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Preface

Differential calculus is a powerful mathematical tool that finds its applications in
almost every branch of sciences and engineering, The subject also occupies a
central position in mathematics from which different lines of development extend
in many directions.

The book, now in its second edition, is primarily intended for undergraduate
students of mathematics and engineering who have already completed their first
course of study in calculus at the senior secondary or intermediate classes.

The text is divided into 11 chapters. Chapters 1 and 2 discuss differentiation
and successive differentiation of functions such as trigonometric functions,
logarithmic and exponential functions, implicit and explicit functions and their
inverse. Leibnitz's theorem, an important theorem on successive differentiation,
has also been included in the chapter on successive differentiation.

Taylor’s and Maclaurin’s (or Stirling’s) theorems on expansion of series have
been discussed in Chapter 3. In Chapter 4, limit of functions of indeterminate
forms is discussed with the help of L'Hospital rule. Chapter 5 deals with the partial
differentiation of homogeneous functions. The concept of total differentiation is
also discussed in this chapter.

Chapters 6-11 deal with applications of differential calculus such as finding
equations of tangents and normal, curvature, asymptotes to a curve, maxima and
minima of functions, envelopes and curve tracing. Equations of a tangents,
normals, subtangents, subnormals in Cartesian, polar and parametric forms are
discussed in Chapter 6. Geometric representation of a curvature, different types of
curvatures and radius of curvature at a point and at the origin are discussed in detail in
Chapter 7. Chapter 8 presents different methods of finding asymptotes to Cartesian
and polar curves. Maxima and minima of functions of two and more than two
variables are explained in Chapter 9 with the help of simple geometrical examples.
Chapter 10 discusses equation of envelopes. An asymptote to a curve is an
important geometrical concept that helps trace a curve; a separate
chapter (Chapter 11) is devoted to the concept and methods of tracing curves.

Solved and exercise problems are part of almost every section. All the
exercise problems are provided with their answers to build up the confidence of
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viii Preface

students and encourage them to study the topic in depth. Solved problems and
practice exercises have been taken from previous years' examination papers of
various universities and competitive examinations. Multiple-choice questions,
given at the end of the book, will help students prepare for civil services and other
competitive examinations.

The present edition of the book is thoroughly revised as per the latest
syllabus of Indian universities to fulfill the need of students. Rolle's theorem, the
most important theorem in differential calculus, has also been introduced.

We are very much indebted to our colleagues for their kind cooperation and
suggestions while preparing the manuscript. We also sincerely thank PHI Learning
especially its editorial and production team, for their painstaking efforts in
producing second edition of this book.

We would greatly appreciate receiving suggestions and constructive
criticisms from teachers and academics on improving the contents and presentation
of the book.

Ahsan Akhtar
Sabiha Ahsan



Introduction

By differential caleulus we mean the rate of change in one quantity corresponding
to the infinitesimal changes in the values of the other. They are so related that the
values of one depend on the values of the other. The subject of differential
calculus has its origin mainly in the geometrical problems of the determination
of the gradient of a curve at a point along the tangent. This subject has a large
number of physical concepts such as velocity at an instant, acceleration at an
instant, curvature at a point, density at a point, and specific heat at any temperature.
Each physical concept appears as a rate of change as against the average rate of
change. The fundamental concepts underlies the introduction to the notion of
derivatives.

Differential calculus has its origin in the solution of two old problems: one
of drawing a tangent line to a curve and the other of calculating the velocity
of non-uniform velocity of a particle. These problems were solved in a certain
sense by Sir Isaac Newton (English, 1642-1727) and G.W. Leibnitz (German,
1646-1716), and in the process, differential calculus was discovered.

It is applied to geometry, mechanics and other branches of theoretical physics
and also to social sciences, such as economics and psychology.

The application of differential equation is essentially based on the notion of
measurement. The real number is one of the main functions. In Mechanics, we
concerned with the notion of time and, therefore, in the application of Calculus
to Mechanics, the first step is to correlate the two notions of time and real
numbers. Similar is the case with other notions such as amount of heat, intensity
of light, force, etc. Thus it is clear that the knowledge of real numbers is important
for the study of the subject. We arrive the set of real numbers from the set of
rational numbers.

The set of integers {..., -3, -2, -1, 0, 1, 2, 3, ...} is well known to us. It
contains 0, natural numbers and their additive inverse. It is closed for addition,
multiplication and subtraction. But the ratio of two integers is not an integer
always.



X Introduction

If @ and b be two integers and & # 0, a number expressed in the form of
afb is called a rational number. The set of rational numbers contains all integers
and fraction. There are numbers WIZ, N3, .., W e, ... etc., which cannot be
expressed as a/b and they are called irrational. The set of real numbers contains
both the rational and irrational numbers. The line of real numbers is called dense.
The number of real numbers between any two different points, how close they
may be, is infinite. The greatest number does not exist. However, the symbol ee
stands for anything greater than which cannot be imagined; and we say that all
the real numbers lie between —eo and oo,

Some features of real number system R

Constant. A quantity whose value does not change in a problem, associated
with a given mathematical operation, is called a constant quantity. For
example, 7 is a constant, since in any situation the value of 7 will always be taken
as 7, it cannot mean any other number. Similarly, 5, 3/5, =, V2, e, etc., are
constants.

Variable. A quantity which assumes different numerical values in any problem,
associated with a given mathematical operation, is called a variable quantity. For
example, let A be any set and let x € A; the symbol (or letter) x denotes any
member of the set A, and is called a value of the variable. Generally, constants
denoted by the first letters of the alphabet: a, b, ¢, ... and variables are denoted
by the last letters of the alphabet: x, v, z, ...

Independent variable. A quantity which assumes any arbitrary value is called
an independent variable.

Dependent variable. A quantity whose value depends on the chosen values of
another independent quantity is called a dependent variable.

Closed and open intervals. Lel a, b be two given numbers such that @ < b. Then
the set of numbers x such that @ < x £ b is called a closed interval denoted by
the symbol [a, b]. We generally describe the situation as follows:

la, bl = (xx a S x5 b)
Thus
refa, bl=2asxsh

The set of numbers x such that @ < x < b is called an open interval denoted
by the symbol Ja, b[.
Intervals are called semi-closed or semi-open, that is ]a, b] or [a, b[, such that

la,b)=[x:a<x<b) and [a b] ={x:asx<b

The number & — a is the length of each of the intervals [a. b], la, b[.
la, b, [a, B.
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In differential calculus, the functional relation between two or more variables
is studied in much detail with the help of limiting values of indeterminate forms,

lim
A0

Lleth) = fx)
h

for different functions. The technique developed is powerful and is applied for
the study of several variables affecting each other simultaneously in different
branches of natural and social sciences even in circumstances, when an algebraic
method fails.



Important Formulae

1. Important limits and series

M limEZ—2 -t
e x—ga

(i) m“E-_-] , where x is a radian measure
=0y

—pom

(iii) Iim(l+%) =e¢ or l'i_’rrcl'(li-x)"':g

(iv) ].im

e'-1_ . (l+x)y -1
L 0l =2

(vi) ELnl =0 (-l<x<l)
(vii) L'Hospital rule: If ¢(a) = yla) = 0, then
L P L () _ #a)
lim ——=lim———=——
Y@ e V@
provided y{a) # 0.

= a constant,

2. Standard formulae for derivatives

n x
(i Dx':%:nx"' (ii) %:a' loga
(iii) %:ae" (iv) "f‘:%
(v) -—dk;i‘x =£]og.e (vi) —di;:lx=cosx
(vii) d‘i—f:-sinx (viii) dtanx _ ectx

xiii



xiv Impartant Formulae
. . d sec
(ix) deotx —cosec’x () ST s secxtanx
. .. dsin”'x |
(xi) M:—cosecx cotx  (xii) = =
dx dx 1-x
(i) dcos™ x _ 1 (xiv) dan'x_ 1
dx - dx 14+ 2°
(xv) —d cot”' x = 1 (xvi) dsec” x = _.—-—_.-.l
dx 1+ dx x,’x: -1
" .
(xvii} d cosec” x = ] (xviii) dsinh x cosh x
dx xyfxt -1 dx
(xix) i-°i—59-'“-;L-'\;=5inh.u' (xx) % =sech®x
(xxi) deothx _ ~ cosech®x {xxii) d sech x sech x tanh x
..., dcosech
(xxiii) O — —cosech x coth x
3. Fundamental theorems on differentiation
@ d@w) _du  dv (i) d(ulv) _ “dx " dx
dr  dx dx v
(iii) Given any function f(x, ¥) = 0,
f.

fedx + fdy=0 or

4, Meaning of differential coefficients

(i) Geometrical: For any curve y = f(x),

%=!’(x)=tanw.

where w is inclination of tangent to the curve of (x, ¥).

(ii) Rate measure: For any curve y = f(x),

dy _ .
= J(x)= Rate change of y with respect to x.
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Then
Ffxy>0, if yand x increase or decrease together
fix) <0, if y decreases when x increases, or vice versa.
5. Successive differentiation (nth derivative, where m and n are positive integers)

(i) D% = n! iy D= —" s
{m—n)!
(iii) D"(e™) = a"e™ (iv) D"a" = (log a)"a*

(v) D" sin (ax + b) = a" sin[%unwb]
(vi) D" cos (ax + b) =a”cos(%+ax+b]

(vi) D"(—] ]——‘"”""’ (viii) D" log(x + ay = SN (2 =D!

x+a) (x+a)” (x+a)"

(ix) D‘[ L ):"” AL Gin™ @sin(n +1)6, a:wﬁ(ﬂ
a

Py a2
(x) Leibnitz's theorem: If ¥ and v are function of x, then
WV, = gy + "Crttg vy + "Catlyavs + -+ + uv,
6. Rolle’s and Lagrange's mean value theorems

(i) Rolle’s theorem: If f(x) is continuous in a £ x £ b, differentiable in
a < x < b, and f(a) = f(b), there exists at least one value of ¢, when
x =g, such that f'(¢)=0,a<c < b.

(ii} Lagrange's mean value theorem: If f(x) is continuous in [a, b],
differentiable in ]a, b[ then

f) - fla)

fo===

{a<c<h)

7. Expansion of functions
(i) Taylor’s infinite series:
2 3
FOH )= £+ 0+ 2 0+ 0
(ii) Maclaurin's infinite series: '
F) = £0) +57(0) + %f‘(t}) ¥ %f"«)} o

(iii) Finite series with Lagrange's form of remainder:

3
Flxt D= fG)+ AW+ () o+ e [0+ R,

(n=1!
where

R, =h—lf"(x+6’k}, 0<@<l
n.
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xl =1

(n-1!

(iv) f(x)=f{0)+xf’(0)+%f'(0)+---+

where

o)+ R,

R, ==f"6n, 0<6<I
n:

8. Partial differentiation
(i) Euler's theorem on homogeneous functions:
(a) If u(x, y) is homogeneous function of degrees n, then

x-a-li-i- a—“—nu
ox yBy
(b) If u(x, y, z) be a homogeneous function of degree n, then
B_u+ a—M+za =nu
ax T e
(ii} Total and exact differentials:
(a) If u = ulx, y), then du = fidx + fidy
(b) If u = u(x, y, 2). then du = fdx + fdy + f.dz
(c) If fix, y) = 0, then
- & __f
fedx + f,dy =0 or o A
(d) ¢ dx + y dy is called exact if
I _dv
dy ox

9. Tangent and normal
(i) Equation of a tangent at any point (x, ¥) on the curve:
(@) y = f(x) is
dy
Y-y =Z(X - x)
(®) flx, y) =0 is
(X=-xf,+¥-yf,=0

(ii) Equation of the normal at (x, y) on y = f(x) or f(x, y) = 0 is

X—x:Y—y
£ £

(iii) Tangent at the origin: When a curve passes through the origin, for
equation of tangent at (0, 0), equating to zero the terms of the lowest
degree the equation of the curve gives the equation of the tangent at
the origin.

K -0E4r-y=0 o
dy
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xvii

(iv) Length of the tangent and normal:
(a) Cartesian form

Tangent =2 l+_v,2. Normal =y l-tvy,2
N
Subtangent =l, Subnormal = yv,
A

(b) Polar form

Subtangent =r’£, Subnormal =4
dr d
(v) Arc differential:
ds® = dy? + dy?

dy dy

—=tany —=siny =cosy

ds

dx ds
2 2
ds _ .[d_y] ds _ H(g
dx de) dy dy

(vii) Polar curves:
y=0+¢  p=rsing

do . 4o
m’¢=r}7' sm¢=rz_ cos¢=%,
d doy
dst = d? + P}, = I+[rw~]
dr dr

10. Curvature
(i) For s =f(y), y = flx), x = f(»)
ds 1+ y3)"? a+x)"
L E
dy Y2 x
(ii) For x = f(1), v = F(1),
2 #4342
[F—fF

(iii) For r = f(8), p = f(r), p = fly). Therefore,

(rl + ,iz)an dr dzp
42— dp dy

(iv) Curvature of the origin (Newton’s formulae): When x-axis (y = 0) and

y-axis (x = 0) are tangents
—limi = lim;1
p=hm=—=, . p=

yth yeait
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(v} Chord of curvature
Through the pole = 2p sin ¢
Parallel to x-axis = 2p sin W
Parallel to y-axis = 2p cos .
11. Asymptotes

(i) If y = mx + c be asymptote to any curve f(x, ¥) = 0. Find m, ¢. Solving
equations ¢ (x, mx + ¢) = 0 for infinite roots.

(ii) Asymptotes parallel to coordinate axes: For asymptotes parallel to
x-axis, equate to zero the coefficient of terms containing the highest
power of x in equation ¢(x, ¥) = 0 of the curve, provided it be not constant.
Similarly, for asymptotes parallel to y-axis, equate to zero the coefficient
of term containing the highest power of y.

(iii) Method using ¢.(m), @pi(m): Write

olx, ¥) = Bulx, ¥) + ¢n-|(xv ¥+ =0,

where ¢,(x, y) contain all terms of nth degree, and so on.

Put x = 1, y = m 10 obtain ¢ (m), ¢,_,(m) and differentiate @,(m) with

respect to m to find ¢, (m). Now ¢,(m) = 0 and ¢ = —¢,_(m)/¢",(m) for

each m, give different values of m, ¢ for the asymptotes y = mx + c.
(iv) fo(x, V=P, +F, =P, +F,0srsn-2,put P, =0, and each

linear non-repeated factor of P, give one asymptote. In case of repeated

factors, if

O(x, ¥) = (y = mx)*Ppy + F,p = 0.
Then asymptotes are
(y—mx) £ lim _fr;, =0.
12. Maxima and Minima - .
(i) Find f(x), f“(x), and let x = c, satisfy f'(x) = 0, then f(c) is a maximum
value if f“(c) < 0 and f(c) is a minimum value if f”(c) > 0.
(ii) Function of two variables u = f(x, y): Solve

¥
ax_By_o

for stationary point (x, ) = (a, b). Evaluate

i)

_9f o f
=55 g7

= , t=—= at(a,b)
dxdy oy
If rt - s* >0, f(a,b)isan extreme value of f(x, y) and it is maximum
if ¥ < O,minimum if r > 0
If rt - 52 <0, f(a, b) is not an extreme value
If rt — 52 = 0, doubtful case, investigate further.

r 5



Chapter 1

Differential Coefficients

1.1 Introduction

If the value of a variable x changes (increase or decrease) from x; to x;, then the
quantity x, — x; is called increment in x. In both the cases, we use the term
‘increment’ to denote the change. A very small increament in x is generally
denoted by dx (or Ax). We should remember that just as sin @ is not the product
of ‘sin” and ‘8", similarly &x is not the product of & and x, rather it is a symbol
of infinitesimal increment.

If y = f(x) is a function of x and if there is a change 8x in x, there must
be a change in the value of y. The corresponding change in y is denoted by &y.
Thus we have y + 8y = f(x + &x). Therefore,

dy = f(x + 8x) = f(x).

If f(x) denotes a finite single-valued function of x defined in a given interval,
and f(x + h) denotes the same function of (x + h), h being very small, then

fim flx+h) - f(x)
h—0 h
is called the differential coefficient or derivatives of f(x) with respect to x and is
denoted by f'(x). Thus
, . flx+h) = flx)
=1 e
F') :.]-T: h
That is, if ¥ = f(x), then

%af’(xJ,

1.2 Differentiation from the First Principle

The process by which we get the differential coefficient or derivative of a
function without application of any standard forms of derivatives or fundamental
principles of limits is termed as differentiation from *first principles” or ‘definition’
or ‘ab initio’.

1



2 Textbook of Differential Calculus

Differential coefficient of any function

Let

y = f@x). (1.1
Let us also suppose that when the value of x changes from x to x + Jx, the value
of y becomes y + &y. Hence

y+ O = flx + 6x). (1.2)
Subtracting Eq. (1.1) from Eq. (1.2), we have

& = flx + &) - fx).
Dividing both sides by &

Sy _ fx+6x) - f(x)
Ox dx

Now taking the limit as dx — 0, we get

B i D iy LELOV S
dx &0 §x  bx-0 dx

Therefore, the differential coefficient of f(x) is

jim L&+ Ox) - f&)

dx—0 Ox

The differential coefficient of a function is also called its derivatives.

Left-hand derivative and right-hand derivative

For any function y = f(x), if.at x = xp in its domain, the limit:

tim &2 = jim LEOD - f()
Sx=0 Sx a0 ox

exists, then we say that the function f(x) is differentiable at x = x; or it possess
a derivative. The quantity
lim f(x +8x) = f(x) .
50— Sx

is called the lefi-hand derivative and is denoted by Lf(x), where the quantity

lim L& 6x) = f(x)
dr—+ Sx

is called the right-hand derivative and is denoted by Rf"(x).

If at x = xp the left-hand derivative or the right-hand derivative is finite and
equal, i.e. Lf'(x) = R/’(x), then we say that function f(x) is differentiable at
x = xp and differential coefficient of y = f(x) is denoted by f'(x) or by dy/dx.



Differential Coefficients 3

Theorem 1.1 If f(x) is derivable at x = a, then

Lf'(x) = Rf'(x)= f'(a) (say).
Proof Since f(x) is derivable,
iim L@h - fla)

=0 h

f(a)
or
fla+ h)-fla)=h[f'(a)] + €
where £ — 0 as h — 0. Then
Li_l:nof(a+h)-f(a)=0
or
lim f(a+h)=f(a)

Hence f(x) is continuous at x = a.

Note: The converse of the above theorem is not necessary true. We also note
that every differentiable is continuous.

Example 1.1 Find the differential coefficient of

x=1
x) = ———, =1
= T *
1
=-c, =latx=4.
3 x atx=4¢.
Solution Here
x-1 _ x-1 1

when x 1.

2 —Tx+5 (-D2x-5) 2x-5

RHD = fim LA+ M= SO _ sl — %
h—0 A0 k

. -3+Th +13-
= lim———
=}
. 2h
=lim ————
h=0 (=3 +2h)h
. 2
=lim ———
h=03(=3 + 2h)
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and

LHD = “mw
=0 =h

1 \
. F=m-5 =3
= lim 2R3 3

h=0 -h
_ Tmty ‘
= lim
=0 =h
= lim ———
h=0 (—h)Y(3)(-3 - 2h)
=2
5 |

Therefore, LHD = RHD. Hence the given function is differentiable at x = 1.

Example 1.2 Discuss the function f(x) = |x| and prove that the function is
continuous at x = 0 but it is not differentiable at x = 0.

Solution Since

f(x)=x, x>0
=—x, x<0
=0, x=0

For this £(0) = 0 and f(0 + h) = f(11) = h. Then
ll_n’af(0+h)=l|_l::aoh=0-
Again since f(0 = h) = f(=h) = h, we get
li_lg SO=-k)=0
Thus, we see that

ll_n;{l' f(0 +,‘|)=}l¢|_1‘nU fO=h)y= f(0)

Hence f(x) is continuous at x = (.
Now, for differentiability at x = 0.

fO+M)-f(O)
h

S - £

=lim
h h=0

h
’ =i = —-=1
R0 = i i i

But & < 0, then

li
h—0

fO-W-f© _ . fCH-1O) .k _
h h .

lim
A

Lf(0) =1i
£'0) = lim T
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Thus, we find LHD # RHD at x = 0. Hence the given function is not differentiable
atx = 0.

Example 1.3 Examine the derivability of the function:

flx)=x sinl, T#0
X
=0i x=0
atx = 0.
Solution We have
1
SO0 + h) = h sin T when i > 0.
Then
RHL = fim L@ M =f(0) _ . hsin(1/h) -0

h—0 h h—+0 h
So RHL does not exist. Similarly,

=lim sinl
h—0 h

SO =hy=(0-h)sin

=—hsirﬁl=hsiﬂ|l
h

0-h =h
We also get
LHL = lim JO-h-/O = lim hsin (/) ~ 0 =~ lim sin 1
h=30 ~h h=30 ~h B0

does not exist. Thus the given function is not derivable at x = 0.
Example 1.4 1f
f(x)zxzsinl. x#0
X
= 0, x= 0,
Then find the differential coefficient of f(x) at x = 0.
Solution By definition of differential coefficient of f(x) at x = 0,

SO+ = fO) _ . fh) - fO)

f10) = lim

h=0 h
2 .
= lim h”sin(1/h)
h—s0 h

=lim k sinl
h=-0 h

sinllsl.
h

=0, as

Example 1.5 If
fx)=2-x, x52
=x=12, x>2
then is f(x) differentiable at x = 27
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Solution Given f(2) = 2 — 2 = 0. For left-hand derivative, h < 0. Then
2 + h < 2. Therefore,
fR+h=2-Q2+h)=-h
Now

Fe-0)= lim 1&XN=IA . Zh=0_
=00 h =0 h

In case of right-hand derivative, & > 0 or 2 + k > 2. Therefore, f(2 + h) =
2+ h-2=h Now

F@-0)= lim f(2+h)—f(2)= . h=0
h=0+0 h =0 h
Hence

-0 f(2+0)
Therefore, f(x) is not differentiable at x = 0.
Example 1.6 1If
=1 +’: =

=0, x=0"

find RHD f’(0 + 0) and LHD £(0 - 0).
Solution We have

fO+R) - fO) _ lim f(h) = F(0)
h h—0-0 h

ro-0- im,

= [i ———
P 1+ e"™n

h—0-0 ] + 'fh
=1, (as h<0)
and
' _ o fO+-fO0) . fih) - f(O)
f(0+0)_a-l-lnranm h _hilrg]vo h

= lim ———
h=0+0 (1 4 ey /1y

= lim
13040 | 4 ol

=0,
where '™ — oo as i = 0 + 0. Therefore, f(0 — 0) # f(0 + 0). Hence f(x) is not

differentiable at x = (. Since LHD and RHD of f(x) at x = 0 are finite, f(x) is
continuous at x = 0.
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Example 1.7 Examine the differentiability of f(x) at x = 1 and x = 2 defined by
f(x)=x{x], 0=sx<2
=(x-1x, 25xs3
Solution Derivative of f (x) atx=11is
oy i SO R = FD)
fa m_nhmu h
- gy QR -
h=0-0 h
= lim (1+h)-0-1
" hm0-0 h

: ( l]
= lim |-—
h=0-0\ h
and
’ _ o fA+R) - f(1)
Fa+0)= lim, h

=lim (1+m[1+h]-[1]

=50 h
= lim (1+h)1-1-1
h=s0+0 h

=1

Therefore, h > 0and h — 0. Then 1 < 1 + h < 2. Thus (1 - 0) = f'(1 + 0).
Therefore, f(x) is not differentiable at x = 1.

Example 1.8 Examine the continuity and differentiability of the function f defined
by f(x) = x tan™'(1/x), x = 0 and f(0) = 0 at the origin.

Solution At the origin x = 0, we have

i F) = £0)

, _p fO+h) - f(O) _
O e

=0 h
-1
=lim htan™ (1/h)
h=—0 h
= i ™
=tan"'
n
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and
fi=h)
~h
-
h=0 -h

) _,[ 1)
=lim tan™" | ——
h=0 h

= _I—u:—-{r—.
=tan” (—=) >

ooy FO=h)= £(0)
[10-0)=lim ==

=lim
A0

Therefore, £'(0 + 0) # f(0 = 0) and f'(0) does not exist. Hence f(x) is not
differentiable at x = 0.
Example 1.9 The function f(x) = x|x| is differentiable for all values of x.
Solution Here
f(x) = x|x| =22, ifxz20
=-x* ifx<0

Since x* and —x? are different functions, f(x) is differentiable except possibly at
x = 0. Now,

JO=1O _ g SO _ g 2

4 f(o-}h):hlg& h hosD+ h ko040 h =0.
an
o 1 f(O—h}—f(U)_ St _ _
fO=k= Tim, h R h :l.]—“-% h 0

Therefore, (0 + k) = (0 - h). Hence f(x) is differentiable at x = 0. Thus f(x)
is differentiable for all values of x.

Example 1.10 The function

flo)= TH
is differentiable at x = 0.
Solution Here
= xz20
fx= 1+ |x|
L = L_ x<(
1-x

Therefore, x/(1 + x) is differentiable for x = 0 and x/(1 - x) is also differentiable
at x < 0.
Now to test the differentiability at x = 0.

fW-fO _ . _h

FOn= lim == i o r O im !
f(0-)= lim fW=1O _ oy o= jim Lo
A0 h h—0- (1 - h)h h=0-1—h

Since f(0+) = f'(0-), f(x) is differentiable at x = 0. Hence f(x) is differentiable
everywhere.
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Exercises 1.1

f(x)=lsinx2, x#0
X

=0, x=0.
discuss the continuity and differentiability of f(x) at x = 0.
2, Test the continuity and differentiability of the function:
flx)=1+x, x<2
=5-ux, x>2.
3. Does the differential coefficient of the following function exist at x = 0 and
x = 1, where
flx)=-x, x<0
=x%, 0sx<l

=x2—x+l. x>17

4. Discuss the continuity and differentiability of

fx)=x% x<-2
=4, -25xs2

=x% x>2

5. Examine the continuity and differentiability of fix) at x = 0 if

x(el.'x _e-]h}
f)= 1ix =lix
e +e

=0, x=0.

x#0

6. Discuss the differentiability of a function f defined as

flx) =1, —o<x<0
=1+sinx, 05x<-§
2
=2+(x-~;—) , §Sx<u.

7. Discuss the differentiability of a function f(x) defined as

flx)=2x, xz1
=1+12, x<l
find £(1).



10 Textbook of Differential Calculus

8. Given
fx)=x, 0sx<l
=2-x, l=x<2
=x —-%—x". x22.
Is f(x) continuous at x = 1 and x = 27 Does f’(x) exists at these points?

9. Given
_sinx
x
=1-xcosx, x=0

. x>0

prove that at x = 0, the function is continuous but not differentiable.
10. Given f(x) = sin | x|, show that f*(0) exists and f(x) is continuous at x = 0.
11. If f{a) = 2, f(a) = -1, g(a) = -1, g'(a) = 2, then what is the value of

8(x)f(a) — gla) f(x) 9

/@ =E’~T¢J x-a

Example 1.11 Differentiate * from the first principle.

Solution Let
f(x) = & (1)
and
fx+hy=e*t 2
Then
flx+h) = fx)=e —e* =e'e" —e" =e*(e" ~1)
or

x 2 3
fo+h) - f() _e (e*-n“IL[[H“L,rk_,W)‘I}
h h h 2! 3

Taking limit, we get
C fxAR)—-f0) h B
},lm T_llm & [1 +§+_3T+...]

or

flx)=e".
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Example 1.12 Differentiate " from the first principle.

Solution Let
f)=a" =8 (1

and
Flx+h)=a**h = gxthloga @
Subtracting (1) from (2), we get,
Fx+ )= f(x) =& +Wlose _ gxloga
= gtloga hloga _ xloga
= gtloea [eh]ogn _1)
or

farh)= f(x) _etre (e - )
h h

1 h? 2
_ Grloga 4 LI .
=g i {[1+Mnga+ 2!(]03.'1) + ) 1]

It

2
g*loed %[h loga + Z—!(Iog a)z + ]

h
exloee [Ioga +2—!(lag a}2 +- ]
Taking limit both sides, we obtain
jim LR = ()

. h 2 loga
= xloga a | = pXloE
1 . =lim ¢ []oga+ o (loga)” + ] e“*loga

Therefore, f'(x) = a” log, a.

Example 1.13 Differentiate log,x from the first principle.

Solution Let f(x) = log, x =log, xlog, e. So,
f(x+h)=log,(x+h)=log,(x+h)log, e

flx+h)= f(x) ={log,(x+h) =log, x} log, e

x+h
= log, log, e

X

h
=log, elog, (l +-;)

“log e{z_h_%,ﬁ_ J
“A\xo2? 3
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Taking limit, we get

lim f{x+h)‘f(X]
h=0 h

Therefore,
1
(x)=—log,e.
f(x) < 108
Example 1.14 Differentiate logx from the first principle.
Solution Let f(x) = log.x, and f(x + h) = log, (x + h). Then

f(x+h)= f(x)=log,(x+h)-log, x

x+h
=log,( . )

or
[l_L i)
- 2 3
lim flx+h) ﬂx):[i x 2x* 3x
B0 h hs0 h
_l,m[l_L i_..‘J
Thoolx 242 383
=1
p
Therefore,
fx==

Example 1.15 Differentiate sin™' x from the first principle.

Solution Let f(x) = gin~'yx and f(x + k) = sin"'(x + k). Then

flx+h) - f(x) sin™ (x + B) —sin”'x
h - h

Put sin"'x = @or x = sin @, and sin”'(x + k) = @+ k or x + h = sin (& + k). When
h—=0,k—0,and h = sin (@ + k) - sin a, we get
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A -
lim f{x+h)- f(x) = lim S0 (x+Hh)—sin" x
h—0 h h=0 h

a+k-a

= lim ——————
k=0 sin (@ + k) —sina

=lim —————sin
k-0 2cos(a + k/2) 2

=lim L lim 1
" -0 | sin (k/2) | k=0 cos (@ + K/2)

Therefore,

flx)=
l-x

Example 1.16 Find the differential coefficient of cos™'x with respect to x from
ab initio.
Solution Let f(x) = cos™'x and f(x + k) = cos™'(x + h). Then

flx+h) - f(x)=cos™ (x + h) - cos™ x.

Substituting cos™'x = @or x = cos @and cos™(x + k) = a+ kor x + h = cos (@+ k),
and when h = 0,s0 k = 0 and & = cos (& + k) — cos @, we get

i L= 100

hl)

. cos'(x+h)—cos”'x
lim
h—0 h

. a-k-a
=lim — ¥
k=0 cos(a + k) - cosa
. k
=lim

. & s ag-a-k
k=0 25"13%5",“ ;
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. k
£50 2sin(a + &) sin(~£)

-k 2
=lim —— — — ——— —
k=02 sin(a’ + %) —(—""Hgn k

. [sin (HZ)]
=lim - m
k=0 sin[a+(k/2)] k=m0l K2

Therefore,

fix)=-

Example 1.17 Find from the first principles the differential coefficient of
tan~'x with respect to x.

Solution Let f(x) = tan'x. Then f(x + k) = tan™'(x + k). So
flx+h) = f(x)=tan™(x + k) - tan~"x

Puttan'x = @ x =tan &, and tan" (x + h) = @ + k so tan @ + k = x + h. When
h—0, k=0 and h = tan(a + k) - tan o Therefore,

1
k30

i SO =) tan™'(x + h) —tan~'x
h k=0 h

. at+k-a
= lim ——————
k-0 tan (@ + k) — tan @

=lim ——
k-0 sin{fa+k} sina
cos(a+k) cosa
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~lim kcosa cos(a + k)
K0 sin(or + k)cosa — cos(a + k)sinex

; kcos acos (@ +k)
k=0 sin(a+k-a)

. kcosacos(a+k)
=lim ——8
h—0 sink
k
= lim ——cosa llm cos(a+k)
k=0 sink
=cos’@

1

sec’ @

_ 1
ul+lau2a
_ 1
ﬁl+12.

Therefore,

. 1
S
Note: Try yourselves the differential coefficients of sec™'x, cosec™'x and cot™x,
from the first principle.
Example 1.18 Differentiate Vsin x from the first principle.
Solution Let f(x) = Vsin x, so flx + h) = Vsin (x + k). Now,

X _ i
dx h=0

= lim 1fsirl{..\: +h) - 1,‘sin x
h=s0 h

flx+h) - f(x)
h

— lim sin(x +h) —sinx

h—=0 h[‘fsm (x+h) + ,j'sm x]

2cos(x + W2)sin(h/2)

*"’D h [Jsm (x + h) + yfsin JrJ

= lim cos(x + h2) im sin(h/2)
= Jsm(x +h) +fsinx 500 W2
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Thereflore,
cosx

fix=

24fsinx

Example 1.19 Differentiate cos (log x) from the first principle.
Solution Let f(x) = cos (log x) and f(x + k) = cos [log (x + h)]. Therefore,

lim flx+h)- f(x) —lim cos[log(x + h)] - cos{log x)
h=s0 h h—0 h

Putlog x = aand log (x + h) = ¢+ k. When h = 0, k — 0, then
S+ = f@) _

cos(ar + k) —cosar

lim lim
h—=0 h k=0 h
=1lim =2sin{a + k/2) sin (k/2)
k=0 I
- ( k] . [sin(iu’l)]k
==lim sin| & +— | lim | ———|—
(=] 2/ k>0 ki2 h

. .k
=-sinalim —
k=0 h

Now, since
k=(e+k)-o
=log (x +h)-logx
x+h
=log
x
=log(l+£]
h B R
x 23X
We get
k(1 on W t
lim==lim|—=-—+—s=|=—,
k=0 h h=0lx 2¢ 3N x
Therefore,

f’(x):—lsin a:—isin(log x).
x x
Example 1.20 Differentiate cosh x from the first principle.

Solution Let f(x) = cosh x = (¢* + e™W2. Then f(x + h) = [¢"** + ¢ ™M ]/2,
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Now,
dcosh x —lim flx+h) = fx)
dx h=0 h
J_[ex+ﬁ +e—(x+ﬁ)]_'J_(ex +e—:)
=lim 2 =
fr=l) h
eu-h _ ex e~.ﬁ -1
=—lim -—e " lim
h h ¢ [ —
1 . 1
=—¢F = =™ [35][]11———1)
-
=_(£x _e—.t}
=sinh x.

Therefore, f°(x) = sinh x.

Example 1.21  Find the differential coefficient of sinh'x from the first principle.
Solution Let y = sinh™'x, so
x=sinhy=%(e’—e" (1)
and

. 1 ~
x +J8x =sinh (},+5y)=5|:er+51 -e U“’”] (2)

Subtracting (1) from (2), we get

[er*ﬁy _ e—t.v+6.-a>] _ (e” _ e"’]

tim 2% =L jim
Sy—0 6}' 2 dy=0 5}'
or
dx _1 Jim ey!é‘y e 1 He e—ly+6:') —er
dy 2 dy-w 8y 2 &y Sy
L =)
1., . -1 1 _, .. Y -1
==¢" lim < +=e fim £

E Sy—0 5}' 2 Sy=s0 —5}'
e —1

=i(e’ +e) {as lim ——= 1]
2 h=0  h

= cosh y.
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Thus
S S T
cosh y Jcoshzy Jl +sinh%y Jl +x?

ﬂ =
dx
Therefore,

dy d . 1
—=—{sinh" x)= .
de  dx :Hl +x°
Note: Similarly the differential coefficients of other inverse hyperbolic functions

can be derived from the first principle.
Example 1.22 Differentiate oh2x with respect to x, from the first principle.

Solution Lety = ¢ and y + &y = "2 ®*&) Then
& = £SOsh 20e+ &) _ jcashy

Therefore,
5)' emsll 2x+dx) _ emdllr
lim ——= lim
S50 §x  Sx=0 &x
cosh 2{x+dx)-cosh2x _ 1
. Jeoshlx li €
=¢ im ————
820 ox
—eoh2e | i eoshdx4dr)-cosh2e _ g | ook 2x + Sx) — cosh 2x
Sx-10 cosh 2(x + dx) — cosh 2x ox

_e.,.,,,.z,[“m ¢ —1] i COS2(x + %) — cosh 2x
- S0 k) x—0 ox
where cosh 2x = ¢, cosh 2(x + dx) =7 + k. When t — 0, & — 0, we get

% =2(sinh 2x) e 2%

Example 1.23 Differentiating sinx” from the first principle.
Solution Let y = sin =, y+ O =sin(x + dr)2. Then
Jdy =sin{x + Ox)? —sinx?

2 2 2 2
(x +dx)* +x ]sin[(x-i-ﬁ.t) —-X ]
2 2

-——Zcos[

2 2 2
_ 2008[2; + zn;x +(8%) jlsin[Zxﬁ.t ;(Jx) ]

= Zcus[xz +xdx + (6;)~ ] sin{:é'x {2;+ é'x]]
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or
27
9 = 2{:1:;5'}:2 +x0x + Q) ] s [5x (x+ &!2]]
ox 2 dx
or
2 in| & oxi2
lim Q = lim 2cos I:.rt:2 +x6x + (Ji] Jim w[x +£)
=0 §x  dx=0 2 l&x=0  Ox [x + 5.!-"2) 2

Then
d
2 2xcosx?.
dx
Example 1.24 Differentiate sin Vx from the first principle.

Solution Let y = f(x) = sin Vx. When Vx = u. Then
f(x)=sinu and f(x + Ox) = sin(u + &).

Also
u+5u=m, when dx =0, Su—0
Therefore,
Oy=y+08y—y=f(x+6x)— f(x)=sin(u+du) - sinu
Then
ﬁ=sin(u + du) —sinu
Ox ox
_sin(u + du) —sinu Su
T s 6
=cosu lim Su
Sx-3 Jx

But we have du= Jx +6x —+Jx. Then

dSu =(,er +6x _J;)J_—M

_ x+d8x-x

-.Hx+5x +4x

ox

N N

Su 1

Sx .‘/x+«5'x +4/x

or
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When dx— 0
1 1
—=llm ——_—=—F
de &0 fx+0x +4x  24x
Thus
Q-m 1 cosJ;
Y
Example 1.25 Differentiate sec (x/3) from the definition with respect to x.
Solution Let
x x+0x
y:;sec;. ¥y +5)'=S€.c
Then
Sy= x+0x X _ 1 1
’= 3 3 x+6x x
2TOY o
3
cos X — s 9%
3 3

3)
o — -
[ (X 3 CDS 3

x+x+d6x Sinx—xuﬁx
6 6
x+0x x
cos

3 3

Q_ 25in[§ + %)sin[—%)

8x [x + Ex) x
Jx cos cnsi

Jim 2sin(%+ %}[M] %

2sin

cos

ar

Taking limit, we get

dy Sul6

dx

cos>
3

&
llm cos | ‘)

or

dy _ 2sin(/3))(1/6) _

1 x
= —tan—
dc  cos(x3)cos(x/3) 3 3 se¢

Wi
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Exercises 1.2

. Obtain the differential coefficients of the following functions from the first
principle:

(i) 5x%, (i) 2, (i) % + 5x°,
(iv) x, (v) X2, (vi) x4,
i) JUx+a), viii) x? 41, (ix) (x*+ 1),
(x) |f2x-1, (xi) +2.

. Find the differential coefficients of the following with respect 1o x from the
definition:

(i) sin 4r, (i) cos 2x, (iii) tan 2x,
{iv) tan kx, (v) tan(x°/3), (vi) cosec 3x,
(vii) cot 2x, (viit) tan (3x + 1), (ix) sin (2 + 1),
) JJanx, (xi) sin’x, (xii) cos 2,
(xiii) cos’x, (xiv) tan (x + a), (xv) sec (x°/3),

(xvi) tan®(ax).
. Differentiate the following functions from ab initio.
(i) x* cosx, (ii) x sin x, (iii) cos (ax® + bx +x),
(iv) x tan x, (¥) sin x cosx, (vi) (sinx)/x,
(vii) tan (1/x).

. Find the differential coefficients from the first principle of the following
functions:

() tan3x, (i) tan (1 - 3x), (i) sec 5x,

(iv) JCOS X, (v) yfsecx, (vi) fcos3x,
(vi)) sinvx. (viii) cotvx .
. Obtain dy/dx of the following functions from the definition:

(i) e, (i) e, i) ¢,
(iv) ™, (v) e, (vi) e*/x,
(vii) ™, (viii) ™%,

. Find the differential coefficients of the following functions from the first
principle:

(i) log, (ax + b), (ii) log sec x, (iii) x log x,
(iv) log ax, (v) log (tan x), (vi) sin (log x),
(vii) x log (sin x), (viii) log sin (xfa), {ix) log cos x,

(x) 4%
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7. Find dy/dx of the following functions from the definition with respect to x:

(i) tan~'(x/a), (ii) sin~'(x/a), (iii) sec”'x,
(iv) tan”'(2x - 3), (v) sin”'@Gx + 5),  (vi) tan~'(ax),
(vii) sin"'(2x), (viii) sec™'(3x), (ix) cot™'(mx).

1.3 Fundamental Rules for Differentiation

Example 1.26 Find the differential coefficients of

_l+sinx—cosx )
" 1+sinx+cosx
Solution Since
_ (1—cosx) +sinx
’= {1l +cosx)+sinx

. 2X . XX

2sin®= + 2sin =cos =
_ sm2 sm2 52
2 c052§ +2sin> eos—x

2 2

2sin i(sin z + cosi)
2 2 2

2 oosi(cosi +sin -{)
2 2 2

Therefore,

Example 1.27 Find dyldx, if

_ Ilsecx-!-tanx _ !l+sinx
yu\'secx—tzmx_Vl—sinx

Solution

Method 1.
Since

_ [secx+tanx _ [secx +tanx secx +tanx
vsecx—timx VSccx—tanx secx +tanx
sec.x + tan x

:}seczx - r.:mzx

=secx+lanx
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Then
%=secx tan x +sec’x.
Method 2.
We have
, +sinx ‘ “05 +s1n£
\ll—s:nx ‘J(cos‘-—sm*‘-]
- cos% +sind
cos% —sing
_ 1+tan4
1-tan%
u(z-3)
4 2
Then
dx 4 2
Example 1.28 Find dyldx, if
. X CosX .. xtanx
® y_.tz-t»lt' (i) y= secx +tanx

Solution (i) Differentiating, we get

d 2 |4, 2 ]
=_dx(xcosx)-l(.t +4) Lﬁ(x +4].xcosx

dx (x* +4)

%cosx + .t%(t:osx)](xz +4)=(2x) x cos x

x*+4)?

_ [cos x + x(~sin x)](x? +4) - 2x2cos x
(x* +4)y

=(4-x2)mtsx—x(x2 +4)sinx
(x? +4)?
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(ii) Differentiating, we obtain

(secx+mnx)%(.tmnx)—xmnxi(sccx+mx)

B

(sec x + lan :c)!

- A P |
(sec x + lan x)| x —(lan x) + tan x — | - x tan x | —(sec x + lan x)
dx dx dx

(sec x + tan x):"

_ (secx+tanx)(.tscc2x+lan.t)—x tan x(sec x tan x +sec2x)

(secx +tan 1)2

_ xsec’x +x tanx sec’x +secx tan x + tan’x — x sec x tan® x — xtan xsec’
(sec x + tan x)?

x

_ xsec’x — xsecxtan’x +secx tanx + tan’x

(sel;:.’:+t-:u1J|::|2

_ xsec_t(seczx - lanzx) + tan x(sec x + tan x)
(secx +tan J\:]2
Therefore,

Q“ xsec x(sec x — tan x) + tan x

dx secx+tlanx

Example 1.29 Find dy/dx, if

]
__ax”+b
sinx +cosx

Solution On differentiating, we have

[%(cm:2 + b)] (sin x + cos x) — [% (sin x +cos Jur)](m:2 +b)

& _
dx (sin x +cos x)?

_ 2ax(sinx +cosx) — (ax? + b)(cosx — sin x)

(sinx + cos Jr)z
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Example 1.30 Find f'(z/2), if

f(x)=1_m3x

1+cosx
Solution Now

(1 +cos x)i(l =cosx)—=(1- CDS.t)i(l +cosx)
= = &

(1 +cos x)?

_ (L +cosx)(sin x) = (1 — cos x)(—sin x)
- (l+cosx)2

sinxcosx +sin x +sinx —sin xcosx

(1 +cosx)?

__ 2sinx
{1 +cos .a:)2

f’[£)= 2sin(7/2)  _
2) (1 +cos{zr)P

Exercises 1.3

1. Write down the differential coefficients of the following functions with

respect to x:
(i) x+ 1/x, (ii) 2 sinx - 5 cosx, (iii) ~ke* + 9 cos X,
i) VP, v 3 +dt -2l i) (Vx +IN)
(vii) x’cos x (viii) (2% + 1) (o + 20 + 5), (ix) i#‘;ﬁ;’_-x;'.
(®) @+ Dsinx,  (xi) 22X, (xii) ==,
(xiii) ¥* log x, (xiv) fx, (xv) =2,
i) Jx (14 1x), Goviiy 2228 (xviii) w
2. Find dy/dx when each of the following functions is equal y:
0 2=, (i) =2, (i) =
(iv) 7 v = o) 75,
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i) 75 (Vi) . () e,
®) e (xi) Ateeer (i) s
(s <2, (xiv) sl (xv) e
(o) SEEEE o) S i) [
Oiix) ([ %) L.
3. Solve:

() If f(x) = 57, then find f(x) at x = 4,
(i) If f(x) = % - Jxe* +5, find £'(x),

(iii) If y=-l-;|x—2 +e” secx, find dy/dx,
(iv) If f(x) = sin x, find £7(0),
™) If f(x) = =2, find f*(al2),

l'lz —.12 '
. For what value of x, the differential coefficient of (x* + 1)/(x — 2) is zero?
. For what value of x, the differential coefficient of x log x is zero?
Find the value of differential coefficients of x* — 4x% + 3x — 2, when x = 2.
. Ify = [x]* - 4]x| + 2, find dyldx at x = 3.
. If y = |cos x|, find dy/dx at x = 3274,
. If y = |cos x — sin x|, find f'(m/2).

10. Find dy/dx, when
S 0 g
(i) ¥ —%‘

(i) y= x‘il-rm:
11. Find the differential coefficient of the following functions:

IR B~ TR

mJX '

.y lEnX+colx " tanx s 1t ]
0 o= () (il =—,
x+1
3 k] I,
. x5 —x+l Jr+2 o X°sing
(iv) Toerl’ ™ e i)
. 2
(vii) x"secx+y—.
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12. Evaluate:

2 . 2
lim {a+h)" sin(a+h)—a"sina
h=0 h

=lim i'(Jrl sin x).
= dr

13, If f(x) = (1 - 01 + x), find £7(1).

14, If y = (x — a)(x — b), show that at the particular point of the curve where
dy/dx = 0, x will have the value (a + b)/2.

1.4 Differential Coefficient of a Function of Functions
Let y is a differentiable function and u and v differentiable functions of x, then
& _ddu
dx du dx
Let y = f(u) and u = ¢(x), Hence y is a function of x. If y = f(u), u = ¢(v) and

v = y(x), then

1.5 Differential Coefficient of Inverse Functions

Let y = f(x) be a differentiable function in its domain of definition. Let the
inverse function of y = f(x) exists and let it be x = f(y). Let dx be a small change
in x and &y be the corresponding change in y determined by y = f(x) then
corresponding to change in y, change in x determined by x = @(y) will be dx.
Now,

y=f®), y+dy=fx+ dx)

Then
dy = flx + &) - f(x)
Now
dx— 0,8y = 0.
Then
8y Sx Sx 1
—_——=] of —=——
ox By 8y  dyléx
or
lim —= lim 1
&0 Oy 6x—0 Jy/dx
or
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Example 1.31 1If y = sin (cot x), then find dy/dx.

Solution We have
dy _ dlsin(cot x)]
dx dx

- d[sin(cot x)] d(cot x)
d{cot x) dx

=cos{cot x) (—ooscczx}
= —cosec?x cos(cot x).
Example 1.32 If y = (52 + 7x* + 11)°?, find dy/dx.

Solution We have

dy _d(xe +7x2 +1D%”
dx dx

_d(5c + 72 + 172 d(55° + 722 +11)
d(5x> +7x% +11) dx

= —Z»(Sx’ +7x +1D°2 (15x° +14x)
3
2

(15x° +14x) (5x° + 72 +11P72,

Example 1.33 If y = sin Vo2 + ax + 1), find dyldx.

Solution We have

9_"):= d[sin\’xz +ax+1] de2 +ax+l d(x* +ax+1)
dx aJx2+a.x+l d(xz +ax+1] dx

=cosdx2 +ax+1 [%)(xz +a.t+1)_m(2x +a)
_(2x+a)cos\’12 +ar+1

2Jx’+ax+l

Example 1.34 Find dyldx. 1f

y=ﬂ+,,‘]-x2
x
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Solution Let

cot x
=u and 1-x*=v

We also have y = u + v. Hence

dy _du dv
dv dx  dx
Now u = cot x/x. Then
.f‘i _ .t(—-coscc&}-— colx  x cosec’x +cot x
dx x* xt
Again v = (1 — X', Then
ﬂ:l(; )M 2x)=-
dx 2 l-x
From (1)
dy __xcosec’x +cotx  x
dx o \(1 -x

Example 1.35 1f y = sin®Jx* +1, find dyldx.

Solution Since y = sin® \}12 +1, we get

=2sin(x* + DV cos(x® +1)”’%(Jc2 +1)722x)

Ble

_ 2xsin(x® + )2 cos (x* +1)'* _xsin2 Xt +1

sz-i-l J.t2+l

Example 1.36 Find dyldx, when y = cos+sin Jx.

Solution On differentiation, we get

dy _ d(cosylsinVx) d(\sin V) desinJx) dvx
dc  gfsindz) dGinx)  dvx  dx

=—smm( )[var)-mcosvr( ) -1

__gos .xsmv'sm\‘r_
4J;-,jsmqr

0]
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Example 1.37 Find dyldx, when

@ y= Xyfdx +3 G y ,,‘x a+Jx+a
Gx+13? Jﬁ -Jx+ta

Solution (i) Differentiating the given function with respect to x, we get

2
dy {; (xfax +3)3x +1)? - %x,hx +3

dx Bx+1*
dyfax+3 d(dx +3) _ 3
_[1}4x+3+ 2ax & ] (Bx+1) - xJax +3 Q)3x +1)
- GBx +1)*
(JE+3 +-x3== J{an 1)? - 6x Bx+DJax+3
{3x+l)
_[(4x +3)+2x](3x +1)* - 6x(3x + 1)(4x +3)
Jax+3(3x+1)"
_ (6x+3)(3x+1)~6x(4x+3)
(32 +1)’ Jax +3
3 —3x—6x°

- (Bx+ 1)3,’4:( +3°

(ii} Differentiating, we get

-Jx a+1fx+a {,jx a+,}x+.a)2
,fx a—x+ar x-a-x-a

_x—a+x+a+2 x* —a?
—2a

=—i(.t+ X -d’)
a

Then
d_=_ll+a’ 2 -at d(* -a*)
dx a d(x -a) dx
=1
a 2 xz -a
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Example 1.38 Find dy/dx, when

Solution Differentiating, we have

o )

R
1-x -x)?
11 11

m[lw]i"x“"’;"[‘iﬂ“*@

1-Jx (1-xy?

[1+f)(1-£)+(1+&)

1-x ) 24Jx(1=x)?

[1+J_]

fu—f)’ 1-vx

Example 1.39 1f y = x* cos (log x), find dyldx.
Solution Differentiating, we get

dy _ dlx” cos (logx)]
dx dx

_ 2 dlcos(log x)] a’
=x o +cos (log x) o

5 d cos(logx) d(log x)

d(0g x) e ————+cos(log x)(2x)

= x2[—sin(log ] % + 2x cos (log x)

=—x sin(log x) + 2x cos (log x).



32 Textbook of Differential Caleulus

Example 1.40 Find the differential coefficient of

y:sin"[ zxz],

l+x

y=sin™! [l 2:2 ]=2tan"x
+x

_d_){ d{tan” x) x) 2
dx dc 1427

Solution Given

or

Example 1.41 Find dyldx, when
142 -1
()
Solution  Since
X
Put x = tan &, we get

=tan”! 1J|I+lan g-1
y tan &
=Iﬂ|'l-| .SEE
tan &
—1an! 1-cos@
sin@
2sin? (8!2)
2sin (8!2} cos (8/2)

a8
=1 1 -_—
o (a“z}

We also have, y = 6/2 = (tan”'x)/2. Then

dy 1
de 2(1+x%)
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Example 1.42 Find dy/dx, when

—tan"! 1-cosx
Y 1+cosx

Solution Since

y=tan”! I-cosx|_ ZsinZ(xIZ) =|ﬂn_l[1ﬂ-ﬂiJ=£
1+cosx 2cos”(x/2) 2) 2

Then

Example 1.43 Find dyfdx if

Solution Since

y=tan SO8% _m_l[cosz(ﬂZ)-sinz(fo)]

l+sinx [sin(x/2) + cos(x/2)F

! [ cos (x/2) - sin wz)]

| cos(x/2) +sin (x/2)

=tan”! vl-m—n(,\‘ﬂ)]

[ 1+ tan (x/2)

=tan™ tan(f—i)}
i 4 2

n
~ln
1
(SR

We get

I
I

&|&
e

Example 1.44 If y = log (x ++x* +a°), find dyldx.

Solution Given y = log (x I +a%), we get
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dy _ 1 [ (2, 2yin ]
ﬂ—m l+2(1 +a ) (2x)
-1 1+——=
xR+t | P +d
- 1 x+Jx! +a°
x4y +d® P +d
1

2 +a’

Example 1.45 1f y = log (x21]x2 +1), find dyldx.

Solution Given
y=log (x2fx* +1)=2logx + % log(x? +1).
We have

11 2 x 32 +2
- =t —g—=— .
2 x2+1 x 2+t x(x+1)

Bl

1
=2—+
X

Exercises 1.4

1. Find the derivatives of the following functions:

(i) x° sin 3x, @ii) sin Jx*+x+1, @ii) ysinysinvx ,

(iv) sin (sin x), (v} sin (tan x), (vi) sin (cos ax),
(vii) sin Ja_x . (viii) tan'(sin x), (ix) sin (log x),
(x) log (tan x), (xi) log (cos x), (xii) log (log x),

(xiii) S+2x-4x, (&Y) [ooome (xv) JJi+sinx,

(xvi) cos T;&:' (xvii) sin (sin J3),  (xviii) log (log x)%,
(xix) exp (ax2), (xx) "™, (xxi) e,

(xxii) e™*(cos (2x + 3)), (xxiii) log (ax + b), (xxiv) log (x + 1/x),
(xxv) log (ax® + bx + o).
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2. Find dyldx, when y be the following functions:

(i) (log sin )2, (ii)} x log sec x, (iii) e* sin bx,

(iv) €™ cos bx, (v) €% sin (bx + ¢),

(vi) (e +e*)He* - ™), (vii) sin [log (1 + x3)],
(viii) a log scac-i- (ix) log (sec x + tan x),

(x) log [§ +§] . (xi) log tan (#/4 + x) (xii)log (::]

1-x* arf sbrdc 14sinx
(xiii) log (::z‘] , (xiv) log (——;—:c-) . (xv) ]t:hg(I H“)
(xvi) log(:;xi), (xvii) log “"”’) (xviii) log ‘”:‘;:)

(xix) log [:: ::::i:] . ‘+ b) \ (xxi) log (ﬁ}r-)

(xxii) Iog(l_mu .

I+x|il|x)

3. Find dyldx, when y is equal to
@) cos®x, (ii) sinyfcosx, i) Jm
(v) Jan(any, ) Vsinvax,  (vi)sinyx® fax+l,
(i) yeos(4x%),  (viii) L+tan® 0)?,  (ix)sin™ J1 - 22,

(x) Juan(+x%). (xi) fsinx?, (xii) sin® {Jax® +bx + ¢

(xiii) sin (cos tan x ), (xiv) sin {cos [tan (cot x)]},
(xv) sin {cos[tan (sec x)]}.

4. Find dy/dx when y is equal to
(i) sin™(ax) cos™(fx), (i) (2x - 3) ‘}411 +1,

(i) ¢ sin~'(ax), (iv) sin®(2x + 3) cos’(3x + 4),
(v) x* cos (log x), (vi) &Y%,
(vii) e sin J; . (viii) e""-]og(cosxf; )

5. Find the differential coefficients of the following functions:
(i) x log sin x, (i) (log sin x)%,  (iii) sin [log (1 + %),
(iv) alog sec (x/a), (v) log [’;”“")_ (vi) logfitsinx

T—cotx °
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6. Find dyldx, when y is equal to

@) xyx?+a®+alog (x +3? +a2) ,

(i) 7‘%. (iii) etinllogx),
(iv) %" log x + x (log X", (v) e
(vi) Iog[ z i*"i). (vii) secx\/1+x2 ,
x= +a
(viii) 1’{x‘ +3)Jx2 -1, (ix) tan'(log x),
(x) tan"i(Pe™).

7. Find dy/dx when y is equal to:
(i) sinJ; + coszJ;,

(i) cos (@ + bx + ¢) + sins\lc:.x:z +bx+c,
(i) cos (5% + 8) + m, (iv) COSJI-* x2 +x* cotdx,

(v} x\)l—xz +¥. (vi) log (x+ x* +a2) + sec”\x/a,

(vii) tan” Ly log,t:: .

8. Find dy/dx when each of the following functions is equal to y:

@) sin (cos™x), (i) cos (sin"'x), (iii) tan"(:—fz],

) cos-'[tij, W) sin'Gx - 48,  (vi) tan! l—fﬁ]

(
(vii) lan'lﬁ . (viii) tan™ (%] (ix) tan™ (T-JF]
®) m-'(::ﬁl), (xi) sm—t(%). (xii) tan™ ..—“"—z]

(xiii) tan” JIZEE i) sin! (me ]

(xv) tan”(sec x + tanx), (xvi) m'l(%)

(xvii) sec” ({‘lﬂ)ﬂin" (—:-frcf-:-:-), (xviii) tan” [ﬁ]

x=1
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10.

(xix) sin™/ S (xx) cot™! (-1%23:—‘-) (xxi) tan”! [I;%]

- s — - 1 . -
(xxii) tan™ ::gi . (xxiii) cos™ (ﬁ) (xxiv) (1 + x) tan 'f»

a+beos g
b-acosx

=1
(xxv) tan ( S+3cosx btacosx

), (xxvi) cos’! Mﬂ), (xxvii) sin"{“”m’).
Find dy/dx of the following:

(@) 2 tan (5 - 29, (i) sin*yJax® +bx +e. (i) ¥x sinx + sinyx .
(v) sinvx +cosVx, () @7 - D+ 172 i) 252 +3) P+ 552,
(vii) sin®(2x + 3) cosi(3x + 4),

(viii) cos (ax? + bx + ¢) + sin®Jax® +bx+c,

(ix) sin,’l_x3 +x° cosdx, (x) sin (2axyfl-a’x?),

(xi) afTIJ__. +cos’(Sx+8),  (xii) ﬁ“;:’" cos?(2x + 1),

(i) Tog(122)"* - fan (1), (xiv) tan” (£) #1082,

I-x

(xv) 2sm'l(§)+x‘}a2-x’, (xvi) f1-x* +(sin~"x)x.

Find the differential coefficient of the following functions:

(i) tan x with respect to 22, (ii) sin x with respect to cos x,
(1ii) sec x with respect to tan x, (iv) sin x with respect to ,
(v) sin x with respect to lan x, (vi) tan x with respect to sin x,

(vii) tan x with respect to sec x, (viii) tan x with respect to cot x,
(ix) sin x with respect lo cot 2 x, (x) x° + 2% + 3 with respect o x°,

(xi) a1+ x? with respect to tan x,
(xii) 1f(l +1)/(1-=1) with respect to x where 1 = cos 21,

i) Y1 -x)/1+x%) with respect lo f, when x = tan ¢.

(xiv) Ty with respect to sinx, (xv) e* with respect to e log x,

(xvi) sin x? with respected to x%, (xvii) e* with respect to e,



38 Textbook of Differential Calculus

11. Find dy/dx, when y is equal to:
@i) cos™#, (ii) 1/Jogeosx),

I-H.mx (iv) sin fsinx+cosx ,
4] 'la’(Jx2 +a* +J.t’ +b2), (vi) 2tan™ (i]+ log(l*i“g*ﬁl
(vii) 1}x+-\lx+ X

(Viii) [108c0q (5in ) 10ga, (cos )]+ sin” (%), atx = a4,

(ix) cot™ (%) x) cos” (21:\05::331|n1].

(xi) Sil’t-] [_’u + l:Jl -52 ]. (xii) 1&1‘1-] acusx—hinx)

(iii)

13 beosx+asing 7

(xii) sin"[L:”” s ] i) cos”(151)

145 )’
(xv) sin” (xﬁ+J_Jl—_] (xvi) tan"(m_‘,,).
(xvii) tan™ (]—_1:;;) (xviii) ‘““_l(:::_:)'
(xix) ml(.i_g:,) () tan (322e8x),
(o) 22322). coxi sin (2™ 152

o ) ()
(xxiv) sin™ (.‘3"5)* sec-'('lt‘: ) (xxv) TLum-'( tnnl) .

