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Preface

This book is designed for the undergraduate differential equations course taken
by students majoring in science and engineering. A year of calculus is the pre-
requisite.

Themain goal of the text is to help students integrate the underlying theory,
solution procedures, and computational aspects of differential equations as
seamlessly as possible. Sincewewant the text to be easy to read andunderstand,
we discuss the theory as simply as possible and emphasize how to use it. When
developing models, we try to guide the reader carefully through the physical
principles underlying the mathematical model.

We also emphasize the importance of common sense, intuition, and “back
of the envelope’’ checks. When solving problems, we remind the student to ask
“Does my answer make sense?’’ Where appropriate, examples and exercises
ask the student to anticipate and subsequently interpret the physical content
of their solution. (For example, “Should an equilibrium solution exist for this
application? If so, why? What should its value be?’’) We believe that developing
this mind-set is particularly important in resisting the temptation to accept
almost any computer-generated output as correct.

Chapters 9, 10, and 11, dealing with partial differential equations and
boundary value problems, are self-contained; they can be covered in any order.

New Features
As in the first edition, we have made a determined effort to write a text that
is easy to understand. In response to the suggestions of first edition users and
reviewers, this second edition offers even more support for both students and
instructors.

• We have followed the advice of our reviewers to provide a more concise
presentation. First order differential equations (linear and nonlinear) are
now discussed in a single chapter, Chapter 2. Similarly, second order and
higher order linear equations are discussed in one chapter, Chapter 3. The
bulk of Chapter 3 develops the theory for the second order equations; the last
three sections extend these ideas to higher order linear equations.

• The introductory discussion for linear systems (Chapter 4) has been stream-
lined to reach the computational aspects of the theory as quickly as possible.

• Chapter 11 has been shortened to focus solely on linear two-point boundary
value problems (for second order scalar equations and systems).

• We have included a review of core material in the form of a set of review
exercises at the end of Chapters 2, 3, and 4. These exercises, consisting of
initial value problems for first order equations, higher order linear equations,
and first order linear systems, respectively, require the student to select as
well as apply the appropriate solution technique developed in the chapter.
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• We have added a number of new exercises, ranging from routine drill exer-
cises to those with applications to a variety of different disciplines. Answers
to the odd-numbered exercises are again given at the back of the text.

• A brief look at boundary value problems appears as a project at the end of
Chapter 3. This brief introductory overview of linear two-point boundary
value problems highlights how these problems differ from their initial-value
counterparts.

• We have added projects. There are now short projects at the end of each
chapter. Some of these are challenging applications. Others are intended to
expand the student’s mathematical horizons, showing how the material in
the chapter can be generalized. In certain applications, such as food process-
ing, the project exposes the student to the mathematics aspects of current
research.

A Multilevel Development of Certain Topics
Numerical Methods. The basic ideas underlying numerical methods and their
use in applications are presented early for both scalar problems and systems.
In Chapters 2 and 4, after Euler’s method is developed, the route to more accu-
rate algorithms is briefly outlined. The Runge-Kutta algorithm is then offered
as an example of such an improved algorithm; accompanying exercises allow
the student to apply the algorithm and experience its increased accuracy at
an introductory level. Chapter 7 subsequently builds upon this introduction,
developing a comprehensive treatment of one-step methods.

Phase Plane. An introduction to the phase plane is provided in Chapter 4 as
the different solutions of the homogeneous constant coefficient linear system
are developed. These ideas are then revisited and extended in the Chapter 6
discussion of autonomous nonlinear systems.

Boundary Value Problems. As previously mentioned, the brief introductory ex-
posure to linear two-point boundary value problems is presented at the end of
Chapter 3. The purpose here is tomake the student aware of such problems and
to point out how they differ from initial value problems. Chapter 11 provides
a more thorough study of these problems.

Supplements
The Student’s Solutions Manual (0-321-28837-8) contains detailed solutions to
the odd-numbered problems.

The Instructor’s Solutions Manual (0-321-28838-6) contains detailed solutions
to most problems.

The Online Technology Resource Manual includes suggestions for how to use
a computer algebra system with the text. Specific instructions are given for
MATLAB and Mathematica. It is available at http://www.aw-bc.com/kohler/.

http://www.aw-bc.com/kohler/
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1C H A P T E R

Introduction
to Differential Equations

C H A P T E R O V E R V I E W

1.1 Introduction

1.2 Examples of Differential Equations

1.3 Direction Fields

1.1 Introduction
Scientists and engineers develop mathematical models for physical processes
as an aid to understanding and predicting the behavior of the processes. In
this book we discuss mathematical models that help us understand, among
other things, decay of radioactive substances, electrical networks, population
dynamics, dispersion of pollutants, and trajectories of moving objects. Model-
ing a physical process often leads to equations that involve not only the physical
quantity of interest but also some of its derivatives. Such equations are referred
to as differential equations.

In Section 1.2, we give some simple examples that show how mathemat-
ical models are derived. We also begin our study of differential equations by
introducing the corresponding terminology and by presenting some concrete
examples of differential equations. Section 1.3 introduces the idea of a direc-
tion field for a differential equation. The concept of direction fields allows us to
visualize, in geometric terms, the graphs of solutions of differential equations.

1.2 Examples of Differential Equations
When we apply Newton’s second law of motion, ma = f , to an object moving
in a straight line, we obtain a differential equation of the form

my′′(t) = f (t, y(t), y′(t)). (1)
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In equation (1), y(t) represents the position, at time t, of the object. As expressed
in equation (1), the product of massm and acceleration y′′(t) is equal to the sum
of the applied forces. The applied forces [the right-hand side of equation (1)]
often depend on time t, position y(t), and velocity y′(t).

E X A M P L E

1 One of the simplest examples of linear motion is an object falling under the
influence of gravity. Let y(t) represent the height of the object above the surface
of the earth, and let g denote the constant acceleration due to gravity (32 ft/sec2

or 9.8 m/s2). See Figure 1.1.

y(t)

–mg

FIGURE 1.1

The only force acting on the falling body is its weight. The body’s position,
y(t), is governed by the differential equation y′′ = −g.

Since the only force acting on the body is assumed to be its weight,W = mg,
equation (1) reduces to my′′(t) = −mg, or

y′′(t) = −g. (2)

The negative sign appears on the right-hand side of the equation because the
acceleration due to gravity is positive downward, while we assumed y to be
positive in the upward direction. (Again, see Figure 1.1.)

Equation (2) is solved easily by taking successive antiderivatives. The first
antiderivative gives the object’s velocity,

y′(t) = −gt+ C1.

Another antidifferentiation gives the object’s position,

y(t) = − 1
2gt

2 + C1t+ C2.

Here, C1 and C2 represent arbitrary constants of integration. ❖

Notice inExample 1 that the solution involves twoundetermined constants.
This means that, by itself, differential equation (2) does not completely specify
the solution y(t). Thismakes sense physically since, to completely determine the
motion, we also need some information about the initial state of the object. The
arbitrary constants of integration that arise are often specified by prescribing
velocity and position at some initial time, say t = 0. For example, if the object’s
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initial velocity is y′(0) = v0 and its initial position is y(0) = y0, then we obtain
a complete description of velocity and position:

y′(t) = −gt+ v0, y(t) = − 1
2gt

2 + v0t+ y0.

Unless an application suggests otherwise, we normally use t to represent
the independent variable and y to represent the dependent variable. Thus, in a
typical differential equation, we are searching for a solution y(t).

As is common in amathematics text, we use a variety of notations to denote
derivatives. For instance, we may use d2y/dt2 instead of y′′(t) or d4y/dt4 instead
of y(4)(t). In addition, we often suppress the independent variable t and simply
write y and y′ instead of y(t) and y′(t). An example using this notation is the
differential equation

y′′ + 1
t
y′ + t3y = 5.

