As we have seen above, p divides mkr - m, so that 
n = pq divides mkr- m. Consequently, in any case we have mkr = m(mod n). 
For block Mj we have 

E(Mj = (Mj) 1 = Mj1 = MJ+r'P(n) = Mj(MJ"'<nl)'. 
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So we can write E(Mj) 1 = Mj(mod n). Recall that the number Mj satis
fies the condition 1 _::: Mj < n, and therefore it is uniquely determined by the 
congruence E(Mj)1 = Mj(mod n). 

The problem of reliability of the RSA code is reduced to the question: Can 
the block E(Mj) be decoded? For this one needs to solve the congruence xk = 
E(Mj)(mod n) without knowing the number t. In the next section, we will study 
congruences of the type xk = a(mod n). For now, we can only state that there 
is no general method for the solution of such congruences. In reality, it could be 
done by the examination of all cases. From the choice of w, it follows that this 
sorting requires the consideration of 100100 cases, which is not quite realistic. 

Therefore, to crack the RSA code one needs to find t if n and k given. If 
the decomposition n = pq is known, then this is not difficult. In tum, knowing 
the numbers n, k, and t, one can find the decomposition n = pq. So the finding 
of t requires the same efforts as is needed for finding the decomposition n = 
pq. However, in the case when each of the factors has 100 digits, this is not 
realistic yet. 

We attach some worked examples of exercises supplied with solutions. 

Some Worked Exercises 

9.4.23. Find a positive integer n such that n has exactly 14 positive divisors 
including 12. 

Solution. Let n = p~ 1 p~2 
••• p~' be the primary decomposition of n 

where p j is a prime, for 1 .::: j .::: n and Pk =!= p j whenever k =!= j. By 
Proposition 9.4.4, v(n) = (k1 + 1) ... (k1 + 1) = 14 = 2 · 7. It follows that 
(ki + 1) = 2, (k2 + 1) = 7, t = 2. On the other hand, 12 divides n, so that 
PI = 3, P2 = 2, k1 = 1, and k2 = 6. Hence n = 26 x 3 = 192. 

9.4.24. Let n be a positive integer. Find the product of all positive divisors of n. 

Solution. Let D(n) be the set of all positive divisors of n. Let P(n) be the 
set of all nonordered pairs {d, ;I} where d E D(n). If n =1= k2 for some positive 
integer k, then clearly IP(n)l = IDinll = v~). Since d ·;I= n, the product of 

v(n) 

all elements of D(n) is equal n-2-. If n = k2 for some positive integer k, then 
clearly IP(n)l = IDinll = v(ni-Il) + 1. So in this case, the product of all elements 

v(n)-1) 1 v(n)-1) v(n) 
of D(n) is equal to k-2- = n2. n-2- = n-2-. 

9.4.25. Find a positive integer n such that the product of all positive divisors of 
n is 810000. 

Solution. We have 810 000 = 24 x 34 x 54 . Therefore, n has the form n = 
v(n) 

2a x 3b x sc. By example 9.4.24, 810000 = n-2-. By Proposition 9.4.4, 

v(n) = v(2a x 3b x 5c) = (a+ l)(b + l)(c + 1). 
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Since v~) ::; 4, (a+ l)(b + l)(c + 1)::; 8. Since a 2: 1, b 2: 1, c 2: 1, we obtain 
that a= 1, b = 1, c = 1, that is, n = 30. 

9.4.26. Let n be a positive integer and let { d1, ... dk} be the set of all positive 
divisors of n. Prove that 

dl + ... +dk 
n = I I. 

d]+···+;r,; 
Solution. Without loss of generality we may suppose that d1 < · · · < dk. 

Then 

It follows that 

d1 + · · · + dk n(d1 + · · · + dk) n(d1 + · · · + dk) n(d1 + · · · + dk) 
- = =n. 

_!_ + · · · + _!_ - n(_!_ + .. · + _!_) - .!!.. + · · · + .!!.. d1 + · · · + dk 
~ 4 ~ 4 ~ 4 

9.4.27. Let n be a positive integer. Prove that q;(n) divides n!. 

Solution. Let n = p~ 1 p~2 
••• p~' be the primary decomposition of n, where 

p j is a prime, for 1 ::; j ::; n and Pk =f. p j whenever k =f. j. It was already shown 
above that 

Since Pk =f. pj, Pk- 1 =f. Pj- 1 whenever k =f. j. Since Pj- 1 < n for each 
j, 1 :S j :S n, (PI - 1 )(p2 - 1) ... (p1 - 1) divides (n - 1)!. Furthermore, 

k1-l k2-l k,-1 d. ·d Th ., ( ) di ·d 1 p 1 p2 ... Pr 1v1 es n. ere.ore, q; n v1 es n .. 

9.4.28. Let n be a positive integer and let 

<t>n = {k I k E N, 1 ::; k < n, GCD(n, k) = 1}. 

Find the sum of all the elements of <t>n. 

Solution. If k < n, then k + (n - k) = n. Suppose that d is a divisor of k 
and n. The above equation shows that d is a divisor of n - k and n. Conversely, 
if d is a divisor of n - k and n, then d is a divisor of k and n. It follows that 
GCD(n, k) = 1 if and only if GCD(n, n- k) = 1. Therefore, we can divide the 
set <t>n into pairs {k, n- k}. The amount of all these pairs is equal to ¥·Since 
k + (n - k) = n, the sum of all elements of <t>n is equal to n · ¥· 

9.4.29. Let a be a positive integers. Find a positive integer n satisfying the 
equation q;(n) = ! · n. a 
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Solution. If a = 1, then clearly n = 1. Suppose that n > 1 and let n = p~ 1 

p;2 
••• p~' be the primary decomposition of n where p j is a prime, for 1 :::: 

j :::: n and Pk =!= p j whenever k =!= j. The equation q;(n) = ~ · n is equivalent to 
q>(n) =a. We have 

n 

q;(n) 1 k1-I k2-I k1-I (PI- 1)(pz- 1) .. · (Pt- )pi P2 · · · Pt 

PIP2 ···Pt 
(PI - 1)(pz - 1) ... (Pt - 1) 

Since (n) =a is a positive integer, (PI - 1)(pz - 1) ... (p1 - 1) divides 
PIP2 ... p~. If a prime Pj is odd, then Pj- 1 is even. Only one of the numbers 
PI, pz, ... , Pt can be equal to 2. If follows that either n = 2k' or n = 2k1 p;2

• 

In the first case, q>(n) = 2~I = 2. Hence for a = 2 the solutions of the equation 

q;(n) = ~ · n have the form 2k. 
In the second case, 

n 2pz 2pz 

q;(n) (2- 1)(pz- 1) pz- 1 

The number P~l'}:I is a positive integer. Since pz is a prime and pz - 1 < pz, 

GCD(pz- 1, pz) = 1. Therefore, if pz- 1 = 2, P~P}_I is an integer, that is, 
p2 = 3. Hence in the second case, n = 2k31

, and in this case a = 3. 

EXERCISE SET 9.4 

9.4.1. Find J.L{1086). 

9.4.2. Find J.L(3001). 

9.4.3. Find q;(1226). 

9.4.4. Find q;(1137). 

9.4.5. Find q;(2137). 

9.4.6. Find q;(1989). 

9.4.7. Find q;(1789). 

9.4.8. Find q;(1945). 

9.4.9. Use Euler's theorem to find the remainder when we divide 197157 by 
35. 

9.4.10. Use Euler's theorem to find the remainder when we divide 500810000 
by each of 5, 7, 11, 13. 
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9.4.11. Find the remainder when we divide 20441 by 111. 

9.4.12. Find the remainder when 10100 + 40100 is divided by 7. 

9.4.13. Find the remainder when 570 + 750 is divided by 12. 

9.4.14. Find the last two digits of the number 3100. 

9.4.15. Find the last two digits of the number 903 1294 . 

9.4.16. Prove that 42 divides a7 - a for each a E N. 

9.4.17. Prove that 100 divides a42 - a2 for each a EN. 

9.4.18. Prove that 65 divides a 12 - b 12 whenever GCD(a, 65) = GCD(b, 65) = 
11. 

9.4.19. Prove that pq-i +qp-i = 1 (mod pq) where p, q are primes and p =f. q. 

9.4.20. Prove that if a, + a2 + a3 = 0 (mod 30), then ai +a~+ aj = 0 
(mod 30). 

9.5 CONGRUENCES 

In this section, we consider the process of solving congruences. This is a special 
case of the problem of finding roots of polynomials over commutative rings. In 
Section 7.4, we introduced polynomials over a commutative ring R and conside
red the specific case when R is an integral domain. Polynomials over an arbitrary 
commutative ring can also be discussed but in this more general situation some 
of the standard properties of polynomials are lost. 

A most natural first case to consider is the ring R = Zj nZ, where n is fixed. 
We use the notation that if k is an integer then k will denote the coset k + nZ. 
Let 

f(X) = ao +a, X+···+ anXn E (ZjnZ)[X]. 

Then the equation 

leads to the congruence 

9.5.1. Definition. An integer t is called a solution of the congruence 
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if 
ao + a1t + · · · + antn = 0 (mod n). 

The following more precise definition is needed. 

9.5.2. Definition. The solutions t and s of 

are called equivalent, if t + nZ = s + nZ or t = s (mod n ). 

So, in order to find a complete set of solutions of the equation 

it is necessary to find the complete set of inequivalent solutions of the congruence 

A natural first step here is the case when /(X) has degree l. Thus, we have 
the equation f: +ax = 0 or ax = b where b = -f:. This equation leads to the 
congruence ax = b (mod n). 

9.5.3. Theorem. Let n be a positive integer. The congruence ax= b (mod n) 
has a solution if and only if d = GCD(a, n) divides b. If c is a solution of ax = b 
mod nand ifm = ;], then 

{c, c + m, ... , c + (d- l)m} 

is a complete set of solutions of this congruence. 

Proof. Let u be a solution of ax = b (mod n) so 

(a+ nZ)(u + nZ) =au + nZ = b + nZ. 

We have b = au + nz for some z E Z. Since d divides au + nz, d divides b. 
Conversely, let d divide b, say b = b1d, where b1 E Z. By Corollary 1.4.6, there 
exist integers v, w such that a v + n w = d. Multiplying both sides of this equation 
by b1, we obtain avb1 + nwb1 = db 1 and hence a(vbJ) + n(wbJ) =b. The last 
equation shows that the integer u = vb1 is a solution of ax = b (mod n). Note 
also that our reasoning above shows how to find the solution of the congruence 
ax= b (mod n), as well as showing the sufficiency of the condition that d 
divides b. Indeed, we can find v, w with the aid of the Euclidean algorithm, as 
in Section 9.2. 
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Finally, let c, y be two solutions of ax = b (mod n). We have 

ac + nZ = b + nZ = ay + nZ, 

so ay- ac + nZ = nZ. Thus, n divides ac- ay. Let a= a1d, where a1 E Z. 
Then md I (da1c- da1y) so m I a1 (c- y). By Corollary 1.4.8, the integers a1 
and m are relatively prime, so Corollary 1.4.9 shows that m I (y -c). Hence 
y = c + mk for some k E Z. 

Conversely, it is not difficult to see that the integer y = c + mk is a solution 
of ax= b (mod n). It is clear that the solutions c, c + m, ... , c + (d- l)m are 
not equivalent. For the arbitrary solution y = c + mk of ax= b (mod n), divide 
k by d, say k = ds + r, where 0 :S r <d. Then 

y = c + mk = c + m(ds + r) = c + mr + mds = c + mr + ns, 

so that the solution y is equivalent to c + mr. This proves that the family of 
integers {c, c + m, ... , c + (d- l)m} is a complete set of solutions of the con
gruence ax = b (mod n). 

There are a couple of special cases that are worth pointing out. 

9.5.4. Corollary. Let n be a positive integer. If a and n are relatively prime then 
ax = b (mod n) always has solutions. In this case, all solutions are equivalent, 
so the solution of this congruence is unique. In this case x = a-1b (mod n). 

9.5.5. Corollary. Let p be a prime and let a be a positive integer such that p 
does not divide a. Then ax = b (mod p) always has solutions. The solutions are 
all equivalent so there is a unique solution. 

We require the following elementary result next. 

9.5.6. Lemma. Let b1, ... , b1 be integers and let n be a positive integer. If 
GCD(bj, n) = 1 for all1 :S j :S t, then GCD(b1 ... br. n) = 1. 

Proof. By Theorem 9.4.13, bj + nZ E U(ZjnZ) for each j, where 1 :::: j:::: t. 
Corollary 3.1.15 shows that U(ZjnZ) is a stable subset of ZjnZ, and therefore 

(b! + nZ) ... (b1 + nZ) = b1 ... b1 + nZ E U(ZjnZ). 

Again using Theorem 9.4.13, we see that GCD(b1 ... b1 , n) = 1. 

If a positive integer n has a form n = n1 ... n1, where GCD(n j. nk) = 1 when
ever j =I= k, then very often we can reduce the congruence modulo n to a system 
of congruences modulo n1, ... , n1• The classical Chinese Remainder Theorem 
that follows plays a key role here. 
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9.5.7. Theorem. Let n be a positive integer and suppose that n = n1 ... n 1, where 
GCD(n j, nk) = 1 whenever j =j:. k . If b1, .•• , b1 are arbitrary integers, then the 
system of congruences 

x = b1 (mod nJ), 

x = b1 (mod n1), 

has solutions. Moreover, if c, d are two solutions of this system of congruences, 
then c = d (mod n). 

Proof. Let mj =:, for 1 :=:: j :=:: t. By Lemma 9.5.6, GCD(nj, mj) = 1 for 
J 

each j, where 1 :=:: j :=:: t. By Corollary 1.4. 7, there exist integers r j, s j such that 
r j n j + s j m j = 1, for 1 :=:: j :=:: t. Let e j = s j m j . Then e j + n /~': = 1 + n /~': and 
e j E nkZ whenever j =j:. k. Let 

Then 

c + njZ = bjej + L)kek + njZ = (bjej + njZ) + (Lbkek + njz) 
k#j k#j 

= (bj + njZ)(ej + njZ) + (L(bk + njZ)(ek + njZ)) 
k#j 

= (bj +njZ)(l +njZ) = (bj +njZ). 

In other words c = b j (mod n j ), for 1 :=:: j :=:: t. 
If d is another solution of this system of congruences, then 

and then c- dE njZ. so nj I (c- d) for each j, where 1 :=:: j :=:: t. Using induc
tion and Corollary 1.4.9, we deduce that n = n1 ... n 1 divides (c- d). Thus, 
c = d (mod n). 

This result has several interesting consequences, which we now deduce. 

9.5.8. Corollary. Let n be a positive integer and suppose that n = n1 ... n 1, 

where GCD(n j, nk) = 1 whenever j =j:. k . Then 
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and 

Proof. Let R be the ring Zjn,Z x · · · x Zjn 1Z and consider the mapping 

f: Z---+ R, 

defined by 

f(k) = (k + n 1Z, ... , k + n1Z) for each k E '£.. 

The mapping f is a ring homomorphism. Indeed, 

and 

f(k + s) = (k + s + n,Z, ... , k + s + n1Z) 

= (k + n,Z+s + n,Z, ... , k + n1Z+s + n1Z) 

= (k + n,Z, ... , k + n1Z) + (s + n,Z, ... , s + n1Z) 

= f(k) + f(s) 

f(ks) = (ks + n,Z, ... , ks + n1Z) 

= (Ck + n,Z)(s + n,Z), ... , (k + n 1Z)(s + n 1Z)) 

= (k + n,Z, ... , k + n1Z)(s + n,Z, ... , s + n1Z) = f(k)f(s). 

Now let (k1 + n 1Z, ... , k1 + n1Z) be an arbitrary element of R. By Theorem 
9.5.7, there exists k E Z such that k + n 1z = k1 + n 1z for each j, where 1 ::::: 
j ::::: t. Thus, 

Hence f is an epimorphism and, by Theorem 7.4.5, R;:: ZjKerf. To determine 
Kerf, let k E Kerf. Then 

so that k E n 1 Z for each j, where 1 ::::: j ::::: t. Hence n i I k for every j, where 
1 ::::: j ::::: t. By induction and Corollary 1.4.9, we deduce that n = n 1 ••• n1 divides 
k, so that k E nZ. 

Conversely, if k E nZ then k E n 1z, for 1 ::::: j ::::: t so k E Kerf. Conse
quently, 
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Using the results of Section 7.1 which describes the group of invertible ele
ments of a Cartesian product of rings, we have 

The following important special case arises. 

9.5.9. Corollary. Let n be a positive integer and suppose that n = p~ 1 p~2 
••• p~' 

is its decomposition into primes, where p; =/= Pj whenever i =/= j. Then 

and 

Corollary 9.5.9 reduces the description of ZjnZ and U(Z/nZ) to the case 
when n = pk is a power of a prime. The description of U (Z I pk Z) requires 
separate consideration of the cases when p is odd and when p = 2. 

9.5.10. Definition. Let n be a positive integer. We say that n has a primitive root 
if the group U (Z/ nZ) is cyclic. We say that an integer k is a primitive root modulo 
n, if (k + nZ) = U(Z/nZ). 

From Theorem 9.4.13 it follows that if k is a primitive root modulo n then 
GCD(k, n) = 1. Also since lk + nZI = l(k + nZ)I, by Theorem 9.4.13 we deduce 
that lk + nZI = q;(n). 

9.5.11. Definition. Let n be a positive integer and let k be an integer. Suppose 
that GCD(k, n) = 1. The positive integer tis called the order of k modulo n, ift 
is the order of k + nZ in the group U (Z/ nZ). 

9.5.12. Proposition. Let n be a positive integer. The integer k is a primitive root 
modulo n if and only if the order of k modulo n is q;(n ). 

Proof. If k is a primitive root modulo n then, as seen above, lk + nZI = q;(n). 
Conversely, let k have order ¢(n) modulo n. Then q;(n) = lk + nZI = I (k + nZ) 1. 
Theorem 9.4.13 shows that q;(n) = IU(Z/nZ)I, so that 

l(k + nZ)I = IU(Z/nZ)I, 

and hence 

(k + nZ) = U(Z/nZ). 

Thus, U(Z/nZ) is a cyclic group. 
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Observe, that not every natural number has a primitive root. For example, it 
is easy to see that 

and 

U(Z/8Z) = {1 + 8:-£,3 + 8:-£,5 + 8Z, 7 + 8Z}, 

(3 + 8:-£)2 = 9 + 8Z = 1 + 8:-£, 

(5 + 8:-£)2 = 25 + 8Z = 1 + 8Z, 

(7 + 8:-£) 2 = 49 + 8Z = 1 + 8:-£. 

However, cp(8) = IU(Z/8Z)I = 4. Consequently, the group U(Z/8Z) is not 
cyclic, so that 8 has no primitive roots. 

The case p =j:. 2 is different, however. 

9.5.13. Lemma. Let t be a positive integer, let a, b be integers and let p be a 
prime. !fa= b (mod p1

), then aP = bP (mod p1+1). 

Proof. We have a= b + cp1 for some integer c. It follows, from the Binomial 
theorem, that 

where 

and Cf = k!(J~k)! are binomial coefficients. As seen in Section 9.3, p divides 
Cf, for 1 ::S k ::S p. This implies that if2 ::S k < p then CfbP-k(cp1)k is divisible 
by pp1k = p1k+l ::=: p 1+1• Also, (cp1)P is divisible by p1+l since 

pt- (t + 1) = pt- t- 1 = t(p- 1)- 1 ::::: t- 1::::: 0. 

Hence p 1+1 divides d, and we have 

so that aP = bP (mod p 1+1 ). 

9.5.14. Lemma. Lett be a positive integer, let a, b be integers, and let p be an 
odd prime. lft 2:: 2 and s = p1

-
2, then (1 + ap)' = 1 +apt-! (mod p 1

). 

Proof. We will use induction on t. If t = 2, then the assertion is clear, so sup
pose that t ::=: 2 and, inductively, assume the result true for t. By the induction 
hypothesis, (1 + ap)' = 1 +apt-! (mod p1

) and from Lemma 9.5.13, we have 
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However, sp = p1
-

2 p = p1
-

1 whereas, by the Binomial theorem, 

(1 +apt-1)p = 1 + Cfapt-1 +d, 

where 

and Cf are binomial coefficients. As in Section 9.3, p divides Cf, for 1 :::; k < p. 
For 2 :::; k < p we have 

1 + tk- k- t- 1 = tk- k- t = t(k- 1)- k ~ 2k- 2- k = k- 2 ~ 0, 

so that pp<r-1lk ~ p1+1. The last term (ap1
-

1 )P of the decomposition of d is 
divisible by p 1+1 because 

(t- l)p- t- 1 ~ 3(t- 1)- t- 1 = 2t- 4 ~ 0, 

so that (p 1- 1)P ~ p 1+1. Hence p1+1 divides d, and we have 

for some d1 E Z so that (1 + ap)m = 1 + ap1 (mod p1+1 ), where m = p1
-

1. 
This completes the induction and the proof. 

9.5.15. Corollary. Let t be a positive integer, let a be an integer, and let p be 
an odd prime. If p does not divide a then the order of 1 + ap modulo p 1 is equal 
to pr-1. 

Proof. Let m = p 1- 1• From Lemma 9.5.14 we deduce that 

(mod l+1
), 

so that (I+ ap)m = 1 (mod p 1
). Thus, the order of the element 1 + ap + p1Z 

in U (Z/ p1 Z) divides p1- 1. On the other hand, if s = p1- 2 then, again by 
Lemma 9.5.14, 

(1 + ap)s = 1 + ap1
-

1 (mod l). 

Since p does not divide a, (1 + ap)s + p 1Z =1= 1 + p1Z and hence 

9.5.16. Theorem. Let t be a positive integer and let p be an odd prime. Then 
U (Z / p1 Z) is a cyclic group. Thus, p1 has primitive roots. 
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Proof. From Corollary 9.4.20, we see that U(Z/ pZ) is a cyclic group so there 
exists an integer m with the property that (m + pZ) = U(Z/ pZ). Then m is not 
divisible by p. Suppose that mP-I = l (mod p 2) and consider m + p. We have, 
by the binomial theorem, 

for some d E Z, as before. Since p does not divide (p - l)mP-2, p 2 does 
not divide (m + p)P-1 - l. However, m + p + pZ = m + pZ. Consequently, 
if mp-l = l (mod p 2), we can replace m by m + p and therefore assume that 
mp-l - l is not divisible by p 2• Suppose next that the order of the element 
m + p 1Z in U(Z/ p 1Z) is n. By the above, we may assume that mP-1 = l + ap, 
where p does not divide a. Furthermore, 

(l + ap + ptz)n = (mp-1 + ptz)n = ((m + ptZ)p-lt 

= ((m + pt:Z::t)p-1 = (l + pt:Z::)p-1 = l + lZ. 