12. Differentiate the following functions:

@) sin~x with respect to cos™ (Jl - )

(ii) -;ﬂi’;{-—with respect to tan”lx,

Gii) sin™ [::—:) with respect o vz,
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(iv) tan™ [@J with respect to tan™'x,
-1 . af 1
(v) tan [Td-’) with respect to sec [2 ‘Z_IJ,
)w:lh respect 1o sin 1(-35-),
(vii) €™ '* with respect to sin~'x,

v
(viii) tan™ [5“':;2%1':;,) with respect to cos™'x%,
L4a® #4/l=

(ix) sin’x with respect to cos’x.

(vi) tan™ (

1.6 Implicit Functions

When independent variable x and dependent variable y occur together in an
equation and y cannot be written in terms of only x, then y is said to be an
implicit function of x. For example,

©+y -3xy=0 and xy=sin(x + ).

Let f(x, ¥) = 0, where f(x, ) is an arbitrary function of two variables x and
and y and let us suppose that it is not solvable for y. Then differentiate both sides
of the given function f(x, ¥) = 0 in x and y with respect to x. It should be
remembered that when we differentiate terms containing y, we should multiply
it by dyfdx after differentiating and without solving for y to obtain dy/dx.

Example 1.46 Find dy/dx, when ax® + 2hxy + byz =1
Solution Differentiating both sides with respect to x, we get

dy ] dy
2x)+ 2h| x = +b(2y)—==
a(2x) (xdt+y b(y}d.x 0

ar
dy dy
2ax + 2hx— +2hy + 2by—=0
T T Ty
or
dy -
2(&x+by)d—x'+2(a.r+hy)—0
or

ax + hy
hx + by

b__
dx
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Example 1.47 If x + y = sin (xy), find dy/dx.

Solution Given x + y = sin (xy), Differentiating the given equation both
sides with respect to x, we get

dy _ AN &
I+E~cn5(x)')(y+xde_ycos(zy)+xoos(xy}dx

or
[1-xcos {xy)]i—y=}'cos (x) -1
or

dy _ yoos (x) -1

de 1-xcos(xy)’
Example 1.48 1f sin y = x sin (a + y), show that

dy _ sin’(a+y) )
dx sina

Solution From the given relation

sin y
B sin(a +y)

Differentiating with respect to y, we get

iix__sin{a+y)cosy—sinycos{a+y)_sin(a+y—y): sina
dy sin*(a +y) sinf(a+y) sin*(a+y)
or
dy_ 1 _ 1 _sin’(a+y)
dx dy (sina)/sin®(a +y) sina

Example 1.49 If x™y" = (x + y)™", find dy/dx.

Solution Given x™y" = (x + y)™*". Differentiating the given equation both
sides with respect to x, we get

- -1 dy +n- dy
mx™ 7y "y = = (m ) )™ 1(1+—)
y y dx( Xx+y) o
or

[Mmyu—l —(m+n)(x + y)u-rn-l.]% =(m+n) (x+ y)'"'""-l _ mtm-lyn
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or

ﬂ_' (m+ﬂ)(x+y)m+u-l _mm-lyn
dx muyn—l —(m+n)(x +y)|||+n'-l

_(m+n)(x+ W ™y (x4 y)
™y (x+ ) = (m + n)(x + )" t"

_(m+ mx™y" — ™y (x + y)
™y x4 y) = om+ m)x"y"

L

Xy (nx — my)
2"y (nx — my)
2.
x

Example 1.50 1f y = 1/x, then prove that

dx dy

+ =0

J1+x* \j! +y!
1

Solution Given y = 1/x, we get

dy__1
de gt
Now
ity et Bl 1 gy
Sl et A4 F &
or
dx . dy
;?1+x4 ;)l+y"
or

dx+dy

\Jl+x‘ l-l-y"

Example 1.51 Find dy/dx, when

y= ‘.Hsinx + Jsin x+ Jsinx s o0

=0

.
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Solution We have

y=1’sinx+1’sinx+,fsinx +...0

Squaring both sides, we get

¥ =sinx +Jsinx ++Jsinx +yfsinx +- =sinx +y

Differentiating both sides with respect to x

dy _ dy dy _ cosx
2)’E—C061+dt or de 2}‘—-]‘
Example 1.52 If y = tan"'(x + y), find dyldx.
Solution Differentiating, we get
N +ﬂ] ! , 1 9
- 1 - 2 2
dv 1+(x+yP\ dr) 1+(x+y)P 1+ (x+y)? dx

or

|, 1 1
& 1+ y? | 14+
or

dyfl+G+y’-1]_ 1
de| 1+(x+y)? 1+(x+y)

or

dy 1
dx (x+_y)2'

Example 1.53 1f (1 - x*)+ V(1 - y*)= a(x - y), show that

dy_ 1=y
dx 1-x?

Solution Putting x = sin 8, y = sin ¢, we get

cos & +cos ¢ =a(sin &—sin @)

or
2cos€+¢ cosu =2a cos 6+¢sinﬂ
2 2 2 2
or
6-¢ . 6-9¢
cos 3 =asin 5



Differential Coefficients 43

or
CO!.e;¢ =a
or
8- ¢=2cot™'a
or

1

sin'x —sin”!y =2cota.

Differentiating with respect to x,

or

Exercises 1.5

1. Find the differential coefficients of:

i) x* +y' = d', (i) 2* + ) = 3axy, (iii) Py = (x + 2y)°,
(iv) x¥x + yr = 1, (v) y=tan (x +y), (vi)x»* = sin (xy),
(vii) ¥ =tan(x + %),  (viii) x +y = tan (xy),

(ix) x cosy + ycosx = tan(x + y), X2 +yY =d,

(xi) x4y = g (i) X" +y' =a"  (xiii) Dy =(x + 3,
(xiv) ¥ = (x=)™, () y+ =g
(vi) (x—y)y" =24, (xvii) 2%y = @x + 3y,
(xviii) X7 = (2x + ), (xix) y =sin(x + y), (xx)y =sec(x +y),
(xxi) y =cot(x +y), (xxii) x +y =sin{x +y),
(xxiii) x — y = cos (x — y), (xxiv) x —y = sec (x + ¥),
(xxv) xy=sin(x+y), (xxvi) xy=tan(x +y),
(xxvii) xy = sec (x + ¥), (xxviii) x + y = tan (xy),
(xxix) xy = sin (xy), (xxx) xy = tan (xy).

2. Find the differential coefficients of the following:

(i) x cos y = sin (x + ), (ii) x sin y = cos (x + ¥),
(iii) x*y* = x cos (xy), (iv) 22 + y* = sin (xy),
) 2y = sin (o), (vi) y = x + ysin'(x/2),

(vii) x cos y + y cos x = tan (x + y), (viii) x cosy + ysinx = tan (x + y).
 Ify= (1 + x%), then prove that

y%—x:ﬁ.
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4. If y = x + 1/y, then prove that
2 dy
- +3)—==1.
&' -y +3) :
5. If y = x + (1/x), show that

dy
— +y=2x=0.
x y—-2x

6. Ify= ¥x+1/Vx, then prove that

2:-?;+y=2£,

7. If cos y = xcos (b + y), then prove that

dy _ cos’(b+y)
dx sinb

8

If x + sin V(xy) = 0, then prove that
Q= _ J; + ycosJ..r_y

drx xcosﬁ
2. If
y= \Icot.t+‘lcolx+,fcolx+---.
prove that
Q_oosec’x
de  1-2y
10. If
x=y+ !
- 1 »
y+ 1
Y Yt
prove that
& L2 2
—=2x"+y -3y,
oY 3xy
11. If
y=J;+ 1 + C +eeeeo,
i
prove that

&y__ oy
dr 2/x2y-+/x)
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12.
13.

14.

15,

16.
17.
18.
19.

21.

22,

If ax® + 2hxy + by = 0, prove that dy/dx = y/x.

If ¥ = (x + sin x)(x — cot x), prove that

dy _ x+(x+sinx - cosx)(1+ sinx + cosx)
dx 3y ’
Ify:axz-t-2h.ry+by=+ng+2_ﬂv+r=[],pmvelhat
dy  ax+hy+g

dx hx+by+f
If 3y - V(9y* + 1) = 5:2, prove that

dy _ 255" -3y)

dx 3x
If x + y = tan”(xy), find dy/dx.
If x cos y + y cos x = tan~'x%, find dy/dx.
If e = cos (& + yz], find dyfdx.
If £y = log(x + y) sin ¢, find dy/dx.
It ym—

x+

prove that

d
{1+y2}£+y2 =0.

!+l‘+l.-
If & , prove that

&

=2,
L-y
Find dy/dx, when:
() Vx =y++Jaat the point (a, 0),

(ii) For the curve x* = y at the point (1, 1),
(iii) forxy + 4 =0, at (2, -2).

1.7 Parametric Equations

Consider an equation in two variables x and y:

g, =0

(1.3)
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If a third variable ¢ can be obtained such that

x=fn, y=Fp (14)
and Eq. (1.3) is satisfied by substituting the values of x and y from Eq. (1.4)
then Eq. (1.4) is called the parametric equations of (1.3) and ¢ is called the
parameter.
Let &t be a small change in ¢ and let dx and Jy be corresponding small
changes in x and y, respectively. When dr — 0, dx — 0 and dy — 0. Now

x+8x=f(+6r) and y+J8y=F(t+3d1)

Then
Sx=(x+8x)-x=f(t+dn-fln)
and
Sy=(+d)-y=Fi+ dn-F
Therefore,
Sy _Fu+én-Fu _TFT
dx f+dn-f(n ._(%M
or
Fir+ 8- F(r)
lim & = lim
S50 §x 0 u+a:—!u
or
d Fir + &)= F(1)
— = lim —_—
dx &_,0 lim fle+&)—fin
a0 &
= lim Oyl bt
&0 Ox/t
_ dyldt
dx/dt
_ba
dt dx

Example 1.54 If x = a® and y = 2at, where 1 is a parameter, find dy/dx.

Solution Differentiating the given functions with respect to ¢, we get

dx dy _ dy _dyldt 2a 1
20 yTE O WA 2wt

Example 1.55 1f y = ¢ + cos r and x = log ¢ + sin ¢, ¢ being parameter, find
dyldx.
Solution We have

£=-l-+cos.r, ﬂ=£"'—Sil'h!
dr t dt
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or
dy _dyldr e —sint _1(e' —sinr)

Example 1.56 1If x = a (1 + sin ) and y = a(l - cos 1), find dy/dx. Also obtain
the value of dy/dx, when ¢ = /2.

Solution We have

%=aﬂ + cos¢), %=asin:

or
ﬂ _dyldt _ asint _ sintr_ 2sin (#2) cos(#/2) _ sin(t/2)
dx  dodr a(l+cost) 1+cost 2 cos*(1/2) cos(t/2)
or
dy t
— =tan—
dr 2

Also, when ¢ = &/2,

&S

=lan£-=1.
4

Exercises 1.6

1. Find dy/dx, where @ and ¢ being parameters and when:
(i) x=asinf, y=>bcosé,
(i) x = @ cos®8, and y = a sin’4,
(iii) x = a cos’@, and y=a sin’g,
(iv) x=a (1 - cos 8) and y = a(8 + sin 8),

(vI x=acost+ bsinrand y=asint + b cost,
(i) x=t+lrand y=1t- 1/,
(vii) x =N+ and y = V(1 - P),
(vili) y =t + cos ¢ and x = sin 1,
(ix) x = ae’ and y = be™,

(x) x=¢€"+sinrand y = log 1.
2. Solve the following:

(i) If x = a(@ - sin & and y = a(l - cos &), & being a parameter, find
dyldx when @ = ni2,

(i) If x = 3ar/(1 + ) and y = 3ar’/(1 + 1), 1 being a parameler, find
dyldx when t = 1/2.

(iii) Find dx/dr at t = #/2, if x = a (1 - cos #) and y = a(t + sin 1), ¢ being
a parameter.



48 Textbook of Differential Calcul

3. Find dy/dx, when
(i) x = a [cos &+ log tan (8/2)], y = a sin &,
(ii) x = a sin 28(1 + cos28), y = a cos28 (1 - cos28),
(iii) x =a (@ + sin 8, y = a(l - cos §).
4, If
sin ¢ _ cos’t
Joos2¢' r= Jeos2r'

find dy/dx at 1 = #/6.
5. If x = sec @ ~ cos 6, y = sec"@ — cos"f, show that

(x* +4)(‘i—”]2 =n?(y* +4)
=) = .

6. If x = sin 6@(00326) VY= cos&\f(sinZﬂ). find dy/dx at 8 = n/4.
7. If

1 1
x2+y:=.|‘—-‘-, eyt =rt 4=,
‘

prove that

1.8 Logarithmic Differentiation

In the power of a function or if a function is the product of a number of functions,
then to get the differential coefficient of such a function, just take logarithm and
differentiate next. This process is termed as the logarithmic differentiation. For
example, if
y=[pr®
then
log y = w(x)log ¢(x).
Differentiating, we get
X
= y'(x)log ¢x)+y(x) ‘:’({ ))

or

dy

_— y[w’(x) log @(x) + pix) ‘ﬂx):l

#x)

=[p]r™ [W‘ (x) log ¢(x) + w(x) %(%l]
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Example 1.57 Find dyldx if (i) y = X, (ii) y = (sin x)"°¥.

Solution (i) Since y = x*™, taking log both sides, we get logy = sinx
log x. Now differentiating with respect to x, we get
i% = (sinx)% +log x cosx

or
dy
dx
(ii) Here y = (sin x)'°¢*. Taking log both sides, we get log y = log x log sin x.
Differentiating both sides with respect to x, we get

IQ—LMII{) x+lla sinx = cot xlo, x+ll sinx
ydv snx i £ i og

= y(—+cosxlogx)—x [ nx +cosx lngx]_
x x

or

&

1 . s
= y(cotx log x +—logsin x] = (sin x)8* (colx[ngx -1-l logsmx).
dx x x

Example 1.58 Differentiate y = x* + x',
Solution Now u = x*. Taking log both sides, we get log u = x log x.
Differentiating with respect to x, we get
l & =logx+1
u dx
or
d“ X
E= u{l+log x)=x"(1+logx) (1
Again v = X' , taking log both sides, we get

1
logv=—1 a
BV x Og X
Differentiating with respect to x, we get

lﬂ——Llo .t+l
vde  x? € x*

or

ﬂ_vl —logx " 1-logx

2 2 (2)

Adding (1) and (2), we get

du +£—Q=.t‘{l +logx)+x

wxl-logx
dx dx dx x2
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Example 1.59 Differentiate, y = x* + (cot x)*.

Solution Now u = x*. Taking log both side, we obtain, log u = x log x.
Differentiating with respect to x, we get

1 du
——=logx+1
uw dx
or
du
—=x(1+1
o= % (1+1ogx) )

Also let, v = (cot x)*. So log v = x log cot x. Differentiating with respect 10 x,
we get

1 dv 1 )
——=Iogculx+x—[—cosec x]
v dx cotx

or

2
X cosec “_] ={cotx)*(logcol x — xsecx cosecx) (2}

dv‘ [
—=v| logcotx -
dx

Adding (1) and (2), we get
dy _du dv

= x*(1+logx) +(cot x)* (logcol x — xsec x cosec x
o ( g x) +(cot x)” (log )

Example 1.60 Differentiate (sec x)” = (tan y)~

Solution Taking log both sides, we get y log sec x = x log tan y.
Differentiating with respect to x,

ﬂ] secx+ Lst:t:Jl:l.an't:—lcl tan -I-xL*zet:2 L
ac e Y eex r=logtany tany Y&
=log tan +xsccycosecyﬂ
g lany e
or
%(logsccx—xsccyoosecy):logtany—ytanx
or

dy _ logtany — y tan x
dx logsecx*.rsecycosecy'

Example 1.61 Differentiate:

x=‘y7

Solution Given equation can be wrilten as x = y*. Taking log both sides,
we get, log x = x log y. Differentialing both sides, we get
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dy _ y(1-xlogy)
E'”’""—Z—_

1
l-—logy:x-—«-* or
X y X

Example 1.62 Differentiate x'y* = 1.

Solution Taking log both sides, we get, y log x + x log y = 0. Differentiating
both sides, we also get

dy 1 1 dy
= +y—=+1 +x=—==0
i 0g X )x ogy Iy /
or

dy _ _yxlogyty,

dr  xylogx+x
Example 1.63 Differentiate:

sinx
CosXx
sinx
1+ ———
COsXx
I+
1+

Solution The given equation can be writlen as

_sinx _ sinx _ (1+y)sinx
cosx  l+yteosx
1+|+), R 1+y+cosx
or
y(L+y+cosx)=(l+y)sinx
or

y+y¥ +ycosx=(l+y) sinx

Differentiating with respect to x, we get

% 2 2+%oosx—(smx)y—%smx+(l+})oosx
or
dy(l+2 + inx)=(1 i
E y+cosx—sinx)=(1+y)cosx+ ysinx
or

(1+y) cosx + ysinx

ﬁ‘:
de  1+2y+cosx—sinx
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Example 1.64 Differentiate cos y = x cos (& + y).
Solution The given equation can be written as
o COSY
cos (a+y)

Differentiating with respect to y, we get

dx _—sinycos (@+y)+cosysin{a@+y) sin(a+y-y)  sinx

dy cos*(a + ¥) cos?(a +y) " cos? (x+y)

or
dy _cos’(@+y)
dx sina

Example 1.65 If y=x" prove that

L
de 1-ylogx

Solution The given equation can be written as y=x*. Taking log both
sides, we get, log y = y log x. Differentiating, we get

1dy 1 dy
—_—t = y—t] =
yarrr(3)
or
y___ ¥
dv  x(1-ylogx)
or
oY
dr  1-ylogx
Example 1.66 If
y = x log——,
a+bx

find dy/dx.
Solution We get

a+bx
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Differentiating with respect to x, we obtain

x(dyldx)—y _a+bx a+bx—bx _ a

X X (a+bx)?  x(a+bx)
or
Jrﬂ -y= ax
dx a+bx
or
o 1, e )
dr x a+bx
Example 1.67 1If y = (log x)!¢ "’"‘“, prove that
dy y
I —_— .
(xlogx) dv 1-ylog(logx}

Solution Since
y = (log xylesn" (log x)”

Taking log both sides, we get, log ¥y = y log (log x). Differentiating with
respect 1o x,

ldy dy y 1

= = og(l —

ydx dtog(ogx}+logxx
or

dy |1 y

22 ol =

dx[y og(ogx)] xlogx
or

x log.tﬁ=——y-2———-—_
dx 1-ylog(logx)

Example 1.68 Find dy/dx, if

¥ =(sinx)"®* + (cosx)*™*,

Solution Since u = (sin x)***, taking log, we get log u = cosx log sin x.
Differentiating, we get

1 du . . 1
—— =—sinx log sin.x + cosx —— cosx
u dx sinx
or
d—u'—u cos’x ~sinx log sinx T 3 i
- inx B = (sin x)"* (cosx cotx — sinxlogsin x) (1)

Again, v = (cos x)"™, Taking log both sides, we get log v = sin x log cos x.
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Dilferentiating, we have

1 dv ., 1 .

——=cosx logcosx +sinx (=sinx)
vdx cosx

or

sinx

d . .
E":v(cosx logcos x —sin x tan x) = (cos x)""*(cos x logcos x —sinx tan x) (2)

Adding (1) and (2), we get

ﬂ-l-ﬂ=§=(sin]°lm
dx

cos x cot x — sin x logsin x
= ( 25in x)

+(cos x)"F (cos x logcos.x —sin x tan x).

Example 1.69 Find dyldx, when (lanx)’ + (cot y)* = 1.

Solution Let & = (tanx)” and v = (coty)*. Then u + v = 1, and

du  dv
—_—t—=0
IR 1

Now, u = (tan x)". Taking log, we get log u = y log tan x. Its differentiation
gives
1du dy 1 2
——=—logtan y + y——sec
wde dx glany+y tan x *
or

%:{mnx)’ [%loglany+ycotxsec2x) 2)

Again v = (cot ¥)*, log v = x log cot y. Differentiating, we have

1dv 1 2 d}‘
——=logcot y + x——|-cosec”y|—
vdx geoty coty( y)dx

or
% =(cot y)* (]cgcot y—=xtany cosec’y %] 3)
Putting (2) and (3) in (1), we find
dy 2 * 2 dy
(tan x)” Elog {lan x) + ycot xsec”x |+ (coty)'| logcot y — xlan y cosec yé;

or

%[{tan x)? log(tan x) — (cot y)* xtan y cosec® y]

+l:(lar| x)” y cotx secx +(cot y)* log (col y) ] =0
or
(tan x)” y cotx sec? x +{cot y.]’ log(cos y)
(tan x)” log(tan x) — (cot y)* x tan y cosec’y '

B|&
i
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Exercises 1.7

1. Find the differential coefficient of the following:

@ y=x (i) y=x (iii) y = (sin x)*
(iv) y = (sin x)*** v) y = (sin )™ (i) y = (sin x)"°¥
(vii) y = (cos x)*8* (viii) y = (cos x)**

2. Find dyfdx of the following functions:

@ (1+L) (ii) x +x"™ (iii) (1 + 0"+ 2™
(iv) x° + xin¥ (v) (sin x)* + (tan x)*  (vi) (sin x)* + X"~
(vii) (tan )™ + (cot x) % (viii) x* + e+ (x) (sinx)™ =,

3. Find dy/dx of the following functions:

® 2 =y i) £ = y™5 (i) (secx) = (tan yy
@iv) # = yHin® ™) X4y =c
(vi) y= IE (tan x}x (vii) ¥ =(tan x)(“"'l"”'"
oy -
wii) y=m @ x=y”
(x) y={sinx)“"‘""'""" .
4. If €¥ = xy, prove that
&__y
dx X
5. If )'=J(l-x)(l+x , prove that
-2 L y=0
(-x)—+ay=0.

6. If y = x', show that dy/dx vanishes when x = e.
7. Find the differential coefficient of the following functions:
@y=x" (y=e (Gidy=x" (Wy=x".
8. Find dy/dx of the following functions:
(i) (cosx) = (siny)y* (ii) x* =& (i) y= x (ivyy= e
9. Find dy/dx:
(i) 0™ () (xlogx)80%9 (i) (2x + 3)** (iv) x*Vx.

10. Find dy/dx at x = 1, when

(sin y) sin(7x/2) + %sec" (2x) +2* tan{log (x + 2)] =0
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11. Find dy/dx when:
X (cosx).- ’a'l.-
(i) ¥=(cos ) (i) y=a*

12. Find dyldx, when:

(i) y=1fx+1}x +fx o0 (ii) y=1||tanx+sjtanx+v“--w

Gii) y=e"" (i) y=x++
X+ T
™ x+
(v) y=(tanx)@®" X4:n0m
13. If xy¥ = (x + y¥"*9, prove that
&y
dc x°
14. If
y= e"x + x"l e,
find dyldx,
15. Find the differential coefficient of the following functions:
S i3 5
(i) sin"x cos’x (ii) — - (iii) pr e
(iv) "“5‘ (v) sin™(bx) cos"(bx)  (vi) x° + X'B*
lanx
(vii) x° + (logx)* (viii) 107 + x¥in* (ix) e'sin’x + (tanx)*
x 2, 073
(0 GRS @i g
16. If

y=a*+ ’l+x
1-x

Af(xx)
y=2"n 2 (mn %}

find dyfdx at x = 0.
17. If

find dyfdx at x = 1.
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18. Find dy/dx, when:

() y = ine-cosr 2oL
el

szix +3

(3x+1)?

xwxz +4

243

(i) y =

v) y=
19. Find dyldx:
i) 25+ 2 =2

(iii) »* = e~

(v) €™ =xy

(vii) (sin x)e*(log x)".

(i) y=x + 222

Fax+2

i 332
(i\f) y= 2z m;x!

(i) &+ y = o
(iv) y log (xy) = x

_a
vi) x = exp[mn'l(’x, ]]




Successive Differentiation

2.1 Introduction

It has been shown that the derivative of a function of x is also a functions of x.
Thus the derivative of a function may have its derivative without any loss of
generality.

Ify = f(x),

dy_ o fx+80) - f(x)
dx  dx—d dx
is called the first differential coefficient or first derivative of f(x). If the process

of differentiation be continued in succession, we obtain, second-, third- and higher
-order derivatives, as follows:

d’y_d [Q} i G0 - f@)

‘d? dx\ dx Sx=0 dx

=f(x)

= f"(x),

d’y_ d dzy o [T+ 8x) -,
F‘Z{E I R
and so on. They are also denoted by
_dy _ _dy_ o d"y
n—E-Dy. .vz-E—D RS =D"y

In successive differentiation, we obtain y, by method of mathematical induction,
for some standard functions, which are used as formulae. We also have Leibnitz’s
theorem to find v, for the product of two functions, which will be discussed later
in the chapter.

2.2 Successive Differentiation of Some Standard

Functions

(a) Let y = 2™. Then
¥ = !l‘l.l.J“_I

58



Successive Differentiation 59

¥y = mlm — 1y
vy = m{m — 1){m - 2)x™3

Yo=mm=1)(m=2) - (m-=n+ 1" (form>n)
Corollary If m = n be a positive integer and y = x", then

Yo=n{n=1)n-2) - 2-1=n!
Also,

Vel = Yne2 = = Yper = 0,
where n! is a constant.
In general,

Vpr =AM =11 =2) - (r + 1" =£;!.r'_
r.

(b) Let y = (ax + b)", where m is any number. Here
y1 = malax + by"™!
¥2 = m(m — Da*(ax + b)"?
vy = m(m - 1)(m - a*(ax + by*?
Proceeding in this way, we get
Yo =mm—1}m=2) - (m=n+ 1a" (ax + by™™".
Corollary Ifm=n,y,=n!a"
(c) Let y = . Here
Y =ae®, y,=d¢", y, =a‘e™,
Therefore,
Y, =a"e™.
Corollary (i) Let y = ¢*; then y, = ¢~ (ii) Let y = a* or y = ™8 then
Yo = a'(log,a)".
(d) Lety = U(x + @) or y = (x + ay'"; then
»n=CDx+a)?
% =D +a)” = (=2 (x +a)”
y =D +a), el
Similarly,
- (-1)"n!
" (x+a)t
Corollary In general, if
_ 1
T
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where m is an integer greater than n, then
—-ma

b4l =(ax+b)"‘”

_ {=Dim(m + l}la2 - (—1)2(m +1)! at
T (ax+b)™? m=1"  (ax+b)""?

Similarly, we get

_(=D)"(m=-n+1)! a"
(m—-1)! (ax + b)™"
(e) Let y = log (x + a). Here

Yn

1
= ve
__D
P xra)t
y _EDED) (-1)22!
? (x +a}3 (x «1-::1)3
Therefore,
5o = (NG )L
(x +a)

Corollary If y = log (ax + b), then

_ 0" n-1)1a"
" (ax +B)"

(N (i) Let y = sin (ax + b). Then

i) =acos('ax+b]=asin |:§+(ax +b)]

Y2 =a3cos[’—;+(m +b}]=a2 sin [3;;'+(ax +b)]
¥ =a’cos[2?z+(at +b}:|=a:’ sin [3{+(ax +b}]

Similarly, we get

y, =a" sin [22{ + (ax + b}]
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(ii) Let y = cos (ax + b). Then

N =—asin(ax+b}=am5|:%+(m'+b):|
¥s =-a sinli-g-ﬂax +b):|=¢:2 cos |:%£+(m: +b)]

y3=—a3sin|:2—:+(ax+b}:|=a3m[a—;+(ax+b)]
Therefore,
Yo =a" cos]::'-zﬁﬂax*rb)]
Corollary When & = 0, if we obtain for y = sin ax and y = cos ax

¥ =Sin(n—;+m] and y, =cos{%+ax]-
(g) If y = e cos bx, then
Yu = (@ + b)Y cos [bx +ntan™ %)
and when y = € sin (bx), then
Y = (@@ + b5 sin (bx+n ta.n'l%]_

Let
u=e"cos bx and v = e™ sin bx.
Then
u + iv = e*(cos bx + i sin bx) = e = glavitks
Therefore,

u, +iv, =(a+ib)" et

Putting a = r cos 8, b = r sinf, we get

a+b*=r" and tm19=£.
a
Then
{a+ib)" =r"(cos @ +isin@)" = e
Therefore,
u, +iv, = pheiBglarib)x
= P ei(.‘,u +nf)

=r"e*[cos(bx + né) +isin(bx + nd)],
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where
r=va®+b* and 9=l;m"l%
Hence equating real and imaginary parts, we have
i, = D" (™ cos bx) = (a® +b%)"? cos [b.t +ntan” %J
and

v, =D"(e* sin bx) = (a® +b3)"? sin(bx +ntan”! k]
a

2.3 Rational Algebraic Functions

Whenever possible, the nth ‘derivative of any rational algebraic function is
generally obtained with the help of partial fraction. However, at times, the final
result may involve simplification through complex variables.

Consider the following examples:

() If
_ 1 _ 1 1 _ 1
y"{x+a)(x—a) b-a\x+a x+b)
Then
1 1 1
Yn = nel A+l |-
b-a 1 I_(x+a) (x+b)
(b) If
_ 1
Y i
Then
—1"n!
. =% sin"*! @sin (n +1)6,
where

To prove, let

N 1 o1 (1 1
Y 2 +a? (x+ia)x—ia) 2ia\x—-ia x+ia

Then

_(=1)"n! 11
"= ia | Gia™  (+ia™

= (';;”! [(x =iy - x + ia)""*"] @
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Pulting x = r cos &, a = r sin 8 gives

2 +a*=r" and mnﬂ:s. (2.2)
x

Then
(x — ia) ™Y — (x + ig) ™ = "V (cos 8- isin @ — (cos 8 + isin §) )]
=" Dicos(n + )8 +isin(n + 1)8 - cos(n + 1)@
+isin (n+1)8]
=r "™V [2i sin (n + 1)6]

From Eq. (2.1), we obtain

2 TRy ntl
y, = (;}ﬂ 4”*"[2:51n(ﬂ+|)31 M[g] sin(n+1)8.
ia a
Since
l;;-" ~ﬂ, where @=tan™ 2,
r a a
We finally have
Yn =%sin“‘95in(ﬂ +1)6,  where 6=tan™ (i)
a a
Corollary If
S S
(x -H!I}2 +a*
Then
_EDR g B
Vo= s sin™ @sin(n +1)8, where &=tan +b

Corollary If y = tan”'x, then i = 1+ x%). Here putting a = 1, 8 =
tan”!(1/x) = cot™'x. Therefore, we get

¥a = (=1)'(n — 1)! sin"@ sin né.
Example 2.1 Ify = x* where nis a positive integer, show that
=2"[1-3-5-7---(2n - 1) x"
Solution Given that y=x*", then

n= m2l~|
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¥p =2n(2n — 122,
¥s =2n(2n—1)(2n - 2)x*" 3, ete.
Therefore,

Yo =20(2n =120 =2) -+ [2n = (n - D]x*"
=2n(2n - 1)(2n =2) - (n +1)x"

_2n(2n-1)(2n—=2) - (n+ 1x" )

; n! "

_@:4:68- 201357 Qn-1) ,
n!

_22:3-4-m(13:57 - @n=1)] ,

- 2":1![1-3-5‘7---(2!3—1)]1,,

n!

=2"[1-3-5-7 - 2n~D]x".

Example 2.2 Find y, where

1
Y6 +11x 43
Solution Here
_ 1 B 1 __A . B
6x% +11x+3 Gx+1)2x+3) 3x+1 2x+3

¥

where A and B are arbitrary constants. Now, multiplying both sides by
(Bx + ID{2x + 3), we find

1 =A2x+3)+B3x+1)=(2A+3B)x +(3A +B)
Equating constant terms and equal power of x, both sides, we get
2A+3B=0 and 34+B=1
Solving them, we obtain A = 3/7, B = -2/7. Then
3.1 21
73x+1 72x+3
Differentiating n times, we get

y

n

N Ve I o R o V| D S
TEx+D™ T@x+3™ T |Gx+D™ @x+3™ |
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Example 2.3 If ax® + 2hxy + by* = 1, show that
d’y _ W -ab
d  (hx + by)®
Solution Here differentiation of ax® + 2hxy + by* = | gives

2ax +2h [y+xﬂ)+2hyﬂ=0
dx dx
or
dy
~—(hx+by)+(ax +hy)=0
dr
or

Ay _axthy
dx  hx+by
Differentiating again with respect to x, we get

_d’y _ ahy,(hx + by) — (h + by, Yax + hy)
dx? (hx + by)?

ax + by a.t+by
~(a h,r "y )(h.t+by) [ M+by)(ax+hy)

(hx + by)*

_ [a(hx + by) = h(ax + hy)](hx + by) = [R(hx + by) - b(ax + hy))(ax + hy)
(hx + by)

_ Wab = K*)(hx + by) - x(* - ab)(ax + hy)
(hx + byy

_(ab- W) ax® + 2huy + by?)
(hx +by)?

h* —ab
(hx + by)?

Hence,
iy K -ab
de*  (hx +by)®

Example 2.4 If y=1/a- x), prove that

n!
Yo =1
n (a_x)n-i-l
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Solution For given

=(a-x)"

y=
a-—-x

On successive differentiation with respect to x, we get

»=EDa-0D=(@-07 =

(a-x)?
2!
=112a-x)"2 =2a-x7 =

¥, =112(a-x) (a-x) o
31

yy=213a-x)"F =3Ma-x)" = -

n!
yn"‘ (a—x)“l'

Example 2.5 1If p* = a® cos®8 + b sin®6, then show that

d’p a’p?
—S+p=—
dé 4
Solution Differetiating
p* = a’cos’@ + bsin’6, D
with respect to &, we get
2p%=—az sin26 + b* sin28 = (b - a*) sin28 (2)

Differentiating again, we obtain

2 2
pj?p +[%J =(b* - a*)(cos? @ —sin*6) = b* cos* @ + o’ sin* 8 — p°

or

2 2
p;?P + p? =b” cos’8 + a* sin’d -[%]

From (2), we have

d2p

PW + pz =b*cos?@ +a’sin2@ - @ -ay s;nlﬂ cos’d
= p?[(a® cos* 8+ b *sin2B)(b® cos’ 0+ a* sin’6)
—(b? - a*) sin*@ cos?8]
= p‘z a*b*(cos?8 + sin 26')2
= pa’p?
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or
2 2,2
4o, a2
de P
Example 2.6 1f
=xlo i_—l
Y gx+l'
find y,_.
Solution We have y=x[log(x—1)+log(x+1)]. Then
=log(x-D-log(x+1)-x LN
n 8 & -1 x+1
=log(n-1)-lo, (J|:+l)+;+L
8 8 T1 x4l
Therefore,

. l={_1),_,[ (-2  (n-2)! _(n—l)!_(n—l)!]

x=-D"" @+ x-D" (x+1)"

-
AAVﬂ%ﬂ%W n(nnk

0" X=-n x+n
-2 -
T %u—m u+m]

Example 2.7 1f

T [(:c+!) +(n—l)]}

=
X +x+l
find y,. *

Solution Given
1
2 +x+l
-t
C(x+12) +314
1

- (x+12+ w’ifz)(x +1/2- w’ifz)

2 1 1
_fﬁ[{h+1)—iﬁ-(2x+l)+i\5]
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We get
Y= % 1ynr2” {[[Zx +0=ifB]"" ~[@x+D+i3] “n]
I

Putting 2x + 1 = 2rcos §, /3 = 2rsin &, and applying DeMoivre's theorem,
we get

4 =x+1)? + (3P =4 +ax +1+3=4( +x +1)
Solving, we get

)I:‘Z

r=(x2+x+1 and [ang:i‘
2x

+1

Now,

[ex+n-VE]"" ~[@x+n+iB]""
=2 [(cos§ ~ i sin 8™ — (cos B +i sin )"V
=027 eos (n41) 8 +i sin(n+1)8 - cos(n+1)8 +i sin (n+1)]
=r - i sin(n+1)6
=27 Digin(n +1)8.
Therefore,

2 ()n1272"

Vn EIJZ-: o isin(n+1)8.
= (_3—:!25in (n+1)@
(=1)"n12

sin(n+1)8, where #=tan™' (2x+1

=)

(xZ +x+n(n+l).!‘2

Example 2.8 If

y_a.x+b
a+bx’

show that 2y,y; = 3y3.

Solution Here
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Then, we have

= ~(b* - a*)
=0 b —_— =
N +[ b ][(bx-:—a)z] (bx +a)?

= 26(8* — &%)
T (bx+a)
—6b* (0% - a°)
¥a =—4
(bx +a)

Now

=3

}N

2yy; =2

—{bz—a’)—ﬁb’(b’—a’)=3 2b(b* - a%) i
bx+a’ (bx+a) (bx +a)°

Example 2.9 If \(x +y) + V(x — y) = c, show that y, = 2/c*.

Solution Here Y(x +y)+Y(x - y)=c. Squaring both sides, we get

J|:+y+y—x+2\’y:—x2 =c?

or
2 yz i =c-2y.
Again squaring both sides, we have
4(y12 - .1:2} =c? - dcy + 4).r2 or 4x - 4(:23' +ct =0,
Differentiating, we have
8x - 4c? ¥ =0
Differentiating again, we get

2-¢?y, =0.
Hence y, = 2/c%.

Example 2.10 Prove that
2
diydy _fd
dx_ ddde Tlad
T

dx
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Solution We have

or

Example 2.11 If

prove that xy; = (v - xy)™.
Solution Here

=lo x J‘—x[l:i =
y=log| | =x0e -
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Then
Z= I og ar vix = Ll .
x a+bx a+bx
Differentiating with respect to x, we get
ix Nr=y _ a
¢ F 2
X (a+bx)
From (1), we have
2
X M X -
Oy — Y =———=ae”™ or ' (xy-y)=a

(a+bx)?

Differentiating again with respect to x, we obtain

- X+ -
e ”' 2ETY (yx =) + e [z + ) - 3 1=0

or

= »®)x—y) +xxy, =0
or

2y, =(y - x3)

x =cosh [_]og y] R
m

prove that (x® - 1)y, + xy, — m?y = 0.

Example 2,12 1If

Solution We have
x= cosh( °gy) or cosh™'x =llog}'
m

Differentiating both sides, we get

1 1 5
—_—_——=—Y or  yfx =l=my.
x2—-1 m

Again differentiating both sides with respect 1o x, we get

[ 1
Y2 12-1+)’152—1

X< -

2x =my,

O]
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or

(.r2 =1y, +xy =myn,‘.t2 -1

(F =Dy, +xy =m’y

or

Hence
=Dy, + xy —m*y=0.
Example 2.13 1If

y=A{x+ﬁ)ﬂ +B(1—JH)",

prove that (x> 1)y, +xy, —n’y=0.

Solution We have
y=A(;+J;2 —1) +B(x—\lx2 —1]
Differentiating both sides with respect to x, we get
n-1 =1
» =M[x+\!x2 ) |1 ——2s +nB(x—x* —1] 1-—2
2;]1'2 -1 2yx* -1

e T S e T

or

" n
xz—lyl=nA(x+-\Ix1—ll —nB[x—-sz—l) .

Again differentiating both sides with respect to x, we obtain

l—nA(x+J—} [ Zx_,zx]
_,!za(,_sz—_l)"*[I_

xz—lyz-i-zJ_

! 2x |.
24}12 -1
Therefore,

(xz—l)y2+xyl=n (x+ x - )+n28(x—Jx_—)
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x* =Dy, +xy, =n’ [ﬂ(x+~‘x2 —l)ﬂr + B(x—\lxz —l]l}.
Hence ) : .
(x* =Dy, + 33, = n’y=0.

Example 2.14 1f y =e‘”i"-l’. prove that (1- xz)yz —xy - azy= 0.

P |
Solution We have y=¢""" *. Then
!

yl=e‘“i"'l'Ja_ or yyl-x® =ae‘"i"-”'/=ay

1-x* -

Therefore,

Na-x)=ay
Differentiating, we get

- Vs
2y, (1= x%) +(=2x)yF =a*Q2yy;)
or

="y, - xy, - a’y=0.
Example 2.15 If y = sin (m sin™'x), prove that

1=y, - xy; +m’y=0.

Solution We have, y =sin (m sin"\x). Then sin"'y = m sin~'x. Differentiating
with respect to x, we get

1 1
-Jl—yl Y1szl_x2 or yl-x =ml-y

Squaring both the sides, we have

¥ U=x)=m* 1=y
Differentiating again with respect to x, we get
2y (U= %) + 37 (<2x) = m? (<2yy,)
or

2y, [y (1 - x*) = yyx) =2y, (-m"y)
or

»-x*)-yx=-m’y



74 Textbook of Differential Calculus

Therefore,
¥ (1=x%) - xy +my =0.
Example 2.16 1f y'™ +y™™ =2x prove that (x* 1)y, +xy, —m’y=0.
Solution Dividing y'™ + y ™" = 2x by y'™ we get

yZIM _ mlfm +1=0.
Solving it by gquadratic equation, we have

¥ =%[2xim) or y=(-fimr M

Differentiating, we get

m=1
y,=m(1i xz—l] 1x 2x
2:;):2-—1

} m[x:t x* —I)M_I[m:tx)
sz—l

tm[.tiJ;‘T:—l]m

¥ -1

From (1),
yx2-1=tmy or (x2 = 1)yi =m?y.
Differentiating again, we get

Q2x —1)yf +(x* 1) 2wy, =m* 2yy,)
or

(% =Dy, +xy, ~m’y=0.

Example 2.17 If y=Ae ™ cos(bx +c), prove that y, +2ay, +(a* +b*)y=0.
Solution We have y = Ae™™ cos (bx + ¢)
Dilferentiating with respect to x, we get
¥, =-Aae™™ cos(bx +¢) = Ae" b sin (bx + c)
= —ay — Abe™ sin(bx +¢).
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Again, differentiating
¥, =—ay, + Aabe™ sin (bx +¢) - Ab*™ cos (bx + c)
or

¥ +ay =a(-ay - y) - by
or

¥y +2ay, +(a* +5*)y=0.

Exercises 2.1

1. Find the nth derivatives of the following functions:

L1 . x X2
O ® emacn W
(iv) x (v) '_"_L“_"' (vi) tan™ l+_x
- 3% ~11x+6 1-x)°
2. Find y, in the following functions:

(i) (ax + by (ii) e™ cos bx (iii) &** sin 4x
(iv) e cos (bx +¢) (v} x*cosx (vi) 2 log x
(vii) xZe (viii) ™! log x (ix) x sin 4x

(x) % sin® x (xi) x° cos x (xii) " log x

(xiii) €™ [a*® - 2nax + n(n + 1)].
3. Find d"y/dx" of the following:

.
(i) y= sin"[]iiz) (i) y=cus"(i+in

(iii) v = tan"'x (V) y = tan"[ 2’2]
1-x

) y= sin”'x.

e

(i) If y = a sin (log x), prove that Xy +xy +y=0.
(i) y = a cos (log x), prove that X*y* + xy, + y = Q.

If y = cos (m sin”'x), prove that (1 - x:")yg - Xy + mzy =0
If y = sin (log y), prove that (1 - x%) y; = xy, — y = 0.

Ify= o 'E prove that (1 - x*)* — xy, -y = 0.

Ify= e"""-l‘, prove that (1 + x2)y; + 2xy, — ay, = 0.

Ify =[x+ V(e =", prove that ( = 1)y, + xy, = my = 0.

e . N At
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10.
11.

12.

13.
14,
15,

16.

17.

18.
19.
20.

21.
22,

If y”"' yim = 2y, prove that o2 + Dy, + xy, = miy.

If

pmcosn(22)
m

prove that - Dy, + xy - m?y = 0.

If
x =sin h[m}
m
prove that «*+ Ly, + xy — m’y =0
If y = €™ cos bx, prove that y, — 2ay; + (a® + bY)y =

0.

Ify=(a+bx)cosmx-l-(c+dx}sinm.pmvcﬂ1aty4+2m1y2

If y = (a + bx)e™, prove that

ﬂ+2n—+n2y =0,
dx? dx

If x = cos log y, prove that (1- P)y; - xy, -y = 0.

If =log

prove that X’y; = (y — )%
If y = A sin mx + B cos mx, prove that y, = -m%y.

a+b

If y = Ae™ + Be™, prove that y, = mﬁa:
If p = a’cos?8 + b? sin*@, show that

2
p+%=202+2b2-3@

If y = (tan™'x)?, show that (2 + 1)%, + 2x (2 + 1y,
If

y=sin h{l logy]
m

show that (< + 1) 31 + xy, = mPy.

=2

+m'y = 0.

If y = (a cos x + b sin x)e™, show that y; + 2my, + m*+ y=0.
2ny = 0.

If y = (2 - 1), show that (® - 1)y, + 2Zxy,(1 - n) -
If y = x sin x, show that,

=xsin| x+2Z |- ncos| x + 2=
Yn = 2 2 3
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26. Find y,, when

27. Find y,, when

28. Find y,, when

. lat+x 1 1
i) y=tan™ [ == 4 +
Oy [a—x) [x‘—-a“ l+x+x* +x3)

(i) y=x(a2 +x2]-1 .

29. Find y,, when

g [_XSine
Y l-xcosa
30. If y = ¢ sin'x, find y,

31. Ify= sin’x cos’x, find y,.

2.4 Leibnitz’s Theorem

If u = ¢(x) and v = p(x) be a function of x, then the nth derivatives of the product
y = uv is denoted as y, = (uv),. It is easily obtained from Leibnitz's theorem,
which states as follows:

Theorem 2.1 (Leibnitz’'s Theorem) If u and v are two functions, then the nth
derivative of their product y = uv is given by

@v), =uv + "Ciu,_ vy + "Cot,_ovy + "Catty_gvy + -+ "C v,y +uv,,
where the suffices with « and v denote the order of differentiations of u and v
with respect to x.

Proof Let y = uv. Then by actual differentiation, we get

Y =Wy + uvyy
Y2 = (v + wpvy) + (v + uvy)
= v + 2y + Wy
= v + 2C;u|v1 + ZCIHUZ
¥3 = (ugv + ugvy) + 20ugvy + uyvy) + (uva + uvy)
= ugv + 3ugvy + 3ugvy + uvy
= ugv + 3Chugyy + ICoupvy + 3Cauvs.
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The theorem also holds good for n = 2, 3, ... Let us assume that the theorem is
true for n = m. Thus

Y = ¥ + "Ciltp vy + "ColiaVa + 00 + "Cpp Vi + UV,
Differentiating both sides, we get
Ymel = (Uma1V + ) + "Crligvy + tig_va) + "Colttpva + Mpav3)+ -
+ Moy (UaVy + U V) + (U Ve + UVpyy)
= UV + (1 + "Cugyy + ("Cy + "Colitpy vy + ==
+ ("Cont + "CodltyVy + ™' Cogt Va1
But from the binomial coefficients, for all r, we have
"C, +"C,="MC, and "Cp=""Cp,=1
Therefore,
Yimel = V)ma = tmarv + "C) + vy + ™ Cott_ vy + -
+ MC UV, + W

This means that the theorem also holds good for n = m + 1. But it is true for
n =2, 3 and hence it is true for n = 4, and so on. Thus the theorem is true for
any positive integral value of n. Then

(v, = v + "Coty_ vy + "Cattyavy + ... + "Cpgtt Vg + UV,
Note: Using D for dfdx, we have
dﬂ'

(uv), = D'(uv) = ().
drl'!
Also,
n{n-1
"Cy=n, "Cy= (2! ).

For example, if y = e“x?, then we can find y, by putting

wu=e* and v=x%
Therefore,

H,'=£IR8‘" and V|=ZK,V2=2,V3=V4=“‘=0.
Hence

1
Y = W)y = UpV + nity vy + Jln — 1) tyav2

= [a" + na"'2x + %n(ﬂ - 1)&2(2}]&"

= [a*? + 2anx + n(n - 1)}a"™%e>
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Example 2,18 M y = a cos (log x) + b sin (log x), prove that

.Izyg'l'.l}'l'!-y:{]
and
ez + (20 + Dxyyy + (02 + Dy,

Solution We have
¥ = a cos (log x) + b sin (log x)
Differentiating, we get
Y= -4 sin(log x) + 2 cos (logx)
X X

or
xy; ==—asin (logx) + b cos (log x)

Again differentiating, we have
1 . 1
» +xy; =—acos(log x)—— b sin (log x)—
x X
or
x* ¥, +xy; ==[acos (logx) + bsin(logx)] ==y

Therefore,
.rzyz +xy+y=0.

Now differentiating it n times by Leibnitz's theorem, we get
xz)“n+2 + nclyn—l 2x+ "CZ.Vn(z) + Yo ¥+ nc]y" (1} ¥, = 0

or
nin-1)

X ypps 200y, + 2Yn + Xgyy + 1Y, +3, =0

Therelore,

X Yaez + 20+ Dy + (07 + 1)y, =0,
Example 2.19 If y = sin mx + cos mx, prove that
172
Vp=m" [1 +{=1)" sin (2m.t)]

Solution Differentiating

¥y = sin mx + cos mx
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n times with respect to x, we get

Y, =m" sin (mx +%]+m“ cos(m.r—r%)

oo [l )l 2|
2]

=m"[1+sin 2mx + nx 7

=m" (l *sin 2!7“)”2

Hence
172
y, =m" [l +(=1)" sin Znu:]
according as n is even or odd.

Example 2.20 1If

E’("’T"ln_ui:?[(‘z -],

prove that Py, =xP, +(n+1)F,.

Solution Here

d "
P,(x )_z" ’dx"[xz_l}]

putting n = n + 1, we get

dln-!
2!"-]( +l}' dxn-ﬂ[

1 d"[d "
2'"‘(n+1)rdx“ {E[( Y l]}

1
T (n+1}' dx"

L o]

P ()= -n™']

[(n+l)(x -y" (2x}]
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By Leibnitz’s theorem

ST

2"nl| dx" dx"!
or -
1 4" 2 " n d”_l 2 "
H“"'(x}:xzun!d‘n ("- _l) +ﬁdx"‘l * _l]
n n=1 2 .
=xP, 'i'mF[I —l)
Then
' ’ n d” x} n + ’
PLa() =B 4 xBy 4=t =) = By ()= 3B + (n+ D,

Example 2.21 If

L1 1
u=x"+—, v=x+—,
x" x

show that
d*v  du
2 2
(v —4)?1-1‘;—” v=0.
Solution Since
voxsl, B 12
- Y odx x2 x*
and
du _du dv _ (,,_,_ 1 ] 2 omx {x"-l]
dv dx dx PAALl P R %"
Then

du_ded L(xn _LJ
dvt dvdx|xt -1 x"

_ nxt | -1)- 247 x"—i)+ nx (x"_l-r;)
2-1] 2-1? ) -1 !

x2+1) du n®x? u
=1 dv (-1

S S (O 02 VIS
(x* -1 x dv
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or
2
-1 du P lde -0
x dav? x dv )
But
v1—4=[x+l) . +2+(21fx) 4_(x :1)
X X
or
1 x4+l
v Ex+—=
X X
Therefore,

o - 4]—+v£—nu =(.
dv

Example 2.22 1f x + y = 1, prove that

LI .(}‘" _ nclyn—lx_{_ ncayn-Zx‘z _ nC;)""-313 + _"]

dx"
Solution Here x + y = 1. Then
dy dy
l+—=0 or — =-1
dx dx

Differentiating n times by Leibnitz’s theorem, we get

"y y=nly" + "Cynlxy™ 14 +"C -—-x 2a(n—1)y™" 2[%} Foen

=nl[y" + "y D) + "Coy A1 4

=nly" = "Cy™ 2k + "Cyy it — ).
Example 2.23 Writing £ = ¥"x" and using Leibnitz’s theorem, prove that
n nt-1? W 2= n-2)° e (Zn)!

1+—+ .
12 172 1?23 (,, Iy

Solution We have
1
D"(x"x") =D"(x*)=2n(2n 1)+ (n +1) ¥*" " = _(2:1'). "
n
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We also have

D"(x"x") = x"(D"x") + "C{Dx"}D" 'x") + "C, (D*x"YD"2x") + - 4+ (D"x")x"

=x"n!+ (mnx""'nlx + an—1) n(n—1x"2 M—!.t3 +-+x"n!

i-2 2
=nlx" ]+ﬁ+M+,“ )
o 2222

Equating right-hand sides of (1) and (2), and dividing by (n'x") both the sides,
we get
n nt(n-17 wPin-1nm-2)° o n!

14— . L
22 12.2%.3? (1)

Example 2.24 If y = (x* - 1)", then show that

(7 = DYpaz + 230,y —n(n+1)y, =0.

Solution Since y = (x> - 1), log y = n log (x* — 1). Differentiating it,
we gel
»no_ 2nx

y oxi-l

or (x: =1}y =2nxy=0

Applying Leibnitz's theorem and differentiating (n + 1) times, we have

(2 = Dypsa = "'C12R)Y0 +"'Cy2y, - 20y, - 20" 'Cyy, =0
or

{-‘72 - 1))",-”2 + 2"?n+l —n(n+ l]}'n =0.
Example 2.25 1If y = sin (m sin”'x), prove that
(1= xz)y,,,,z =(2n + 1)xy, +(m* - nz)y” ={Q.

Solution Here y = sin (m sin”'x). Then

¥ = cos (m sin"'x) s
I-x

or
(1- .tz)yl2 =m” cos® (m Sil‘l_].l')
= mz[l —sin®(m sin"x)]
=m*(1-y%)
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Differentiating it again n times by Leibnitz's theorem, we have

D[(1 - x*)y;]- D" (xy,) + D"(m’y) =0
or
[(l —~x2)y“z +1(=2X)¥4 +-3-n(n—1)(—2)y”j|—[xym +(n)}Dy,] +m2y,, =0
or

(1= x2)Ypez — 20+ Dxy,,y +[m? —n—n(n-1)y, =0
or

(1= x*)y,02 = Qn + Dxy,,, +0n? —n?)y, =0.
Example 2.26 If
x=cosh {ilog )‘).
m

then prove that

(27 = 1)Yp2 + @0 +1) Dy +(a* — )y, =0,
and deduce

Solution Here
1
x =cosh | —lo
[m 8}') (1)
Differentiating with respect to x, we have
1 11
1=sinh | —1 e
s (Lrss) L,
or
. 1
my =y, sinh (— log y)
m
or
22 _ 2. .21 2 21
m-y~ =y sinh*| —logy |=y |cosh® | —logy|-1
m m
From (1), we obtain

miy? =(x2 - 1)y} or  (x* -1y} =m?y?



Successive Differ
Differentiating again, we get

O =D@yya) + 207 =2mPyy
or

(< =Dy, +xy =m’y
Now, differentiating n times by Leibnitz's theorem, we have

(F = D¥pz + "Cr¥aai(20) + "C2¥a(2) + Xpas +"Ciyy — My, = 0
or

nin—-1)
(-"2 = DYpsa + 2023, +

> 2 + Dt 1%y -m’y, =0
or

(Jr2 =Dz + 2004 +0(n=1)y, + Xy, +0y, — m? ¥, =0
or

x? - Dypez + (20 + DXy, + [n2 -n+n- mI}y,, =0
Therefore,

O = D2 + @0+ 137,y +(0* = m*)y, =0.
Now taking the limit as x — 0, we gel

Yne2 = (nz = mz)yn-
Hence

Example 2.27 1If

show that u, =nu,_; +(n—1)! and hence deduce that

u, —n'(]o x+l+-l-+l+---+l)
i 273 n)
Solution We have

yz (x" log x)

= %[i [x" logx)}

u, =

m
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dn_l [ n 1 n=1 ]
= x"=+nx"" log x
x

dx"?
= :;__II [n (.r"" log x) + .r""J
=1 et dn-l
= ndx"" (x log x) + =

=ni,_; +(n-1)!

For the next part, we replace n by (n-1) in (2), we get (n-2)!.

g =(n= "D,y = (n-2)!

Putting this in (2) we get,

u, =n[(n="Du,_, +(n=2)1]+(n=1)!
=n(n—Du, 5 +nln =21 +(n-1!

n! n! n!

F—t—
(n 2)'"2 n-1 n

Again replacing n by (n - 2) in (2), we get
gy =(n=2u, 4 +(n=3)!

Putting this in (3), we have

(n-3)

t, = n{n— 1)[(n 2)u,,_ 3+

= u(n—l)(n—Z)u,,_, + n(.u-l)(n-S)! +nn=2)'+(n-=1)!

n! n!  n!

Uy 3+t ——+—
(N 3)' (n=2) n-1 n
Similarly, we get
n! n! n! n!
U, =— 1 +— .
Iy 2 3

Putting n = 1 in (1), we find

1 =-§r-(x log x}=|ugx+x%=logx+l,

("

Y ]+ nn=2)! +(n-1)!

(2)

(3)

(G
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Putting this value in (4), we get

n! n! n!

u =nflogx+1ll+—+—+--+—

= nillogx +1) 23 n
1

=n!(|og x+1 +l+l+--- +—].
2 3 n

Example 2.28 If y = x%", show that

", 2
‘;: =%n(rl—l)%—n(u—2)% +%(n—l)(n—2)y.
Solution Here
y=x%".

Differentiating, we get
¥ =2xe" +x2e*
¥y = 2% +4xe* + 32"
Differentiating (1) n times by Leibnitz's theorem, we have
3, = €% +ne* (2x) +@a(z)
=x’e" +2me® +nin—1)e*
Now, we get,

1
%n(n =1)y; —n(n-2)y + 2 (n=1{n-2)y

=x'e* (i = 2n+1-n" +2n) + 2nxe" + nn - De*
=x%e" +2nxe* +n(n—-1)e*
=V
Example 2.29 If y = (sin"'x)?, prove that
@ (1 =)y, —xy =2
(0) (1 = Pypaz = @n 4+ Dixypyy -1y, =0
(©) lim,_g (¥pealy,) =n°.
Solution Here y = (sin"'x)%. Then
1

¥ =(2sin”"x)
1-x

-;—u(n ~I}2 +4x 4+ x7)e* —n(n-2)(2x + x*)e* + %(:r —(n-2)x"e",

(D

@

e’ [%(n—l)(n +n—2)—n(n~2)] +2xe* [n3 —-n-n? +2n) +n(n-1)e*



88 Texthook of Differential Calculus

or
yyl—x* =2sin”'x
or
y,z{l - xz) = 4{sin"x )2 =4y
(a) Differentiating, we get
(1= )2yiyy) + yi-20) = dy,
or
(1 =2y -y =2 a
(b} Again, according to Leibnitz’s theorem, differentiating n times, we get
(1=2%)3,p2 + 20050y = =1y = Xy = 1Y, =0
or
(1= )Yz = 20+ DYy ~[nn=1) + 0]y, =0
or

(1=x%)y,,5 — 2n +Dxy,,, —n’y, =0 2

(c) Dividing both sides by y,, we obtain

(1=xh 22 _ 2 ey dmsl 2 _
Now, (sin"'x)? is an even function of x. So, if n be even, ¥, contains a
constant term, while y,,; has a multiple of x as the lowest-degree term, when
expanded in ascending powers if x. Hence

fim (2n + Dx 2L =0
x=0 ¥
Therefore,
lim 2222 =n"
=0y,

Note: If n is odd, y, contains a multiple of x as the lowest-degree
term, and so does y,,>. While y,,, contains a constant term. Hence the limit of
(2n + 1)xy,, exists and is # 0. Hence the limit of (1 — x*}y,,,/y, exists. Therefore,
the limit of y,,./y, exists and is # »® in this case.

Example 2,30 The first second, third and fourth differential coefficients of y
with respect to x are denoted by ¢, a, b, c respectively, and those of x with respect
1oy by 8, & B, ¥ Show that

3ac~5b° _lay-54°
5 g
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Solution Let

g=F_1
dy t
Then
a_“'_"_ﬁl_l(_iJ__f.
- dy dyt 1\ I
g_ﬂ_ﬁi[_i]_l bi* —3a%* ) _3d’ -t
dy dyde\ ) ¢ I e
_df _dx d (34 -br
dy dy dx s
_ (6ab~ct - ab)® - 5(3a* - br)t*a
- M
_(Sab—et)t = 5a (3a® = br)
= 1
i
_ et? +15a° —10abt
-
Therefore,

3ay-5f° _ 3a(cr* ~10abt +154°) = 5(3a* —br)’
¢ gt
_(Bac-5b°)r*
- g4\
_3ac-5b°
i

Example 2,31 Show that

ﬁfm[-t"(logx)q:l +5, logx*'%('og«‘)z +e *%a"g =

where S, = the sum of the products of the first n natural numbers, taken r at a
time.

Solution Let y = x*(log x)". Put log x = z, s0 x = ¢ Therefore, y = ¢"7".
Since x = €,
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Now

______ < dy
& dide dit (’) %

Differentiating again with respect to x, we get

£y d(a) _d(d) 4
de®  deldr) dx dz) dz dz Jdx

= 9-252_21. ﬂ{_l)e" et =e-2‘-' d_“‘:}'_ﬂ

d?  dz dt  dz

2
2:dy _dy) 4
[dzz dz) (D% - D)y, [wherc D _:E]

Proceeding in similar manner, we get

:i:" e [D(D 1D-2)-- (D—n+l}]y
Now
d" d"'y
e e [.t (log x)" ] 'dx"

=$e‘"‘[D(D—1)(D—2)---(D—n +1)e"z")

=i‘e_’“e“{(D +n)D+n-1)(D+1)c"
n.