E X A M P L E

2 Scientists have observed that radioactive materials have an instantaneous rate
of decay (that is, a rate of decrease) that is proportional to the amount of
material present. If Q(t) represents the amount of material present at time t,
then dQ/dt is proportional to Q(t); that is,

dQ
dt

= −kQ, k > 0. (3)

The negative sign in equation (3) arises becauseQ is both positive and decreas-
ing; that is, Q(t) > 0 and Q′(t) < 0.

Unlike equation (2), differential equation (3) cannot be solved by integrat-
ing the right-hand side, −kQ(t), because Q(t) is not known. Instead, equation
(3) requires that we somehow find a function Q(t) whose derivative, Q′(t), is a
constant multiple of Q(t).

Recall that the exponential function has a derivative that is a constant mul-
tiple of itself. For example, if y = Ce−kt, then y′ = −kCe−kt = −ky. Therefore, we
see that a solution of equation (3) is

Q(t) = Ce−kt, (4)

where C can be any constant. ❖

As in Example 1, the differential equation by itself does not completely
specify the solution. But setting t = 0 in (4) leads to Q(0) = C. Therefore, the
quantity Q(t) given in equation (4) is completely determined once the amount
of material initially present is specified.

The Form of an nth Order Differential Equation
We now state the formal definition of a differential equation and point to some
issues that need to be addressed. An equation of the form

y(n) = f (t, y, y′, . . . , y(n−1)) (5)

is called an nth order ordinary differential equation.



4 CHAPTER 1 Introduction to Differential Equations

In equation (5), t is the independent variable, while y is the dependent
variable. A solution of the differential equation (5) is any function y(t) that
satisfies the equation on our t-interval of interest. For instance, Example 2
showed thatQ(t) = Ce−kt is a solution ofQ′ = −kQ for any value of the constant
C; the t-interval of interest for Example 2 is typically the interval 0 ≤ t < ∞.

The order of a differential equation is the order of the highest derivative
that appears in the equation. For example, y′′ = −g is a second order differential
equation. Similarly, Q′ = −kQ is a first order differential equation.

The form of the nth order ordinary differential equation (5) is not the most
general one. In particular, an nth order ordinary differential equation is any
equation of the form

G(t, y, y′, y′′, . . . , y(n)) = 0.

For example, the following equation is classified as a second order ordinary
differential equation:

t2 sin y′′ + y ln y′′ = 1.

Notice that it is not possible to rewrite this equation in the explicit form

y′′ = f (t, y, y′).

In our study, however, we usually consider only equations of the form

y(n) = f (t, y, y′, y′′, . . . , y(n−1)),

where the nth derivative is given explicitly in terms of t, y, and lower order
derivatives of y.

Differential equation (5) is called ordinary because the equation involves
just a single independent variable, t. This is in contrast to other equations called
partial differential equations, which involve two or more independent vari-
ables. An example of a partial differential equation is the one-dimensional wave
equation

∂2u(x, t)

∂x2
− ∂2u(x, t)

∂t2
= 0.

Here, the dependent variable u is a function of two independent variables, the
spatial coordinate x and time t.

Initial Value Problems
What we have seen about differential equations thus far raises some impor-
tant questions that we will address throughout this book. One such question
is “What constitutes a properly formulated problem?” Examples 1 and 2 illus-
trate that auxiliary initial conditions are required if the differential equation is
to have a unique solution. The differential equation, together with the proper
number of initial conditions, constitutes what is known as an initial value
problem.

For instance, an initial value problem associated with the falling object in
Example 1 consists of the differential equation together with initial conditions
specifying the object’s initial position and velocity:

d2y

dt2
= −g, y(0) = y0, y′(0) = v0.
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Similarly, an initial value problemassociatedwith the radioactive decay process
in Example 2 consists of the differential equation together with a specification
of the initial amount of the substance:

dQ
dt

= −kQ, Q(0) = Q0.

These examples suggest that the number of initial conditions we need to specify
must be equal to the order of the differential equation. When we address the
question of properly formulating problems, it will be apparent that this is the
case. Once we understand how to properly formulate the problem to be solved,
the obvious next question is “How do we go about solving this problem?” An-
swering the two questions

1. How do we properly formulate the problem?

2. How do we solve the problem?

is central to the study of differential equations.

Solving Initial Value Problems
As Chapters 2, 3, and 4 show, certain special types of differential equations
have formulas for the general solution. The general solution is an expression
containing arbitrary constants (or parameters) that can be adjusted so as to give
every solution of the equation. Finding the general solution is often the first step
in solving an initial value problem. The next example illustrates this idea.

E X A M P L E

3 Consider the initial value problem

y′ + 3y = 6t+ 5, y(0) = 3. (6)

(a) Show, for any constant C, that

y = Ce−3t + 2t+ 1 (7)

is a solution of the differential equation y′ + 3y = 6t+ 5.

(b) Use expression (7) to solve the initial value problem (6).

Solution:

(a) Inserting expression (7) into the differential equation y′ + 3y = 6t+ 5, we
find

y′ + 3y = (Ce−3t + 2t+ 1)′ + 3(Ce−3t + 2t+ 1)

= (−3Ce−3t + 2) + (3Ce−3t + 6t+ 3)

= 6t+ 5.

Therefore, for any value C, y = Ce−3t + 2t+ 1 is a solution of
y′ + 3y = 6t+ 5.

(b) Imposing the constraint y(0) = 3 on y(t) = Ce−3t + 2t+ 1 leads to
y(0) = C+ 1 = 3. Therefore, C = 2, and a solution of the initial value prob-
lem is

y = 2e−3t + 2t+ 1. ❖
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We will show later that y = Ce−3t + 2t+ 1 is the general solution of the
differential equation inExample 3. A geometric interpretation is given in Figure
1.2, which shows graphs of the general solution for representative values of C.
The solution whose graph passes through the point (t, y) = (0,3) is the one that
solves the initial value problem posed in Example 3.

0.5 1 1.5 2

–4

–2

2

4

6

y

t

C = 3

C = 2

C = 0

C = –1

C = –3

(0, 3)

FIGURE 1.2

For any constant C, y = Ce−3t + 2t+ 1 is a solution of y′ + 3y = 6t+ 5.
Solution curves are displayed for several values of C. For C = 2, the curve
passes through the point (t, y) = (0,3); this is the solution of the initial
value problem posed in Example 3.

E X E R C I S E S

Exercises 1–4:

What is the order of the differential equation?

1. y′′ + 3ty3 = 1 2. t4y′ + y sin t = 6

3. (y′)3 + t5 sin y = y4 4. (y′′′)4 − t2

(y′)4 + 4
= 0

Exercises 5–8:

For what value(s) of the constant k, if any, is y(t) a solution of the given differential
equation?

5. y′ + 2y = 0, y(t) = ekt 6. y′′ − y = 0, y(t) = ekt

7. y′ + (sin 2t)y = 0, y(t) = ek cos 2t 8. y′ + y = 0, y(t) = ke−t

9. (a) Show that y(t) = Cet
2

is a solution of y′ − 2ty = 0 for any value of the constant C.

(b) Determine the value of C needed for this solution to satisfy the initial condition
y(1) = 2.

10. Solve the differential equation y′′′ = 2 by computing successive antiderivatives.
What is the order of this differential equation? Howmany arbitrary constants arise
in the antidifferentiation solution process?

11. (a) Show that y(t) = C1 sin 2t+ C2 cos 2t is a solution of the differential equation
y′′ + 4y = 0, where C1 and C2 are arbitrary constants.

(b) Find values of the constants C1 and C2 so that the solution satisfies the initial
conditions y(π/4) = 3, y′(π/4) = −2.
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12. Suppose y(t) = 2e−4t is the solution of the initial value problem y′ + ky = 0, y(0) = y0.
What are the constants k and y0?