Corollary 9.5.15 shows that 1 + ap + p 1Z, as an element of the group U(Z/ p 1Z), 
has order p 1

-
1. It follows that s = p 1

-
1 divides n, say n = p 1

-
1k = sk so (m + 

pZ)n = (m + pZ)'k. By Corollary 9.4.15, (m + p:Z::)P-1 = 1 + pZ and therefore 

(m + pZ)P = (m + pZ)p-l (m + pZ) = (1 + pZ)(m + pZ) = m + pZ. 

Using an induction argument, we conclude that 

(m + pZ)5 = (m + pZ). 

Hence, 

(m + pZt = (m + pZ)sk = (m + pZ)k. 

However, m + p 1Z has order n so (m + p 1Z)n = 1 + p 1Z and we see that (m + 
pZ)k = 1 + pZ. Since 

(m + pZ) = U(Z/ pZ) 

we deduce that 

lm + pZI = l(m + pZ)I = IU(Z/pZ)I. 

By Theorem 9.4.13, IU(Z/pZ)I=cp(p)=p-1. Thus, we have 
lm + pZI = p - l. The equation (m + pZ)k = 1 + pZ shows that p - 1 
divides k, so p 1

-
1 (p- 1) = cp(p1

) divides n = p 1
-

1 k. On the other hand, by 
Corollary 8.3.9, n divides IU(Z/ p 1Z)i = cp(p1

). Hence n = cp(p1
). Proposition 

9.5.12 completes the proof. 
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The proof of this theorem is constructive since it shows how to find a primitive 
root. Moreover, it shows how to do it if at least one of the primitive roots 
modulo a prime number is obtained. In the general case the last task can be 
quite complicated. The following theorem helps reduce the possible selection 
significantly. 

9.5.17. Theorem. Let q be an odd prime and let q- 1 = p~ 1 p~2 
••• p~' be the 

primary decomposition of q- 1 where Pi =f. Pi whenever i =f. j. An integer g 
with the property GCD(q, g) = 1 is a primitive root modulo q if and only if it is 

q-1 

not a solution of any of the congruences x Pj = 1 (mod q), for 1 :::; j :::; t. 

Proof. In fact, if g is a primitive root modulo q then, by Proposition 9.5.12, 
lg + q.IZI = q - 1. Thus, if p is an arbitrary prime divisor of q - 1, then (g + 

q-1 

q./Z) P =f. 1 + q.IZ, so g satisfies none of the given congruences. 
Conversely, let g be an integer such that GCD(g, q) = 1 and suppose that g 

q-1 

satisfies none of the congruences x Pj = 1 (mod q), for 1 :::; j :::; t. Suppose that 
g is not a primitive root modulo q. Thus, (g + q.IZ) =f. V(./Zjq./Z). From Corollary 
8.3.9 we see that lg + q.IZI = m where m is a proper divisor of q - 1. However, 
then m = p~1 p;2 

••• p;' where r 1 :::; k 1, for 1 :::; j :::; t, and there exists an index 
s such that rs =f. ks. In particular, m is a divisor of q-!, and therefore 

Ps 

~ 
Then g satisfies the congruence x Ps = 1 (mod q), a contradiction from which 
we conclude that g is a primitive root modulo q. 

We now consider the case p = 2. 

9.5.18. Theorem. Lett be a positive integer. Then U(./Zj2./Z) and U(./Zj4./Z) are 
cyclic groups. If t 2: 3, then 

In particular, U (Z/21 Z) is generated by -1 + 21 Z and 5 + 21 Z. 

Proof. It is clear that U(Z/2./Z) = {1 + 2./Z} = (1 + 2./Z), and U(Z/4./Z) = {1 + 
4./Z, 3 + 4./Z} = (3 + 4./Z) so suppose that t 2: 3. We show that 5' = 1 + 21

-
1 

(mod 21
) where s = 21

-
3. For t = 3 this is clear so we assume inductively 

that the result is true for some integer t 2: 3 and prove that the result is valid 
for t + 1. To this end, since 5' = 1 + 21

-
1 (mod 21

), a simple computation 
shows that (5')2 = (1 + 21

-
1) 2 = 1 + 2 x 21

-
1 + 221

-
2 (mod 21+1). However, 
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t :::: 3 so 2t- 2 :::: t + 1 and 2s = 21
-

2 so sm = 1 + 21 (mod 21+1 
), where m = 

21- 2 . Now we have 

Thus, the order of the elementS+ 2171. in U(Z/2171.) divides 21
-

2 • On the other 
hand, for s = 21

-
3 , we have ss = 1 + 21

-
1 (mod 21

) and SS + 2171. =f. 1 + 2171.. 
This means that IS+ 2171.1 = 21

-
2 . 

We next consider the set 

Suppose that (-l)asb + 2171. = (-WSd + 2171. for some a, c E {0, 1}, 0:::; b, d:::; 
21-

2. Then, since S = 1 (mod 4) we have ( -l)a + 471. = ( -l)c + 471., which is 
possible only if a =c. This implies that Sb + 2171. = Sd + 2171., and then (S + 
217l.)b-d = 1 + 2171.. Since IS+ 2171.1 = 21

-
2 , it follows that 21

-
2 divides b- d, 

and by the choice of b, d we conclude that b- d = 0 and b =d. Consequently, 
all elements of the set 

are distinct and therefore 

By Theorem 9.4.13, IU(Z/2171.)1 = cp(21
), and hence 

We next consider congruences of higher powers, beginning with congruences 
of the type xk =a (mod n). 

9.5.19. Definition. Let n, k be positive integers and let a be an integer with the 
property GCD(a, n) = 1. We say that a is a k-power residue modulo n, if the 
congruence xk = a (mod n) has a solution y such that GCD(y, n) = 1. In the 
special case when k = 2 we call "a" a quadratic residue modulo n. 

9.5.20. Theorem. Let n, k be positive integers and let a be an integer such that 
GCD(a, n) = 1. Suppose that n has primitive roots. The integer a is a k-power 

residue modulo n if and only if a '£Jf- = 1 (mod n) where d = GCD(k, cp(n )). 
Moreover, if the congruence xk = a (mod n) has solutions, then it has exactly d 
solutions. 
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Proof. Let g be a primitive root modulo n, so (g + nZ) = U(Z/nZ) and let y 
be a solution of the congruence xk =a (mod n) for which GCD(y, n) = 1. By 
Theorem 9.4.13, y + nZ, a+ nZ E U(Z/nZ). Then 

a + nZ = (g + nZ)b = l + nZ 

and 

y + nZ = (g + nZ)z = gz + nZ 

for some b, z E Z. We have 

l + nZ = a + nZ = (y + nZ)k = (gz + nZl = gzk + nZ. 

Thus, 

(g + nZ)b = (g + nz/zand 1 + nZ = (g + nZ)kz-b = lz-b + nZ. 

Since (g + nZ) = U(ZjnZ), Theorem 9.4.13 implies that Jg + nZI = cp(n), 
from which we deduce that cp(n) divides kz- b. Thus, kz = b (mod cp(n)). By 
Theorem 9.5.3, d must divide b, say b = cd for some positive integer c. We 
have 

(a+ nZ)~ = (g + nZ)b~ = (g + nZ)'P(n)c = ((g + nZ)'P(n))c = 1 + nZ. 

~ 
From this we have a d = 1 (mod n ). 

~ b~ Conversely, let a d = 1 (mod n) be valid. Then (g + nZ) d = 1 + nZ. 
Since lg + nZI = cp(n), cp(n) divides bPfjl, and it follows that d divides b. By 
Theorem 9.5.3, kz = b (mod cp(n)) has exactly d solutions. Using the above 
arguments, we can show that there is a one-to-one correspondence between dis
tinct solutions of the congruence kz = b (mod cp(n)) and distinct solutions of the 
congruence xk =a (mod n). So the latter congruence has exactly d solutions. 
The proof is complete. 

Let n be a positive integer and let n = 2k1 p~2 ... p~' be its prime decomposi
tion, where p; =f=. p 1 whenever i =f=. j. Let m be a positive integer and let a be an 
integer with the property GCD(a, n) = 1. Consider the system of congruences 

m d 2k1 m ( d k2) m _ x =a (mo ), x =a mo p 2 , ..• , x =a (mod p~'). 

Suppose that these congruences have solutions Yl, ... , y1 respectively. By 
Theorem 9.5.7, there exists an integer y such that 

+2k]'71_ +2kl'71 + k2'71_ k2'71 + kt'7J_ + kt'71 Y !LJ - YI !LJ, Y P2 !LJ - Y2 + P2 !LJ, • • • , Y Pr !LJ = Yr Pr !LJ. 
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Then 

and, similarly, 

k k 
ym + p / 7l = a + p / 7l for 2 ~ j ~ t. 

In other words, 

k k· 
ym - a E 2 1 7l and ym - a E p / 7l for 2 ~ j ~ t, 

which means that 2k1 divides ym -a and p ~J divides ym -a, for 2 ~ j ~ t. 
Hence, the product n = 2k1 p~2 

••• p~' divides ym - a. Thus, we can see that y 
is a solution of the congruence xm =a (mod n). However, it is clear that each 
solution of the congruence 

xm =a (modn) 

is also a solution of the system of congruences 

m k m ( d k2) m _ x =a (mod 2 1 ), x =a mo p2 , ... , x =a (mod p~') 

Consequently, we can reduce the problem of finding solutions of the congruence 
xm =a (mod n) to the special case when n = pk for some prime p. If p =j:. 2, 
then Theorem 9.5.16 implies that pk has a primitive root, so that we can apply 
Theorem 9.5.20. The case p = 2 again requires separate consideration. If k ~ 2, 
then the number 2k has primitive roots, so that we can apply Theorem 9.5.20. 
So the important case is the case when k ::: 3. 

9.5.21. Theorem. Let n, t be positive integers, let t ::: 3 and let a be an odd 
integer. If n is odd, then the congruence xn = a (mod 21

) has a solution and this 
solution is unique. If n is even, then a is an n-power residue modulo 21 if and only 

s 
if a = 1 (mod 4) and ad = 1 (mod 21) where s = 21

-
2 , d = GCD(n, 21

-
2

). 

Moreover, if the given congruence has a solution it has exactly 2d solutions. 

Proof. Suppose first that n is odd. The results of Section 9.4 imply that m = 
cp(21

) = 21- 1 (2- 1) = 21- 1• By Corollary 1.4.7, there exist integers u, v such 
that un + mv = 1. For an arbitrary integer x we let .X = x + 217l. Then 

By Corollary 9.4.14, (am) = i. Soy =au is a solution of the congruence xn =a 
(mod 21

). We can find the number u using the Euclidian algorithm of Section 9.2. 
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Now suppose that n is even and that y is an odd integer, which is a solution 
of xn = a (mod 21

). By Theorem 9.4.13, 

Taking account of Theorem 9.5.18, we deduce that 

for certain b, c, z, r E Z. Now we have 

(-1)b5c + 212 =a+ 212 = (y + 21Z)n = ((-1YSZ + 21Z)n 

= (-l)rnszn + 212 = szn + 212, 

since n is even. In particular, b = 0, so 

a = 1 (mod 4) and a+ 212 = sc + 212. 

Let n = dw. Then 

From the proof of Theorem 9.5.18, it follows that 5 has orders, modulo 21
, so 

that 

The equations 

imply nz = c (mod 21
-

2). By Theorem 9.5.3, this congruence has exactly d 
solutions. Note that y and -y are both solutions of xn =a (mod 21), when n is 
even. 

Conversely, let a= 1 (mod 4) and a~ = 1 (mod 21
). Then, b = 0 and a+ 

212 = sc + 212. Thus, 

From Theorem 9.5.18 we know that IS+ 21ZI = 21
-

2 = s. Therefore~ is divisi
ble by s and hence d I c. In this case, by Theorem 9.5.3, the congruence nz = c 
(mod 21

-
2) has a solution. As above, this implies that an integer y (together 
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with -y) for which y + 2tz = 5z + 2tz is a solution of the congruence xn =a 
(mod 2t). 

We next consider an important special case of the congruence xm = a 
(mod n), namely the case when n = p is an odd prime and m = 2, so we have 
x2 =a (mod p). Since p =!= 2, then 

-1 + p'll. = (p- 1) + p'll. =I= 1 + p'll., 

and hence- l = -1 + p'll. and 1 = 1 + p'll. are the only solutions of the equation 
X 2 = 1. By Corollary 9.4.15, for an arbitrary integer a that is relatively prime 
top, we have 

and therefore either 

(a + p'll.) 9 = -1 + p'll., 

or 

(a + p'll.) 9 = 1 + p'll.. 

Let p be an odd prime and let a be an integer such that p does not divide a. 
We define the Legendre symbol ( ~) by the rule 

(
a ) 11 if a is a quadratic residue modulo p, 
p · = -1 if a is a nonquadratic residue modulo p. 

The symbol ( ~) is also called the quadratic character. 

9.5.22. Theorem. Let p be an odd prime and let a, b be integers such that 
GCD(a, p) = GCD(b, p) = 1. 

p-I 
(i) a is a quadratic residue modulo p if and only if a-2- = 1 (mod p); 

(ii) a9 = (~) (mod p); 

... (ab) (a) (b ) (m) p = p P (mod p) . 

Proof. By Corollary 9.4.20, p has primitive roots, so that for the proof of (i) we 
can apply Theorem 9.5.20. Assertion (i) together with the arguments proceeding 
this theorem prove (ii). Since the quotient ring Z/ p'll. is commutative, then 
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for every integer k. In particular, 

(
ab) r..=_1_ r..=_1_ p = (ab + p'll.) -T = ((a+ p'll.)(b + pZ)) -T 

=(a+ pZ)JS-l(b+ p'll.)JS-l = (~) (t), 
which proves (iii). 

Now we consider the solution of general quadratic congruences, namely con
gruences of the type ax2 + bx + c = 0 (mod p), where pis an odd prime. If p 
divides a, then the given congruence becomes a linear congruence of the type 
considered earlier. Hence, we may suppose that p does not divide a. Since a 
and p are then relatively prime, a- 1 exists and by multiplying ax2 + bx + c = 
0 (mod p) by a- 1 we obtain a congruence of the form x 2 + b1x + CJ = 0 
(mod p). 

Since p is odd, the congruence 2x = b 1 (mod p) has one solution b2, by 
Theorem 9.5.3. Thus, we obtain the congruence x 2 + 2b2x + c1 = 0 (mod p). 
We now complete the square, in a familiar fashion. This gives 

where c2 = (c1 - b~) and we let y = x + b2, c3 = -c2 to obtain the congruence 
y2 = c3 (mod p). 

Using Theorem 9.5.22 we can determine if c3 is a quadratic residue modulo 
p. If c3 is a quadratic residue then we can find a solution of this congruence 
using the methods of Theorem 9.5.20. 

We end this section with a further well-known result. This remarkable theorem 
was first discovered by Bhaskara I, and much later disseminated in Europe 
by Ibn al-Haytham (circa 1000 AD), but it is named after John Wilson who 
announced this result in 1770, although he could not prove it. Lagrange gave the 
first proof in 1773. The resulting theorem became known as Wilson's theorem, 
despite its history and is a primality test of sorts. 

9.5.23. Theorem (Wilson's Theorem). 

(i) If pis a prime, then (p -1)! = -1 (mod p). 

(ii) Ifn is not prime, then either n = 4 or (n- 1)! = 0 (mod n). 

Proof. 
(i) If p = 2, then since 1 = -1 (mod 2), the result follows. Therefore we 

can suppose that p is an odd prime. As above, for an arbitrary integer x, we let 
.X= x + p'll.. From Corollary 9.4.15 we know that aP-i = 1 (mod p) for each 
integer a, relatively prime to p. Thus, a is a root of the polynomial xp-l - i. 
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Since IU(Z/ pZ)I = p- 1, all elements of U(Z/ pZ) are roots of the polynomial 
XP- 1 - i. From Proposition 7.5.9 we deduce that 

I A A A ---xp- - 1 = (X- 1)(X- 2) ... (X- (p- 1)). 

Setting X= 6 we have -i = (-l)P-1(P-l)! = <i=I)!. The last expression 
can be rewritten in congruences as (p- 1)! = -1 (mod p). 

(ii) Now suppose that n is not prime. If n = 4 then (4- 1)! = 2 (mod 4), so 
we may suppose that n 2: 6. If n is not the square of a prime then n = km, where 
k =!= m and 1 < k, m < n. Then k, m are both factors of (n- 1)! son divides 
(n - 1)!. If n = q 2 for some prime q then (n - 1)! has q and 2q as factors, when 
q =!= 2, so once again n divides (n - 1)!. This completes the proof. 

EXERCISE SET 9.5 

9.5.1. Let p be a prime and let a 2 = b2 (mod p). Prove that a= b (mod p) 
or a = -b (mod p). 

9.5.2. Let x, y E Z and let z = GCD(x, y) =!= 1. Prove that ax = bx (mod y) 
implies a = b (mod ? ) . 

9.5.3. Let x, y E Z, GCD(x, y) = 1. Prove that ax = bx (mod y) implies a= 
b (mod y). 

9.5.4. Find the order of the number 8 modulo 31. 

9.5.5. Solve 8x = 11 (mod 83). 

9.5.6. Solve 8x = 17 (mod 19). 

9.5.7. Find the solutions of the system 

3x = 5 (mod 7), 

2x = 1 (mod 5). 

9.5.8. Find the solutions of the system 

x = 2 (mod 7), 

x = 5 (mod 9), 

x = 11 (mod 15). 

9.5.9. For which values of a does the system 

x=3 (mod11), 

x = 11 (mod 20), 



have a solution. 
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x = 1 (mod 15), 

x =a (mod 8). 

9.5.10. Find the positive integers a, for which the congruence x 3 =a (mod 13) 
is soluble. 

9.5.11. Find the positive integers a, for which the congruence x3 =a (mod 15) 
is soluble. 

9.5.12. Find the number of solutions of the congruence x 2 = 3 (mod 101). 

9.5.13. Find ( ~~). 

9.5.14. Find ( ~~). 

9.5.15. Find ( :l )· 
9.5.16. Solve x 5 = 10 (mod 11). 

9.5.17. Prove that the congruence x2 = 1 (mod 2k)) has one solution fork= 1, 
two solutions fork = 2, and four solutions fork 2: 3. 

9.5.18. Solve x4 = 4 (mod 17). 

9.5.19. Solve 3x2 + 5x + 1 = 0 (mod 17). 

9.5.20. Solve 5x2 + 2x + 3 = 15 (mod 51). 



CHAPTER10 

THE REAL NUMBER SYSTEM 

This chapter is dedicated to the development of the most important systems of 
numbers, namely, the systems of the natural numbers, the integers, the rational 
numbers, and the real numbers. We have so far been using these systems quite 
informally, assuming their properties without question. In this chapter, we take a 
more formal look at the real number system. One could argue that since the formal 
development of these systems does not require any special knowledge and we 
have already used their properties in the previous chapters, this chapter logically 
belongs at the beginning of the book. However, the rigorous construction of these 
number systems requires some experience and perhaps mathematical maturity, 
which we hope that the reader has now attained, but perhaps did not have before. 
We believe that the reader has gained this experience working with this book. 
Since the theme of numbers is so very important, this experience will play a key 
role here. 

10.1 THE NATURAL NUMBERS 

The notion of a natural number is one of the most fundamental and most important 
in mathematics. The system of natural numbers was the first abstract scientific 
concept created by man. Having dealt in everyday life, with certain quantities 
of real things, people noted certain general properties of numbers and develo
ped the notion of counting numbers. This apparently simple concept is in some 
ways so profound that it has prompted some people to believe that this concept 
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comes directly from God. A great German number theorist, Leopold Kronecker 
(1823-1891) said: "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere 
ist Menschenwerk (God made the natural numbers, all else is the work of man)." 
[Heinrich Weber. Leopold Kronecker. Jahresberichte DMV 1893; 2:5-31.] Cre
ating the notion of a natural number is a first step not only in mathematics, but 
in the development of all sciences. 

We will not touch upon the great and interesting history of the development 
of this concept, since such a task would bring us far beyond the scope of this 
book. We proceed directly to the modem axiomatic theory of natural numbers. 
This theory was developed at the end of the nineteenth century and named in 
honor of a famous Italian mathematician, Giuseppe Peano (1858-1932), whose 
input in the axiomatization of natural numbers was of exceptional mathematical 
and philosophical value. 

We already noted a lack of agreement in the interpretation of the number 0 as 
a nonnatural number, so we will now give the axioms for the set No. 

10.1.1. Definition. The set No is a nonempty set and for all a E No, there is a 
uniquely defined element a', called the immediate successor of a and for which 
the following axioms hold: 

(P 1) a = b implies that a' = b'. 
(P 2) There is an element 0 (the natural number 0) such that 0 is not 

the immediate successor of any element of No. Thus 0 =I= a' for all 
elements a E No. 

(P 3) If a, b E No and a' = b', then a = b. 

(P 4) (the induction axiom). Let M be a subset of No satisfying the condi-
tions: 
(i) 0 EM; 

(ii) if a E M, then a' E M. 
Then M =No. 

Axiom (P 4) is a law, which states that if a set is a subset of the set No 
and contains 0, and if for each number in the given set the succeeding natural 
number is in the set, then the given set is identical to the set No. This is the basis 
for a very important instrument for establishing proofs; namely, the principle of 
mathematical induction, which we discussed in Section 1.4 and which we have 
used repeatedly throughout this book. 

At once the following two questions arise, namely, is there any set satisfying 
axioms (P 1)-(P 4) and, if so, is this set unique? The answer to the first question is 
obtained once we have built a set theoretical model of the set of natural numbers. 
Here, as already occured in Section 1.1, the question of the level of rigor arises. 
Absolute rigor in the development of the theory of the natural numbers can be 
achieved with the aid of some additional important set of theoretical axioms such 
as, for example, the axiom of the universum. Such a level of exposition is far 
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beyond the scope of this book and requires significant mathematical maturity. It 
will be enough for us to just show how the elements of the set No are defined. 
For this, we will proceed by defining the elements of No in the following way: 

0 = 0, I= {0}, 2 =I U {I}= {0, 1}, 3 = 2 U {2} = {0, I, 2}, .... 

In general, if the natural number n has been defined, then we define its imme
diate successor n' by 

n' = n + 1 = n U {n} = {0, 1, ... , n}. 

The question of uniqueness requires a broader approach. There are distinct sets 
satisfying Definition 1 0.1.1, but all of them have absolutely identical properties 
with respect to the statement "a' succeeds a." In other words, all of them are 
isomorphic in some sense. The complete answer to this question does not require 
special knowledge, but has a technical nature. Unfortunately, again, we shall not 
say more on this topic. 