=;!~;[(D+ 1D +2) - (D+n—1)D +n)lz"

=lI[D“ +(14+2+3+--+m)D" +(1.2+2.3+3.4) D"
n:
+eot(12:3m)] 2"

:i‘[u" +5D"! +5,D"? 4. 45,]2"
n:

1 n! n! 4 n! .
z;(n!+slﬁz+szaz ++ 8, —2z J

n!

=1+8, logx+ ‘(;—:"{log.a:)2 + 5 (Iogx)3 e +S—”(lug ",
2! 3 n!
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Example 2.32 If y'™ + y '™ = 2x, prove that
(= D)yyay +2n+1) xy,,, + (0" —m*)y, =0.

Solution Differentiating y'™ + y'/™ = 2x, we get

1 - im—
_y”M I)'l +(_l]y 1 I}’I =2

m m
or
1 yl-fm 1 y-l.ﬁn
——y - ——y =2
m ¥y ¥
or
LYoftim
— -y =2
Ly )

Squaring, we get

% (o Vim \
W[} "oyt =4

or
ylz[(ylrm +ylimy2 4yl-‘my—l.fm] =dm?y?
or
Y (4x? = 4) =dm?y?
or

(.Jrz - l)ylz =m’ yz
Differentiating it again, we obtain

(¥ = 1)(2yy2) + ¥ 2x) =m2yy)
or

(< =Dy, +xy =m’y
or

(% =)y, +xy, = m’y =0

Differentiating n times using Leibnitz's theorem, we get

(7 = D¥pea + "CiZ0Ypy + "Co(DYy + (X g + "Cryp) — iy, =0

or
2 nn=1) 2
(X" = D¥pqa + 205y, + 2 (2y,) + Xy + 0y, —m~y, =0
or
(= D¥paz + @0+ DXy + (0 —n+n—m?)y, =0
or

(0 = D)Ypez +@0+ D1y, + (@ —m?)y, =0.
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R

Exercises 2.2
Find y, for the following functions, where y be equal to:
i) xe (i) 2 log x (iii) 2® sin®x
(iv) x%cos x (v) xe™.

(i) If y = tan™ Tx, then prove that (1 + xl)ym + 2nxy, + n(n=Dy,.; =0
(ii) If y = ™" o ag + QX + @xX> + ..., show that (n + 1) apyy + (1 - 1)
a,. = ma,.

If y = sin"'x, then prove that (1 — X*)ym2 — (20 + Dy, — 0y, = 0.
If y = log [x + V(1 + @) prove that (1 + e + (21 + Dy, + 0y, = 0.
Ify= e‘z , prove that y,, = 2Zxy, = 2ny,; = 0.

If y = x sin x, prove that

¥n :xsin[x+ﬂ —ncos[x+ﬂ].
2 2

Also deduce that y, - y; = 4(y/x).

7. If y = €™ cos x, prove that y, + 4y = 0.

9.
10.
11.
12.

13.
14.
15.
16.

17.
18.

If

y X
_]..,_-..l — .
cos == og[ )

prove that x%y,.; + (2n + Dy, + 20y, = 0.
Ify= o log x, prove that y, = (n - 1)!/x.
If y = log x, find y,.

If y = x"(1 + x), find y,.

If y = (log x)/x™*, prove that

s

If y = ax™' + bx™", prove that %y, = n{n + L)y.

If y = Ae™™ cos (bx + ¢), find y,.
Ify = log [x + V(1 + x%, then (y2)o = —H° (Vo
Ify = e®07'%, then (ray2)o = (* + @0
Ify= el = ay + ax + ax® + ..., show that (n +1)(n+2) a,,, =n’a,.
If x = tan (log y), then show that
L+ x)y, +(@nx =Dy, +na(n -1y, =0.
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19.

20.

21.

22,

27.

29.
30.

If y = ¢ cos x, then show that
(Vzn +2)g = 4" (¥20)g +20(2n = 1)(y,, = 2)y =0.
If y = ¢™%7'% then show that
(1= X )ypet = @n + Dy, — (a7 =)y, =0.
Ify= &S chow that
(1= )pe2 = 20+ Dy, — (0 +0%)y, =0.

If y = Ae™ + Be™, show that

d’y dy
:i'x-—z-—(a +b}z+aby=0.

Ir
.- X
y=sin ,
show that
A= x)yper — 20+ xy,,, — (1 + 1)y, =0.
If y = cos {m cos™ x), prove that

(= X2)yopz = 20+ Dxy,,, +0n® = n?)y, =0.
Ify= e *, prove that

1+ Pa Wasz H[2(n+ Dx =1]y,,; + nin+1)y, =0.

11 y = cosh (sin"'x), prove that

(- xl ))’mz -(2n+ l)xynﬂ - ("2 + I)Yn =0.
Find y,, where
o x+1
T,
Find y,, where
x!

Y= x-1*(x+2)

Ify = 3163 - 1), find y,,.
Find y,, when

xd

YT
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31. Find y,, when
_ 1
Ty G-2'
32. Find y,, where
3 1
G A

= tan-! 1+x
Y 1+x /)

34. If y = x* log x, prove that

33, Find y,, where

¥, =" %24, when n25.
X

35. If y = x%% sin x, find y,.

36. If
¥y = (a + bx) cos mx + (¢ + dx) sin mx,

prove that y, + 2m%y, + m'y = 0.
37. If y = (a cos x + b sin x)e™™, prove that y; + 2my, + (m* + 1)y = 0.



Chapter 3

Expansions

3.1 Introduction

Explicit functions can be expanded in ascending integral powers of the independent
variables in the following ways:

1. By using Taylor’s or Maclaurin's theorem,

2. By using either algebra or trigonometry,

3. By using differential equation,

4. By differentiating the known series.

Expansion of functions in finite or infinite terms has often been found very
useful to solve many problems in mathematics. We have a number of such convergent
series like (a + x)", €%, log (1 + x), sin x, cos x, tan"x, etc., in ascending powers
of x. All such expansions have certain definite forms and values, called their
sums. In calculus, we try to expand any function f(x + k) in general, in terms of
derivatives. In this context, the main problem is to investigate if f(x + &) can be
expanded in ascending powers of h or x. This is done with the help of Rolle's
theorem followed by Lagrange's mean value theorem. These theorems provide

theoretical background for the expansion of the following two series developed
by Taylor and Maclaurin, respectively:

n

f(x+h)=f(x)+Fif'(_|:)+g—]f”(x)+,..

and
2
floy= f(0)+xf'(0)+;f"(0)+~-

However, Taylor’s theorem occupies a fundamental position in any scheme
of expansion. Hence, we begin with Taylor's series.

95
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3.2 Rolle’s Theorem

If the function f(x) be defined as
(i) fi(x) is continuous at every point of the closed interval
asxsh,
(ii) f'(x) exists at every point of the open interval
a<x<bh,
(iii) f(a) = f(b)
Then 3 at least one value ¢ of x at which
fley=0, wherca<c<b
Proof As the value of the function at x = a, b are equal, the following
cases may arise:
Case 1. f(x) is constant throughout a £ x £ b.
Case II. f(x) is not constant throughout a < x < b.

Case 1. f(x) is constant in @ £ x £ b, by definition of derivative, f(x) = 0
at all points in the interval a £ x < b and so the thecrem is proved (Fig. 3.1).

¥

fal o | sw

» X

0 4] « e
Fig. 3.1 Rolle's theorem (Case I).

Case 1. If f(x) is not constant in @ £ x £ b (Fig. 3.2).

But f(x) is continuous in the closed interval a £ x £ b, so by property of
continuous function we know that f(x) is bounded in [a, b] and attains its bounds
in the interval. As f(a) = f(b), the least upper-bound M or the greatest lower
bound m will be attained at a point ¢ other than a and b. For otherwise M = m,
which implies f(x) is constant. Here, f(x) sM=m<sflx) Vasx<b.

Fig. 3.2 Rolle’s theorem (Case IT).
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Let fic) =m, wherea<c<b Asmsfi(x)yVa<x<b fl)sfx)Vax<
x < b. Therefore,
f(c) £ flc £ h) where @ < ¢ £ h < b is positive
or

flexh)y-flc)z20

f(f'i‘-’:)—f(f) >0 and f(f-'hi—f(f) <0
1 —h
But f’(x) exists at x = ¢. Then
p Jexb-fo_
h=0 h =0
By Eq. (3.1), when i — 0, we get

o LW FO 5o g g LSO
h=0 h h=0 -h

or

3.1

f((.' - il_ f(c) = f'(c)-

Therefore,

fleyz0 and f'(e) £ 0.
Hence

fc)=0wherea<c<b.

By similar argument if M = f(c) we can prove f'(c) = 0 where a < ¢ < b.

Corollary It is evident that Rolle's theorem is also applicable in the case when
fla) = 0 = f(b), i.e. when x = q, b satisfies f(x) = 0. Hence we have the following
thecorem in the theory of equations:

“A real root of the equation f'(x) = 0 lies between every adjacent two of
the real roots of the equation f(x) = 0.” This result is important in the theory
equations.

The generalization of Rolle’s theorem is usually known as “the first mean
value theorem™, or “the law of the mean™ (refer to Fig. 3.3).

¥

b

0 a
Fig. 3.3 Rolle’s theorem (corollary).

3.3 Lagrange’s Mean Value Theorem
If the function f(x) be defined as

(i) f(x) is conlinuous at every point of the closed interval

asx<h,
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(i) f'(x) exists at every point of the open interval a < x < b, then there
is a value ¢ of x for which

fO)-f@ _

f'lc), wherea<c<b.
b-c¢

Proof Let us consider the function ¢(x), where

#x)= f(b) - flx

32

Given that f(x) is continuous in @ < x < b and (b - x) is also conlinuous.
But we know that the algebraic sum of conlinuous function is also continuous.
Hence f(x) must be continuous in a < x £ b. Differentiating Eq. (3.2) w.r. to x,
we get

#) =[x+ LO=S@D “’] f (@) (3.3)

Also, given that f{x) exists in @ < x < b. Therefare. @'(x) must exists in
a < x < b. Putting x = a in Eq. (3.2), we get

$(a) = f(b) - f(a) - %E-S {f®) - f(@)}

= f(b) - fla) - {f(b) - fla)}
=0
Again, putting x = b in Eq. (3.2), we get

«b)=f(b)—f(b)—gmw — f@]=0-0=0

Therefore,
#(a) = ¢(b).
Hence the function ¢(x) under consideration satisfies all the conditions of
Rolle’s theorem. Therefore,

¢(x) is continuous in [a, b}
#(x) exists in Ja, b[,

¢la) = ¢(b).
Hence, by Rolle's theorem, 3 a value x = ¢, where a < ¢ < b, at which
Pler=0 (3.4)

Putting x = ¢ in Eq. (3.3), we get
$O=-fio+ 101
b-—a
From Eq. (3.4)

—fle)+ f(b) f(a)
therefore, —a

f®) - f@) _

b—a (o).
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3.4 Cauchy’s Mean Value Theorem

If two function f(x) and ¢(x) be defined as

(i) f(x) and ¢(x) are continuous at every point in a closed interval [a, b].
(i) f'(x) and ¢(x) exists at every point in the open interval Ja, b[.
(iii) ¢(x)# 0V x e ]a, b, then 3 at least one value ‘¢’ of x € Ja, b[, such
that
flb) - fa) _ f'(0)
Py -pla) ¢

Proof Let us consider a function (x) such that

wix) = flx) + A ¢(x) (3.5)
where A is a constant to be determined such that
w(b) = yla) (3.6)

Putting x = a in Eq. (3.5) we get
¥(a) = f(a) + A ¢(a)
Again, putting x = b in Eq. (3.5) we get
pb) = f(b) + A ¢(b)
Subtituting these values of wi{a) < w(b) in Eq. (3.6), we get
fB) + A ¢(b) = f(a) + A ¢(a)

ar
Jb) = fla) = -Al[¢(b) - ¢(a)]
Then
flb) - fla)
—_A s —
#(b) - @) G

Since ¢(x) # 0 anywhere in )a, b[, therefore ¢(b) # ¢(a), so that A is
always finite and determinate.

It is given that f(x) and ¢(x) are continuous in the closed interval [a, b].

We know that the algebraic sum of continuous functions is continuous.
Therefore fix) + A ¢(x), i.e. w(x) must be continuous in [a, b].

Differentiating Eq. (3.5) w.r. to x we get

P =)+ A gl (3.8)
Since f7(x) and ¢'(x) exists at every point in the open interval a, b[. Therefore,
¥/ (x) must exists in Ja, b[. Hence y(x) satisfies all the conditions of Rolle’s
theorem. By Rolle’s theorem 3 a value x = ¢ where a < ¢ < b at which °
Yie)=0 3.9
Putting x = ¢ in Eq. (3.8), we get
Ye) =f(e) + A ¢'(c) (3.10)
From Egs. (3.9) and (3.10), we get
flO+A¢E)=0
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or
INAC
#lo
Therefore, from Egs. (3.7) and (3.11), we get
fb) = fla) _ f'(e)
) -ga)  ¢'(0)

Hence, the theorem is proved.

(3.11)

Another form of Cauchy’s Mean Value Theorem

On substituting ath for b and a + 6h for ¢, where @ is a number between 0 and
1, we obtain another form of Cauchy's mean value theorem:

fla+h)= f(a) _ f'a+6h)

dla+hy-ga) ¢'a+8h)’ where 0<f<I.

3.5 Taylor’s Theorem
Under certain circumstances, the ‘theorem’ states that the function f(x + i) can
be expanded in powers of h, i.e.
h? W
S +h)= 1)+ () + - 7() +;f'"(x}+-~
Proof Let us suppose that the expansion of f(x + k) is possible in ascending
powers of h and the series is convergenl, so that

FGx+h)=ay +ah+ah® +ah® +ah® +-- (3.12)

where dg, a4y, @y, 43, ... are functions of x alone, not containing h, and are to be
determined. Now, differentiating Eq. (3.12) with respect to h, we get

f'(x + h) = ay + 2axh + 3ash® + dagh® + - (3.13)
f(x + h) = 2ay + 6ash + 12a,h° + 20asb® + - (3.149)
f(x + hy = 6ay + 24ah + - (3.15)

Putting & = 0 in Egs. (3:12}-(3.15), we have

fx)=q,

f'x)=aq
fr®)=2a,, ay=f"(x)/2
f™(x)=6ay, ay=f"(x)/6

Now substituting these values of ap, ay, a3, a3, ... in Eq. (3.12), we get

2 h]
e+ )= £00 + () +%7f”(x} 5L (3.16)
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This is called Taylor’s series without remainder, or Taylor's infinite series. Many
useful series are deduced from it.

Corollary Put x = a and h = x, in Eq. (3.16), we have

x!

2
f@+)= @+ @+ f@)+ 3

£7(@) 4
Corollary Again by putting a = 0, we get

2 3
f(x)=f(O)+xf’(n}+527f”(0)+§7f"(0)+-~

It is called Srirling's or Maclaurin's series, which is discussed now.

3.6 Maclaurin’s (or Stirling’s) Theorem
Under certain circumtances, the theorem states that if the function f(x) can be
expanded in a convergent series of the integral powers of x, then
2 3
[@= [+ O+ [ O+ 5 [+

Proof Let us suppose that the expansion of f(x), in ascending powers of
x as an infinite series, as
fx)=ay +ax +ax® +azx’ 400 (3.17)

where ag, a,, a;, a3, ... are constants and are to be determined. Now, differentiating
Eq. (3.17) with respect to x, we gel,

/()= +2ay% +3ay% 40 (3.18)
Differentiating again, we havc‘
fr(x)=2a; + 6ayx +--- (3.19)
f*(x) = 6ay + higher powers of x. (3.20)
Putting x = 0, we get

fO=ay, f'@=q, [O=2a o a

Now substituting these values in Eq. (3.17), we get

2!

3
£x) = £(0) + 2(0) +§f"(m+§f"m>+---
It is called Maclaurin's series.

Corollary Let y = f(x), ¥, = f(x), y2 = f*(x), ... Putting x = 0, we write
£ =0l FO =0do O = 0dov -

Therefore,
3

X
—()o +--

2
y= £ =g +3¥(0)e ‘f'%(}'z)o +o
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This is the another form of Maclaurin's series.

Corollary Putting x = 0 and k = x in Taylor’s series, we get

2 n
£(x)= £(0) + 5f"(0) +%f"(ﬂ)+-~+ T—l;f“(O)+'--

This is known as Maclaurin’s series that is frequently used in problems concerning
expansion.

Corollary Failure of Taylor’s series and Maclaurin’s series.
(i) If f(x), or any one of its derivative, is infinite,
(ii) If the series of the expansion is not convergent.
Consider the following examples:

(a) Let f(x) = e'*. When x # 0 and f(0) = 0, then
’ __L Iz
f(x)= . e

Therefore, f’(0)=co. This implies the differential coefficient of any
order for the function e"* is not finite. Therefore, the expansion of
'™, in ascending powers of x, is not possible.

(b) Let f(x) = Vx. Here £'(0), £(0), £*(0), ... are all infinite. Hence the
expansion of Vx in ascending powers of x is not possible.

(c) Let f(x) = log x. Here f°(0), £(0), f“(0), ... are all infinite. Hence the

expansion of log x in ascending powers of x is not possible.

Note: The second condition of Taylor's series is that the RHS should be convergent.
As we noted the remaider series after the nth term by K,, which is

Z 1"(6x);
n!
it should be necessary that R, = 0, as n — oo,

Example 3.1 Find the value of ¢ in Rolle’s theorem, where 0 < ¢ < 2.
and f(x) = x (x = 2).

Solution Here

fx) =x(x-12) N
Putting x = 0 in (1), we get
fO=00-2)=0
Again putting x = 2 in (1), we get
f@)=22-2)=2x0=0
or
J0) = f(2)

Obviously f(x) is continuous in [0, 2] and f'(x) exists in 0, 2[ and f(0) = f(2).
Hence, by Rolle’s Theorem,

fley=0 @)
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Differentiating w.r. to x, we get
FO=1x-2)+x(1)=2-2
Putting x = ¢, we get
flle)=2c-2

fley=2c-2=0

From (2) and (3), we get

or
2c-2=0
or
2e=2
or
c=1.
Example 3.2 Find the value of ¢ in mean value theorem, viz

f(b)— fla) _
b-a

where f(x) = [x; a=9, and b = 16.

')

Solution We have

f=Jx

Putting x = a,

flay= Ja
f9=Jo =3

Putting x = b in (1), we have

Fora =29,

(€)]

14)]

f&)= b = Jig =4 b = 16, given

Differentiating (1) with respect to x, we get
1

'(x} = —_—

f®=r

Putting x = ¢, we get

1

'(C') = —

f e

By mean value theorem, we have

fb) - fla) _ ()
b-a

or
4-3 1
16-9 20
or
1__t
7 2Je
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or

Hence,

Example 3.3 I a=1,h=1and f(x) = x* in Lagrange’s mean value theorem

fla+ k) =f@) + hfla+ 6h),0< B<1,
find 6.
Solution

Here f(x) = x%. Therefore,
fla+hy=fl+1)=f2)=2=4
Again f'(x) = 2x. Therefore,
fa+M=1+0-D=Ff1+=2(1+6
By Lagrange's mean value theorem, we have
fla + h) = f(a) + hf'(a + Gh)
4=1+12(1+6
3=2+26
20=1

or
or
or
Hence,

1
0=~
2

Example 3.4 Show that 1 + x log, (Jr+«,}J4:1 +l}2 1+x* ¥ x20.

Solution Let us consider
f&) =1+ x log, (x+\lx2+1)—1’1+x2 (1)

Evidently f(x) is continuous and differentiable ¥ x = 0. Therefore, by Lagrange's
theorem, we have

T fB=ren @

where & lies between 0 and 1. From (1),

2 2
)= 1-log,[x+,}x2 + 1)+ ad |4 e | - —22
x+Jx2+l 2Jx2+l 2Jx2+1
=log, (x + ‘sz + l)
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From (2), we have

[1+xlog,(x+m)—m]-[0]

x=0

or

[s]

1+ xlog, (x+ N l)a Y1+ 22
Hence the desired result.

Example 3.5 In the equation

n=1
fx+h) =f)+hf D)+ + ﬁm—l £ (x + 6h)

|-t
if f"(x) is continuous, then prove that
lim & =l,
h=>0 n
Solution Given that the equation, we have

_ , h"-l el
f(x+h)= f(x)+hf (x)+---+in__1f (x + 6h)

Since f"(x) is continuous, by Taylor's theorem

n=1 n
Flx+h) = F(x)+ B (x) +---+%f"" m+”7 PG+ 60)

[n=1 |n
where, 0 < 6, < 1. From (1) and (2), we find that
h"-l et ht n _ hn-l et
— f (;)+Ef (x+el:=)_l§;1f (x+6h)
or
7 x +§ i (x+8h) =" x+6h)
or
2 e gy =5 cx 00 - 17100
or

1, o G+ - ()
rrf (x+6h=6 x+6h—x

By Lagrange’s mean value theorem, we have

fHx+6h) = 7N (x)

- () =f"(x+66,h), where0<6, <l.

=log, (61+\182.t2 + 1]
1+ xlog, (x+Jx2+1)-J1+x2 =xloge(ﬂx+1!92.tz+l'20, Yx20
T

)]

(2

(3)
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Therefore, (3) becomes
;ll-f"(x+91h}=8-f"(x+991h)
Leth — 0
Lo n, v n .
Ff=7 (-tJ-,!l_l‘fLG
Hence,

. 1
lim §=—.
k=0 N

Example 3.6 Use Taylor’s series lo expand the following functions:

log(l + x)
1+x
(iii) log sin (x + k) (iv) tan™x + h) (V) e
in ascending powers of x for three terms.

(i) cos x (ii)

Solution Taylor’s series for the expansion of f(a + x) in ascending powers
of x is

2 3
f@+0)= @+ @+ @+ 5 @+
(i) For expansion of cos x, let

flx)=sinx and a=

e

in Taylor's series. So
f(%]:sin’-i:l
and
f(a+x)=f[§+x)=sin(%+x]=cosx
Also, since
f(x)=sinx, f{x)=cosx, [7(x)=-sinx, f™(x)=-cosx, f"(x)=sinx,-

Therefore,

o ol A e

Substituting these values is Taylor’s series in Eq. (3.12), we get

T NEANETWE ]
f(a-i-x):cosx:f[i)htf (E)-'-Ff {EJ

P EANE W£J
SETed (2]+4!+f (2 M
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(ii) For expansion of

log (1 + x)
T+x
let
F=T8% o faen=lBUED Loy,
x l+x

Here a = 1, and we have to find f(a), f'(a), f”(a), ... 10 apply in Taylor’s series.
We also have
I _logx _

1
(x)==— =] =1
f(x) e i (I-logx)

f”(x}:zg-(l —log x) +-!2~{——I-]=——13-(3—2 log x)
x x X x

f"(x) =i_' (3-2log x) - L}[—z) = L‘(I -6 logx).
X X X X

Putting x = 1, we get,
fM=0, ff)=1, f"y=-3, f"MH=1,--

and so on. Substituting these values in Taylor’s series, we obtain

_log+x) _ oDy Py K Y e
fd+x)= T+x —f(l)+xf(l)+2!f(l)+3!f )+
3., 11 4
=x==x"+—21 =
2 6

=x—(l+l).\:2+ [l+l+l)x3—---
2 2 3

(iii) For expansion of log sin (x + k), ]ctf(x) = log sin x. Then
f(x)=colx,
fM(xy= —cosec’x,
£™(x) =2cosec xcot x.

According to Taylor’s theorem

" B
flx+h)=f(x) +hf’(x)+—2;7f"(x) +;f’”(-r)+---

Therefore,

2 3
. . I
log sin (x + h) = log sin x + h cot x — —z-cuseczx + ?cosec xXcotx 4 -
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(iv) For expansion of tan™'(x + h), let f(x)=tan"' x and

M) = (=)™ (n=1)!sin " sinne,
where x=cot @.
Now putting n = 1, 2, 3, ... successively, we get

f'(x) = sin asin &
£*(x)=—sin%asin2a
F™(x)=2"sin*a sin3a

Hence, according to Taylor’s theorem,

s K
flx +k)=f(x)+hf'(x)+~é-;f'(x) +;f"’(x3 +

or
1 n .,
tan™ (x + k) =tan"'x + A sin @sin a—;sin asin 2a
h!
+¥2!sin3asin 3+
=tan"'x +h sina S2% _ (4 sin @)? 2022
+ (hsin 1:!)3 sinda _ .
(v) For expansion of ", consider
fix+h)=e" and flx)=¢".
Therefore,
fl@)=e"=f"(x)=f"(x)="
We know that

" B
flx+h) =f(x)+hf’(x)+;f’(x}+;f”{x) +e
2
=¢e* +he* +%e’ o

B ow
=e‘[1 +h +E+§+M)
Example 3.7 Expand ¢ in ascending powers of (x — 1).
Solution We have

ef=e* M = f(y41), wherey=x-1



By Taylor's theorem

fy+h= f(1)+yf{ll f (1)+ J' ORSS
Here
f(y+1)=e[xu|}+| =ey-i-l
Therefore,
fly+D=f+D=f"(y+h=e"
Putting y = 0, then
f=e, fN=e [f"M=e, [ (=¢e-

Hence
¥y y
+)=e+ey+e—+e—+-
Jo+Dh=eteytessten
Therefore,

2 3
(Gt A C ol Y

* = —
4 —e[l+(x 1)+ T 3

Example 3.8 Use Maclaurin’s series to expand the following:
(i) sin x, (ii) log (1 +x), (iii) & (iv) log (1 +sinx), (v) ™ cos bx.

Solution We know that Maclaurin's series for the expansion of f(x) is
2 3
f@) = £(0) + xf'(0) + fz-l- 10 +-‘;—I- 7O+
(i) For the expansion of sin x, f(x) = sin x, then
fi(x)=cosx, f"(x)==-sinx, ["(x)=-cosx, [Y(x)=sinx
f¥(x)=cosx

Putting x = 0, we have
FO) =0 =fY0)=--=0

and
Fo=1 O=-1 O=1-
Therefore,
s
f(x)=sinx= x—-;+;-—---

(ii) For the expansion of log (1 + x), let f(x) = log (1 + x). Then

SN _____1__ ey G2
POy S0 W=
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Putting x = 0, we get
f0)=log1=0, f(O)=1, fO)=-1, fF™0)=(-1}2!--

and in general

SO =" (-1t

Therefore,
1 2 1 3 1 4
log(l+x)=x—=x"+—x" =—x" 4.
og(l+x)=x 2).' 3x 4.\'
(iii) For the expansion of &, let f{x) = &". Then
e8¢ =% where k =loga.
Therefore,
=k, =k, frx)=ke,
Hence

2 3
d =l + B P

21 3!
x2 x’
=1+(loga) x + (loga)® F+(10ga)3 ETRAS

(iv) For the expansion of log (1 + sin x), let
¥ =f(x) = log (1 + sin x).

Then
_ COs X

T l+4sinx
B sin(7/2 - x)
1+ cos(/2 - x)

1

_ 2sin(x/4 - x/2) cos(zl4 - x12)
2 cos? (m/4 —xi2)

When x = 0, we have (¥)y = log 1 = 0. Now, differentiating the given function
with respect lo x, we get

s, =tan Z—X) = n®
4 2 4

at x = 0 (y)y = 1. Differentiating again, we obtain

ol efE_x)__1 A F_X)__ 1 2
O [4 2)' 2[1““ [4 2)]“5(”’"]

1
Y3 3‘5(2}'1}’2} ==M»

and

Yo ==(¥2 +3032) ==03 +33)
¥s == (221 +¥2¥3 1Y) ==y + ¥y



Expansions

111

Now at x = 0,
1
(2)o =—5(1 +1)=-1
(5)g =(-1Y(-1) =],

(a)o ==(* +1)==2
(¥s)g ==(-3-2)=5

Substituting these values in Maclaurin's series, we find

3
S =0+ x(y ) +§(.\’2)a +‘:;ﬁ(}'3 o+
Hence

3 4 3
X X X X
Iog(l+smx) X = e o — s

2 6 12 24

(v) For the expansion of ™ cos bx, let y= f(x)=e" cosbx.
Here f(0) = 1, when x = 0. Hence by successive differentiation,

Yo = F1(x)=D"(e* cosbx) =r"e™* cos(bx + ng)

r=‘jaz +b4° and la.n¢=—b-
a

When x = 0, we get
()o = f™(0) =r" cos ng=(a* +b*)"? cos ng.

where

Now

a

Cos P = ——=
qiaz +b
Therefore, r cos ¢ = a. Putting n = 1, 2, 3, ... in (1), we obtain

()p =rcos¢g=a

(n)p =rcos 2¢=r*(2cos’¢—1)=2a° - (a* +b*)=a* - b*

b a
tang=— or ==
a r

(33) =1’ cos3¢g =r’(4cos’p - 3cos )
=rcos¢ (44"2 cnszﬁ - 3r1)
= a[4a® ~3(a® +b%)]
=a(a® -3b%)

Apply Maclaurin’s series:

f(x) = f(0)+ x(3)o += (J’z Jo + (}’a)a

(1
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We get

‘ 2 _ 32 < 2 <
e"cos bx=1+ax+(a" ~b )?h:r{a —3b2)¥+-~
Example 3.9 Prove that . ’

- 1x° 13:’
sin" X=X+ ——t——
23 24 5
Solution Let
y=sinTx=ay +ax +a,x° + @80+ A, x" oo (¢)]

1 -
= =a, +2a,x +3a;x" + -+ na,x""

n=
\fl~x2
For | x| < 1, applying binomial theorem, we get
12 134 135 ¢

—(l—xh)2 2 +13
(=3 Y Tt

o @

+ee 3)
Comparing (2) and (3), we have

gzza4=a6=---=a,zn:0
and
1 1.3
=1, 3ay=—, Sai=——,---
a9 =3 %5 =32
Substituting in (1), we get
sm Ix x-{-lx_q.ﬁi
23 245

Example 3.10 If € sin x = LZax", prove that

a G Gy M_sm(nm’Z}
L L 2! 3t n!

Solution Since ¢* sin x = Za,x", we gel

smx-[Za.t) a0+a1.r+a2x 4o ) - (1)
Now

f(x)=sinx, f"(x)=sin [Eéi + x)
Therefore, by Maclaurin’s series:
2 n
f@ =+ 3O+ 77 1@ 447 1O 4000

we have

3 5 n

. X . nw
SINx=x——+——+-F—5lll—+
3t 5 n! 2
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Then from (1),
.\‘2
sinx=(a; +ax+--+a,x)|1-x +F—-~
Equating coefficients of x,, we get

a _ Gy +a,,_3__“ =sinnm'2
o 2! '

Example 3.11 Expand sec x.
Solution Let

1
cosx

secx= =da, +Q|X+0211+03X3 Fose

Therefore,

3

1=(d + @)% + %" +a;x° +-) cosx

4 6
X X X
:(ao +ax +azx2 +a]x3 +}[1 __+___+...J

Equating the constant term and the coefficients of x, X%, 2, x*, we get

1 5
“0=1' ﬂ'|=0. 0'2=5‘ aj=0» a4=§

Substituting these values in (1), we get

secx= =l+lx2+ix‘+~-
2 24
Example 3.12 Expand
e#
e* +1

as far as the term in X,

Solution Let

2 3
=ay +ax +ax° +agx’ +--
e* +1 1T “
or
€ =(ay +@x +ax* +ax° +--Ye* +1)
or

1)

(6]
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Equating the constant term and the coefficients of x, x%, x*, we have

“l a"l a, =0 a'——i
D=y 4Ty @t 4TTR

Substituting these values in (1), we get

AN SN S S S
e+l 2 4 48

Example 3.13 Expand "™ as far as the term involving x*.

Solution Let
flxy=e™"
F(x) =€ cosx
f(x)= &% cosix — e sin x
F™(x) = """ cos®x - %eﬁ“ sin 2x — e cos x
¥ (x) =€ cos*x — " * 3 cos’x sin x — %e’j" cos x sin 2x
—36%% cos2x — F cos?x + %% sin x
When x = 0, we obtain
fo=1 fO=1, o=, f0=0 fY0)=-3-
Applying Maclaurin’s theorem:

fx)= f(0)+xf(0)+ f(0)+ f (0)+ f'v(0)+

We get

2 4
X X

M ol ———F -
2 8

Example 3.14 Apply Maclaurin’s theorem to expand %" sin”x as far as the term

involving x*.

Solution Let y=e’i“—l‘, Differentiating, we get

or (1-x)yf =y

sin”lz 1

»=e
1-x

Differentiating again, we have

2yy,(1-2%) —207 =2y or (I-x7)y, —xy =)
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By Leibnitz’s theorem,
2 (L= ) = "Cy 220,01 = "Cy 25, = XYy = "C1Yp =Ya

or
-1
- XZ]J’MZ = 21XYp 4y — Z&i—)’yu T el TV = Ve
or
(1= )yps2 = @0+ Dxypey = (0% +1)y, =0.
Putling x = 0,
Yaszo = (0% +1D(0,)o

Now,

O =€ =1

o =€ =1

(¥2)0 =)o =(¥)p =1
(y3)o = (1% +1)(3) =2
(o = (2% +1)(3) =5.

By Maclaurin’s series, we get

) 2
R S S D
21 3 4!

Example 3.15 1f ¢ =Za,x", prove that

Gyt =—n-ll-l(a" +—a‘l':' +—3-a;‘l +m+-:£,)

Solution We have

1

e =a +¢1|Jr+f:ezx2 +a3x3 ot ax” a2t e

Differentiating both sides with respect to x, we get

X
e e* =a +2ax + -+ (n+1)a, 2"+
or

2 3
(ag + @x + @mx* +--+a, " +a,x" +---)[l +ﬁ+%+%+---]

=a; +2a;x +++(n+ D, x" +e
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Equating the coefficient of x" both the sides, we get

a,

a,,+‘;—;‘+ o a;',_'_ +a—-—(n+l)an+,
Hence
Gy ap_2 ay
e 1[ TR F]
Example 3.16 Prove that
-1 ”
£om) = £2)+ = af () + LD Y ey e

Solution
f(mx)= f[x +(m~-1)x]= f(x +h), whereh=(m-1)x

kl
=S+ R ) + - 7 +oe

2
= 100+ = 3f 0+ 2 2 170

Example 3.17 Expand sinh™'x.

Solution Lety = sinh~'x, then

1
» =ﬁ or (1+x2)y2 =1

When n = 0, we get fl0) =0, f(0) = 1.

Differentiating (1) again, we get

(l+x2)(2yy1)+y,2(2x)=0 or (1 +x2)y,_ +xy;,=0.

For n = 0, (y,), =0. Differentiating n times, according to Leibnitz’s theorem,
n(n 1)

[(l +x2)yn+2 +"(2x)yu+l (2)’,, :|+[Wu+1 +”(1)}'u]:0
or
(14 XYYz + @0+ Dxyyyy +07y, =0

Putting x = 0, 50 (y,,3)s =—n2(yn )o - Now putting successively n =1, n = 3,
n=2,n=4

(33)g =— (M) =-1
Osdo ==F (1) =3
(Vsdo = -2? (1) =0
(¥6)o =0
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Hence by Maclaurin's theorem,

2 3
fm=ﬂm+fm+%FmH§4Wm+u

. .I3 xs
=0+x()+0+(-1)+0 +;32 o

Hence

Example 3.18 Expand log cos x by Maclaurin’s theorem.

Solution Let y = log cos x. When x = 0, f(0) = log 1 = 0. Differentiating
successively, we get

»n=

{(—sinx)=—-tlanx
cosx

¥y =—sec’x = —(L + tan’x) == (1 + 37)

Y3 =-2ny, _

o ==200y3 +33)

¥s == 2(312q +3332) + 292331 ==2y,)4 — 63,3

Yo ==201Ys + Ya¥2) = 6(v2¥4 +3)

Putting x = 0, we obtain (y)g = 0, ("2)o = =1, (rsdo = 0, Gado = -2, (¥s)p = 0,
(vg)a = =16, --- Therefore,

Xz x" Iﬂ
fE)=0+04 (- + 7 (-2) + (1 =16) + -

JE R N
logcosx=—"—-"——-"——...
2 12 45
-X x ¥
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6.

Exercises 3.1
IF f(x) = (x = 1){x = 2)(x = 3); x& [0, 4], find c.
Find ‘¢’ so that f'(c) = [f(b) - f(a)}/(b - a) in the following cases:

W) f)=x*-3x-1; a=-11/77, b=137
() fO) = Vx> -4); a=2, b=3

(i) f)=¢€% a=0, b=1

(iv) fx) =logx; a=1R2, b=2

In the mean value theorem, viz.,
fla + k) = f(a) + hfla + &h)

(i) fa=2,h=1and f(x) = % then find the value of 8.

(ii) If f(x) = sin x, find the limiting value of & when k — 0.
(iii) If f(x) = €%, express the value of & in terms of a and h.
In the equation
flx+h) = f(x) +hf'(x) +£f"(~t) ’rﬁf"_l x) +£f“(x +8,h),

[2 ln=1 L]

prove that the limiting value of & as h is indefinitely diminished and other
conditions being usual is 1/(n + 1).

Show that

2
fla+ 1) = £@) + '@ + *f" (a + oh)
where 0 < @ < 1 and prove that

. 1
w5 0=3
Prove the following results by Taylor's theorem:

3
(i}sin{x+h}=sinx+hcosx—%sinx-..‘

x "

- . 1 = ein=l —_ ...
(i) sin"'(x + h) =sin"x + > (1-x2)7 2 +

1-x
(i) tan| T+ x|=142x+222 180,10,
4 3 3
—h 2x2 -1 ﬁ+
x\(;z—l 2 -1 2!

@iv) sec”! (x+h)= sec”'x
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7.

8.

9.

10.

11.

12.

13.

Prove that
2 3
XCOSX __ x _ X
€ 1+x+2! 23|+
Prove that
Jog (1 +sin’x) = x* _%x-' .
Prove that
2 3
x x
e lug(l+x)=x+-5?+2.i.+.“
Prove that
X 1= sz__-i
e -1 2 12 720
Prove that
x 2 3
=l4x+25+4 4.
2! 3
Prove the following:
2 3 4 5
2 X" x
i) lo l-x+,t2 =— +x_+_+___+'__
(i) log( )=-x TS
... lOgsinx 2 i
@ x 6 180

2
tanx | x T 4
1 = — o
(iii) 08( . J 3 x+

. anx | £ 13
(iv) Ios[ )=——+Ex -
) log (“":‘}%—%M
(vi) logsecx= 3 +%+::+
(vii) lanh']x=x+%3+x?6+...

Prove that

1 « 1)+ 1 x
E[IDS(HIJT —?—[l +—J—+[l +E+§J

2)3
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14. Prove that

e* sinx = .|.2x1 E_ﬁ_...
A TR TR
15. Prove that
2 3
e log(14x)= x+—+23i'+

16. Prove that

22yt gty E 96,12
cosx coshx=1-

—+ +
4! 8! 12!

17. Prove that

h +2x 4x° +
sinxcoshx=x 3 1

18. Prove that
) ]
€™ cosh x =1+ ax + (a° +l)-é-1- +(@ +30)—3—l-+--<
19. Prove that
2, 43 2.n/2
™ sinbx = bx + abx® —Mf doeee (i—‘-'-il—--x sm(n tan™" EJ-!-
3t n! a
20. Prove that

2 4
i) & = [1+?+84L|+ ]

(i) e =1+ x? +lx" +Lx5 X
3 120

1, 2
iii) e =1+ x+—x" +—x3+...
@D 2 3

3 5

] +tan L
(iv) log(secx x)=x rIEY

21. Expand €™ cos bx by Maclaurin’s theorem and deduce that
2 3

"% cos(x sin a)=1 +xcosa+-‘§—lc052a+%cos3a+-u
22. Prove taht

1, 1 4
iy xeotx=l-=x"-—x" +
@ 37 T4

" 12,7 4
xcosecx=1+—x"+—ux +--
@ 6" " 360
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23.

25.

26.

27,
28.

29.

30.

31

32.

33.

34,

Expand x coth x.

Expand log [x + V(1 + x*)] by Maclaurin's theorem in ascending powers of
x and find the general term.

Expand % in powers of x as far as x°.
Expand log [1 - log (1 - x)] in powers of x by Maclaurin’s theorem up to

the terms of x* and deduce the expansion of log [1 + log (1 + x)].
Expand sin x in powers of (x — @/2).
Prove that

2 3 n

X L L Pper n
a*=1+xlog,a+ T (log.a)” + 30 (log a) +---+ = (logta ](Bx).
Show that )
ey o a'x" . ax

+ — e sin—

3! 5! n! 2

and that the remainder after r terms may be expressed as

@x sin(a&x + ﬂ]
r! 2

singx =ax —

Show that the remainder after r terms of €* cos bx have been taken is

2 22
@by x" e cos[bﬁx +rtan”™ 2)
a

r!
Prove that
JREIVE I =e"[l+bx+b2 +2c b +6bc+6d +]
2! 3!
If u = f(x), show that

[x] xdu 1 [x]z du 1 {XT d*u
fl=|lzut—=—+=|=| ——=|=| —=+-
2 2dr 20\2) ax? 3N2) a

If € = log (ag + ayx + ax + o+ ax" + ...), prove that

-1 +G,|__2+£,|__3.+m_‘_‘ﬂ£'
1! 2! 3 n!

If Ag, Ay, etc., 1o the successive coefficients in the expansion of
y = MR prove that

('" + I-)aunl =a, +

m m" nr ar
Agg=—A,+ Y —A, | cos——sin—
n Il+1[ " Z‘r! " '[ 2 2]:!
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35. Given that
A

A 2
sm]ag(l+x)——x+ 2| += 3| .
and
B, £
coslog(1+x)= l-i—x+2‘ +3!x o

calculate the first-five coefficients of each expansion.

36. From the expansion of

)

tan~x = —2— {142 £ 24 .8 2+---‘
1+ 31+x* 3:5(1+44°

Also, establish the series:

deduce

1
(i) ——1 ;

1
3
2T 1(1) 12(1)2 123[1]3
(i) —==14=|=|+=Z] =| +===|=| +-
33 3\2) 3s5\2) 35702



Indeterminate Forms

4.1 Introduction

The function f(x) = f(a), when x = a, is called the value of any function f(x),
provided it is finite and unique. However, at times, f(a) may assume any of the
following forms. These forms are called indeterminate forms:

O 2 e Oxe, 0, o0, 17

£l . s ,

0 oo
In such cases, x = a is called a limiting point of the functions f(x). Although its
value f(a) does not exist there, we may evaluate its limiting value lim,_,, f(x)
in certain cases.
Let us suppose a rational function

!”(1)
#x)’

where lim,_,, y(x) and lim,_,, @(x) are both zeros. Then lim,_,, f(x) cannot
be equal to

flx)y=—"—

lim y(x)

X =¥l

lim ¢ x)

A-va
as it becomes of the form -g. which is meaningless and undefined. This form %
may be taken fundamental because all other indeterminate forms may be reduced

to a problem corresponding to the form % . This form can be evaluated by L"Hospital
theorem, which states as

i Y& W:(x) lim X _
x—)a “\'] x—sa ¢ (x) x—%a f(x)
In other words, this means that the numerator and the denominator should be

differentiated repeatedly unless the form % vanishes and the limit obtained is
finite zero, constant or infinite.
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4.2 L’Hospital Rule

Form %
Let ¢(x) and w(x) be functions of x capable of being expanded by Taylor's
theorem, and if w(a) = 0 = ¢(a), then

#(x)

lim—==lim ¢ )

x=4a Y(X) x-a W( x)’

provided the latter limit exists.
Let x = a + h. Then x = a as h = 0. Now according to Taylor’s theorem,
we have

2
Ha+ h)=@la) + h¢'(a) +%¢"(a) +oee

and

2
yla+h)= Ma}+hw’(a)+% y(a)+-
Therefore,

Ha+h) __Ha)+he'(a) +(h*12)4"(a) +--
pla+h)  wa)+hy'(@) + (1120 p"(@) + -

_ '@+ 12g" @)+
hy(a) + (W12 (@) + -

_ @+ m2h)¢"a) +-
W)+ (hi2!) p"(a@) + -

[as ¢(a) = 0 = yla)]

Now, taking lim,_,,, when x = a.

lim o) =lim Ha+h) = __¢‘(u) =lim ¢ .

xoa p(x) A-Opla+h) wia) =ayp’(x)

Again, il
P _0
v 0
Then proceeding as before, we get
m 23 _ @ _ L ¢(x)
x-m v(x) v@) e p(x)
Generally if
#(@)=0=¢"(@)="-=¢""(a)



Indeterminate Forms 125

and
V(@) =0=y"(@)=—=y""(a),

Then
LK _ @ )

ey() Y@ ey )

In other words, under this rule, we shall go on differentiating successively
the numerator ¢(x) and the denominator y(x) separately. Each time we shall put
x = a in the differential coelficient. This process will continue till the form %

stops to occur.

Example 4.1 Evaluate:

. e* _esmx
lim -
—0) x —sinx

Solution 1t is of the form of % as x — 0. Given

Lot =™t et =" cosx 0
lim — = lim form —
= x—ginx =0 l-cosx 0

Dilferentiating again numerator and denominator separately, we get
. ex _ eainx
lim —
=) x —sinx

. e" =" cos’x + €™ T sinx 0
=lim - form =
130 sinx 0

) . ) . , . .
" —e""* cos*x +e" "2 cosx sinx + """ cos x sinx +¢""* cosx

=lim
x— Cos X

_1=-1+0+0+1
1
=1
Example 4.2 Evaluate:
lim 1-tanx )
xoxl 1 —of2 sinx

Solution 1t is of the form of -3— as x — /74, Thus differentiating numerator
and denominator, we get

2
lim —sec?x _ secz(m'at) - (‘ﬁ)
w2 cosx 2 cos(m/4) \E(]N’E)

2
L
1
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Example 4.3 Evaluate:
2
lim log(1+ kx }.
=0 1-cosx

Solution It is of the form of J, as x — 0. Differentiating numerator and
denominator of the given function, we get
2 2
lim log(1 + kx )_ lim ka!(.l+icx )
=0 l—cosx X0 sinx

. 2kx
= lim ————
x=0 (1 + kx?) sinx
. 2k
=lim
x=0 2k x sinx + (1 + kx*) cos x
_ 2k
0+(1+0)1
=2k
Example 4.4 Prove that
X
lim 2= log(l + x) :Z'
x40 12 2

Solution It is of the form of §, as x — 0. Now

x
xe* —log(1+x) _
x: X

Therefore,

0w

. xe*=log(l+x) .. (3 1 .
lim 22— 50 T 242 =
;m 2 lim [2 + 3 x + higher powers of x)
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Example 4.5 Find the value of a and b, so that

lim x(1 +acos§) —bsinx =1
=0 x

Solution Now, the expression

_(+a-bx+(bl6-a/2)x’ +---

or

x40 3

— — 3 e
]im[(na b)x +(b/6 - al2)x® + ]=1
X

Equating both sides, we get

I+a-b=0 and =1

oo

a
2
or

a-b==1 and b-3a=6
Solving them, we get a = -5/2, b = -3/2.
Example 4.6 Evaluate:

1fx
lim 2~

x=0 x

Solution It is of the form of %, as x — 0. Now, we have

(L+x0)"* =exp I:% log(1+ x)]
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Therefore,
X 11 ] 7 3
l——=4— —_—x e | =
(1+x)”’-e_‘{ 272" 16" ]"'
x x
11,
- o — -
2" "™
x
e 11
Tt
Hence
lim(l+x)m_e——£
X0 X B 2’

Example 4.7 Evaluate:

]ime —€ —.Zlog{l+x).
x4} XSl X
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Solution The given limit

d x -x
X _ % _ —|e* —e* =2log (1+x)
lim &€ 2IDg(l+x)=]imdt[ ]

x40 xsinx x=+0

% (xsinx)

—lim e" +e™ " =2/(1+x)
=0 sinx+ xcosx

- 1
e’ = +2 3

. 1+x
=]|m—_(___.)__
x-} COSX 4+ COSX — X SINX

=1

Example 4.8 Evaluate:
lim xcosx—log(l +x)'
=0 IZ

Solution It is of the form of §, as x — 0. Now

—sinx—-sinx—-xcosx+ 1,"(I+J4:)2 _

cosx—xsinx—1/(1+x)

fim 2 fia 2
Example 4.9 Evaluate:
e +e? 12cos6-4
lim ———
80 494

Solution If is of the form of %as 8 — 0. Then

8., -8 _ [0

The given limit =lim f_if_.__t.m' =
80 g 0]

= lim e —e? —25ind 0]

850 46° ! [ 0]

i & e ~ 20056 0]

80 126° ' 0

i o€ +25in8 0]

Te0 248 ’ 0]

1

2
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. e —e?+2c0s0

=lim ——
-0 24

-4
24

=1

ot

Form :

=, when x approaches
indefinitely near a value a. In urder to bring it to the form -3. we write it as
follows:

Let ¢(a) = oo, W(a) = oo, 50 that -L] takes the form =

Hx) _ U y(x)
wix) 1/§x)
Here
1 1 1 1
— I — d _———0‘
wla) oo o Ha) o

we may consider this as taking the form £, and therefore we may apply the
previous rule.

L TC NN 1176 NN 4 €Y U4 3) g [MT W)

:—m w(x) x—u Ug(x) x=a ¢'(x) 1[¢(x)]2 wix)| ¢'(x)
Therefore,
90 [ 20T L v
e () [l'ﬂ’o w(x)T dpre
Hence unless '
lim 232
x—a Y(x)

be zero or infinite, we have
1= [ ﬂx}][ w’(x}]
x—a Y(x) J—Nl @ (x)

P #@)
) )

or

Example 4.10 Find

im 108 (6-ni2)
812 tan 8
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Solution Given

i 108 (6-712) _ fim 8= [:]
o>z tan@ o-x2  sec’@ oo
- lim 226 9
T gniz 6-x/2' 0
. [ 2 cos@sin 8}
= lim [-—
f—xi2 1
=0.
Example 4.11 Evaluate:
n
lim —.
x—tee g%

Solution This is of the form of =. Now, we have

Lox !
lim — = lim
xbm gF xe T

n—-2
= lin n(n -1)x I::]
Aem et oo
= lim n(n=1)}n-2)---3-2-1
X—toe e
1
= lim =
xpen g%
=0.

. log(x-a)
. lim ———,
Example 4.12 Evaluate: x4 log (¢* — €%)

Solution It is of the form of =.
Given limit = lim —22& =9
x-a Jog (¢* — )
= lim 1/x —a)
13 g% (" ~ %)

. e = 1 {0]
=lim — -

x=a Xx—a "

. &
=lim —
14 (x ~g)e* +e*

:—'n.]l\

i
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Example 4.13 Evaluate: L‘_".'}] log (tan x)*"2*

Solution Since we know log, mlog, a=log, m, the given expression can
be written as

i JoBe (tan22) [:]

x-0 log, (tanx) ’

Therefore,
2
lim log, tan(2x) = lim (1/tan 2x) x sec*(2x)(2)

a0 log, tanx  xo0 (1/tan x)sec®x

cos2x 1

sin2x cos® (2x)
= lim ————————
=0 cosx 1

sinx cos® x

. 2 .
=lim ——————sinxcosx
x=0 5in 2x cos2x
sin 2x

=lim —
x-+0 5in 2x cos 2x

=lim
x=0 COS 2x

=1,
Example 4.14 Evaluate:
2
lim —28%__
*-0 logcot™x

Solution Tt is of the form of Z. Therefore,

. ]ogxz . 1/x
lim —=1lim T
=0 logcot"x  *—0 cot x (—cosec” x)
. sinxcosx [0]
==im ————, —_
x=0 X 0
2 ‘2
cos“x —sin”x
= lim(-1) ———————
J]-HJ( ) 1
=-1.

Form e = e

Suppose @(a) = = and y(a) = e, so that ¢(x) — p(x) takes the form e — e, When
L'Hospital rule is applied to this expression approaches a value a.
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Let us suppose

#x)
= - = L __1
U= g(x) = p(x) W(x)[ 9 ] )

Here, if

the limit of u becomes
w(a) % (a quantity which is not zero)

Therefore, the function tends to infinity. But if

then the function takes the form of e x 0.

Example 4.15 Evaluate:

. 1 1
]lm -_——
=2 x -2 log(x-1)
Solution We write

“m[ 11 }:m“hgu—l%{x~n‘ Fq
=2 x=2 log(x=1)] x=2 (x=2)log(x-1) 0

—Jim Vx-1)-1 0
Tastlog(x=D+[LAx=1))(x-2)"
I S
. (x-1%
T Goh-G-D
x-1 (x-17

2
= lim 1 (x=1)
=2 (x =1 x=1+1

B3| -

Example 4.16 Evaluate:

lim (xl.rm x —Esacx]
x=al2 2
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Solution We have
The given limit = lim [x tan x —£sccx)
x=a2 2

. x sin x 4
= lim -
x—x2| cosx 2cosx

2xsinx-7m
xx2  2cosx

[eo — oe]

,  2xcosx+2sinx
= lim ———————
22 =2sinx
_ 2
=2
=-1.

Example 4.17 Find the limit: 1 —cot x, when x — 0.
Solution It is of the form of e — oo,

. T 1 cosx
The given limit = lim | ————
=0\ x smmx

=0  xsinx 0

COS8X — CO8X + X 5inx

. sinx—xcosx [0]
= lim ———— -

=lim -
x40  ginx+xcosx

_ sinx + x cosx
10 COSX +COSX — X sinx
=0.

Example 4.18 Evaluate:

lim(-!—- 1']
=0l x?  gin?x )

Solution It is of the form of e= — eo, Then

s 2
The given limit = lim %‘2—
20 x“gin® x
= lim sin2x—2x
230 2x sin®x + x? sin 2x
. 2cos2x—2
=lim

240 2 sin®x + 2x sin 2x + 2xsin 2x + 2x% cos 2x
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. cos2x -1
=lim — 3 - 3
x40 gin“x + 2x sin 2x + x° cos2x
= lim —2sin2x
20 5in 2x + 25in 2x +4x c0s 2x +2xcos 2x — 2x sin 2x
\ =2sin2x
=lim I
=0 3 5in2x + 6x cos 2x — 2x” sin 2x
. —4cos2x
= lim

=0 6 cos 2x + 6.¢cos 2x — 12x sin 2x — 4 x sin 2x — 4x° cos2x
1

3

Example 4.19 Evaluate:

. 1 1
lim | == .
x-»ﬂ(zxz xtan2.t)

Solution It is of the form of oo — o as x — 0.

The given limit = lim L N—
x-0{2x*  xtan2x

. 1 cosx
= lim —— e
0252 2xsinx

., sinx—xcosx
=0 2x“sinx

. COSX—COSX+xsinx
=|:|m.—!.—
=0 4xsginx +2x" cosx
. sinx + xcosx
= lim — T
a0 4s5in x +4xcosx +4xcosx —2x° sinx
COS X +COsX — X sin x

=lim
£—40 4 cos x + 8cos x —Bx sin x — dx sin x —2x% cosx

5

Forms 0°, =° and 1"
Let y = u*, where u and v being functions of x. Then log y = v logu. Now

log,I=0, logee=0s, log,0==—0co,
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and therefore when the expression u” takes one of the forms 0° =°, 17, where
log y takes the indeterminate form, 0 x c. The need is therefore to take the
logarithm and proceed to reciprocal method.

Example 4.20 Find lim,_g x*.

Solution It is of the form of 0° Taking logarithm both sides, we get

. *_u
ll_r:l} logx Jl(l_r'no xlogx

=lim (-x)=0.
x=0

Therefore,

lim x* =€’ =1,
X

Example 4.21 Find
" . tan x
xl-l,T.'z (sm x) .

Solution It is of the form of 1. Now, we gel

lim_(sinx)™* = lim_g'*lopsin
=l a2
= lim tanxlogsinx
x=xf2
. logsinx
= ljim —gsinx
x=xi2 cotx
. 1/sin x) cos x
= lim (—
a2 —mz x
. cotx
= lim
x=rl2 COSCCZI
= lim (-sinxcosx)
X2
=0.
Therefore, the required limit = ¢° = 1.

Example 4.22 Determine, lim,_, (cosx)"* .

Solution It is of the form of 1™, We have

y=(cosx)'"” .
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Therefore,
1
logy=—logcosx
x

Taking limit both sides, as x — 0, we get

Jim logy = lim 108S0S%
x=} x=0 X
/ in x(-
—lim (1/ cos x)sin x(-1)
=0 2x
=lim - =%
=0 2x
_ 1
5
or
lim v = e\
lim y=e
Hence
lim (cos .t)”)‘2 =¢ 2,
=0

Example 4.23 Evaluate:

112
. tan x
lim .
x=) X

Solution It is of the form of 17. Taking log both sides, we get

Io —l(lo ﬂ)—llo P EAE
By = )2 B T 3 s
Since we have,

2 2 2
log[mnx]z(x_.flx‘ +...]_£[x_+£x4 +---] g
x 3 1 23 15
2

We have
2
X 7 4
lopy=—4+—x" +.-
&Y 3 9%
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Therefore,

or

Hence

Example 4.24 Evaluate:

Solution Let

Taking logarithm both sides

But
- ":3 .
smx—x—¥+——- .
or
: 2
X =Xy
x 3!
or
2 4
sinx X x
log—:loglil—[ﬁ—; ]]
Iz X“
=] -] — ..
03[ [6 120
12 I‘ Xz 1‘
] ——— e = =] ———
6 120 6 120

2

limy=¢"=1
=

logy= Lz log
x

12
lim [ﬂ] =1,
X

sin x

X

lim logy =lim ('t—+—7-x‘ —l----]:()
=0 ~=0{ 3 90
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Therefore, from (1), we have

1{ 22 % 1os .
logy =.x_2[_ ?_ﬁo.+ ] = -E-% + higher power of x.
Therefore,
) 1 . 16
S or lim y=e¢
ilosy=—g o Iy
Hence
sinx o
lim (_J —e V6
x—0 x
Example 4.25 Evaluate:
lim (cos x)“'z’ .
x=)

Solution It is of the form of 17, Let

y=(cos )™ ,
or

2 logcos x 0
log ¥ = cot"x log cos x = T -
tan” x 0
Taking limit both sides, we get
lim logy = lim ({I/cosx) (=sin x) (—szm )
x40 s=0  2tan xsec x
. —tanx
=lim —_—
=0 2 tan x sec“x
1

=lim - 3
=0 Zsecx
=1
T2
Therefore,
- R T} |
limy=e

Example 4.26 Evaluate:

x tan[ xx A 2a)]
lim (2 - —)
X—m a

Solution It is of the form of 1%, Let

tanf 7xf(2a)]
)
a
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or
X
nx x ]og(2 - ;) 0
logy =tan—log| 2 ~— |=————=, -
2a a nx 0
col——
2a
Therefore,
1
. X 2 - xla
lim log y = lim ——————
x=sa x=a (—c(]secz E)[EJ
2a )\2a
. =l/a
= lim
X=da secz E _'_?i
(oo )3)
=2
F 4
or
lim y ="
X=¥d
Thus

x tan[ mx /{2a)]
lim (2 - —] =",
X—a a

Example 4.27 Evaluate (sinx)™* when x — 0 and x — r.
Solution Let y=(sinx)""*. Taking logarithms both sides, we get

logsin x
cotx

log y=tan x logsinx =

or

logy = logsin x ) [:]
cotx

_ {Usinx)cosx

—cosec’x
COSX . 2

=—-——sin"x
sinx

=-—sinxcosx
=0 (whenx—0, x—=r)
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Therefore,

lim y=¢" =1.
x4,

lim (sin x)"“ =1.
x=,r
Example 4.28 Find
a I
lim [1+-J .
X—m X
Solution Let
a X
y=lim [l +—) \
X—p X
. a
logy=lim x log(l +—)
E el X

- lim log(l + alx)

P 1x
1
(—alx)
. l+alx
= lim 7
x4 —1ix
= lim
= | 4+ afx
=a
or
y=e".
Thus

Example 4.29 Evaluate:

lim (cot x)'/'°8%,
x=0

Solution It is of the form of =, Let

=lim (cot x)"/ &%
¥ x-.o( )
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Taking logarithms both sides, we get

logy=1lim ! logcot x, [:]
24 -0 logx B |

2
—lim (1/cot x)(—cosec”x)
x=0 x

= lim ————
£—0 SN X COS X

. [ 2x J
=lim | ——
x=0| sin2x

or
y = e“l .
Therefore,
lim (cot Jr)m"ltjt =e,
x—0
Example 4.30 Evaluate:
1
lim (%) ,
=0 X

Solution It is of the form of 1%, Let
[W.l'lx)lh)
y={—] ,
X
Taking log, we get

logtan x — log x 0

sec’x 1

tanx «x
2x
_xsacz.t—lan.t
T 2% ianx

_ sec’x +2xsec’x tanx —sec’x

4x tan x + 2x% sec’x
sec’x tanx

2tan x + x sec’x
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or
.2 lanx
sin“x—— 1
lim logy = lim " X ==
x40 1—&02 nx+SEsz 3
x
or
lim y=e3
liy=e
Thus
142
lim [£2E] =
x40 X
Exercises 4.1
1. Determine the limits of the following:
o .. e =T =2 o i T -b* sy, tADX —
i) llm# (ii) ll_l_,“oa— (iii) llmL,x
x=0 x-sinx x x=0 X —sinx
. i i .ox"=da" .. .. 2sinx—sin2
(v) lim sm:lcg(l-f-smx) *) lim x'—a i) lim sinx 3sm x
=0 log(l +sinx) =0 x-—a x40 tan°x
—si _ _,2
(vii) tim & Sm;tCDSI (viii) |im1+lch x(ix) lim log(1-x~)
x=0 x il ] =2x +x° 0 logcosx
2 ar _ gmax . xe*=log(x+1
(0 lim (x) (xi) lim S——5— (xii) lim g+
it e —2ex =-0 log (1 + bx) x-0 cosh x —cosx
(xiii) lim _sinhe-x (xiv) lim --——-—-«-—-—---—ex sinx - x - x*
x—0 §in X — X €OS X 0 2 4 x log(l - x)

. x=log(l +x
(xv) lim #
x4}
2. If the limit of
sin2x + asinx

xJ

is finite, as x — 0, find the valve of a and the limit.