13. Consider t > 0. For what value(s) of the constant c, if any, is y(t) = c/t a solution of
the differential equation y′ + y2 = 0?

14. Let y(t) = −e−t + sin t be a solution of the initial value problem y′ + y = g(t),
y(0) = y0. What must the function g(t) and the constant y0 be?

15. Consider t > 0. For what value(s) of the constant r, if any, is y(t) = tr a solution of
the differential equation t2y′′ − 2ty′ + 2y = 0?

16. Show that y(t) = C1e
2t + C2e

−2t is a solution of the differential equation y′′ − 4y = 0,
where C1 and C2 are arbitrary constants.

Exercises 17–18:

Use the result of Exercise 16 to solve the initial value problem.

17. y′′ − 4y = 0, y(0) = 2, y′(0) = 0 18. y′′ − 4y = 0, y(0) = 1, y′(0) = 2

Exercises 19–20:

Use the result of Exercise 16 to find a function y(t) that satisfies the given conditions.

19. y′′ − 4y = 0, y(0) = 3, lim
t→∞ y(t) = 0

20. y′′ − 4y = 0, y(0) = 10, lim
t→−∞ y(t) = 0

Exercises 21–22:

The graph shows the solution of the given initial value problem. In each case,m is an in-
teger. In Exercise 21, determinem, y0, and y(t). In Exercise 22, determinem, t0, and y(t).

21. y′(t) = m+ 1, y(1) = y0

y

t
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Figure for Exercise 21

22. y′(t) = mt, y(t0) = −1
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Figure for Exercise 22

23. At time t = 0, an object having massm is released from rest at a height y0 above the
ground. Let g represent the (constant) gravitational acceleration. Derive an expres-
sion for the impact time (the time at which the object strikes the ground). What
is the velocity with which the object strikes the ground? (Express your answers in
terms of the initial height y0 and the gravitational acceleration g.)

24. A car, initially at rest, beginsmoving at time t = 0with a constant acceleration down
a straight track. If the car achieves a speed of 60 mph (88 ft/sec) at time t = 8 sec,
what is the car’s acceleration? How far down the track will the car have traveled
when its speed reaches 60 mph?
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1.3 Direction Fields
Before beginning a systematic study of differential equations, we consider a
geometric entity called a direction field, which will assist in understanding the
first order differential equation

y′ = f (t, y).

A direction field is a way of predicting the qualitative behavior of solutions
of a differential equation. A good way to understand the idea of a direction field
is to recall the “iron filings” experiment that is often done in science classes to
illustrate magnetism. In this experiment, iron filings (minute filaments of iron)
are sprinkled on a sheet of cardboard, beneath which two magnets of opposite
polarity are positioned. When the cardboard sheet is gently tapped, the iron
filings align themselves so that their axes are tangent to the magnetic field
lines. At a given point on the sheet, the orientation of an iron filing indicates
the direction of the magnetic field line. The totality of oriented iron filings gives
a good picture of the flow of magnetic field lines connecting the two magnetic
poles. Figure 1.3 illustrates this experiment.

Bar magnet

Iron filings
Cardboard sheet

FIGURE 1.3

The orientation of iron filings gives a good picture of the flow of magnetic
field lines connecting two magnetic poles.

The Direction Field for a Differential Equation
What is the connection between the iron filings experiment illustrated in Figure
1.3 and a qualitative understanding of differential equations? From calculus we
know that if we graph a differentiable function y(t), the slope of the curve at
the point (t, y(t)) is y′(t). If y(t) is a solution of a differential equation y′ = f (t, y),
then we can calculate this slope by simply evaluating the right-hand side f (t, y)
at the point (t, y(t)).

For example, suppose y(t) is a solution of the equation

y′ = 1+ 2ty (1)

and suppose the graphof y(t)passes through the point (t, y) = (2, y(2)) = (2, −1).
For differential equation (1), the right-hand side is f (t, y) = 1+ 2ty. Thus, we
find

y′(2) = f (2, y(2)) = f (2, −1) = 1+ 2(2)(−1) = −3.
Even though we have not solved y′ = 1+ 2ty, the preceding calculation
has taught us something about the specific solution y(t) passing through
(t, y) = (2, −1): it is decreasing (with slope equal to −3) when it passes through
the point (t, y) = (2, −1).
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To exploit this idea, suppose we systematically evaluate the right-hand side
f (t, y) at a large number of points (t, y) throughout a region of interest in the
ty-plane. At each point, we evaluate the function f (t, y) to determine the slope
of the solution curve passing through that point. We then sketch a tiny line
segment at that point, orientedwith the given slope f (t, y).The resulting picture,
called a direction field, is similar to that illustrated in Figure 1.3. Using such a
direction field, we can create a good qualitative picture of the flow of solution
curves throughout the region of interest.

E X A M P L E

1 (a) Sketch a direction field for y′ = 1+ 2ty in the square −2 ≤ t ≤ 2,
−2 ≤ y ≤ 2.

(b) Using the direction field, sketch your guess for the solution curve passing
through the point P = (−2,2). Also, using the direction field, sketch your
guess for the solution curve passing through the point Q = (0, −1).

Solution: The direction field for y′ = 1+ 2ty shown in Figure 1.4(a) was com-
puter generated. There are a number of computer programs available for draw-
ing direction fields. Figure 1.4(b) shows our guesses for the solutions of the
initial value problems in part (b).
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FIGURE 1.4

(a) The direction field for y′ = 1+ 2ty. (b) Using the direction field, we have
drawn our guess for the solution of y′ = 1+ 2ty, y(−2) = 2 and for the
solution of y′ = 1+ 2ty, y(0) = −1. ❖

Isoclines
The “method of isoclines” is helpful when you need to draw a direction field by
hand. An isocline of the differential equation y′ = f (t, y) is a curve of the form

f (t, y) = c,

where c is a constant. For example, consider the differential equation

y′ = y− t2.
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In this case, curves of the form y− t2 = c are isoclines of the differential equa-
tion. (These curves, y = t2 + c, are parabolas opening upward. Each has its
vertex on the y-axis.) Isoclines are useful because, at every point on an isocline,
the associated direction field filaments have the same slope, namely f (t, y) = c.
(In fact, the word “isocline” means “equal inclination” or “equal slope.”)

To carry out the method of isoclines, we first sketch, for various values of
c, the corresponding curves f (t, y) = c. Then, at representative points on these
curves, we sketch direction field filaments having slope f (t, y) = c.

E X A M P L E

2 (a) Use the method of isoclines to sketch the direction field for y′= y− t.
Restrict your direction field to the square defined by −2 ≤ t ≤ 2,
−2 ≤ y ≤ 2.

(b) Using the direction field, sketch your guess for the solution curve passing
through the point (−1, 12 ). Also, sketch your guess for the solution curve
passing through the point (−1, − 1

2 ).

Solution: For the equation y′ = y− t, lines of the form y = t+ c are isoclines.
In Figure 1.5(a) we have drawn the isoclines y = t+ 3, y = t+ 2, . . . ,
y = t− 2. At selected points along an isocline of the form y = t+ c, we have
drawn direction field filaments, each having slope c.

Figure 1.5(b) shows our guesses for the solutions of the initial value prob-
lems in part (b). In addition, note that the line y = t+ 1 appears to be a solution
curve.
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(a) (b)

FIGURE 1.5

(a) The method of isoclines was used to sketch the direction field for
y′ = y− t. (b) Using the direction field, we have sketched our guesses for
the solutions of the initial value problems in part (b) of Example 2. ❖

Direction Fields for Autonomous Equations
The method of isoclines is particularly well suited for differential equations
that have the special form

y′ = f (y). (2)
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For equations of this form, the isoclines are horizontal lines. That is, if b is any
number in the domain of f (y), then the horizontal line y = b is an isocline of
the equation y′ = f (y). In particular, y′ has the same value f (b) all along the
horizontal line y = b.