As consequences of axioms (P 1)-(P 4), we can obtain all the well-known 
properties of the natural numbers. Let a, b E No. If b =a', then we say that a 
precedes b. By axiom (P 2), 0 has no immediate predecessor and the following 
statement shows that 0 is the unique number with this property. 

10.1.2. Proposition. Let a, bE No and suppose that a =f. 0. Then a has only one 
predecessor. 

Proof. Let 

M = {x I x E No and x = y' for some y E No} U {0}. 

It follows that 0 E M. Also, if a E M, then a' E M and, by axiom (P 4), 
M = No. If we suppose that a = b' and a = c', then b' = c' and, by axiom 
(P 3), b = c. Thus, every element of No other than 0 has a unique predecessor. 

Addition of natural numbers is defined inductively as follows. 

10.1.3. Definition. Let n be a fixed natural number. Then 

(i) n + 0 = n and n + 1 = n'; 

(ii) if n + k has been defined then set n + k' = (n + k)'. 

Using this definition, we obtain the following familiar properties. 

10.1.4. Theorem. Let a, b, c E No. The following assertions hold: 

(i) a+ (b +c)= (a+ b)+ c (the associative property); 
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(ii) a+ b = b +a (the commutative property); 

(iii) if a =1- 0, then a + b =1- 0. 

Proof. 
(i) Let a, b E No be fixed and let 

M = {c E No I a+ (b +c)= (a+ b)+ c}. 

We have a+ (b + 0) =a+ b =(a+ b)+ 0, using Definition 10.1.3(i), and 
(a+ b)+ 1 =(a+ b)'= a+ b' =a+ (b + 1), by Definition 10.1.3(ii), so that 
0, 1 EM. Suppose now that c EM, that is, (a+ b)+ c =a+ (b +c). We now 
have, again by Definition 10.1.3(ii), 

(a+ b)+ c' =((a+ b)+ c)'= (a+ (b +c))'= a+ (b +c)'= a+ (b + c'). 

By axiom (P 4), M = No and the result now follows by the principle of mathe
matical induction. 

(ii) Let a be an arbitrary element of No. We use the principle of mathematical 
induction and first prove that a + 0 = 0 + a. Let 

M, ={a E No I a+ 0 = 0 +a}. 

If a=O, then 0+0=0=0+0, so OEM,. Suppose next that a=j:.O and 
a E M 1. Then, by Definition 10.1.3(i), 

a'+ 0 =a' and 0 +a'= (0 +a)'= a', 

so that a' E M 1. By axiom (P 4), M 1 =No and hence a+ 0 = 0 +a for all 
a E No. 

Next, using induction, we shall prove that a+ 1 = 1 +a. Let 

M2 ={a E No I a+ 1 = 1 +a}. 

We already know that 0 E M2 by the previous argument. Suppose that a =1- 0 
and a E M2. Then 

a'+ 1 = (a+ 1) + 1 = (1 +a)+ 1 = (1 +a)'= 1 +a', 

so that a' E M2. By axiom (P 4), we have M2 = No. 
We prove now that a + b = b + a for all b E No, by using induction. We let 

a be fixed and let 

M3 ={bE No I a+ b = b +a}. 
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We have already proved that 0, 1 E M3. Suppose that b E M3. Then a + b = 
b +a, and 

a+ b' =(a+ b)'= (b +a)', since bE M3 

= b +(a+ 1) = b + (1 +a) = (b + 1) +a = b' +a, 

since a E M3, so that b' E M3. By axiom (P 4), M3 = No and (ii) follows. 
(iii) Since a =/= 0, we have a = u' for some u E N0, using Proposition 1 0.1.2. 

Then 

a+ b = b +a= b + u' = (b + u)' 

and axiom (P 2) shows that a + b =1= 0. The result follows. 

Now we will inductively define the operation of multiplication of natural 
numbers. 

10.1.5. Definition. Let n be a fixed natural number. Then 

(i) n · 0 = 0 · n = 0 and n · 1 = n; 

(ii) if the product n · k has already been defined then put n · k' = n · k + n. 

Now we are ready to prove some well-known properties of multiplication. As 
usual we shall often omit the multiplication sign "·". 

10.1.6. Theorem. Let a, b, c E No. The following assertions hold: 

(i) (a+ b)c = ac +be and a(b +c) = ab + ac (the distributive property); 

(ii) ab = ba (the commutative property); 

(iii) (ab )c = a(bc) (the associative property). 

Proof. 

(i) Our proof will proceed in a now familiar manner. Let a, b be fixed natural 
numbers and let 

M = {c E No I (a+ b)c = ac +be}. 

We have 

(a+ b)O = 0 = 0 + 0 = aO + bO, 

using Definition 1 0.1.5 and, likewise, 

(a+ b)l =a+ b = al + bl. 

So 0, 1 EM. Suppose now that c E M, that is, (a+ b)c = ac +be. We have 

(a+ b)c' =(a+ b)c +(a+ b), by definition 
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= ac +be+ (a+ b), by induction 

= (ac +a)+ (be+ b)= ac' +be', 

by several applications of Theorem 10.1.4. Thus c' E M and hence, by axiom 
(P 4), M = No. This result follows by the principle of mathematical induction. 
We prove the second part of (i) using part (ii). 

(ii) Let a be an arbitrary element of No. If a = 0, then ab = Ob = 0 = bO = 
ba, by Definition 10.1.5. Therefore, we may suppose further that a "f. 0. Let 

M1 ={bE No I ab = ba}. 

We have aO = 0 = Oa, so 0 E M1, and also al =a. Using induction on a, we 
prove that la =a and note that 1 x 0 = 0, by the above. Since a # 0, a = d' 
for some element dE No, by Proposition 10.1.2, so we can assume inductively 
that ld =d. Then 

la = ld' = ld + 1 = d + 1 = d' =a. 

It follows that 0, 1 E MJ. Suppose next that b "f. 0 and bE MJ. Then 

lb' = lb + b = bl + b = b + 1 = b' = b'l, 

so that b' E MJ. By axiom (P 4), M1 = No. Thus, (ii) is proved and the second 
part of (i) follows since, using (a + b)c = ac +be, it follows that 

a(b +c)= (b + c)a = ba + ca = ab + ac. 

(iii) If one of the elements a, b, cis zero, then the result holds. Therefore, we 
may assume that a, b, c are nonzero natural numbers. Let a, b be fixed and put 

Mz = {c E No I (ab)c = a(bc)}. 

We have, by Definition 10.1.5, 

(ab)l = ab = a(bl), 

so that 0, 1 E Mz. Suppose now that c EM, so (ab)c = a(bc), for all a, bE No. 
We have now 

(ab)c' = (ab)c + ab = a(bc) + ab = a(bc +b) = a(bc'), 

so that c E Mz. By axiom (P 4), Mz = No and the result follows. 

Our definition of the natural numbers was based on the main relation "b 
succeeds a." This choice of the word "succeeds" shows that there is some natural 
order on No. 



454 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

10.1.7. Definition. Let k, n E No. If there exists a natural number m such that 
n = k + m, then we say that "n is greater than or equal to k," which is denoted 
by n 2: k. Alternatively, we may say that "k is less than or equal to n," which is 
denoted by k S n. If, in this case, n =f. k, then we say that "n is (strictly) greater 
thank" which is denoted by n > k or that "k is (strictly) less than n" and denote 
this by k < n. 

10.1.8. Theorem. Let a, bE No. 

(i) If a is nonzero then a + b =f. b. 

(ii) One and only one from the following assertions is valid: a = b, a < b, or 
a>b. 

Proof. 

(i) Let a be nonzero. First we prove that a + b =f. b for each b E No. This is 
valid forb = 0, because a+ 0 =a =f. 0. If b = 1, then a+ b =a+ 1 =a' =f. 1, 
by Proposition 10.1.2 and the fact that O' = 1. Suppose that we have already 
proved that a + b =f. b and consider a + b'. We have a + b' = (a + b)', by defi
nition. However, if (a + b)' = b' then a + b = b, by Proposition 10.1.2, contrary 
to our induction hypothesis. Consequently, a+ b' = (a+ b)' =f. b' and, by the 
principle of mathematical induction, a+ b =f. b for each b E No. 

(ii) First, we show that if a, b E No are arbitrary then at most one of the 
assertions a = b, a < b, and b < a is true. If a > b or a < b then, by definition, 
a =f. b. Suppose that a > b and b >a. Then a = b + k and b = a + m for some k, 
mE No. Moreover, k and mare nonzero and, by Theorem 10.1.4(iii), m + k =f. 0. 
In this case, 

a= b + k =(a+ m) + k =a+ (m + k). 

Since m + k =f. 0, it follows from (i) that a+ (m + k) =f. a, and we obtain 
a contradiction, which shows that a > b and a < b cannot both happen 
simultaneously. 

We next have to show that if a, bE No, then one of a= b, a < b, or a> b is 
true. To this end if, for the elements a, b, only one of the relations a = b, a> b, 
or b > a is true then we will say that these elements are comparable. Let a be 
fixed and put 

M = {bE No I a and b are comparable}. 

If a = 0 then b = 0 + b, which implies that 0 s b for each b E No so that 
0 is comparable to b for each b E No. Therefore, we can suppose that a =f. 0. 
In this case, we have again 0 S a, so that 0 E M. Since a =f. 0, it follows from 
Proposition 1 0.1.2 that a = u' for some u E No. We have that a = u + 1 and 
hence by definition 1 S a, so that 1 E M. 
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Suppose that b E M and consider the element b'. If a = b, then b' = b + 1 = 
a + 1 and a _::: b'. If a < b then b = a + c for some 0 =I= c E No and 

b' = b + 1 = (a+ c)+ 1 =a+ (c + 1), 

so that a _::: b'. Clearly c + 1 =I= 0, which shows that a < b'. 
Finally, suppose that a> b. Then a= b + v for some 0 =I= v E N0. If v = 1, 

then a= b' and the result follows. If v =I= 0, 1 then, by Proposition 10.1.2, v = w' 
so v = w + 1 for some 0 =I= w E No. In this case, 

a= b + v = b + (w + 1) = b + (1 + w) = (b + 1) + w = b' + w. 

Since w =1= 0, a > b' and it follows that b' E M. By axiom (P 4), M = No and 
the result follows by the principle of mathematical induction. 

10.1.9. Proposition. Let a, b, c E No. Then the following assertions hold: 

(i) a _::: a; 

(ii) a < b and b < c imply a < c; 

(iii) a _::: b and b < c imply a < c; 

(iv) a < b and b _::: c imply a < c; 

(v) a _::: b and b _::: c imply a _::: c; 

(vi) a _:::band b _:::a imply a= b. 

Proof. We have a = a + 0, so (i) follows. 
(ii) We have b = a + u and c = b + v, for some u, v E No. Since a =I= b and 

b =1= c, u, v are nonzero. Hence 

c = b + v =(a+ u) + v =a+ (u + v), 

so that a _:::c. By Theorem 10.1.4(iii), u + v =I= 0, so that a+ (u + v) =1= a by 
Theorem 10.1.8(i). Therefore a < c. 

(iii) If a =1= b, then we may apply (ii). Suppose that a = b. Since c = b + v = 
a+ v for some v E No, with v =I= 0 it follows that a _:::c. By Theorem 10.1.8(i), 
a + v =I= a, so that a =I= c, and a < c. 

(iv) The proof is similar. 
(v) Follows from (ii)-(iv). 
(vi) We have b =a+ u and a = b + v, for some u, v E N0. Suppose that 

u =1= 0; then 

a= b + v =(a+ u) + v =a+ (u + v). 

By Theorem 10.1.4(iii) u + v =I= 0, and using Theorem 10.1.8(i), we obtain 

a+ (u + v) = (u + v) +a =I= a. 

This contradiction proves that u = 0 and therefore a =b. 
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10.1.10. Theorem (Laws of Monotonicity of Addition). Let a, b, c E No. Then the 
following properties hold: 

(i) if a + c = b + c then a = b; 

(ii) if a < b then a + c < b + c; 

(iii) if a + c < b + c then a < b; 

(iv) if a ~ b then a + c ~ b + c; 

(v) if a + c ~ b + c then a ~ b. 

Proof. 
(i) We proceed by induction on c. If c = 0, then a= a+ 0 = b + 0 =b. If 

c = 1 then, by hypothesis, a' = a + 1 = b + 1 = b' and axiom (P 3) implies that 
a = b. Next, suppose inductively that we have already proved that a + c = b + c 
implies a= b and suppose that a+ c' = b + c'. We have (a+ c)'= a+ c' = 
b + c' = (b +c)'. We again apply axiom (P 3) and deduce that a+ c = b +c. 
By the induction hypothesis, it follows that a = b. 

(ii) Since a < b, we know that b =a+ u for some 0 =f=. u E No. Then 

b + c =(a+ u) + c =a+ (u +c)= a+ (c + u) =(a+ c)+ u, 

and so a + c ~ b +c. However, u =f=. 0 so 

(a +c) + u =f=. a + c, 

by Theorem 10.1.8. This implies that a+ c =f=. b +c. 
(iii) Suppose that a+ c < b +c. By Theorem 10.1.8(ii), we know that either 

a= b, a < b, or a> b. If a= b then clearly a+ c = b + c, contrary to the 
hypothesis. If b < a then, by (ii), b + c < a + c, which is also impossible. So 
a< b. 

(iv) follows from (ii) and (i). 
(v) follows from (iii) and (i). 

10.1.11. Theorem (Laws of Monotonicity of Multiplication). Let a, b, c E No. 
Then the following properties hold: 

(i) if a, b are nonzero then ab =f=. 0; 

(ii) if a < b and c =f=. 0 then ac < be; 

(iii) if ac = be and c =f=. 0 then a = b; 

(iv) if ac < be and c =f=. 0 then a < b; 

(v) if a ~ b and c =f=. 0 then ac ~ be; 

(vi) if ac ~ be and c =f=. 0, then a ~ b; 

(vii) if a = be and c =f=. 0 then a ::=: b; 

(viii) if be = 1 then b = c = 1. 
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Proof. 
(i) Since a, bare nonzero, a= u', b = v' for some u, v E No. We have 

ab = av' = a(v + 1) = av +a= av + u' = (av + u)'. 

Using axiom (P 2), we deduce that ab is nonzero. 
(ii) Since a < b, we have b = a + u for some 0 =f. u E No. Then 

be = (a+ u)c = ac + uc, 

so that ac :::; be. By (i), uc =f. 0, so Theorem 10.1.8(i) implies that ac + uc =f. ac. 
Therefore ac <be. 

(iii) By Theorem 10.1.8(ii), precisely one of the following holds: namely, 
a = b, a < b, or a >b. If a < b then, by (ii), ac < be. Since ac = be we have 
a contradiction and a similar argument shows that a > b is also impossible. Thus 
a =b. 

(iv) The proof is similar. 
(v) Follows from (ii). 
(vi) Follows from (iii) and (iv). 
(vii) If b = 0 then the result is clear, so assume b > 0. Since b =f. 0, we have 

b 2: 1. Then, by (v), a =be 2: b. 
(viii) By (vii), b :::; 1 and c :::; 1. Clearly, b, c =f. 0, so that b = c = 1. 

10.1.12. Corollary. Let a, b E No and suppose that b =f. 0. Then there is a natural 
number c such that be > a. 

Proof. If a = 0 then b 1 = b > 0 = a, so suppose that a =f. 0. Since b =f. 0, b = u' 
for some u E No, sob= u + 1. This means that b 2: 1. Put c =a+ 1 soc> a. 
Applying Theorem 10.1.11 (ii), we deduce that be > ab and ab 2: a 1 = a, and 
Proposition 10.1.9(iii) implies that be> a. 

10.1.13. Corollary. Let a E No. If b E No is a number such that a :S b :S a + 1, 
then either b =a, or b =a+ 1. In particular, if c >a, then c 2: a+ 1, and if 
d < a + 1, then d :::; a. 

Proof. We have b = a + u for some u E No. If b =f. a then u =f. 0 and then there 
is an element v E No such that u = v'. Thus u = v + 1, so that u 2: 1. Using 
Theorem lO.l.lO(iv), we deduce that b =a+ u 2: a+ 1. Together with Propo
sition 10.1.9, this gives b = a + 1. 

10.1.14. Corollary. LetS be a nonempty subset of No. Then S has a least ele
ment. 

Proof. If 0 E S, then 0 is the least element of S. If 0 rf. S but 1 E S, then 1 is the 
least element of S. Indeed, if u E S then u =f. 0, since 0 rf. S. In this case, there 
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is an element v E No such that u = v', so u = v + 1, which means that u :::: 1. 
Suppose now that 1 'f. S. Let 

M = {n E No I n ::; k for each element k E S}. 

By the above assumption, 0, 1 E M. If we suppose that for every a E M, the 
number a + 1 also belongs to M then, by axiom (P 4), M = N0 . In this case, 
S = 0 and we obtain a contradiction. This contradiction shows that there is an 
element b E M such that b + 1 'f. M. Since b E M, then b ::; k for each element 
k E S. Suppose that b 'f. S. Then b < k for each k E S. Then, Corollary 10.1.13 
shows that b + 1 ::; k for each element k E S. It follows that b + 1 E M, and we 
obtain a contradiction to the definition of b. Hence b E S, and therefore b is the 
least element of S. 

10.2 THE INTEGERS 

The concept of numbers has a long history of development especially as a means 
of counting. From the dawn of civilization, natural numbers found applications as 
a useful tool in counting. Some documents (as, for example, the Nine Chapters 
on the Mathematical Art by Jiu Zhang Suan-Shu) show that certain types of 
negative numbers appeared in the period of the Han Dynasty (202 BC-220 AD). 

The use of negative numbers in situations like mathematical problems of 
debt was known in early India (the 7th century AD). The Indian mathematician 
Brahmagupta, in Brahma-Sphuta-Siddhanta (written in 628 AD), discussed the 
use of negative numbers to produce the general form of the quadratic formula that 
remains in use today. Arabian mathematicians brought these concepts to Europe. 
Most of the European mathematicians did not use negative numbers until the 
seventeenth century, and even into the eighteenth century, it was common practice 
to exclude any negative results derived from equations, on the assumption that 
they were meaningless. 

Natural numbers serve as a basis for the constructive development of all other 
number systems. Consequently, we shall construct the integers, the rationals, and 
the real numbers as extensions that satisfy some given key additional proprieties 
compared with the original set. Here there is much more to be done than simply 
adjoining numbers to a given set. We would like to obtain an extension S of a 
set of numbers M so that certain operations or relations between the elements of 
M are enhanced on S and so that certain operations or relations that generally 
have no validity in M will be valid in the extended set S. 

For example, subtraction of natural numbers is not always feasible within the 
system of natural numbers, since if a, b are natural numbers a - b does not 
always make sense. For integers, however, the process of subtraction is always 
feasible. However, division of one integer by some other nonzero integer also 
does not make sense in the system of integers, but such a division works perfectly 
well in the system of rational numbers. For rational numbers, limit operations 
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are not always valid, but for real numbers, it is always possible to attempt to 
take limits. In real numbers, we are not able to take a root of an even power of a 
negative number, but we can always do it working in the set of complex numbers. 
Thus, at each stage the number system is extended to include operations that are 
always allowed. 

There is one other important restriction we need to be aware of in extending 
number systems. The extension S should be minimal with respect to the given 
properties that we would like to keep. The integers form such an extension of 
the natural numbers in that the new set keeps all the properties of the operations 
of addition and multiplication and the original ordering, but now we are able 
to subtract any two integers. Subtraction requires the existence of the set of 
opposites, or additive inverses, for all numbers in the set. 

We note that many pairs of numbers (u, v) are related in the sense that the 
difference u- v is invariant (for example, 2 = 3- 1 =5-3= 121 - 119 = 
-5- ( -7), and so on, all have difference 2). These pairs of numbers are therefore 
related and this leads us to the following construction. 

10.2.1. Definition. We say that the pairs (a, b), (k, n) E No x No are equivalent 
and we write (a, b)R(k, n) if a+ n = b + k. Put 

c(a, b)= {(k, n) E No x No I a+ n = b + k}. 

We note that the relation R is an equivalence relation on No x No with equiva
lence classes the elements c(a, b). To see this, we note that (a, b)R(a, b) since 
a+ b = b +a and if (a, b)R(k, n) then 

a + n = b + k = k + b = n +a, 

so (k, n)R(a, b). Thus R is both reflexive and symmetric. Finally, R is transitive: 
if (a, b)R(k, n) and (k, n)R(u, v) then a+ n = b + k and k + v = n + u; so, 
omitting parentheses, using the associative and commutative laws of N0 , we 
have 

a+ v + n =a+ n + v = b + k + v = b + n + u = b + u + n. 

Thus a+ v = b + u, using Theorem lO.l.lO(i) and that R is an equivalence 
relation follows. By definition, the equivalence class of (a, b) is the set of all 
pairs (n, k) that are equivalent to (a, b) and this is precisely the set c(a, b). Of 
course, the equivalence classes of an equivalence relation form a partition; in this 
case, the subsets c(a, b) form a partition of No x No. 

We can now use this construction to formally define the set of integers. 

10.2.2. Definition. Let 

Z = {c(a, b) I (a, b) E No x No}. 

There are natural operations of addition and multiplication on Z. 
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10.2.3. Definition. The operations of addition and multiplication are defined on 
Z by the rules 

c(a, b)+ c(c, d)= c(a + c, b +d); 

c(a, b)c(c, d)= c(ac + bd, ad+ be). 

First we must be sure that these operations are well defined, which is to say 
that they are independent of the equivalence class representative chosen. To see 
this, let (k, n) E c(a, b) and (t, m) E c(c, d). This means that a+ n = b + k and 
c + m = d + t. We need to show that c(a + c, b +d)= c(k + t, n + m). Using 
the properties of natural number addition, we have 

(a+ c)+ (n + m) =a+ n + c + m = b + k + d + t = (b +d)+ (k + t), 

and it follows that the pairs (a+ c, b +d) and (k + t, n + m) are equivalent, so 
that the addition is well defined. 

We also want c(a, b)c(c, d)= c(k, n)c(t, m), which is to say that we require 
c(ac + bd, ad+ be) = c(kt + nm, km + nt). We do this in two steps. From a+ 
n = b + k, we obtain ac + nc = be+ kc and bd + kd = ad+ nd, which imply 

ac + bd + kd + nc = ac + nc + bd + kd = be + kc +ad + nd 

= (ad+ be)+ (kc + nd). 