3. Find the limit of
1 +sinx —cosx +log(l = x)

3 when x = 0.
xtan‘x
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4. Evaluate:

. coshy—cosx
lim —
x=0

(i)

xsinx

. x
lim sinx —log(e” cosx)

x=0

(iii) -

xsinx

x—log(l + x)
1-cosx

(v) lim

=0
S _ z
(vii) ll_n’% log(l x)cot(2 x)

5. Evaluate the following limits:

x* +2cosx—2

xsin’x

lim
x=0

(i)

. tanx-x
lim 3
*=0 x* tanx

(iv)

sin2x + 2sin’x — 2sinx

COsX — cnszx

lim
x=

(vi)

laﬂ2X -x2

2

(viii) lim .
X" tan"x

x—=0

() lim (i) limlog(1-cot™ (i) lim 08%0X
x-m2 tan3x -l 2 =0 logx

@v) lim logsin x ) lim logtan2x i) lim tanSx
-0 cotx x50 logtanx x-x/2 tanx

6. Determine the following limils:
(ii)

(i) )];I—[g sin x log x*
(iv) ll_n’a x tan(g —x) )

(vii) [imi cosec (nm) logx  (viii)

7. Determine the following limits:

@ I [l——loguu)]
X
(ifi) lim [l- ! J
=0l x xf -1
. 1 2
A Eﬂ(}cz—l_x"—l]
(vii) lim 2oty
x—0 IZ

lim xlogtanx (i) lim x logsin®x
x—0 x—0

lim x? logx®  (vi)
x=l}

lim x logx
=0

. X
lim (& — x) tan—.
x—sa 2a

@) lim oot Ax +3x2-1
=l x x2 -Xx
. . 4 1
{IV) ll-*n;(xz—4 I—ZJ
(vi) lim (E—mli]
=0\ x a
TR 1 1
(viii) xl—%(;x_zFleanx)'
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8. Determine the following limits:

(i) lim (cot? )™ (i) lim (x—a)*™®
=0 a—a
Gii) lim (1= x5 200 Gy lim (an 0™ F (v)  lim cos x**
x=l x—xld x—xid
) _— . (sinx 1
(vi) lim (cot x)"%*  (vii) lim x"'" (viii) lim | —
x—=0 =0 =0 x
tan x |13 1 Lun x
(ix) lim (x) lim|—— (xi) lim|—
x1 ¥ =0\ x x—0 | x?
. 1Y o
(xii) lim (11--?] (xii) 1im [2x+1]
X=pos x =0l x+1
9. Determine the following limits:
. logx
@ fim2 el G im 28X i) lim =2
X=hon 2* Xty Xedes X
x 1/x
@) lim 208X W lim 28X i) im [
g X x| x|
(vii) lim a‘sini-
X~ a*

10. Determine the limit:

T
yat - x* cot[—

2
11. Evaluate:

li

a-x
, whenx— a
at+x

im cosx — log(l +x) +sinx -1

x=}

12, Evaluate:

x =X +

oo € —e "4+ 2sinx—4x

(i) lim —————
x=0 x

13. Find the limit of:

x sin(sin x) — sin’x

(

xﬁ

14. Determine:

lim
A=l

e" —(l+x)

et —e " +2log(l+x)

2

(i) lim
&=+l X

sin x

when x — 0.

)Ifmsx

’

1 +cosx
1-cosx
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15. Evaluate:

a* sinbx — b* sinax

. 1< ].‘|‘ . colx . l‘
@ fim @ +sin) @ I anbr—unas
tanx tan"'x — x2 log ., cosx

(i) lim ——— (iv) lim —e e

x=30 x x40 logdnz @ cos(x/2)

 lim log (1 + x sin x)
=0 cosx-—1
16. Evaluate:

- (x - 4x"V2 _ (x/ay?
x=3112 (1~ BX:’)]H .
17. Determine the following limits:
1-x+logx

@) J‘l_i’r;}2 (2xtanx—msecx) (i) E_rg o -

2x-x

-X

e 1+ xcosx —cosh x —log(l + x)

tan x —x

(iii) [ll‘l‘l[ ] (iv) ilino

.+.
2x?  2xsinx
log(1 + x) log(l - x) - log(l - x°)

(v) ’l'i_r.l“l] < (vi) 11_!2 (cosalr

x
sinx 3
_x P 3x Iog[—) +x
(vii) Iim M (viii) lim ;
x40 x(e* —eF) - 2x%e™ x=0 (x —sin x)(1 — cosx)

)ootx

18. Obtain the limits of the following:

lanx 2 .
@) lim [1] (i) lim 25005 (Gif) Tim_(sin x)*"*
=0 x = lanx x=pmi2
1
@v) lim (cosax)®  (v) lim 2(&:'1]
x=0 x= x
x sec? (A (2=bx)] dinx
P ] - 2 ] . . a -da
o 0 [sm 2-ax (vl :]—Imz logsin x
X _ —Adein?
(viii) lim ——2—  (ix) lim (scc O  (x) IimM
=l x=1-logx x—al2 -+l 1-x2

—pt

b
. . a
a
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19. Find the limit:

20. Evaluate:

21. Find:

22, Find:

(l) 1.[2‘: Xl -z

(i\") lim a _xZ)H'IDsfl—J)
x=l

i) lim 1-x+logx
o2 -x
.-l
. sinT' x
ix) lim
(] ) x— X

(xii) lim_(1-sinx)“™* (xiii) lim x* logx*
x=rri2 =0

{xv) lim (1 +i2)
x

X—pen

(xvii) lim 3
x = X

23. Find a if the limit of

cotx

T—-x

whcnxw—’f_
2

tim &4 +x)" —etexf2
=30 xl

lim (a -x) tan(ﬁ].
T—a 2a

i) i t sinlx
(i) :I-T] (cot x) -0 x+1

1z
(i) lim [ﬂ)

(v) lim x-1+-—-—e:——
w=sxi2| 2x%  2xsinhx

- iz ey 1 1 1
(vii) ll_n:. x(a 1) (viii) ll-rflo [e’—] x]

0 tim 2

. lo cosX
—= (i) lim OBscotxrz) COSX
= (cos™ x)

=0 log,.. . cos(xf2)

(xiv) lim e’ +sinx—1
=0 log(1+x)

(xvi) lim luﬁ
=0 cot x

sin x sin”!x — x7

2
M:]’ when x = 0.
sindx
24, Find a if
. sin2x +asinx
lim —————
x=0 xs
is finite,
25, If

., (l+axsinx)-bcosx
lim ———————
x— x

be finite, find the value of a and b and the limit.



Chapter s

Partial Differentiation

5.1 Introduction

If several variables are functionally related, measuring the rate of change of one
variable with respect to another keeping others constant, is often called partial
differentiation. In partial differentiation, the function which is partially differentiated,
is always considered as the function of only one variable—the one with respect
to which the partial differentiation is to be carried out. Whereas, all the other
variables are treated as constants.

If u = f(x, ¥) be a function of x and y, the differential coefficient of u with
respect to x, treating y as constant, is called partial derivatives of u with respect
to x. It is denoted as

ou of
Fem L fileow, or fy
Thus
ou_of . f(x+h.y)—ftx,}'):f
dx  dx k=0 h *
and
du_of o SOuy+3y) - flxy) -5,

a) ay h=0 h

where 9/9 x, @/ y are symbolic operators. Now let u = f(x, v, z) be any function
of three variables x, v, z, then

a_u = lim SfUx+h), y,2)— flx,y.2)
dr k=i h

=f;

this means u has been differentiated with respect to x only, where the remaining
variables y and z have been treated as constants. Similarly,

du lim L&y +k D~ flx, 3 2)

ay k=0 k

148
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It means u has been differentiated with respect to y only, where the remaining
variables x and z have been treated as constants, and

du fly.z+a) - f(x 2

== lim

dz Bt-nlJ ot

This means u has been differentiated with respect to z only, where the remaining
variables x and y have been treated as constants.

In this manner, if u is a function of more than three variables, then the
definition of partial derivatives for the function u can be likewise extended.
Generally, if u = flx, x5, ..., x,) is a function of n variables, x;, x3, x3, ..., X,,, then
du/gx means that u has been differentiated with respect to x, only while the
remaining variables x5, x3, ..., x, have been treated as constants. Similarly,

du  du du
9x, oxy  dx,
can be defined.

Partial derivative, gu/gx, gu/g y are functions of x, y. Each may possess
partial derivatives with respect to these two independent variables. These are

known as the second-order partial derivatives of u = f{x, y). We denote these
second-order partial derivatives as

3 (ou)_
e lar) T3 e O S

d(du Bz
'B; -é; &y =u,, or f.
EICA N
axlay) axdy w
d (au] u —u, o f
ay\ax) oyox b
In general, f,, = f,.. when f(x, y) is discontinuous of (x, y), partial derivatives

fiy # fir. In this text, we only concerned about order of partial differentiation,
which has no effect on the values of derivatives, and in general

fxy =fyr- fx)'z =fyz,t =fz;)- = .., elc.

For example, consider the function:

fix, y) = ad® + 2h® + by’
Here
fo = 3axd + 2hy°
£, = dhxy + 3by?
f;.‘ = 4.ﬁy

Soy = 4y
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Therefore, fiy = f... There are, however, cases in which f, # f,.
Consider another example,

3 3

J'(Jr.)*J="r 2y x#=0,y20
x—

f0,00=0

It can be easily verified that at the origin, f,y # fi..
Example 5.1 When u = x*> + ¥ - 3axy, find
ox? a®

Solution We have u = x* + y* - 3axy. Then

du Bu 2
—=3x* - 3ay, —=3y* -3,
32 -3ay 3y" = 3ax,

and
Qu %u
— =6x, =6y
o I
Example 5.2 1If
2,.2
u-logx ry .
xy
prove that
u _ *u
dxdy adydr
Solution Here
2,2
u=log=—2-=log(x* +?) - log (x3) )
Then '
u_ 2 y 2 1
ax x*4+y xy P4y x
and
2
a_x:_a_[ 22x 3 _'I_J=2I zzyz 7=~ 241)!2 2 2)
dyox  dylx?+y' x (x* +y%) (x* +y%)

Again, from (1), we have

a_n_' 2y x 2y 1

y Xy xy x4y ¥

and

Pu_of 2y 1), 2 | 4o
Bxay_ax .t1+y2 ¥ =4y (x2+y1)1 (x! +y2)2 [£)]
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Therefore, from (2) and (3),

azl‘ - azu
dydx  dxdy
Example 5.3 If
w=x t:m"(z)— ¥ mn“[i] .
x ¥
prove that

Pu _2-p

dxdy 2+ yr
Solution We have

Then
du % xy? X
—_——— =2y tan" —~
Iy +yt P4y i ¥
2, .2
X+l m-l[ﬁ)
x4y ¥
x
=x-2_vtan‘l[—]
y
Similarly,
?%u 2y x“ -y

Example 5.4 If u = €%, show that

Pu
= (1 + 3xyz + Y P)e™
dxdydz ( o2+ D)
Solution We have u = % Therefore,
%E- =e™yx
and
&=x(em +xy2e™%) = xe™ + x>yze™.
dydz
Again

ag:az =™ [(xyz + 1)+ (£*y*2% + 2002)] = €7 (1 + 3xyz + x

2),2:2)‘



152 Textbook of Differential Calculus

Example 5.5 If

prove that
ou g
x‘-a-x-+)'"—=
Solution We have
u=sin"" [i] +tan”! (?-)
y x
Then
du__y 1 A&y y
dx Jy’—xz y 24yt Jy’-_f x*+y
or
2o _»
v —x* x4y
Again
W___1 x[_i]+ 11
I Ji-on? L ¥ 1+0) x
ey x 21
Grr Ferx
_ x e
Wy -2 Y
or
yE X, D
dy v -x ¥ +y
Now, adding Egs. (1) and (2), we get
ou  du x xy X Xy
X—ty—= - - +
ox a}. Jyz _xz xz +)"2 Jyz _-xg 12 +y2

Example 5.6 If u = log (x* + y* + 2* = 3xyz), show that

(i) ﬁ.{,ﬂ.{.a_n.:——mwg‘
d dy dé x+y+z

=0.

O]

@
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; (_L__a_ P P A

(1) |5 dy oz (x+y+2)?*

Solution Here u = log (* + 3 + 2% — 3xyz). Therefore,
du _ 32 -3z

X +y 4307

du _ 3y -3z
I P +y 2 =30

Qu _ 327 -xy
9z X4y 4+ -3z
(i) Adding them, we get

u du u 3 +V e+l -xy-yr-w)

—t—+—=

ox dy oz S+ +t =30z
_ 3P+ 4 -y o)
(x+y+2)(x* +y2 +22 -3n2)
_ 3
_x+y+z

(ii) For the second part
(_3,+i+i]2uz(i+i+i][i+i+i],,
dx dy dz dx dy dz)\dx dy 9z
=(i+i+i][a_"+ﬁ+a_“]
dx dy ozfiox oy oz
=(i+i+i]_3_
dx dy dz)x+y+z

N +i[ 3 ]+i 3
dxlx+y+z) dy\x+y+z) dzlx+y+:z

=[ = S B ]
(x+y+27 (x+y+2? (x+y+2)?
3
(x+y+2)°
2
(x+y+2)?®
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Example 5.7 If

2 2 2
X I
+ Y +

@ +u B +u +u

() (2] (2 oy 2 2
) o) &) Uy )

Solution Differentiating partially with respect to x, we get

2xx X Quf yzﬁ_‘_ Z ul_o
a’ +u (az-l-u}2 ox (b’ +u)2 ox (c* +u)® ox

=1,

prove that

ar
Ix _ x! N yz . 22 a_n _
a+u (@ +u)? B +u? ()’ |ox
or
du 2x
Ewie 1)
dx 2 % ),1 2
+ + t
@ ")Laz T A - ) S o
or
(_EE z _ 452
ax) 2 2 2
(@ +u? [(azin}z * (bﬁ); u)? * (c? z+ u)’]z
_ 4x?
2
2 4t X
@+ I:Z(a2 -Ht)z
Similarly,
3 -
dy B +u)? X2
(@® +u)?
and

(%)2_ 47* 1
9z) 7 (c? +u) [ 2 ]1

(az + u)2
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Adding them, we get

< ¥ z
[ﬂT + éi. (au] - 4L&z2 +u)’ * * +u)? * ( +u)2]
dx ay oz [ xz 9 Zz ]I

Y
+ +
(@ +w? B +u? (& +u)

4
% ¥ 2

2 + 2 2 + 2

(@ +u? B+ (P +u)

Again, from (1)

25 (a +u)

dx Z [.\:2.-' {02 + u)2 ]

au 2y% (B° +u)
] Z[x’r(a +u)? |

au 22%(? +u)
Z [.\:71’ (a + u}z:l

Adding them, we get
L au_ 23 [F1E@ +w)]

+}’

Yo + 3 CY[R@ ] E[xz!(a +u?]

Since from the given equation

2
Y=L

(a° +u)
From (2) and (3), we get

@) ) (- 2)
) &) &) TRy TS
Example 5.8 If u = log (tan x + tan y + tan z), show that

0z
Solution Here # = log (tan x + tany + tan z). Then

(sin Zx)—g% + (sin Zy)«gl;' +(sin2:)§5= 2.

ou _ secx
dx tanx-+tany-+tang

(2)

@
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or
. ou 2sinx cosx 1 2tanx
(sin2y)— = =
dy tanx+tany+tanz cos’x tanx+tany+tanz
Similarly,
. 2tan
(Smgy)a_“ e 2lany
dy tanx+tany-+tanz
and

. ou 2tanz
(sin2z)— = ————on
dz tanx+tany-+tanz
Adding them, we obtain
ou _2(tanx +tany + tan z) -2

du du 0
in2x)— + (sin2y)— +(sin2
(sin ”’aﬁ‘s“’ ’)ay *(sin Z}az tanx +tany+tanz

Example 5.9 Prove that Vr = 0, where

L2= Py +
r
Or if
1
o=
:,ix’ +y? 477
prove that
Pu u  Fu
""-'2-' —_— +'—i" =0.
bR R
V2 stands for the Laplace operator:
o+ & @

— e — + —
nr 3y
Solution We have

1
—=x+y +2 (1

2

Differentiating partially with respect to x, we get,

2 or 1 dr
-;3—5;—2x or ;-3-5; =-Xx (2)

Differentiating again with respect to x, we get

3(arY 19
—(5) ok
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or
2
—-~{—.xr3)2+-!3—~a-:;=—l,
R
or
1 2?
3x%2 +~3§; == (3)
Similarly,
2 1 azf _
-3°r Tﬁ__l‘ @)
and
2 1 Bzr
=3z°r +r_’$=_l 5)
Adding (3)-5), we get
1(d% d*r a*r
S+ )b | b — | =3
( Y ) Plax? a9
or
1 1 (& & &
Bl — bt | r==3
’ e [a:’ o 3t ’
or
—BVZr:O
-
Hence Vr=0.
Example 5.10 1f u = f{r), where 7 = x* + )%, show that
u u ., 1.,
5;2-+§;:?=f (’)"‘:f ().
Solution Given ¥ = % + yz, we get
or x or
T-Z g HE=2X
ox r a dy r
Now from (1) as u = f{r),
du ar x
—=f(r)— == f"i 1
. f(")ax rf(f) m
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and
Fu 2 (a_u)_i[af'w]
ax? ax \ax) ax| -
’ - ’ ﬁ
2 x'(r) -‘f(f)ax]
Cx 2
’[Jf"(f)‘gi + f'(r)]— xf'(r) %
2
_ A G+ ) - () (x/r)
F]
-
1 2 ra ) x! ’,
=7 f (r)+ff(r)-7f |-
Similarly,
azl( yz
P%: +— f (")Wf(f)-_f(-")
Adding them, we get
u Fu 1 ” . x* +J’
e Byz-r_[(x + ) () + 20 () — f()]-
or
;" +§:—§— fr N+~ = f ).
Example 5.11 If xYz* = ¢, show thatat x =y = z,
o’z -1
Bx_ay_ (xlogex)™.

Solution Given x)’z" = c, taking log both sides, we get

xlogx+ylogy+zlogz=loge
or

zlogz=logc—-xlogx-ylogy
Differentiating partially with respect to x, we get

(1+[Dgz)%=—(l+logx)
or
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Similarly, 5 el
dz _ l+logy

dy 1+logz

a_*z_i(kj _9( l+logy
axdy ax\dy) ax{ 1+logz

=_(Hlogy){_+]19_z

Now,

(1+logz)* |z ox
_ 1+logy l[ l+logx)
(1+logz)* z\ l+logz

__l{l +log x)(1+logy)
. (1+log2)’

Hence at the point x =y =g,

Pz _ 1 +logx)(l +logx)

ady x  (I+logx)
_ 11

__;1+log:c

1 1

" xlog,e+log, x
1

‘_xlog (ex)
==[xlog(ex)]™".
Example 512 1f
u=24+Z X
z
show that
xa—“+ya—“+zﬂ=0
o "dy “dz
Solution Since
w=l i X
z x ¥y
we have
ou z 1
—=—t-.
ox x* ¥y
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Similarly,

Now, we get

X— -

dx “dy 0 ¥
Xy x ¥,z
Xy z.y z x

Solution Here

Differentiating, we get

du y
2
secu—=——
ax Xt
or
du y
1+tanty) — =--=
¢ )3 TR
or
1 Pu__y
Llax 2
or
u___ ¥y
o xt+y?

Differentiating partially again with respect to x, we have

Pu_, 2o
Py
Again from (1),
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or
24y 1
ERa
or
o x
Kyt
or
a’u_ -2xy
W P4y
Thereflore,
Pu Pu_ 2y 2y
W I (RAy) Py
Thus
W

Example 5.14 1f u = 2(ax + by)* — (x* + ¥*) and @* + b* = 1, then find the value
of
ant

Solution Here u = 2(ax + .'By)2 -0+ yz). Then

a—u =4a(ax + by)-2x
ax

and
32—‘; =dg” -2
ox

Similarly,
% =4b? -2

Adding them, we get
u u 2 2 2 .2 2, 32
—t——=4a" -2+4b" -2=Ha" +b")-4=(d)()-4=0,asa + b = 1.
e ar

Example 5.15 1If u = sin(¥x +Vy), prove that

ng_u"'yg_;:% (J;+J;)cas[\f;+\f;)-
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Solution Here since u = sin(¥x +Vy), we have

% = cos(\E +J;] [-;-x'”’]
and
ol )

Therefore,

xgx_“ﬂg“_y:m(\f;h/;)[g](,m £y

=2V +J5)eos (45 +45)

Exercises 5.1
1. Find du/dx and du/dy, when
(i) u = sin (xfy) (i) y = tan”'(x/y) (iii) u = log (% + x¥)
(iv) u = log (® + % V) u=x.

2. When u = cos y + y cos x, verify that

dxdy dydx
3. If
u=tan™ 34 }
1+x° +y*
show that

Du_ 1
Wy (1+x+y)2
4. If x* +y* = x"y"z=0, find dz/9x and dz/dy when x = y = 1.
5. If u =2 + 7, show that ugy = uy,.
6. If u=log Jm. prove that u, + u,, = 0.
7. 1f u = V2 + y, prove that uy + uy, = .

8. If u = sin”lx, prove that

BH a“_
Xa"'}'g—(}'
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9, If u=f(%), show that

2
dx "ay ’
10. If
u=sin [sin Z],
x
prove that
du  du
x—+y—=0
ox "ay

11. Find the second-order partial derivative of: (i) e, (i) (x? +y2)¥2.
12, If
a2
: 4y

show that f, = fi..

13, If u = fix + ay) + f(x - ay), show that

azz 2 3'22.
— =gt
9y ax?
14. If u = F", where ©* = & + y* + 7°, prove that
2 2 2
a—‘:+a—:+a—:‘=m(m+l)r”"z.
ox  dy* dz
15. If u = log ‘::;‘, then show that
xa—u+ B_u__3
x Yy

16. If u = xf(x + y) + yF(x + y), then prove that

Pu Pu u

— +—=+—=0.
oy
17. If
u=sin l.
x
then prove that
.

ox axdy
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18. If fand g are two differentiable functions and are connected by y = f(x + ar) +
g(x — ar), where a is a constant, show that
iaﬁi:az 9izx
ox ox
19. If

=2cos™ Xty ’
u=2 LE+J£

show that

du  Odu u
x—+y—+cot—==0.

ax "y 2
20, If u = 22y — 2) + Yz - %) + Z%(x — ¥), prove that
E‘-‘-+E+a—u=0
ox dy 9z
21. If u = x* + y* + 2%, prove that
ou ou du

x§+y$+za=2u.

22, If u = fix? + ), show that

23. If u = X% + y*z + x2%, prove that

%+g—;+g—:=[x+y+z)z.

24, Ifu=(x* +y*)/(x +y), prove that

ax oy ox ay)

25, If u=asin (x/y)+ b cos(y/b), prove that

du  ou
ZyZ-o.
w0y
26. 1f
XZ )'1 ZZ

flx,yd=|x ¥y z|
1 1 1
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prove that

SIS

=0.
a.x dy az

27. If u = tan (y + ax) + (y — ax)*?, prove that

Fu_ydu.
w ay2
28, If u = 3(ax + by + c2)* - (@ + 3 + ), and &* + b* + &% = 1, prove that
u  Fu 32
_2+
Ay az

29. If V=ztan™'(y/x), prove that Vi, + Vyy + Vz = 0.
30. If u = log <+ 3y + 2, prove that
. ?*u _ ou - u
Doz oxdz - axdy
31, If x=rcos 6 y=rsin 6 prove that

o’e e L
) a”aﬁ =0 (i) 73" %
32. 1f
_sin(ct = x)
==
prove that
. [32 L2 au] u
x ox a:’
33, If
o Xty
H=COos J;-FJ;
prove that
a“+y%+lcotu =0.
T dy 2

5.2 Degree of Homogeneous Functions

If the sum of indices of different variables contained in each term of an algebraic
expression be n, it is called a homogeneous function of degree n, which may be
any number, positive or negative, including zero.
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Let u = f(x, y) be a function of x and y. If the sum of the powers of x and
y in each term of f(x, ¥) be equal, then f(x, y) is called a homogeneous function.
In particular, if the sum of the powers of x and y in each term of f(x, y) be 3,
then f(x, y) is called a homogeneous function of order 3; if the sum of the powers
of x and y in each term of f(x, ¥) be 4, then f(x, ¥) is called the homogeneous
function of order 4. In general, if the sum of the powers of x and y of each term
of f(x, ¥) be n, then f(x, y) is called 2 homogeneous function of order n. For
example, 2 + y* + 3x%y is a homogeneous function of degree 3; x* + 4xB% + !
is a homogencous function of 4th order; etc.

In general, if f(x, ¥) be a homogeneous function of nth order, then its form
will be

fix, y) = agd" + ax™ly + ax™ B + v+ gy + gyt (5.1)
The sum of powers of x and y in each term of Eq. (5.1), or in general term
ax""y is (n — ) + r = n. Therefore f(x, y), as given (1), is a homogeneous
function of nth order in x and y.
The above homogeneous function, as in Eq. (5.1), may also be written in
the form:

2 3 "
f(x.y)=x"|:ao +a,%+az(%] +a,[%] +-w+a,,[%J ]=x"¢(%).

where ¢ is a function of y/x. Hence if f(x, y) be a homogeneous function of nth
order, we can write f(x, ) as

fx, y)=x"¢[ﬂ

Alternatively, if function f(x, y) is said to be homogeneous of degree n in
x and y, f(tx, ty) = r'f(x, y), where ¢ is a parameter.
The function f(x, ¥) can also be written as

o) = 74l
x x
if f(x, y) is homogeneous Similarly, f(x, y, z) is a homogeneous function of nth

order then
flex, ty, 12) = Bf(x, y, 2), etc.

Rational homogeneous function

If P and Q be homogeneous functions of degree n and r, respectively, then
f = PIQ is a homogeneous function of degree (n - 1). Following are some examples
of rational homogeneous functions:

@ fxy)= oyt il o) ="3"(£)

X+y x(1 + y/x) x
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Therefore, f(x, ¥) is a homogeneous of order n = (4 — 1) = 3,

2ay  Xfiromr] ()’)
ii (x,y) = 2 = i x
(i) Sy Zy+n Xz[()m +(yfx)2] Ll

Therefore, fix, y) is a homogeneous function of degree (3 - 3) = 0.

(i) fx, y) e
y+x

J; (l + )f.l’x]
x(1+y/x)
1 [I + (y!x}m]
= -J;_- W
) x-uz [l + (y!x)m]
1+ y/x

=x'“’-¢l
x

So, f(x, ¥) is a homogeneous function of degree (1/2 - 1) = -1/2.

Py
x+y+z

(iv) flx, 3. 2) =
Here, we put, x = xt, y = yt and z = zt. Thus

33 3 3
FE+y +27)
x,mig)=——/—m———=1 + M
fln ) == J[E3%)

Therefore, f(x, y, z) is a homogeneous function of degree n = (3 - 1) = 2.
We also note that

sini, oosi. tani. log[l +£J. e, ..
¥ y y y

are homogeneous functions of degree n = 0, since each of them can be expressed
as

x" ¢[2], with n=0.
x

3 5
nXoX_L{xY 1fx)_
y y 3ty 5ty

Their expansions like
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also indicate that they are homogeneous of degree zero.
Similarly,

w() o) ws o] G

are also homogeneous functions of degree zero. But

4, .4 4.4
Jmsin [m] y=log [uy_)
X x+z

are not homogeneous, since numerators and denominators of
4 4 4 4
X+ x +
Y. and b4
X x+z
are not homogeneous equations of the same degree. However,

4, .4 4, 4

- X"+ N+

sinlu= Y and =22
xX+Zz

are homogeneous functions of degree n = 4 — 1 = 3 each.
The correct identification of homogeneous functions and evaluation of their
degrees are very essential for the application of Euler’s theorem discussed now.

Theorem 5.1 (Euler’s theorem) If u = f(x, y) be a homogeneous function of
x and v of order n, then
Xa—“ + a_u ni

x Ty

for all x, y belong to the domain of the function.

Proof We have,
u=xgL,
X

as u is a homogenecous function. Therefore,

a3 (H)5)

(5.2)
= M"-lﬂ(z) _ X"-I)'ﬁ’[z)
x x
and
d " 1
P w’({]; (53)

Multiplying Egs. (5.2) and (5.3) by x and y, respectively and adding, we get

e n{t (2ol

Hence the theorem.
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Alternative proof Let

u=Ax ‘yﬂ,'_meyﬁ +.,_=2Mc«yﬂ (5.4)
where
a+ﬂ=g| +ﬁ| = +ﬂ2 =...=a”+‘3”=n_
Therefore,
du_ Aax® W 4 g YA
dx
and
du @ A1 o Bl
a—=Aﬂx ya' +Bfx 'ya‘ +
)y
Then
x?”g_ = Aax®y? + Bayx®yA + o+ (APx®y? 4B, xyP + )
x
=(a+ ) AxYP +(a + B)BxyP 4.
="(-"’t-fay‘g+3.r“'yﬁ' Fo00)
Since
a‘l'ﬁ:al +ﬂl == q,
Thus from Eq. (5.4)
X'a£+y§£—nu
ox dy

Hence the theorem.

In general, Euler's theorem can be extended as a homogeneous function of
any number of variables. Thus if # be a homogeneous function of three variables
x, ¥, z of degree a, then

u=Ax"YZ + Bx"yAh 4 o = EA.r"y”z’
where
a+f+y=a,+p5 +y =-=n
Therefore,

ng-i- ﬁ+z~—-x2»’.a¢x Pzt +y(Zﬁﬁf)'ﬁ"zr)+zzm’xﬂyﬂzw
=(a+ ﬂ+y)zAx"yﬂz’

=hnu
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Thus
xi‘-+'§-‘:+z—-—=nu
x Ty e

Hence the theorem.

Theorem 5.2 If u = f(x, y) be a homogeneous function of degree n, then

xazu 32 (- au
® Yoy V3
b e 20 az"—(nﬁl)-a—‘i
® 5y TV a
2
() x g—+2 a—l';+y ay’ =n(n-1u
where
Py P
dxdy dax
are equal.

Proof Since u = f(x, y) is a homogeneous function of nth order, from
Euler's theorem, we have

x§+y$=nu (5.5)

Differentiating Eq. (5.5) partially with respect to x, we get

xazu du ji—-—n a_u
o Tady o
Therefore,
a’u 32 du  du du
Ao e — = (1 =) —
2 ey " w V% 6

Again differentiating Eq. (5.5) partially with respect to y, we obtain
ay T oy oy
Therefore,

%  w  Ou ou du
— — e fe———= (- 1)— 5.7
x oxdy Y »* " dy oy (n=1) ax Gn



Partial Differentiati 171

Now multiplying Eg. (5.6) by x and Eq. (5.7) by y and then adding, we get

zau B_u zﬁ_ ~ a_u o ) o
+21}’axay+)' (n=1 xax-ryay =(n-Dau=n{n—-Du

2
”+2xyﬂ+)’ a——-n(n—l)u

axdy 9y’

za

5.3 Total Differential

If y = f(x), then dyfdx = f'(x) and dy = f'(x) dx, is called differential of y, when
y is a function of x only. Now consider u = f(x, ¥), which is a function of two
variables, x and y only. In this case, u varies partly with x and y is constant, and
partly with y when x is constant. Hence the total variation in u can be logically
measured in terms of partial derivatives f; and f, and total differential of u is
denoted as
du = f, dx + f, dy.

Theorem 5.3 (Theorem on total differential) Let u = f(x, ¥), where u is a
function of two variables x and y.

Let x changes to x + h and y changes y + &, so u changes to u + du. Then

u+du=Rfx+hy+k
or
ou =flx+h y+k)-fix, y)
_fthy +kh)-f(x.y+k)h + f(x,)'+fck) REAGEI (5.8)

Proceeding to the limit, when h = 0

fx+h y+k)— f(x,y+k)
h

becomes

a
> fx,y+k)
X
and when k — 0,

of (x, )
e

u
o

becomes

Also,
f(xl y+ k}_ f(x‘)’)

k
becomes

9f (x,y) du
—_— 0r .
ay dy
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Thus the values of the ratio du: h: k may be expressed as du : dx : dy.
Hence Eq. (5.8) becomes

du
du——a‘.t + "
Ty
Hence the proof.
In general, if u = f(x, x3, x3, ..., x,), we have

u du u u
dit = e, + ey + iy + -+ +—d.:
MR PRa i e e W a,

5.3.1 Total Differential Coefficient

If u = f(x,, x3), where x; and x; are known functions of a single variable, x, we
have

du du
du = —dx; +=——dx,.
e Sty
Also, since
du dx, dx.
du =-‘-f-x—dt. dﬁ ='E:'dt, d.tz =E?-dx,
we obtain

du _ au dx ax , ou du_dxy
dx ox, dr | Ox, dr

In general, if u = flx, x3, ..., X,), where x,, xy, ..., %, are known functions of x,
we oblain

du_Ou dx Oudy, | Ou dr,
dx dx dx dx, dx a, dr

Further if x;, 3, ..., x, be each known function of several variables x, y, z, ...,
we shall have the same way

and
ou_Oudy udy . Oudx,
a}’_aﬁ dy dx, dy ox, dy

Corollary If u = f(x, y), where y is a function of x, then

du _of af dy

sinccﬁ-l
o axde dx
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5.3.2 Differentiation of an Implicit Function
If fix, y) = 0, then f(x + h, y + k) = 0. Here
fOurhy+B-floy+k)  fley+B)-flxy) k

—=0
h k h
where &t and k are indefinitely diminished. Therefore,
I ¥y b Yok
dx  dydrx de  Offdy

This is very useful formula for the determination of dy/dx in cases where the
relation between x and y is an implicit one, of which the solution of y in terms
of x is inconvenient or impossible.

5.4 Exact Differential

Converse of total differential leads to what is called exact or perfect differential
in calculus. If ¢ and  be two functions involving two variables x and y or
constant, then the expression

¢ dx + wdy (5.9)
is called exact or perfect differential, if a function ¥ = flx, y) exists such that
o . o
du=——dx+—dy=¢dx+ydy.
= aydy gdx+y dy (5.10)

Necessary condition. Comparing coefficients of dx and dy both sides of
Eq. (5.10), we find

s _ ¥
ox ¢ and oy ¥
x ?f 2 *f 9
gf_9¢ 9f _dy
o M Ty
or

3 3 2f 3y
oy M T

But, in general

If_Pf

dydx  dxdy
Therefore,

9% %

dy ox

is the necessary condition if Eq. (5.9).

Sufficient condition. Any expression ¢dx + wdy can be an exact differential
only when we can find a function u(x, y), such that for all values of dx, dy,
du

du
¢dr+wdy=$d?f+a—ydy< 5.11)
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In this case, we have to establish Eq. (5.11). Given

3y
PR (5.12)
Let us suppose dy = 0, which implies y is constant.
Let V = [gdx, so that y being constant,
av
—=¢ 5.13
e (5.13)
From Eq. (5.12)
L VAT O 4 [
dy dydx 0@ ox ay '
which is possible only when
_Y
v 3y
is constant or a function of y only. Hence let
av ’ v ’
-——= =—+ .
4 > f'y or w X FA(S)] (5.14)
Next let « = v + f{y) be a function of x, y. Therefore, from Eqgs. (5.13) and (5.14),
ou _dv du _ov
—_—=—=, s =
3 o % 3 f'=v
Therefore,
ou du
dx + =—dx +—dy,
pdx +ydy PR v

where u is a function of x and y. Hence it is an exact differential.
Example 5.16 Verify Euler's theorem for the function: u = 2* + 2% + .

Solution Here u = & + #°y + ¥. This is a homogeneous function of
degree 3, i.e. n = 3. Now,

%=3x2 +2xy and g—:=2x+3y“

Therefore,

x%+)--g—l£=x(3xz +2xy) + y(2x +3y2)=3(.1"' +x2y+y3)=3u=nu
Y
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Example 517 1 u = ¥y, verily Euler’s theorem.

Solution Since u = x*/y?, the function is homogeneous of degree (2 — 2)
= 0 and hence n = 0. Also,

du_2x a_“__i(tz "2)—::1.&
ox ' dy oy ¥
Therefore,
. 2 2 2
xa—u+ya—u=x[&]+y —2% =2L2—2i,=0=nu (asn=0).
ox " dy ¥ y Yoy

Example 5.18 Verify Euler’s theorem for the expression x" sin (¥/x).

Solution Let
u=x"sin2.
Then *
&u n-l o ¥ n ¥ [ 1]
—=mx"""sin=+x" cos=y| ~——
ax x x} X2
or
.ta—u=—x"‘1ycosi+n.t” sinz,
dx x x
Again,
du =x" (casl)— =" cos
dy x
or
L
—=x""ycos—
ya y
Therefore,
ou  du no ¥
X—+ y—=m" sin ==nu.
ox ”ay X

Example 5.19 Verify Euler's theorem for the function:

- Cat )

xg + y]
Solution Here

_HE -y _AHa-yay [yJ
= = =xg|=—|.
O+ _}'3 x“(l + ylfx3) x
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It is a homogeneous function of degree one, i.e. n = (4 — 3) = 1. Now, taking
logarithm both sides, we get

log u = log x + log (* - y) - log (* + ¥%)
Differentiating partially with respect to x, taking y constant, we get

1ou_1, 3¢ 3¢

WX x -y 4y
or

lxiﬁl.{.i_i

u or ,t’-—y" Jc3+y3 M
Similarly,

1y 3

u dy .t3—~y3 x3+y’
or

1 ou_ -3y 3

L o @

u" gy ).J—y x4y

Adding (1) and (2), we get
3_ .3 3,3
l[x-a-i-!- éﬁ]:nw P20 N C 5 0 U E S

W oy 2=y 24y
or
-"ﬁ"’)’a—”:"“ (where n = 1)
ox oy
Example 520 1If
u= l{:hg[":2 +y2]‘
x+y
prove that
xa—u+ ya—u=l
d " dy

Solution Given
o+
=1 —
u=log [ Ty

e,_12+)’2_x2(1+y2u“12]_ (1)
B x+y x(1+ yix) x)

or
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Therefore, ¢ is a homogeneous function of degree one, i.e. n =2 -1 = 1. Let
€" = v, Therefore, according to Euler's theorem,
dv v
—_—t y—=(1
=y 3 O] 60

But V = ¢, then

Putting in (1)

dx a
Thus
O ou & _
x Py o
Example 5.21 1If
w=cos! =2,
x+y
prove that
du du
—+y—=0.
o ”'ay

Solution Here
- - 1-yl
uzcos'l[x yJ or cosu=2-2 =x[_:.x]=xo 9{1).
x+y x+y x(l-l-yfx] x

Therefore, cos u is 2 homogeneous function of zero degree. That is, n = (1-1)
= 0. Let v = cos u. According to Euler’s theorem

xﬂ.} ﬁ:ﬂ
ox ’ay ' M
But v = cos u, then
—“—smua—“ d Q—'-smua—
ax 2= o dy 2
Therefore,
x?:_‘_ g-.:=(—si1m):c--i?-f'[-ﬂ{-sinml) &=-sinu[xa—“+ B_u)
x* %y ar s FRARE ™

From (1), we get

. du | duy_
—5’"1[3'5*')’5]—0'
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Thus
du  du
—_—t y—=1
x = ¥ %
Example 5.22 1If
2
u=sin" (12 ty J
x+y
show that
x% + y%‘ = tanu.
Solution Here
2.2
u=sgin"! [.{:LJ
x+y

Then

2 2 2 2.2 272
. + 1+ y</. 1+y/
sing =22 SXtyix) _x y't)=x¢[2].

x+y - x(1+ yix) T 14y x

Therefore, sin u is a homogeneous function of degree one, ie.n=2-1=1
Let v = sin u. Then by Euler’s theorem,

,21. 2=5im¢
ox yay ) M
But v = sin u. Therefore,
—a-‘l:cosna—u and 2=t:051.rE
ax ax ay dy
or
xa—v+ Q=cosu[xa—u+ a—“]
FEARE™ oy
From (1),
sin u = cos u[xa—u+ a_u]
B dx yay
Then

du du sinu

X—+y—=———=tan

ox " dy

Example 5.23 1f
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prove that
I
dx yay 2
Solution Here
| x+y ] x+y
w=sm or sinu=
[J§+J§ N
or

x4y an [z)
T G

Hence sin u is a homogeneous function of degree 1/2, ie. n =1 - (1/2) = 172
Let v = sin u, then by Euler's theorem,

N
ox "ay'z ’

sinu =

Now,
ov cosuau Fad suau
ax ox' oy dy
Thus
.tap-(- COSH(.’(B + u
FRARE ax Yy
From (1),
-—v—cosu[x-——+ Qﬂ]
dx yBy
or
Lsing _ ﬁ+ it
2cosu  ox yay
Thus
x4y Lianu
FRAR™
Example 524 1f
u=tan"' x3+y3
x=y

prove that
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Solution Here

or

tanu=

2y _2a+yn)

u=tan™ _x3+y3
x=Yy

x—-y x(1 = yix)

xzqé(—

Therefore, tan # is a homogeneous function of degree 2,ie.n=3-1=2.
Let v = tan . By Euler's theorem,

Now,

Therefore,

From (1),

or

or

or

Thus

Example 525 If

2v=sec2u[x£ + ya—“]

oax “ay)’

2tanu  du  du
—_

sec’u ox y'i;'

ou

sinu__ du
COS‘M=X—+y—

cosu dx " dy

. du du
2sinucosu=x—+y—

dx oy

x§£+y%-=sin2u.

ox oy

O]
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Show that
Ba a—“:o.
B.'c oy
Solution Let
g=sin”'Z or sing==
y
Then
tan = or @=tan”! z
o 3
Then,
u=tan" — +tan”! (Z]
V-2 x
an! X\H}‘z -5 + ylx
=tan ———m—m—_—™——.
(n‘\l'yz -2 )(yr‘x)
- x+y‘ly2 -x
X y2 —xz —,\'.y
or
21+ omdiner -1]
LS ,‘yz _xz [ + (W) (i) -1

= x°¢2
x

xfyt=xt - [J(yb:) —l—(yfx)]

Therefore, tan # is a homogeneous function of degree 0, ie. n=2-2=0.

Let v = tan x. By Euler’s theorem,

x%-ﬂ'%:&
Then
i=s<=.“{:2nrE £=sec1ua—”.
ox ' dy
Therefore,

al'-1- iI‘:—sor.‘.z'u .ta—-t- du
SFTRRE™ FRARE™
From (1}, we get

a_u] or Ju:a—kl + ya—u= 0
dy

O -
0 =sec u(xax+y Fe >

14)]
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Example 5.26 1f

-1 xl-‘2+yl.fZ

it = COSCC
i3 _i_yl.fﬂ +

show that

—+2x —+
* 2 12

232u az aaz _Lanu 13 |.a-l'l2
a? a2

Solution Here

2 + ylfz

xIB +y|ﬂ

112
sinu = X0+ yl-‘l =y (say)
xl-’l +y|!2

Cosec u=

or

Here v is homogeneous function of degree n = -1/12, as

l(l_lj L
2372)7

Then
ax Tdy 12
or
gv+yg—;=nv=—%sinu. N
Also
23 v Bz za v 1
sz +21y—— ¥ % —5=nn-1v
{5
—————— 1 |sinu
124 12
—Esinu
144 @

Putting v = sin u, we get

av ou 2y (BHJ 2y
—=cosu— and —=-sinu +cosu—
dx El

dx ox ax? P

X
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Also,
c-’z—v=—sim.|a—f"[E+cosm—azhl
oxdy dy ox oxdy
Again,
av ou v . (BHJZ u
—=cosu— and —=-sinu| — | +cosu—r
dy ay '’ ay ox?
Putting these values in (1) and (2), we get
cosu xa—“+ a_u =—isinu
ax ) 12
or
xgx—u-!-y%:—l—lz-!anu- @)
From (2),
cosu xz-a-ii+2.\)r-§2-'i-+y2§j£ —sinu xz(ﬁf +2xy'a—“-a—“+y2('a—"]z
ar Ay T 9 dx dyax ~ \ay
=£sinu
144
or
cosu xza—zu+2 ﬂ+ zﬁ —sinu x%+ a—“ 2‘-isim‘r
e oy ) a2 x Yoy) T1a
or

xzﬁd- 32u+ ﬁ_lmu E_'_tanzu
w Pwy T (2 1z [
Example 5.27 If u be a homogeneous function of the nth degree in x, y, z and
if u = fix, y, ), where X, Y, Z are 1st derivatives of u wilh respect to x, y, z
respectively, prove that
af of af n
X 4 Yo 4 Z e =y,
X aY dZ n-1
Solution Since u is a homogeneous function of nth degiee in three
independent variables x, y, z, by Euler’s theorem, we have
)4:':'}—:'Il + ya—u + za—“ =nu
ax oy oz @
Also,
u =ﬂX9 Yn z)t
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where

Therefore,

i‘i of 9X of oY of 9z
3 X ax ¥ ax aZox @
Again, we have

ou_df0X v dz
dy X dy Yy IZdy 3

Also,
ﬁ=afax+&f 8Y+&,FBZ
9z 0Xdz oY dz OZ oz

Multiplying (2), (3) and (4) by x, y and z, respectively, and adding, we get
xa_u_'_ﬁ ﬂ Bix [_u)+ a(au] a(au)
a Yo e T o\ ar) T o\ an ) TR o
2(5) 55 =(5)
) o) sy
o

af
al’
N
oz z y&y az dz\oz /)|

“

Bx
Bx
or

kP, P
ax aﬁ Vv Yone:

Bf o a’ a'zu
Tarl* aﬁ Doz
LI o *u Bzu Su . _a’_u
oz az&x azay o

(5

Differentiating (1) partially with respect to x, we get

82u +au azu o%u n-@-&i
w Yoy oz ox
or
9% 9%u 9u du
—_—t y——t y——=(n=1)—=(n-1).
3 Vany Fam V=Y
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Similarly, differentiating (1) partially with respect Lo y

Pu Fu P

u
—+y—+i—=@-DY
o e Y
and
?%u u 3w
“oax ey Tl e
Substituting in (3), we get
o O af]
nu=(n ”[X_ax”ay“zaz .

Hence
af of o n

X—+V—=+Z—== .
X ay 0Z n-1

Example 5.28 1fu= F(x -y, y -z, z—x) and du/dx, du/dy, duldz all exist, prove
that

a_u+%+ﬂ“0
ax dy o9z
Solution We have
u=Flx-yy-z,2-x) (1)

Let X=x-y, Y=y-2z Z=z- x Therefore,

X WX _ WX
-é\'__l' a}' ==1, az -—0»
¥ y _ vy _
Pt ml I
0z 0z 0z
Zon, 20, Z==1
ox dy 9z

Therefore from (1), u = F(X, ¥, Z). Then

du_0FX OF3Y OFIZ
o OXor orax oZox
_9F
S
_OF _OF
% %z @

oF oF
D+ 5(0) +a—z(—1)
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Again,
_ai=aFBX+3FaY+BFBZ
Jy 0Xay ardy oZay
SO 49y, OF
V@
=§£-§£ 3)
aY ox
And
B_u_3F3X+aFaY+af o0Z
9 93X Y dz IZaz
oF oF JaF
—i(ﬂl “'W(“l) +§(!)
_F _oF )
oz oy @
Adding (2), (3) and (4), we get
T
ox dy oz
Example 5.29 If F (x, y, 2) = 0, find dz/dx, 9z/dy.
Solution We have
Fix,y,2)=u (¢Y)]
Then
ou ou du
L P )
du axd”ayd”az 'z
=(0) dx + (0) dy +(0) dz
=0 [as u=0] 2

Now, 9z/ox be considered where y is constant, then from (2), dy = 0. Therefore,
putting du = 0 and dy = 0 in (2), we find the value of dz/dx, we get

(d_ZJ Jd_ _9FRx  rovided o
dc), ox  OFfdy oy
and
& =a_z=_§_l-:{_9_x_, provided -aitﬂ.
dy), dy  9Fldz 9z
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Example 5.30 1If A, B, C be the angles of the triangle such that sin’4 + sin’8
+ sin’C = constant, prove that

dA _tanC-tanB

dB tanA-tanC’

Solution We know that in a AABC, A + B + C = m. Differentiating with
respect to B, we get

dA . dC
Ztli—=
a8 T aB
or
54
B dB M

By question,
sin®A + sin*B + sin®C = constant

Differentiating with respect to B, we get
. dA . . dC
(sin 2A)— + sin 2B + (sin 2C)—=0
dB ¢ dB
Using (1), we get

(sin2A)£AQ+sin 2B - (sin2C) !+ﬁ =0
dB dB

or
ﬁ (sin24 = sin2C) =sin2C —sin28B
dB
or
% (2) cos 2(.42+ C) sin E(Az— C) -2 c052{2(.‘ +B) sin C ; B
or
dA X .
Ems(ﬁ+£’}sm (A=C)=cos(C + B)sin(C-B)
or

-j%cos(x— B)(sin A cos C — cos Asin C) = cos(m — A) (sin C cos B — cosC sin B)

or

—j% cos B(sin A cos C —cos A 5inC) = —cos A(sin C cos B — cos C sin A)

Dividing both sides by cos A cos B cos C, we get

dA or ﬂ_tanC—tanB
E(lanantanC)-lanC—-mnB 4B ‘—-_tanA-mnC'
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3

4.

5.

7

.

Exercises 5.2

- If u=¢e"™ sin (nf —mx), prove that

u_n Fu
of 2mPox?

. If H be a homogeneous function of degree n in x and y and u = (¥ + y¥)"?,

show that

J du) af . du
-a:-(H'a:‘) +‘é;[”'é‘;] =0.

Verify Euler’s theorem for the following functions:

(i) u = tan"'(3/x) (i) w = sin"'(y/x)
(iii) u = x* cos™'(ylx) (iv) u=log(x® +y%).
If

u=cos"[ Xty }
e+ dy)

then show that

du du 1
x$+y§——§cotu‘
If
3,3
" =sin'1 (ﬂ]‘
x=y
then prove that
xa—u+ﬁ—2mnu
dxr dy '

If u = (2 + ¥Y)(x + y), prove that

REr
o ay) or oy

If u=asin(x'y)+ b cos(xfy), prove that

XE'F %:0
ox yBy

If u = 3x%z + Sxy’z + 42%, show that

xa—“+)r-ai+z-€5-4u
ox Tdvy dz )
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9. If i = X%y + ¥’z + 7x, show that

i"'féiﬁ'gf'_(x‘i' +2)°
ax Ay 0z Y '

10, If u=1>27 ") 5rove that

a_“—k az_u.p%ﬂ
a art rorl

11, If u (Ax" + Bx™") cos n(y — a), where A, B, n, a are constants, then prove

that
a:l‘ La_ﬂ+iazﬂ =0
a‘tﬁ xox IZ ay2
12, If
o[ =y
u=sin N
Vx+y
show that
ou du
—+y—=0
a7y
13, If
M:sin(J;+J)_J),
show that
x4y 2 LR 5 ) cos(V5 +45).
ax “dy 2
14. If
2,2
= tan™ [u}
x=y
show that
dut du 1 .
— + y—=—sin2
I yay 21m u
15. If
w=x lngz.
x

verify Euler’s theorem.
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16. If P dx + O dy + R dz can be made a perfect differential of some function
of x, y, z by multiplying each term by a common factor, prove that

9@ _9R) (AR _09P) (3P 0Q
P(Bz ay]+Q(ax az]+R(y ax] o

17. If z and u be the function of x and y defined by

-] =202 -ud),  [z- HwPeW) =,

prove that
3l
oy
18. If
w=tan" « +y
x=y
show that
2
ng— 8 (1—4sm u)sm 2u.

19. If u = log (x* + y* + z%), prove that
azn du a’

—=y -

Byaz dzox - axdy
20. If u flax® + 2hxy + by?), v = g(ax® + 2Zhxy + by?), prove that

a( Bv] [l uﬁ]
ay\ or) ox\ ay )
2. Mz=(x+y) +(x+Yy) ¢(/x), prove that

o dyar) \a? oxdy)
22, If u=3xy -y + (3 — 202, verify that

Fo e, Feda (P
oxdy  dyox ot ay’ axay
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23. Verify Euler's theorem for

p ity
sy g
24. 'If
u=x*tan” [l)— ytan™! [2); xy#0,
x x
prove that

Pu 22—y
oxdy x?+y*
25. If u=f(x,y), x = rcos 8 y=rsin & then write polar form of

Pu, Fu_
w y

26. Ifz=f(x, ¥), x =u - v,y = uv, prove that

(u+v)—‘u%—v%‘

27. Transform the following equations:

i (Q+x )2 +2x{l+x )%-f-y 0, by putting x = tan z.

dy
dx

28, If z = flu, v) and u = x* — 2xy — ¥%, v = y, show that

(x+y)a—+(x })E*O

(ii) (1- 2)——-‘ +y=0, given that x = cos &

is equivalent to dz/dv =0, x=#y.
29, If u = fix* + 2z, y* + 22x), prove that

2 o0t -y % _o
¢4 2x)ax+(x yz}ay+(z xy)a—

14 +3)‘IM

= »
[RIEDN ylli
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prove that
x?ﬁ ty—=—u
ox Tox 12
31 If
u=fny) = +y»"°,
prove that

—_ —_——

® xax dy FEA ay* xyaxay 97"

32. If A be the area of any triangle, prove that

ai+ya_f—§f i) 2 o .o of ?.f

dA
(i) ? =cos A da + cos B cb + cos C dc, where R is the circum-radius.

dA da db T
i) —m=—+—,ifC==.
(ii) ifC 2

33. If a A ABC inscribed in a fixed circle be slightly varied in such a way as
to have ils vertices always on the circle, prove that

8a+3b+8r:

cosA cosB  cosC

34. If the measurement of the side ¢ of any AABC depends upon a, & and ¢,
prove that
dc = cos B da + cos A db + a sin B dc.

35. If A be the area of any triangle ABC, prove that
dA _db  dc  dA
—_——t——.
A b ¢ tanA
36. Verify if the following expressions are exact differential:
(i) 2xy dx + 2dy
(i) x%* dx + x* ydy
... ydx xdy
(l“) x] +J"2 12+y1

@) Zav+2ay.
X X
37. Find the total differential of: (i) ax® + 2hxy + by = 0 (i) ¥ + y* = a".



Cﬁapter 6

Tangents and Normals

6.1 Tangent

The tangent at a point P to a given curve is defined as the limiting position of
the secant PQ, (if such limit exists), as the point Q tends to P along the curve.

In this chapter the applications of derivatives to plane geometry will be
discussed.

6.1.1 Equation of a Tangent in Cartesian Form

Let y = f(x) be the equation of a curve and let P(x, y) be any point on the
curve and let Q(x + 8x, y + 8y) be any other point on the curve very near to
P (Fig. 6.1).

YJ\

09 (x + &, y + )

(x, ¥}
0 ~ > X
Fig. 6.1 A straight line through two points.

Let X, Y denote the current coordinates. Then the equation of the secant PQ is

y+dy—y Sy
Y—y=———--=oa(X=-x)=——(X - x).
. x+5x—x( %) Jx[ *)

This line will be tangent at P, when Q — P and dx — 0. Therefore, the equation
of the tangent at P(x, v) is

im & By
Y—;-}:mg()’( X)—dx(X x)

193
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Thus, the tangent to the curve y = f{x) at (x, y) is

dy
Y-y=—(X-x).
y dr( x)

dyldx can also be written as the gradient m = tan = f'(x). Then the equation of
tangent at (x;, y,) is

¥ =y =mx - x).
Second form. When the curve is f(x, y) = 0, in this case
dy _ ofléx _ f,

dc 515y f,
Thus, the equation of the tangent to the curve at (x, y) is
fe
Y-y=-"2(X-x)
5

or
(X -x)f, +(¥ =»f, =0.

Note: For the sake of convenience, the current coordinates in the equation of the
tangent and normal are denoted by (X, ¥) and those of any particular point be
{x, ¥). The current coordinates in the equation of the curve are however denoted
by (x, ¥). So try to convert the current coordinates (x, y) in the form of (X, Y),
wherever necessary. If the coordinates of a particular point be other than (x, y)
then (x, y) may be used as current coordinates.

6.1.2 Geometrical Interpretation of dy/dx
The equation of the tangent to the curve y = fix) at P(x, y)
Y-y= %(X -x)

can be written as

o)
Y==X -x—=1,
a7
which is of the form y = mx + ¢, the standard equation of a straight line (Fig. 6.2).

Y A

P(x, ¥)

Fig. 62 G ical rep tion of dv/dx.
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Hence we conclude that

dy

—_—=m
dx
of the tangent at P(x, y). If y be the angle which the tangent to the curve at P
makes with the positive direction of x-axis, then
dy
t =m=—.
any=m e

Hence dy/dx is trigonometrical tangent of the angle, with a geometrical tangent
to the curve at (x, y) makes with a positive direction of x-axis.

Corollary tan y = dy/dx is called the gradient of the curve at the point
(x, y) and y is called the inclination of the curve.

Corollary If the tangent at (x, y) is parallel to x-axis then y = 0. Therefore
from

dy
tan r=—,
V=%
we have
tan(]“:éz or d_yzo_
dx dx

Corollary If the tangent at (x, y) is perpendicular to x-axis, i.e. parallel to y-
axis then y = 2. Therefore

—anZ=%
l:il'l'.lﬂ"—l'.zll'l2 d.t‘-
Thus,
w:ﬂz 1 or £=0.
dc  dudy dy

Example 6.1 Find the equation of the tangent to the circle

x* +y? +4x+2y-5=0
at (1, -2).

Solution Let
fay=x+y +4x+2y-5
or
d
2o fy) = 2x+2yﬂ+4+2ﬂ=0
dx dr dr
or

, _x+ r1 __1+2_
fan=g o fl)=-5m=3
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is the gradient of the tangent at (1, —2). Therefore, the equation of the tangent

Y=y =mlx-x)
at (1, -2) is
Ix-y-5=0.

6.1.3 Equation of Tangent in Symmetric Form

Let the equation of the curve be flx, y) = 0; and f{x, y) be an algebraic function
of x and y of degree n. For homogeneous; we take a suitable power of z, where
z = 1, Thus the function is altered by

f(x.y2)=0, wherez=1. 6.1)
By Euler's theorem, we have

¥ ¥
o +yay +sz =nf(x,y.2)
or

¥.,¥

af
U
x5 +)'ay+zaz (n)(0)

or

o o o
Ié;'ky—-ay +Z'—az =0.
or
/AN .
VT 62)

But the equation of tangent to curve flx, y) = 0 is

¥ iy-p¥-
(X-02+(F-)5-=0

From Eq. (6.2),

i.} ya_f=xai.|. ai=_zai

X
x oy Yy la

or
or
e )
a7y ©3)

where z, the coefficient of dffdz, for the sake of symmetry, has been replaced
by Z.
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Corollary Remember that both Z and z are to be put equal to one after the
differentiation has been performed.

Equation (6.3) is the simplest form of equation of the tangent and it will be
very convenient in practice.