Differential equations of the form (2), where the right-hand side does not
depend explicitly on t, are called autonomous differential equations. An ex-
ample of an autonomous differential equation is

y′ = y2 − 3y.

By contrast, the differential equation y′ = y+ 2t is not autonomous. Autono-
mous differential equations are quite important in applications, and we study
them in Chapter 2.

As noted with respect to the autonomous equation y′ = f (y), all the slopes
of direction field filaments along the horizontal line y = b are equal. This fact
is illustrated in Figure 1.6, which shows the direction field for the differential
equation

y′ = y(2− y).

For instance, the filaments along the line y = 1 all have slope equal to 1. Simi-
larly, the filaments along the line y = 2 all have slope equal to 0. In fact, looking
at Figure 1.6, the horizontal lines y = 0 and y = 2 appear to be solution curves
for the differential equation y′ = y(2− y). This is indeed the case, as we show
in the next subsection.
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FIGURE 1.6

The direction field for the autonomous equation y′ = y(2− y), together
with portions of the graphs of some typical solutions. For an autonomous
equation, the slopes are constant along horizontal lines.

Equilibrium Solutions
Consider the autonomous differential equation y′ = y(2− y) whose direction
field is shown in Figure 1.6. The horizontal lines y = 0 and y = 2 appear to be
solution curves for this differential equation. In fact, by substituting either of
the constant functions y(t) = 0 or y(t) = 2 into the differential equation, we see
that it is a solution of y′ = y(2− y).

In general, consider the autonomous differential equation

y′ = f (y).



12 CHAPTER 1 Introduction to Differential Equations

If the real number β is a root of the equation f (y) = 0, then the constant function
y(t) = β is a solution of y′ = f (y). Conversely, if the constant function y(t) = β

is a solution of y′ = f (y), then β must be a root of f (y) = 0. Constant solutions
of an autonomous differential equation are known as equilibrium solutions.

REMARK: It is possible for differential equations that are not autonomous to
have constant solutions. For example, y(t) = 0 is a solution of y′ = ty+ sin y and
y(t) = 1 is a solution of y′ = (y− 1)t2. We will refer to any constant solution of
a differential equation (autonomous or not) as an equilibrium solution.

E X A M P L E

3 Find the equilibrium solutions (if any) of

y′ = y2 − 4y+ 3.

Solution: The right-hand side of the differential equation is

f (y) = y2 − 4y+ 3 = (y− 1)(y− 3).

Therefore, the equilibrium solutions are the constant functions y(t) = 1 and
y(t) = 3. ❖

E X E R C I S E S

Exercises 1–6:

(a) State whether or not the equation is autonomous.

(b) Identify all equilibrium solutions (if any).

(c) Sketch the direction field for the differential equation in the rectangular portion of
the ty-plane defined by −2 ≤ t ≤ 2, −2 ≤ y ≤ 2.

1. y′ = −y+ 1 2. y′ = t− 1 3. y′ = sin y

4. y′ = y2 − y 5. y′ = −1 6. y′ = −ty
Exercises 7–9:

(a) Determine and sketch the isoclines f ( t, y ) = c for c = −1,0, and 1.
(b) On each of the isoclines drawn in part (a), add representative direction field fila-

ments.

7. y′ = −y+ 1 8. y′ = −y+ t 9. y′ = y2 − t2

Exercises 10–13:

Find an autonomous differential equation that possesses the specified properties. [Note:
There are many possible solutions for each exercise.]

10. Equilibrium solutions at y = 0 and y = 2; y′ > 0 for 0 < y < 2; y′ < 0 for−∞ < y < 0
and 2 < y < ∞.

11. An equilibrium solution at y = 1; y′ < 0 for −∞ < y < 1 and 1 < y < ∞.

12. A differential equation with no equilibrium solutions and y′ > 0 for all y.

13. Equilibrium solutions at y = n/2,n = 0, ±1, ±2, . . . .
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Exercises 14–19:

Consider the six direction field plots shown. Associate a direction field with each of the
following differential equations.
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14. y′ = −y 15. y′ = −t+ 1 16. y′ = y2 − 1

17. y′ = −1
2

18. y′ = y+ t 19. y′ = 1

1+ y2

20. For each of the six direction fields shown, assume we are interested in the solution
that satisfies the initial condition y(0) = 0. Use the graphical information contained
in the plots to roughly estimate y(1).

21. Repeat Exercise 20 with y(0) = 0 as before, but this time estimate y(−1).
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2C H A P T E R

First Order Differential
Equations

C H A P T E R O V E R V I E W

2.1 Introduction

2.2 First Order Linear Differential Equations

2.3 Introduction to Mathematical Models

2.4 Population Dynamics and Radioactive Decay

2.5 First Order Nonlinear Differential Equations

2.6 Separable First Order Equations

2.7 Exact Differential Equations

2.8 The Logistic Population Model

2.9 Applications to Mechanics

2.10 Euler’s Method

2.1 Introduction
First order differential equations arise in modeling a wide variety of physical
phenomena. In this chapter we study the differential equations that model
applications such as population dynamics, radioactive decay, belt friction, and
mixing and cooling.

Chapter 2 has two main parts. The first part, consisting of Sections 2.1–2.4,
focuses on first order linear differential equations and their applications. The
second part, consisting of Sections 2.5–2.9, treats first order nonlinear equa-
tions. The final section, Section 2.10, introduces numerical techniques, such
as Euler’s method and Runge-Kutta methods, that can be used to approximate
the solution of a first order differential equation.



16 CHAPTER 2 First Order Differential Equations

First Order Linear Differential Equations
A differential equation of the form

y′ + p(t)y = g(t) (1)

is called a first order linear differential equation. In equation (1), p(t) and
g(t) are functions defined on some t-interval of interest, a < t < b.

If the function g(t) on the right-hand side of (1) is the zero function, then
equation (1) is called homogeneous. If g(t) is not the zero function, then equa-
tion (1) is nonhomogeneous.

A first order equation that can be put into the form of equa-
tion (1) by algebraic manipulations is also called a first order linear differ-
ential equation. For example, the following are first order linear differential
equations:

(a) e−ty′ + 3ty = sin t (b)
1
y
y′ + t2 = ln t

y
.

A first order differential equation that cannot be put into the form of equation
(1) is called nonlinear. As we will see, it is possible to find an explicit repre-
sentation for the solution of a first order linear equation. By contrast, most
first order nonlinear equations cannot be solved explicitly. In Sections 2.6 and
2.7, we will discuss solution techniques for certain special types of first order
nonlinear differential equations.

E X A M P L E

1 Is the differential equation linear or nonlinear? If the equation is linear, decide
whether it is homogeneous or nonhomogeneous.

(a) y′ = ty2 (b) y′ = t2y (c) (cos t)y′ + ety = sin t (d)
y′

y
+ t3 = sin t

Solution:

(a) This equation is nonlinear because of the presence of the y2 term.

(b) This equation is linear and homogeneous; it can be put in the form
y′ − t2y = 0.

(c) This equation can be put into the form of equation (1),

y′ + et

cos t
y = tan t.

Therefore, the equation is linear and nonhomogeneous.

(d) This equation can be rewritten as

y′ + (t3 − sin t) y = 0.

Therefore, the equation is linear and homogeneous. ❖

Existence and Uniqueness for First Order Linear
Initial Value Problems
Before looking at how to solve a first order linear equation, we want to address
the following question: “What constitutes a properly formulated problem?”
This question is answered by the following theorem, which we state now and
prove in the Exercises at the end of Section 2.2.
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Theorem 2.1
Let p(t) and g(t) be continuous functions on the interval (a,b), and let t0
be in (a,b). Then the initial value problem

y′ + p(t)y = g(t), y(t0) = y0

has a unique solution on the entire interval (a,b).