It follows that the pairs 

(ac + bd, ad+ be) and (kc + nd, kd + nc) 

are equivalent. Using the same arguments, we deduce that the pairs 

(kc + nd, kd + nc) and (kt + nm, km + nt) 

are equivalent. By transitivity, we see that the pairs 

(ac + bd, ad+ be) and (kt + nm, km + nt) 

are equivalent, so multiplication is also well defined. 
Now we obtain the basic properties of these operations. The following theorem 

shows that Z is a commutative ring. 

10.2.4. Theorem. Let a, b, c, d, u, v E No. The following properties hold: 

(i) c(a, b)+ c(c, d)= c(c, d)+ c(a, b), so addition is commutative; 

(ii) c(a, b)+ (c(c, d)+ c(u, v)) = (c(a, b)+ c(c, d))+ c(u, v), so addition is 
associative; 
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(iii) c(a, b)+ c(O, 0) = c(a, b), so addition has a zero element; 

(iv) c(a, b)+ c(b, a)= c(O, 0), so every element of'Z has an additive inverse; 

(v) c(a, b)c(c, d)= c(c, d)c(a, b), so multiplication is commutative; 

(vi) c(a, b)(c(c, d)c(u, v)) = (c(a, b)c(c, d))c(u, v), so multiplication is asso
ciative; 

(vii) c(a, b)c(l, 0) = c(a, b), so multiplication has an identity element; 

(viii) c(a, b)(c(c, d)+ c(u, v)) = c(a, b)c(c, d)+ c(a, b)c(u, v), so multiplica
tion is distributive over addition. 

Proof. The properties we are asserting for Z generally follow from the corre
sponding property in No, to which we shall not specifically refer. 

(i) We have 

c(a, b)+ c(c, d) = c(a + c, b +d) = c(c +a, d +b) = c(c, d)+ c(a, b). 

(ii) Next 

c(a, b)+ (c(c, d)+ c(u, v)) = c(a, b)+ c(c + u, d + v) 

= c(a + (c + u), b + (d + v)) 

= c((a +c)+ u, (b +d)+ v) 

= c(a + c, b +d)+ c(u, v) 

= (c(a, b)+ c(c, d))+ c(u, v). 

(iii) Clearly c(O, 0) is the additive identity since 

c(a, b)+ c(O, 0) = c(a + 0, b + 0) = c(a, b). 

We also note that c(O, 0) = c(n, n) for each n E N0, since 0 + n = n + 0. 
(iv) Then 

c(a, b)+ c(b, a)= c(a + b, b +a)= c(a + b, a+ b)= c(O, 0), 

so c(b, a) is the additive inverse of c(a, b). 
(v) The multiplicative properties are only slightly more cumbersome to prove. 

c(a, b)c(c, d)= c(ac + bd, ad+ be)= c(ca +db, cb + da) = c(c, d)c(a, b). 

(vi) For associativity, we have 

c(a, b)(c(c, d)c(u, v)) 

= c(a, b)c(cu + dv, cv + du) 

= c(a(cu + dv) + b(cv + du), a(cv + du) + b(cu + dv)) 

= c(acu + adv + bcv + bdu, acv + adu + bcu + bdv) 
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and 

(c(a, b)c(e, d))c(u, v)) 

= c(ae + bd, ad+ be)c(u, v) 

= c((ae + bd)u +(ad+ be)v, (ae + bd)v +(ad+ be)u) 

= c(aeu + bdu + adv + bev, aev + bdv + adu + beu). 

Comparing these expressions, we see that 

c(a, b)(c(e, d)c(u, v)) = (c(a, b)c(e, d))c(u, v). 

(vii) Next, c(l, 0) is the multiplicative identity since 

c(a, b)c(l, 0) = c(al + bO, aO + bl) = c(a, b). 

(viii) For the distributive property, we have 

and 

c(a, b)(c(e, d)+ c(u, v)) = c(a, b)c(e + u, d + v) 

= c(a(e + u) + b(d + v), a(d + v) + b(e + u)) 

= c(ae +au+ bd + bv, ad+ av +be+ bu) 

c(a, b)c(e, d)+ c(a, b)c(u, v) = c(ae + bd, ad+ be)+ c(au + bv, av + bu) 

= c(ae + bd +au+ bv, ad+ be+ av + bu). 

Close inspection shows that c(a, b)(c(e, d)+ c(u, v)) = c(a, b)c(e, d)+ c(a, b) 
c(u, v). 

Now we consider the mapping t :No ---+ Z, defined by t(n) = c(n, 0), where 
n E No. If t(n) = t(m) then c(n, 0) = c(m, 0), so n + 0 = 0 + m which gives 
n = m. Thus the mapping t is injective. Furthermore, 

t(n) + t(k) = c(n, 0) + c(k, 0) = c(n + k, 0) = t(n + k) and 

t(n)t(k) = c(n, O)c(k, 0) = c(nk + 0, nO+ Ok) = c(nk, 0) = t(nk) 

for every n, k E No. It follows that t induces a bijection between No and Im t 
that respects the operations of addition and multiplication and so is a type of 
isomorphism. (Of course, No is not a group or ring.) Thus, we may identify 
n E No with its image c(n, 0) and we shall write No = Im t. We set c(n, 0) = n 
for each n E No. Then we have c(n, k) = c(n, 0) + c(O, k). By Theorem 10.2.4, 
the element c(O, k) is the additive inverse of the element c(k, 0) = k. As usual, 
for the additive inverse of k, we write -k. Thus if c(k, 0) = k, then c(O, k) = -k. 



THE REAL NUMBER SYSTEM 463 

So, for the element c(n, k), we obtain 

c(n, k) = c(n, 0) + c(O, k) = n + (-k). 

The existence of additive inverses allows us to define subtraction. We define 
the difference of two integers n, k by 

n- k = n + ( -k), where n, k E Z. 

Thus we have c(n, k) = n + (-k) = n- k. Immediately we observe the follow
ing properties of subtraction: 

-(-k) = k, 

n( -k) = c(n, O)c(O, k) = c(nO + Ok, nk + 00) = c(O, nk) = -nk = ( -n)k 

and 

n(k- m) = n(k + (-m)) = nk + n(-m) = nk + (-nm) = nk- nm. 

Next we see that Z = {± n In E No}. Indeed, for every pair of numbers n and 
k E N0, Theorem 10.1.8 implies that n = k, or n > k, or n < k. In the first case, 
the pair (n, n) is equivalent to (0, 0), so c(n, k) = c(O, 0) = 0. In the second case, 
for some m E No, we haven= k + m. Therefore (n, k) = (k + m, k) which is 
equivalent to the pair (m, 0). However, c(m, 0) = m, so c(n, k) = m. In the last 
case k = n + t, for some t E N0, so (n, k) = (n, n + t) is equivalent to the pair 
(0, t) and so c(n, k) = -t. 

Let n, k E Im t and suppose that n - k E Im t. We have n = c(n, 0) and k = 
c(k, 0), where n, k E No. Then n- k = c(n, 0) + c(O, k) = c(n, k). By Theorem 
10.1.8, n = k, or n > k, or n < k. In the first case, n = n + 0. In the second 
case, we haven= k + m for some m E N0, so (n, k) = (k + m, k) is equivalent 
to the pair (m, 0) = m. In the last case, k = n + t for some t E N0. Therefore 
(n, k) = (n, n + t) is equivalent to the pair (0, t), which does not belong to N0 . 

This allows us to define the difference of two numbers n and k of No by the 
following rule: the difference n - k is defined if and only if n :::: k, which is to 
say that n = k + m, and in this case, we put n- k = m. 

We can extend the existing order on No to the set Z in the following way. 

10.2.5. Definition. Let k, n E Z. lfn - k E N0, then we say that n is greater than 
or equal to k and denote this by n :::: k, or we say that k is less than or equal to n 
and denote this by k .::; n. If in addition n =f. k, then we say that n is greater than 
k and denote this by n > k, or we say that k less that n and denote this by k < n. 

Let n, k E No and suppose that n = c(n, 0) :::: k = c(k, 0). Then 

n- k = c(n, 0) + c(O, k) = c(n, k) = m, say. 

Thus, m = n- k, son = m + k. Since m E Im t, we have m = c(m, 0), for some 
m E No. Then c(m, 0) = c(n, k), which implies that m + k = n + 0 = n. Hence 
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n 2:: k. This shows that the order induced on Im t =No by the order we estab
lished on Z coincides with the order that we established on No in Section 10.1. 

10.2.6. Theorem. Let a, b E Z. Then one and only one of the following relations 
holds: a = b, a < b or a > b. 

Proof. Leta= c(n, k), b = c(t, m) and suppose that a =f. b. If a-bE lmt then, 
by definition, a 2:: b and, since a =f. b, we conclude that a > b. 

Suppose now that a - b ¢. Im t. Then 

a- b = c(n, k)- c(t, m) = c(n, k) + c(m, t) = c(n + m, k + t). 

We must have k + t > n + m otherwise c(n + m, k + t) = c(n + m- k- t, 0) E 
Im t, contrary to our assumption. In this case, 

b- a= c(k + t, n + m) = c((k + t)- (n + m), 0) E Im t 

It follows that b 2:: a and since a =f. b, we deduce that b > a. 

10.2.7. Proposition. Let a, b, c E Z. Then 

(i) a ::: a; 
(ii) a ::: b and b ::: c imply a ::: c; 

(iii) a < b and b :::: c imply a < c; 
(iv) a::: band b < c imply a < c; 
(v) a < band b < c imply a < c; 

(vi) a :S b and b 2:: a imply a = b. 

Proof. We have a = a + 0, which implies (i). 
(ii) We have b - a, c - b E Im t and hence 

c- a= (c- b)+ (b- a) E lmt 

It follows that a :::: c. If c =f. b or b =f. a, then c - b =f. 0 or b - a =f. 0. Then 
c- a= (c- b)+ (b- a) =f. 0, so c >a, which implies (iii)-(v). 

(vi) We have b- a and a-bE lmt. Let a= c(n, k), b = c(t, m). Then 

and 
a- b = c(n, k) + c(m, t) = c(n + m, k + t), 

b- a= c(t, m) + c(k, n) = c(t + k, n + m). 

Since a - b E Im t = N0, we have n + m 2:: k + t and since b - a E Im t, we 
have k + t 2:: n + m. By Proposition 10.1.9, k + t = n + m and it follows that 
b - a = 0 so a = b. 

10.2.8. Theorem. Let a, b, c E Z. 

(i) if a :S b, then a+ c::: b + c; 



(ii) if a < b, then a + c < b + c; 
(iii) if a+ c :S b + c, then a _:s b; 
(iv) ifa+c < b+c, then a< b. 

Proof. 

(i) We have b - a E Im t = No. Note that 
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b- a= b + 0- a= b + c- c- a= (b +c) - (a+ c), 

so that (b +c) - (a+ c) E 1m t. It follows that a+ c ::=: b +c. 
(ii) If b =f. a, then b- a =f. 0. In this case, (b +c) - (a+ c) =f. 0, so that 

a+c < b +c. 
(iii) If a + c ::=: b + c, then by (i), we have 

a= a+ c + (-c) :::: b + c + (-c) =b. 

(iv) The proof is similar. 

10.2.9. Theorem. Let a, b, c E Z and c =f. 0. 

(i) if a, b =f. 0 then ab =f:.O; 
(ii) if ac = be then a = b; 

(iii) if a _:s b and c > 0, then ac ::=: be; 
(iv) if a< band c >0, then ac <be; 
(v) if a::=: band c < 0, then ac 2: be; 

(vi) if a< band c <0, then ac >be; 
(vii) ifac <be and c > 0, then a< b; 

(viii) if ac ::=: be and c > 0, then a ::=: b; 
(ix) ifac < be and c <0, then a> b; 
(x) ifac ::=:be and c > 0, then a::=: b. 

Proof. 

(i) Suppose, for a contradiction, that ab = 0. If a= c(n, k) and b = c(t, m) 
then 

ab = c(n, k)c(t, m) = c(nt + km, nm + kt) = c(O, 0). 

It follows that nt + km = mn + kt. Since a =f. 0, n =f. k so, by Theorem 10.1.8, 
either n < k or n > k. Suppose first that n < k. Then k = n + s for somes E No, 
where s =f. 0. We have 

nt + km = nt + (n + s)m = nt + nm + sm, and 

nm + kt = nm + (n + s)t = nm + nt +st. 
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It follows that 

nt + nm + sm = nm + nt + st, 

and hence, by Theorem 10.1.10, sm =st. Since s =/:. 0, Theorem 10.1.11 implies 
that m = t. However, in this case, 

b=c(t,m) =c(t,t) =0, 

and we obtain the desired contradiction. In the case, when n > k the proof is 
similar. 

(ii) Since ac =be, then 0 =be- ac = (b- a)c. Since c =/:. 0, (i) implies that 
b - a = 0 and hence a = b. 

(iii) Since a ~ b, we have b - a E Im t. Also c E Im t and hence (b -a) 
c = be - ac E Im t. It follows that ac ~ be. 

(iv) By (ii), ac ~ be. Since a < b, we have b- a=/:. 0 and, by (i), be- ac = 
(b - a)c =j:. 0, so that, ac < be. 

(v) We have 0 > c, so that 0- c = -c E Im t. It follows that -c > 0. Then, 
by (iii), a( -c) ~ b( -c) and we deduce that 

-be- (-ac) = ac- beE lmt, 

which proves that ac 2:. be. 
(vi) As in (iv), (b- a)c =/:. 0 and, together with (v), this gives ac >be. 
(vii) By Theorem 10.1.12, there is one and only one possibility, namely, that 

a = b, a < b, or a> b. If a> b then, by (iv), ac >be, which is contrary to the 
hypothesis. Likewise, if a = b then ac = be, again contrary to ac < be. It follows 
that a< b. 

For assertions (viii)-(x), the proofs are similar. 

10.2.10. Corollary. Let a, bE Z and suppose that b > 0. Then there is a number 
c E Z such that be > a. 

Proof. If a ~ 0, then b1 = b > 0 >a. Suppose that a> 0. Then a = c(a, 0) and 
b = c(b, 0), where a, bE No. By Corollary 10.1.12, there exists c E No such that 
be> a. Then a = c(a, 0) < c(bc, 0) = c(b, O)c(c, 0) =be. 

10.2.11. Corollary. Let a E Z. If b is an integer such that a ~ b ~ a+ 1, then 
either b =a orb= a+l. 

Proof. Since 0 < 1, it follows from Theorem 10.2.8 that a <a+ 1. Suppose 
that b =/:.a. Then a < b ~a+ 1. Again using Theorem 10.2.8, we deduce that 
0 < b - a ~ 1. However, this means that b - a E Im t = No. We noted above 
that the order introduced on Z induces the same order in No that was introduced 
originally in Section 10.1. Therefore, we can apply Corollary 10.1.13 and deduce 
that b =a+ 1. 
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In this way, we obtain all the common properties of the integers. Furthermore, 
we identify the set No with its image Im t = No in Z and hence we assume that 
No is a subset of Z. Also, for all integers we will use a common font, so, for 
example, we will write n instead of n. 

We next recall the notion of the absolute value of an integer. 
Let n be an integer and set 

lnl=ln, if.nENo, 
-n, 1f n fj. No. 

It is not hard to prove that lnml = lnllml and other properties of absolute 
value can also be obtained. 

Finally, we consider the question concerning the uniqueness of Z. Let G be an 
additive group containing N. Suppose that 0 is the zero element of G and consider 
the subgroup X, generated by N. If x, yEN then, by Corollary 8.1.8, x- y EX 
and we let Y = {x- y I x, yEN}. If u, v E Y, then u =XI- YI· v = xz- Y2 
and we have 

u- v =(xi - YI)- (X2- Y2) 

= XI - YI - X2 + Y2 = (xi + Y2) - (YI + X2) E Y. 

Again by Corollary 8.1.8, we see that Y is a subgroup of G. For each element x E 
N, we have x = x- 0 E Y, so that Nos; Y and hence X :::; Y. On the other hand, 
we remarked above that Y:::; X, so X= Y = {x- y I x, yEN}. Now consider 
the mappings : N X N ____.,. X, defined by s(n, k) = n- k, where n, kEN. 

We consider the equivalence relation ~(S) as defined in Section 7.2. Then 
(a, b), (k, n) E ~(S) if and only if s(a, b)= s(k, n), which means that a- b = 
k- n. Thus, ~(S) is the equivalence relation of Definition 10.2.1. By Theorem 
7.2.7, there is a bijection 1/f{ of Z onto lms =X, defined by 

1/f{(c(n, k)) = s(n, k) = n- k. 

We have 

1/f{ (c(a, b)+ c(c, d)) = 1/fdc(a + c, b +d)) = s(a + c, b +d) 

= (a+ c) - (b +d) = (a -b)+ (c- d) and 

1/l{(c(a, b))+ 1/!{(c(c, d))= s(a, b)+ s(c, d)= (a- b)+ (c- d). 

Likewise, 

1/fdc(a, b)c(c, d))= 1/l{(c(ac + bd, ad+ be))= s(ac + bd, ad+ be) 

= (ac + bd) - (ad +be), whereas 

1/l{(c(a, b))l/l{(c(c, d))= s(a, b)s(c, d)= (a- b)(c- d) 

= ac- be+ bd- ad = (ac + bd) - (ad+ be). 
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Hence 

1/ts(c(a, b)+ c(c, d))= Vrs(c(a, b))+ 'tfrs(c(c, d)) 

and 

1/ts(c(a, b)c(c, d))= 1/ts(c(a, b))'tfrs(c(c, d)). 

In other words, 'tfrs is a bijection of Z onto X, which respects addition and 
multiplication, so 'tfrs is an isomorphism. Consequently, if an arbitrary additive 
group G contains No, then the subgroup generated by N is isomorphic to Z which 
proves the uniqueness of Z. 

10.3 THE RATIONALS 

In this section, we are going to construct the set of rational numbers. We shall 
use the same ideas that helped us in Section 10.2, when we extended the set 
of natural numbers to the set of integers. In Section 10.2, the leading idea was 
concerned with enhancing the properties of addition, while in the current section, 
we will mainly focus on the multiplicative properties. Thus, in the set of integers, 
the inverse operation to multiplication does not work all the time in the sense that 
for all integers (other than 1 and -1) the multiplicative inverse (or the reciprocal) 
is not an integer itself. We would like to extend the set Z of integers to a set Q in 
which addition and multiplication possess the same properties and, additionally, 
division by nonzero elements is also defined. Of course, we are looking for such 
an extension that is minimal with respect to the properties that we would like to 
keep. 

As in Section 10.2, we construct an equivalence relation this time defined 
on the set Z x (Z\{0}) and we shall then obtain a partition of this set. The 
equivalence classes of this partition will be called the rational numbers. 

This partition is natural once we recall that a fraction ~ is not defined in 
a unique way. Remember that the fractions ~ and ~ are equal if and only if 
ad = be. Thus, with each fraction we associate some infinite set of pairs of 
integers. 

10.3.1. Definition. We say that the pairs (a, b), (c, d) E Z x (Z \ {0}) are equiva
lent, if ad= be. For (a, b) E Z x (Z \ {0}), we define 

a b = {(c, d) E Z x (Z\{0}) 1 ad= be}. 

The set ~ is called a fraction; a is called the numerator of the fraction and b is 
called the denominator of the fraction. 

It is easy to see that the relation R defined by (a, b)R(c, d) if and only if 
ad = be is an equivalence relation, as we now show. We use various properties 
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of the integers. Clearly, (a, b)R(a, b) since ab = ba in Z so R is reflexive. Also 
R is symmetric, since if (a, b)R(c, d) then ad= be, so cb = da which is to 
say that (c, d)R(a, b) and the relation is symmetric. Finally, if (a, b)R(c, d) and 
(c, d)R(u, v) then ad= be and cv = du. Multiplying these equations by the 
nonzero integers v and b, respectively, we see that 

adv = bcv = cvb = bdu, 

and from this we have (av- bu)d = 0, using commutativity. Since b =f. 0, 
Theorem 10.2.9(ii) implies that av = bu, which means that (a, b)R(u, v) and 
R is transitive. Thus R is an equivalence relation. It follows from Definition 
10.3.1 that the equivalence class of (a, b) is precisely the fraction J;. Since this 
equivalence relation partitions the set Z x (Z \ {0}) into equivalence classes, it 
follows that if I; n ~ =f. 0 then I; = ~· 

10.3.2. Definition. The set Q is defined to be 

Q = { ~ I (a, b) E Z x (Z\{0})} . 

10.3.3. Definition. The operations of addition and multiplication are defined on 
Qby 

~ + ~ = ad + be and ~ . ~ = ac 
b d bd b d bd 

As in Section 10.2, we must be sure that these operations are well defined so 
that they are independent of the choice of elements from the equivalence class. 
Let (k, n) E I; and (t, m) E ~·This means that an= bk and em= dt. Then 

(ad+ bc)(nm) =ad· nm +be· nm = (an)(dm) + (cm)(bn) 

= bk · dm +dt · bn = (km +nt)bd. 

It follows that the pairs (ad + be, bd) and (km + nt, nm) are equivalent, so that 
the addition is well defined. 

Furthermore, 

(ac)(nm) = (an)(cm) = bk · dt = (bd)(kt), 

which implies that the pairs (ac, bd) and (kt, nm) are equivalent. Therefore 
multiplication is also well defined. 

Now we obtain the basic properties of these operations. 

10.3.4. Theorem. Let a, b, c, d, u, v E Z, where b, d, v are nonzero. The follow
ing properties hold: 

(i) I; + ~ = ~ + J;, so addition is commutative; 

(ii) (I;+ ~) + ~ = I; + (~ + n so addition is associative; 
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(iii) ~ + ~ = ~· so the fraction ~ is the zero element for addition; 

(iv) the fraction ba is an additive inverse to ~' so every element of Q has an 
additive inverse; 

(v) ~ · J = J . ~' so multiplication is commutative; 

(vi) 'I · ( £ · 'i) = ('I · £) · 'i so multiplication is associative· 
b d v b d v' ' 

(vii) the fraction ~ is the multiplicative identity for each nonzero d E Z; 

(viii) if a =f. 0, then ~ · ~ is the multiplicative identity, so every nonzero fraction 
has a reciprocal, or multiplicative inverse; 

(ix) ~ (J + i7) = ~ · J + ~ · ;, so multiplication is distributive over addition. 

Proof. 

(i) We have 

(ii) Next, 

a c ad+ be cb + da c a 
b + d = bd 

a (c u) a cv+du 
b+ d+; =b+-d-v-

db = d + [;' 

a(dv) + (cv + du)b 

b(dv) 

On the other hand, 

(~ :_) ~ _ ad+ be ~ _ (ad+ bc)v + (bd)u 
b + d + v - bd + v - (bd)v · 

Since 

a(dv) + (cv + du)b = a(dv) + (cv)b + (du)b = a(dv) + b(cv) + b(du) 

= (ad)v + (bc)v + (bd)u = (ad+ bc)v + (bd)u, 

using commutativity, associativity, and distributivity in Z and since (bd)v = 
b(dv) (ii) follows. 