Example 6.2 Find the equation of tangent at (x, y} of the curve:
Sral+by+ot=0.
Solution Here x* + ax® + by + €* = 0, Let
fa=X+al+by+er=0
For homogeneity, we write

Pralz+ by +cy’z=0, wherez=1.
Now, we have
fyn=x+acz+ by +cyz=0
Then
ai=312 +2axz, a—"r=bzz +2cyz, ai:ax’ +2byz + ¢y’
ox dy az

Here the equation of the tangent to the curve at (x, y) is

A L A
X 3 + Yay +Z 3 0
or
X(3x® +2axz) + Y(b2* +2cy2) + Z(ax® +2byz+cy*) =0
or

X(3x2 +2ax) + Y(b +2cy) + ax® +2by+¢y* =0,
as both Z and z = 1.
6.1.4 Equation of a Tangent in Parametric Form
If the form of the curve be in parametric, then x = @1, y = {r). Therefore,

dy _ dyldt _ y'(0)

dx  dddr ¢'(t)
Hence the equation of the tangent to the curve at the point (1) is
Y-y= %(X -x)
or
40

Y —yt)= [x-¢0]

&
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6.1.5 Tangent at the Origin

Let the equation be y = f{x). Now the equation of a tangent at any point (x, y)
to the curve is

Y—y:%(x—x).

If the curve passes through the origin (0, 0), the equation of the tangent at
(0, 0) to the curve is

dy dy
Y—O:[—J (X-0) or Y=[—J X
% ) =0,5=0 & oy

Corollary If the curve passing through the origin be given by a rational integral
algebraic equation, then the equation of the tangent at the origin is obtained by
equating the lowest degree terms to zero in the equation. For example, let

faN=32+4H - Ty + -y =0. (64)

Here the lowest-degree term is (2x — y). Hence the equation of the tangent at the
origin is 2x — y = 0.

Verification: Differentiating Eq. (6.4) with respect to x, we get

dy dy dy
9x% +8xy% +8x’y = — l4y—=+2-2=0
Y TR Y e TV & dx

At (0, 0),
dy

2o

Hence the equation of the tangent at the origin is

a'y]
y=(— x or 2x-y=0
ax Jo 0

Example 6.3 Let fix,y) = £ + y° - 3xy = 0. Find the equation(s) of tangent.
Solution Here the lowest-degree term is —3xy = 0, i.e. xy = 0. Therefore,
equations of the tangents at the origin are separately x =0, y = 0.
Example 6.4 Find the equation of the tangent to the parabola y* = 4ax at the
origin.
Solution Since y* = 4ax, we get

dy dx _y
2y—=da or —=-—,
ydx “ dy 2a

2.6
dy (0,0} 2a j0)

At the origin (0, 0)
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Therefore,

dx
x=0={—| (y-0)
(dy]m.m

Thus x = 0 is the equation of the tangent.

6.2 Angle of Intersection of Two Curves

The angle between two curves js the angle between the tangents at the two curves
at their points of intersection.

Let the two curves be flx, y) = 0 and F(x, y) = 0 intersecting at the point
(x, y). Let PT and PN be the two tangents to the curves respectively, such that
ZTPN is the required angle. Let the tangents PT and PN make angles g and g
respectively with the positive direction of x-axis. From Fig. 6.3.

Y A
o >
7T N X
Fig. 6.3 Angle of intersection of two curves.
anp=_ L
5
and
F,
tan VI = -‘il z-—-_‘._
dx F,
Let @ be the angle between the tangents. Then
O=y -y
or

tand=tan(y; - )
_ tanyy —tany
“T+tny tany
_EJF) +(flf,)
T 1+(FJF )M,
_LF -Ef,
LF +E S,
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If the curves cut orthogonally at P(x, y), then 8 = a/2. Therefore,
x_fF-FJ,
2 fF, +F.,
or
- f;F} - F, f, y
TTRE R,
or
f.F, + £,F, =0.

Therefore, the condition for orthogonality is

- YOF HOF_
fox+fy'F;'_0 or axax"'ayay-

Corollary If the curves touch at P(x, y), then 8 = 0. Therefore,
tan0° = fx'F:v - F:rf)'
f.F + fyF,
Then
foy_Fxfy =0 or ery =fny'
Thus the condition for parallelism is

yoF_ayar
oxdy dyox

6.3 Normal at a Point of a Curve

A normal at any point of a curve is a straight line through that point and perpendicular
to the tangent at that point.
Let the equation of any straight line through the point P(x, y) be

Y-y=mX-x) (6.5)
Also, the equation to the tangent to curve f{x, y) = 0 at the point P(x, y) is
dy
Y—-y=—(X-
y d'.r( x)

or

dy dyJ
y=x2 —x&
I ‘1‘(} x ; (6.6)
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Since the tangent and the normal are mutually parpendicular (Fig. 6.4), product
of their m's = —1. That is,

Normal

o > X

Fig. 64 Normal at a point of a curve,

Substituting this value of m in Eq. (6.5), the required equation to the normal to
the curve y = f(x) at (x, ¥) becomes

dx
Y—y=——xl(X-
y dy( x)
or
¥-»E i x-x=0. (6.7)

Similarly, if the curve is flx, ¥} = 0, the equation of the normal at (x, y} is

X-x Y-y

L 3
where

& __L

-,

Example 6.5 Find the equation of the normal at the point (x, y) to the curve

R =

X
=logsec—,

a
Solution Here the given curve is

1. Ic}gsecﬁ
a a
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Differentiating with respect to x, we get

1dy 1 x x1 dy x
—_ sec—tan — — or —=tlan—.
ade sec(va) a aa dx a

Hence the equation of the normal at (x, y) of the curve is

(X —x)+(Y —}')%ﬂ) or (X —x)+(¥ - y)tan==0.
a

6.4 Cartesian Subtangent, Subnormal and Other
Geometrical Results

Let P be a point (x, y) on the curve y = f(x) (Fig. 6.5). Draw PM perpendicular
to OX, then PM = y.

Tangent

Y A

H:

¥V 92
/T M N

Fig. 6.5 Cartesian subtangent and subnormal.

o

Let the tangent and the normal at P meet OX at T and N, respectively. Then the
length TM is called the subtangent al P, the length MN is called the subnormal
at P, the length PT is called the length of the tangent and PN is called the length
of the normal.

Also let ZPTN = i, ZNPT = 2. Then ZPNT = m/2 — ; and ZMPN = y,
where tan ¥ = dy/dx. In the right-angled triangle PMT,

or

y y __¥

V:——o—:——-—-—-

PM y
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Therefore,
MN =y tany=yy.

Again, in the right-angled triangle PMT,

sinw—ﬂ—_y.
PT PT
Then
PT =y cosec W=y1fl+cul"w =y 1+L2=i‘jl+yf.
»oh
Therefore,

Length of the tangent PT =21+ 2.

1
In the right-angled triangle PMN,

PN PN
secy=——=—ov
PM ¥
Then
PN =y sec w=y‘j1+t:mzw =y"11+y12.
Therefore,

Length of the normal PN = ¥ L+,

Corollary We know that the equation of the tangent to the curve y = f(x)
at P(x, y) is
dy dy dy
Y-y=—"(X- o X—-=-Y+|y=—x—=1|=0.
y== (X-x) ! (;V ;

From O draw OD perpendicular to the tangent, PT, as shown in Fig. 6.6.

Plx, y)

D
Fig. 6.6 Length of perpendicular from origin to tangent.
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The length of the perpendicular D from the origin to this tangent is

dy _ D

J(dsz * i Jl ' ylz
—| +(D
dx

Corollary We know that the equation of the normal to the curve y = fix} is

{Y—ymi—y+{x—x)=0

or
s (rer)
—+x|-| X+¥—=|=0.
(" d dx
From O draw OE perpendicular to the normal PN, as shown in Fig. 6.7.

Y .3
Normal

Tangent

5‘ P(x, y)

)

o N
7 > X

Fig. 6.7 Length of perpendicular from origin to normal.

Then the length of perpendicular from the origin to this normal OE is

b oxl- &
[ydx”] [0+(0)dx]=x+m

J(_I)z +(_%)* et

Example 6.6 Find the subtangent and the subnormal at (x, y) on the curve
3_ 2
y = a'r.

Solution Here, the given equation of the curve is * = a*x. Differentiating
with respect to x, we get,

dy _ 5
P L=a?,
y o=
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or
dy_d _dy_dy_y
de 3yt 3y 3a'x 3x
Therefore,
3
Subtangent = -A_L-_—l(...f.}. =13x
dldx
and
dy_ y_»
Subnormal = y—=y-—==—,
Y dx y3x 3x

Corollary The product of the Cartesian subtangent and subnormal at any point
on the curve y = f{x) is equal to the square of the ordinate of that point. Therefore,

(Subtangent) x (Subnormal) = Lx Y = },2 = Square of the ordinate.
M

6.5 Derivatives of Arc Length in Cartesian Form

Let P(x, y) be any point on the curve and Q(x + &, y + &) be any other point
on the same curve very near to P (Fig. 6.8). Let s be the length of the arc AP
and s + & that of the arc AQ measured from a fixed point A on the curve such
that arc PQ = (s + &) — s = d. Now PM and QN are perpendiculars to OX and
PR perpendicular to QN.

Here, OM = x and ON = x + &, such that MN = PR = ON - OM = d&x.
Again, PM =) and QN = y + &y, such that QR = QN - RN = ON - PM = &y.
Now from the right-angled triangle PRQ

(Chord PQY = PR? + QR? = (&)* + (&)™

(x+ dr, y+ &)

P(x, y)

w ¥ ON w

4 M N
Fig. 6.8 Arc length.
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Dividing both sides by (&)*, we get

Chord PQY' _ (8y)
(2522) -1+(3)

or

(Chnrd PQQ]’ - +[§)’
ds  Ox ox) "

When Q = P, dx » 0 and

. Chord PQ
lim ——==1.
QoF Arc PO

We have

or
ds dy}
@\ " \a ©9

Multiplying both sides by dx/dy, we get
2 2 2 2
dy de) dy dx dy dy

Note: (i) If the tangent at P(x, y) to the curve makes an angle y with the
x-axis, then

dy
t =—
an y=—
Therefore,
2 2
[%) =I+[%J =1+tan® y=sec’ yr
or
dx
=— .1
cosy=— (6.10)
Also,

dy dy siny

d": l+[£) =1I1+ml1w=cosecw=
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or
"
sing=—~ (6.11)

(ii) If the tangent to the curve at P(x, y) be parallel to x-axis then y= 0 or
tan ¥ = 0. That is,
o,
dx
(iii) If the tangent to the curve at P(x, y) be perpendicular to x-axis, i.e.
parallel to y-axis, then = 90°. Therefore,

dy
tan 90° = tan p=—
v dx
or
i__t
0 dx/dy
or
.d_x=[]_
dy

(iv) Length of the curve be in the form: x = f{¢), y = @(f). Then

2 2 2
dt  dx dr de ) dt dt dt

Example 6.7 1f y* = 4ax, prove that

ds _ Jatx
dx x

Solution Here y* = 4ax. Differentiating with respect to x, we get

2 2 2
4a° 4a° a
. P (ﬂ] et s

. dx v dax

2
ii—’~=,‘1 +[ﬂ) =1’1 +2 =J“”.
dx dx x x

Example 6.8 Show that the curve

Therefore,
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touches the straight line

i+2=2
a b

at the point (a, b), whatever the value of n.

Solution Equations of the tangent to the curve at (g, b) is

(x-a)f, +(y-b)f, =0 1)
Here
J,u..ll—l d ﬂ}‘"-l
fe= a" an f?_ B )
At (a, b),
fo== ad =7

Substituting these values of f; and f,, we get the required result as

(x-a)2+(y-b)==0.
a b
Thus

Y

+l=l
b

Example 6.9 If Ix + my = 1 touches the curve (ax)* + (by)" = 1, show that

(:)’lﬂn-l] +(m)n-"(u-1} -
a b o

Solution Let us suppose that the given line touches the curve at (x, y)
(Fig. 6.9). The equation of the tangent to the curve at (x, y), is

X -2xf + (Y“'y)fy =0 1)
Y M
B
P(x, y)
0 » X
A

Fig. 6.9 Solution to Example 6.9.



Tangents and Normals

209

But the equation of the curve is
(ax)" +(by)" =1

where
fo=na! and f, = nb"y*\
Then
(X = X)na"x"" +(¥ - y)nb”y"" =0
or
a7 X - a"x" + VY - By =0
or
@K+ ¥6"y" [ (ax)" +(By)" =0
or
a"x" X +b"y"lY =1
or
n_n Ll
XE"'x— + Yb—y-: =].
x y
Here the equation
Ix+my=1

be the tangent.
Equating (1) and (2), we get

I m
anxu—l bnyu—l

PR VD
x=(a_") and J’=(b—,,]

Putting x and y in the given equation of the curve, we obtain

ni(n=1) ni(n=1)
IR (I
a

a" ni(n=1) + b ni{n=1) =1
(an)ni(n-l) * (bn}nf(u—l] o

! nin-1y m ni{n-1}
G
a b

or

or

or

2)
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Example 6.10 Show that the portion of the tangent at any point on the curve
28 4+ yw =g intercepted between the axes is of constant length.

Solution Let the tangent to the curve at P meets the coordinates axes at
A and B such that AB is the portion of the tangent intercepted between the axes
(Fig. 6.10).

YA
©, a%'%) B
P(x, ¥)
o} >
A(a®x13, 0) X

Fig. 6.10 Solution to Example 6.10.

Now the equation of the tangent to the curve at P(x, y) is
(X=xf, +(¥ =)f, =0

or
X -02x + (7 -2y =0
3 3
or
X-x)xB 4y -yy=0
or

X 4 Yy-lﬂ =P 4 ym =g
Since the tangent passes through A, i.e. y-coordinate is 0, we get,

X = or X =2z a0,
X

Hence the coordinates of A are (g*”x'?,0).
Similarly, we have X = 0, at B on y-axis. Therefore,
BB =g or Y¥=aPy
Hence the coordinates of B are (0, a*y'?).
Now
AB? = (@2 4 (—a?y'By?
= g% 4 g2y
=B 4 ym)
= 3,28

=a2.

Thus AB = a = constant.
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Example 6.1 Show that in the curve X™" = @™ "y the mth power of the
subtangent varies as the nth power of the subnormal.

Solution We have

Subtangent = Y and subnormal = Wi
N

According to the question

(Subtangent)™ = (Subnormal)"

or
S m
(Subtangent) = constant
(Subnormal)”
or
.‘f m
% = constant
Om)
or
ym_ﬂ
man - constant. 1)

Now the equation to the curve is x™" = a™"y?", Taking logarithm both the sides
(m+n) logx = (m — n) log a + 2n log y. Differentiating with respect to x, we
get
m+n

"

1 1
+n)—=2n— =
(m n)x nyy, or y

" =

Now,
=i

y

1'"_”]"'"'
x 2n

m-=n__m+n

=2 X

- m+n(m +n .
y 2n

m+n
n

LHS of (1) =

X

3,,(m + n]"”
Y 2

= constant

Thus LHS = RHS.



212 Textbook of Differential Calculus

Example 6.12 In the catenary
¥y =ccosh 2
c

show that the length of the perpendicular from the foot of the ordinate on the
tangent is of constant length.

Solution Let PT be the tangent to the curve at P and MN be perpendicular
from M, the foot of the ordinate on the tangent (Fig. 6.11). We have to prove
that MN = constant.

P(x, y)

0 M T » X

Fig. 6,11 Solution to Example 6.12.

Now the equation to the tangent at P(x, ¥) is

dy
Y—y=—(X —
¥ [( x)

or

dy dy
XZ-v+|y-x=|=0 M
s [" xdx)
Therefore,
MN = Length of the perpendicular from M(x, 0) to the tangent.
_ X(dyldx) + y — x(dyldx)

1+ (dyldx)?
_ ¥

"+ (dyldx)? (2

Here the curve is

y=|:'ooshi
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Then
a_ c[sinh EJL =sinhZ
dx cje c

Putting this value in (2), we get

MN = y _¢ cosh (x/c)
J+sinh?(xlc)  cosh(xic)

= ¢ =conslant,

Example 6.13 Prove that the sum of the intercepts of the tangent to the curve

e f5=va

upon the coordinate axes is constant.

Solution Let the tangent to the curve at P meets the coordinate axes at A
and B, respectively. Thus OA and OB are the intercepts of the tangent upon
the axes. We have to prove that OA + OB = constant. Equation of the tangent
at P is

X-x)f, +(¥-»f, =0
or

(x- x)%x'm +(¥ - y)%y‘”z =0

1 1 2
fx =3 Iy =5
Then, we have
X2y Yy'm = J; +J; =~G.

Now, the point A is the intersection of the tangent and the axis of x. That is,

Xx 4+yy" =Ja and ¥=0
Therefore,

XM =Ja o X=Vax
Hence coordinates of A are (Va¥x,0).
Similarly, point B is the intersection of the tangent and the y-axis. Then

X2y pyi2 =Ja or X=0.
Therefore,

W' =ya or Y=J;J;.
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Hence coordinates of B are (0,VaVy). Now

OA+0OB= \GJ; + J;J; = JE(J;+J;) =J£_I'J£_!= a (aconstant).
Example 6.14 In the curve
y =acoshﬁ,
a

prove that the length of the portion of the normal intercepted between the curve
and the x-axis, varies as y°.

Solution Here

y=acnsh—{.
a
Then
dy Lox) L x
—=a| sinh — |—=sinh—.
dx [ a]a ' a
Now

Length of the normal = y,f1 + y7

=y"l +sinh?Z
a

=y u:osh—}‘i
a
y
=y-..
a

Example 6.15 Find the condition that the conics ax® + by’ = 1 and a;® + byy* = 1
shall cut orthogonally.

Solution Let the equations of conics are
fx,y)=a + by’ -1=0 1)
and
Flx,y) = .rqxz + b|)72 -1=0 (2)
Since the two curves are orthogonal,

fiFy + f,Fy =0,

(2ax) (2arx) + 2by)(2by) = 0

or

or
aa i + bby? = 0 3)
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Now eliminating x and y among (1), (2) and (3), we have

aay bb, 0
a b 1|=0
a b 1
or
aay(b—b)=bb(aq—a)=0
or

aba; - aa\b, — a\bb; + abb, =0.

Dividing by aa;bb,, we get

This is the required condition.

Example 6.16 Show that the part of the tangent to xy = ¢? included between the
coordinate axes is bisected at the point of tangency.

Solution The equation of the curve is

o= o))
Differentiating with respect to x, we get

_ 2

dr x
The equation of the tangent to (1) at (x, ¥}, is

Y-y= —Z(X -x) or 1+1=L
x 2x 2y

This tangent makes intercepts 2x and 2y on the axes of x and y, that is, the
tangent meets the axes of x and y at points (2x, 0) and (0, 2y), whose middle point
is (x, ), the point of contact of the tangent.

Example 6.17 Prove that
i + Z =1
a b

—xla

touches the curve y = be™ at the point, where the curve crosses the axis of y.

Solution Here the equation of y-axis is x = 0. The point at which the
curve crosses the axis of y is (0, 5). Now the equation of the tangent at (0, b) to
the curve is

r—y=(X-x)%.
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where y=b,x=0. Aty=b,x=0,
d)’ 29""“:2_

E T a a
The equation of the tangent becomes

Y —b=(x-u)(-§)

or

or

2|

Y
+-=1.
b

If we take (x, ¥) instead of (X, ¥) for the current coordinates on the tangent, the
equation becomes

o
a b

Example 6.18 Find the equation of the normal to the curve x*? + y*° = ¢*?
which makes an angle p with the x-axis.

Solution Let x = a cos’@and y = a sin®6, then

& =-3acos’@singd and iy_ =3asin’@ cosf.
do de

Therefore,
.2
ﬂzn‘y‘dﬂ___ 3asin“8cos @ - —tand.
dx  dddf —3acos’@sind
or
dx x
—=cot@#=tan| — -8
F [2 )
or

T dx
f=—=—|as——=tan
2 "”( dy “']
The equation of the normal at P(a cos*6, a sin*8) is

y - asin’@ = cotf (x - a cos’6)
ar
y sinf - a sin*@ = x cos 8- a cos*@
or
x cos 8 — y sin 8= a(cos'd — sin'6) = a cos28
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or

xms[g— )—ysin(g— w]:aoosZ[Jrﬂ -y)
or
=xsiniy + y cosy = acos2y.
Example 6.19 Prove that the tangent to any point of the curve
x=alt +sintcots), y=a(l +sins)P
makes an angle with x-axis.

Solution Here x = a(t + sint cos ). Then
%:a(l +cos2r) and y=a(l+sinr)?
and
dy . .
E=Zacosr(l +sinf) =a(2cost +sin2t)

Therefore,
dy dyldt a(2cost +sin2r)

dx dddt  a(l+cos2t)

_L+sint _ cos(#/2) +sin(#2)
cost  cos(t/2) —sin(i/2)

_ l+man(y2)
1—tan(1/2)

T ot
=lan| = +—
(5+3)

1 r t 1
= tan— 0 =—t+—=—(T+2).
tan tan4(:r+r) Tow i) 4( )

Then

Example 6.20 Prove that the normal at any point of the curve
x = a(cosd + @ sind), vy = a(sin & - & cosé)
is at a constant distance from the origin.

Solution Here

%:—asin6+asin6+a6cm6=a6cosﬂ

dy

-{Té=-acosﬂ—am56+asin9=a6‘sin6
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Then
dy dyld§ aflsind _
&~ ddad " adooss Y
Now
Slope of the normal = %=—:?:3

The equation of the normal at & is

cos @
sin#

y - (asin8 - af cosf) = ——— (x — acos§ - afsin §)

or
ysing — a sin*8 + @sin cos@ = —x cosd + a cos’*d + ab sin@cosd.
Therefore, the equation of the normal is x cos@ + ysind-a = 0.

Example 6.21 Show that the curves °- 3xy2+ 2=0and 311)' - y’ —2=0cut
orthogonally.

Solution Let P(x,, y,) be the point of intersection of the given curves.
Differentiating X =307+ 2 =0 with respect to x, we get

dy dy_x* -y
3 -3y —6xy===0 or ==
™ a 2x
Then
22
m =(£) .t 1
dx ), n 2y
Also, differentiating 3x%y — ¥° - 2 = 0 with respect to x, we obtain
2dy ., ady dy _ 2xy
6xy+3x"—=3y"—=0 or ==
DR @ A 2y
Then
d)’] 2xy
m2 :[— I —
dx £ 113 _ylz
Thus

mym, =-1
which shows the given curves cut orthogonally.

Example 6.22 Prove the following:

(a) The subtangent on x"y" = a™"" varies as the abscissa.
(b) The subtangent on y = ae™ ™™ varies inversely as abscissa,
(c) The sum of the tangent and subtangent on y = a log (x* - @°) varies

as the product of the coordinates.
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or

X + Y _
3x? L + L 2ay L + L
3x 2a 3x 2a

If it cuts off equal intercepts from the coordinate axes, we have

of 1 1) [1 1]
—+—|=2ay| —+—|-
3 [3; 2a ad 3x 2a

Then
= 2ay and x= —2?‘7,
Since the normal passess through the origin, the equation becomes
X Y
F + E =0.

The intercept being equal to zero on 3x* = 2ay. But

232
a’=x" or x3=a[3i]
2a

Then 4a*x” = 9ax* gives either x = 0, or x = 4a/9. But, when x = 0, y = 0, the
normal passes through the origin (0, 0). Hence the required abscissa is 4a/9.
Example 6.25 Show that the normal to the parabola y* = 4ax touches the curve
27ay* = 4(x - 2a)’.
Solution Given the equation of the parabola is
¥ = dax (1)
Dilferentiating, we get
dy _da o &x_y
de 2y dy 2a
At any point (af%, 2at) on the parabola (1), we have
&y =,
dv 2a 2a ’

The equation of the normal to (1), at (ar*, 2ar) is

dx
Y-J'+(X—x)d—y=0 or  y+ix=2at+af’ ()
Any point on the curve
27ay* = 4(x — 2a)’ 3)
is x = 2a + 3am®, y = 2am’. Therefore,
ﬁ=6¢m1, = = 6am?®
dm
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Example 6.30 For the ellipse
£ .y
—+==1
a b
show that

;%: a\jl e sin"gﬂ
where x = a sing.

Solution We have

: 2
Xy
—fi—=] 1
and
x =a sing 2)
Then
2.2 2
a’sin‘g y _
g +b_2_l or y=b cosg (3)

Differentiating (2) and (3), we get
dx = a cosg dg and dy = —b sing d¢.
Therefore,
(ds)* = (dy)’ + (dx)* = b? sin’¢ (d¢)* + a’cos’f (dg)
or
[ﬁJz = b’ sin’p + a® cos’¢.
d¢

We know that the equation of the ellipse, * = a*(1 - ¢°). Then

2
{%) =a*(l-¢e) sin’gﬂ +a chzgé

=a*(sin’@ — e sin’ ¢ + cos’p)
=a*(1-e’sin’g)
or

& _ ayl - €*sin’¢p

dg
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L

5.

10.

11.

Exercises 6.1

Find the tangent and the normal to the curve y(x = 2)(x = 3) -x+ 7 =0
at the point where it cuts the axis.

Find the equations of the tangents and normals at the point (x, y) on each
of the following curves:

HxP+yP=a® (i) +y - 3axy=0 (i) x"a" +y"Ib" =1.
Find the equation to the tangent and normal at the point &= 272 to the curve
x = al(@ - sind, y = a(l - cosé).

Find the equation of the normal to the curve xy = (a + .!4:)2 which makes
equal intercepts on the coordinate axes.

If the line x cosa + y sin @ = p touches the curve

prove that

mf{m=1)

(acosa)™ ™ 4 (b sina)"" D = p
Find the condition that the line x cos @ + y sin @ = p may touch the curve
Xyt = a™",
For the curve x = a(@ + sinf), y = a(l - cosé), prove that
1 ds g
==¢ and — =2acos—.
v=2°"" 28 2
Show that the normal to the ellipse

2 2

+==1

!:N| b
=4

touches the curve (ax)*? +(by)*" = (a® - b*)*".
If the tangent at (x;, y)), to the curve x* + y* = @® meets the curve again in
(xs, 2), prove that

2.1.&.—_1
N

Prove that the tangent to the curve 4+ yJ — 3axy = 0 is parallel to the
x-axis at the point, where it meets the parabola x* = ay.

Prove that the tangent to the curve ax® + 2hxy + by* = 1 is perpendicular
to the x-axis at points, where the line hx + by = 0 intersects the curve.
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3s.
36.

37

38,

39.

40.

41.

42.
43,

45,

46.

47.

Prove that in an ellipse the subnormal varies as the abscissa.

Find the length of tangent, normal, subtangent and subnormal at the point
@ of the curve x = a cos’8, y = a sin’8.

Prove that the subnormal at any point of the curve x%* = a*(x* — a°) varies
inversely as the cube of its abscissa.

Find the condition that the tangent at any two points P, Q on the curve
x=a(f-sin &, y = a(l — cos @) are at right angle.

Find the portion of the normal intercepted between x-axis and the curve
x=a(@-sind, y = a(l - cosé).

Find the condition that the normal at point P(x, y) to the curve meets the
x-axis al

x=12"i(sinhocosh 8+6), y=acosh®6.

Prove that for the ellipse:

=]

+==1
b

length of normal varies as the perpendicular from the origin on tangent.

)’2
2

nnl E

Show that the curves ¥2 = 2x and 2xy = k cut at right angle, if ¥=8

Prove that the portion of the tangent to the curve:

a ¥y
intercepted between the point of contact and the x-axis is constant.

Find the equation of the tangent to the curve y* = 4x + 5 which is parallel
to the line y = 2x + L.

If x = a cos’8, y = a sin’6, the tangents meet the axis at A and B. Find the
locus of Q(OA, OB).

Find the tangent and the normal on
2ar® ye 2ar®
14227 7 1+
Find the tangent and the normal when

1
x= whent=—.
2

x=2acos@-acos28, y=2asin@-asin2f at 8=g-

Find the tangent and the normal on

(12+y2)x—a(12—y2)=0 at .r=_5ﬁ.
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Let P(r, 6) be any point on the curve r = f(8) and Q(r + &, 8+ 56) be any
other point on the same curve very near to P (Fig. 6.14). Let PQ be the secant
through PQ and PT, a tangent at P. Draw PN perpendicular to 0Q.

Q(r + 6r, 6 + 66

Fig. 6.14 Angle between radius vector and tangent.

Now £ZPOT = @ and £QOT = 8+ 68 such that ZQOP = &6. Again PN =
r sin 66, ON = r cos 86. Let ZOPT = ¢. From right-angled triangle APQN,

PN
tan PQN-N—Q
__PN
T 00-0N
_ r sin 68
T (r+8r)-rcosdd
a rsind@
" Hl-cosd6) + I

_ rsindg@
T 2rsin®(66/2) + or
sin &9
- 58
2,[“_'%@ % or
0612 4 69

r

Now in the limit when @ — P, 6 — 0 and the secant PQ becomes the
tangent at P and hence £LPQN = £LOPT = ¢. Therefore,

rsind@
tan g = lim 9 _ S O —
&0 5 sin(8012) | o6, or (D) 0)+dride ~ dr
daerz | 4 &
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Again since

cosec’@=1+cot’g=1+ [li)z
rdé

ds 2 er 2 _ a2 2
E= L E or ds' =r'd@ +dr*.

Perpendicular from pole to tangent

Let ON = p be the length of the perpendicular from the pole O to the tangent PT
to the curve r = f(6) at any point P (Fig. 6.15). Then from right-angled triangle
ONP,

. ON .
sin tﬁ—E—: or p=rsing (6.12)

Now

2
=i=+i(ﬁ] (6.13)
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The symbol u is generally used to denote 1/r, that is,
1 du 1 dr

r’ d_a_ r de
ar

Hence from Eq. (6.13)

1, (d«}z
—=u+ .
p dé
Angle of intersection of two curves (in polar form)

Let the two curves r = f(6), and r = ¢(6) intersect at P and let PT,, PT, be the
tangents at P to the curves (Fig. 6.16). Let

LOPT, = ¢, and LOPT; = ¢,

r=f6
r=g6)

X
o \r
Fig. 6.16 Angle of intersection of two curves (in polar form).

Also, let @ (=@, — @) be the angle between the curves such that ZT\PT, = a.
Therefore,

= _g)=tang —tng,
ana=tan(g -4 1+tan ¢ tang,
But
_,d6__r _ f@
= T aide £(6)
and

tan ¢, =rd—8'=;=¢,(—6)
dr drld@ ¢(6)
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Therefore,

[0 _#0)
_ 1O _¢® _ 090 -487'0)
1+ 110 96) (OO + f(O)6)

F® ¢

tan o

Corollary 1If fp + f'¢' = 0, therelore @ = 42 and the two carves instersect
orthogonally, i.e. at right angles.

6.7 Polar Subtangent and Polar Subnormal

Let P(r, 6 be any point on the curve r = f{#). Refer to Fig. 6.17. Draw TON
perpendicular to the radius vector OP. Let tangent and normal to the curve at P
intersect TON at T, N, respectively. Then OT and ON are called polar subtangent
and polar subnormal to the curve at P,

N

Fig. 6.17 Polar subtangent and polar subnormal.

Since ZTPN = ZPON = % and ZOPT = ZONP = ¢,

from triangles OPT and OPN, we get

OT =rtan ¢=rﬂ and ON=rcotg=r dr .

dr rdé

Therefore,
Polar subtangent, OT =2 40 and Polar subnormal, ON o, .

dr de

Corollary Since
or-on=r984 _
dr d
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Let p be the length of the perpendicular from the origin to the tangent
(6.14), then

o= e +¥fe 615
3ﬁ+ﬁ '
Also
rF=xt+y (6.16)
and
flx,»=0. 6.17)

Eliminating x and y from Egs. (6.15)-(6.17), the required pedal equation is
obtained.

Pedal equation deduced from polar equation

Let the equation be f(r, & = 0. Let the pole be taken at the point with regard to
which it is required to find the pedal equation of the curve.

If p be the length of the perpendicular draw from the pole to the tangent
at (r, & to the curve, then

p=rsin ¢ (6.18)

d6
tan ¢—r; (6.19)
firr®=0 (6.20)

If we eliminate & and ¢ from Eqs. (6.18)—(6.20), we get the required pedal
equation, i.e. relation between p and r.

Example 6.31 Find the pedal equation of the curve r = ge®™'2,

Solution Here the given curve is
r = ae®™e (N

Differentiating with respect to 8, we get

%:ae"“"“cma:ﬁ
We know that
mn¢=r£= r =rma=tana.
dr  drld@ r

Therefore, ¢ = & We also know that p = r sin ¢. Hence p = r sin &
This is the required pedal equation.

Example 6.32 Show that for the curve r = a¥ the polar-subtangent and the polar
subnormal have constant ratio.
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Solution Here the given equation is r = a® or r = ¢%°%%, Then

% =e?*5% loga=rloga

Therefore,

Polar subtangent _ r*(d6/dr)
Polar subnormal drld®@

r!

= dridoy

2
r

" Ploga)®
-1
"~ (loga)’®

= Constant.

Example 6.33 Prove that the polar subtangent for the cardiode r = a(l — cosé)
is

2asin*(6/2)
cos(6/2)
Solution Here
Polar subtangent = r 46
dr
Then
2
=4 (Zsinz 2) =4a’sin* 2
2 2
Therefore

4d’sin*(8/2)  _ 2asin’(6/2)

Polar subtangent =—— =
2a sin{(6/2)cos(6/2) cos 812

Example 6.34 Find the angle of intersection of the curves:
r=a(l+cosd), r=>5b(1-cosb).

Solution The first curve is r = a(1 + cos 6. Then

i=-¢'.rsin19
de
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Then

st |since =2
=r*sin 5 [smcc ¢= > from (l)]

Example 6.37 For the parabola 2a/r =1—cos#, prove the following results:

W8 Lo a Lo oa
i ¢=n 2" (n}P——Sin(‘m)' (iii) p* = ar,

(iv) polar subtangent = 2a cosec 6.

Solution We know that
p=rsing, mn¢=r§£.
dr

Now,

Differentiating, we gel

2a(—%)£= sin#=2 sinE cosg
10 2 2

r £
Therefore,
tanei:rd—: 4 A
dr  sin®(612) r*sin(8/2) cos(8/2)
_a  sin'(8/2) -a
Tsin2(82) & sin(6/2)cos(6/2)
]
=—tan—
2
(=-3)
=tan| r—=
2
Then
S
p=m-3 m

From (1), we get

—rsinﬁ—rsin(ﬂ'—gj- a sin(!r—g]—-—-f—-——
P " 2) sin’6 2) sin(612)
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Example 6.39 Find the pedal equation of ¥ = a™ cos m#.

Solution Taking log both sides, we get, m log r = m log a + log cos mé.
Differentiating both sides with respect to 8, we get

mdr  sin mgm
r dé cosm8@
or
%j—;:—tanm&?
or
i3
cot ¢=—tan m6=cot(5+m9)
Then
[
==+mb.
¢ 2 tm
Now

. e r"
p=rsing=rsin| —+mb |=rcosmf=r—
2 a”

Hence the required pedal equation is

+1
rm

p=—.
a

Example 6.40 Show that the pedal equation of the ellipse

P
with respect 10 ils centre is

1 11
AT

p-a
Solution The equation of the ellipse
.
L
—_t—==1 1
a b ®
From the coordinate geometry, the equation of the tangent at (x, y) is
Xx ¥y
—_—=]
& b
Now the length of the perpendicular on the tangent from the centre (0, 0) is
1 1 X )
pEEm————— ol —=5+5 )]
Jola®y + (5ib*y: p°a b
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Also,
P=x+y 3)
Eliminating x% and »* from (1), (2) and (3), we get
va® 1Bt 1 a B P
va* 16 1p=0 or &t b Fpi=0
1 1 2 11 1

Solving, we get

Therefore,

2 =_2+b_2 '
which is the required pedal equation.
Example 6.41 Find the pedal equation of the parabola y* = dax with regard to
its focus.

Solution Here the equation of the parabola by? = 4ax. The focus of the
parabola is (a, 0). So, transfer the origin (0, 0) to the focus (a, 0). Therefore, the
equation to the parabola becomes

O+al=4dakx+a) or y*=dax+ 4a* (1

By the coordinate geometry, the equation of the tangent to the parabola (1) at the
point (x, y) is
Yy = 2a(X + x) + 4a*

or

2aX - yY + 4a® + 2ax = 0.
Now, from (1), the length of the perpendicular (p) from origin upon the tangent
is

_4a® +2ax __ 4a’ +2ax
\(4a2 +y \/4a2 +dax + 4’

or
29( 2a+x) J_
,}Za +x
1,‘4a(2a +x)
or

p* =a(2a+x)* (2
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7. Show that the curves " = a"sec (n@+ &) and 7* = b" sec (n8 + f) intersect
at an angle which is independent of @ and b.

8. Show that the pedal equation of the parabola y* = 4a(x + a) is p® = ar.

9. Show that the pedal equation of x = ae%(sinf - cos & and y = ae%sin@
+ cos8) is r =(V2)p

10. Obtain the pedal equation of ¥ - y* = .

11. Show that:

(i) Pedal equation of 7 cos 20 = a® is pr = a’.
(ii) Pedal equation of r* = cos 28 is r = a’p.
(iii) Pedal equation of r = a(l + cosé) is r* = 2ap”.

12. In the equiangular spiral r = ae®*®%, prove that dr/ds = cosa.
13. For the curve r = a(l + cos &), prove that p = 2a cos*(@2).

14
15. Show that the pedal equation of astroid x*'* +y* =a®? is 2 + 3p* = .

Obtain the pedal equation of the circle £ + y* = 2ax.

16. Find the pedal equation of the curve /fr = 1 + e cos 8.

17. Prove that the pedal equation of the curve 2a = r(1 + cos 6) is p* = ar.
18. Prove that the pedal equation of the curve ' = a" sinn8 is p = r™*!/a".
19. Prove that the pedal equation of the curve r sinné = a is

.

p= ar
a’ +Jr12(r2 —az)
20. For the curve

r cos———— ks \fa -,
show that
= .
P—m

21. Prove that # = & ~ 3p2 is the pedal equation of the curve: x = a cos
y = a sin’t.

31‘

22. Prove that the pedal equation of the rectangular hyperbola x* - y? = a? is
pr=a-.

23. If ¢ be the angle, which the tangent to a curve makes with the radius vector
drawn from the origin, prove that

x(dyldx) - y

= i)
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24, Show that:
(i) Pedal equation of r(l +sin€)’ =aisar’ =4p.
(ii) Pedal equation of " = " sin m@ + b™ cos m@is r™' = pyJa®™ +b™".
(iii) Pedal equation of r = a sech n@is-L- =4 + B, where A and B are
P r
constants.

25, For any curve, prove that:
2

Lods 1t oo ds
(i) daﬂp' (ii) e

26. For the involute of a circle

r
[ e !

prove that cos ¢ = alr.



Chapter 7

Curvature

7.1 TIntroduction

A curve is that which changes its direction at each point and as such the tangent
goes on changing as ‘¢ point moves on the curve. The rate of change in the
direction of tangent is different for different curves. The special feature of any
curve is called bending or curvarure. In mathemaiic., when we use the word
‘curvature’ it also means ‘bend’.

Let us take two curves *2 and CD (Fig. 7.1). It is obvious that the curve
AB has a larger bend of the } . P, whereas the curve CD has the least bend at

D
B

A

C
Fig. 7.1 Two curves with different bendings or curvatures.

the point Q. It means the rate of change of the tangent at P is large compared to
that at the point Q. Thus bend is determined by the rate of change in direction
of the tangent. When we say the curvature of any curve it means a point on the
curve. How to measure the curvature of a curve at a given point. For that the
measurement of curvature at any point on a curve taking into account its length
and the direction of the tangent. The basic formula depends upon the intrinsic
equation of a curve and all the other formulae are derived from it.

Let P be any point on the curve and Q, R be the other poinis very near to
P (Fig. 7.2). Thus we can draw one and only circle through these three points P,
Q. R. Now, we tend the points Q and R to coincide at P. We have a limiting

248
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Fig. 7.2 Curvature at a point of a curve.

position of the circle PQR. This circle is called the circle of curvature. When
Q, R — Py, the limiting position of the circle PQR is called the point of curvature.
The centre of this circle is called centre of curvature and its radius is called
radius of curvature. The chord drawn inside the circle of curvature through P is
called the chord of curvature.

7.2 Average Curvature

Let P be any point on the curve and Q be any other point on the same curve
which is very near to P (Fig. 7.3). Let A be the fixed point on the curve such that
the arc AP = s and the arc AQ = 5 + & then the curve PQ = &. Let PT and QN

Fig. 7.3 Average curvature.

be the tangents to the curve P and Q respectively such that ZPTN = yand LONX
= w+ 0. Then £ZTRN = ZQRL = 8y. Hence Sy is the change in the inclination
of the tangent line as the point of contact of the tangent line describes the arc PQ.
Thus the angle ZRTQ = Sy is called the angle of contingence of the arc PQ.
Hence the angle of contingence of any arc is the difference of the angles which
the tangents at its extremities make with any given fixed straight line, generally
x-axis. That is, it measures the change in the direction of the tangent when the
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point moves on the curve through an arc length Js. It is clear that the whole
bending of the curvature which the curve undergoes between P and Q is greater
or less according as the angle of contingence RTQ is greater or less.
The fraction,
Angle of contingency
Arc length
is called average curvature or average bending of the arc. Thus
Sy
Average curvature of the arc PQ = T
H
The limiting value of the average curvature, when Q — P along the curve, & =0,
ie: lim;_,, — 0 JSyfds is called the curvature at P and denoted by K. The
curvature K at a point P, whose distance from a fixed point on the curve is 5 and
the inclination of the tangent at P makes an angle i with the positive direction
of the x-axis, is
fi=0 §y ds

Hence the curvature at a point is the arc-rate of the turning of the tangent at the
point. The sign of the curvature K is positive if y increases as s increases and it
is negative if y decreases as s decreases. Though the curvature can be positive
or negative it indicates the absolute value of K, i.e. curvature

dy
ds

K=

7.3 Intrinsic Equation of a Curve

Suppose any curve AP is given on a plane. Let its tangent at A be parallel to OX,
or the initial line (Fig. 7.4). Draw a tangent at P to meet OX at T making
ZXTP = y. Let AP = 5, the arc length of AP of the curve. (s, i) be the position

AP

Fig. 7.4 [Intrinsic equation of a curve.
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of P on the curve, and /s is called the average rate of curvature of the curve
along AP. As s and y vary, the coordinate (s, i) is the position of different points
on the curve uniquely. The coordinates of o is (0, 0) and any functional relation
s = fly) is called intrinsic equation of the curve.

If y = f{x) be the equation of any curve, its intrinsic equation is obtained
by eliminating x between

?:ianw:f’(x) and jx—jz,fhf'(x)z.
X

A list of intrinsic equations of some useful curves is given below:

(i) Circle: s = ay,
(ii) Catenary: 5 = ¢ tan and 5 = log (secy + tany),
(iii) Cycloid: s = 4a siny,
(iv) Tractrix: s = ¢ log sec x,
(v) Cardiod: s = 4a(l + cos y2) = 8a sin® 6,
(vi) Equiangular spiral: 5 = a(e™ - 1).

7.4 Geometrical Representation of Curvature

Theorem 7.1 If the normals at two consecutive points P and Q on a curve
intersect at N, then the radius of curvature p of the curve at P is given by
p= g_rg PN.
Proof Let the tangents at two consecutive points P(s,y) and Q(s + ds,

¥+ 8y intersect at L. Then £QLR = &y and arc PQ = & (Fig. 7.5). Since
normals at P and Q intersect at N,

Fig. 7.5 Geometrical representation of curvature.
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ZNQL = ZNPL = % and ZPNQ = oy
Also,
F 4
2PQN =7~ ZPQL

Hence from APNQ,

PQ _ PN _ PN __ PN
sindy  sinZPQN  sin(m/2- £PQL) cos ZPQL

Therefore,
_PQcos£ZPQL
sindy
Now, when Q — P, dy — 0, ZPQL — 0 and the chord PQ — &. Hence
Q — P implies d — 0. Therefore,

PN

lim PN PO c‘os £PQL
sindy

= lim
B-rp Sy -0

_ .. Os by
h—}:r-lli Sy sindy cos 2PQL

= ;;—( {1)cos0
=

As Q — P, N shifted towards the centre of curvature C on the normal PN till it
coincides with C, and the limit PN — PC = p.

7.5 Circle of Curvature

The radius of any circle is its radius of curvatures, too. Let C be the centre and
CA = CP = a is the radius of any circle (Fig. 7.6).

Fig. 7.6 Circle of curvature.
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Note: If at any point, y becomes infinite, the above formula is not applicable and
in that case, we consider the equation of the curve as x = F(y).

(b) Let the curve be x = F(y). If the tangent to the curve at the point
(x, y) makes an angle y with the axis of x, then

dx
—_— =0t W

dy

Differentiating with respect to y, we get

1,
d——-cosec wdl
dy’ dy
dy ds
cosecwd‘dy
=—cosec2wlcnsecw [as&=sinw].
p ds
Therefore,
,,=_M or p:—w
P %2
But
cosecl =+l +cot’ i = 1+[ ] =l1+x
Then
TP
=—m. where x, # 0.
x

Here suffixes denote differentiation with respect to y.

Example 7.1 Find the radius of curvature for the catenary y = ¢ cosh (x/c).

Solution Differentiating with respect to x, we get
% = e[sinhf]%: sinhf
Differentiating with respect to x

2
d_f=(cosh£]l
dx cjec
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Then

N
P-4
(1+yf 2 [1+smh ;)
p = =
Yz loosh_{
c c

x A
¢| cosh?= ccosh?>
c _ C

X X
cosh= cosh=
(4 [

2

X
ccosh?E =2
¢ ¢

Example 7.2 Find the radius of curvature at the point (x, y) of the parabola
2= 4ay.

Solution The equation of the parabola x* = 4ay can be rewritten as
x= 2\1(ay}‘ Differentiating it with respect to y, we get

L o dx_Va
dy 2y d Jy
Again differentiating, we get
d'x _ 1 Ja
& T
‘We have
2
p_[1+(drfdy)’]) L M+@? 2Ay+a)™?
d*xidy’ (~112)Waly®?) Ja

taking its absolute value.

Corollary  Since

Differentiating with respect to s, we get

. dy d'x
d - av_ex
an siny T

dy _dy
cosyr ds  ds*

Therefore,

g ds ds dy  ds® dx
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Also, squaring and adding, we get

2 2 2
dy Y . d'y d*x
[I] (WS’W“'“’“’):[F &

A (@) (&Y
i 2 2|
o | ds ds

The above two formulae are useful when equation of any curve be available as
functions of s, x,

or

Implicit form

T\ the equation of the curve be flx, y) = 0. We have

%*J{—: or fﬂ‘f;%“’ (1.1)

Differentiating with respect to x, we get
4 2
:‘.:.fi. + ﬁ.’.g.}.' + f’ -‘i—gt =0
dx  dx dx dx
or

U oy (% vy Ay
[ax+3yde+[ax+ayd.r it

Assuming that f,, = f,, and using (7.1), we get

AN AN
f”+2fn[—F]+f”{ fy] +f’d.x’ 0

r

or
dl)"_ fnf: ‘_zfxfxfn +f)'rfxz
e 7 (7.2)
‘We know that
1+ @y T [1+ 10"
e (fuf] -2 L0+ DI
Then
(f= +f! }111
P ——

PRI TN
taking the absolute value and f_ f: =2fffo+ 1, fiz0.
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Parametric form

Let the equation of the curve be x = f(1), y = ¢(1). Then

dx delde (1)

d’y _d{dy)_d(dy\dt
F‘E[E]‘E[EJZ
_d{¢n] 1
S0 m-¢wfm 1
[Fof r®

and

If we put f'(t)=x",¢’(t) = y', ... then

But the formula,

R R N o

d*yldy* " = yx") i x" x* xy" - yx

_ (1’3 + yQ)NZ
Xy =y’
where the denominator # 0.
Example 7.3 Find the radius of curvature for the circle: x = r cos 8, y = r sin 8.
Solution Here x = r cos 8, and y = r sin 8 Differentiating, we get
X=-rsinf, y =rcosé

x" = —r cos 8, ¥ = —r sin &

‘We also have
p= (x* 4+ ¥ (P sin’@ +rfcos’@)"? r'(sin@ +cos’8) .
Xy = vx" r(sin’8 +cos’@) r

Polar form

Let the equation of a curve be in polar form, r = f{6). We know that

ds _ds df
=== 7.3
dy  do dy @3
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Differentiating with respect to p, we get

2
2o Lpdy _, dr

dydy’dp  dp’
or ,
d°p _ dr _
A valomald
or
d*p
=p+—t.
g=p dw;

Corollary From Eq. (7.4) it can be easily seen that the projection of the radius
vector on the tangent = r cos¢ = dp/dy. Hence, geometrically, dp/dy represents
the projection of the radius vector on the tangent.

Theorem 7.2 For any curve, prove that the formula:
p=+ or sing 1+Q =L
sing(1 + d¢/d@) dé | p
Proof We have

smeﬁ(H{m) smcﬁ+sm¢d€
= 88, d0d¢
ds ds do

=,(£+ﬂ]
s ds

d
=r—(f+¢
rE( )

Example 7.4 Prove that the radius of curvature of hypocycloids, p = A sin By,
varies as p.

Solution We have p = A sin By Differentiating with respect to ¥, we get

g%:ﬂﬂ’ccs By

Again differentiating, we get
d*p

=~ AR sin By = B*p.
dw: W p
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Now,

_ (1 + },1}3!3
Y2

p

Putting the values of y; and y; from (1) and (2), we have p = 3(a.ty)"".

Example 7.7 Show that the radius of curvature at a point (a cos’6, a sin*6) on
the curve x** + y** = a® is 3a sing cosé.

Solution Proceeding as in Example 7.6, we find its radius of curvature at
any point (x, y) as o = 3(axy)"”. Here putling x = a cos’@ and y = a sin*8, we get
p =[a(acos® Ma(sin’ )] = 3a sinfcosb.

Example 7.8 Find the radius of curvature of the curve: x = a(@ + sin6),
y = a(l - cos&) at the point §= 0.

Solution Since x = a (&+ sin & and y = a(l — cos &), we get on differentiation

dy

%:a(l-}-m&@) and E:asin@.

Now,
s _dido
dy dody M
where
2 2
O _ &) (L -—-Ja’(l+cosl9}’ + a* cos’6
de dé da
= a,,‘?(l + cosf)
7]
=2a -_—
cos>
with
dy _dydé _ _ asinf ]
dx df dx a(l +cosd) 2
Therefore,

a 2]
tany =tan— or ==,
v 2 4 2
Differentiating with respect to 6, we get

dy 1

dg 2’



Curvatre 263

Putting the values of ds/d@ and dydd@ in (1), we have
p:(Zacos—q]2=4acos-q.
2 2

At 8=0, p=4acos 0 =4da.
Alternative method: We have x = a(8 + siné), ¥ = a(l - cos#). Then

d}"

dx
— =gl + , ——=asi
76 a(l + cos 6) 20 asin @

Since,
Q _dyld6 _ +asin@ _ 2sin(6/2)cos(6/2) _ tan g
dv dy/df a(l+cos@) 2cos*(6/2) 2
Ay U 20)d0 _1f .0) 1 1 1
de 2 2)dx 2 2}a(l+ccsﬂ) 4a cos* (8/2)
We get
S 212 2 32
=[1+(a;;1dx1) ] =[1+1:m (6:2)] 24“05_8.
dyldx 1/(4a) cos™ (6/2) 2

Note: Radius of curvature of all the parametric curves with the same constant,
can be found in a similar manner.

Example 7.9 For the curve 7' = 4" cos n#é, show that the radius of curvature
varies inversely as the (n — 1)th power of the radius vector.

Solution Here ' = a" cos n#, taking log both sides, we getnlog r=n
log @ + log cos né. Differentiating with respect to 8, we have

1dr -nsinng n
n=—=—— or --=-=lannf (n
rdf  cosnf r
Therefore,
2
“{r_,] =1+tan’(ng) or r* +r! =r* sec*(ng) @
r
Differentiating again, we get
BN e (n)
r
or
re, — r.1 = —n*r? sec’(n). (3

From (2} and (3),
™+ 21 = rr, = (L+ m)r* sec* (n) @)
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or
dx | x
ds x+a
Now,
dp dpde 3 X 3
S —— + = —
ds dx ds a rra x+a aJ;
dp_df3 o) (3 e 3 1 [ 3
' ds| Va di\Ja  Jds Ja2dx\x+a 2Jax+a)
Then

2 2
3pd—p~[d—p) 90=-20r -2 902 (cra-x-a)=0
a a a

Example 7.11 In the curve p = /*'/a", show that the radius of curvature varies
inversely as the (n — 1)}th power of the radius vector.

Solution We have

1+l
p =’"_~A )
a
Then
dp r"
2 mrnl
dr (n )a'
But
purPo, o a1
dp (n+l)r" n+lr?
Therelore,

1
ﬂ“‘r,.—,.-

Example 7.12 For the curve y* = ¢* + 5, prove that s = ¢ tany and p = y'/c.

Solution We have y* = ¢* + s°. Differentiating, we get

dy ds
Iy =2g—
Jd.t ‘dx
Then
ylany = sseclf or siny= £, (2)
¥
Now,
tanw:smw= sinyr sy .= 5 s
cosyr Jl—sinzw Jl—slf)" w])”‘-’2 ¢
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or
s=ctany
Differentiating to y, we get

dy

Therefore,

] 2 1 2
ﬁ=(:sc:c2l,w =c(l+ tan’y) = C{I+S—ZJ=C(""—':‘E)=""—
c c c

3)

Example 7.13 If p and p’ be the radii of curvature of a curve and of its pedal

at corresponding points, show that g'(2r* — pp) = r.
Solution Here, for the pedal curve

n=p
and
2
pr=p o p=E
We know that
p= ’ﬁ
dp
s
P =n an,
From (1)
dry = dp
From (2)

1 1
dp, = 2p—dp - — pdr
r r

Therefore, using (1), (5) and (6) in (4)

dp _ dp
@2pirydp - (p*r)dr  2dpir) - (pIr’) p dp

o =p

Therefore,

3
o’ r L 3
p =m or p2rr-pp)=r'.

[Using (3}]

(n

@

(3

“)

(5)

(6)

Example 7.14 Find the radius of curvature at any point (a cos ¢, b sin t) of the

ellipse x*/a* + yiIb* =1.

Solution Let the coordinates of any point on the ellipse be x = a cos1,

y = b sin ¢. On differentiation, we get

E=——¢;tsin|r. ﬁ=br:os:.
dt dt
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Therefore,

. 5 .
siny=— or s=4asiny.
4a

Then ds
— =4acosly
¥

=4afl-sin’y

Example 7.16 Find the radius of curvature of the curve y = a log sec (x/a).

Solution Differentiating, we get

by _sectda)n () x dy 1o
dx sec (x/a) a' ' a a
Then
[+ (dyfdx)’ 1" _[1+ tan’ (x/2))"* casec®
d? yldx? (Va) sec’ (xfa) a

Example 7.17 If x= 6 - 31", y = 8 be two curves, find the radius of curvature.
Solution Here x = 61 — 3, y = 8. Then

dx d}' 2
—=12r-12r = =24
dt ! dt !

Now,
dy _dyidt _ 247
dy dde 12(1-1) 1-7
and
d’y _20-£)-2+2dr _20+3°) 1 1+3¢
dx’ - dx  (1-£) 1201=-1Y) 6(1=1*)
Therefore,
2T 3 32
1+[d—J 1+._ir_.‘)_z.
3 dx _ (1-1)
P Ey T
dv? 6r(l -1y
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We also have
312 1y”
_ 2 =
p=al+), p »a(l+r—,) )
Then
(p])-lli + (pz)-l.fi =a-2!3(1+r'2}(1+ ri}-l - a-:ﬂ )

Example 7.20 1f p,, p, be the radii of the curvature at the extremities of any
chord of r = a(l + cosé), which passes through the pole, then

2 2
@) pf+p:=%. i) pT=constam.

Solution Here r = a(l + cos &). Then

dr . d’r
— =-agsinf), —5=-acosf
de de
Therefore,
_ Py [a* (1 + cos8)? + a’sin*8)"?
rP+2ri=rr,  a*(l+cosf)® +2a’sin’@ + a’ cos® 6 + o’ cosf

_ (24’ +24* cos0)’"*
T @*(3+3c0s8)

M2
=2_a 1+cos®)"’
3

da @
=—cos—.

3 2

The vectorial angles of two extremilies of the chord will be & and (7 + 6). Then

_4_amsg p_4_aws Z+0) _4da . 0
=TSy T3 2

{i) We have

8
== tant
5 {constant)

Example 7.21 1f p,, p» be the radii of curvature at the extremities of two
conjugate diameters of the ellipse x*a® + y*/b* = 1, prove that

pi” + pi” = (@ + b*)(ab)™".
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Solution Since x = @ cos t, y = b sin ¢ is the point on the ellipse (x%a®) +
36 = 1,

dx . dy
—=-—asint, ——=bcost.
dt dt

and
dy _ bcost b cosi
dx -asint a
2
d—':'r =£cowcc2r = ——cosec’t
dve a
Therefore,

_h+ (b*fa’) cos’ 1] (a®sin’r + b’ cos’r)?

(~bla) cosec’t ab

Since P and Q be the extremities of two conjugate diameters, the parameters of
P and Q are 1 and (¢t + @2). Also,

2 @° cOS’t + b7 sin’r

2 _ a’sin’t +b° cos’t
= and 7 213
(ab)

1 (ab)lu‘.‘
Therefore,
w a® + bt

o= (ab)m

243

o =(a* + b Y ab) ",

Exercises 7.1

1. Find the radivs of curvature at any point (s, ¥) of the following curves:
(i) 5 =ay, (ii) § = 4a sin (iii) s = ¢ tan g,
(iv) 5 =c log secy (v) 5 = a log tan (74 + w2).
2. Find the radius of curvature at any point of the curve 5 = a(e¥ - 1).
Find the radius of curvature at (s, y) of the curve of parabola s = a tany
secy + a log (seciy + tany).

4. Find the radius of curvature at the point (x, ) of the following curves:

@) »* = dax, (i) xy = ¢,

[§113] ayz =, (iv) y= ae'®,

(v) xMa® + ybt =1, i) Pla® -yt = 1,
(vii) y = 4 sin x — sin 2x, at x = A2, (viii) Py =a*x -y, atx = a,
(ix) y= e , at (0, 1), (x} x = acostlt, y = asinilt,

(xi) y = - 2% + 7x at the origin,
(xii) \J'x+'\fy:\}a at the point x = y.
(xiii) Vxla — ¥yb =1 at the point where it touches the coordinate axes,
(xiv) 2+ =2 at (1, 1),
(xv) ¥y = a(x* + ) at (-2a, 2q).
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5.
6.
7.

8.

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

Find the radius of curvatures xy’ = 16(x + 4) at the point (-4, 0).
Find the radius of curvature at (3a/2, 3a/2) on the curve x> + ¥ = 3axy.

In the ellipse x¥/a® + y*/b? = 1, show that the radius of curvature at the
end of the major axis is equal to the semi-latus return of the ellipse.

Find the radius of curvature of the curve y = ¢* at the point where it crosses
the y-axis.

Show that the radius of curvature at a point of the curve x = a(cos ¢ + ¢ sin ),
¥y =a(sin t =t cost 1) is at.

Show that the radius of curvature at a point of the curve x = a sin 28
(1 +cos 28), y = a cos28 (1 — cos28) is 4a cos3fat =0, &= 4a.

Find the radius of curvature for the curve y = V(2 + 2.

Prove that the radius of curvature of the catenary y = a cosh(x/a) at any
point is equal in length to the portion of the normal intercepted between the
curve and the axis of x.

Show that for the cycloid x = a(@ - sin &), y = a(l - cos &), the radius of
curvature at any point is twice the portion of the normal intercepted between
the curve and the axis of x.

Prove the following for any curve:

AT de d*r

iii) sin*¢p—+r—-=0
@) "dﬂ' ds*

r
-

5 r’
0 Z-=
7

... dds
a6 ) 2=

Show that when the angle between the tangent to a curve and the radius
vector of the point of contact has a maximum or minimum value, p = p.
Ifx=clog[s+ '\f(s" + cz]], prove that cp = &+ 5

For the curve 7° cos 26 = a°, prove that p = —Pla”.

For the cardioide r = a(l + cos &), prove that 3p = 2\"(2&.-), i.e. p varies
as r.

For the curve y = ax/{a + x), prove that

4

Find p at any point (r, & on the following curves:

(i) r = a sin@ + b cos@ (i) r=af (iii) r = a sec’(&#2)
{(iv) r = a cosd (v) A =a*cos28 (vi) 7 =a"sin nf
(vii) r=a(l —cos & (viii) r=2acosf@—-a, at 8=10

(ix) r = a siné.
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21.

22,
23,
24,

25.

26.
27.

28.

29.

30.

31

32.

33

4.

Find p at any pint (p, r) on the following curves:
i) 7~ =2ap (i) P =adlp (iii) p = rsin &

(iv) p*=ar ) P+3p*=a* (vi) &®b¥p + * = a® + b~
If r = a sec 26, prove that ¥ + 3p’p = 0.
Prove that p = r cosec @ for the curve r = ae®™2,
Find the radius of curvature at any point on the curves:
(i) p = a(l + sing) (i) p? = a’cos 2y

Prove that the radius of curvature of the curve ax® + by* = 1 varies as the
cube of the length of the normal,

Prove that p’p = a* if p? + a’cos 2y = O in usual notations.