Notice that the theorem states three conclusions. A solution exists, it is
unique, and this unique solution exists on the entire interval (a,b). We will see
that determining intervals of existence is considerably more complicated for
nonlinear differential equations.

The importance of Theorem 2.1 lies in the fact that it defines the framework
within which we can construct solutions. In particular, suppose we are given a
linear differential equation y′ + p(t)y = g(t) with coefficient functions p(t) and
g(t) that are continuous on (a,b). If we impose an initial condition of the form
y(t0) = y0, where a < t0 < b, the theorem tells us there is one and only one solu-
tion. Therefore, if we are able to construct a solution by using some technique
we have discovered, the theorem guarantees that it is the only solution—there
is no other solution we might have overlooked, one obtainable perhaps by a
technique other than the one we are using.

E X A M P L E

2 Consider the initial value problem

y′ + 1
t(t+ 2)

y = 1
t− 5

, y(3) = 1.

What is the largest interval (a,b) on which Theorem 2.1 guarantees the exis-
tence of a unique solution?

Solution: The coefficient function p(t) = t−1(t+ 2)−1 has discontinuities at
t = 0 and t = −2 but is continuous everywhere else. Similarly, q(t) = (t− 5)−1

has a discontinuity at t = 5 but is continuous for all other values t. Therefore,
Theorem 2.1 guarantees that a unique solution exists on each of the following
t-intervals:

(−∞, −2), (−2,0), (0,5), (5, ∞).

Since the initial condition is imposed at t = 3, we are guaranteed that a unique
solution exists on the interval 0 < t < 5. (The solution might actually exist over
a larger interval, butwe cannot ascertain thiswithout actually solving the initial
value problem.) ❖

E X E R C I S E S

Exercises 1–10:

Classify each of the following first order differential equations as linear or nonlinear. If
the equation is linear, decide whether it is homogeneous or nonhomogeneous.

1. y′ − sin t = t2y 2. y′ − sin t = ty2 3.
y′

y
− y cos t = t
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4. y′ sin y = (t2 + 1)y 5. y′ sin t = t2 + 1
y

6. 2ty+ ety′ = y

t2 + 4

7. yy′ = t3 + y sin 3t 8. 2ty+ eyy′ = y

t2 + 4
9.

ty′

(t4 + 2)y
= cos t+ e3t

y

10.
y′

(t2 + 1)y
= cos t

Exercises 11–14:

Consider the following first order linear differential equations. For each of the initial
conditions, determine the largest interval a < t < b on which Theorem 2.1 guarantees
the existence of a unique solution.

11. y′ + t

t2 + 1
y = sin t

(a) y(−2) = 1 (b) y(0) = π (c) y(π) = 0

12. y′ + t

t2 − 4
y = 0

(a) y(6) = 2 (b) y(1) = −1 (c) y(0) = 1 (d) y(−6) = 2

13. y′ + t

t2 − 4
y = et

t− 3

(a) y(5) = 2 (b) y(− 3
2 ) = 1 (c) y(0) = 0

(d) y(−5) = 4 (e) y( 32 ) = 3

14. y′ + (t− 1)y = ln
∣∣ t+ t−1

∣∣
t− 2

(a) y(3) = 0 (b) y
(
1
2

) = −1 (c) y(− 1
2 ) = 1 (d) y(−3) = 2

15. If y(t) = 3et
2

is known to be the solution of the initial value problem

y′ + p(t)y = 0, y(0) = y0,

what must the function p(t) and the constant y0 be?

16. (a) For what value of the constant C and exponent r is y = Ctr the solution of the
initial value problem

2ty′ − 6y = 0, y(−2) = 8?

(b) Determine the largest interval of the form (a,b) on which Theorem 2.1 guaran-
tees the existence of a unique solution.

(c) What is the actual interval of existence for the solution found in part (a)?

17. If p(t) is any function continuous on an interval of the form a < t < b and if t0 is
any point lying within this interval, what is the unique solution of the initial value
problem

y′ + p(t)y = 0, y(t0) = 0

on this interval? [Hint: If, by inspection, you can identify one solution of the given
initial value problem, then Theorem 2.1 tells you that it must be the only solution.]
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2.2 First Order Linear Differential Equations
In this section,we solve the first order linear homogeneous differential equation

y′ + p(t)y = 0, (1)

and then we build on this result to solve the nonhomogeneous equation
y′ + p(t)y = g(t).

Solving the Linear Homogeneous Equation
Consider the homogeneous first order linear equation y′ + p(t)y = 0, which we
rewrite as

y′ = −p(t)y. (2)

We assume that p(t) is continuous on the t-interval of interest.
To solve equation (2), we need to find a function y(t) whose derivative is

equal to −p(t) times y(t). Recall from calculus that

d
dt
e−P(t) = −P ′(t)e−P(t).

The function y = e−P(t) has the property that

y′ = −P ′(t)y.

Therefore, if we choose a function P(t) such that P ′(t) = p(t), then

y = e−P(t) (3)

is a solution of y′ = −p(t)y.
If P ′(t) = p(t), then P(t) is an antiderivative of p(t) and is usually denoted

by the integral notation, P(t) = ∫
p(t)dt. So a solution of y′ = −p(t)y can be

expressed as

y = e−
∫
p(t)dt.

E X A M P L E

1 Find a solution of the differential equation

y′ + 2ty = 0.

Solution: For this linear equation, p(t) = 2t. For P(t) we can choose any con-
venient antiderivative of p(t). If we select

P(t) = t2,

then, using (3), we obtain the solution

y = e−t2 .

As a check, let y = e−t2 . Then y′ = −2te−t2 = −2ty. Thus, we have verified that
y = e−t2 is a solution of y′ + 2ty = 0. Figure 2.1 shows the direction field for this
differential equation, as well as a graph of the solution.

(continued)
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(continued)
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FIGURE 2.1

The direction field for the differential equation in Example 1
and the graph of a solution, y = e−t2 . ❖

The General Solution
Equation (3) represents one solution of y′ + p(t)y = 0. But, in order to solve
initial value problems, we need to develop amethod for finding all the solutions.
Observe that if we multiply solution (3) by any constant C, then the resulting
function,

y = Ce−P(t), (4)

is also a solution. In fact (see Exercises 47–48), Theorem 2.1 can be used to
show that every solution of y′ + p(t)y = 0 has the form (4) for some constant C.
We call (4) the general solution of y′ + p(t)y = 0.

E X A M P L E

2 Find the general solution of

y′ + (cos t)y = 0.

Solution: A convenient antiderivative for p(t) = cos t is P(t) = sin t. Thus, the
general solution is

y = Ce− sin t. ❖

REMARK: Let P(t) be an antiderivative of p(t). From calculus we know that any
other antiderivative of p(t) has the form P(t) + K, whereK is some constant. For
instance, in Example 2, we chose P(t) = sin t as an antiderivative of p(t) = cos t.
We could just as well have chosen P(t) = 2+ sin t as the antiderivative. In that
case, the general solution would have had the form

y = Ce−(2+sin t) = Ce−2e− sin t = C1e
− sin t.
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In this expression, C is an arbitrary constant. Since C1 = Ce−2, we can regard
C1 as an arbitrary constant as well. Thus, no matter which antiderivative we
choose, the general solution is still the product of an arbitrary constant and the
function e− sin t.

Using the General Solution to Solve Initial Value Problems
An initial value problem for a homogeneous first order linear equation can be
solved by first forming the general solution

y = Ce−P(t)

and then choosing the constant C so as to satisfy the initial condition.

E X A M P L E

3 Solve the initial value problem

ty′ + 2y = 0, y(1) = 5.