(iii) Next, 

a 0 ad +bO ad 
b + d = bd bd 

Since a(bd) = (ab)d = (ba)d = b(ad), the fractions ~ and ~~ coincide so 

~ + ~ = ~ = ~ + ~. We note that 

0 0 
d v 

for all nonzero d, v E Z, so ~ is the zero element. 
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(iv) Also, 

a -a ab+b(-a) ab+(-ba) ab-ba 0 -a a 
b + b = b2 = b2 = b2 = b2 = b + b' 

so ba is the negative of~-
(v) For the commutative property, we see 

a c ac ca c a 

b d bd db d b 

(vi) can be proved in a similar manner to (v), using the associative property 
of integers. 

(vii) To show that ~ is the multiplicative identity, we note that 

a d ad d a 

b d bd d b 

and since (ad)b = (bd)a, we have 

ad a 

bd b 

(viii) To see that ~ has a multiplicative inverse, we note that when a =f. 0, 
~ E Q and 

a b ab ab b a 

b a ba ab a b 

By (vii), ~~ is the identity element. 
(ix) For the distributive property, notice that 

~ (~ + ~) = ~ . ( cv + du) = a (cv + du) = acv + adu. 
b d v b dv bdv bdv 

On the other hand, 

a c a u ac au ac(bv) + bd(au) b(acv + dau) 
-·-+-·-=-+-= = . 
b d b v bd bv bdbv b(dbv) 

By (vii), we see 

acv + dau 

dbv 

b(acv + adu) 

b(dbv) 

so the distributive property follows. The proof is complete. 
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The existence of additive inverses allows us to define the operation of sub
traction of fractions. We define the difference of two fractions 'f and J by 

~ _ ~ = ~ + ( _ ~) = nd +k~( -c) = nd k~ kc. 

It is easy to check that this operation respects the properties of subtraction 
already obtained in Z. Next we show how to embed Z into Q. To this end, let 
n, u, v E Z and let u =I= 0. Since (nu)v = u(nv), the pairs (nu, u) and (nv, v) 
are equivalent, so that n: = n:. We define the mapping t : Z ---+ Q, defined 
by t(n) = nu, where n, u E Z and u =I= 0. The above argument shows that t is 

u 
independent of the choice of u, so t is well defined. Suppose that n =I= k, but 
nu = Is.!!. where 0 ...;.. u v E Z. Then 
u v' I ' 

n(uv) = (nu)v = u(kv) = (kv)u = k(vu) = k(uv). 

By Theorem 10.2.9(i), uv =I= 0, and applying Theorem 10.2.9(ii) we deduce 
that n = k. This contradiction shows that t(n) =I= t(k) and hence t is injective. 
Furthermore, for every n, k E Z, we have 

t(n) + t(k) = nuju + kvjv = ((nu)v + u(kv))juv = (n(uv) + k(uv))juv 

= (n + k)uvjuv = t(n + k) and 

nu kv (nu)(kv) (nk)(uv) 
t(n)t(k) =- ·- = = = t(nk). 

u v uv uv 

It follows that t induces a bijection between Z and Im t, which respects the 
operations of addition and multiplication. Thus, t is a homomorphism from the 
ring Z to the ring Q and we can identify the integer n with its image t(n) = n:;, 
in a manner familiar from Section 10.2 and we write n:; = n for each u E Z, 
where u =I= 0. 

Then, 

We write the reciprocal of k E Z as k- 1. By Theorem 10.3.4, the fraction t is 
the reciprocal to the element ¥ = k. So for the fraction 'f, we have 

n nl 1 _1 - =- ·- = nk 
k 1 k 

The existence of reciprocals allows us to define the operation of division on 
nonzero fractions. We write ( ~ r I for the reciprocal of ~ and note that by 

Theorem 10.3.4, ( ~ f 1 
= ~. We define the quotient of two fractions 'f and ~, 
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where k, u, v =1- 0 by 

Theorem 10.3.4 implies that Q is a field and, as we saw in Section 7.4, it is a 
prime field. 

The construction we used here is a very general one. Instead of using Z, we 
could have used any integral domain R and exactly the same arguments could 
be used to extend R to a field F, known as the field of fractions of R. In this 
case, we use an equivalence relation defined on R x (R \ {0}), using the same 
definition as given above and, if r, s E R and s =f. 0 then we define rs- 1 to be the 
equivalence class of ordered pairs {(u, v) E R x (R \ {O})Irv = su}. The field F 
then consists of the elements rs- 1, where r E R and s E R \ {0}. 

The fact that Q can be uniquely obtained in this way follows from Theorem 
7.4.8. 

Our next goal is to formally obtain some of the important properties of rational 
numbers. First, we define an order on the set Q in the following way. 

10.3.5. Definition. Let I E Q. If the integer nk is nonnegative, so nk 2: 0, or 
positive (nk > 0), then we say that I is nonnegative (respectively positive). In 
this case, we will write I 2: 0 (respectively I > 0 ). Let I, 9- E Q. If I - 9- is 
nonnegative (respectively positive), then we say that "I is greater than or equal 
to 9-" or that "9- is less than or equal to I " and write these in the former case 
as I 2: 9- and in the latter case as 9- :::; I. If, in this case, I =1- 9-, we say that "I 
is greater then 9-" or that "9- is less then I" and write these in the former case 
as I > 9- and in the latter case as 9- < I· 

Let n, k, E Z, u, v E Z \ {0} and consider n; - ~-We have 

nu kv n(uv)- u(kv) n(uv)- k(uv) (n- k)uv 
---= 
u v uv uv uv 

By Theorem 10.2.9(xi), (uvf 2: 0 and, by Theorem 10.2.9(i), (uv) 2 =f. 0, so 
that (uv) 2 > 0. Therefore, if (n- k)(uv)2 2: 0 (respectively, (n- k)(uv)2 > 0) 
then, by Theorem 10.2.9(viii), n - k 2: 0 and n 2: k (or respectively, by Theorem 
10.2.9(vii), n - k > 0 and n > k). This shows that the order induced on Im t ~ Z 
from Q coincides with the one introduced on Z in Section 10.2. 

10.3.6. Theorem. Let x, y E Q. Then one and only one of the relations 
x = y, x < y, or x > y is valid. 

Proof. Let x = I, y = !!f, and suppose that x =1- y. We have 

n m nt- km 
x-y=---= 

k t kt 
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Since (nt- km)kt is an integer, Theorem 10.1.12 implies that (nt- km)kt = 0, 
or (nt- km)kt > 0, or (nt- km)kt < 0. Since k, t =f. 0, Theorem 10.2.9(i) shows 
that kt =f. 0. If (nt- km)kt = 0 then, using Theorem 10.2.9(i) again, we deduce 
that nt = km. This implies that I = !!f. If (nt- km)kt > 0, then, similarly, we 
can obtain that I> !If, whereas if (nt- km)kt < 0 then I < !!f. 

10.3.7. Proposition. Let x, y, z E Q. Then the following properties hold: 

(i) X S X. 

(ii) If x andy are nonnegative, then x + y and xy are nonnegative. Furthermore, 
if one of x and y is positive, then x + y is positive. If both x and y are 
positive, then xy is positive. 

(iii) x S y andy S z imply x S z. 
(iv) x < y andy S z imply x < z. 
(v) x S y andy < z imply x < z. 

(vi) x < y andy < z imply x < z. 
(vii) x S y andy S x imply x = y. 

Proof. Put x = I• y = !If, and z = ~-
(i) We have to show that x - x 2: 0 and to this end, we consider I - I = 

nk~kn. However, (nk - kn )k2 2: 0 which implies (i). 

(ii) We have nk, mt 2: 0. Then x + y = I+ !If = ntkrkm. To prove that x + 
y 2: 0, we must prove that (nt + km)kt 2: 0. However, (nt + km)kt = nkt2 + 
mtk2• By Theorem 10.2.9(xi), t2 2: 0, so t2 > 0 because t =f. 0. The same argu
ments shows that k2 > 0. Hence Theorem 10.2.9(iii) implies that nkt2 , mtk2 2: 0. 
By Theorem 10.2.8(i), nkt2 + mtk2 2: mtk2 and, since mtk2 2: 0, Proposition 
10.2.7(ii) implies that nkt2 + mtk2 2: 0. Thus x + y 2: 0. For the product xy, 
we have xy = nk7. Then, by Theorem 10.2.9(iii), (nm)(kt) = (nk)(mt) 2: 0, so 
xy 2: 0. 

Furthermore, suppose that x > 0. Then nk > 0 and Theorem 10.2.9(iv) 
implies that nkt2 > 0. Since mtk2 2: 0, Theorem 10.2.8(ii) shows that nkt2 + 
mtk2 > mtk2 and using Proposition 10.2.7(iii), we deduce that nkt2 + mtk2 > 0, 
so that x + y > 0. 

If x, y > 0 then, by Theorem 10.2.9(iv), (nm)(kt) = (nk)(mt) > 0 and we 
deduce that xy > 0. 

(iii) Since y 2: x and z 2: y then, by definition, y - x 2: 0 and z - y 2: 0. By 
(ii) z- x = (z- y) + (y- x) 2: 0 and it follows that z 2: x. 

(iv)-(vi) The proofs are similar. 
(vii) We have 

(mk- tn)tk = mtk2
- nkt2 2: 0, 

and (nt- km)tk = nkt2
- mtk2 2: 0. 
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By Proposition 10.2.7(vi), (nt-km)tk=nkt2 - mtk2 = 0. Since tk>O, Theorem 
1 0.2.9(i) implies that nt - km = 0 and this means that x = 'f = 'f- = y. 

10.3.8. Theorem. Let x, y, z E Q. Then the following properties hold: 

(i) if x ::; y, then x + z ::; y + z; 

(ii) if x < y, then x + z < y + z; 

(iii) if x + z ::; y + z, then x ::; y; 

(iv) if x + z < y + z, then x < y. 

Proof. Here, we need to repeat the arguments of the proof of Theorem 10.2.8. 

10.3.9. Theorem. Let x, y, z E Q and z =I= 0. Then the following properties hold: 

(i) if x, y are nonzero then xy =I= 0; 
(ii) ifxz = yz, then x = y; 

(iii) if x ::; y and z > 0, then xz ::; yz; 

(iv) ifx < y and z > 0, then xz < yz; 

(v) if x :::: y and z < 0, then xz :::: yz; 

(vi) if x < y and z < 0, then xz > yz; 

(vii) if xz < yz and z > 0, then x < y; 

(viii) if xz ::; yz and z > 0, then x ::; y; 

(ix) ifxz < yz and z < 0, then x > y; 

(x) if xz ::; yz and z < 0, then x :::: y; 

(xi) ifO < x ::; y (respectively, x ::; y < 0), then x-i :::: y-i; 

(xii) ifO < x < y (respectively, x < y < 0), then x-i> y-i. 

Proof. Put x = 'f, y = 'f-, and z = ~· 
(i) We have xy = :7. If xy = 0, then nm = 0. However, x =I= 0 and y =I= 0 so 

n, m =I= 0, which cbntradicts Theorem 10.2.9(i). Thus xy =1= 0. 
(ii) Since xz = yz, 0 = yz - xz = (y - x)z. By (i), we deduce that y - x = 0, 

because z =I= 0. Hence y = x. 
(iii) Since x ::; y, y - x is nonnegative. By Proposition 10.3.7(ii), the product 

(y - x)z = yz - xz is also nonnegative and it follows that xz ::; yz. 
(iv) Since x < y, y- x is positive. By Proposition 10.3.7(ii), the product 

(y- x)z = yz- xz is also positive and it follows that xz < yz. 
(v) We have 0 > z, so that 0- z = -z > 0. Then by (iii), 

-xz = x(-z):::: y(-z) = -yz. 

It follows that 

-yz - ( -xz) = xz - yz :::: 0, 

which proves the inequality xz :::: yz. 
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(vi) As in (iv), (y - x)z # 0, which together with (v) gives xz > yz. 
(vii) By Theorem 10.3.6, x = y, x < y, or x > y. If x < y then, by (iv), 

xz < yz. If y < x, then by (iv), yz < xz. Again by Theorem 10.3.6, xz = yz, 
xz < yz, or xz > yz. By hypothesis, the cases xz = yz and xz > yz do not occur 
and it follows that x < y. 

(viii)-(x) The proofs are similar. 
(xi) Clearly, the pair (n, k) is equivalent to the pair ( -n, -k). Thus, if x = I 

andy= T• we may assume that k, t > 0. Then, by (iii), 

It follows that 

nk n m mk nkt mkt 
- = -k < -k = - and - < --
k k-t t k-t 

mkt nkt mtk2 - nkt2 

-t- - k ::: 0, or, equivalently , kt ::: 0. 

This means that (mk - nt)kt ::: 0 and since kt > 0, we also have mk - nt ::: 0, 
by (viii). By the choice of x andy, either both integers n and m are nonnegative, 
or they are both nonpositive. In the first case, Proposition 10.3.7(ii) shows that 
nm is nonnegative. If n, m ::; 0 then, by Proposition 10.2.7(vii), -n, -m ::: 0, 
and (-n)(-m)::: 0. On the other hand, (-n)(-m) = -(-n)m = nm. Thus, in 
either case, nm ::: 0 and by (iii) we deduce that (mk - nt)nm ::: 0. In tum, it 
follows that .!__ < "-. m- n 

(xii) The proof is similar. 

10.3.10. Corollary. Let x, y E Q and suppose that y > 0. Then there is a natural 
number m such that ym > x. 

Proof. If x ::; 0, then y1 = y > 0 > x. Thus suppose that x > 0 and let~ = I> 0. 
As in Theorem 10.3.9(xi) we may assume that n, k > 0, and by Corollary 10.3.13 
that k::: 1. Using Theorem 10.3.9(iii), we deduce that n = ki ::: ~· Since 
n + 1 ~ n, Proposition 10.3.7(iv) implies that n + 1 > ~· Using Theorem 
10.3.9(tv), we deduce that (n + 1)y > x so we can set m = n + 1. 

As for integers, we can define the absolute value of a rational number. Let x 
be a rational number and let 

lxl = lx, if.x ::: 0; 
-x, tfx<O. 

It is not hard to prove that the following assertions hold for arbitrary x, y E Q. 
lxl ::: 0, and lxl = 0 if and only if x = 0; 
lxyl = lxllyl; 
lx + Yi :S lxl + lyl. 
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10.4 THE REAL NUMBERS 

In this section, we construct the set of real numbers. In advanced calculus courses, 
the real numbers are usually introduced using the idea of a Dedekind Cut. Here 
we will use another approach which was introduced by G. Cantor. This approach 
is based on the notion of a Cauchy sequence, named after Augustin Louis Cauchy 
(1789-1857), a great French mathematician, whose work was influential in 
infinitesimal calculus and analysis in general. In our opinion, this approach has a 
very strong algebraic spirit and is very close to the one we used in the construction 
of the sets Z and Q. However, we shall not describe the well-known properties 
of real numbers in detail since this is usually done in advanced calculus courses. 

A long time ago, people observed that in many cases the set of rational num
bers was not sufficient for measurement. Thus they arrived at the concept of 
incommensurable line segments. If K T and A B are two line segments and if 
AB and KT are commensurable, then there is a line segment CD such that KT 
contains it exactly r times and AB contains its times. Then 11 ~~~ = ~ is a ratio
nal number. However, as is learned in geometry, the diagonal of a square and 
its side are incommensurable which means that there is no rational number that 
expresses the ratio of the lengths of the diagonal and the side of the same square. 

We also cannot even take square roots of all natural numbers by merely 
using rational numbers. For example, if p is a prime then .fP is not a ratio
nal number. Indeed, if .fP = I• where without loss of generality, we may 

assume that GCD(n, k) = 1, then p = (!f)2 
= ~~.It follows that n2 = pk2 . Since 

GCD(n, k) = 1, the integers n2 and k2 are relatively prime and by Proposition 
9.1.15(i), p divides n2 . It follows that p divides n, son= mp for some integer 
m. Then n2 = (mp)2 = m2 p2

• We now have m2 p 2 = pk2 , or m2 p = k2
, and, as 

above, we prove that p divides k which now contradicts GCD(n, k) = 1. Thus, 
.fP cannot be a rational number. 

This proof was known in Ancient Greece and placed in Euclid's Elements. 
The existence of incommensurable numbers was known to Pythagoras. These 
problems naturally led to the creation of irrational numbers. The first axiom of 
real numbers was introduced by Archimedes, but ancient scientists were unable 
to develop a rigorous framework for irrational numbers. 

In medieval times, people on the Indian subcontinent used irrational numbers 
without too much thought to rigor. In the seventeenth and eighteenth centuries, 
real numbers became one of the main subjects of investigation in calculus. During 
that time, real numbers were represented geometrically as points on a line, a plane 
or space. During the second part of the nineteenth century, Dedekind, Cantor, 
and Weierstrass constructed the real numbers in different ways using rigorous 
methods. 

We start our construction using the Cartesian product M = flnEN An, where 
An = Q, for each n E N. As we saw in Section 1.1, this is the set of all sequences 

which we often abbreviate to (an), where an E Q for each n E N. 
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Let 

a=(aj, ... ,an,an+l····)=(an) and 

b = (b], ... , bn, bn+l• ... ) = (bn) 

be elements of M and define addition and multiplication on M by 

a+ b = (a! + b], ... , an+ bn, an+ I + bn+l, ... ) = (an+ bn) and 

ab = (alb], ... , anbn, an+lbn+l, ... ) = (anbn)· 

Clearly, the sequence 0 = (0, ... , 0, 0, ... ) is the zero element for addition, the 
sequence 1 = (1, ... , 1, 1, ... ) is the multiplicative identity, and the sequence 
-a = ( -a1, ... , -an, -an+I, ... ) is the additive inverse of a = (an)nEN. 

We define the difference of the sequences a= (an), b = (bn) by 

and, as can be seen, addition and multiplication of sequences is reduced to addi
tion and multiplication of the components. This makes it easy to observe that the 
commutative, associative, and distributive properties are valid. 

We shall let Q+ (respectively Q_) denote the set of all nonnegative (respec
tively the set of all nonpositive) rational numbers. 

10.4.1. Definition. The sequence a= (an) E Miscalled a Cauchy or fundamen
tal sequence, if for every e E Q+, there exists a positive integer n(e) such that 
lak - aj I < e, whenever k, j 2: n(e). 

We observe the first important property of Cauchy sequences. 

10.4.2. Lemma. Let a= (an) be a Cauchy sequence. Then there exists r E Q+ 
such that I an I < r for each n E N. 

Proof. Let m be a positive integer such that lak- ajl < 1 whenever k, j 2: m. 
The set {I ail , ... , lam I} therefore has a largest element s. Let r = s + 1. If 1 ::; 
j ::; m, then laj I ::; s < s + 1 = r. Let j > m. Then 

which proves the result. 

10.4.3. Proposition. Let a= (an), b = (bn) be Cauchy sequences. Then a+ b, 
a - b, and ab are Cauchy sequences. 

Proof. Let e be a positive rational number. There are positive integers n 1 and 
nz such that lak- ajl < ~ whenever k, j 2: n1, and lbk- bjl < ~ whenever 
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k, j ::=:: n2. Let n = max{n1, n2}. Then fork, j ::=:: n, we have 

l<ak + bk)- (aj + bj)l = l<ak- aj) + (bk- bj)l :S 
8 8 

lak- ajl + lbk- bjl < 2 + 2 = 8. 

This shows that a + b is a Cauchy sequence and the proof showing that a - b is 
Cauchy is similar. 

Next we prove that ab is a Cauchy sequence. By Lemma 10.4.2, there exists 
a positive rational r such that I an I , Ibn I < r for each n E N. Let 8 be a positive 
rational number. Since a, b are Cauchy sequences, there are positive integers n 1 
and n2 such that iak- ajl < fr whenever k, j ::=:: nJ, and lbk- bjl < fr when
ever k, j ::=:: n2. Let n = max{n 1, n2}. Then fork, j ::=:: n, we have 

iakbk- ajbjl = iakbk- akbj + akbj- ajbjl = iak(bk- bj) + bj(ak- aj)l 

:S iadbk- bj)l + lbj(ak- aj)l 
8 8 

= lakilbk- b·l + lb·llak- a·i :S r- +r- = 8. 1 1 1 2r 2r 

This shows that ab is a Cauchy sequence. 

Let lF denote the set of all Cauchy sequences. We say that a sequence a= (an) 
is a 0 sequence, if for every 8 E Q+, there exists a positive integer n(8) such 
that lakl < 8 whenever k ::=:: n(8). 

10.4.4. Proposition. 

(i) Every 0 sequence is Cauchy. 

(ii) Let a = (an), b = (bn) be 0 sequences. Then a+ b, a- b are 0 sequences. 

(iii) Let a = (an) be a 0 sequence and let b = (bn) be a Cauchy sequence. Then 
ab is a 0 sequence. 

Proof. 
(i) Let a= (an) be a 0 sequence and let 8 be a positive rational number. There 

is a positive integer n such that lakl < ~ whenever k ::=:: n. Let k, j ::=:: n. Then 

so a is Cauchy. 
(ii) Let 8 be a positive rational number. There are positive integers n 1 and 

n2 such that lakl < ~ whenever k ::=:: n1 and lbkl < ~ whenever k ::=:: n2. Let n = 
max{n1, n2}. Then, fork::=:: n, we have lak + bkl :S lakl + lbkl < ~ + ~ = 8. This 
shows that a + b is a 0 sequence and the proof that a - b is a 0 sequence is 
similar. 
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(iii) By Lemma 10.4.2, there exists r E Q+ such that Ibn I < r for each n EN. 
Let E be a positive rational number. Since a is a 0 sequence, there is a positive 
integer m such that lak I < ~ whenever k 2: m. For k 2: m, we have 

This shows that ab is a 0 sequence. 

We make the next definition very much in the spirit of this chapter. 

10.4.5. Definition. We say that the Cauchy sequences a and b are equivalent, if 
a - b is a 0 sequence. Let 

a= {b I a- b is a 0 sequence}. 

We shall write aRb if a is equivalent to b, using this definition of equivalence. 
It is clear that the relation R is both reflexive and symmetric. Furthermore, Propo
sition 10.4.4 shows that if aRb and bRc then aRc so that R is also transitive. 
Hence R is an equivalence relation and the equivalence class of a is precisely the 
set a = {b I a- b is a 0 sequence}. Hence the set of all subsets a is a partition 
of lF. 

10.4.6. Definition. The set ffi. is defined to be 

ffi. = {a I a is an equivalence class of Cauchy sequences of rationals}. 