Find the radius of curvature of the curve

+
y’ =x arx at (-a, 0).
a-x

Show that the radius of curvature at any point on the curve r = ae®col@
subtends a right angle at the pole.

For any curve, prove that

% =sin ¢[1 +%] where tan ¢ = rj—f,

For any curve, prove that

2 2 102 2502
i p= &)Ly (i 1__d'wds _dylds
dy dy p dylds dxlds

1 _ (Ur) = (Ur)(drid6)’ - (d’rid6") r(d0/ds)

(iv) p=

(iii) p r(dOlds)* - (d*rlds*)

[1- (drasy ]"

Prove that the least value of the radius of curvature of the curve

2
Py=da #+Z
V5

is 9a/10 at the point x = 0.

Find the point on the parabola y* = 4x if the radius of curvature at that point
is N(125/27).

Find the radius if curvature at the point having the same abscissa of the
curves xy = a%, X = 3a’y

Show that at the points, where the curves r = af and r8 = a intersect, their
curvatures are in the ratio 3:1.
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35. Prove that for the curve

Ty sinyr
s=alogcot| —~— [+a )
g [4 2] cos’ ¥
p=2a sec’w; and hence
dy_1
d  2a’

7.7 Radius of Curvature at the Origin

If any curve y = f{x) passes through the origin (0, 0), then in order to use the
formula p = (1 + y$)**/y,, we shall have to evaluate y; and y, at the point (0, 0)
i.e. we shall have to put x =0, y = 0 in y, and y, separately. In this relation, we
write

(Mheoyeo =P and (M)eagye0 =6

Therefore, at the origin, p=(1+ p*)**fg. This is obtained by the method of
substitutions.

Method of expansion by Maclaurin’s theorem

Let the equation of the curve be

¥y =fx) (7.5)
By Maclaurin’s theorem, we have
2
y= 1= FO) + O+ 2+ (1.6)
Since the curve passes through the origin (0, 0), from Eq. (7.5), we get
0 = f(0).
Differentiating (7.5) with respect to x, we get
% =f0 (1.7
At the origin (0, 0),
dy ,
—_ = M=
[ dxl_ﬂ f(0)= p(say) 1.8)

Again differentiating Eq. (7.8), we get
a’y _ cn
If =fx
At the origin (0, 0),
d’y ”
F*3 =f"0)=g (say) (7.9
=l

and so on.
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Polar form. If the equation of the curve is given in polar form and x-axis (the
initial line) is tangent at the origin, x = r cosé, y = r sinf. Therefore, writing the
previous formula in polar coordinates

s
2 (at the pole) = E[-‘E E

r? cos’@

=lim———, whenx—0,y—=0,then@—0
00 2rsind

»

. rcos’®
=lim — ——

-0 2 sinf

= limL [as ]im~—6~=1. limecosf = 1]
#0289 a0 5in & -0
Geometrical proof of Newtonian method

Let x-axis be the tangent 1o the curve at the origin (0, 0). Let P(x, ) be any
arbitrary point on the curve, which is very near to 0. We draw a circle through
O and P which touches the x-axis at the point O, i.e. the circle passes through two
coincident points at O and the third point P (Fig. 7.8).

Y

(x, »)
Q /
M

B
0O ooy R X

Fig. 7.8 Geometrical proof of Newtonian method.

It is obvious that when the circle moves along the curve to coincide with

0, this circle becomes the circle of curvature at the point O.
Let OD be the diameter of the circle. From P, PQ perpendicular is drawn
to OD. Therefore, the middle point M of PQ will be on the diameter OD. Now

from geometry,
OM-MD = PM-MQ = PM-PM  (as PM = MQ)
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Y

\ P(x )

o}
Fig. 7.9 Tangent at the origin.

Now, dividing Eqg. (7.10) by x, we get
Y y
a+h= +ax+by+cy=+--=0
x x

Taking the limit on both sides, when x — 0, y — 0, we find that @; + bym = 0,
because all the succeeding terms become zero, when x — 0, y — 0. Therefore,

a
m=——
b (7.12)

Case I:  Suppose b # 0. Then from Eq. (7.11), the equation of the tangent
at the origin is

Y:—%X:bll’:alx =aX+bY=0,
that is, in terms of (x, y),
ax + by=10 (7.13)
But Eq. (7.13) is the collection of the lowest terms in Eq. (7.10).

Case II: Let by =0, then from Eq. (7.12) a; also vanishes, as m is finite.
Therefore, Eq. (7.10) will be of the form

. @+ baxy + et A + e ad + e+ k=0
Now dividing by x%, we get

2
a, +b,l+cz[i] +e=0)
X X

Taking the limit of both sides when x — 0, y = 0, we find that
as + bym + em® = 0 (7.14)

because all the succeeding terms become zero when x — 0, y — 0. But this is
a quadratic equation in m. This means there will be two tangents at the origin.
Now, putting m = Y/X in Eq. (7.14), we get
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s
a, +b2%+cz%=0 or aX®+bXY +c,¥ =0,

But a; = 0, b; = 0, then the equation of the lowest degree terms in Eq. (7.10) is
ay® + baxy + c3y" = 0. Similarly, if a; = 0, b, = 0, then the truth of the theorem
can be proved as before.

7.9 Chord of Curvature

Through the pole

Let O be the pole and OX the initial line. Let P be any point on the curve and
C be the centre of the circle of curvature at the point P (Fig. 7.10). Join P with
the origin O, which cuts the circle of the curvature at the point Q. Then PQ is
the length of the chord of curvature passing through the origin (pole). We want
to find the length PQ, the chord.

Fig. 7.10 Chord of curvature through the pole.

Draw a tangent at the point P of the curve which makes an angle ¢ with
OP. Join P with C and produce it to meet the circle of curvature at the point D.
Then PD = 2p. Join DQ.

Since the angle of the segment of a semi-circle is a right angle, ZPQD = af2.
Also, since DP L PT, £ZDPT = z/2. Therefore,

LDPQ = -{;—— 0.
Now, in ADPQ,
PQ
DQ cos DPQ =—£
Q cos Q PD
Therefore,
PQ=PD cns(g-—¢]=2psin 0.

Thus the chord of curvature passing through the pole = 2p sin ¢.
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Parallel to the coordinate axes

Let P(x, y) be any point on the curve y = f(x). Let PQR be the circle of the
curvature at the point P whose centre is C (Fig. 7.11).

Y

o

T
Fig. 7.11 Chord of curvature parallel to coordinate axes.

In the circle of curvature from P, draw a chord PQ parallel to x-axis. Then
this will be called the chord of curvature parallel to the x-axis.

Similarly, from P we draw a chord PR parallel to the y-axis then this will
be called the chord of curvature parallel to y-axis. We separately find out the
lengths of PQ and PR. Since PT is the tangent, ZPTX = . Join PC and produce
it to meet the circle of curvature at the point D. Then PD = 2p. Since PQ is
parallel to OX,

LOPT = LPTX = .
Again ZDPT = m2 as radius is perpendicular to tangent. Therefore,

4DPQ = %_W and £DPR = LQPR = %_(%_ W)=V.

Again since angle in a semi-circle is a right angle,
APQD=% and 4?30:-’25-
Now, (i) from APQD, .

PQ = PD cos DPQ = 2p cos[%— w)

Then
PQ = Chord of curvature = 2p siny.

Hence chord of curvature parallel to x-axis = 2p siny.
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Therefore,
Chord of curvature through the pole = 2p sing
= 2r cosec & sina
=2r.

Example 7.24 Find the chord of curvature through the pole of the curve
r=a(l + cos 6.

Solution Here the equation of the curve is r = a(l + cos8). Then

dr . d'r
E=ﬂ(‘_5l98) and E="'B cosf.

Therefore,
o + 7y [a’(l +cosd)’ + a’sin’&]m 4 0
o er —-rrn B a*(1 + cos8) + 2a*sin*8 + a*(1 + cos@) cosf T3 COSZ
Now,
2
tang = rf'-g= a(l+(‘:056) - .200s 612) =—oot§—
dr —asin@ =2sin(8/2) cos (8/2) 2
or
T 8
tang =tan| —+ —
=m(53)
or
T 0
¢ —'i' + '2-.

Therefore, chord of curvature through the pole is

2psing = 2[-4—;}:03% sin[g- +-g-]

Example 7.25 Show that the chord of curvature through the pole of the curve
r" = a™ cos m@is 2rf(m +1).

Solution Here 7 = @™ cos mé. Taking log both the sides, we get

mlog r=m log a + log cos mé,
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or

ﬂi =—mcotmf.
r df
Therefore,
tan¢g =—cot mg = tan[% + mﬂ)
Hence
n
==+mb.
¢ 2
Now,
m+l
p:rsin¢=rsin{%+m6]=rcosmﬂ=r —
a
Again,
ﬁg_ {m+1r"
dr a"
Then
dr a”  _ a

L e T

Hence the chord of curvature passing through the pole is

2psing = —2‘;_7 sin (£ + m&]
r

(m+1) 2
=chsmﬂ
-2

(m+Dr~" a”

_ 2
m+1

Example 7.26 In the catenary y = ¢ cosh (x/c), prove that the chord of curvature
parallel to the y-axis is double the ordinate.

Solution Here

x L X 1 x
y=ccosh—, y, =sinh=—, ¥, ==cosh .
c c ¢ c

Now,
_a+ ¥ _n + sinh? (x/c)]"? _ [cosh? (x/e))"? —ccosh? X
¥, (l/c)cosh (xfc)  (1e) cosh (x/c) c

P
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Hence

Chord of curvature parallel to y-axis = 2p cos

1
=2 cosh?E ——0
¢ fl+uan’y
=2¢ cosh* 2

€ 1+ ¥}
=2c cosh£=2y.
c

Therefore, chord of curvature parallel to y-axis is twice the ordinate.
Example 7.27 Show that in a parabola the chords of curvature: (i) through the
focus (ii) parallel to x-axis, are each equal to four times the focal distance of the
point.

Solution Let the equation of the parabola is 2a/r = 1 + cos &, with pole

as a focus and initial line as axis. To find the pedal equation, taking log both the
sides, we get

log 2a - log r = log (1 + cos &)

or
_idr___sin0___ 0
rdf 1+ cosd 2

We also have

d 8 n 8
tang =r—=cot—=tan| —-—
d) 2 2

r 2
or
T @
$=3-2
Now,
p=rsing=rcos—»
and
2
—=l+cns€=2coszg=2p—,. )
r 2 r
Therefore,

pP=ar or p=+ar;

M|'—'
S
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or
1
xwny-0| 2y 47 x 2
Thus
1 3a 1 3a
—=— o —=—,
po2 g2

Case II: If the y-axis is tangent to the curve at the origin, then
i
p= lim y_=3_a‘
y=sly-40 Dy 2
Example 7.29 Show that the radii if curvature of the curve
;_x(a+x)
a-x

at the origin are +aV2,

Solution Here

¥ =x or y(a-x)=x'(a+x).
But
xz
= +g=—F -
y=px+gq 2
Then
) 2
X ]
(a-x)[px+q?+---] =x{a+x)
or
(a—x)[p2x2+2p§r‘ +--»)-——x1(a+.t)

Equating the coefficients of x% and x* both sides, we get

ap’ = a oo pr=1 or p ==l
and

apg - pt =1 or apg =2
If p=+1, g =2/aand if p = -1, g = -2/a, then

24342 32
p=rp) (D, 5
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Example 7.30  Find the radius of curvature of the curve 4x® — 3xy +y* =3y = 0
at the origin.

Solution Here (0, 0) satisfies the equation of the curve and y = 0 is the
tangent to the curve as the lowest-degree term to zero. Put y = 0 in the given
curve, we get x* =0, which shows that y = 0 cuts the curve at coincident points
al (0, 0). So, we use Newtonian method

2

P= 03y
Now,
2
4 -y +y-3y=0 o X 3,2 3,
2y 2 2 2
Therefore,
2
. x .3 DT
im 455~ limzx e+ lim - lims =0
Thus o=3/8.

Example 7.31 Find the radius of curvature at the origin of the curve
3+ ay + P —dx = 0. (1)

Solution Obviously the curve passes through the origin. To get the tangent
to the curve at the origin, equate the lowest-degree term to zero. We get

4x=0 or x=0

which is the equation to y-axis. Here y-axis is the tangent to the curve at the
origin. Therefore,

yl
= lim =
x—u!l.[:]—m 2x (2)

Dividing (1) by 2x, we get
2 2
3x NEN _4x

or
2
2.r+ly+——2=(]
2 2 2x
or
2
lim 3x+ lim 2y+ lim 2~ km 2=0
a0y 2 -20,y40 2 £=0y=+0 Dy 340, p0
Thus

p=12
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7.10 Centre of Curvature

The centre of curvature at any point P of a curve is the point which lies on the
positive direction of the normal at P and is at a distance p from it.

Let the coordinates of P be (x, ¥) and those of C be (X, Y). Let the tangent
PT to the curve makes an angle y with x-axis in positive direction so that the
positive direction of the normal makes an angle y+ /2 with x-axis (Fig. 7.12).

At

M

Mk

Z o ——————
A
+
|

Fig. 7.12 Centre of curvature.

The equation of the normal at P(x, y) is

X-x _ Y-y =
cos(w +7/2) sin(y +7/2)
or
X-x Y-y_
—siny cosy

where X and Y are coordinates of any point on the normal and r the variable
distance of the wvariable poin't (X, Y) from (x, y). Thus the coordinates of
(X, 1) of the point on the normal at a distance, r from P(x, y) are (x — r sin ¥,
¥y + rcos y).

For the centre of the curvature, we have r = p. Hence (x, ¥) be the centre
of curvature, we have

X=x-psiny, Y=y+pcosy.
But

A} 1 ("

siny = . cosy = f P2
Ji+ ¥ Jityl ¥
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Therefore,
1+ 3y} 2
X=x—yl--+—’—'-, Y=y+———l+y'-
¥ Y2

Note: For centre of curvature, we substitute the values of siny, cosy
and p.

Evolute

The locus of the centres of curvature of a curve is called its evolure and a curve

is said to be an involure of its evolute.

Example 7.32 Find the coordinates of centre of curvature at a point (x, y) of the
parabola y* = 4ax. Hence obtain its evolute.

Solution Here

P dar, B2 Ay d
eyl Al Yy

If (X, ¥) be the centre of coordinates, we get

_I_Zal+4a’afy‘ _ +y’+4a’ _ 2ax +dax + 4d’

= =x =3x+2a
y =da’ly’ 2a 2a M
and
1+4a'ly’ v} +4a’) -y (@dax)’? | 2x
V=y+ E7N R A =—===t —=i57 2)
—4a‘ly da da 4a a
Eliminating x from (1) and (2), we get
4 _ 3
Y= e ~[1¥-——2’3] or 27a¥? =4(X - 2a)
a a 3

is the required evolute.
Example 7.33  Find the evolute of the astroid x = a cos’B& y = a sin’d.

Solution We have

x=acos@, dx _ 3acos*d (-sin8)
do

y=asin’8, B _3a5in%0 cos.
df
Therefore,

dy _dyldf _ 3asin’fcosf _
dx  dvdf -3acos’@sinf

—tan@

2 J
d_;]; =—sec’ 40 Lsec‘iﬁ‘ cosect).
dx dx  3a



290 Textbook of Differential Calculus

Thus
tan@ (i + tan’6 .
X =acos’® +M3¢1 =a cos’@ + 3asin’@cosd
sec” @ cosecd
Also
1+ tan’@

Y =asin’8 + 3a = asin’f + 3a cos’@ sin@

sec*d cosect
Eliminating # between (1) and (2), we get

X +Y =a(cosf +sinf) or (X +¥)"? =a"*(cos +sind)
ar
X =Y =a(cos@ —sind)y or (X -Y)" =a""(cosd -sind)

Squaring and adding, we get
{X + Y)zn + (X - Y)}L‘i = 262!!
This is the required evolute.

Exercises 7.2

1. Find the chord of curvature through the pole of the curve r = ae™,

(n

(2)

2. Find the chord of curvature parallel 1o x-axis for the curve y = log sec x.

3. Find the chord of curvature through the pole of the curves:
(i) P cos 20 = @, (ii) ~* = @ cos28,

4. Show that the chord of curvature through the pole of the curve p = f(r
given by 27 (DIf'(r).

) is

5. Show that in any curve of the chord of curvature perpendicular to the radius

vector is 2p(r’ - pH)'"1r.

6. Show that the circle of curvature at the origin of the parabola y = mx + x*

is X + ¥ = (1 + mA)y - mx).

7. Show that the circle of curvature at the point (am?, 2am) of the parabola

¥* = dax, has its equation x* + y* — 6am’x — dax + dam’y = 3a'm*.

8. Find the equation of the circle of curvature at the point (0, b) of the ellj
Blat + I = 1.

pse

9. Find the radius of curvature at any point P of the catenary y = ¢ cosh (x/c)

and show that PC = PG, where C is the centre of curvature at P, and G
point of intersection of the normal at P with x-axis.

the

10. For the lemniscate r* = a® cos 26, show that the length of the tangent from

the origin to the circle of curvature at any point is \3r13.

11. The circle of curvature at any point P of the lemniscate r* = a® cos 28 meets

the radius vector OP at A, show that OP:AP = 1:2; O being the pole.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23

P, P2 are the radii if curvature at the corresponding point if a cycloid and
its evolute, prove that ( pl’+ p,’) is a constant.

Prove that the distance between the pole and the centre of curvature
corresponding Lo any point on the curve " = a"cos nf is

[az" +(n® - l)rl"]m

If ¢, and c, bc chords of curvature parallel to the axis at any point of the
curve y = ae" 4, prove that

e, ¢, 2ac,

Show that (i) the chord of curvature at any point of the cardiod r =
a(l + cos ) is (23¥(2ar), (i) p*/r is constant.

If ¢, and ¢, be chord of curvature paralle] to the nx;s ol' x at any point of
the calenary y = cosh (x/c), prove that 4% (c +c; ) c

Find the centre of curvature for the following curves at the points indicated:
i) aly’ - ) =x% (0, 0), (i) 0 = )@ - 20) ="+, (0, 0)
(iii) 4x* = 3xy + y* = 3y = 0, (0, 0), (iv) r = a sin né, (0, 0)
W ¥ =3+ 22 -+ =0, 0,0,
(vi) ¥* = x*a + x)l(a - x) at the point (a, 0),
(i) y = x* = %, (0, 0), (viii) y = e, (0, 1).
Show that the centre of curvature of the curve x*a® + y¥b* = 1 is
142 12
a -b b —-a
£, ¥= 2.
a Y B y
Prove that the centre of curvature at the point determined by ¢ on the ellipse
x=acos it y=>bsintis given by

a -0, b -a®
cos’t, y= 5 sin” t.

f:
a

Find the centre of curvature at the point determined by ¢ on the astroid
x=acos’t, y = a sin’t.

Show that the circle of curvature at the origin of the parabola y = mx +
2la? is X + ¥ = a(l + m)(y — nx).

Find the evolute of the following curves:
(i) y = dax, (ii) x = a cos@, y = b siné, (i) x*a’ - y'h* =1

Prove that the centre of curvature at points of a cycloid lies on an equal
cycloid.
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24.

25,

26.

27.

29.

Show that in the curve y = x + 3x% - x*, the radius of curvature at the origin
is nearly at 0.4714 and that at the point (1, 3) is infinite.

Find the coordinales of the centre of curvature of the curves:

(i) ¥* + ' = 3axy at (3a/2, 3a/2) (i) x = a(t + sin 1), y = a(l + cos {) at 1
(iii) O+ y" = Ia"xy, at (a, a).

Show that the evolute of the ellipse x = a cosé, y = b sin 8is (@)’ + (1) =
(32 _ b?)l"l‘

Show that for the hyperbola xa® ~ b = 1 the equation of the evolute
is (@)™ - (by)? = (& + B»)*°.

Prove that the evolute of the hyperbola 2xy = a® is (x + 3)*? = (x = y)** =
2a*8,

Show that the evolute of the tractrix x = a [cos r + log tan (¢/2)], y = a sin
is the catenary y = a cosh (x/a).



Asym ptotes

8.1 Introduction

A curve in a plane is either closed or open. Examples of closed curves are circle,
cllipse, whose lengths are limited. Open curves are those whose graphs extend to
infinity, such as parabola and hyperbola.

Thus a straight line touching a curve at infinity is called its asymprotes. Let
a curve be given and a tangent be drawn at some point of the curve. If the point
of contact of the tangent goes further away from the origin, then the distance of the
tangent from the origin will also go on changing; somestimes it will increase
continuously and sometimes it will decrease continuously. But it may be possible
that when the point of contact tends 1o infinity, then the tangent takes up a definite
position of a straight line. This is called ‘asmyplotes’.

In other words, if P be a point on a branch of curves which extends to infinite
and a straight line exists at a finite distance from the origin, from which the
distance of P gradually diminishes and ultimately tends to zero as P tends to
infinity, moving along the area, then such a straight line is called an ‘asymptote’
to the curve,

In a simple language, an asymptote is a straight line, which cuts a curve in
two points at infinity (i.e. touches at infinity) but is not itself at infinity. In other
words, an asymptote is a tangent whose points of contact are x = e=, y = e,

This can be understood as follows: Let P(x, ¥) be any point on the curve
v =f(x). Then a straight line will be the asymptote of the curve if the perpendicular
distance of the point P(x, y) from the straight line tends to zero as x — oo or
y = e orboth x, ¥y — oo,

For example, the straight line x = 2a is an asymptote of the cissoid
_v:(Za — x) = x°. We find that as P(x, v) moves to infinity, its distance from the line
x = 2a tends to zero (Fig. 8.1).

Asymptote of a curve can be obtained in a number of ways and we shall
discuss them one by one.

293
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Y
P(x, y) x=2a
2a
X X
o}
Asymptote
Y

Fig. 81 An asymptote.

Solution to an equation with two infinite roots

If y = mx + ¢ be an asymplote of the curve ¢(x, y) = 0, we solve these equations
for at least two infinite roots, such roots help find sets of suitable valves of m and
¢ for the asymptotes. This is the basic method to find the asymptotes.

Asymptotes of an algebraic curve
Let the equation of the curve be
(@ + @™y + - + apl) + (B + by + by A 4 e by +
(™ + o™y + o™+ b oy ¢ =0,

where a's, b’s and ¢'s, are constants. In the first parentheses, we put all those terms
in which the sum of the indices of x and y is n, i.e. the term in the first parentheses
is a homogeneous function of x and y of degree n. Similarly, the term in the second
parentheses is a homogeneous function of degree (n — 1), and so on. Therefore,

x"ﬁl[%]ﬂ""'m e} f'lﬂ.-z[%)-* =0 @.1)

where x"¢(y/x) is a homogeneous function of degree r in x and y.
Let the equation of the asymplote be

y=mx+c (8.2)

Now we want to find out the point of intersection of the line y = mx + ¢ with
the given curve after simplification, we get

C
_}.’_zm.‘...._
X X
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Putting this in Eq. (8.1), we get

" Sl Ll L
xg(mi-x]-i-x“ Q,_l[m+x]+x ghz[m+x]+ 0 8.3)

which gives the abscissa of point of intersection of the line and the curve.
Expanding Eq. (8.3) by Taylor's theorem, we get

X [@1 (m) + < g (m) + %i #m) + ] +x [@,_1 (m) + =g, (m)+ ]
X at 2! X

+x2 g (m) 4+ ]+ =0
or
2

g (m)+ " [eg (m) + ¢, (m)]+ 7 [%g‘(m) +od (m)+ Q,_z(nr)] +ee=0

(8.4)
This is the equation of the nth degree in x showing that the straight line cuts a curve
of the nth degree in n points, in general (real or imaginary). If the straight line (8.2)
is an asymptote to the curve, it cuts the curve at infinity. Therefore this equation

has two infinite roots for which the coefficients of two highest-degree terms should
be zero:

g (m)=0 (8.5)
cg(m)+ ¢, (m}=0 (8.6)

If the roots of (8.5) be my, my, my, ---, m,, the corresponding values of ¢, i.e.
(c1s €3, €3, =+, ) are given by Eq. (8.6). Therefore,

__f.(m
#(m)
Hence the n asymptotes are
yE=mxte, ySmxico, yImxteo o yImXtc.

Working rules:
(i) In the highest-degree terms, put x = 1 and y = m; then we get g,(m).
Equating it to zero and solving it, we get m = my, my, ms, -
(ii) In the next lower-degree terms, put x = 1, y = m, then we get @, ,(m).
(iii) To get ¢ put the values of m in the formula ¢ = —@,_|(m)/¢ ,(m).
(iv) If this formula takes the form 0/0 by the substitution of the value of
m, then use

2
%g’(m) +ofl,(m)+ g, (m)=0
to get c.
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Example 8.1 Find the asymptotes to the curve y* = 3%y + x° = 35° + 2% + 2xy +
qx-5v+6=0.

Solution Lel the asymptote be y = mx + c. Here we putx = 1, y = m in the
highesi-degree terms, i.e. in the third-degree terms of the given equation of the
curve and equate it to zero, we get,

@lm)y=m* =3m+m* -3 )
Therefore, g;(m) = 0 gives

m =3m+m-3=0 or (m+ D -3)=0.
We get
m=—1, + 3. (2)

Again, put x = 1 and y = m in the second-degree terms of the given equation of
the curve, we get
@ (m)=2m* +2m (3)

Differentiating (1) with respect to m, we get ¢; = 3m* — 3 + 2m. Therefore,

gilm) _ 2m* +2m

g(m)  3m*+2m-3

Here, we put m from (2), we get ¢ = 0, when m = -1, ¢ = 1, when m = V3 and
¢ = 1, when m = —V3. Hence the required asymptotes are y = mx + 1, that is

x+y=0 and y==2Vix+1
Oblique asymptotes of algebraic curve

Let the rational algebraic expression containing terms of the rth and lower, but of
no higher degrees be denoted by P, F.

(a) Let the equation of the curve of nth degree can be put into the form
(ax + by + ) Py, + Foy =0. 8.7

Then the straight line parallel to ax + by = 0, obviously cuts the curve (8.7)
in one point at infinity. We are now to find out the particular member of this family
of parallel straight lines which cuts the curve (8.7) in a second point at infinity. We
will now examine the ultimate linear form to which the curve reaches infinity. We
make x and y in the equation of the curve in the ratio by

Therefore, (8.7) becomes

ax+by+c lim Q=0
L

x-bes, y = ~alb
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ay + by =0, y =—bj/a, is the asymptote parallel to x-axis. Similarly, rearranging
the terms of the equation of the curve in descending powers of y, we get

arlyn + (ﬂn—lx + bn)yﬂ_l + (an—}tz + bn—l-r + cn)}!'_z =0 (E]!)

Hence if a, = 0, and x be so chosen that a,_,x + b, = 0, the coefficient of the two
highest powers of y in (8.12) vanish, and therefore two of its root are infinite.

Hence the straight line a,_x + b, = 0 or x = -b,/a,_ is an asymptote parallel
to the axis of y.

Again if @y =0, @, = 0, b, = 0 and if y be so chosen that ay? + by + ¢, =
0, three roots of Eq. (8.11) be infinite and the lines represented by ay” + by +
¢3 = 0 represent a pair of asymptotes (real or imaginary) parallel to the x-axis.

Similarly, if a4, = 0, @,.; = 0, b, = 0 and x be so chosen that @, x> + b,_jx +
¢, = 0, three roots of Eq. (8.12) be infinity and the lines represented by
Ayt + by x+c, =0 represent a pair of asymptotes (real or imaginary) parallel
to the y-axis.

Working rules:

(i) In order to obtain the asymptotes parallel to the axis of x, equate to zero,
the coefficient of the highest power of x. For example, if the curve be of
the nth degree and term containing X" be absent, the coefficient of !
equated to zero will give the asymptotes parallel to the axis of x.

(ii) If both the terms containing x, and x"' be absent, then the coefficient of
¥ equated to zero will give two asymptotes parallel to the axis of x.

(iii) To get the asymptotes parallel to the axis of y, equated to zero, the
coefficient of the highest power of y. For example, if the curve be of nth
degree and the term containing y, be absent then the coefficient of y,_,
equated to zero will give the asymptotes parallel to the axis of y.

(iv) If both the terms containing 3 and y' be absent then the coefficients of
"% equated to zero will give two asymptotes parallel to the axis of y.

Corollary If the equation of the curve be the nth degree, and the coefficient of
x" is not zero, then there will be no asymptote parallel to the axis of x. Similarly,
if the coefficient of )" is not zero, then there will be no asymptote parallel to the
axis of y. For example, the curve x* + 3%, 3axy will have no asymptote parallel
either to x-axis or y-axis, as the coefficients of x* and y*, the highest-degree terms,
are not zero.

Example 8.2 Find the asymptotes to the curve x57? = aB? + bk

Solution Here x%* = a®* + 6% be the equation of the curve. This is the
4th degree equation. The terms containing, x*, x*, 3! and ) are absent. Hence
equating to zero the coefficient of x* and y?, will give the asymptotes parallel to
the axis of x and the axis of y.

Here the coefficient of x* = y* ~ * or y = +b. Hence the asymptotes to the
axis of x are y = b and y = —b. Again, the coefficient of y* = x* — & to zero.
Therefore x = +a.

Hence the asymptotes parallel to the axis of y are x = @ and x = —a. Thus the
required asymptotes are y - b=0,y+ b=0,x-a=0and x + a = 0.
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8.3 Asymptotes by Inspection

(a) If the equation of an algebraic curve be put in the form £, + F,; = 0, where
F, consists of nth degree and lower degree terms which cannot be expressed as a
product of » linear factors, none of which is repeated; and F,_; consists of terms
of degree (n — 2) or lower degree terms. Then all the asymptotes to the given curve
will be given by F, = 0.

(b) If in the equation F, + F,_; = 0 of the curve, F, consists of real linear
factors (some repeated and some non-repeated factors). Then, the non-repeated
factors equated to zero will definitely be the asymptotes to the curve. But the
asymptotes corresponding to the repeated factors will however have to be obtained
as in the general case.

Total number of asymptotes to a curve

Let y = mx + ¢ be the equation of an asymptote. We know that the value of m is
found out by solving the equation @,(m) = 0. Since the equations of nth degree has
n roots, we shall get n values of m by solving ¢,(m) = 0. We shall get an asymptote
corresponding to each value of m. Hence the curve of nth degree has generally
asymptotes, real or imaginary.

Theorem 8.1 If y = mx + ¢ is an asymptote to a curve then
m=limZ and c=lim(y-mx)
ol X i

Proof Lety = mx + ¢ be an asymptote to the curve, where m and ¢ are to
be obtained. Let P(x, y) be any point on the curve (Fig. 8.2). From P, draw a
perpendicular on y = mx + ¢, whose length is p. Then

_ ¥y-mx-c¢

P J_l+_mT (8.15)

Fig. 8.2 Perpendicular from an asymp to a curve.

From the figure, it is obvious that as the point tends to infinity along the
curve, the distance between the curve and the line becomes lesser and lesser, i.e.
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p — 0. When y = mx + ¢ touches the curve at infinity, then p — 0. Thus when
X = oo, p = 0, From this we get the values of m and ¢. Now taking the limit of
Eq. (8.15), when x =3 oo,

lim = lim y"m_c—)ﬂ"lim(y—nu—c)
gl zebe fi] + mz e
Therefore,
¢ =lim (y - mx) (8.16)
Again,
y=me+c+ pyfl+m’
or
Zem+ S+ 2 lam?
x x X
Therefore,
liml=m+[im£+lim£1f‘l+m3
e x l—'-x T x
Hence
. ¥
m=lim= 8.17
lim < ®.17)

Thus, we find out the values of ¢ and m from Eqgs. (8.16) and (8.17) and
thereby the equation of the asymptotes y = mx + ¢ is found out.

Example 8.4 Find the asympotes of the curve ¥+ = 3a.

Solution  Let y = mx + ¢ be the equation of the asymptote. Here we divide
the equation of the curve by xj, we get

i 1
1+[1] =3aX =32~
X X xx

Therefore,
] 7 l
lim [l +[l] ] = 3alim £ 1im —
E—. X Eebe o ree=

1+m=0 or (1+mm*-m+1)=0.

Then

Therefore, the real value of m = ~1. Now
C=1lim(y-mx)= li_!:l'{y+x]
Now put (¢ - x) for y and take the limit x — eo. Therefore,

24+ e-x=3ax(c-x)
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or
1
(Bc+3a)=3c(c+a)—+—5=0
X x
Taking the limit when x — o=, we have
3¢+3a=0 or ¢c=-a
Hence, the required equation of the asymptote is
y=-x-a or x+y+a=0
Example 8.5 Find asymptotes of the curve x° = 2)% + 2%y —x# +xp -2 + 1 =0,

Solution Putting x = 1, y = m in the third-degree terms and equate to zero,
we get

Slmy=1-2m +2m—m* =0,
or
(1 +2m) = m¥(1 +2m) =0
or
(1+2m)(1 + m}l —m)=0
We get m = 1, -1, =1/2. Again,
d(m) = m — m* = m(l — m)
Therefore,
__@Lm) __ ml-m)
fm)  —6m* +2-2m
when m = 1, c=0
-1 1 -2
when m = 1, c=—w=-_=_1

—-6.1+2+2 -2

(=1/2)(1+ 1/2)

) 1
when m = -7 sy +2+2(/2) 2

Therefore, putting the corresponding values of m and ¢ in y = mx + ¢, we get the
asymptotes as: y =x, x +y+ 1=0,x+2y-1=0.
Example 8.6 Find the asymptotes of X + ¥y — x7 —y* + 2xyp + 2% — 3x +
y=0.

Solution Putting x = 1 and y = m in the third-degree terms equating to zero
#(m) = 1 + m — m* — m* = 0. Therefore, m = -1, -1, 1.

Again ¢y(m) = 2m + 2m* = 2m(m + 1). Then

__g0m) _ 2m(m+1)
@m)  1=2m=3m’
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when m = 1, == =1

womet, on?
when m = -1, 0-0‘

Now to find the value of ¢, we choose first-degree terms to zero

2
%@"(m) +cgl(m) + ¢,(m)=0

or

2
c‘?(—2 -6m)+ec(2+4m)+ (=3+m)=0
or
(1 +3m+c2-4)+(=3-1)=0
Solving, we get ¢ = -1, 2.

When m = 1, then ¢ = 1, when m = —1, then ¢ = -1 or 2. Therefore, the
equation to the asymptotes are: y =x+ L, y+x+1=0,y+x-2=0.
Example 8.7 Find the asymptotes to 4x* - 3xp? - P + 2 —xy - - 1 = 0.

Solution Putting x =1 and y = m in the third-degree terms and equating to
zero, we get ¢y(m) = 4 — 3m* — m® = 0. Solving, we get m = 1, -2, -2.

Again,

Smy=2—m—m=—(m'+m-2)=—~m-1)(m+2)
Therefore,
_ @, (m) __ —(m =1)(m + 2) _ m-1
@ (m) —6m - 3m* 3m

when m = 1, c=———=0

whenm=-2, ¢= %
Therefore, using
2
%ﬁ”(m) +e@i(m) + @ (m)=0.
we get
c!
S (-6=6m)+c(=1-2m) +0=0

Solving, we get
c=0or3c(l+m+(1+2m=0.

Thus when m = 1, ¢ = 0; when m = -2, ¢ = —1. Therefore, the equations of
asymptotes are: y —x =0, v+ 2x=0and y + 2x + | = 0.
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Example 8.8 Find the asymptotes to the curve
Yoy +nttdoxy+2=0.

Solution Here the highest power term in x is x* and the coefficient of x° is
1(# 0). Therefore, there is no asymptote parallel to x-axis. Again, the highest power
term in y is x)? = 0. We shall get one asymptote x = 0 from the coefficient x of
2. For finding out the equation of the other two remaining systems, we follow the
previous method.

Here the highest degree of the equation is 3. Therefore, putting x = 1 and
» = m in the third degree terms and equating to zero, we get

$my=1-2m+m* =0 or m=1,
Again @,(m)=1-m. Therefore,

gm) __ l-m __ 1-m
P(m) “2+2m  2m-1)

When m = 1, then ¢ = 0/0. Therefore, we get
2
= 8(m) + c4(m) + 4,(m) =0
or

e
?(2) +c(-1)+0=0.

Solving, we get ¢ = 0 or ¢ = |. Thus when m = 1, ¢ = 0 or ¢ = |, the equations
of the asymptotes are: y =x, y=x + 1 and x = 0.

Alternative method: The equation of the curve can be written as
X~ 2y )+ x(x ~y) +2=0

xx -y Fx(x-y)+2=0

or

or
x-yx-y+1)+2=0,

which is of the form of F, + F,_; = 0. Therefore, the three asymptotes are:
x=0,x=y=0 and x-y+1=0.
Example 8.9 Find the asymptotes to the curve y*(x — 2a) = x* - &.

Solution The equation of the given curve is of third order. Here the
coefficient of x* is 1( 0). Therefore, there is no asymptote parallel to x-axis.
Again the coefficient of 3* = 0. Then equating to zero the coefficient of 37,
we get x —2a = 0. Therefore, the equation of the asymptote parallel to y-axis is
x —2a= 0. Now, putting x = 1, ¥ = m in the third-degree terms and equating to zero,
we get
pmy=m*-1=0 or m=1,-l.
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Now, by putting x = 1/t, y = -1/t so that t — 0, we have

o (Ur-9+2 . [-B+2
= lim. | =lim+ =1/8=12V2.
Ty ='-T\‘1f:—2a+2 o V-1+2 d

Hence the three asymptotes are: x + 2y + 2 =0, x + y = 2V2andx +y=
242,

Example 8.11 Find the asymplotes to the curve (x* —y?)v — 2a)? + 5x ~7 =0, and
prove that the asymptotes form a triangle of area .

Solution Here the given equation of the curve can be written as Xy -y
- 2@ + 5x — 7 = 0. Here, equating the coefficient y of x?, the highest power term
of x, to zero, we get the equation of the asymptote parallel to x-axis as y = 0.

Now, putting x = 1, y = m in the highest power, i.e. in the third-degree term
in the equation of the curve and equating to zero, we get

pm)y=m-m=0 or m=0,1, -l
Again, gy(m) = —2am®. Then

@, (m) _ _ —2am* _ 2anm’
gm)  1=3m* 1-3m*’

Therefore, when m =0, ¢ = 0; when m = 1, ¢ = —a; and when m = -1, ¢ = —a.
Therefore, the equation of the asymptotes arc

y=0, y=x-a y=-x-a
Solving the three asymptotes, we get
x=a, y=0; x=-a, y=0; x=0, y=-a

Hence the coordinates of the three vertices of a triangle are: (a, 0), (-a, 0),

and (0, —a). Hence
Area of A = % [a (0 + ) + (~a)(-a - 0) + 00 - 0)] = .

Example 8.12 Find the asymptotes to the cubic ¥y — x> +xy+ )  +x -y =0,
and show that they cut the curve again in three points lying on the straight line.

Solution Putting x = 1, y = m, we get, ¢y(m) = m — m® = 0. Therefore,

m =0, 1. Again ¢(m) = m + m". Hence.

@,(m) m(l+m)

$i(m) 1-2m

When m = 0, ¢ = 0; also when m = 1, ¢ = 2. Therefore, the equation of two
asymptotes are: y =0 and y = x + 2.
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Again equating (o zero the higher powers in x and y, the equations to the
asymptote parallel to the coordinate axes are: y=0and | —x=0, ie. x = I
Thus the equations of three asymptotes are

y=0, x-1=0, x=y+2=0.
Now the joint asymptotes of the three equations will be

He=Dx=-y+z)=0

y-xtray+y-2p=0 0}
which we write as P; = 0.

But the equations to the curve is Xy —x)? +xy + )2 =2y + (x + ) = 0, i.e.
Py + (x + y) = 0. Hence the point of intersection of the curve and asymptotes
satisfies x + y = 0, which represents a straight line,

But a straight line cuts a curve of third-degree in 3 points. But each
asymptote passes through two points of infinity. Therefore, it will cut the given
curve at (3 — 2) or 1 point more. Since the number of asymptotes = 3, the number
of points of interesction of the curve and asymptotes =3 x 1 = 3.

Thus all the three points of intersection of the curve and asymptotes lie on
a straight line.

or

Example 8.13 Determine the asymptotes to the curve.
4t + ) — I - (@ - ) + 2 -2) =0
and show that they pass through the point if intersection of the curve with the ellipse
2+t =4
Solution The equation of the curve can be written as
(dxt + 2 - 17 - dx(@? - 2D + 2P -2) = 0
N — 4 - ) + ax(? - ) + 260 -2 = 0
Simplifying, we get
(+ 2 -2+ 1+ + 1 =) + (P + 47 —4) =0
Hence the required asymptotes are
(x=2)=0, x+2y=0, x+y+1=0, 2x—y+1=0. m

From the equation of the curve and (1), it is evident that the points of intersection
of the curve and the ellipse x* + 4y” = 4 satisfy the equations of the asymptotes.

Example 8.14 Find the asymptotes to the curve
P+ —x+y+3=0.
Solution Here the equation of the curve is written as

¥y +d4dy -4y —x+y+3=0
or
=y + 2 =x-y-3
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or
y-2x+4=0,
Thus the asymptotes are: y +x+ 1 =0, y+x+z=0and y~2x+4 =0,
Example 8.16 Find the asymptotes of the curve ) + ¥y + 27~y + 1 =0,
Solution The equation of the curve can be written as
W+ +2y)-y+1=0,

or
W +xP-y+1=0

Therefore, the curve has a pair of asymptotes

Thus the two asymptotes are x + y =1 and x + y = -1.

The third asymptote is obtained by equating to zero the coefficient of x?
which is y = 0. Thus the asympototes are x + y=l,x+y+ 1 =0and y = 0.
Example 8.17 Find the asymptotes of X* + 2y —dg? — 8 —dx + 8y -1 =0,

Solution The given equation can be written as

Pr+2) -4 +2)-4x-20)-1=0
or
+29)P -4 -dx-2)-1=0
or
x=2x+2p+2x+2y-2)-1=0

which is in the from of £, + F,; = 0. Therefore, the asymptotes are: x — 2y = 0,
x+2y+2=0,andx +2y-2=0.

Example 8.18 Find the asymptotes of y* — xp? — ¥y + x> + ¥ - p? = 1.

Solution The given equation can be written as
Yo-x0)-X0-0-@-9F+x)-1=0.
OG-0 -F - @+ -1=0

G-x)p+x)y-x-1)-1=0

which is in the form of F,, + F, ; = 0. Hence the asymptotes are: y—x =0,y + x
=Qandy-x-1=0

or

or

Example 8.19 Show that there is an infinite series of parralle! asymptotes to the
curve

a
r= +b
@sin

and show that their distance from the pole are in harmonic progression.
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Solution Here

r=

=———+b or r@sinf-(a+bfsind)=0.
Osin 8

It is of the form of r£i(6) + f(6) = 0. The directions for asymptotes are
fi(®=0 or 8sinfd=0 or 8=nm
where n = 0, £1, £2, £3, ... Thus the asymptotes are

folnm) _ a+bnxsinnr
flnm)  sinnm+nrcosnm

O

rsin(nr+ &)=

If n £ 0, by (1) the asymptotes are

=

-1 sing= or rsinB:% (2)

nm(-1)"
When n = 0, the right-hand side of (I) is infinity so we get no asymptote in this
case. These are infinite number of asymptotes corresponding to n = %1, £2, £3, -
and the perpendicular distance of these from the pole are

a a a
x' 2r 3x’

which are clearly in harmonic progression.

Exercises 8.1

Find the asymptotes of the following:

. +y=a 2. Y = x(a® ~ x)

3. x2y+xy2=az 4.x2y=x3+x+y

5 y(a-x)=xx+a) 6. V(2 - ) = x(x? - 44

7. px-Y+bE-af=0 8 Y@ +x)=x(a-x)*

9. (y- o -a)=x'+d 10, %' -4 + 2+ )2 - 1=0
1. (g +x)%F* + 22 =x5% 1. - -y +x8 -2 -y =11

13. P -xy-nt+x+y+1=0

4, P+ +3p? + 8 - )P - —x=0

15. S+l -0 -2 +x1 -y -2 -3y=0
16 ¥ -d4n? -3 + 12y~ 122 + 8x + 2y +4 =0
17 P+ -0 -2/ +47 + 2 +y-1=0

18. (x-py+2)(2x -3y +4)dx -5y +6)+5x -6y +7=0
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58. The asymptotestotl'lecurverz)?—xz—f—x—y+ 1 =0 form a square
through two of whose angular points the curve passes.

59, Theasymptotestoﬂiecurvexl);—az(f+f)—az{x+y}+ a' =0 form a
square two of whose angular points lie on the curve.

60. The four asymptotes to the curve
(2 = A - 48) - 67 + 5 + 32 = 2} ~ 2 + By~ 1 = 0

cut the curve again in eight points which lie on a circle x* + y* = L.
[Hint: The given equation is (x — )y = 2x)x +y + 1) (p + 2x + 1) + 22 +
¥-1=0]

61, All the asymptotes of the curve, r tan n@ = a touch the circle » = a/n.
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Maxima and Minima

9.1 Introduction

Any function f(x) admits a number of values of x varies within a certain interval.
Some of these values may be greatest or least, when compared to other values of
the function, are called extreme values.

We shall here be concerned with the application of differential calculus to
the determination of the values of a function which are greatest or least in their
immediate neighbourhood is known as relatively greatest and the least or maximum
and minimum values.

The term ‘maximum value’ does not mean the absolute greatest value and
neither the absolute least value of the function y = fix). Moreover, there may be
several maxima values and several minima values of the function. Between
two equal values of a function at least one maxinum and one minimum must lie

(Fig. 9.1).

Y

Ps

Py
/ Py Py
c
X" o) L X

Ay By Ay B B; B, B

Y

Fig. 9.1 Maximum and minimum points on a curve.
33
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The function y = f(x), represented graphically, has maximum values at
Py, Py, Ps,---, and has minimum values as P|, P;, Pg, ... For instance, at
P,, corresponding to x = OB5 (= ¢3), the value of the function is not necessarily
bigger than the value at Ps, but we can get a range, say ¢,B;c» in the neighbourhood
of B on either side of it (§ = ¢;8; = B,c;) such that the value of the function is
less than P,B; (i.e. the values al P;). Hence, by definition, the function is maximum
al x = OB,. Similarly, in the interval A;B|A; (A\B, = & = BjA, say) in the
neighbourhood of B; within which for every value of x the function is greater
than that of B;. Hence the function at B, is a minimum.

At points Py, Py, P3, Py, -+, at which maximum and minimum ordinate
occur, the tangents are parallel to one or the other of the coordinate axes. At
points Py, Pa, Py, Py, ---, the value of dy/dx vanishes, whilst of point Ps, dy/dx
becomes infinite. The position of maxima and minima are given by the roots of
the equations:

fx) =0, f(x)=-eo.

In Fig. 9.2(a), we observe that, at points A, B, the tangents are parallel to
either of the axes but at the ordinates, they have neither a maximum nor a
minimum value. In Fig. 9.2(b), in passing a maximum value of the ordinate, the
angle wmade by the tangent with OX changes from acute to obtuse and therefore
tan i or dy/dx changes from positive to negative. While in passing, the maximum
value, y changes from obtuse to acute. Therefore, dy/dx changes from negative

to positive.

Y
B Y
A
P A TN
o X ol ¥ [ Acute Obtuse
C
(a) 4 (b)

Fig. 9.2 Tangent at two points in a curve.

A function flx) is said to have a maximum at x = ¢ if there exists some
h > 0 such that f(x) < f(c) whenever |x — ¢| < h.

A function f{x) is said to have a minimum at x = ¢ if there exists some
h > 0, such that flx) > fic) whenever |x — ¢| < h.

A function flx) is said 10 have an extreme value at x = c if it has either a
maximum or a minimum at that point.

For example, y* = x* — 6x + 17 = (x — 3)* + 8 has its minimum value 8,
when x = 3 and has no maximum value. Similarly, y =5 - 2x - x* = 6 — (x + 1)
has its maximum value 6, when x = =1, but has no minimum value. The function
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y = sin x has both its maximum and minimum values. They are 1 and -1, when
x = (4n + a2 and (4n - D)af2, respectively, where n is any integer. But
¥ = lan x has no extreme value.

Explanation for maxima and minima

Let fix) be a function whose maximum corresponding to x = ¢ is at A. We
consider the neighbourhood jc = h, ¢ + hj of x = ¢

The tangent at A is parallel to the x-axis, i.e. at A, then dy/dx = 0. Now we
take any point on the curve in the interval [c¢ — h, ¢] preceding A and draw a
tangent to the curve at the point P (Fig. 9.3). We see that this tangent makes an
acute angle with the x-axis. In other words, f(x) is an increasing function in the
interval [c - h, c]. Hence f'(x) > 0.
Y

Y
A

X 0 X

Fig. 9.3 Increasing and decreasing function.

Again, we take any point P’ on the curve in the interval [c, ¢ + h] succeeding
A and draw a tangent to the curve at the point P’. Hence we see that this tangent
makes an obtuse angle with the x-axis. In other words, f{x) is a decreasing function
in the interval [¢, ¢ + h]. Hence f'(x) < 0.

Thus we find that the value dy/dx is positive for every point before the
maximum point and the value of dy/dx is negative for every point after the
maximum point. Thus when the curve passes through x = ¢ and the sign of
dyldx changes from posilive to negative in the neighbourhood of x = ¢ then we
can say that the curve has a maximum value at x = c.

Since while passing through a maximum point, the sign of dyfdx changes
from positive to negative, dy/dx is a decreasing function. Consequently, its derivative
d*yldx® will be negative.

Again let the minimum of the curve cormresponding to x = d is at B. We
consider the neighbourhood [d - h, d + h] of x = d. The tangent at B is parallel
to the axis of x, i.e. at B, dyldx = 0.

Like before, we take any point Q on the curve in the interval [d - h, d]
preceding B and we draw a tangent to the curve at the point Q. We see that this
tangent makes an obtuse angle with the x-axis, i.e. f’(x) is decreasing function in
the interval [d = h, d]. Hence f’(x) < 0. We take any point Q' on the curve in the
interval [d, d + k] succeeding B and draw a tangent to the curve at the point Q.
Here we see that this tangent makes and acute angle with the x-axis, i.e. flx) is
an increasing function in the interval [d, d + &]. Hence f'(x) > 0.
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Thus we find that the value of dy/dx is negative for every point before the
minimum point and the value of dy/dx is positive for every point after the minimum
point. Thus if the sign of dy/dx changes from a negative to positive dy/dx is an
increasing function. Consequently its derivatives d*y/d® will be positive.

Working rule I: Let y = f(x) be a function of x.

(i) First find out dy/dx.

(ii) Then putting dy/dx = 0, we shall find out the value of x. Let one such
value be x = ¢.

(iii) For every value of x (say x = ¢) we shall test whether the sign of dy/dx
changes from positive to negative or for negative to positive, when x
passes through the value (by putting x = ¢ — & and ¢ + h separately). If
the sign of dy/dx changes from positive to negative then y is maximum
for the value of x. But if the sign of dy/dx changes from negative to
positive, then y is minimum for the value of x.

(iv) If for x < @, dy/dx > 0 and for x > a, dyldx < 0, then y will be
maximum at x = a. If for x > @, dy/dx > 0 and for x < @, dyldx < 0,
then ¥ will be minimum at x = @

Working rule I1:  Let y = f(x) be a function of x.

(i) For maximum or minimum, we shall find out the roots of the equation
dyldx = 0. Lel x = ¢ be one such root.
(ii) Next we shall find out the second derivative dzyfd.:z and we shall put
x = ¢ therein.
(iii) If d®y/dx* < 0, then y will be maximum at x = c. If d*y/dx® > 0, then
y will be minimum at x = ¢.

9.2 Extreme Values

Let PN = f(c) be maximum value of any function y = f(x) in the interval [c — &,
¢ + 0] in Fig. 9.4(a).

Y Y
P A B

A B Q

= T = = )
=2 R iz +
o : o = -
S S = =

olle-n € le+h) X olLk-m c e+ h) X
L N R L M R
(@ ®)

Fig. 9.4 Extreme values.
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Let -4 < h < &, and suppose that [c - h, ¢ + k] are abscissa if two points
A and B on the left and right side of P respectively in its immediate neighbourhood.
Then their ordinates are:

AL=f(c-h)< PN and BR =f(c+ h) < PN.
Hence if PN = f(c) be a maximum value of f(x), then
fle=h)-flc)<0 and flc+h)—flc)<0 (9.1)

Similarly, if QM = f{c) be the minimum value of y = f(x) in any interval
in Fig. 9.4(b) then

AL=flc ~h)> QM and BR = f(c + h) > OM.
Thus
fle=h-flc)>0 and flc+h)-flc)>0 (9.2)

if fie) be the minimum value of f(x).

Keeping Eqs. (9.1) and (9.2) in view, we have the following analytical,
definition of extreme values of any function of one variable:

In any interval of a function, f(x) has its maximum value f(c) if f(c + h)
= f(c) < 0 and minimum value f(c) if f(¢ = k) = f(¢) > 0, where h is any number
positive or negative, but numerically very small.

Criteria for extreme values

Theorem 9.1 If f(c) be an extreme value of f{x) at x = ¢ and f’(c) exists, then
fey=0.
Proof Let f(c) be an extreme value of f(x) in any interval then if | & | be
very small,
fle+ ) =fle)<0 and flc-h)-flc)<D
Therefore,
feh-f@,,

and

f(”'":_ﬂc)w
T

Now Since f(c) exists, by definition, we gel

ﬂ”“?'“”:iim fle=h) - fe)
I

ksl =h

fe)=lim

Hence in the limit, f(c) < 0 and f'(c) 2 0. This is possible only when we conclude
fe)y=0.

Similarly, the theorem can be proved when f(c) is minimum.
Note: The theorem provides only necessary condition for the existence of extreme
values of f(x). Its converse is not true, and f(x) = 0 is possible without any
extreme value for f(x).

Theorem 9.2 If f(x) be defined in any interval containing the point x = ¢, and
f(c) =0, but f*(c) # 0, then f(x) has its one maximum value of fc) if f"(c) <0
and minimum value of fic) if f(c) > 0.
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Proof By Langrange's mean value theorem,
flc + k) = f(c) + hf'(c + 6h),  where 0 < 6< 1.
But since f'(c) = 0, we can write

hf'(c + Oh) = hif'(c + ) — 0] = hif*(c + 6h) - /()]
Therefore,
Fle+h) - f(c)=hf’(c +6h) = 9:;’-’:—'“‘*6;":—-—-——'—{1‘1

Now, if we put k = 6h, then k > 0ash — 0

9.3)

lim L€ +0) = f(c)

= k

=f"e)

k=)

i £+ = £(0) _
&h

Hence from Eq. (9.3), we get
fle + k) - f(c) = 61 f1c) 9.4
In the limit, in the neighbourhood of x = ¢, making h as small as we please.
Moreover, since 0 < 8 < 1, for any positive or negative of h, 8h* > 0. Also,
fle)y#0.
From Eq. (9.4),
fle+h)-floo<0, iff')<0
and
fle + ) - f(c) >0, if f*(c) > 0.
Therefore, f'(c) = 0 and f"(c) # 0. f(c) is a maximum or minimum value of f(x)
according as f“(c) < 0 or > 0.

Note:  When both f'(c) = f”(c) = 0, the extreme values depend upon signs of
derisatives of higher order.

Theorem 9.3 If f(x) is defined in an interval containing x = ¢ and f'(c) =
F€)=f"(c) = -+ = f"Yc) = 0, but f(c) # 0, then
(i) f(c) is a maximum or minimum value of f(c) according as f(c) < 0
or > 0 when n is even and
(ii) f(c) is not an exterme value of fix), if n is odd.

Proof Since f'(c) = f7(c) = f"(c) = +- = f"'(c) = 0, by mean value
theorem of higher order, we find

! £V +Oh) = Bn" fc+8h) - " (c)

JerB=JO=C5 (n-D1 oh

where 0 < < 1 and 61 — 0 when & — 0. Then

n=l — gr=l
]imf (c+6h)= f""(c)

h=0 Bh = f ©
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9.3 Functions of Two Variables

Consider extreme values of u = f(x, y) subject to the condition ¢(x, y) = 0. There
are two possible cases, which are discussed in the following examples.

By solving equation ¢(x, ¥) = 0, we may find that y = g(x) is satisfying the
given condition.

Example 9.1 Find extreme values of 4x° - 15x% + 12x - 2.
Solution Let y = f(x) = 4x° - 15x® + 12x — 2. Then

—g--——f'(x)=l2x’ ~30x +12=6(2x* - 5x + 2).
For maximum or minimum value, f(x) = 0. Therefore,

6(2x-5x+2)=0 or .r=%,2

Also
2
%:f’{x)=6(4x—5)=—18{0, whenx:%
and
H
%:f'(x}=18>0, when x=2

Therefore, f{x) is maximum when x = 1/2 and minimum when x = 2. Hence the
given equation has

3 2
Maximum value = f[l)=4(l] _15[1) +12[l]~2=1
2 2 2 2 4
Minimum value = f(2) = 4(2)° - 15(2)* + 12(2) - 2 = -6.

Example 9.2 Prove that x* is minimum when x = 7.,

and

Solution Let log y = log x* = x log x. Then
1dy 1
——=logx+x—=logx+1
dx & x ¢

and
1 dy 1
Ta Y x ¢
ydx vy odx «x

For maximum or minimum,

Therefare,
logx+1=0 or logx=-1=loge!
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or

But from (1}, when x = e,

2
d—;v=id—y+l=]0g(xc)+x"‘ >0
dx®  yde x

Therefore, y = x* is minimum when x = ¢,

Example 9.3 Prove that x/(1 + x tanx) is maximum when x = cos x.
Solution Let

X
1+ xtanx

y=fl=
Then

(1+ xtan x) — x(tan x + xsec’x) _ cos’x — x*
(1+ x tan x)* {1+ xtan x)*

-it—y=f'(x]=

Therefore, f(x) = 0, when x = cos x. Also f'(x) > 0 or < 0, according as x < cos X
or x > cos x. Hence the sign of f'(x) changes from positive to negative as soon
as the point x = cos x crosses from left to right. Therefore, f(x) is maximum when
X = COS X,

Alternative method: Let

I+xtanx 1
H=——

+tlanx
x x
Then
du 1 .. X —cos’x
—=——+5eC'x =————=0, when x=cosx.
dx ¥ cos’x

But when x = cos x

: 21+ si sin (x/2)+ cos (/2)]°
—d?:%+2$ec‘xtanx= { H;lnx):[ (2) (3 )
dx®  x cos’x [cos (cos x)]
Therefore,
l+xtanx, . . X . .
—————isminimum and ————is maximum.
1+ xtan x

Example 9.4 Find the maximum value of (log x)/x.
Solution Let y = (log x)/x. Then

Q_ x(lfx)-logx _l-logx
dx x x
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For maximum or minimum value of y, we get dy/dx = 0. Then

1+logx

x!

=0 or logx=1=log,e or x=e

Now

d’y X (~1/x) - (~logx)2x 1
.E.:-—-w—-—————-—-—-—-x‘ =—-;5(3—2]og.t)
When x = e or logx = loge = 1. We also have

d’y 1
¢

Example 9.5 Find the maximum value of ¥*y? when x + y = a.
Solution Le z = x*y7 = x’(a — x)7. Then

:L—z =pxNa-x)f —gx"(a-x)"" =x""(a - x)""[pla - x) - gx]

For maximum or minimum of z,

x*(a-x)""[pla-x)-gx]=0

Therefore,

x=0, x=a, x= . if p>1, g>1

ptq
Now
d’z -2 a1 Pl ot
2o = (P-Dx"a-x) [pla-x)- gx]- (g - Dx"" (@ - x)"* [ pla - x) - gx]
+x"Ma-x)"(-p-q)

Also,

When x =0, x = a,

a d: P=q a q=1
When x = —p, -—f=[—a—’;J (an—p—J (-p-q)<0
ptqg dr \p+q
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or

For x = /3, we have

2
d—f: —=sin %[! +cos—J = 3sin—cos—
S, 1) 3B 5 3
2 2 22 4 4
=_ﬂ (negative)

Hence y is maximum for x = /3.
Example 9.8 1f y = x/(log x), show that y is minimum for x = e.
Solution We have y = x/(log x). Then
dy logx-1
dx  (logx)’

For maximum or minimum of y, dyfdx = 0. So, logx — 1 = 0. Therefore,
log x = 1 = log . Thus x = e. We also have

dy
when log x > 1, —>0
€ &
and

when log x < 1, d—y<0
dx

Hence dy/dx changes sign from negative to positive. Therefore, y is minimum for
x = e and the minimum value of y is e/(log €) = e.