Solution: Notice that the differential equation is not in the standard form for a
first order linear equation. In order to use equation (4) to represent the general
solution, we need to rewrite the differential equation as

y′ + 2
t
y = 0, y(1) = 5.

As rewritten, p(t) = 2/t. A convenient antiderivative is

P(t) =
∫
2
t
dt = 2 ln | t | = ln | t |2 = ln t2.

Having an antiderivative P(t), we obtain the general solution

y = Ce−P(t) = Ce−ln t
2 = Ct−2.

The initial condition y(1) = 5 requires that C = 5. Therefore, the unique solu-
tion of the initial value problem is

y = 5

t2
. ❖

Example 3 illustrates a point about Theorem 2.1. The differential equa-
tion has a coefficient function, p(t) = 2/t, that is not defined and certainly not
continuous at t = 0. Therefore, Theorem 2.1 cannot be used to guarantee that
solutions exist across any interval containing t = 0. In fact, for this initial value
problem, the solution, y(t) = 5/t2, is not defined at t = 0.

However, if we change the initial condition in Example 3 to y(1) = 0, we
find that the solution is the zero function, y(t) = 0 (see Figure 2.2). Thus, even
though this particular initial value problem does not satisfy the conditions of
Theorem2.1 on (−∞, ∞), it does in fact have a solution that is defined for all t. It
is important to realize that the failure of Theorem 2.1 to apply to an initial value
problem does not imply that the solution must necessarily “behave badly.” The
logical distinction is important. Theorem 2.1 asserts that if the hypotheses are
satisfied, “good things will happen.” It does not assert that when the hypotheses
are not satisfied, “bad things must happen.”
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(d) y(t) = –2
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FIGURE 2.2

Some solutions of the problem ty′ + 2y = 0, y(1) = y0, posed in Example 3.
When y0 is nonzero, the solution is defined only for t > 0. But if y0 = 0, the
solution is the zero function and is defined for all t.

First Order Linear Nonhomogeneous Equations
We now solve the nonhomogeneous linear equation

y′ + p(t)y = g(t).

We assume that p(t) and g(t) are continuous on the t-interval of interest.

Integrating Factors

As preparation for solving the nonhomogeneous equation, we reconsider the
homogeneous equation from a slightly different point of view. In particular, the
homogeneous equation has the form

y′ + p(t)y = 0. (5)

Let P(t) be some antiderivative of p(t), and define a new function μ(t) by

μ(t) = eP(t). (6)

The function μ(t) = eP(t) is called an integrating factor. We will shortly see the
reason for this name.

Note from equation (6) that

μ′(t) = P ′(t)eP(t) = p(t)μ(t). (7a)

Wemultiply equation (5) by the integrating factorμ(t) to obtain a new equation,

μ(t)y′ + μ(t)p(t)y = 0.

From (7a), μ′(t) = p(t)μ(t), and therefore

μ(t)y′ + μ′(t)y = 0. (7b)

The left-hand side of equation (7b) is the derivative of a product and can be
rewritten as

d
dt

(μ(t)y(t)) = 0. (8)
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If the derivative of a function is identically zero, then the function must be
constant. Therefore, equation (8) implies

μ(t)y(t) = C,

where C is a constant. Since μ(t)y(t) = C and since μ(t) = eP(t) is nonzero, we
can solve for y(t):

y(t) = 1
μ(t)

C

= Ce−P(t).

The derivation of equation (8) explains why the function μ(t) = eP(t) is called
an “integrating factor.” That is, we multiply equation (5) by μ(t) to obtain the
new equation (8), which can be integrated. Also note that this derivation leads
to the same general solution for equation (5) that we found in equation (4),
y = Ce−P(t). The purpose of the derivation is to introduce the concept of an
integrating factor.

Using an Integrating Factor to Solve
the Nonhomogeneous Equation

Now consider the nonhomogeneous equation

y′ + p(t)y = g(t). (9)

If we multiply equation (9) by the integrating factor μ(t) = eP(t), we obtain
μ(t)y′ + μ(t)p(t)y = μ(t)g(t). Since μ′(t) = μ(t)p(t), we have

μ(t)y′ + μ′(t)y = μ(t)g(t),

or

d
dt

(μ(t)y(t)) = μ(t)g(t).

Integrating both sides gives

μ(t)y(t) =
∫

μ(t)g(t)dt+ C,

where C is a constant and where
∫

μ(t)g(t)dt represents some particular an-
tiderivative of μ(t)g(t). Solving for y(t), we are led to the general solution of the
nonhomogeneous equation (9):

y = e−P(t)
∫
eP(t)g(t)dt+ Ce−P(t). (10)

REMARKS:

1. Don’t be confused by the notation. In particular, the terms e−P(t) and
eP(t) in (10) do not cancel; eP(t) is part of the function eP(t)g(t) whose
antiderivative must be determined. Once this antiderivative has been
calculated, it is multiplied by the term e−P(t).

2. Notice that the general solution given by (10) is the sum of two terms,
e−P(t) ∫

eP(t)g(t)dt and Ce−P(t). The first term is some particular solution
of the nonhomogeneous equation, while the second term represents the



24 CHAPTER 2 First Order Differential Equations

general solution of the homogeneous equation. We’ll see this same so-
lution structure again when we study higher order linear equations and
systems of linear equations.

3. Observe that the general solution contains only one arbitrary constant,
C. This constant is determined by imposing an initial condition.

4. Although expression (10) is the general solution of the nonhomogeneous
equation, you should not try tomemorize it. Instead, remember the steps
leading to (10).

E X A M P L E

4 Find the general solution and then solve the initial value problem

y′ + 2ty = 4t, y(0) = 5.

Solution: For this differential equation, p(t) = 2t. An antiderivative isP(t) = t2,
and so an integrating factor is

μ(t) = et
2
.

Multiplying the differential equation by μ(t), we obtain

et
2
y′ + 2tet

2
y = 4tet

2
or (et

2
y)′ = 4tet

2
.

Therefore,

et
2
y = 2et

2 + C.

Solving for y, we obtain the general solution

y = 2+ Ce−t2 .

Imposing the initial condition y(0) = 5, we find

y = 2+ 3e−t2 .

The solution is graphed in Figure 2.3.

–1

1

2

3

4

5

6

–3 –2 –1 1 2 3
t

y

y(t) = 2 + 3e–t2

y = 2

FIGURE 2.3

The solution of the problem posed in Example 4 is y = 2+ 3e−t2 . ❖

Example 4 illustrates the second remark following equation (10). The gen-
eral solution we found (namely y = 2+ Ce−t2 ) is the sum of some particular so-
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lution of the nonhomogeneous equation (namely the constant function y = 2)
and the general solution of the homogeneous equation (namely y = Ce−t2 ). Note
that the initial condition was imposed on the general solution as the last step.
This will always be the case.

Discontinuous Coefficient Functions
In some applications, physical conditions undergo abrupt changes. For exam-
ple, a hot metal object might be plunged suddenly into a cooling bath, or we
might throw a switch and abruptly change the source voltage in an electrical
network.

Such applications are often modeled by an initial value problem

y′ + p(t)y = g(t), y(a) = y0, a ≤ t ≤ b,

where one or both of the functions p(t) and g(t) have a jump discontinuity at
some point, say t = c, where a < c < b. In such cases, even though y′(t) is not
continuous at t = c, we expect on physical grounds that the solution y(t) is
continuous at t = c. For these problems we first solve the initial value problem
on the interval a ≤ t < c; the solution y(t) will have a one-sided limit,

lim
t→c− y(t) = y(c−).

To complete the solution, we use the limiting value y(c−) as the initial condition
on the subinterval [c,b] and then solve a second initial value problem on [c,b].