10.4.7. Definition. Let a and b be two Cauchy sequences of rationals with corre
sponding equivalence classes a, {J. The operations of addition and multiplication 
are defined on ffi. by 

a + fJ = y, where y is the equivalence class containing a + b, 

a{J = &, where & is the equivalence class containing ab. 

As in previous sections, we must be sure that these operations are well defined, 
which means that they are independent of the choice of elements of the sets 
a, {J. To see this, let u E a and let v E {J. This means that a-u and b- v are 
0 sequences. We have 

(a+ b) - (u + v) = (a-u)+ (b- v) 

and, by Proposition 10.4.4, (a+ b) - (u + v) is a 0 sequence. It follows that the 
sequences (a+ b) and (u + v) are equivalent, so that the addition is well defined. 

Furthermore, 

ab- uv = ab- ub + ub- uv = b(a- u) + u(b- v). 
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By Proposition 10.4.4 again, ab - uv is a 0 sequence, which implies that the 
sequences ab and uv are equivalent. Thus multiplication is also well defined. 

Now we obtain some basic properties of these operations. 

10.4.8. Theorem. Let a, p, y E ~- The following properties hold: 

(i) a + p = p + a, so addition is commutative; 

(ii) (a+ p) + y =a+ (p + y), so addition is associative; 

(iii) the subset 0, consisting of all 0 sequences, is the zero element for addition; 

(iv) the subset -a, containing the sequence -a is the additive inverse of a; 
thus, every element of~ has an additive inverse; 

(v) ap = pa, so multiplication is commutative; 

(vi) (ap)y = a(py ), so multiplication is associative; 

(vii) the subset 1, containing the sequence 1 = (I, ... , I, I, ... ), is the multi
plicative identity; 

(viii) if a =I= 0, then there exists a- 1 E ~ such that aa-1 = 1, so every nonzero 
element of~ has a multiplicative inverse or reciprocal; 

(ix) a(p + y) = ap + ay, so multiplication is distributive over addition. 

Proof. 
(i) We already noted that addition and multiplication of sequences are commu

tative and associative and connected via distributivity, so that (i), (ii), (v), (vi), 
(ix) hold. 

(iii) Clearly, 0 = (0, ... , 0, 0, ... ) E 0. Let a = (an) E a. Then a+ 0 contains 
the sequence a+ 0 =a, so that a+ 0 =a. 

(iv) Since -a +a contains -a+ a = 0 we have -a +a = 0. 
(vii) The proof is similar to the proof of (iii). 
(viii) Let a= (an) and b = (bn) be two Cauchy sequences. If there is a positive 

integer k such that an = bn whenever n 2: k then an - bn = 0 whenever n 2: k 
and it follows that a - b is a 0 sequence, so a = P. 

Now suppose that a= (an) is not a 0 sequence. Then there exists 8 E Q+ 
such that, for each natural number n, there is natural number m > n such that 
lam I 2: 8. Since a is a Cauchy sequence, there is a positive integer r such 
that lak -a j I < ~ whenever k, j 2: r. If now m > r is a positive integer such 
that lam I 2: 8, then for j > m, we have 

Hence there is a positive integer m such that laj I 2: w, whenever j 2: m. Now 

l
w, if j _:::: m, 

let b = (bn)nEN where bj = 
an, if j > m. 
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By construction, the sequences a and b are equivalent, so a. = fJ. By our 
choice of b, lb j I 2: w for all j, in particular, b j =f. 0 for all j E N. Now consider 
the sequence c = (cn)nEN where Cn = If;;, for n E N. Let£ be a positive rational 
number. Since b is a Cauchy sequence, there is a positive integer n such that 
lbk- bj I < w 2£ whenever k, j 2: n. Then fork, j 2: n we have 

It follows that c is a Cauchy sequence. Now 

be= (bnCn)nEN = (1, 1, ... , 1, ... ) = 1, 

and this shows that a.- 1 = y. 
The existence of additive inverses allows us to define the operation of sub

traction. We define the difference of two elements a. and fJ by 

a.- fJ =a.+ (-{3). 

All properties of the difference of two rational numbers extend to real numbers. 
The existence of reciprocals or multiplicative inverses allows us to define the 

operation of division by nonzero elements. We define the quotient of the elements 
a. and fJ =f. 0 by 

a Q-1 - -a.,., f3 - 0 

Let x E Q. Clearly the sequence x = (x, x, ... , x, ... ) is Cauchy. We consider 
the mapping t : Q ---+ ffi., where t (x) is the subset containing the sequence x. We 
observe that if x =f. y then x - y = (x - y, x - y, ... , x - y, ... ) and x - y is a 
nonzero rational number. Therefore the sequence x - y cannot be a 0 sequence, 
so that x and y cannot be equivalent. It follows that the mapping t is injective. 
Furthermore, t(x) + t(y) is the subset containing 

X + y = (X + y, X + y, ... , X + y, ... ) , 

and the latter is exactly t(x + y). 
Similarly, t (x )t (y) is the subset containing 

xy = (xy, xy, ... , xy, ... ), 

and the latter is precisely t(xy). Hence 

t(x) + t(y) = t(x + y) and t(x)t(y) = t(xy) 

for every x, y E Q. It follows that t induces a bijection between Q and Im t, which 
respects the operations of addition and multiplication. Thus t is a monomorphism. 
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Therefore, as we have done earlier, identifying a natural number m with its image 
c(m, 0) and an integer n with its image n: , we identify a rational number x with 
its image t(x). 

Thus, the set lR is a field and, since it is an extension of Q, it is of characteristic 
0. The next natural step is to define an order on R However, we first need the 
following. 

10.4.9. Lemma. Let a = (an) be a Cauchy sequence. If a is not the 0 sequence, 
then there is a positive rational number w and a positive integer m such that 
either aj > w whenever j ::=:: m, or aj < -w whenever j ::=:: m. 

Proof. Since a is not the 0 sequence, there exists e E Q+ such that for each 
natural number n, there is a positive integer s > n such that las I ::=:: e. Since a is a 
Cauchy sequence, there is a positive integer r such that lak- aj I < ~.whenever 
k, j ::=:: r. If now s > r is a positive integer such that las I ::=:: e, then for j > s, we 
have 

Hence there is a positive integer t such that Ia j I ::=:: v, whenever j ::=:: t. Since 
a is a Cauchy sequence, there is a positive integer r, such that lak -a j I < ¥ 
whenever k, j ::=:: r 1• Now let m > r be a positive integer such that lam I> v. If 
am> 0 then, for all j ::=:: m, we have 

If am < 0 then, as above, -am> v and for all j ::=:: m, we have -aj > ¥ = w. It 
follows that a j < - ww-. 

10.4.10. Definition. Let a = (an) be a Cauchy sequence. Then a is positive, if 
there is a positive rational number w and a positive integer m such that a j > w 
whenever j ::=:: m. Also a is negative, if there is a positive rational number w and a 
positive integer m such that aj < -w whenever j ::=:: m. Finally a is nonnegative 
(respectively nonpositive), if either a is positive or the 0 sequence (respectively 
either a is negative or the 0 sequence). 

The following result can be proved using similar arguments to those found 
earlier and we omit the details. 

10.4.11. Lemma. Let a= (an) and b = (bn) be Cauchy sequences. 

(i) If a, b are positive then ab is positive. 

(ii) If a, b are negative then ab is positive. 

(iii) If a is positive and b is negative then ab is negative. 

(iv) If ab is a 0 sequence then at least one of a, b is a 0 sequence. 
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(v) If a, bare nonnegative then ab is nonnegative. 

(vi) If a, b are nonpositive then ab is nonnegative. 

(vii) If a is nonpositive and b is nonnegative, then ab is nonpositive. 

Next, we extend these concepts to the set R For this, we need the following 
result. 

10.4.12. Lemma. Let a= (an) and let b = (bn) be Cauchy sequences. Suppose 
that a and b are equivalent. 

(i) If a is positive then b is also positive. 

(ii) If a is negative then b is negative. 

Proof. 
(i) By definition, there is a positive rational number w and a positive integer 

m such that aj > w whenever j 2: m. Since b- a is a 0 sequence, there exists a 
positive integer t such that lbj- aj I < 'I whenever j 2: t. Let j > max{m, t}. 
Then 

It follows that b is positive. 
(ii) The proof is similar. 

10.4.13. Definition. An element a E ffi. is called positive if a contains a positive 
sequence a. Also a is called negative if a contains a negative sequence a. We say 
that a E ffi. is nonnegative (respectively nonpositive) if either a is positive or 0 
(respectively either a is negative or 0). 

Let x E Ql. Then x = t(x) is a subset containing the sequence x = (x, x, ... , 
x, ... ). If x > 0 then x is a positive sequence and, in this case, X > 0. If x < 0 
then xis a negative sequence and, in this case, X < 0. Thus, if x > 0 (respectively, 
x < 0) then t(x) > 0 (respectively t(x) < 0), so the order that we defined on ffi. 
respects the order defined on Ql. 

Furthermore, we denote the set of all nonnegative (respectively the set of all 
nonpositive) real numbers by ffi.+ (respectively ffi._). 

10.4.14. Definition. Let x, p E R If x - p is nonnegative then we say that X is 
greater than or equal to p or that p is less than or equal to X and denote these 
respectively by X 2: p and p .:::; X· If, in addition, X =f. p, we say that X is greater 
than p or p is less than X and denote these respectively by X > p and p < X. 

The following results are similar to the corresponding results that we obtained 
already for the natural numbers, the integers, and the rational numbers. We assume 
that the reader has gained the necessary experience to prove them. 
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10.4.15. Theorem. Let X, p E JR;. Then one and only one of X = p, X < p, and 
X > p is valid. 

10.4.16. Proposition. Let X, p, s E JR;. Then the following properties hold: 

(i) X :S X; 

(ii) X :S p and p :S simply X :S s; 
(iii) X < p and p :S s imply X < s; 
(iv) X :S p and p < s imply X < s; 
(v) X < p and p < s imply X < s; 

(vi) X ::; p and p :S X imply X = p. 

10.4.17. Theorem. Let X, p, s E JR;. Then the following properties hold: 

(i) if X :S p, then X + s :S p + s; 
(ii) if X < p, then X + s < p + s; 

(iii) if X + s .::::; p + s, then X ::; p; 

(iv) if X + s < p + s, then X < p. 

10.4.18. Theorem. Let X, p, s E JR; and s =/= 0. Then the following properties 
hold: 

(i) if X, p are nonzero then XP =/= 0; 

(ii) if xs = Ps then x = p; 

(iii) if X :S p and s > 0 then Xs :S ps; 

(iv) if x < p and s > 0 then x s < Ps; 

(v) if X :S p and s < 0 then Xs 2:: Ps; 

(vi) if x < p and s < 0 then x s > Ps; 

(vii) if x s < Ps and s > 0 then x < p; 

(viii) if x s :::: Ps and s > 0 then x :::: p; 

(ix) if X s < Ps and s < 0 then x > p; 

(x) if Xs :S Ps and s < 0 then X 2:: p; 

(xi) ifO <X :S p (respectively X::; p < 0) then x-1 2:: p- 1; 

(xii) ifO <X < p (respectively X < p < 0) then x- 1 > p- 1• 

The following result shows that the rational numbers are densely situated in 
the set of real numbers. 

10.4.19. Theorem. Let X, s E JR; and s > X. Then there exists a rational number 
r such that X < r < s. 
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Proof. Let x = (xn) be a sequence belonging to X and let y = (Yn) be a sequence 
belonging to~. Then y- x > 0 and, by Lemma 10.4.9, there is a positive rational 
number w and a positive integer m such that Yj- Xj > w, whenever j 2: m. 

Since x is a Cauchy sequence, there is a positive integer n1 such that 
lxk - Xj I < 'T· whenever k, j 2: n1. For the same reason, there is a positive 
integer nz such that IYk - Yj I < 'T· whenever k, j 2: nz. Lett= max{m, n1, nz} 

and set r = (x,iy,). Then r E Q. Let r = (r, r, ... , r, ... ) and suppose that 
j 2: t. Then 

(Xr + Yr) -x· _ Xr -Xj + Yt -Xj 
r-xj= 2 J- 2 

(Yr- Xr)- 2(lx1 - Xjl) w- ~w 
> > -----''----

2 2 

Similarly, 

(Yt- Xr) + 2(Xt- Xj) 

2 

w 

6 

y. - Xt + y. - Yt 
Yj- r = J J 

2 

(yj- Xj) + (Xj- Xt) + (Yj- Yt) 

2 

Now using Definitions 10.4.10, 10.4.13, and 10.4.14, we have X < r < ~· 

As with rational numbers, we can define the absolute value (also sometimes 
called the modulus) of a real number. Let x be a real number and let 

lxl = lx, if x 2: 0, 
-X, if X _:::: 0. 

It is not hard to prove that for arbitrary x, y E JR., the following assertions 
hold: 

lxl 2: 0, and lxl = 0 if and only if x = 0; 
lxyl = lxllyl; 
lx + Yl S lxl + lyl. 
We may now consider sequences consisting of real, rather than just rational 

numbers, which means we may now consider elements of the Cartesian product 
nnEN Sn. where Sn =JR., for each n EN. 

For these sequences, we make the following definition. 

10.4.20. Definition. We say that the sequence A = (an)nEN• where an E lR con
verges to the real number a if for every 8 E JR.+ there exists a positive integer 
n(8) such that lak- al < 8 whenever k, j 2: n(8). 

We can also define Cauchy sequences consisting of real numbers, in an analo
gous manner in the way we defined Cauchy sequences of rational numbers. Of 
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course, every convergent sequence is Cauchy, but now the components are the 
real numbers. 

We have already discussed some reasons for extending the set of rational 
numbers to the set of real numbers. One such reason for doing this is that not 
all convergent sequences of rational numbers converge to a rational number. 
It took a long time to understand this issue. Indeed, although Ancient Greece 
was the birthplace of irrational numbers, the place where such numbers were 
first conceptualized, it was not until the end of the eighteenth and the beginning 
of the nineteenth century that calculus was intensively developed. However, it 
was not until the second half of the nineteenth century that a full understanding 
of the real numbers was achieved. It turns out that the sequences of rational 
numbers that converge to a rational number are Cauchy sequences. Indeed, if 
some sequence (an), where an E Q for each n E N, converges to some rational 
number r, then this sequence is Cauchy. To see this note that, for each positive 
rational number e, there is a positive integer n such that ir- aji < ~ whenever 
j ~ n. Then fork, j ~ n, we have 

Thus the Cauchy condition is necessary. However, in the set of rational numbers, 
it is not sufficient. There are Cauchy sequences of rationals that do not converge 
to rational numbers as can be seen using the example, 1, 1.4, 1.41, 1.414, ... of 
finite decimal approximations of the number v'2. 

Therefore, we are led to construct the "new" set ~ of numbers satisfying the 
following conditions: 

(i) ~ contains Q; 
(ii) all Cauchy sequences of rational numbers converge in ~; 

(iii) all algebraic operations in Q and the linear order in Q can be extended 
toR 

Cantor suggested the construction based on condition (ii), which we have 
basically followed here. Here we need to take into account the fact that two 
different Cauchy sequences can converge to the same limit. This happens if the 
difference between the corresponding members of the sequences converge to 
zero, so the difference is a 0 sequence. This is why the new real numbers need 
to be defined as equivalence classes of Cauchy sequences. 

Finally, we need to do one more step in order to justify the construction 
considered above. We need to consider sequences consisting of real numbers and 
ask whether they converge to a real number or whether the construction needs 
to be repeated extending the system of real numbers to some possibly larger 
set again. However, the following result shows that there is no need to do the 
construction again. 
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10.4.21. Theorem. Let A = (an), be a Cauchy sequence, where an E ~- Then A 
converges to a real number a. 

Proof. Let aJ = (anJ)nEN, where anJ E ~. be a Cauchy sequence, belonging to 
aJ, j EN. For every j, there is a positive integer m(j) such that lam}- akJI < 
-iJ whenever k ~ m(j). Put c1 = am1, where j EN. It is not difficult to check 
that the sequence c = ( c 1) 1 EN is a fundamental sequence converging to the real 
number a. 

We would like to ask the reader to perform this check as an exercise. 



ANSWERS TO SELECTED EXERCISES 

CHAPTER 1 

1.1.1. (i) Let A, B be arbitrary sets such that A tJ_ B; for example, 
A= {1}, B = {2, 3}. Put C ={A}; then B tJ_ C, but A E C. 

(ii) The same sets. 

(iii) Since A =I= B, there exists an element b E B\A. The inclusion B s;: C 
implies that b E C. It follows that C cJ;_ A. 

(iv) Let A= {1}, B = {1, 2, 3}. Then if As;: B, A=/= B. Put C ={{A}, 
{B)}; then B E C and A E C. 

1.1.5. Since An C = 0, A\C =A, so we have (An B)\C = (A\C) n 
(B\C) =An (B\C) =(An B)\ C. Since An B s;: A and An C = 
0, (An B) n C = 0. It follows that (An B)\C =An B =1= 0. 

1.1.6. Suppose that (An B) U C =An (B U C). Let c be an arbitrary element 
of C. The inclusion C s;: (An B) U C implies that c E An (B U C) = 
(An B) u (An C). Then either c E An B or c E An C. Since An B s;: 
A and A n C s;: A, c E A, it follows that C s;: A. Conversely, suppose 
that C s;: A. Then (An B) U C = (AU C) n (B U C) = An (B U C). 
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1.1.12. Show thatX=B U (C\A). Indeed, AU X=A U B U(C\A)=A U(C\A) 
=C, An X=A n (B U (C\A))=(A n B) U (An (C\A))=B U 0=B. 

1.2.2. No. For example, <t> does not contain the pairs whose first component 
is 1. 

1.2.5. No. For example, <t> does not contain the pairs whose first component 
is 2. 

1.2.7. Let a, b be arbitrary positive integers and suppose that f(a) = f(b). 
Then aj(a + 1) = b/(b + 1). It follows that a(b + 1) = b(a + 1) or 
ab + a = ba + b and a = b, so that f is injective. The mapping f is 
not surjective, because the rational number 113 has no preimage. 

1.2.14. We have f(O) = 2 = /(2), so that f is not injective. The mapping f 
is not surjective because, for example, the positive integer 9 has no 
preimage. 

1.2.15. We have f(6) = {2, 3} = /(18), so that f is not injective. The map
ping f is not surjective because, for example, the singleton {4} has no 
pre image. 

1.2.17. Solution: Suppose that Gr(fJ) U Gr(f2) = Gr(/3) for some mapping 
/3 : A ---+ B. Let a be an arbitrary element of A. Then (a, /I (a)), 
(a, h(a)) E Gr(/3). It follows by definition that !I (a)= f2(a). Since 
this is true for all a E A, we deduce that !I = f2. The converse assertion 
is clear. 

1.2.19. If A is finite and f: A ---+ B is a bijective mapping, then IAI = IBI. 
This shows that there is no bijective mapping from A to a proper subset 
of A. 

Conversely, suppose that A is infinite. Then A contains a countable 
subset B. Let B = {bn In EN}, BI = {bn In> 1}. Define the mapping 
f: A---+ BI U (A\B) by f(a) =a whenever a E A\B. If a E B, then 
a = bn for some n E N. Put f (bn) = bn+ I· It is not hard to prove that f 
is bijective. 

1.3.3. Suppose that A is infinite. Then A contains a countable subset B. 
Let B = {bn In EN}. Define the mapping an :A---+ A by an(bn) = 
bn+I, an(bn+I) = bn, and an(a) =a whenever a¢:. {bn, bn+d· It is not 
hard to prove that an is a permutation of A for every n E N and an =I= ak 
whenever n =1= k. It follows that S(A) is infinite. 

Conversely, let S(A) be infinite. If we suppose that A is finite and 
lA I = n, then as above, IS(A)I = n!. This contradiction shows that A 
must be infinite. 
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1.3.5. Define the mapping f : A x B ---+ B x A by f(a, b) = (b, a) for each 
pair (a, b) E A x B. It is not hard to prove that f is bijection. 

1.3.7. Let f be an arbitrary mapping from C to A x B. Then for every c E C, 
we have f(c) = (ae, he) where ae E A, he E B. Define the mappings 
!A : C ---+ A and fs : C ---+ B by fA (c)= ae, fs(c) =he. Finally, 
define the mapping <I>: (A x B)e---+ Ae x Be by <I>(f) =(fA, fs), 
f E (A X B)e. 

The mapping <I> is injective. Indeed, let f, g : C ---+ A x B and sup
pose that f =!=g. Then, there exists an element dE C such that f(d) =!= 
g(d). We have f(d) = (ad, bd) where ad E A, bd E B, and g(d) = 
(ud, vd) where ud E A, Vd E B. In other words, (ad, bd) =I= (ud, vd). 
If ad=!= ud, then fA(d) =!= gA(d), so that fA=!= gA. If ad= ud, then 
bd =!= Vd, so that fs(d) =!= gs(d), and therefore fA=!= gA. In every case 
<I>(f) = UA, fs) =I= (gA, gs) = <I>(g). 

The mapping <I> is injective. Indeed, let (h 1, h2 ) E A e x Be. Then h 1 : 
C ---+ A and h2 : C ---+ B. Define the mapping h : C ---+ A x B by the 
rule h(c) = (h1 (c), h2(c)) for every c E C. Clearly, <I>(h) = (h1, h2), so 
that <I> is surjective. Being surjective and injective, <I> is bijective. 

1.3.9. Let k, n be arbitrary positive integers. Suppose that k =!= n. If k is even and 
n is odd, then f(k) ~ 0 and f(n) < 0; in particular, f(n) =!= f(k). Sup
pose that k, n are even. Then k = 2t, n = 2s, and t =!= s. We have f(k) = 
(n/2)- 1 = t- 1 =!= s- 1 = (n/2)- 1 = f(n). Suppose that k, n are 
odd. Then k = 2t- 1, n = 2s- 1, and t =!= s. We have f(k) = -(k + 
1/2) = -t =!= -s = -(n + 1/2) = f(n); hence, f is injective. Let q be 
an arbitrary integer. Suppose that q ~ 0, and put m = 2(q + 1), then 
f(m) = (m/2)- 1 = q + 1 - 1 = q. Suppose that q < 0 and put r = 
-1- 2q, then f(r) = -(r + 1)/2 = q. Hence f is surjective so f is 
bijective. Also 

1-l(n) = { 2(n + 1) whenever n ~ 0; } 
-2(n + 1) whenever n < 0. 

1.3.13. Solution: Let (n, m) and (k, t) be arbitrary pairs of positive integers. 
Suppose that f(n, m) = f(k, t), that is 2n-1(2m- 1) = 2k-1(2t- 1). 
Since the numbers 2m - 1 and 2t - 1 are odd, 2n-l = 2k-l. It follows 
that n - 1 = k - 1 and n = k. Thus 2m - 1 = 2t - 1, so that m = t. In 
other words, (n, m) = (k, t); hence f is injective. 