Example 9.9 What fraction exceed its pth power by the greatest number possible.
Solution Let x be the required fraction. Then y = x — x*. Therefore,

ﬂ=1—;.*Jt*"".

dx
For maximum or minimum value of y, dy/dx = 0. Then, we get

2
L2 = - pp-is,

P

Clearly for this value of d’y/dx’ is negative, and hence y is maximum for
x = (Up)te-1,

1 Lip-1)
pxr'=1 or X¥'== or x=[-—]
14
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For maxima and minima, cos x = 0 and sin x = 1/4. Thus x lies between 0 and
2m Now, cos x = 0 gives x = /2 and 3272 and sin x = 1/4 gives x = sin”'(1/4)
and 7 - sin”'(1/4). So sin~!(1/4) lies between 0 and 2.

We again have

2
%:—sinx—nioosz.t
Now,
2
atx=%, %=3>0
2
ar.x=%, :L—f=5>0
2
atx=sin"%. %=—sinx—4(l—2sin:x)=—-l?5<0
2
a1x=Jr-—5in'1l, d—f=—£¢0
4 dx 4

Thus y is maximum for x = sin™!(1/4) and 7- sin™'(1/4), and is minimum
for x = @2, 342,

Example 9.15 If y=alog x + bx? + x has its extreme values at x = -1 and
x =2, then find a and b.

Solution  Here
y=f(x)=alog x+ bx® +x

Y_ =2
o f(x) x+2bx+1

For extreme values, f'(x) = 0, if it exists. Given extreme values are x = -1 and
x = 2. Therefore,

f(~-1)=0 or -a-2b+1=0 (1)
f(2=0 or a+8 +2=0 (2)
Solving them, we get a = 2, b = 1/2.
Example 9.16 Prove that x—sin x has neither maxima nor minima.

Solution Here

y=x-sinx (1)
%: —cosx 2)

For maxima or minima, dy/dx = 0. Then 1 - cos x = 0. Il gives x = 2nm
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Therefore, at x = 2nur,

dy _ . d'y
F=5m2mr=0, F=cu52mr=1.
Hence f(x) has neither maxima nor minima.

Example 9.17 Find the greatest and the least value of 2 sin x + sin 2x in the
interval (0, 342).

Solution Let
f(x) =2 sin x + sin 2x, f'(x) = 2 cos x + 2 cos 2x
For maxima or minima, f'(x} = 0. So cos x + cos 2x = 0. Solving, we get x = 73,
. Since.
F(x)=2(cosx +cos x) = 2(2cos’x + cox = 1) = 2(cos x + 1)(2cos x ~ 1)

we get f'(x) > 0, for cos x > 1/2, Then f’(x) is increasing in (0, &/3). Therefore,
greatest value of

T LT
f(x)= f[;]-ZSmE +sm~T

Also f'(x) < 0 for cos x < 1/2. Therefore, f'(x) is decreasing in (#/3, 3472). The
least value of f(x)} is f(3m2) = =2.

Example 9.18 If ax® + bix 2 ¢ for all positive x, where @ > 0 and b > 0, show
that 27ab* = 4¢3,

Solution  Here

f(.t):ax2+-f—}-
x
b 2ax’-b
=2ax - —= .
e P i

f"(x):2a+&l>0 (as @, b, x> Q)
x
Now for maxima or minima, f(x) = 0. Then, we get
b 3
x=[—] >0 (asa=0,b>0)
2a

Also, it has shown that f”(x) > 0. Therefore, f{x) is minimum at
x = [0/(2a)]'” and the minimum valuc at the point is given by

i 13
f(x):axzi-é—c:ﬂx_ﬂ—c:é-b-[—z-‘;] -
x x z\ b
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According to the condition, f(x) 2 0 for all the x > 0. Then

13
& E =20
20 b

Thus we get a cubic,

3
%{Ta?c’ or 27ab® 2 4¢°,

9.4 Problems Involving Geometry

In this section, it will be shown as to how the method pertaining to maxima or
minima is applied in the problems relating to geometry and solid geometry. In
this connection, it is necessary to remember the formulae of areas and volumes
of some important figures. These are the following:

Sphere. Refer to Fig. 9.6. If r be the radius of the sphere, then

Volume = %,mr3 and Area of whole surface = 4°

<>

T/

Fig. 9.6 A sphere.
Cylinder. Let h be the height and r be the radius of the base (Fig. 9.7). Then
Volume = m’h
Area of curved surface = 2/rh
Area of whole surface = 2mh + 2m°

=

Fig. 9.7 A cylinder.
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Cone. Let i be the height of the cone, r be its base radius and [ the slant height
(Fig. 9.8). Then
Slant height = (fn* +r*
12
Volume = Efrr h

Area of curved surface ol = Rr\ir: +h

Area of whole surface of a cylinder = ?rrJ et +art
0

Fig. 9.8 A cone.

Example 9.19 The sum of the perimeters of a circle and a square is I. Show that
when the sum of the areas is least, the side of the square is double of the radius
of the circle.

Solution Let the radius of the circle = r and one side of a square = a.
Therefore, the perimeter of the circle = 2ar and that of the square = 4a. Then

2ar + da =1 (1)
and
Sum of both the areas = /° + a°.
From (1)
1
A=mr' +a* =;rr"[--—-—-l —::rr]
we get
%ﬂm-%u-zmﬂm—m @)

Now for maxima or minima, dA/dr = 0. Therefore,
2ar-ma=0 or a=2r

It is clear from (2), dA/dr > 0, if 2r > a and dAfdr < 0 if 2r < a. Therefore,
for a = 2r, A has a minimum value.
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Solution Let a cone be given, whose radius of the base CB = r, height
OC = h and semi-vertical angle = . Then from Fig. 9.8.

Area of the surface of the cone = m° + ml
and

Volume = %mzfm

Given that m° + arl = k (constant). Now, in ABOC,

2
22 2 (k-mtY B 2%k
h =" -r _[ _ﬁ__

r P
Vv :iﬂzr‘hz :.l;gzr" i:__-z._k- =.1_;rz .’F—t{f——gﬁi
9 9 o om0 n T

Therefore, v is a function of r only. Differentiating with respect to r, we get
dv 1
2v;=§k[k(zr) - 21(4r")]
=%k(2kr -8ar')
=ék[2r(m" +arl) - 87r° ]
=%.{'2xr:(1’-3r) %))

Now for maxima or minima, dv/dr=0, ie. | = 3r = 0 or 3r = [. From (1),
dwdr >0, 3r< 1 and dvldr <Q if 3r > 1. Therefore, the volume of the cone be
maximum for 3r = [. Now, in AOCB,

CB r r

. 1 !
Sin@=—=—=—=— o= -
sin 0B 1 3 3 or sin 3

Example 9.22 Prove that a conical tent of a given volume requires the least
amount of material when its height is V2 times the radius of the base.

Solution Let r be the radius of the base of the circle, & the height and !
the slant height (Fig. 9.8). Given v = (1/3)m2h (= constant), therefore,

Ph = k (constant). (1)
The area of the surface

S=nrl=m b+ )

or

2 20,2 2 2 kz 2 kl 4
S=mtt +r)y=mrt| 40 =m0 | 5+
r =
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u=x‘(§+r‘]
r

Differentialing with respect to r, we get
du 2
;:x’[k’[_;)wir’] (3)

For maximum or minimum, du/dr = 0, Then from (1)

Put u = §% so

2
4r —~2",—=0 or 4r° =%r'h1
r r

Solving, we get h = +2r. Again differentiating (3) with respect to r, we get
d*u 6
F::r"[k’ (r—, +12r’)](> 0)
Hem;:JI u is minimum when k = V2 and consequently § is minimum. when
h=nr2.

Example 9.23 Prove that the least perimeter of an isosceles triangle which can
be circumscribed in a circle of radius a, is (6\13)a.

Solution Let ABC be an isosceles triangle with AB = AC circumseribing
the circle whose centre is O and radius is a (Fig. 9.10).

C

Fig. 9.10 Solution to Example 9.23.

Let
£LB=2C=120, where0 < 280 < #/2.

Let O be the in centre of AABC. OA, OB and OC be the internal bisector
of the angles of the triangle OD, OE, OF are perpendiculars to BC, CA and AB
respectively D, E, and F be the points of contact with the circle. Then BD =
a cotd, DC = a cotf. Therefore,

BC=BD + DC=2acot f.
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Also

AB=AC=AE+ EC:acol[%—Z&] +acotf=atan2f+ acot §

Let P be the perimeter of the triangle, then
P =BC+ CA+ AB

= BC + 2AB
= 2acol@ + 2a tan 28 + 2a cot &
= da col &+ 2a tan 6, 0< 8<md (1
and
g% =da(—cosec’d) + dasec’(26) 3}

For maximum and minimum, dP/d& = 0. Therefore,
—4a cosec’d + 4a sec’G =0

Solving, we get 8 = af6.
Again, differentiating (2) with respect to 8, we get
d’-P 2 2
:1-6728‘] cosec” @ cot & + 16a sec” (26) tan 28
At 8 = 6, d*Pld6* is positive. Therefore, P is minimum when & = 77/6. Thus
from (1), the least value of P is

P=da col% + Mtan%: 4a\3 +2a\3 =6\3a.
Example 9.24 Find the height of the right circular cylinder of maximum volume

that can be inscribed in a sphere of radius r.

Solution Let ABCD be a cylinder inscribed in a sphere with centre
O and radius OD = r (Fig. 9.11). Let the height of the cylinder CD = 2x. Draw
OE L CD so that CE = ED = 2x. Then

A D
r x

0 E

B C

Fig. 9.11 Solution to Example 9.24.
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Radius of the cylinder, OF = [y’ —x*

and
Volume of the cylinder, V = zr’h
=nm(0OE) CD
=a(r' - x*)2x
=2a(r'x - x*)
Therefore,

dv

—=21(r* - 3x°).

o ( )
For maxima or minima, we have

dv r
—_—== 2—3);2 or = —_—
p r x

3
Again
2
-4-—2: =21(-6x)=-12nx
dx
At x= r!v‘ri,
dv r
—=-12r—<0.
dx’ 3

Hence V has maximum at x = r/3 and height the cylinder = 2x = 2r/¥3,
Corollary Volume V of the cylinder is

3 2 2 4}!}'2
V=2 - =2a - | =22,
”[r 3]\5 33

Example 9.25 Prove that the right circular cone of maximum volume which
can be inscribed in a sphere of radius r has its altitude equal to (4/3)r.

Solution Let O be the centre and r be the radius of the sphere. Let AB be
the diameter of the base of the cone (Fig. 9.12). Let VN is perpendicular to AB
and let ON = x. Then

Fig. 9.12 Soluwtion to Example 9.25.
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Therefore,
2, b’ cos'@ —a’sin'd

d_p =(a’-b")
(a*sin’@ +b* cos’B)*?

6

Ford maximum or minimum dp/dé@ = 0, and

2
mn‘G:b—z or tm'19=t1‘2
a a

1fp=0, &=0, or @2 and p is positive when &lies between O and 2. Therefore,
p is maximum when tan8= \’(ba"a). Putting this value in (1), we get the maximum
value p=a-b.

Example 9.28 Find a right circular cylinder of greatest volume that can be
inscribed in a given right circular cone.

Solution Let h = the height of the cone & = the semi-angle and x = radius
of the inscribed cylinder. From Fig. 9.14, we have AO = h, AO = x cot .

A

Fig. 9.14 Solution to Example 9.28.

Therefore,
Height of the cylinder, 00, = A0 - A0y =h-xcota (1)

The volume of the cylinder

V = m*h - x cot @) 2)

Differentiating with respect to x, we get
‘—g = 2| 2x(h - x cot@) + x*(~cot @) | = m(2hx - 3z cot @)

For maximum or minimum dv/dx = 0. Then

0 = mM2hx - 3x%cot @) = mx(2h - 3x cot )
Solving, we get
2h

=—tana
3cotr 3

x=0, or x=
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Differentiating, we get

3

For maximum and minimum, dv/dh = 0. Therefore, i* - 34* = 0, or b* + P = 34*

or 7 = 2k% or r = k2. Again differentiating (3), we get

d’v 1 .
e =§:z'(—6h] (negative)

Therefore, V is maximum, when

r=hy2 or i:ﬁ
That is,

tanf = Jf or 9=tnn"ﬁ.

Example 9.31 Show that the radius of the right circular cylinder of the greatest
curved surface, which can be inscribed in a given cone, is half that of the cone.

Solution Let O be the vertex, & be the height and r be the radius of the
base of the cone (Fig. 9.15). Let us suppose that the cylinder be inscribed in a
cone and CL be its radius = x and LM = y. Therefore, the area of the curved

surface of the cylinder,
§ = 2a(CLYLM) = 2mxy

(o]

A B

Fig. 9.15 Solution to Example 9.31.

Now triangles BLM and BCO are similar. Therefore,

LM  BL IM r-x y r—x
—=— O ——=—— O ==
oCc BC h r h r
Then
ry=hir—x)=rh-hx
From (1) and (2),

s Euxuzﬁ(u_x’)
r or

8))]

)
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or
dS _2xh

—_—m—(r =2
v r (r=29

For maximum or minimum, dS/dx = 0. Then

ﬂ[J"—2x)=(." or r:ir.
r 2

Again,
2
%:2-':-& =2) (negative)
Therefore, § be the greatest, when x = /2.

Example 9.32 Show that the volume of the greatest cylinder which can be
inscribed in a cone of height h and semi-vertical angle o is (4/27)7h° tan’a

Solution Let O be the vertex, OC = h, BC = r and £BOC = a, the semi-
vertical angle of the cone (Fig. 9.15). Let the cylinder be inscribed in a core
and CL = x be the base and LM =y, the height of the cylinder. Therefore,

Volume of the cylinder = A (LM) = oy (1)
Here,

LM

) or y= h(r - x)

; or r=h(r-x)=hr—hx

Solving, we get
V=n’a(r~x)=ﬂ(u‘ -x.
r
Differentiating, we obtain

dv _ mh
-—d-;=-{:-_-(2xr+3xz) @

Now, for maximum or minimum dvf/dx = 0, Therefore,
2
2x-3*=0 or x= Er'

Again differentiating (2) with respect to x, we get

d’V _ rmh
_:sT(zr_ﬁx)
At x = 2r/3,
d*v  rmh

}-X—; = -r— (2r—-4r) (negative)
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Then the volume of the cylinder is maximum when x = 2r/3. Thus,

. h(r-x
Maximum volume =er’y=:rx1¥

r9
_Azhrr
9 3
=— zhr?
But
ma:%:i or r=htana
Therefore,

Maximum volume — 4. whr?

27

= i;z-(::‘ tan’@)(h)
27
4

=—zh’ un‘a
27

Example 9.33  An open tank is to be constructed with a square base and vertical

side so as Lo contain a given quantity of water. Show that the cost of lining the
tank with lead will be least if the depth is made hall of the width.

Solution Let one side of the square base of the tank is x and the depth is
y. Let the tank contains V cubic units of water. Then

V = £’y (constant) (1

is given. Let the area of the metal sheet used in the square base and the vertical
side of the tank is §. Then

4
S=x2+4xy=x2+4xl:=xz id
X x
Then

=u-Z @

ZX-—‘::U or x'=2w
x
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45.

46.

47.

48,

49.

50,

51.

52.

53.

54,

55.

56.

57.

58.

The sum of the volume of the sphere and a cube is given. Show that the
sum of the surface is greatest, the diameter of the sphere is equal 1o the side
of the cube.

A wire of length 25 m is to be cut into two pieces. One of the pieces is to
be made into a square and other into a circle. What should be the lengths
of two pieces so that the combined area of square and circle in minimum?

An open box with a square box is to be made of given quantity of sheet of
area a2. Show that the maximum volume of the box is a*/(6v3).

Prove that among all the triangles of a given hypotenuse the isosceles
triangle has maximum area.

Show that the height of an open cylinder of given surface and greatest
volume is equal to the radius of its base.

Assuming that the petrol burnt (per hour) in driving a motor boat varies as
the cube of its velocity, show that the most economical speed when going
against a current of ¢ mile per hour is (3/2)c mile per hour.

Divide 15 into two parts such that the square of one multiplied with the
cube of the other is a maximum.

Show that of all the rectangle of a given area, the square has’the smallest
perimeter.

Prove that the area of the triangle formed by the tangent at any point of the
ellipse x%/a* + y*/b* = 1 and its axis is a minimum for the point (a/N2,
biN2).

A tangent 10 an ellipse meels the axes in P and Q; show that the least value
of PQ is equal to the sum of the semi-axes of the ellipse, and also that PQ
is divided at the point of contact in the ratio of its semi-axes.

Find the area of the greatest isosceles triangle that can be inscribed in a
given ellipse, the triangle having its vertex coincident with one extremity
of the major axes.

The amount of fuel consumed per hour by a certain steamer varies as the
cube of its speed. When the speed is 15 mile per hour, the fuel consumed
is 4/, ton of the coal per hour at Rs. 4 per ton. The other expenses are total
Rs. 100 per hour. Find the most economical speed and the cost of a voyage
of 1980 mile.

The strength of a beam varies as the product of its breadth and the square
of its depth. Find the dimension of the strongest beam that can be cut from
a circular log of wood of radius a unit.

The sum of the area of the surface of a cube and a sphere is given. Show
that when the sum of their volumes is least, the diameter of the sphere is
equal to the edge of the cube.
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TRV,
ax*’ axdy’ oy’
be the values of these partical derivatives at (a, &), then:

r=

(i) f(x, y) has a maximum value f(a, b) if r <0, rt - 230
(ii} f(x, y) has a minimum value f(a, b), if r >0, rt - 23>0
(ifi) f(x, ¥) has no extreme value f(a, b) if rt - 5* < 0
(iv) The case in doubtful and deserves further investigation, if rt — s> = 0,
Thus (i) and (ii) provide sufficient conditions for the existence of exlremc value.
They are called Lagrange’s condition for extreme values.

9.6 Taylor’s Theorem for Two Independent Variables

The function fix, ¥) of independent variables x and y possesses continuous partial
derivatives of order n in any domain of a point (g, b) and point (4, k) be such
that the point (@ + h, b + k} may belong to the domain under consideration, then
there exists a number & 0 < & < 1, such that

d

fla+hb+k)=f(ab)+ [ha—w ]f(a.b)

1,8 ,aY 1 a . aY"
+E;[h‘§;+k-é;] f(a,b)'l'“"!'m[hs;'l'kg) f(a,b)-f-R,

where

R, = (h%u ]f(a+8h b + Ok).

Under similar condition, the Taylor's theorem for three independent variables x,
y and z can be enunciated as follows:

fla+hb+k,c+l)= f(a,b,c)+ h-é—-l-ki-rii fla, b, c)
ox dz

3y
+d hi+ki+lizﬂabc)+---
2 ox 9y oz w

1 (b3, )"
+m[fig kay‘i'i—] f(ﬂ,b,l’.‘)*l-Rﬂ

where

1(. 9 a aY
';ﬁ[’”@;’”‘g”a} fla+6hb+6kc+6D

Similarly, the Taylor's theorem can be extended to functions of three or more
independent variables.
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The stationary point (x, ¥, z) = (g, b, ¢) is obtained by solving these equations.
Next if A, B, C, F, G, H be the values of partial derivatives

2f 32j aZf a2f alf alf

a0z ok dzdx dxdy

respectively at (a, b, c), we form inequalities if:

A H A H ¢
A>0, ’ B>0. H B F|>0
G F C

then fla, b, ¢) is the minimum value of f(x, y, z). In case they be alternatively
negative and positive, i.e. if they be < 0, > 0 and < O respectively, then f(a, b, )
is the maximum value of f(x, y, z).

‘We have similar consideration for a function of more than three variables, too

Subsidiary condition. Consider the extreme value of f(x, ¥, z) when variables
are connected by a given condition, ¢(x, y, z) = 0. We solve the equation é(x, y,
z) = 0 for z and let z = g(x, y). Therefore, f(x, ¥, 2) = fIx, ¥, g(x, ¥)] becomes a
function.

Example 9.34 Find the maximum values of x* + y* + 9xy.

Solution Let f= x* + y* + 9xy. Then

af =32 +9y=3(x" +3y)
af r 2
o3yt 4+ 9x=3(y" +3%)
dy (1)
When
g:aizo,
ox oy

we obtain X% + Iy=0, y2 + 3x = 0. Solving these equations, we find (0, 0),
(=3, -3) are two stationary points of the function. Now, from (1) when (x, ¥)
= (-3, =3), we have

2
r=a—f=6x=—18<0
ox

_0f
S_Elray_g
2
:=a—f—6y=6(—3)-—18<0
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Thus for the existence of extreme value, when ¢(x, y) = 0,

¥ 0 U, 08 _
ax+.ilax—(}. ay+;lay—0. &x, y)=0 (9.10)
Since u = f(x, ¥) + Aé(x, ¥), vsing partial derivatives u,, f,, A¢,, ..., elc., these
equations can be writlen as

=i+ A6, =0, u=f+9,=0, uy=9¢x»=0 (9.11)

Therefore,

Solving

we get the finite values of x, y to determine the extreme value of Eq. (9.6). If xy,
y; satisfy these equations, then will also ¢(x, y) = 0. Hence from Eq. (9.6), the
extreme value of f(x, y) is given by
u = flxg, y) + A, y) = fl, y) + A% 0 = flx, y)
Thus we see that f(x;, y,) does not depend upon the actual value of A. Hence the
theorem.
Working rule:
(i) u = flx, y) + Ad(x, y), where ¢(x, y) = 0.
(ii) ;= u,, ug = 0 for extreme values, we have f; + A9, =0, f, + A, = 0,
Plx, ¥} = 0.
(i) Finally solving equations, f/¢, = f/@, and #(x, y) = 0.
(iv) If x;, y, satisfy them, the required extreme value = flx,, ¥;), then
f(xy, ) is the maximum or minimum value of f(x, y) according as f(x),

¥1) > (', ¥') or f(x;, ¥) <f(x', ¥), where (x’, ¥) be an arbitrary point
satisfying ¢(x, y) = 0.

Example 9.36 Find the maximum value of x* + 5xy + 2y* when x + y = 4.
Solution Here flx, y) = x> + Sxy + 2y* and @(x, y) = x + y = 4 = 0. Let

u=f+Ag=x"+5xy+ 2% + Ax +y—4) = 0. (1
For extreme value,

Therefore,
2x4+5y+A=0, Sx+dy+1=0, x+y-4=0.
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Solving these equations, -4 = 2x + 5y = 5x + 4y. That is, 3x - y = 0.
Solving x+y-4=0and 3x -y =0, we getx =1, y = 3. From (1), the extreme
value of fix, ¥) is u = f(1, 3) = 34.

Finally to verify it this is the maximum value, we take any arbitrary point
(x, ) = (4, 0), which satisfies the given condition x + y = 4. Since f(x, y) = ¥*
+5xy + 295 f(4,0) =4 + 0+ 0= 16 < 34,

Therefore, the required maximum value of f(x, y} = 34.

Example 9.37 Find extreme value of X%, when x + y = c.
Solution Here f(x, y) = ¥ and ¢(x, ¥) =x +y — ¢ = 0. Let
u=f+Ag=xY+Ax+y-0=0 (1)

For any extreme value,

Therefore,
af Y+ =0, bHY'+1=0, x+y-c=0.
From these equations
-A= axlyP = pryh!
Then
ax®'y' =bx®y* =0 or ¥y (ay-bx)=0.
Solving, we get ay = bx. Thus solving the equations ay = bx, x + y = ¢, we get

ac be

x=

arb’ 'Taxb

Thus from (1), the extreme value of X is given by

a B atl
=] 5 e +A%0 or u=a"bt| == .
a+b a+b a+b

Since (x, y) = (c, 0) satisfies x + y = ¢ and

ath
'y =0<a’d’ < ,
a+b

it is a maximum wvalue.

Example 9.38 Find the maximum or minimum value of
Oy a-x-y), x#0, y#0, x+y#a.
Solution Let u = xsyz (a = x — y). Then

g—u=3x’y’(a—x-y3-fy’ (D
X
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% =2ya-x-y)-xy )

For maximum or minimum value of w, du/dx = 0 and du/dy = 0. Hence
3y a-x-y) =xy A3)
27y (@ - x - y) = ¥y @

From (3) and (4), we get

W a-x-y)=2%a~x-yory= %x
From (3), we get

32 %f[a—x-—%x]=x’§f
Solving
%x'[ﬂ—s?x]=gf r ﬂ——=£ r 5?+—za
Solving, we get
a 2 2a a
x=— and y=—x=——=—
2 3 32 3

Now

u N
ress =3y1|:x (-D+(a—x- y)2x]—3x1y’
=3y + 60 (a—x - y) - 3x%y?
=6xy*(a-x—y-6xy")

i 3=+ (a—x- y2y] -2y
dxdy
=6x"y(a-x—y) =327y = 2x'y
2
:=§T‘,‘= 20151 + (@ 5= (D] - ¥ (2y)
=2 (a-x-y) -4y
Hence al (a/2, a/3), we get

at a* at
r=——, f==—, [==—
9 12 8
and
8
- s =a—>0
144

Thus r < 0, and rf — 5> > 0. Therefore, u is maximum at (a/2, a/3).
The maximum value of the given function

aY(aY a a)_d
d "‘"’"[3] [5) (“‘E'EJ'E'
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Example 9.40 Prove that the function x> + xy + 3x + 2y + 5 has a stationary
point, but it has no extreme value.

Solution Let f=x* + xy + 3x + 2y + 5. Then
a—"r=2.x+y+3 and a—f=x+2.
ox dy

Also,

9y 9
s=ti=1, 1=2L -0
dxdy oy
Now, dffdx = dffdy = 0 for the exisience of any stationary point. Hence solving
2x+y+3=0and x + 2 =0, we get x = -2, y = 1. Therefore, (=2, 1) is the
stationary point but rt - s =0 - 12= -1 <0,
Thus the function cannot have any extreme value.

af
=

Example 9.41 Find the minimum value of 2> + y* + 2> when ax + by + cz = d.
Solution Since ax + by + cz = d,
F = (ax + by - d)? (0
From the given function, we get

2

ai::z[ﬁiz(a”by-d)]: -
[

Em [(a2 +ch)x+ aby—ad]

3]

I b 202 2
g_z[ﬁc—z(wwy—d)]_c—z[(b +¢c)y +abx —bd|

Now for maxima and minima,

v_o_,

dx dy

or
(@ + cADx+aby = ad and (b + Py + abx = bd

Solving them, we obtain

(a*+c?)x+ b’t-‘:,cl (bd — abx) = ad
or
[(@ + )b +c*) - a’b? Jx=ad [0 +¢* - b))
or
(a® +b* +c*)ctx = adc?
or

Y= ad
a +b +ct
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Similarly
--——-————-bd and z"-——-“-——-Cd
Y b4 a +b +ct @
We have
f 2 2
= BI{=_2(“2 +c2)=2[:—2+1]>0
*f  2ab
s = Y I —
it
?f 2 2 b
t=—t=—( +c%) =2 —-1
oy’ e
Then

2 2 232 ) 2
s =4[(:_‘+I][£_‘+1}_acf j]=4(:—1+%-+1]>0.

Thus r> 0 rt - s* > 0. Hence f is minimum for the values of x, y, z oblained in
(2). Therefore, the required minimum value is
2 Iy g2 1
x+ytad =(“1=+b R
(@ +b" +¢') a +b" +c

3

Example 9.42 1If a > 0, prove that xy(a - x — y) is maximum when x = y = a/3.
Solution Here f = axy — x%y — xp°. Therefore,

ai=a)'*2x)'= Wa-2x-y)
ox

ai:ax—f—lxy:x{ﬂ—x—b}
dy

Since x = y = af3 satisfies 9ffox = df/dy =0, (x, ¥) = (a/3, a/3) is a stationary

point. Now,
af 2
r=?=—2y=—§ac0
2
5=a_f=q_2)r—2y=--;-:a

dxdy
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-5 =—¢(—%a](—§a]—%a’ =%a’ =0,

Thus r < 0, rt — s* > 0. Here the given function is maximum where x = y = a/3,
where a > 0.

Then

Example 9.43 Find the point within the triangle from which the sum of the
squares of its perpendicular distances from the sides is least.

Solution Let ABC be a triangle and P be point inside the triangle from
which the perpendiculars PL, PM, PN are drawn o the side BC, CA and AB
respectively (Fig. 9.16). Let PL = x, PM =y, PN = g, also let

u=.r2+y: +2

A

X

C
B L

Fig. 9.16 Solution to Example 9.43.

Now, we have to find the minimum value of u. Here
ar. AABC = ar. APBC + ar. APCA + ar. APAB

1 1 1
=—ax+—by+5cz

2 2
= %[ax +by+cz)
or
2A=ax+by+cz. 2)
Therefore, from (1),
2
u=x’+y’+(—2‘°":"by] 3)
Then
?= ax 422870 by - b ey
X c
a(2A — ax — by)
B A

x-2aA +atx + aby

62

_ 2({:2 +a)x+ aby - 2Aa
- 2

=2

c
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and

ou 2A-ax by
Hogy 4oty
oy ¥ 2

(-b)
- 2[}, _b(2a —::r - by)]

'y —2bA +abx + by
2

=2
(&

_2(..»’ + b))y +abx — 2bA

=2l ST
(&

For maximum or minimum value of u, du/dx = 0 and du/dy = 0. Therefore,
(¢* +a’)x+aby—-2aA=0 and (c*+b")y+abx-2bA=0

Solving, we get
(c* +a*)x +aby = 2aA (4)

(S +b)y +abx=2bA (5)
Multiplying (4) by (¢* + 5%) and (5) by ab and then sublracting, we obtain
[(c* + a*)c* + b*) - a*h*Jx = 2aA(c? + b%) - (2bA)ab

or
[c* +c*(a® + b*))x = 2A(ac® + ab® — ab?)
or
(c® +a® +b*) x = 2Aac’
or
r— . f:;: ' ©
Similarly “ ¢
2bA
= 7
’ a +b +ef ™

z:-_-—
a+bh+c?

Thus 1 will be the greatest and least for the point P whose perpendicular distance
from the sides are given by (6), (7), (8).
For maximum or minimum,

2 2
r=aax—‘:=%{c’ +a’)=2(|+‘:—,].
_Ju_2ab
oxdy ¢’
2
:=%=%{c’+bi)=2(l+f—,].
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c-‘

and 3 1.2
=2 1+5'7] [ b ]u‘-‘-‘Lb-

.,|°

]

:b: a!bl]

#=
4[“ ey
2

2
%u],u
~

Thus we get r > 0 and rt — S* > 0. Hence u is minimum.

4

Example 9.44 Show that the maxima and minima of the fraction

ax’ +2hxy + by’ +2gx + 2 fy + ¢
a'x® +2'xy + by +2g°x +2g"y +¢’

are given by the roots of the equation
a-a'u h-hu g-g'u
h-h'u b-bu f-fiu=0
g-gu f-fu c-c’n

Solution We have,
u(a’x® +2h'xy + by + 2%+ 2f Y+ ) =ax’ + 2hxy + by’ + 2gx+ 2fy + ¢
Differentiating partially with respect to x and y respectively,
-gi{a'x’ + 20y + by + 28X+ 2f Y + €V +u2a’x + 2h'y + 2g")
x
=2ax + 2hy +2g
and

g—“(ax + 20y + By # 2+ 2f Y +t) +u(2hx + 26y + 2f)
y

=2hx+2by+2f

For maxima and minima

wa'x+h'y+zgy=ax+hy+g
uh'x + b’y + fY=hx+ by + f

m

@)

@)

)
(5)
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Putting 4, in (4), (5) and (6), we gel

x-—uax+ 14 =0 or x= 14,
aiw—=t

Similarly

Ml d =
bu-1 cu-1
Putting the values x, y and z in Ix + my + nz = 0, we gel

? m* n

y—_.

au-=1 bu-1 cu-1

This determines the values of u which are either maximum or minimum.

Example 9.46 Find the maximum and minimum value of &, when

X y z x ¥y oz
Hm i, piioo, Ix+my+nz=0.
a v @ b
Solution Here
2 2 1
¥y oz
usTrgta

and
wlx, v, 2)=Ix+my+nz =0
Let @ = u + A¢ + uy, so that we obtain

2 2 2 2 1 1
w=2 +y—1 z—+i 5—+—2+——I + fllx +my + nz).
a b a b ¢
For the maximum and minimum values, @, = @, = @, = 0. Therefore,

2x  24x 2y 24y 2z 24z

St == +——+pm=—+—+ 0
a  a # P pm ¢ “n=
or
x[2f+ux+,u£] [sz——u + pm J [E-:-%hu) 0
a a b I's c
or

LY
'3

2 2 2 2
Xy z ¥z _
2(0—‘ b—‘,+c—‘]+21(a—2+-£’-2-+c—,]+y(£x+my+nz)—0

(1)

2

(3

“)
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Differentiating (2), we find

¥ z
—d.r+—d +—5dz=0-
a b Y ¢

Multiplying (3) by 1 and (4) by A and adding, we get

(1+£]dx+[l+ )dy+[l ’k)dz 0
x a ¥ c
Equating to zero, the coefficient of dx, dy, dz, we get

A A
14.&::0. l ...zl_[}. l+—-£=0
x 4a y b z ¢

Multiplying these by x, y, z respectively and adding, we get

2 2
3+1[ +Z +‘,) 0 or A=-3

bz
Therefore,
a b [
“FUE R
We also find
v=8xyz=%
33

(O]

Now, we have to find out whether this volume is maximum or minimum.
Differentiating (2) partially with respect to x, regarding z as dependent variable,

we get
2x 2z0z 9z x
—_t——=0 — e —
a' ctax or o ¢z
Now,
ov 9z cx
Y 8y +8y =gz +8nf -E |,
S —
Then

LBV g Btk iy e

Here r < 0, when
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Hence V is maximum and its value is

—=abc.
33

Example 9.48 Find the maximum and minimum values of x* + y?, where ax® +
2hxy + by’ = 1 are given by the roots of the quadratic equation

(et

8
3

Solution We have

P=x+y o)
and
ax® + 2hxy + by’ = 1 @)
For maximum and minimum of r, we have
dr=0 or xdy+ydy=10 3)

Differentiation of (2) gives
axdx + hydx + hxdy + bydy =0
o (ax + hy)dx + (hx + by)dy = 0 4)
Multiplying (3) by 4 and (4) by 1 and adding, we get
(ax+ hy + Ay dx + (hx + by + A)dy =0
Equating to zero, the coefficient of dx and dy, we get
ax+hy + Ax=0 (3)
hx+by+Ay=0 (6)
Multiplying (5) by x and (6) by y and adding, we get
(@ + 2y + By + A2 + ) =0
Then
1

P

Putting the value of A in (5) and (6), we get

14A7%=0 or A=-

ax+ky—l2x=0 or hy:[i)—-a)x
r r

and

hx+by—ri1y =0 or hx=[%~—b]y
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28.

29.
30.
31

32,

33.
3.

3s.

36.

37.
38.

39.

40

41.
42,

43.

44,

45.

46.

Divide a number n into three parts x, y, z such that ayz + bzx + cxy shall
have maximum or minimum.

Find the minimum value of u = x + y + z, when a/x + bly + ¢lz = 1.
Find the maximum value of ¥ when 1 = x°z* and 2x + 3y + 4z = a.

If (2 + y° + 22 = @™ + b2 + %% and Ix + my + nz = 0, show that the
maximum or minimum values of 7 = x* + y? + z2 are given by the equation

? m* n

=0-

.|.
Ped P -
Prove that if the perimeter of a triangle is constant, its area is minimum
when it is equilateral.
Find the triangle of maximum area which can be inscribed in a circle.

The sum of the three numbers is constant. Prove that their product is maximum
when they are equal.

Find the maximum and minimum distances of the point (3, 4, 12) from the
sphere x2 + ¥ + 22 = 1.

Find the lengths of the axes of the section of the ellipsoid x*/a® + y*/b* +
Z4c* = 1 by the plane Ix + my + nz = 0.

Find the maximum value of yz + 2zx + Jxy ifx + y+ 2= L.

By Lagrange's method, prove that the triangle of maximum area inscribed
in a circle is equilateral.

Find the maximum and minimum values of u for u = a’x* + b%* + ¢*2%,
e+ =1LIx+my+nz=0.

By Lagrange’s method of undetermined multiplier, find the maximum
value of x%* when x+y = 10.

Find the minimum value of X* +y* + Z suchthat x + y + 2= 2x + 3y + dz= L.
Determine the stalionary values of u = x* + y* + 2% under the condition
af + by + e =1, lx + my + nz = 0.

If x + y+z = 1, prove that ayz + bzx + cxy has an extreme value equal to

ahe
2bc +ca+ab)-(a* +b +¢*)°

If ax® + 2hxy + ay* = d, prove that the greatest and the least values of
X% + y* are d(a - k) and d/(a + h) respectively.

Prove that the greatest rectangular solid inscribed in the sphere 2+ y2+
22 = 24 is a cube. Find its volume.

Find the volume of the greatest rectangular parallelopiped inscribed in the
ellipsoid x¥4 + y*9 + /16 = 1.
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Envelopes

10.1 Introduction

Envelopes are the locus of points of intersection of any two curves for all values
of the parameter when the parameter is eliminated.

In other words, the envelope of a family of curves is the locus of the
limiting positions of the points of intersection of any two curves when one of
them tends to coincide with the other which is kept fixed.

10.2 Equation of an Envelope

Let fix, ¥, €) = 0 be any given family of curves. Consider the two curves:

fl,y,e)=0 (10.1)
and
fl,y,c+8)=0. (10.2)

Expanding f(x, v, ¢ + &) = 0, we get

#lx,y, ) + JCaif(x,y-C)i- =0
C

Hence in the limit when 8¢ — 0 and f(x, v, ¢) = 0, we have

%f(x,y,-:hﬂ

as the equation of the curve passing through the point of intersection of the
curves (10.1) and (10.2). If we eliminate ¢ between the equations:

fx, v e)=0 (10.3)
and

i.."(-f,)',-’-‘)=l’.]' (10.4)
dec

3713
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we get the locus of that point of intersection for all values of parameter c.
Eliminating ¢ between (10.3) and (10.4) leads to an equation

Sy =0,
which is the required envelope.

Note: To obtain the envelop of the family of curves f(x, y, ¢) = 0, eliminate ¢
between f(x, y, ¢) = 0 and f.(x, y, c) = 0, where f.(x, v, c) is the partial derivatives
of f(x, y, ¢) with respect o c.

Example 10.1 Find the envelope of the family of lines
a
y—cx- == 0 1

Solution We eliminate ¢ between (1) and the partial derivatives of (1),
i.e. -x + a/c® = 0 with respect to ¢. The eliminant is

¥ = dax,
which is the envelope of the given family of lines.

Example 10.2 Find the envelope of the family of straight lines
y=mx + .E, ’ (1)
m

where m is the parameter and a is any constant,

Solution Let there be two parametric values of m, and m, + dn of the
parameter mt. Therefore, corresponding to these parametric values, the two members
of the family are

a
y=mx+— 2
,,,l @

and

a
y:(ml+5m].t+m‘+6m )

From these, we have

a a
+—=(m +Sm)x +
¥ m (o, + Om)x m, +Om
or
a a
myx = (m, +5m}x=mI oy —;
or
am, — a(m, + &m)
—m - Smy =M= alm +om)
X o+ 6m)
or

a
r=—
m, (my, + 6m)
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Now substituting the value of x in (2), we get
_ a(2m, + &m)
m, (my + &m)
Hence the two lines (2) and (3) intersect at

[ a a(2m, +5m)]
my(my +8m)" my(my + 5m)

Since dn — 0, in this case, this point of intersection is

a 2
m]:'ml *

which lies on (2). This point is the limiting position of the point of intersection
of the lines (2) with another line of the family when the latter tends to coincide
with the former. Similarly, there will be a point on every line and so the locus
of such points is called the envelope of the given family of lines.

Since
_a _2a
x=—p, y=—
m m
or
2a
m==, m==—,
¥
we have

This is the envelope of the given family of lines
Theorem 10.1 The evolute of a curve is the envelope of its normals.

Proof Let there be a curve, PR and QR are the normals to the curves, and
PT and QL be the tangents at two points P, Q of a curve AB (Fig. 10.1). Let L
be the point of intersection of the tangents PT and QL, such that £ZPRQ = £TLQ
= Sy and arc PQ = &5.

From APQR, using the sine formula, we get

PR _ sin RQP
PQ " sin PRQ
or
PQ chord PQ 85y

PR =sin RQP =sin RQP

sin oy arc PQ Sy sinSyr
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=
<

/:b
\_
<
v
=

e
=

Fig. 10.1 Evolute of a curve.

Now let Q — P so that

ZRQP — ZRPT =

(STE]

Therefore,

. .omdS ds
él_l;l‘}l‘ PR —sm;{l) E )= E =p.
Hence the limiting position of R, which is the intersection of the normals
at P and Q, is the centre of the curvature at P.

Theorem 10.2  Prove that, in general, the envelope touches each of the intersecting
members of the family.

Proof Let A, B, C be three consecutive intersecting members of the family.
Let P be the point of intersection of A and B and Q be the point of intersection
of B and C (Fig. 10.2). By the definition, P and Q are the points on the envelope.
Hence the curve B and the envelope have two points common and so we have a
common tangent and which touches each other.

A

Fig. 10.2 Envelope.
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Example 10.3 The evolute of a curve is the envelope of the normal. Find the
evolute of the ellipse
IZ y!
? + b_z =1
Solution We know that the equation of the normal at any point (a cosé,
bsind) on the ellipse x¥a® + y4b* = 1 is

ax by

cos# sind

alibld )

where & is the parameter. Differentiating (1) partially with respect to 8, we get

ax sinf + by cos8 =0
cos’ @ sin’ @ @

Eliminating & between (1) and (2), we get

L {b}')m
tanf = __(a.x]"’
or
sinf _ by)"”?
cos  (ax)”
or
sin__ cosf _ |Jsin*@ + cos’0 ot 1
)" (@” J(b}’)m +a)® J(m:)m + (™"
Therefore,
113 73
sirl9=:t(by—) cosf =+ (ax)

J@® + by)* J@® +(By)*

Substituling these values in (1), we get
(@) + @y (@ + @0)* ] =a* -5
or
[@)” + ey " =a* -
or
(@) +(by)* = (@ = 5')*",

which is the envelope of the normal required.
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Example 10.4 Find the envelope of the straight line

i + -.}: =],

a b
where a and b are variable parameters, connected by the relationa + b=¢, ¢
being a non-zero constant,

Solution Since @ + b = ¢, b = ¢ — a. Hence the equation of the line
becomes

x y
pal =1
a c¢=a m

Differentiating partially with respect to a, we get

Yy
—_.+---.—-=ﬂ

a® (c-a)

or
(c-a) _y
a x

or
c-a_y"
a xlﬂ

so that

Substituting these values in (1), we get

X y _
PN 7 oy M7 N o

(e ly) y(x+y)
cx oy
ED (4 f5)e
or '
NI

(y—x—c)z =dex .
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Substituting this in (1), we have
2
Py —20[—2) x—%y[—lJ=0
X X
or
2+xt+2a° =0
or
Yx+2a)+x =0

which is the required envelope.

Example 10.7 Given that x* + y*? = ¢®® is the envelope of x/a + y/b = 1, find
the necessary relation between & and b.

Solution Given that ¥ + yz” = ¢¥? we have, after differentiation

dx  dy
*;_n*'yT =0 (0
Again, from xfa + y/b = 1, we have
de d
?+_y=| )

Comparing the coefficients of dx and dy from (1) and (2), we have

12 _ '
Va b
or
xlﬂ 13
—_— _}‘___ = A {de)
a b
Therefore,
X=da and y"=4b
or
1A
T
or
X A
:;= X';T,;' = Ay
Similarly,
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Therefore,
r.r w3 23
—+==A(x"+
—+ 2= +y7)
or
1
A=—x
c-fJ
Then
1
a =:xlﬂ =mem and b=c1|'3yl!j
Therefore,
02 +b2 =cl{!x2}3 +c4~'3y1|’3 =cm(xm + y?-l':l)=cﬂc!-'3
Then

at +b* =¢},
which is the required relation.

Example 10.8 Show that the pedal equation of the envelope of the line x cos
ma + y sin ma = acos na, (m # n), where & is a parameter, is

2 _mirl =nla’
m? —n*
Solution Let
F(@) = x cos ma + y sin ma — a cos na = 0. 0
Differentiating partially with respect to &, we have
F . .
E=—{xsmma)m+{ycosma)m+(as:nna]n=0
or

an
x sin ma - y cos mer — ;sin na=10. 2)

Every member of the family must touch the envelop. So (1) will be tangent
to the envelope. Now (1) is of the form
xcos @+ ysina-p=0.
Then p and r for the envelope are given by

p= acos nad and r2=12+y1
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in polar form, whose pole is F. Let the polar coordinate of P is (r, @), then we

have to construct a parabola with F as focus and P as vertex. The directrix of this

parabola will be QR which is perpendicular to FP at Q such that FP = PQ.
Hence the equation will be

1

r cos (9_6’)=2Fp=zi+cos6' 2

Taking log both sides, we get
logr +logcos (@ — &) =log 2l = log(l + cos8")
Differentiating this with respect to &, we have

sin(@-&) _ sin@ _ 2sin(0'/2) cos (872) _ @ o

cos(6-6) l+cos® 2cos (§12) 2
or
tan(ﬂ—B’}:lan%
or
9—9’=z
2
or
& 3
==+ ==0
2 2 ®

For the envelope of the directrix, we have to eliminale 8’ between (3) and (2)

rcos(ﬁ -36]= A = L
3 1+cos(28/3) 2cos’(0/3)
or
rcos =@ =;
"3 cos’(0/3)
or

rcos’£=b
3

Example 10.10 Find the envelope of straight lines drawn at right angles to the
radii vectors of the cardioide r = a(l + cos &), through their extremities.

Solution Let P be any point on the curve. If @ be its vectorial angle, then
the radius vector is
OP = a(l + cos Q).
The equation of the line drawn through P at right angles to the radius vector OP
is
rcos (8- @) = a(l + cos @) )
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Differentiating (1) with respect to a, we gel
rsin (- @) = -asina (2)

Eliminating (1) and (2), we get the required envelope. Rewriting (1)} and (2), we
have

(reosf@ —a@)cosa+ rsinfsine=a 3)

rsin @ cosa —(rcos@ —a)sina=0 )
MNow from (4), we have

rsinf
lana =
rcosf—a
Therefore,
rsin@ _ rcosf —a

sing@ = ———-—— oS E———
Jr* +a* —2arcosf Jr’ +a* = 2arcos@

Substituting in (3), we get
(rcosf —a)’ +r’sin’d _
Jr’ +a® =2arcosf

or
P+ a* - 2ar cosf = a*
or
r = 2a cosf,

which is the required envelope and is a circle.

Example 10.11 On any radius vector of the curve ¥ = a® cos2@ as diameter,
a circle is described. Find the envelope of all such circles.

Solution Let P be any point on the given curve ~* = a® cos 26, whose
coordinate in polar form be (r;, ). Therefore, we have

1t =a’ cos 26, (1)
The circle on OP, as diameler, has its equation
r=rcos(8 -8, =a\fcos 20, cos (0 -8)) (2)

Differentiating partially with respect to &, we get

O=Mws(9—ﬂ)+a,fco526, sin(6 -86,)
'c0s 26,
or
-sin 268 cos (8 - 6,) + cos 26, sin (8- &)
or

sin(6- 6, -26) =0



Envelopes 385

or

or

Thus

sin(@-38)=0

9—391=0

1
=3¢ 3

Eliminating 6, between (2) and (3), we have

7.

2 2
r=aJcos§ cos= or r’:a’cos’%&.

Exercises 10.1

Find the envelope of the following families of lines:

() ¥ = mx + V@m* + b)), m being the parameter,
(ii) x cos’@ + ysin’f=a, 6 being the paramelter,
(iii) x sin & — y cos @ = ab, & being the parameter.

Find the envelope of the family
Hlx-a)+(x+a)(y-mP=0,
where a is constant and m is a parameter.
Find the envelope of the family of semi-cubical parabola y* - (x + a)® = 0.

Find the envelope of the family of straight line Aa® + B + C = 0, where
@ is the variable parameter and A, B, C are linear functions of x, y.

Find the envelope of the family of straight lines

i‘?l:l

a b
where a, b are connected by the relation (i) a® + &° = &%, (ii) ab = ¢*.

Show that the relation between a and b so that the envelope of the line

iq.l:l

a
may be the curve &7y = k"7 is

al‘b'ﬂ'pﬁqq - (p + q)P‘QkP" .
Find the envelope of the family of curves
a’cos _b’sing —e
x ¥

for different values of &
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10.

11.

12.

13.

14.

Find the envelope of the family of trajectories
2

}l—xm_ne—.!. -—)-:—
28 b cosio

Show that the envelope of the family of parabolas

e frmn
a b

under the condition (i) ab = ¢? is a hyperbola having its asymptotes coinciding

with axes and (ii) @ + b = ¢ is an astroid.

Find the envelope of the family of ellipses
2 2

x_l + i_ = 1‘

where the parameters a and b are connected by the relation:

(i) a® + b* = %

Show that the envelope of the ellipses

=]

Al Mt
(xa:Z) +(yb1ﬂ) _

where the parameters @, § are connected by the relation

L

a! 2
—1+b—2 ]‘
is the ellipse
z
-—";—-i--y—:‘l
a b

Prove that the equation of the normal to the curve x*2 +
written in the form
xsin ¢g—ycos p+acos 2¢=0

and find the envelope of the family of the normals.

Find the equation of the normal at any point of the curve
x=a (3cost — 2cos™t), y = a(3sint - 2sin’f)

and also find the equation of its evolute.

Show that the envelope of the family of ellipses

a’x*sec’ @ + b yicosec’a = (a® - b*),

where @ is the parameter, is the evolute of the ellipse
2

+==1,

saul ER
%<

(a+b=c¢,

= a*? may be
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27.

29.

31

Find the envelope of the circles described on the radii vectors of the following
curves as diameter:

(i) Ur=1+ecost, (ii) r" =a" cosné .

Show that the pedal equation of the envelope of the line

x cos28 + ysin26 = 2cosf is p? =§(r2 -a*).

Find the pedal equation of the envelope of the family of straight lines
x cos At + y sin A&t = a cos ut,
where 1 is a variable parameter and A, 4, a are constants.

An equilateral triangle moves so that two of its sides pass through two fixed
points. Prove that the envelope of the third side is a circle.

Let circles are described having diameters equal to the radii vectors of the
curve x* + y* = 3ar’. Prove that their envelope is the inverse of a semi-
cubical parabola.

Show that the envelope of the common chords of the ellipse

I

a b

and its circle of curvature is the curve

x b/s) n
R
a b a b

Ii py, p be the radii of curvature at the extremities of two conjugate semi-
diameters of an ellipse and a, b, semi-axes of the ellipse, prove that

0" +p, )" b =a* + b

Show that the family of circles (x — a)* + y* = @® has no envelope.



Chapter 11

Curve Tracing

11.1 Introduction

In this chapter, we will deal with the graphs of the curves of given equations in
Cartesian or polar systems of coordinates. The main purpose of this chapter is to
point out those rules which are used in tracing the graph of a curve. After describing
the main rules of curve tracing and afterwards we will use them in tracing the
graph of aforesaid curves. The graph of a given function is helpful in giving a
visual presentation of the behaviour of the function involving the study of symmetries
of asymptotes, the intervals of rising up or falling down and of the cavity upwards
and downwards, etc. Curve tracing means that the equations of curves which we
trace and are generally solvable for y, x or r. The case may come that some
equations are not solvable for y or x, then we solve them for r by transforming
from Cartesian to polar system.

11.2 Rules for Tracing Cartesian Curves
Curves passing through the origin

Firstly, we should see whether the curve passes through the origin or not. For
this, we put x = 0, y = 0 in the equation of the given curve. If both the sides of
the equation of the curve are satisfied then we say that the curve passes through
the origin (0, 0).

In other words, we know that if any curve passes through the origin then
there will be no constant term in the equations of the curve. For example, the
curve y* = dax passes through the origin

Symmetry of curves
The symmetry of a curve may occur in the following important ways:

(a) If the equation of the curve contains only even powers of y (that the
equation of the curve does not change by putting —y for y in it), then
the curve is said to be symmetrical about the x-axis. It means that the
portion of the curve above the x-axis is exactly the same below the

X-axis.
389
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(b) If the equation of the curve contains only even powers of x, then the
curve is said to be symmetrical about the y-axis.

(c) If the equation of the curve contains only even powers of x and y, then
the curve is said to be symmetrical about both the axes. For example,
x¥a® + yHb* = 1 is symmetrical about both the axes.

(d) If the equation remains unchanged by interchanging x and y, the curve
is symmetrical about the line, y = x. For example, x* + y* = 3axy is
symmetrical about the line y = x because the equation remains unchanged
if we interchange x and y.

(e) If the equation remains unchanged by changing the signs of both x and
¥, the curve is symmetrical in opposite quadrant.

Equation of the tangent at the origin

The equation of the tangent at the origin can be found by equating the lowest
term to zero. Since in the equation y* = dax, the lowest term is dax and so
4ax =0, ie. x = 0.

Hence x = 0, i.e. y-axis is tangent to the curve at the origin.

Asymptotes to the curve, if any

Firstly, we shall find the asymptotes parallel to the axes, then the oblique asymptotes.

By equating the coefficients of the highest powers of x to zero, we get the
asymptotes parallel to x-axis, i.e. if the curve is of nth degree and the term in x",
is x", is absent, then the coefficient of x"! equated to zero, will give us the
asymplotes parallel to x-axis. If both ¥* and x*! are absent then the coefficient
of X", equated to zero, will give us two asymplotes parallel to x-axis and so on.
Similar is the case with the asymptotes parallel to y-axis

Intersection of the curve with the coordinates axes

Now we should see at what points the curve cuts the x-axis and y-axis. In order
to determine the coordinates of the point of intersection with the x-axis we shall
put y = 0 in the equations of the curve because the y coordinate of any point
situtated on the x-axis is zero. Similarly, in order to find out the coordinates of
the point of intersection with the y-axis we shall put x = 0 in the equation of the
curve,

Region or regions of the plane such that no part of the curve lies in it

Such a region is generally obtained by solving the equation for one variable in
terms of the other, and finding out the set of the values of one variable which
makes the other imaginary. Such as we shall solve y from the equation of the
given curve, If, for example, suppose that by giving to x, the values x > a or x
< —a, the values of y become imaginary, then it means that there would be no
portion of the curve on the right-hand side of x = a or there would be no portion
of the curve on the left-hand side of x = —g. Sometimes it happens that the values
of y increases corresponding to increasing values of x. In this case, the extent of
the given curve will be up to infinity.
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Curves possessing point of inflexion

If the curve as traced appears to possess a point of inflection that point can be
accurately located by putting

and solving the equation thus obtained.
The method of tracing the curve will be clear from the following examples.

Example 11.1 Trace the curve f(Za ~-x)=x.
Solution
(i) The curve is symmetry about the x-axis, since the power of y is even.

(ii) Tt passes through the origin, since there is no constant terms. The
tangent to the curve at the origin is obtained by equating to zero the
lowest term of the equation. The tangents at the origin are y* = 0, i.e.
the tangents are real and coincident so that (0, 0) is a cusp.

(iii) Since the equation of the curve is of 3rd degree and as y* is absent, So,
cquating the coefficient of y? to zero we get 2a — x = 0, i.e. x = 2a is
the only asymptote of the curve.

(iv) If x > 0 but x < 24, y* > 0 so that the curve lies between x = 0 and
x = 2a.

(v

—

The curve does not cut the axis. Solving for y, we have

x dy {3a—x)JJ_r
YN & TGamoT
-x dc T (2a-x)

clearly dy/dx # 0, when 0 < x < 2a.
(vi) No point of inflexion on the curve.

(vii) Framing the table of the values of y corresponding to the values of x,
we get

x 0 a2 a 342 2a
y 0 a(2y3) a 3f3a2 =

Hence the shape of the curve is shown in Fig. 11.1.
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Y s

y’(2n —n=x

Fig. 11.1 Solution to Example 11.1.

Tracing the polar curves

(a) Symmetry:

(i) If we change &by -8, the equation of the curve does not change, we
say that the curve is symmetrical about the initial line. For example,
r=a(l + cos@) is symmetrical about the initial line because if we
change & by —@ the equation remains unchanged.

(ii) If by putting 7— & for 6, the equation of the curve does not change,
we say that the curve is symmetrical about the line 8 = @2, i.e.
about the line OY.

(iii) If by putting —r to r, the equation of the curve does not change, i.e.

if the equation contains only the even powers of r, we say that the
curve is symmetrical about the pole.

(iv) A curve symmetrical about the pole, if only even powers of r occur
in the equation of the curve. For example, r* = a® cos 26.

(b) The curve passes through the pole: If r = 0 for any real value of &, we

say that the curve passes through the origin.

(c) Intersection of the curve with the initial line OX and also with OY: For

this, we find out the value of r by putting 8 = 0 and 8 = &2 in the
equation of the curve.

(d) Region of the curve: We also determine those regions of the curve

which do not contain any portion of the curve and they are determined
by those values of & for which r is imaginary.

(e) Tangent at the pole: If the curve passes through the origin, then we get

U}

the equation of the tangent at the origin corresponding to those values
of @ for which r = 0.

Asymptotes, if any: If the curve extends up to infinity, then we should
also find out the asymptote to the curve from the formula in the polar
form. Otherwise, it is convenient to determine the asymptote by changing
the equation of the curve in Cartesian form.

(g) Form a table of values of r corresponding to values of 6, keeping

attention to these values of & for which r is zero to infinity.

(h) Sometimes it is convenient to trace oul a curve by transforming the

curve in the Cartesian form.
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(i) As per our requirement, we find out the angle ¢ between the radius
vector and the tangent by using the formula
rdf
dr

50 that we can determine the coordinates of those points, where ¢ = &2
is any specified angle.

tan ¢ =

The method of tracing the curve will be clear from the following example.
Example 11,2 Trace thel curve r = a (1 + cosf).

Solution

(i) If we put =8 for & in the equation of the curve, we find that r =
all + cos (-8)] = a(l + cosB), i.e. the equation of the curve does not
change. Therefore, the given curve is symmetrical about the initial line.

(ii) If r = 0, the equation 1 + cos =0, i.e. cos@= -1 or &= x. Hence the
curve passes through the origin and the equation of the tangent at the
pole is @ = m, i.e. the initial line.

(iii) As r is not greater than 2a so that the curve wholly lies within the
circle r = 2a.

(iv) The curve has no asymptote.

(v) Now we plot some of the points on the curve.
6 0 #l3 m2 &
r 2a 3a2 _a 0

We see that r continually decreases from 2a to 0 as & increases from 0 to & and
since there is symmetry about initial line. Hence the graph of the curve is shown
as in Fig. 11.2.

A
B(a, m2)
a
= 2 A . x
o 2a (2a, 0)
a
.
(—a, @2)

Fig. 11.2 Solution to Example 11.2.
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Y a4
x=-a x=a
. (a,0)
X 0 7y * X

Fig. 11.3 Solution to Example 11.3.

Example 11.4 Trace the curve x* + y* = &*(x* - y?).

Solution

(i)

(i)

(iii)

(iv)

—

(v

(vi)

By putting x = 0, y = 0, in the equation of the curve we find both the
sides are satisfied. Hence the curve passes through the origin.

Since the equation of the curve contains only the even powers of x and
v, the curve is symmetrical about both the axes.

Putting y = 0 in the equation of the curve, we get x* - &% =0 =
202 - a®) = x =0, xa. Thus the curve cuts the x-axis at three points
(0, 0), {(a, 0) and (0, —a).

Again, putling x = 0, we get y* + a®y* = 0. Then y = 0, i.e. the curve
cuts the y-axis at the origin only.

By equating to zero the terms of the lowest degree in the equation of
the curve, we get x* — 32 = 0. Then y = +x. Therefore, the equations of
the tangents at the origin will be y = x, y = —x.

There is no asymptotes to the curve.

Solving for y, from the equation of the curve, we get

y‘t + “2),‘.' = a’x? — 5 = a? - .

If we give to x values x > a or x < -a, then

a® - x* = negative = -k (suppose)

So,
yVY+ay +k=0.

Since there is no change in sign, the roots of y are neither positive
nor negative and hence y is imaginary. That is, there is no portion of
the curve on the right-hand side of x = a or on the left-hand side of
X =-a.
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(vii) Differentiating the equation of the curve with respect to x, we get

4 + 4y’—j—i=a’(2x—2y£“-’]

dx
ar
d—”(4y’ +2a*y)=2a’x-4x’
dx
or
dy _2a’x-4x
dx 4y’ +2a’y

Therefore, at the point (a, 0), dy/dx = = and also at (-a, 0), we have
dyldx = o, i.e. at the point (a, 0) and (-a, 0), the 1angent is perpendicular to the
x-axis. Hence the graph of the curve will be as in Fig. 11.4.

Y4

X >
(-a, 0) (a. 0) X

Yf
Fig. 11.4 Solution to Example 11.4,

Example 11.5 Trace the curve x2* + y** = g2,
Solution
(i) Since by putting x = 0, y = 0, both the sides of the curve are not
satisfied. Hence the curve does not pass through the origin.

(ii) The equation of the given curve does not change when we put —x for
x and -y for y in it and therefore the curve is symmetrical about both
the axes.

(iii) Putting y = 0 in the equation of the curve, we get
=P P =d® = x=za
Therefore, the curve cuts the x-axis at the point (a, 0) and (—a, 0).
Similarly putting x = 0, we get
yP=a" or y=za

That is, the curve cuts the y-axis at the point (0, @) and (0, —a).

(iv) Again from the equation of the curve y* = a** — ¥°, if we put in this
equation any quantity x > a or x < —a, then y** = negative. Thus
y* = negative.
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Therefore, y becomes imaginary, i.e. there is no portion of the curve on the
right-hand side of x = @ or on the left-hand side of x = —a. Similarly by solving
for x from the given equation, it can be shown that there is no portion of the
curve above y = a or below y = —a. That is, the given curve is enclosed by four
points (a, 0), (-a, 0), (0, a) and (0, —a).

Also, by comparing the curve X + y*? = a®® with the circle x* + y* = 2%,
we find that since 2/3 < 2, the given curve will be inside the circle x* + ¥* = %

Hence the graph of the curve will be as in Fig. 11.5.

Y 4
B(a, 0)
x’
A’ [ Ala, 0) X
(-a. 0)
B’ (0 -a)
Yf

Fig. 11.5 Solution to Example 11.5.

Example 11.6 Trace the curve X + y* = 3axy.
Solution

(i) The curve is symmetrical about the line y = x.

(ii) If the curve passes through the origin, as there is no constant term, the
origin is a node.

(iii) It meets the coordinate axis only at the origin.
(iv) The tangents at the origin are x =0, y = 0.
{v) Asymplote
x+y= lim ——
y sral xf — xy + y?
lim — %
vzt ] = yix + yiix?

=3g -1
1+1+1

=-a
So, x + ¥y + a = 0 is the asymptote of the curve.
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(vi) x and y cannot be both negative. Hence no part of the curve lies in the
third quadrant.

(vii) No point of inflexion.
(viii) Polar form is obtained by putting x = r cos &, y = r sin 8 Then

Feos’8 + rsin’@ = 3a rcos@ rsing
or
rz(rcoslﬂ + rsin’@ - 3a sin8 cos® = 0.

But r # 0. Therefore,

r cos*8 + rsin*6 — 3a siné cosf = 0
or

3asinfcosf
L e
cos’ @ +sin’ @

Frame a table of the value of r corresponding to the value of 6, as
below

8 0 x4 m/2 3m/4
r 0 3a2 0 -

Here we see that when & increases from 0 to /@4 then r increases from 0 to
3a/2 and before &= /4 and @= x/2, decreases from 3a/N2, too. Hence between
&=0and &= a/2, we get a loop of the curve.

Again as increases from /2 to 37/4, r is negative and increases negatively
to infinity.

Fig. 11.6 Solution to Example 11.6.

Thus the shape of the curve will be as shown in Fig. 11.6.
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11
13.
15.
17.
19.
21.
23.
25.
27,

=P -1

Y@ + %) = a*
F=ya+ 1y

y =221+ )1 -x%)
r=a cosl@

r=a+ b cosf

r = a(secd + cosé)

2 + 4 cosé

acos’@+ y = a sin*@

r

X

r cos@ = a sin3@

10. X +y° = 5a%°

12. y(a’e + .12} = a’x

4 Ay=x+1

16. Y(P+y) +a (P -y) =0
18. r = a sin28

20. # = a’ cos38

22, r=sin2d

24, x=a(0+sinf),-x< s

26. rcos’d = a cos28



Multiple-choice Questions

Each of the following questions is followed by alternative answers. Select the
correct answer:

ETIN
1. If f(r)_lhr then f(r') is

(@ f(n (b) f(=)
(c) (1) (@ £
2. If f(x) = cosx + sinx, then f(m/4) is
(a)2 (b 112
©) 2 (d) 0.

1+
3 0f f(-t)=ﬁ- then f(tan 8) is

(a) tan({m/d4+8) (b) tan (m/4-6)
(c) cot(x/4+6) (d) cot(n/4-8).

4 f(:):'*:—;” then £~'(7) is

(a) f(-1) (b) S0
(© S0 ) f.
5. If f(x)=SNETCOST o ;[z] is
sinx +cosx 3
(@ 3 b 2+43
© 2-43 () —3.

403



404

Multiple-chaice ()

6.

7

10.

11.

13.

. 1m
a-xid o — /4

., lim

x X
lim 4287 4
=+ x

{a) log (ab)

log?
(c) —¢
) log"

-2
is

lim
=2 x =2

(a) 222
«© 22°13

sina —cose

@ 2
© 5

sinm® |
is

- m

(a) 1

) o

lim _(h — S)(J; -D is

= 2x' +x-3
(@) 1/10
() 15

. x+2
lim — is
e xt 42

(@1
{c) Indeterminate

sinx

. Jim——is

EE . 4

{a) 1

(c) =

e —1—sinx .
—_—15

lim 7
=40 x
@ 112

© 0

is

(b) log (a/b)

b
(@ 1.‘.’.53. )
log;

® 1
(d) -1.

® 3
d J6-

®) m
(d) =180,

(b) -1/10
(d) -1/5.

(b) 0
(d) e

(b) -1
(d) 0.

by 1
(d) -1.
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14.

15.

16.

17.

18.

19.

20.

21

If ',’23 @:k, the value of k is
(a) 0 b 3
{c) 173 (d) 1.
2 +xt —16x+20
If f(x) '(x-—Z)’ #2
=k, x=2
the value of k is
(a) 0 (b) 7
() 6 ) 5
Iffix) =2x -1, x=0
=2, x>0
then f(=1/2) is
(a) -2 (b) -1
(c) 1 (d) 2.
2 —
lin; M‘ if F)=2,is
o x-2
(a) 1 (b) 4
{c) 2 (d) 3.
2 2
lim log(l+ x +x")+(logl— x + x7) is
50 S€CX — CO8 X
(a) 1 (b) 2
(c) 3 (d) None of these.
. eM et
lim is
0 tan x — x
(a) 2 (b) 1
() 3 (d) -1.

The period of the function y=sin[ 3

(a) 27
¢) 62°

2:+3).
15
T

(b) 67
(d) None of these.

The period of the function y = |sinx| + [cosx| is

(a) m2
(c) 4m

(b) 2x
d) m



406

Multiple-choice Questions

22, Which of the following is an odd function:
(a) f(x) = cosx () fxy =27
(€ f(x)=2"+ (d) None of these.
xih - ex
23, lim is
ko h
(@ 0 (b) 1
(c) e" (d) &
24, If X -3x+4 .o .
. If f(x) =————— and domain = R - {1, -4} then the range of f(x) is
(x+4d)x-1)
(a) y27/25 orys -1 (b) ysT7/250ry2-1,
() y22/23 orys2 (d) ys223 ory z -2.
25, If f(x) = sinx — cosx, the range of the function is
@ —2<ys\2 b —2z2yz2
© VZsys-2 @ V22y2-42.
2
26. Range of the function sin"( - 2]is
1+x
(a) [-#12,a12] (b) [-#/2,0]
(c) [0,72] (d) [0,m2].
27, If f(x) = X+ 3 + 10x + 2 sinx, the range of the function is
(@) [~ee, =] (b) [0, =]
(c) [~ 0] (d) None of these.
28. The range of the function f(x) = -I—-LS—II-:—;-—IX—I
(@ 0<y<l ®osys1
(© 0sy<1 @ O0<ys1.
29, The periodic of the function y = sin [2x6+3] is
b3
(a) 27 (b) 67
(c) 67 (d) None of these.
. Lo X 3 B
30. The domain of y = sin (T] =log,,(4-x)is

(a) [—e=, 4] (b) [1, 4]
(€) [=ee, 3] (d) None of these.
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39.

40.

&

41.

42,

43.

44.

45.

46.

47.

The points of continuity of the function fi (x):iki:x is
{(a) x=0 (b) x= 4 cossx
(c) x=m2 (d) x=m
If f(x) = =2 sinx, xS-m2
=Asinx+ B -2 <x< 72
= Ccosx xz-al,
the values of A and B so that f(x) is continuous everywhere are
(@ A=0 B=1 ) A=1, B=1
() A=-1,B=1 d A=-1,8=0.

Iffx)=( +sin2J;)” @ then the value of f(0) that makes the function
continuous everywhere is

(a) e (b) 112

©) e @ o.

The function f(x) is f(x) = &* if x is rational = —® if x is irrational, then it
is

(a) Continuous at x = 0, (b) Discontinuous at x = 1

{c) Discontinuous at x =0, (d) Continuous at x = 1/2

Iffx) = 1, x<3

= ax + b, 3<x<5

= TI x25
is continuous, then
(@) a=3,b=-8, (b) a=-3, b=8,
) a=5b=1, (d) a=35, b=-7.
If x* = €7, then dy/dx is

1 1

@ l+logx b (1+log x)*

logx logx
© Utlogx)y @ TTogn?
If y = x log x, then dyldx is
(@) 1 (b) log x— 1
(c) log x (d) 1+ log x
The derivative of x* cos x is
(a) 2cos x — x* sinx (b) 2x cosx — x° sinx
(e) 2x%cosx — % sin x (d) 2x%cos x — % sin x.

The slope of the curve y = C+Dl-xHatx=1is
(a) a=0 (b) -88
(c) 75/256 {d) None of these.
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48.

49.

50.

51.

52

53.

54,

55.

The equation of the tangent to the curve y = 2 + 1 at the point (1, 2) is
(a) y-2=-2(x -1) b) y-2=4(x-1)
(€ y-2=2(x-1) (d) y-2=2x+ 1)

The displacement s of a particle moving in a straight line is given by
S =47 +2* - 31+ 1, 5 being measured in cm and time 7 in second. The
initial acceleration of the particle in cm/sec? is

(@) 1 (b) 4

c) -3 d =24

The differential coefficient of x* with respect to x° is

(a) 357 (b) 2x

(€) 3% + d) 3x2.

If y = x", then dy/dx vanishes, when x is equal to

(@) x=1, (b) x=e¢

(c) x=1x (d) x=-1.

If (@) = 2, (@) = 1, g(@) = -1, g'@) = 2 then f(x) = £/~ gD/

as x = q, is x—a
(a) 5 (b) 6
(c) =5 (d) None of these.

1-x

If f(x) = sin"(l—) , then f{x) with respect to J; is
+x

(@ y1-x* (b) 2/(1+x%)

(©) -2/(1+x) d) 2/J1-x*.

If f(2) = 4, and f(2) = 1, then f(x)=Ilim Mis
a2 x=2

(a) 1 (b) 2
() -2 ) 3.

If f=2sinl, x#0
X

=0, x=0
then
(a) fand f” are continuous at x = 0
(b) fand f* are derivable at x = 0
(c) fis derivable at x = 0 and f’ is not continuous at x = 0
(d) fis derivable at x = 0 and f* is continuous at x = 0
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56.

57.

58.

59.

60.

61.

62.

_ _xlogx
Iffx) = log(l + x%)

= Ot x= 0!
then
(a) f(x) is discontinuous at x = 0
(b) f(x) is continuous but not differentiable at x = 0
(c) f(x) is differntiable at x = 0
(d) f(x) is not continuous at x = 0.

2
Ify= tan™! (..ll.i.;t__l]then
X

@ Yy =1 (b) ¥'(0) = 1/2
() YO =0 (d) ¥(0) does not exist.

af 2x -l 2x dy .
If y = tan™! and z = sin! , then == is
Y [ ’J 1+x* dz

1-x
(a) 1 ) 12
() -1 (d) None of these.
If A9) = 9, f'(9) = 4, then lim% is
=Y x -

(a) 3 (b) 2
(c) 4 (d) None of these.
If fixy = (log,,, tan x) (log,,,, cotx) + tan™ (‘—i‘;), then £°(2) is
(@ 13 1
(c) 2 () 112
If & + & = a™, then dy/dx is
@ a' +a’ ) a“(a' -1)

a' -a 1-a*
© & _"" (d) None of these.

e

sinx
If flx) = wn"[m]. then f"(7/2) is
1 1
@ 2(1 +cosx) ® E

(c) % (d) None of these.
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63.

65.

66.

67.

68.

69.

70

If f(x) = x tan"'x, then f(1) is

1 x 1
—_— b) ===

(a) 2+4 (b) >+3
Lz o Loz

© =373 _ @3 7
2 3 1,

I %(g] +%(-%-=k,thenkis

(a) O (b) 1

© 2 (d) None of these.

fim (2~ tan x)"*"** cquals to

(@ e b) 1

© 0 ) e

x' sinx cosx]

3

IfRx)= ({6 -l 0 |, where p is constant then % atx=01is
p PP

(a) p by p+p°

© p+p (d) Independent of p.

The acceleration of a moving particle, whose space-time equation is given
by.f=3r2+2:—5,is

(a) 4 (b) 5
(c) 6 ) 7.
The set of all points where the function f(x) = l:i < is differentiable is
(a) (=o0, o) (b) (0, =)
(€) (===, 0) U (0, =} (d) (0, =).
7= forxeo
smx

£(0) = 1, then
(a) f(x) is continuous and differentiable at x = 0
(b) f(x) is continuous not differentiable at x =0
(c) f(x) is discontinuous not differentiable at x = 0
(d) none of these.

If sin y = x sin (a + y), then dy/dx is

cosiaty) sin’(a +)
@ cosa sina
tan’(a + y)
© —0—— (d) None of these.

tana
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71.

72.

73.

74.

75.

76.

77.

78.

If y = sin (bx + ¢), then %sin (bx + ¢) is
(a) b" sin(bx + ¢ + n2) (b) b" cos (bx + ¢ + nn/2)

(c) b" sin bx (d) b" cos bx.

If x = a cos’x, y=a sin’x, then dzy!d.\:z at t= @2 is

(a) -3/4 (b} 1/4

(c) 3/4 (d) -3/2

Ify=2x log x, then y,, when n 2 5 is

@ 1 O3 o, ) (1 B g
x" x"

© 1y =g, (d) None of these.
x

Find £ of the mean value theorem given by f(b) = f(a) + (b — a) (),
where f(X) = x(x = 1)(x—2), a=0, b= 12 is

(a) 1.253 (b) 2.362

(c) 0.236 (d) None of these.

If u = sin”'(x = y), x = 3¢, y = 4¢%, then du/dt is

@ r (b) 31,}1—:’
© 3fi+¢ @ -

d x .
If x = coty, then dx(l-!-f] is

(a) siny (siny — cosy sin2y) (b) cosy (cosy — siny cos2y)
(c) coszy [sinzy —cosy sinz[Zy}] (d) None of these.

dx , X
If x* + 2x = 2 log| ¢ = andy:au+alx+a§+u-lom.lhcn
ey + Gpyy + dy 1S )

(a) O (b) n
(c) n-1 (d) n/2.
If u = ¥ then P'u is
ax’dy

'u d'u
@ oxd’y ®) axlay?

u
) — (d) None of these.

dxoydz
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79.

81.

82.

Given that F(u) = V(x, y, z), where V is a homogeneous function in x, y,
of degree n then xa—“+ a—l‘[+z'.:}—""is
z & ox "ay 0z
F(u) F(u)
(@) n—— (b) n
F'(x) F'(y
F(u) Flu)
(€) n—— (d) .
F(2) "
dp dt dv .
If ip, 1, v) = 0, then ———is
dt dv dp
(@ 1 (b) -1
(c) 2 (d) -2.
The altitude # of a triangle ABC is computed from ing the base a

and the base angles B, C. If small errors 88, 6C be made in the angles, then
the consequent error in altitude is

sinC . sinB
sinAsinB  sinAsinC

) (e s scli ) |
sinAsinC sin Bsin A 01

sin BsinC
sinA

(d) None of these.

(c) JBSCh

With the usual meaning a, b, ¢ and s if A be the area of the triangle, the
error in the area of triangle resulting from a small error in the measurement
of ¢ is

(a) 6&:%(——1-—+ LI ]

s—a s-b s-c

s—a s=b s5-c

A a+b+c
© &_?(J(s—a)(s —b](s—c)]

® &=%[%+;+;+LJ

(d) None of these.
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101.

102.

103.

104

105,

106.

107.

108.

109.

110.

111.

The asymptote parallel to y-axis of the curve x’y* = a’y? + b is

(@) y==b (b) x=za
() xty=a (d) None of these.

The asymptote parallel to x-axis to the curve y*(x* - a®) = x is
(a) x = 2a (b) x—y=%a

(€) x=0,y=0 (d) None of these.

The real asymptote to the curve x° + y° = 6xy is

(@) x=y-2=0 b) x+y-1=0

€ x=y+1=0 (d x+y+2=0

The real asymptote to the curve x* + y* = @’ is

(@ x-y=0 (b) x+y=0

(©) x+2y=0 (d) x=2y=0.

The real asymptote to the curve y* = x(a® - x%) is

(@ x-y=0 b) x+y=0

) x+y=0 (dy x+2y=0.

The asymptote to the hyperbolic spiral 78 = a is

(a) rsinf=a (b) rcosf=a

(c) rtanf=a (d) None of these.

The greatest triangle inscribed in a circle is
(a) Isosceles triangle (b) Equilaterial triangle
(c) Right-angled triangle (d) None of these.

The shortest distance from origin to the hyperbola x* + 8xy + 7y* = 225 is
() 25 (b) 30
(c) 35 (d) 40.

The maximum value of the function f(x, y) = o+ y3 + 3xy at (-1, -1) is
(ay 2 (b) 3

(c) I (d) None of these.
The absolute maximum of the function y = x* + 1, where x e |-2, 2| is
(@) y=2atx=-l (b) y=9atx=2
(c) y=6atx=3 (d) None of these.

The dimensions of the rectangle of maximum area that can be inscribed in
the ellipse x*/a® + y*/b* =1is

(a) ab (b) (ab)/2
(c) a'b* (d) @)
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112, If P be a variable point on the ellipse x*/a® + y*/b? = 1 with foci F, and F,.
If A is the area of the APF,F,, the maximum value of A is
(a) ab (b) (ab)2
(c) abe (d) (ab)’.

113. Two towns A and B are 60 km apart. A school is to be built to serve
150 students in town A and 50 students in town B. If the total distance is
to be travelled by all 200 students is to be as small as possible, then the
school should be built at
(a) Town B (b} 45 km from town A
(c) Town A {d) 45 km from town B.

114. The largest value of 2x° — 32® - 12x + 5 for -2 < x € 4 occurs at x =
(a) -2 (b)y -1
(© 2 (d) 4.



Answers

CHAPTER 1

Exercises 1.1
1. Continuous and differentiable at x = 0.
2. Continuous at x = 2, but not differentiable at x = 2,
3. Not differentiable at x = 0, 1,

4. fix) is continuous everywhere and is differentiable everywhere except
x =2 and -2.

5. Continuous but not differentiable at x = 0.

6. f(x)is continuous everywhere and not differentiable at x = 0 only, differentiable
atx = /2.

8. Continuous at x = | and discontinuous at x = 2, and differentiable at both
the points.

11. 5.

Exercises 1.2
1. () 208 (i) 1/24x) (i) 2¢ + 1522 (iv) 1)
(v) (320" (vi) (-3M4x)R (vii) —1/2(x + @M (viii) —x/\fx? +1

(ix) 1= 1/x () Uf2x—1  (xi) 8% + 322
2. (i) 4cosdx (i) =2sin(2x) (i) 2sec?(2x) (iv) ksec(kx)

a
s
) %mz[%) (vi) =3 cosec 3x cot 3x (vii) —2cosec’(2x)

sec’x

2tan x

(viii) 3sec’(3x + 1) (ix) 2x cos(x + 1) (x)

41%
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Answers

(xi) 3sin’x cos x

(xiv) sec’(x + a)

(xvi) 2a tan ax sec’(ax)

(i) —Zsinx + 2x cosx

(xii) —2x sinx® (xiii) —2sin x cos x

_z_..sec io[an in
V) 350°3 3

(i) — (2ax + b) sin (@2 + bx + ¢)

(v) cos’x — sin®
(vii) —L],st:r:li
x x

(0]

(iv) - o
(vii) ——
(i) ne™

(iv) —sinx e***
:

|
(vii) 3

(@

(iv)

Hf-

X

(ii) sinx + x cos x

2

(iv) tan x + x sec“x

L1 1 .
(vi) —cosx — —sinx
x x

(ii) —3sec? (1 = 3x) (iii) 5 sec5x tanSx

secxtanx 3sin3x

® ?,Jsec X v - 2,}cos3x

(vii) log sinx + x cot x

(ix) —tanx

a
at +x*
1

O]

(iv)

2x* —6x+5

2
(viii) -5 NE Vx
Wx
(ii) 2623 @ii) 2xe*
(v) secre™™ (vi)—%
X
(viii) -3¢~
(ii) tanx (iii) 1 + log x
sec’x 1 :
v) (vi) —cos(logx)
tan x x
| x
(viii) ;oot;
(x) 4% logd

(ii)

1

1
a -x xyx® -1

(i) —nk

3

v)
:;Qx’ +30x + 26
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. a . 2 1
(vi) ——— (vii) (viil) ————
1+a'x! Ji-ax xf9x* -1
. m
© T
Exercises 1.3
L () 1-12 (ii) 2 cosx + 5 sin x (iii) —ke* - 9 sinx

(iv) =3/(2x) ) 22+ 52)x -2 (vi) 1 -1
(vii) 3x° cosx — a*sinx  (viii) 5x* + 9% + 10x + 2
(ix) 152 +6- 1/ (x) 2xsinx+ (2 + 1) cos x
(xi) (cosx)/x—(sinx)/x* (xii) €™ (sec’x cotx — cosec’x)

s , ) . 22 +3ax’ +d*
(xiii) 4x° log x + x (xiv) (1/x)1-logx) (xv) Gra)y
(xvi) 1/2%) (xvii) ¢ + 1x? (xviil) 4/x ~ 1 - a®x®

2. (@ si:,x (2sinx — xcosx) (ii) -xi}(x cosec’x + cot x)
X nlogx=1)
@) gy (iv) -el,{mscczx+cot %)
2 x 2
2sinx Lo_Lsecx L e(l-x)

(v) _—"'—"'—""u_cosx]: (vi) (1-tan .t)z (vii) (1+.\'2)2

x+l . 2 x + sin x(sin x + cos x)
Cviti) - x) (sin x = cos x)* (sin x + cos x)’

(14 tan x)(2x + sec xtan x) — sec’x (x* + sec x)
(1+tan x)*

(xi)

(1 + tan x)(x* cos x + 2xsin x) — x* sec xtan x

) (1+ tan x)*

(1+logx)x (e’ +cosx)—e’ —sinx

xiii
e x(1+ logx)*

2(x’ + 227 —dx +4)

{xiv) ey

(1+ tan x)(2x + sec xtan x) — (x* + sec x)sec’x

xv) (1+tan x)*
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2x(1 + cot x) + coseex(l = cot x) + x*(1 + cos® x)

(xvi)
1+ cotx)*
(xvil) 2¢Tsecx anx—sec’x (oviii) Lsec?
{1+ tan x) 2 2
(xix) _%sec;[%_éJ (xx) _xsinx:’étcosx
N 1ody o g (X )cosx—2xsinx _ef(2x+1)
3. () flu) = 7 I at x=0 (ii) 1+ 2) 2&
(iii) —(1 f} +e'secx(l+tanx)
WrO=1 f( ) 3
4. 2 :Jgj 5. le 6. -1 7.2

8. 1/V2 9.1
. 4 1 sec’x

10. (i) x*1+tanxsec’s | —+—————+2tanx
® [x 21+tanx ]

.. - 3 x X
(i) P +4)3 7 +3)7 =+ _—

( )¢ ) x X¥+4 x+3
tan x cosec’x + cot x sec’x

11. ()
(tan x — cot x)*

xsec’x + tan x(secx —1) —sinx

&) (x +sinx)’

o 2x(x 4 2x -1 , 2(x* =1)

@ =Ty W) ey

) - 23x° +4x-1) i) x° cosx + x + x* sin x — xsinx cos x
(2x* +11x+8)° x* cos’x

1+ sinx)2x — x°
(vii)xlsccxmnx+?_xsecx+(smn—xim
(1+sinx)

12. a* cosa + 2a sina, 13. -%
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Exercises 1.4

. . . 2x+1
1. (i) 3x%(sin3x + xcos3x), (i) ﬁm\}x: +x+1
¥ +x+1

(iii) cosysinx cosx
BJ;\J'sin Jx \)sin Jsin'/x

(iv) cos (sinx) cosx

(v) cos (tanx) sec’x (vi) —a sin ax cos (cos ax)

(vii) Na cosax (viii) —=08¥

2 Jax 1+sin’x
(ix) Egs-ggg'{-)' (x) sec x cosecx

X
I 1

(xi) —tan x (xii) ; logx

1-10x* 4x+3

RN eyt R TP P T
(xv) _cosx (xvi) 2+J; sin X ]

21 +sinx 21 + x) 1+
cos J; cos [sin J;]

(xvii) i (xwviii) _xlogx s
(xix) 2axe™’, (xx) secixe™™,
s
(xxi) ;_J; (xxii) e™[2sin(2x +3) +cos(2x +3)],
@ . x=1
(xxiii) m (xxiv) D
2ax+b
(xxv) ax’ +bx +¢
2. (i) 2cotx log (sin x) (ii) xtanx + log (secx)
(iii) e™(a sin bx + b cos bx) (iv) e™(a cos bx — b sin bx)
(v} e™[asin (bx + c¢) + bcos(bx + c}]
. 4 . 1
™) T ey (vii) cos[log (1 + x’}]m
(viii) tanZ (ix) secx
a
(x) — (xi) secx

2Awl4 + x/2)
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. e 4
(xii) T (xiii)} -
. " 2b(c—ax’)
) (ax® +bx +c)ax* - bx +¢) (xv) Zsecx
. . 2ab
(xvi) 2 cosecx (xvii) -
, axt -b
2absec’x 2
(Vi) 7T ot (xix) is:n—g’(rﬁ)m
lo I |+-Z£ i !
(xx) 108 a+bx) a+bx (xxi) (lux)\.";
() 2(sin x + xcos x)
1-x*sin’x
. 31 2 . .. sinx
3. (i) —=—= \Est;. (ii) - cos(+/cosx
2 Vx 2Jcos x ¢ )
(i) __sinx (v Lsec’(tan x)secs
axcosx 2 fan(tanx)

W 1 ‘F cosax i) -I~(2x +a) cosx* +ax +1
4Vx finvax 2 J& +ax+1
o xsin(l +x%) 1
{vii} —r—cos(l e (1 +@n'x)’
1 x) xsec’(1+x%)

(ix) -
" Y- Jlan(l +x?)

(xi) E€08 x*

+fsin x?
(xii) 2t
2 Jax +bx+c
(xiii) —-2-*\—}_;&1:2 x sin(mn\f;]cm[oos(mn J;)]
(xiv) cosec?x sec®(cot x) sin[tan (cot x)] cos [tan (cot x)]

(viii) —6tan’x sec’x

sinz.,]a.x2 +bx+c |:()sJa.x2 +hx+c

(xv) sec x tan x sec’(sec x) (—1)[tan(sec x)] cos|cos{tan(sec x)]}.

4. (i) sin™'(ex) cos™'(fx) (me cos fix cos ex — nf sin ax sin fx)

(ii) -ﬁ@x—b(ﬁx’ =3x+1), (iii) e"a|:sin"(ax)+ JI-IT}




426 Answers
. . 1 1 1
8 () —wyl-x (i) —xoy1-x (iii) ml T +m
(iv) 2/ +x%) ) 3Ji-x (vi) 2/(1+x%)
(vii) 172 (viii) 172 (ix) 11— 2
(x) =2/(1+x%) (xi) =2K1+xP) (xii) 4/(4+x%)
(xiii) -1/2 (xiv) 2/41-x° (xv) 172
(xvi) -1/2 (xvii) 0 (xviii) -1
(xix) 1/2 (xx) 1/2 {xxi) 1/2
. . tan” (1) 1+x
(xxii) =1/2 (xxiii) -1/2 (xxiv) Py g
. ( 1_ 2
(xxV) —— X (xxvi) (oxvi) ~ X2 =2
I+cos®x 5+3cosx b+acosx
9. (i) 27 sec?(5 — 2% + (32:x'7 tan (5 - 2x%)
3 2ax+b
I —— i1 1 1
(ii) zm sin Jax +bx+cc0sJax +bx +c¢
| S
+ +
(iii) m(smx cosv';) J;oosx
1
iv) —= (cosv/x —sin2Vx
(iv) ZJ;( )
V) 6x*(x* +1) +4x(2x° +2x7 = x* =1)
i) (2x* +3)"?(18x* +100x -3)
vi Ax+5)"
(vii) 2cos(3x + 4) sin(2x + 3) [2cos(3x + 4) cos(2x + 3)
— sin(2x + 3) sin (3x + 4)]
. 3 —2ax+b)
(viii) —(2ax + b) sin (ax® + bx + ¢) + ————
2 \ja.rz +bx+c
x sin® Jo.t’ +hr+c CDSJG.'(: +bx4c
— ’ I
(ix) %lzx + 2x (cosdx — 2xsindx)
-X
2a(l-2a*x*) cos (Za.r-\fl -a'x? ) 4
(x) Jl — (xi) v - —5sin2(5x +8)
. 53-x) .
(xii) W—251n2{2x+1) (xiii) -
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] 1_4.2
(xiv) x?ﬂxa‘ (xv) —Z-HJ] 2:
= a —x
(xvi) sinlx
2
10. (@) s‘;c X (i) —cotx (iii) sinx
X
(iv) C:S: (v) cos’x (vi) sec’x
X
1
(vii) cosecx (viii) —tanx {ix) —ECDSK’-CX
2x+1 . _cosx 2
(x) 311 (xi) (]+x:)m (xii) :
2 o —
(xiii) —pomm (xiv) SMEZXCOSY  (1v) xet
JI-x4 sin’x cosx
(xvi) cos x’ (xvii) 2~
1. () —4xcos ¥ sinx’ fanx_
(log x)
—sec’x . cos(fsin x + cosx)(cos x - sin x)
(iii) T [ (iv) =
(1 +tan x)"“(1 = tan x) 2Jsm.\:+i:0sx
1 X x a2
O @-r(JFea Jm*] “ T
Lo 24x 1 4 1
viii) 8 — —
™) 2% i (:r’ +16 1og,z]
(ix) 172 (x)1 (xi) -1
(xif) -1 {xiii) — !
1-x*
(xiv) 2 ™ T T
ey 1{1-x= 2Jx(1-x)
3 2
i) ——b 1 i) T e T T T T
2xx+1) 1+x I+9x"  1+4x
2eh
{xviii} 1+e' (xix) 7 e
2 . 1
0 S atog] ) 30
. x 1
(xxii) - — (xxiii} 2(1+x1)
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(xxiv) = (xxv) ;—:s;;;t-
12 ()1 (i) 1/(1+ tan"'x)? (iii) -2/(1 + x)
(iv) 1712 (v) =172 (vi) 1
-1 l-—ll
(vii) € '[sin"x . +Iosx) (viii) =172
(ix) —tanx
Exercises 1.5
L X . x*-ay o 337 +10xy +12y°
1. (i) 7 (ii) ¥ —ax (iii) —m
vy -2 W +y __sec’(x+y) (viy 20s(0) = 20?
x| 2y +Jx 1—sec’(x +y) 2x*y —xcos(xy)
2 3 1
(vii) cosec”(x +y°) (viii) l-y:ec (xy)
xsec”(xy) =1
‘%) sec’(x +y)—cosy + ysinx
cosx — xsiny —sec’ (x + y)
=l
® -= (xi) —\{E (i) =
¥y x ¥
(xiii) % (xiv) % (xv) -%
S L 24x% +54y +70xy
) 2nxly-y" (i) 35x° +81y* +108xy
v 10Q2x+y) =207 . cos (x + y)
(xvili) 3y -52x+ )’ (xix) 1=cos (x+y)
) X (x + y) tan (x + y) (xxi) — cosec’(x + ¥)
1-sec (x + y)tan {x + ¥) 1 +cosec’(x + y)
(xxii) -1 (xxiii) 1
(xxiv) 1 -sec{x + y)tan(x + y) (xxv) cos{x+y)—y
1+sec(x+ y)tan(x+y) x=cos(x+y)
(xxvi) LGN -y (xxvif) —2HEEY)
x—sec’(x +Y) 1-ytan(x +y)
(xxix) X (xxx) —2.
x x



429

Answers

cosy—cos{x+y)

siny +sin(x +y)

2. i) ——— ii
@ xsiny +cos(x +y) @) xcosy+sin(x+y)
1 : -
Gif) - 2?:+ys[n(xy) Gy) 2So8(0) ~2x
3xy* + xsin(xy) 2y — xcos(xy)
J.oax x
® }'COS(X‘I‘)’)—ZX}': i I—ESIDIEME}'J
10 B S vi) —=——=—
2x"y — xcos{xy) ]—2ysin’-'-;—
2 . 2 - -
(vif) sec’(x+y)—cosy+ ysinx (viii) sec’(x+y)—cosy—ycosx

cosx — x8iny —sec’ (x + y)

y—sec’(x +y)

. = 17,
sec (X + ) —x

ye + 2xsin(x’ +y°)

18. 19,
xe” +2ysin(x® + %)
22, (i) lf'(Zﬁ) (i) 2 (i) 1
Exercises 1.6
1. (i) —Elunﬁ (ii) -1, (iii) —tané&
a
2 2
O L oy L
- 1-1t
(x) __1.._._..
te' +cost)

. R |
2. 1 1—
(i) (ii) 3

4. 0 5.0 6.0
Exercises 1.7
1. (i) x"(L+logx) (ii} L
x(1=ylogx)

T

(iv) (sinx)

(v) (sin x)"""(1 + sec’x logsin x)

sinx — xsiny —sec*(x +y)

2x + (ysinx —cos y)(1 + x*)

(1 + x*)cos x — xsin y)

1+ (x+ y)e" cose” = 3x1y’)

(iii) 2 3. (i) tan@

Iy (x+ v -1

acost — bsint

) -
bcos 1 —asint

. g
(iv) cul-—z-

Tt N
- (viii) lan[4 2) (ix) ae

(i) tan@ (i) tan (872)

(iii) (sin x)"(x cot x + log sinx)

(cosx cotx = sin xlogsin x)

(vi) (sinx)"*[(1/x)logsin x +cot.xlog x]
(vii) (cosx)***[(1/x)logcosx — tan xlog x]

(viit) —sinx(cosx)™" (logcasx +1)
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[
=
=

1 1" 1 1
“T[H"J [:lng[ld-—-]—i»-—-—-:l (i) 1+x"**(1 - logx)
X x x 1+x

(i) (1+x)* [log(l +x)+L)+x"'[”—"+logx)
1+x x
(iv) x*(1+logx)+ x""(ﬁ + cosxlogx]
x
2x

sec
tan x)* | logtan x +
) ( x](oganx xlanx

—

]+x{sinx)"{logsinx + xcotx)

(vi) x’i"[cosx logx +EJ +(sin x)" (.t cosx + logsin x]
x

(vii) (tan x)*™*(l - logtan x) cosec’x +{cot x)*** (log cot x — 1)sec’x

(viii) x*(1+logx) +sec’x e

(ix) (sinx)™" [uolx cos™'x —

! logsinx
y1-2

3O lxlogy—y (i) lxlogysec’.t—tany
x ylogx—x x sec y(ylogx) —tanx
Gib) logtan x — ytan x ) cosxlogy — (l/x)sin y
logsec x — sec ycosec y cos ylogx —(1/y)sin x
%+ y* oy
(V)_y, Y logy
x’ logx + xy*

(vi) x™* [% +sec’xlogx ) + (tan x)*(2x cosec2x + log tan x)
x

2

3 2
" ¥ sec’x Y
i) tan x(1 — ylog tan x) (viii) x(2—-ylogx)
(ix) y(1-xlogy) ® ¥ cotx
x* I -y logsinx
7. Gy 2loeyxlogxlogy+l L ey 4 1og)
xlogx l-=-xlogy
1 logy ylogx+1
ylogy[l+lugx+—) vy 108y YyoOBX*T!
(i) xlogx ) x logx1-ylogxlogy
.. logsiny+ ytanx .. log x
8. —_— —_n
® logcos x — xcot y @) (1+1logx)’

(i) e*x* (fogx+1) (iv) o7
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1-x* X

P
9. (i) x""""{ logx_, sin"x x]

(ii) i(x logx}""""‘"] 1 log (log x)(log x +2)
X

og x
I+ 5 2(3x +5)
(i) @x+3) [3lug(2x+3)+_21+3 ]
(iv) I‘J;[logex +%J

10. Q:i"ﬂﬁ’_‘[ﬁ‘i] __3
dx cosy dx m==1 I\Iﬂjnf}

2 2
1. () 2=t (i) 2108y
ylogcosx -1 x[1 = y(log x)(log y)]

. 1 .. sec’x Y . y
12. —_— - -
@ 2y-1 @) 2y-1 i) -y @) 2y-x

14, & " [e—+e‘ ]ogx]+x"‘ e lugx(e‘ + ! J+x"’ -x* e (1 +elogx)
x xlogx
e"(1+x)cosx — xsinx

15. (i) sin’r cos’x (3cotx —5tanx) (i) -
cos’x

(iii) —= (-!———1~mlx)

e sinx\x

e‘tanx(l+]ogx)—e‘xlogx{sec’.t + tan x)
(e" +1an x)*

(v) b sin™ (bx) cos"(bx) (m cot bx — n tan bx)

@iv)

(vi) 2x + AJ“"Llogx
2x

(vii) x"log(ex) +(logx)* [log[log x)+ L}
log x

(viii) ™ [125 + cnsxlogx)
(ix) €™ (sinx® + 3x° cos %) + (tanx)* (log tanx + x cotr secx)

10" (cot x*) x'?
sin2x

(x) [lnglO-dcnsec (2x’}+%x -20012:(]
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(xi) x+D*x-D"] 2 + 13 -1
(x+4)e x+1 2(x-1) x+4
N a2 2x
(i) a-x)"|1+2 +3(1—x=)]
16. log a + 1 17. 0
e I +sinx) | +sinx—cos.r . 4x
18. ) ~ cosx +sinx) log x s
(i) xm(ootx — cosecxTo x]+2x’ +14x+3
" x L T
oataxe3(r 1 3
(i) Tt =
BGx+17 \x 4x+3 3x+1
v) 2(x —sinx)™* 2x -3xcosx +sinx
J; 2x(x —sinx)
) 2x* +15x* +36
3(‘1,2 +3)2f3(x3 +4)1l]
gy s oy ¥ logy + 27 log x
B ® 28 -2 @ x 2 logx +y™! i (1 +logx)’
L YEx-Y 1~ .. x*sec’(logx) -2
(iv) ;m v) % )'—'; (vi) w
. . 1
(vii) € (Iog_t)SIHI_[cntx+xlugx +l+|ugx)
CHAPTER 2
Exercises 2.1
Lo n! e Vs I R
® (a—x)*"! @ a-b {(x-ay" (x-b)"
oo (=1)n! . =)'
(iii) W (iv) G-
- Eym[ o1 3
7 [(x_:i)ml 3(.\'—2)“'

(vi) (~1)"n!sin""'@sin (n +1)8, where §=cot"'x
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a*(ax +b)"™"

2. (i)

(m —n)!

(i) e~ [a* cos(bx) + "Ca™ cos[bx + g) + ]

an " 31 . -1 4

(iii) x"e sm[4x+ntn.n E)'

(iv) r"e™ cos[br +c¢+tan” EJ, where r = (a® +b)™?
a

(v) x* cos(x + %] + 2nx cos [x +NT_1:¢J +n(n=1)cos [x +%x}

_ye3
(vi) 2(n - 3! Li“):,——, (vii) a"te™ I:a’x1 + 2anx +n(n-—l)]
x

=1y

(viii) % . (ix) 4"xsin [4x + n?xj +n4"" sin [4x +(n-— l}g]

(x) -2+ |:4.\:’ 505[2,\' +"Tx] +4nx cos [21 +%f)+"(” - l)cos(Zx * ";2)]

(xi) x* cos[x + %J +3nx? cus(x + RT_IJTJ + "(52!-1) 6x cos(x + 112;2?1')

n(n=1}n-2)

Gcos| x +——x
3t 2

(xii) n![lugx-i-] +—!-+l+ +-1~J (xiii) a"2e™ [az_‘_: + 2nax + n(n-l)]
2 3 n

3. () 2(-1)"Yn - 1! sin"@sin nf (i) 2(=1)"Y(n - 1)! 5in"@ sin n@
(it} (-1)"'(n-1)! sin"@ sin n6, & = cot™'x
(iv) 2(=1)""(n = 1)! 5in"@ sin né, = cot'x
V) (1 = Pz = 0+ Dxypy - n'y, = 0
26. Xy, +ay, + 0%y =0

27. (——l)"(n-—Z)![ xon _ xXtn }

(x-1" (x+D"

n! 9 (-1

28. (i -1)"
O=4= (x+2)""  2n2x+9™
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(i) (—1)'n!a‘”2_lcos(n+1}9. whm8=tan"£~
29. (~1)"!(n ~ 1)! cosec"a sin" sin né, whemﬂ:nan"[%]
Sin

30. %[3::‘ - 45" ¢" cos(2x +ntan” 2)+ 17" cos(4x + ntan™'7) |

1 nrw nw nw
1. — el B s il
3 lﬁ[st(x+ 2] 3 c05[3x+ > ) 5 ws[5x+ ) )]

Exercises 2.2

=1 (n=3)!

n=1

x

1. (i) €x+n) (ii)

(iii) (1/2)e* - (1/2)5"¢" cos(2x + ntan™' 2)

(iv) 2 |:4x= cos(Zx + EZE) + 4nx cos [Zx + "(”; i Jr]

+n{n-1) cos[Zx + nT_lgr)]

(v) e“a™ & + 3na’ + 3n(n - Dax + nin — 1)n - 2))

(=1)"6(n - 4)! n!
10. =5 11. e

14. y; = “2ay, —(b + @By, Y2 +2ay,,, +(@ +b%)y,
A-1"nl  (=1)a! (@ +DICD 5 niCD)" | 4C)'n!

27.

(I+3}“I _(x+2}u+l * 3{x_1)iu2 g(x_l}nl. (x+2}'"'l
1 1 w16
G- +W] 30. (-1)"n! [ P

=1)"n! (-1)"(n+1)! _ 1)"(n+2)! (=1)°n!
(.‘( _l}ul 1!(1 _l}nd 2!(1’—1)“: (x_l)n'l.

1

2. %{—l)"n!{

31

1 P T P T -1
.152. 2{ 1) n!{{x+l)'“ sin™" (cot x)sm[(n+1)cot x]

—cos™! (cot"x)cos[(n +1)cot™x ]}

33. (=1 (n—1)!sin"@sin 6, where 6= tan™ ~
X

=
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35. 5" x%e*sin [I +ntan™ -11;] +2nx 52 g2 5in {x +(n=1)tan™" %}

+n(n—1) 5" e 5in l:x +(n=2)tan™ -ﬂ

CHAPTER 3
Exercises 3.1
64243 . . 3
1. T 2. () W7 (i) 5 (i) log(e-1) {iv) I]og?.
3. G . | e -1
L) 22 6 Gi) 172 (i) o log ——

2 E] 2.2 44
2 g X . 2 X 12°x 1 2%
TR T A TR T TR

24, x_lx_+;____+... 25, x - 213 +ix3_...
30 2. 2 6

3 3
26. log[1—-log (1 -%)] =x+ %+---. log [1 + log(l + x)) = x — x* +'%—-<-

sl 5 )il )

27.

-1

CHAPTER 4
Exercises 4.1
1L i) 2 (ii) log (a/b) (iii) 2 (iv) 1
V) na"! i) 1 (vii) 2/3 (viii) —1/2
(ix) 2 (x) 72 (xi) 2alb (xii) 3/2
(xiii) 1/2 (xiv) -2/3 (xv) 112
2. a=-2, limitis-1asx—= 0 3 12
4. (i1 (ii) -1/12 (iii) -1/2 (iv) 1/3
W 1 (vi) 4 (vii) ~2/m (viii) 23
5. (i) 3 (i) 0 (iii) 1 (iv) 0
W) 1 (vi) 5
6 ()0 (ii) 0 (iii) 0 ({iv) 1
v) 1 (vi}) 1 (vii) -1/m (viii) 2af/m
7. (iy 172 (i) 1 (iii) 1/2 (iv) =114

W) 112 i) 0 (vii) 213 (viii) 1/6
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40. x =%(cosh u sinh i + ) + asinh u cosh’u

44, x+ 1 =0at (-1, 1)

46, Tangent at ¢ = 2a
Normal at 1 = 9a

48. Tangent: 3lx + 6y + 9a =0
Normal: 8x — 31y + 42a =0

45. X + ¥ = i.e. a circle

47, Tangent: x + y = 3a
Normal: x + y +a =10

49, Tangent: 4x + 2y —a=10
Normal: 2x -4y + 3a =0

50. The tangent is parallel to y-axis at the origin and also at

3

5L mx(X-x)+xy(Y -y =0

58, 1-2x, . 2x, - 7xt +7x]
2 2

[E“ial.ﬂ .b”] L”alubzu]
» ' 3

a’ -b

52, pr————
-Ja2 sec® @ + b’cosec’d

59, m*h + m(a - b) — h = 0. The roots of the equation are on the slope of the

axes.
Exercises 6.2
5. Angles of intersection is (1/2)}(x + &) 10. pr= a*
14. P =2ap 16. P = 2ap*
CHAPTER 7
Exercises 7.1
1. (i) a (ii) 4a cos ¥ (ii1) cosec’{v
(iv) a secy (v) ¢ tany
2. ae¥ 3. 2a sec’y
2 143
4 @ 20@+n” () 2 (i) (da +9x)”’£
2c 6a
ooy 31 4.1 4.1 2 1 2 22
(iv) ﬂ(1+¢“ ) o) b'x "I"a y (vi) (a*sin*8 + b* cos’
e a'b ab
(vii) 5.5/4 (viii) +2a (ix) 112
. 1252 L@
(x} ar (xi) (xii) ‘E
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2 1
(xiii) 2% aiv) 75 (xv) %
5 2 6 -2 8. +242 11. y?
. a 3\:5 . 2242 . yile
P EINTE 0{14‘6:}”: 2x
. —(a’ +b a--’ —=r
20, (i) . a ) (i) 71 (iii) (2a—x}JE
. a a* Lo a
(iv) 5 ) ; (vi) (n+])rﬂ‘l
(vii) %(Zar)m (viii) % (ix) %
. . 242
21. (i) a (ii) Tar (iii) r cosec a
32 232
v 2 W -3p i) “P‘,’
24. (i) a (ii) 2a coscczw
a S22
2. 7 32 x=3 y—iﬁ
(x-l +al )]l’! (xll +a4}3!1
' 2a'y ' 2a'x
Exercises 7.2
L 2r 2.2
33) 2r (i) 2r/3
2_ 2
g w4y -2 Z@) g om0 e e
17. () 2.2 (i) 5J5/18 (iii) 3/8
(iv) nal2 ™) 5J5/2,-2  (vi) a4
(vii) (0, -1/2) (viii) (0,1/2)

20. x = a cos ¢ (cos’t + 3sin’t), y = a sint (sin’f + 3cos?).
5
22. () V2. ?E (i) 1 (iii) SST"‘E. 52

25. (i) [%a. %a) (ii) x = a(t = sint), y = a(l + cos 1) (iii) [ga, ga)
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CHAPTER 8
Exercises 8.1
1. x+y=0 2. x+y=0
3 x=0, y=0, x+y=0 4. x=2%1, x=y
S5.x=a o 6o x=2xa, y=x
7.x=-y=a-b x+a=0, y+b=0
8. x-y=a, x+y=a 9, x=2a, yxx=a
10, 2x==1, 2y=3x, 2y+3x=0

55,

x=0, y-x=a, x+y+a=0

L y+x=0, y=x y-x=1 1. x=0, v=0, x=1, y=1
. X+ 2y =53

Lx=y, x+y=0, x+2y+1=0

. x+3=0, x=2y, x+2y=6

L x=y+1=0, x+y=1, x+2¥=0

x—y+2=0, 2x-3y+4=0, 4x-5y+6=0
y:x-—vl. y+x+2-——0, y:Zx

L 2x+5=0, x+4y+1=0, x+y+1=0

Ly+x=2, y=x+2, y=2x-4

L 2x=y, x=y, 2x-y+3=0 23 x=z%a, y==a

L x=0, y=0, 2y—-4x+3=0, Zy+4dx=15

L x—y==z1, x+y=2l

. x=0, y=2, 2y-3x-10=0 27. x=0, y=0, x+y=0

x+y-a=0, x+y+a=0 29. x+y=2a, x-y=ta
y—-x=0, y—x-1=0, y-x-2=0, y+x=0
y=-2x+2=0, y-2x+3=0, x-y+4=0

y=0, x==za

v x+3=0, x-y-2=0, x-y-4=0

2x = 1, 3x =22y 3. x=y, x=2y, x=73y
y=x, y=2x, y=3x

x+a=0, y+b=0, x-a=a-0b

x=0, y—x=ml2,y+x+mi2=0

x=0, y-x —a=0, y+x+a=0

x+2y+2=0, Zx+4y+1=0, Zx+5=0

x=0, y=0, 2y=4x+3, 2y+4x=15

x=0, y=2, 2y-3x-10=0 43 x+y=21J2, x-y==l
x+y=0 2x-3y-1=0, 2x-3y+3=0

Lx=3 y=x+1, y=x+2

L y=0, x-y=0, x-y-1=0, x-y+1=0

x-y=al, x+y=aR

x+y=0, x+y+2=0, 4x-8By-7=0, dxr+8-9=0
. rcosf = za 50. r(+3sin@-3cosd) =t4a
. r sin (6-main) 52. rcosf=azxh

. rcosf ==l 54, rsing=2

a+ 2r (cos@+ sinf) =0, a - 2r(cosf -sindh) =0
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46. One piece = 254(x + 4) metre, other piece = 100/(7 + 4) metre
51. 9,6
55. 3./3/4ab sq.m 56. 15(8/3)"" miles per hour

57. Breadth = (Jﬁ)a depth:[Jﬁm)a

Exercises 9.2

1. (i) Minima at (1, 0, 0); neither maxima nor minima at (0, 0, 0)
(ii) Maxima at (-2, -1)
(ili) Maxima at (3, -1)
(iv) When x =y # 0, x + y = a at (a/3, a/3); max value is a*/27
(v) Min. at (2, 1/2)
(vi) (108/77)a’, min. value at 3a*
(vil) Maxima and minima at (a, a), neither max. nor min. at (0, 0)
(viii) Minima at (2/3, —4/3); neither maxima nor minima at (0, 0)
(ix) Max. value at x = 3, y=-1
(x) Max. at (9, 1).
(xi) Max. at (-2, -1), min at (2, 1), but the function has neither min. nor
max. at (=2, 1) and (2, -1) respectively
(xii) Max. value at (V2, —V2) also (—V2, V2)

2. Neither maxima nor minima at (0, 0) 7. (i) 3\5 18 (i) 3\5 18
8. x=y=nr+ (-1)"m6
10. 2a8 2bA 2cA + are perpendicular distance of the point

@+ +ct @+ +c d B 4
from the sides of the triangle

11. Min. value = 4 13. 108(a/7)" min 3a®
1vad
17. EZ?

18. (i) Min. value = 34% (ii) Min. value = 3¢% (iii) Min. value = 34°
19. (i) (0, 0), (ii) Min. value = 1/3; extreme point

1 1 1
20. |1 @ +b+c*  aa’ +bb +cc
1 aa’+bb' +cc’ a?+b7% +c"
21. Min value = 34* at point (a, a, a), (-a, -a, -a)
23, Min value = 9
24. A = B= C = x/3, max. value = (1/2)°
26. [log(Aabe)] 1(loga® logh® loge®)
27. ry and ry the maximum and minimum values, where ? and r are the roots
of the equation; are a = mcilab - b



Answers 443

8

Solving the following determinant, we get the required parts of n:
0 ¢ b 2uln

c 0 a 2un _

b a 0 2un|

111 n

29. xfg =yib=dJe = Ja + b + Ve

30. Max. value = (a/9)°

33. Equilateral triangle 35. Min. value = 12, max. value = 14e
36. Quadratic in r and the equation is in the form of P

37. Max. value = 3/4 39,
ax. value Zau :
40, Max. value = 3456 41. Min. value = 7/3
. 4 mA R
42. Stationary values are X =——", V=1 2= where u =22+ y + 2
46. Max. value = 64/+3
48. Max. value = 24, min. value = -24
49. Min. value = 2/27 50. Max. value =5
51. Max. value = 12 52. Max. value = 12
54. Min. value = 8
CHAPTER 10
Exercises 10.1
2 2
L@ x—+:z =1 (i) A0 + ) = y?
a
(iii) x = a cos@ + af sinf, y = a sinf - a Bcosf
2. x-a)=0 3.y=0
4. B = 4AC 5. () 4y = (i) dxy =2
iq.i—cz r+l x—lzb_1
7. .\'2 y; 8 2 b; zg

10, (i) 2P+ y# = (i)xtytc=0
12. x4+ )P+ @ -y* =227 1327+ 7 = @a”?

19. (i) P - 2brecos@+ (B2 ~a) =0 (i) " = d"“"“cas%
(iii) r sina = ae® "™ cot ae®"'®

21 pPx —py+ (1 +ap® + pg) = 0

24, (i) (e - 1) - 2le" cosf+ 28 =0 (i) P = glintllegg :_-fl

26. 2P = ayf + (B - 1Pp?
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CHAPTER 11
Exercises 11.1
L 2. Y
X " ry
(=a, 0} (a,0)
v
3. 4. .
< /'\}
X" X- S i
(1, 0)
Y
5. v
X— —X
(-a, D} O (a, 0]
¥
6. 7.
Y
oy
3SA
r'd
#
£
’
Z X
// o]




8.

10.

12,

X

14.

o]

oo X

15,
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L (c)

s ()

9. (d)
13, (a)
17, (b)
21 (a)
25, (a)
29. (c)
33. (a)
37, (b)
41 (o)
45. (d)
49. (b)
53 (0
57. (b)
6l (b)
65. (b)
69. (c)
73 (a)
77. (a)
81. (a)
85 (d)
89. (c)
923. (a)
97. (a)
101. (b)
105. (c)
109. (c)
113. (c)

MULTIPLE-CHOICE QUESTIONS

2 (c)
6. (b)
10. (b)
14. (c)
18. (a)
22, (d)
26, (a)
30. (v
M. (o)
38, (d)
42. (a)
46. (b)
50. (d)
54. (b)
58, (b}
62. (b)
66, (d)
70. (b)
74. (c)
18. (c)
82. (b)
86, (d)
90. (b)
94, (c)
98. (a)

102, (c)

1046. (a)

110, (b)

114, (d)

i (a)

7. (c)
1L ()
15, (b)
19, (b)
23, (a)
21 (a)
3L (d)
35. (b)
39, (b)
43. (a)
41 (c)
5L (b)
55 (@
59. (o)
63. (a)
67. (c)
1. (a)
75. (b)
79. (d)
83. (a)
87. (b)
2L (a)
95. (a)
99. (a)
103. (d)
107. (b)
11L (b)

FEEE R BB RERE R B R B PR,

(b}
(a)
)
(a)
(©)
(a)
(c)
©

(c)
(c)
(c)
(a)
(c)
(d)
(a)
(a)
(d)
(a)
()
(c)
(b)
(a)
(c)
(a)
(b}
(a)
(c)
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A
Absolute value, 250
Algebra, 95
Algebraic curves, 296-297
Algebraic function, 196
Angle

between radius vector and tangent,

230-233
between tangents, 199
between two curves, 199
of contingence, 249

Condition of parallelism, 200
Coordinates

polar, 230

Current coordinates, 194
Curvature, 248, 250

of intersection of two curves (in polar

form), 234-235
vectorial, 230
Arc length, 250, 253
Asymplotes, 293
equation of an, 294
number of, 300
oblique, 296
of an algebraic curve, 294
parallel, 299
to a curve, 390

Bending, 248
average, 250

[
Cartesian  subtangent
product of, 205
Change, 1
Chord of curvature, 249, 280
parallel to x-axis, 280
parallel to y-axis, 280, 284
Complex variable, 62
Condition of orthogonality, 200

and

subnormal

average, 250

centre of, 249, 288

chord of, 249

circle of, 249

of a circle, 253

point of, 249

radius of, 249, 252, 253, 258

Curve, 248

equation of a, 297

evolute of a, 376

passing through the origin, 3189
possessing points of inflexion, 391
symmetry of, 389300

tracing the graph of a, 389

Cylinder, 330

area of curved surface of a, 331
area of whole surface of a, 331
slant height of a, 331

volume of a, 331

D

Derivative, 1

449

application of, 193
first, 58
higher-order, 58
left-hand, 2

nth, 62, 77

partial, 148
right-hand, 2
second-order, 58
third-order, 58
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Differential coefficient, 1
first , 58
of any function, 2
of hyperbolic functions, 18
of implicit functions, 39
of inverse functions, 27
of parametric functions, 45
Differentiation
from ab initio, 1
from definition, 1
from first principle, 1
logarithmic, 48
partial, 148

successive, 38

E
Envelopes, 373, 316
Equation
algebraic, 198
differential, 95
intrinsic, 251
of a curve, 297
of a normal, 201
of a straight line, 194
of a tangent, 193, 196, 197, 198, 200.
208, 390
parametric, 46
pedal, 230
quadratic, 299
Equation of a curve
in pedal form, 259
in tangential polar form, 259
Euler's theorem, 168-171
Evolute, 289, 376
Exact differential, 173
Expansion
theoretical background of, 95
Extreme value, 313
criteria for, 317-319, 349-350
of a function in three values, 351-352
when a function becomes infinite, 319

F
Fraction, partial, 62
Function,
algebraic, 196
criteria for extreme values of a, 317-
319, 349-350
extreme, 314
homogeneous, 165
implicit, 39

and d ing, 315

inverse, 27
maximum, 314

maximum value of a, 349
minimum, 314

minimum value of a, 349
rational algebraic, 62
value of any, 123

G
Gradient, 194, 195

H
Homogeneous function, 166
of degree 3, 166
of degree 4, 166
of degree n, 166
of degree (n - 1), 166
rational, 166

Inclination, 195
Increment, 1
infinitesimal, 1
Indeterminate forms, 123
Initial line, 230
Intersection of a curve with coordinate
axes, 390
Intrinsic equation, 251
of cardiod, 251
of catenary, 251
of circle, 251
of eycloid, 251
of equiangular spiral, 251
of tractrix, 251
Involute, 289

L

Lagrange’s mean value theorem, 318
Lagrange’s method, 354
Lagrange's undetermined multipliers, 349
Leibnitz's theorem, 58, 77-78, 88
Limit,

fundamental principles of, 1
Limiting point, 123
Limiting position of a secant, 193

M
Mathematical induction, 38
Maxima and minima
applied in geometry and solid geometry, 330
explanation for, 315=316
position of, 314
Mean value theorem, 100
Cauchy's, 100
first, the, 97
Lagrange's, 318
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Method of expansion
by Maclaurin's theorem, 274-275
by Newlonian method, 275276

N
Newtonian method
geometrical proof of, 276=277
method of expansion by, 275=-276
Normal, 200
equation of a, 202, 204
length of a, 202, 203
perpendicular to a, 204

0
Ordinate,
square of, 205
Origin, 230

P
Partial derivative, 148, 355
second-order, 149
Pedal equation, 230, 237
deducted from cartesian equation, 236-
237
deducted from polar equation, 237
Perfect differential, 173
Perpendicular
from pole to tangent, 233-234
length of, 204, 237
Polar coordinates, 230
Polar curves,
tracing of, 392
Polar subnormal, 236
Polar subtangent
and normal, product of, 236
Pole, 230

Q
Quadratic equations,
roots of, 297-298

R
Radius vector, 230
Reciprocal method, 137

Saddle point, 351
Secant
equation of a, 193
limiting position of a, 193
Series
Maclaurin’s, 101, 102
Stirling’s, 101
Taylor's, 101, 102, 124
Taylor's infinite, 101
Sphere, 330
Subnormal, 202
Subtangent, 2012
Sums, 93

T
Tangent, 193
equation of, 193, 196, 197, 198, 203,
208
length of a, 202, 203
perpendicular to a, 203
Taylor’s infinite series, 101
Taylor's series without remainder, 101
Theorem
Cauchy's mean value, 100
Euler's, 168-171, 196
Lagrange's mean value, 95
Leibnitz’s, 58, 77-78, 88
Maclaurin's, 25
mean value, the first, 97
on total differential, 171
Rolle's, 95, 98, 99
Taylor's, 95, 295, 350
Tracing of polar curves, 392
Trigonometry, 25

\

Value

extreme, 313

greatest, 313

least, 313

maximum, 313

minimum, 313

stationary, 351
Vectorial angle, 230
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