The mapping f is surjective. Indeed, if q is an arbitrary positive 
integer, then q = 2s r where r is odd and this representation is unique. 
We haver= 2u- 1. Then clearly, q = f(s + 1, u); thus f is bijective. 
Also if q = 2s (2u - 1) is an arbitrary positive integer, then f- 1 (2s (2u -
1)) = (s + 1, u). 
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1.3.15. The fact that f is a permutation of Z is clear. The mapping g is injective. 
Indeed, let n, m be arbitrary distinct integers. If n, m are even, then 
g(n) = n =/= m = g(m). If n, m are odd, then g(n) = n + 2 =1= m + 2 = 
g(m). Ifn is even and m is odd, then g(n) = n is even and g(m) = m + 2 
is odd, so that g(n) =/= g(m). 

The mapping g is surjective: let k be an arbitrary integer. If k is even, 
then k = g(k); if k is odd, then k = (k- 2) + 2 = g(k- 2). Similarly, 
we can prove that h is a permutation of Z. 

Finally, (f o f)(x) = f(f(x)) = f(x + 1) = (x + 1) + 1 = x + 2. 
Let x be even, then (go h)(x) = g(h(x)) = g(x + 2) = x + 2. If x is 
odd, then (go h)(x) = g(h(x)) = g(x) = x + 2. If again x is even, then 
(h o g)(x) = h(g(x)) = h(x) = x + 2. If x is odd, then (h o g)(x) = 
h(g(x)) = h(x + 2) = x + 2. 

1.3.17. We have (go f)(x) =g(f(x)) =g(x2 + 2) = ((x2 + 2)/2)- 2 = (x2 j2) 
-1; (fog)(x)=(f(g(x))=f((xj2)-2)=((xj2)-2)2 +2=(x2j4)-
2x + 6; ((fog) o f)(x) = (f o g)(f(x)) = (f o g)(x2 + 2) = ((x2 + 2)2 

/4)- 2(x2 + 2) + 6 = ((x4 + 4x2 + 4)/4)-2x2 + 2=x4j4 + x 2 + 1-
2x2 + 2 = x 4j4- x 2 + 3; (f o (go f))(x) = f((g o f)(x)) = f((x 2 /2) 
- l) = ( (x2 j2) - 1 )2 + 2 = x 4 j4 - x 2 + 1 + 2 = x 4 j4 - x 2 + 3. 

1.3.19. Define the mappings fJ : Q ~ Q by f 1 (x) = 1 - x, h(x) = x(lj3), 
f3(x) = 1 + x, j4(x) = x(1/5) for all x E Q. Then (/4 o h o h o /1 ((x))) 
= /4(/3(h(/J ((x))))) = (f4(/3(h(l - x)))) = /4(!3((1 - x)(lj3))) = 
j4(l + (1- x)(1/3)) = (1 + (1- x)(1j3))(1/5). 

1.3.20. Suppose that f is surjective. Let y be an arbitrary element of B. Then, 
there exists an element a E A such that b = f(a). We have g(b) = 
g(f(a)) = (go f)(a) = (h o f)(a) = h(f(a)) = h(b). Since domains 
and the value areas (ranges) of g and h coincide, g =h. Conversely, 
assume that f is not surjective. Then lmf =1= A. Let u E B\lmf, 
v E lmf. Define the mapping g: B ~ B by g(u) = v and g(b) = b 
for all b =/= u; then g =/= £s. We have (go f)(a) = g(f(a)) = f(a) = 
£8 (/(a)) = (£ 8 o f)(a). Since the domains and the ranges of go f and 
£so f coincide, go f =£so f. However, g =/= £s. This contradiction 
shows that f must be surjective. 

1.4.1. Let n = 2, then 23 - 2 = 6 = 2 x 3. Suppose that n > 2 and we have 
already proved that 3 divides k3 - k for all k < n. Putt= n- 1, then 
n3 - n = (t + 1)3 - t- 1 = t3 + 3t2 + 3t + 1 - t- 1 = (t3 - t) + 
3(t2 + t). By induction hypothesis 3 divides t3 - t, therefore 3 divides 
and n3 - n. 

This problem has an easier and more elegant solution: n3 - n = (n -
1)n(n + 1). Observe that a product of any three consecutive positive 
integers is divisible by 3. 
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1.4.3. Since n is odd, we can represent n as 2k + 1, where k is a natural 
number. In other words, we must prove that 8 divides (2k + 1)2 - 1 
for each positive integer k. Let k = 1; then 32 - 1 = 8. Suppose that 
k > 1 and we have already proved that 8 divides (2m+ 1)2 - 1 for 
all m < k. Put t = k- 1, then (2k + 1)2 - 1 = (2(t + 1) + 1)2 - 1 = 
((2t + 1) + 2)2 - 1 = (2t + 1)2 + 4(2t + 1) + 4- 1 = (2t + 1)2 - 1 + 
8t + 4 + 4 = ((2t + 1)2 - 1) + 8(t + 1). By induction hypothesis, 8 
divides (2t + 1)2 - 1, and therefore 8 divides (2k + 1)2 - 1. 

Here is another direct solution: Just observe that (2k + 1)2 - 1 = 
(2k)2(k + 1) = 4k(k + 1). One of the numbers k or k + 1 is even. 

1.4.5. Let n = 1, then 13 = (1 (1 + 1) /2)2. Suppose that n > 1 and we have 
already proved this equation for all k < n. Putt= n- 1; then by induc
tion hypothesis 1 + 23 + 33 + · · · + t 3 = (t(t + 1)/2)2. We have 1 + 
23 + 33 + ·. · + n3 = 1 + 23 + 33 + · · · + t 3 + (t + 1)3 = (t(t + 1)/2)2 

+(t + 1)3 = (1/4)(t2(t + 1)2 + 4(t + 1)3) = (l/4)((t+ 1)2(t2+4t+4)) = 
(1/4)(t + 1)2(t2 + 2)2)) = ((t + l)(t + 1 + 1)/2)2 = (n(n + 1)/2)2. 

1.4.7. Let n = 0; then 112 + 12 = 133. Suppose that n > 0 and we have already 
proved that 133 divides 11 m+2 + 122m+ I for all m < n. Put t = n - 1; 
then 

11 n+2 + 122n+1 = 111+1+2 + 1221+2+1 = 11 X 111+2 + 122! X 1221+1 = 

(144- 133)111+2 + 144 X 1221+! = 144 X 111+2 + 144 X 1221+! - 133 X 

111+2 = 144(111+2 + 1221+1)- 133 x 111+2. By induction hypothesis, 
133 divides 111+2 + 1221+1, so that 133 divides 144(1 tf+2 + 1221+1) -
133 X ltf+2. 

1.4.9. We have x 2 + 2x - 3 = (x + 3)(x - 1). Since x 2 + 2x - 3 is a prime, 
one of the numbers x + 3 or x - 1 must be 1 or -1, and another must be 
prime. If x + 3 = 1, then x = -2 and x - 1 = -3. If x + 3 = -1, then 
x = -4 and x- 1 = -5. If x- 1 = 1, then x = -2 and x + 3 = 1. If 
x- 1 = -1, then x = 0 and x + 3 = 3. Hence the required values are 
0, -2, -4. 

1.4.11. We haven= x +lOy. Furthermore, n = 4(x + y) + 3 and n = 3xy + 5. 
It follows that x +lOy= 4x + 4y + 3 and x +lOy= 3xy + 5. Then 
6y = 3x + 3, so that x = 2y- 1. Using the second equation, we see 
that 12y- 1 = 6y2 - 3y + 5 or 6y2 - 15y + 6 = 0. We have here only 
one integer root y = 2. It follows that x = 3 and n = 23. 

1.4.13. Let n = 3; then 23 > 6 + 1. Suppose that n > 0 and we have already 
proved that 2k > 2k + 1 for all k < n. Putt = n - 1; then n = t + 1. We 
have 2n- 2n- 1 = 21+1 - 2t- 2- 1. We observe that -2t- 3 > -4t, 
and therefore 21+1 - 2t- 2 + 1 > 21+1 - 4t- 2 = 2(21 - 2t- 1) > 0. 
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1.4.15. Suppose the contrary, let n = pt where p is an odd prime. 
Then 2n = 21P = (21)P. Put a= 21• We have 2n + 1 = aP + 1 = 
(a+ 1)(aP-1 - aP-2 + aP-3 - ... - a+ 1). Since a :=:: 2, a+ 1 :=:: 3. 
Suppose that aP-i - aP-2 + aP-3 - ···-a+ 1 = 1. Then ap-i -
aP-2 + aP-3 - · · · -a = 0 which implies that either a = 0 or a is a 
root of the polynomial X p-2 - X p-3 + X p-4 - · · · - 1 = 0. The first 
case is impossible. In the second case, a is a root of the polynomial 
X p-i - 1. The last polynomial has only two real roots, 1 and -1, but 
this is impossible in the case we considered. Hence, 2n + 1 is not a 
prime. This contradiction shows that n has no odd divisors. 

1.4.17. We have 1 + 2 + · · · + k = k(k+l) .It is not hard to check that the minimal 
positive integer k, for which k(~+l) is a three digit number is 44. It follows 
that k :::; 44. it is given that k( i') =a+ lOa + 100a where 1 :::; a :::; 9. 
It follows that k(k + 1) = 222a = 2 x 3 x 37 x a. Since 37 is a prime, 
it follows that either 37 divides k, or 37 divides k + 1. Since k :::; 44, it 
follows that either k = 37 or k + 1 = 37. In the first case, k(kil) = 703, 
in the second case k(kil) = 666; hence k = 36. 

1.4.19. We have (k!f = (k(k- 1)(k- 2) X · • • X 3 X 2 X 1)(1 X 2 X 3 X 

···X (k- 2)(k- 1)k) = (k X 1)((k- 1)2)((k- 2)3) X··· X ((k- t + 
l)t) x .. · x (3(k- 2))(2(k- 1))(1 x k). We show that (k- t + 1)t :=:: k 
for all t, 1 :::; t:::; k. Indeed, (k- t + l)t- k = kt- t2 + t- k = (k
t)(t- 1) 2: 0. Hence (k!)2 2: kk. (k!) 2 2: k X k X k X · · · · xk X k X k. 

k 

CHAPTER2 

2.1.2. Let A= [ajk], B = [bjk] and let C = AB = [cjk], D = BA = [djk]. 
Then ajk = 0 whenever j =1- k. Now Cjk = Li<t<n ajtbtk = ajjbjk 
and djk = Li<l<n bjtatk = bjkakk· Since Cjk = djk: we have ajjbjk = 
bjkakk or bjk(ajj-- akk) = 0. For j =1- k, we know ajj =1- akk so bjk = 0 
and B is diagonal. 

2.1.4. Let A= [ajk], B = [bjk], AB = [ujk]. In A, interchange rows m 
and t. We obtain the matrix C = [c jk] defined by c jk = a jk when
ever j =1-m, j =1- t and Cmk = a1k, Crk = amko 1 S k S n. Put CB = 
[vjk]. Then Vjk = Li<s<n Cjshsk = Li<s<n ajsbsk. whenever j =1-
m, t. Further, Vmk = L~<s<n Cmshsk = ~<s<n arshsk = Urk; Vrk = 
Li:::;s:;Sn Ctshsk = Li:::;s:;Sn am~b~k = Umk· - -

Thus if we interchange rows m and t of AB, then we obtain the matrix 
CB. 

2.1.6. Let A = [a jk], B = [bjk], AB = [u jk]. Transform the matrix A multi
plying row t by a and adding the result to row m. We obtain a matrix 



2.1.7. 

2.1.9. 

2.1.11. 
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C = [cjkl where Cjk = Gjk whenever j i= m, Cmk = Gmk + aa1b 1 S 
k .::=: n. Put c B = [vjk]. Then Vjk = L!<s<n Cjsbsk = L!<s<n Gjsbsb 
whenever j i= m, t. Further, Vmk = LJ:s:n Cmsbsk = LJ~s~n(Gms + 
ClGrs)bsk = LJ:os~n Gmsbsk + LJ:os~n ctarslJsk-= Umk + Cl L;~:~n Grsbsk 
= Umk + ClUtk· 

Thus if we transform the matrix A B multiplying row t by a and 
adding the result to row m, then we obtain the matrix C B. 

1 3 6 10 
0 1 3 6 
0 0 1 3 
4 0 0 1 

0 0 0 0 

1 0 0 0 
0 1 0 0 
3 3 1 3 
0 0 0 1 

0 0 0 0 
0 0 0 0 

1 8 28 56 
0 1 8 28 
0 0 1 8 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

70 
56 
28 
8 
1 
0 
0 
0 
0 

n(n + 1)/2 
n(n- 1)/2 

(n- 1)(n- 2)/2 
0 

0 0 
0 0 
3 3 
0 0 

1 0 
0 1 

56 
70 
56 
28 
8 
1 
0 
0 
0 

28 
56 
70 
56 
28 
8 
1 
0 
0 

8 1 
28 8 
28 8 
70 56 
56 700 
28 56 
8 280 
1 8 
0 

2.1.12. A7 = [bjk], where b115 = 1,bzi6 = 1, b317 = 1, · · · ,bn-14n = 1, and 
all other elements are 0. 

2.1.13. Put A= [ajkl. N = [bjk], AN= [cjkl where bjk = Gkj for all 1 _:::: j, 
k .::=: n. Then Cjk = L!<m<n Gjmbmk LJ<m<n GjmGkm; Ckj = L!<m<n Gkm 
bm; = LJ~m~n GkmGjm~ So Cjk = Ckj for all 1 .::=: j, k _:::: n. - -

2.1.15. We have A 1 =-A, B1 =-B. Suppose that AB = BA, then (AB) 1 = 

B 1 N = (-B)(-A) = BA = AB; hence AB is a symmetric matrix. Con
versely, suppose that AB is a symmetric matrix. Then (AB) 1 = AB. 

On the other hand, (AB) 1 = B 1N = (-B)(-A) = BA. It follows that 
BA = AB. 
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2.1.17. Using Theorem 2.1.10 we see (ABAB ... ABA)1 = N B1 N B1 
••• 

AI B1 A1 = ABAB ... ABA. 

2.1.19. Let A= [ajk], A2 = [bjk]. Then ajm = 0 if j :=:: m. We have bj,j+l = 
LJ<m<n ajmam,j+l = ajlal,j+l + aj2a2,j+l + · · · + ajjaj,j+l + aj,j+l 

a j+l,j-:;:1 +a j.j+2a j+2.j+l +···+a jnan,j+l = 0. Thus, all elements 
that are situated on the principal diagonal or on the diagonal just above 
this one are zero. Put A3 = [Cjk]. Then Cj,j+l = LJ<m<n bjmam,j+l = 
bjlal,j+l + bj2a2,j+l +· · · + bjjaj,j+l +bj,j+laj+l,j+l + bj,j+2aj+2,j+l 

+ ... + bjnan,j+l = 0 and Cj,j+2 = LJ<m<n bjmam,j+2 = bjlal,j+2 + 
bjza2,j+2 + · · · + bjjaj,j+2 + bj,j+laj+I,J+2-+ bj,j+2aj+2,j+2 + bj,j+3 

a j+3,j+2 + · · · + b jnan,j+2 = 0. Thus, all elements that are situated on 
the principal diagonal or on the two diagonals just immediately above 
this are zero; continuing this process we see that An = 0. 

2.2.5. Even. 

2.2.6. Even. 

2.2.12. sign n = ( -l)n. 

(
I 2 3 4 5 

2·2·14· 3 4 5 6 7 
6 . . . 2n - 3 2n - 2 2n - I 2n ) = 
8 . . . 2n- I 2n I 2 

(13)(46)(79) ... (3n - 2 3n). It follows that sign n = ( -I)3n. 

2.2.15. (; 
2 3 4 5 6 ... 3n -2 3n - 1 3n ) 
3 1 5 6 4 ... 3n- 1 3n 3n -2 -

(123)(456)(789) ... (3n - 2 3n - l3n). Since every cycle of length 3 is 

an even permutation, sign n = 1. 

2.2.17. We have 

(; 2 3 4 5 ~)(rr~l) 2 3 4 5 rr~6)) 3 5 1 6 rr(2) rr(3) rr(4) rr(5) 

-c 2 3 4 5 6) ( 1 2 3 4 5 ~) - 2 3 5 1 6 4 2 4 1 6 3 

= (! 2 3 4 5 ~)· 3 2 5 

Then, 

( rr~l) 2 3 4 5 rr~6)) rr(2) rr(3) rr(4) rr(5) 

-c 2 3 4 5 ~) (! 2 3 4 5 ~) - 3 2 6 4 1 3 2 5 

= (~ 2 3 4 5 ~)· 6 1 6 2 
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2.2.20. We have 

(j 2 3 4 5 6 7 8 
9r -c 2 3 4 5 6 7 8 ~)· 6 5 7 4 2 1 9 8 - 5 2 4 1 7 6 5 8 

(j 2 3 4 5 6 7 8 9

r -c 2 3 4 5 6 7 8 ~). 6 5 7 4 2 1 9 8 - 4 6 7 3 1 2 5 8 

(j 2 3 4 5 6 7 8 9Y-C 2 3 4 5 6 7 8 ~)· 6 5 7 4 2 1 9 8 - 7 2 3 6 4 7 8 

(j 2 3 4 5 6 7 8 9

r -c 2 3 4 5 6 7 8 ~)· 6 5 7 4 2 1 9 8 - 1 6 3 4 5 2 7 8 

Therefore, it is easy to see that n 10 = (n5) 2 = s. Then, 

n97 = n90 on 7 = (n 10)9 o n5on2 = n5 o n2 = c 2 
3 4 5 6 7 8 ~ ) ( ! 2 3 4 5 6 7 8 ~) 5 2 4 1 7 6 5 8 6 3 4 5 2 7 8 

= (~ 2 3 4 5 6 7 8 9) 
6 4 1 7 2 3 8 9 . 

2.3.1. We have det(A) = LrrESn signna1rr(l)a2rr(2) .. . anrr(n)· Consider 
drr = signn a 1rr(l)a2rr(2) ... anrr(n)· In the first row, we have the only 
one nonzero element aln· Therefore if n(l) =f. n, then drr = 0. Suppose 
that n(l) = n. In the second row, only the elements a2n-! and a2n 
are nonzero. Since n(1) = n, n(2) =f. n. If n(2) =f. n - 1, then drr = 0. 
Suppose that n(l) = n, n(2) =f. n- 1. Using similar arguments we can 
show that only the element drr corresponding to the permutation 

iT= (
1 2 3 ... n-1n) 
n n-1 n-2 ... 2 1 

could be nonzero. The number of pairs forming inversions here 
is equal to n- 1 + n- 2 + · · · + 2 + 1 = n(n- 1)/2. Hence 

n(n-1) 

det(A) = (-1) 2 a,na2n-l···an-!2anl· 

2.3.3. Add the second and the third rows of the matrix. By Corollary 2.3.9 we 
obtain the new matrix 

b 
c 

c+a 
a+c 

2 

c 
a 

a+b 
b+a 

2 
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whose determinant is equal to the given one. Since the fourth row is a 
multiple of the third row, by Corollary 2.3.8 and Proposition 2.3.5, its 
determinant is 0. 

2.3.5. We have det(A) = det(A) = LrrESs signn a 1rr(l)G2rr(2)a3rr(3)a4rr(4)a5rr(5)· 
Consider drr = sign na 1rr(l)a2rr(2Ja3rr(3)a4rr(4)a5rr(5). Only the elements a11 
and a 13 in the first row are nonzero. Therefore if n(l) =!= 1, 3, then 
drr = 0. Suppose that n(l) E {1, 3}. In the second row, only the elements 
a21 and a23 are nonzero. If n(l) = 1, then n(2) = 3. If n(l) = 3, then 
n(2) = 1. In the third row, only the elements a31 and a33 are nonzero. 
If n(l) = 1 and n(2) = 3, then n(3) is not equal to 1 or 3, and hence, 
a 3rr(3) = 0. If If n(1) = 3 and n(2) = 1, then we have a similar case. In 
any case, a3rr(3J = 0, and therefore det(A) = 0. 

2.3.7. Exchange the positions of the first and the last rows, then the second and 
then - 1 rows, the third and then - 2 rows, and so on. Finally, we obtain 
the requested matrix. By Proposition 2.3.7, each of these transformations 
changes the determinant sign. The number of these transformations is 
n/2 if n is even, and (n - 1)/2 if n is odd. Therefore, the determinant 
of the new matrix is ( -l)n/2 if n is even and ( -l)<n-l)/2 if n is odd. 

2.3.9. The element a1ma23a3ja41ask corresponds to the permutation 

(~ 2 3 
3 j 

4 5) 
1 k . 

This permutation is odd if m = 2, j = 4, k = 5. 

2.3.12. The element ain-1a2na31a42 ... Gnn-2 corresponds to the permutation 

2.3.13. 

2 3 4 5 
n 1 2 3 

. .. n ) 

... n -2 · 

The numbers of pairs forming inversions relative to this permu
tation is (n - 2) + (n - 2), which is even. Hence the element 
a1n-1a2na31a42 ... Gnn-2 has the sign + in the decomposition of the 
determinant. 

After these transformations, we obtain the matrix 

Gnn Gn-In Gn-2n a2n Gin 

Gnn-1 Gn-In-I Gn-2n-I a2n-I GJn-1 

B= 

Gn2 Gn-12 Gn-22 a22 a!2 

Gn! Gn-1! Gn-2! a2! GjJ 
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Permute the columns of the matrix A in reverse order. We have 

Gin Gin-! Gin-2 GJ2 a11 

G2n G2n-i G2n-2 a22 a21 

A,= 
Gn-in Gn-in-i Gn-in-2 Gn-!2 Gn-ll 

Gnn Gnn-i Gnn-2 Gn2 Gni 

By exercise 2.3.7, det(AJ) = (-W12det(A) if n is even and det(A 1) = 
(-l)<n-ll/2det(A) if n is odd. Transposing A1, we obtain 

Gin G2n G3n 

Gin-! G2n-i G3n-i 

Gn-in Gnn 

Gn-in-i Gnn-i 

Gn-!2 

Gn-ll 

By Proposition 2.3.3, det(A2) = det(AJ). Permute the columns of 
the matrix A2 in inverse order. We obtain the matrix B. By exercise 
2.3.7, det(B) = (-l)nf2det(A2) = (-l)nf2det(AJ) = (-W12(-l)nf2 

det(A) = det(A) if n is even, and det(B) = ( -l)<n-l)f2det(A2) = 
(-l)<n-IJ/2det(A 1) = (-l)<n-Il/2(-l)<n-ll/2det(A) = det(A) if n is 
odd. 

2.3.15. The matrix A is as follows: 

llllllll 

2 2 2 2 2 2 2 2 
2 3 3 3 3 3 3 3 
2 3 4 4 4 4 4 4 

A= 2 3 4 5 5 5 5 5 
2 3 4 5 6 6 6 6 
2 3 4 5 6 7 7 7 
2 3 4 5 6 7 8 8 
2 3 4 5 6 7 8 9 

Multiplying the first column by -1 and adding the result to all other 
columns, we obtain the matrix A~o and then in the matrix A1 multiplying 
the second column by -1 and adding the result to all following columns, 
we obtain the matrix A2. Multiplying the third column by -1 A2 and 
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adding the result to all following columns, we obtain the matrix 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

A3 = 0 0 0 0 

0 0 0 

0 0 

0 

The determinant of this matrix is 1. 

2.3.17. Multiply the last row of the determinant of A by -1 and add it to all other 
rows to obtain the matrix A1 whose determinant, by Corollary 2.3.9, is 
equal to the given determinant. Multiply the first row of A 1 by -1 I x 
and add the result to the last row; then multiply the second row by -11y 
and add the result to the last row; then multiply the third row by -1 I z 
and add the result to the last row; then multiply the fourth row by 1 I z 
and add the result to the last row; then multiply the fifth row by 11y and 
add the result to the last row. Finally, we obtain the matrix 

X 0 0 0 0 X 

0 y 0 0 0 X 

0 0 z 0 0 X 
A2 = 

0 0 0 0 -z X 

0 0 0 0 -y X 

0 0 0 0 0 X 

whose determinant by Corollary 2.3.9 is equal to -(xyz)2. 

2.3.19. Interchange the first and second rows to obtain the matrix A1, whose 
determinant differs from the original only by sign (Proposition 2.3.7). 
Multiply the second row of A1 by -x and add it to all following rows. 
We will get the matrix A2, whose determinant is equal to the determinant 
of the matrix A1 (Corollary 2.3.9). Next, we add the third row to the first 
row; the fourth row and all following rows are added to the first row. We 
come to the matrix A3, whose determinant is equal to the determinant 
of the matrix A2 (Corollary 2.3.9). Now multiply the first row of A2 
by n-::_\ and add it to the third and all following rows. We come to the 
matrix A4, whose determinant is equal to the determinant of the matrix 
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A2 (Corollary 2.3.9). 

n- 1 0 0 0 0 0 
0 1 1 1 1 1 
0 0 -x 0 0 0 

A4 = 0 0 0 -x 0 0 

0 0 0 0 -x 0 
0 0 0 0 0 -x 

The determinant of the last matrix is equal to ( -l)n-2 (n - 1)xn-2 

(Proposition 2.3.11 ). This means that the given determinant is equal to 
(-l)n-1 (n _ 1)xn-2. 

2.4.4. 10. 

2.4.5. -4. 

2.4.6. 8. 

2.4.7. 12. 

2.4.8. -(ayz + bxz + cxy). 

2.4.9. abc- x(bc + ca + ab). 

2.4.10. -84. 

2.4.11. -84. 

2.4.12. 98. 

2.4.13. 14. 

2.5.2. It follows that det(A)2 = 0, so that det(A) = 0. Hence 

We have now 

So we obtain the system 

A_ ( x Y ) 
- ax ay · 

x 2 +axy = 0, 

xy +ay2 = 0, 

ax2 + a2xy = 0, 

axy +a2l = 0. 
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If a = 0, then x = 0 and 

If a =!= 0, then we obtain the following system: 

x 2 +axy = 0, 

xy +ay2 = 0. 

If x = 0, then y = 0 and A = 0. Suppose that x =!= 0, then we obtain 
the system 

x +ay = 0, 

xy + ay2 = 0. 

If y = 0, then x = 0 and A = 0. Suppose that y =!= 0, then we obtain 
x + ay = 0. It follows that y = -:. 

2.5.3. A-1 =I- E12 + 2£13- 2£23· 

2.5.4. Yes. 

2.5.6. A-1 __ 1 ( d ~b). -ad-be -c 

2.5.7. A-1 = ( COSet smet ). -smet COSet 

A-I-l c 1 1 

-~) 2.5.8. 1 -1 
- 4 1 -1 1 -1 . 

1 -1 -1 1 

A-I~ ( 

22 -6 -26 
17 ) 

2.5.9. -17 5 20 -13 
-1 0 2 -1 . 

4 -1 -5 3 

1 -1 1 -1 1 -1 -1 1 
0 1 -1 1 -1 1 -1 1 -1 
0 0 1 -1 1 -1 1 -1 1 
0 0 0 1 -1 1 -1 1 -1 

2.5.10. A - 1 = 0 0 0 0 1 -1 1 -1 1 
0 0 0 0 0 1 -1 1 -1 
0 0 0 0 0 0 1 -1 1 
0 0 0 0 0 0 0 1 -1 
0 0 0 0 0 0 0 0 1 
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2-n 1 
1 -1 0 

2.5.11. A -I = 0 -1 

0 0 -1 

( -1 -1 ). 2.5.12. X= 
2 3 

2.5.13. X = ( ~ ;). 

25.14. X~ ( ~ 4 n 1 
3 

CHAPTER3 

3.1.1. We have (m, a)* (n, b) = (m +an, ab), (n, b)* (m, a)= (n + bm, ba). 

3.1.2. 

In particular, (3, -1) * (2, 1) = (1, -1), (2, 1) * (3, -1) = (5, -1), 
so that this operation is not commutative. Further, ((m, a)* (n, b))* 
(k, c) = (m +an, ab) * (k, c) = (m +an+ abk, abc).(m, a)* ((n, b)* 
(k, c))= (m, a)* (n + bk, be)= (m +an+ abk), abc), so that this 
operation is associative. The pair (0, 1) is an identity element. Indeed, 
(m,a) * (0, 1)=(m +a0,a1)=(m,a), (0, 1) * (m,a)=(O+ 1m, 1a)= 
(m, a). Furthermore, (m, a) * (-am, a) = (m +a( -am), a2) = (m -
m, 1) = (0, 1), so that every element has an inverse. 

e a b c 
e e a b c 
a a e c b 
b b c e a 
c c b a e 

3.1.3. We have al_b = a2 + b2 = b2 + a2 = bl_a, so that this operation is 
commutative. Further, (al_b)l_c = (a 2 + b2)l_c = (a 2 + b2) 2 + c2, al_ 
(bl_c) = al_(b2 + c2) 2 = a2 + (b2 + c2) 2. In particular, (21_0)1_1 = 17, 
21_(01_1) = 5, (a 2 + b2)l_c = (a 2 + b2) 2 + c2, so that this operation is 
not associative. The identity element does not exist. 

3.1.5. (i) (a • b) • c = (a + b + ab) • c = (a+ b + ab) + c +(a+ b + ab)c 
=a +b +c +ab +ac +be +abc, a • (b •c)=a • (b+ c+bc)= 
a+ (b + c +be)+ a(b + c +be) =a+ b + c +be+ ab + ac + 
abc, so that this operation is associative. 
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(ii) We have a • b = a + b + ab = b + a + ba = b • a, so that this 
operation is commutative. 

(iii) Suppose that a =I= -1. If a • b =a • c, then a+ b + ab =a + c + 
ac. It follows that b(l +a) = c(l +a) and hence b =c. If b = c, 
then clearly a • b =a • c. 

(iv) The number 0 is an identity element relative to this operation: a • 
0 = a + 0 + aO = a. 

(v) Suppose that 0 =a • b =a+ b + ab. It follows that a+ b(l +a) 
= 0 or b = (-a)/ ( 1 + a). 

Hence if a =1= -1, then a has an inverse. 

3.1.7. We have ((a, b) • (c, d)) • (u, v) = (ac- bd, be+ ad) • (u, v) = ((ac
bd)u - (be+ ad)v, (be+ ad)u + (ac- bd)v) = (acu - bdu - bcv
adv, bcu + adu + acv- bdv); (a, b) • ((c, d) • (u, v)) =(a, b) • (cu
dv, du + cv) = (a(cu- dv)- b(du + cv), b(cu- dv)+a(du + cv)) = 
(acu - adv- bdu - bcv, bcu - bdv + adu + acv), so that this opera
tion is associative. Further, (a, b) • (c, d)= (ac- bd, be+ ad), (c, d) • 
(a, b) = (ca -db, da + cb), so that this operation is commutative. The 
pair (1, 0) is an identity element. Indeed, (a, b) • (1, 0) =(a, b). 

e a b c 
e e a b c 

3.1.8. a a a c c 
b b c b c 
c c c c c 

e a b c 
e e a b c 

3.1.9. a a b c c 
b b c e a 
c c e a b 

3.1.11. By Theorem 1.1.10, Sis a sernigroup relative to the operations nand U. 
Consider the mapping¢: S---+ S, defined by: for every A s; M we put 
¢(A) = M\A. The mapping ¢ is injective: if M\A = cp(A) =¢(B) = 
M\B, then A= M\(M\A) = M\(M\B) =B. The mapping¢ is surjec
tive: for each subset C of M we have C = M\(M\C) = ¢(M\C). Fur
thermore, cp(A n B) = M\(A n B) = (M\A) U (M\B) = cp(A) U ¢(B), 
so that ¢ is an isomorphism. 

3.1.13. We have ((a, b)t(c, d))t(u, v) = (ac- 2bd, be+ ad)t(u, v) = ((ac-
2bd)u - 2(bc + ad)v, (be+ ad)u + (ac- 2bd)v) = (acu- 2bdu-
2bcv- 2adv, bcu + adu + acv - 2bdv); (a, b)+ ((c, d)+ (u, v)) = 
(a, b) + (cu - 2dv, du + cv) = (a(cu - 2dv) - 2b(du + cv), 
b(cu - 2dv) + a(du + cv)) = (acu - 2adv - 2bdu - 2bcv, 
bcu - 2bdv + adu + acv), so that this operation is associative. 
Further, (a, b)t(c, d) = (ac - 2bd, be + ad)(c,!!J t_ (a, b) = 
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(ca - 2db, da + cb), so that this operation is commutative. The pair 
(1, 0) is an identity element. Indeed, (a, b)+(l, 0) =(a, b). 

Suppose that (1, 0) =(a, b)+(x, y) =(ax - 2by, bx + ay). We 
obtain ax- 2by = 1, bx + ay = 0. If (a, b)= (0, 0), then clearly 
such a pair (x, y) does not exists. Suppose that (a, b)+(O, 0). Then 
x = aj(a2 + 2b2

), y = ( -b)/(a2 + 2b2 ). 

3.1.15. We have (aTb)Tc = (pa + qb + r)Tc = p(pa + qb + r) + qc + r 
= p2a + pqb + pr + qc + r; aT(bTc) = aT(pb + qc + r) = pa + 
q(pb + qc + r) + r = pa + qpb + q2c + qr + r. Since (aTb)Tc = 
aT(bTc) for arbitrary a, b, c, then p2a + pqb + pr + qc + r = 
pa + qpb + q2c + qr + r or a(p2 

- p) + c(q - q2) + (p- q)r = 0. 
Put a = c = 0, we obtain (p - q )r = 0. It follows that either r = 0 
or p = q. Put a= 0, c = 1, we obtain q(q- 1) = 0. It follows that 
either q = 0 or q = 1. Put a= 1, c = 0, we obtain p(p- 1) = 0. It 
follows that either p = 0 or p = 1. If p = q = 0, then aTb = r for 
all a, b. Clearly, in this case we obtain an associative operation. If 
p = 1, q = 0, then r = 0 and aTb =a, if p = 0, q = 1, then again 
r = 0 and aTb =b. In this case, we obtain an associative operation. 

3.2.2. No solution. 

3.2.3. c-f, ·1{), cf, -f). 
3.2.12. -i3C5 + 9a- a 2). 

3.3.1. Rez1Imz2 + Rez2 Imz1 = 0. 

3.3.2. Rea= -238, Ima = 0. 

3.3.3. Rea= 1, Ima = 0. 

3.3.4. -~ + i. 

3.3.6. -l~v's 

3.3.7. -1 + i, -4- i. 

3.3.8. -1- i. 

3.3.9. 1, (cos s:rr + i sin S:rr) 2v2 4 4 • 

3.3.10. cos(rr- a)+ i sin(rr- a). 

3.3.11. 0. 

3.3.12. 1. 

3 3 13 1-ivfJ 1+ivfJ -1-ivfJ -1+ivfJ . . . -2-, -2-, -2-, -2-



506 ALGEBRA AND NUMBER THEORY: AN INTEGRATED APPROACH 

3 3 14 1 2 3 4 h 2n · · 2n ... - ,-a,-a ,-a ,-a were a =cos 5 +tsm 5 . 

CHAPTER4 

4.1.1. No. 

4.1.2. Yes, an action of M on A. 

4.1.3. Yes, an action of M on A. 

4.1.4. Yes, an action of M on A. 

4.1.5. No. 

4.1.6. No. 

4.1.7. No. 

4.1.8. Yes. 

4.1.9. Yes. 

4.1.10. Yes. 

4.1.11. Yes. 

4.1.12. Yes. 

4.1.14. No. 

4.1.17. No. 

4.1.18. No. 

4.1.19. No. 

4.2.2. Yes. 

4.2.3. For example, if A={a1, ••• ,an}, then {aJ},{aJ,a2},{aJ,a2,a3}, ... , 
{aJ, ... , an-d. {aJ, ... , an-!• an} is a basis of SJ3(A). 

4.2.4. Yes, dimJR(B) = 1. 

4.2.5. Yes, dimJR(B) = 21. 

4.2.6. Yes, dimJR(B) = 220. 

4.2.9. Yes, dimJR(B) = 91. 

4.2.10. Yes, dimJR(B) = 820. 

4.2.19. Yes, dimJR(B) = 171. 
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4.3.10. a = 0, and the corresponding rank is 2. 

4.4.3. dimJR(A/ B) = 1. 

4.4.4. dimJR(A/B) =55. 

CHAPTERS 

5.1.1. Yes. 

5.1.2. No. 

5.1.3. Yes. 

5.1.4. Yes. lmf = JR3, Kerf= {(0, 0, y, -y) I y E JR}. 

5.1.5. Yes. lmf={(O,a, {3) I a, f3 E JR}, Kerf={(a, -a, y, A.) I a, y, A. E JR}. 

5.1.10. Yes. 

5.1.11. Yes. 

5.2.1. G -1 0) 
0 1 . 

5.2.2. un 
5.2.5. 16. 

5.2.6. 1089. 

5.4.6. A. 1 = A.2 = A.3 = -1. The eigenvectors are a(l, 1, -1), where a is a 
nonzero real number. 

5.4.7. A. 1 = A.2 = A.3 = 2. The eigenvectors are a(l, 2, 0) + {3(0, 0, 1), where a 
and f3 are real numbers not simultaneously 0. 

5.4.8. A. 1 = 1, A.2 = A.3 = 0. The eigenvectors for A. 1 are a(l, 1, 1) and for 0 are 
{3(1, 2, 3), where a and f3 are real numbers. 

5.4.9. A.1 = A.2 = A.3 = 1. The eigenvectors for A. 1 are a(3, 1, 1), where a is a 
nonzero real number. 

5.4.10. Let M be the matrix off relative to some basis. We have det(M - X I) = 
(A.1 -X) ... (A.n -X). Then det(M +X I) = (A.1 +X) ... (A.n +X), 
therefore det(M2 - X2 I) = det((M- X I)(M +X/)) = det(M
X/)det(M +XI) = (A.1- X) ... (A.n- X)(A.1 +X) ... (A.n +X)= 
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(Af - X2) ... (A~ - X2). Since X is a variable, we conclude that 
Af, ... , A~ of the characteristic polynomial of f 2• 

5.4.11. Let M (respectively R) be the matrix of f (respectively g) relative 
to some basis. We have det(RM- XI)= det(M- 1(MR- XI)M) = 
det(M- 1 )det(M R- X /)det(M) = det(M R- X/). 

CHAPTERS 

6.1.1. Yes. 

6.1.2. Yes. 

6.3.7. yf- Yi- yj. 

6.3.8. yf + Yi - yj. 

639 2 2 2 2 
• • • Y1 - Y2- Y3 - Y4· 

6.3.10. yf - Yi. 

6.3.11. yf + Yi - yj. 

6.4.10. y = (1, -1, -1, 5), z = (3, 0, -2, -1). 

6.4.11. y = (3, 1, -1, -2), z = (2, 1, -1, 4). 

6.4.12. y = (5, -5, -2, -1), z = (2, 1, 1, 3). 

CHAPTER7 

7.1.19. For each element OR i= a E R, consider the mapping ta : R --+ R defined 
by ta(x) =ax, where x E R. Suppose that x, yare elements of R such 
that ta(x) = ta(y). Then ax= ay. Since R has no zero divisors, it follows 
that x = y. Hence the mapping ta is injective. In this case, I R I = lim ta I, 
which implies that R = Im ta. Then, every element of R has a preimage 
relative to ta. In particular, there exists an element u such that e = ta (u) = 
au. This means that u = a- 1• Hence, every nonzero element of R has a 
multiplicative inverse, so R is a field. 

7.5.2. a=-5,b=-1,c=6. 

7.5.3. a = 2, b = 5, c = 7. 

7.5.4. a = 6, g(X) = ±(X2 + 3X + 1). 

7.5.5. a = 6, b = 2. 



7.5.6. Yes, if a E Z. 

7.5.9. a= -1. 

7.5.10. a= -1, ~-

7.5.11. b = -1- a 2, c =a. 

7.5.15. a= 1, b = -1. 

7.6.2. 63. 

7.6.3. 728. 

7.6.6. No. 

7.6.7. Yes. 

7.6.8. Yes. 

7.6.18. (2,3), (3,2). 

ANSWERS TO SELECTED EXERCISES 509 

7.6.19. (1, 2, -2), (1, -2, 2), (2, 1, -2), (2, -2, 1), (-2, 2, 1), (-2, 1, 2). 

CHAPTERS 

8.3.4. Use the group S3. 

8.3.10. Use the group Zz x Zz. 

8.4.6. s3. 
8.4.9. S3/ A3 ~ Zz. 

8.4.10. Using exercise 8.4.7., if H is subgroup of order 6 then H is normal in 
G. Also by exercise 8.4.3., we have, for example, (1 2 3)2 = (1 3 2) E H. 
We can show similarly that every cycle of length 3 is in H. However A4 
has 8 cycles of length 3. 

8.5.5. (a) Yes, isomorphism; (b) No; (c) No; (d) Yes, kerf= {(a, -a)ia E G}; 
(e) Yes kerf= N. 

8.5.12. kerf= Z and Q./Z ~ {z E Cizn = 1, for some n}. 

CHAPTER9 

9.1.9. 5 + 9i = (1 + i)(7 + 21). 

9.1.13. -2 + lli = ( -2 + i)(3 - 4i). 
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9.1.20. For example, 20 = 2 x 2 x 5 = (3 + i,JIT)(3- i,JIT). 

9.2.1. Since N(-1 + i) = 2, N(2- i) = 5, we have GCD(-1 + i, 2- i) = 
1, LCM(-1 + i, 2- i) = (-1 + i)(2- i). 

9.2.3. Since N(5- w-) = 25 + 5 + 1 = 31, N(7 + 2w-) = 49- 14 + 4 = 39, 
we have GCD(5- w-, 7 + 2w-) = 1 and LCM(5- w-, 7 + 2w-) = 
(5- w-)(7 + 2w-). 

9.2.8. Since GCD(f(X), g(X)) = X- 2, LCM(f(X), g(X)) = X 6 + 2X5 + 
4X4 + 5X3 + 2X2 + 4X + 3. 

9.2.11. If a= b, then f(X) = g(X)(X- a) 2 + f'(a)X + (f(a)- f'(a)a). 

If a =I= b, then f(X) = g(X)(X- a)(x- b)+ ((f(a)- f(b))(a-
b)-1)X + (f(b)- ((f(a)- f(b))(a- b)- 1)b). 

9.2.12. GCD(f(X), g(X)) =X+ 1. 

9.2.14. GCD(f(X), g(X)) =X- 3. 

9.2.15. GCD(f(X), g(X)) = X2 -X+ 1. 

9.2.16. GCD(f(X), g(X)) = X2 + (i + 1)X + i. 

9.2.17. LCM(f(X), g(X)) = X4 - 4X3 + 4X2 - 5X- 2. 

9.2.18. LCM(f(X), g(X)) = (2X3 + 7X2 + 4X- 3)(X- 1). 

9.2.19. LCM(f(X), g(X)) = X 5 + 2iX4 - 2X3 - 2iX2 +X. 

9.2.20. u(X) = 1, v(X) =-X+ 1. 

9.3.1. 3X3 + 2X2 +X+ 1 =(X- 2)(3X2 + 3X + 2). 

9.3.2. X4 + 2X3 + 1 = (X- 2)(X3 + X2 + 2X + 1). 

9.3.9. 2X5 - X4 - 6X3 + 3X2 + 4X- 2 =(X- 1)(X + 1)(X- 1)(X2- 2). 

9.3.13. -1, -2, -3, 4. 

9.3.14. !· 
9.3.15. -3. 

9.3.16. -5. 

9.3.17. 0. 

9.3.18. f(X) =(X- 2)2(X- 1). 

9.3.19. f(X) = (X2 +X+ 1)2 (X + 2). 



9.3.20. f(X) =(X+ i)3 (X- 2i)2. 

9.4.9. 22. 

9.4.10. 1, 4, 1, 4. 

9.4.11. 21. 

9.4.12. 6. 

9.4.13. 2. 

9.4.14. 01. 

9.4.15. 61. 
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9.4.16. We have 42 = 2 · 3 · 7, a7 - a= (a- 1)a(a + 1)(a2 - a+ 1)(a2 +a+ 
1). It is obvious that the product (a - 1)a(a + 1) is divisible by 2 x 3 
for each a EN. If 7 divides a, then 7 divides a7 - a, if GCD(a, 7) = 1, 
then by Euler theorem a6 = 1 (mod 7) and a7 =a (mod 7). In other 
words, 7 divides a 7 - a for each a E N. It follows that 42 = 2 x 3 x 7 
divides a7 -a for each a E N. 

9.5.4. 5. 

9.5.5. 74. 

9.5.6. 14. 

9.5.7. x = 18 (mod 35). 

9.5.8. x = 86 (mod 315). 

9.5.9. a = 1 (mod 6). 

9.5.10. 5,8,12. 

9.5.12. No solution. 

9.5.16. 2,9. 

9.5.18. 6,7,10,11. 

9.5.19. 9,12. 
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