E X A M P L E

5 Solve the following initial value problem on the interval 0 ≤ t ≤ 2:

y′ − y = g(t), y(0) = 0, where g(t) =
{

1, 0 ≤ t < 1
−2, 1 ≤ t ≤ 2.

Solution: The graph of g(t) is shown in Figure 2.4(a); it has a jump discontinu-
ity at t = 1. On the interval [0,1), the differential equation reduces to y′ − y = 1.
The general solution is

y(t) = Cet − 1.

Imposing the initial condition,weobtain y(t) = et − 1,0 ≤ t < 1. As t approaches
1 from the left, y(t) approaches the value e− 1. Therefore, to complete the so-
lution process, we solve a second initial value problem,

y′ − y = −2, y(1) = e− 1, 1 ≤ t ≤ 2.

The solution of this initial value problem is

y(t) =
(
1− 3

e

)
et + 2, 1 ≤ t ≤ 2.

Combining the individual solutions of these two initial value problems, we
obtain the solution for the entire interval 0 ≤ t ≤ 2:

y(t) =

⎧⎪⎨
⎪⎩
et − 1, 0 ≤ t < 1(
1− 3

e

)
et + 2, 1 ≤ t ≤ 2.

(continued)
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(continued)

The graph of y(t) is shown in Figure 2.4(b). Note that y(t) is continuous on the
entire t-interval of interest. However, y(t) is not differentiable at t = 1.
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FIGURE 2.4

(a) The coefficient function g(t) of the differential equation y′ − y = g(t) in
Example 5 has a jump discontinuity at t = 1. (b) The solution of
y′ − y = g(t), y(0) = 0 is continuous on the interval 0 ≤ t ≤ 2, but is not
differentiable at t = 1. ❖

E X E R C I S E S

Exercises 1–10:

For each initial value problem,

(a) Find the general solution of the differential equation.

(b) Impose the initial condition to obtain the solution of the initial value problem.

1. y′ + 3y = 0, y(0) = −3 2. 2y′ − y = 0, y(−1) = 2

3. 2ty− y′ = 0, y(1) = 3 4. ty′ − 4y = 0, y(1) = 1

5. y′ − 3y = 6, y(0) = 1 6. y′ − 2y = e3t, y(0) = 3

7. 2y′ + 3y = et, y(0) = 0 8. y′ + y = 1+ 2e−t cos 2t, y(π/2) = 0

9. 2y′ + (cos t)y = −3 cos t, y(0) = −4 10. y′ + 2y = e−t + t+ 1, y(−1) = e

Exercises 11–24:

Find the general solution.

11. ty′ + 4y = 0 12. y′ + (1+ sin t)y = 0 13. y′ − 2(cos 2t)y = 0

14. (t2 + 1)y′ + 2ty = 0 15.
y′

(t2 + 1)y
= 3 16. y+ ety′ = 0

17. y′ + 2y = 1 18. y′ + 2y = e−t 19. y′ + 2y = e−2t

20. y′ + 2ty = t 21. ty′ + 2y = t2, t > 0 22. (t2 + 4)y′ + 2ty = t2(t2 + 4)
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23. y′ + y = t 24. y′ + 2y = cos 3t

25. Consider the three direction fields shown. Match each of the direction field plots
with one of the following differential equations:

(a) y′ + y = 0 (b) y′ + t2y = 0 (c) y′ − y = 0
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Figure for Exercise 25

Exercises 26–27:

The graph of the solution of the given initial value problem is known to pass through
the (t, y) points listed. Determine the constants α and y0.

26. y′ + α y = 0, y(0) = y0. Solution graph passes through the points (1,4) and (3,1).

27. ty′ − α y = 0, y(1) = y0. Solution graph passes through the points (2,1) and (4,4).

28. Following are four graphs of y(t) versus t,0 ≤ t ≤ 10, corresponding to solutions of
the four differential equations (a)–(d). Match the graphs to the differential equa-
tions. For each match, identify the initial condition, y(0).

(a) 2y′ + y = 0 (b) y′ + (cos 2t)y = 0

(c) 10y′ − (1− cos 2t)y = 0 (d) 10y′ − y = 0
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Figure for Exercise 28

29. Antioxidants Active oxygen and free radicals are believed to be exacerbating factors
in causing cell injury and aging in living tissue.1 These molecules also accelerate
the deterioration of foods. Researchers are therefore interested in understanding
the protective role of natural antioxidants. In the study of one such antioxidant
(Hsian-tsao leaf gum), the antioxidation activity of the substance has been found
to depend on concentration in the following way:

dA(c)
dc

= k[A∗ − A(c)], A(0) = 0.

In this equation, the dependent variable A is a quantitative measure of antioxidant
activity at concentration c. The constant A∗ represents a limiting or equilibrium
value of this activity, and k is a positive rate constant.

(a) Let B(c) = A(c) − A∗ and reformulate the given initial value problem in terms of
this new dependent variable, B.

(b) Solve the new initial value problem for B(c) and then determine the quantity of
interest, A(c). Does the activity A(c) ever exceed the value A∗?

(c) Determine the concentration at which 95% of the limiting antioxidation activity
is achieved. (Your answer is a function of the rate constant k.)

30. The solution of the initial value problem ty′ + 4y = αt2, y(1) = − 1
3 is known to exist

on −∞ < t < ∞. What is the constant α?

1Lih-Shiuh Lai, Su-Tze Chou, and Wen-Wan Chao, “Studies on the Antioxidative Activities of
Hsian-tsao (Mesona procumbens Hemsl) Leaf Gum,” J. Agric. Food Chem., Vol. 49, 2001,
pp. 963–968.
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Exercises 31–33:

In each exercise, the general solution of the differential equation y′ + p(t)y = g(t) is
given, where C is an arbitrary constant. Determine the functions p(t) and g(t).

31. y(t) = Ce−2t + t+ 1 32. y(t) = Cet
2 + 2 33. y(t) = Ct−1 + 1, t > 0

Exercises 34–35:

In each exercise, the unique solution of the initial value problem y′ + y = g(t), y(0) = y0
is given. Determine the constant y0 and the function g(t).

34. y(t) = e−t + t− 1 35. y(t) = −2e−t + et + sin t

Exercises 36–37:

In each exercise, discuss the behavior of the solution y(t) as t becomes large. Does
lim t→∞ y(t) exist? If so, what is the limit?

36. y′ + y+ y cos t = 1+ cos t, y(0) = 3

37.
y′ − e−t + 2

y
= −2, y(0) = −2

38. The solution of the initial value problem y′ + y = e−t, y(0) = y0 has amaximumvalue
of e−1 = 0.367 . . . , attained at t = 1. What is the initial condition y0?

39. Let y(t) be a nonconstant solution of the differential equation y′ + λy = 1, where λ

is a real number. For what values of λ is lim t→∞ y(t) finite? What is the limit in this
case?

Exercises 40–43:

As in Example 5, find a solution to the initial value problem that is continuous on the
given interval [a,b].

40. y′ + 1
t
y = g(t), y(1) = 1; g(t) =

{
3t, 1 ≤ t ≤ 2

0, 2 < t ≤ 3; [a,b] = [1,3]

41. y′ + (sin t)y = g(t), y(0) = 3; g(t) =
{
sin t, 0 ≤ t ≤ π

− sin t, π < t ≤ 2π; [a,b] = [0,2π ]

42. y′ + p(t)y = 2, y(0) = 1; p(t) =
⎧⎨
⎩
0, 0 ≤ t ≤ 1

1
t
, 1 < t ≤ 2;

[a,b] = [0,2]

43. y′ + p(t)y = 0, y(0) = 3; p(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2t− 1, 0 ≤ t ≤ 1

0, 1 < t ≤ 3

−1
t
, 3 < t ≤ 4;

[a,b] = [0,4]

Exercises 44–45:

In each exercise, you are asked to express the solution in terms of a “special function”
[the function Si(t) in Exercise 44 and erf(t) in Exercise 45]. Such special functions are
sufficiently important in applications to warrant giving them names and studying their
properties. (A book such as Handbook of Mathematical Functions by Abramowitz and
Stegun2 gives the definitions formany important special functions, lists their properties,
and has tables of their values. Scientific software such asMATLAB,Mathematica,Maple,
and Derive has subroutines for evaluating special functions.)

2Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions (New York: Dover
Publications, 1965).



30 CHAPTER 2 First Order Differential Equations

44. Solve y′ − 1
t
y = sin t, y(1) = 3. Express your answer in terms of the sine integral,

Si(t), where Si(t) =
∫ t

0

sin s
s

ds. [Note that Si(t) = Si(1) +
∫ t

1

sin s
s

ds.]

45. Solve y′ − 2ty = 1, y(0) = 2. Express your answer in terms of the error function,

erf(t), where erf(t) = 2√
π

∫ t

0
e−s2 ds.

46. Superposition First order linear differential equations possess important superpo-
sition properties. Show the following:

(a) If y1(t) and y2(t) are any two solutions of the homogeneous equation
y′ + p(t)y = 0 and if c1 and c2 are any two constants, then the sum c1y1(t) + c2y2(t)
is also a solution of the homogeneous equation.

(b) If y1(t) is a solution of the homogeneous equation y′ + p(t)y = 0 and y2(t) is a
solution of the nonhomogeneous equation y′ + p(t)y = g(t) and c is any constant,
then the sum cy1(t) + y2(t) is also a solution of the nonhomogeneous equation.

(c) If y1(t) and y2(t) are any two solutions of the nonhomogeneous equation
y′ + p(t)y = g(t), then the sum y1(t) + y2(t) is not a solution of the nonhomogeneous
equation.

Exercises 47–48:

Outline of a Proof of Theorem 2.1 The discussion of integrating factors in this section
provides a basis for establishing the existence-uniqueness result stated in Theorem 2.1.
In particular, consider the initial value problem y′ + p(t)y = g(t), y(t0) = y0, where p(t)
and g(t) are continuous on the interval (a,b) and where t0 is in the interval (a,b). Let
P(t) denote the specific antiderivative of p(t) that vanishes at t0,

P(t) =
∫ t

t0

p(s)ds. (11)

Since p is continuous on (a,b), it follows from calculus that P(t) is defined and differ-
entiable for all t in (a,b). As an instance of equation (10), define y(t) by

y(t) = y0e
−P(t) + e−P(t)

∫ t

t0

eP(s)g(s) ds. (12)

Since g is continuous on (a,b) and P(t) is differentiable on (a,b), it follows from cal-
culus that G(t) = ∫ t

t0
eP(s)g(s) ds is defined and differentiable for all t in (a,b) and that

dG/dt = eP(t)g(t).

47. Use the facts above to show that y(t) defined in equation (12) is a solution of the ini-
tial value problem y′ + p(t)y = g(t), y(t0) = y0. This explicit construction establishes
that at least one solution of the initial value problem exists on the entire interval
(a,b).

48. To establish the uniqueness part of Theorem 2.1, assume y1(t) and y2(t) are two so-
lutions of the initial value problem y′ + p(t)y = g(t), y(t0) = y0. Define the difference
function w(t) = y1(t) − y2(t).

(a) Show that w(t) is a solution of the homogeneous linear differential equation
w′ + p(t)w = 0.

(b) Multiply the differential equation w′ + p(t)w = 0 by the integrating factor eP(t),
where P(t) is defined in equation (11), and deduce that eP(t)w(t) = C, where C is a
constant.

(c) Evaluate the constant C in part (b) and show that w(t) = 0 on (a,b). Therefore,
y1(t) = y2(t) on (a,b), establishing that the solution of the initial value problem is
unique.
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2.3 Introduction to Mathematical Models
Differential equations often serve as mathematical models that are used to
describe and make predictions about physical systems. This section and the
next one focus onmodels based onfirst order linear differential equations,while
Sections 2.8 and 2.9 considermodels involving first order nonlinear differential
equations. Later chapters present models involving higher order differential
equations and systems of differential equations.

We saw a simple example of a mathematical model in Chapter 1:

d2y

dt2
= −g, y(0) = y0, y′(0) = v0.

This initial value problem is a mathematical model, derived from Newton’s3

second law of motion, for an object falling under the influence of gravity. The
starting position of the object is y(0) = y0, and its initial velocity is y

′(0) = v0.
The solution predicts how the object’s position, y(t), and its velocity, y′(t), vary
with time as the object falls.

In this section, we study two important problems modeled by first order
linear differential equations—mixing problems and cooling problems. These
problems arise when we model phenomena such as the mixing of solutes and
solvents in flow systems, the spread and removal of pollutants in air and water,
and the cooking and sterilization of foods.

Modeling
We can divide the art of mathematical modeling into three phases:

1. Formulation After observing the physical system, we need to identify
the appropriate independent and dependent variables. Then we need
to develop a mathematical description of how these variables interact.
Often, a differential equation (along with appropriate initial conditions)
will serve as a mathematical description of the system.

2. Solution Once we have formulated the modeling problem, we need
to solve it. This involves recognizing the mathematical structure of the
problem and bringing the appropriate analytical and/or numerical tech-
niques to bear.

3. Validation and Interpretation Once we have solved the problem, the
solution needs to be examined carefully. Does it make sense? Is it con-
sistent with our physical intuition about what should be expected? The
solution needs to be scrutinized for its physical content: What does it
say about the physical phenomenon being modeled?

3Sir Isaac Newton (1643–1727) profoundly influenced the development of mathematics and sci-
ence. Newton, along with Gottfried Leibniz, is generally credited with laying the foundations of
differential and integral calculus. His work De Methodis Serierum et Fluxionum was completed in
1671 but was not published until 1736. Optiks, published in 1704, summarizes Newton’s research
in the theory of light and color. His greatest work, Philosophiae naturalis principia mathematica (or
simply Principia), was published in 1687. This work summarizes his research in physics and celes-
tial mechanics. It contains his laws of motion and the law of universal gravitation. The Principia
is arguably the greatest scientific work ever published.
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Mixing Problems
Consider the fluid mixing problem shown schematically in Figure 2.5. A tank
initially contains a volume of fluid, within which is dissolved a certain amount
of solute. For definiteness, consider the liquid to be water, having the units
of gallons. Consider the solute to be salt, having the units of pounds. Time is
measured in minutes.

ci(t) lb/gal

ri(t) gal/min

ro(t) gal/min

co(t) =          lb/gal
Q(t)
V(t)

Q(t) lb salt

V(t) gal water

Inflow Tank Outflow

FIGURE 2.5

A salt solution enters the tank at a certain inflow rate and the well-stirred
solution leaves the tank at a certain outflow rate. How much salt is in the
tank at a given time t?

At some starting time, say t = 0, a salt solution enters the tank at a certain
inflow rate and the well-stirred solution flows out of the tank at some outflow
rate. The phrase well stirred means that the concentration of salt is uniform
within the tank; the concentration depends only on time and not on spatial
location within the tank. In other words, any salt entering the tank is instanta-
neously dispersed throughout the tank (through either mechanical mixing or
diffusion). This is a reasonable approximation if the salt dissolves and disperses
into solution very quickly relative to the speed at which the solution enters or
leaves the tank.

Our objective in this mixing problem is to determine the amount of salt in
the tank, as a function of time.

Modeling the Mixing Problem
To model the dynamics of the mixing process shown in Figure 2.5, we invoke
a “conservation of salt” law:

Rate of change of
salt in the tank

= Rate at which
salt enters the tank

− Rate at which
salt leaves the tank.

(1)

We need to translate the words of equation (1) into mathematics. To that end,
let

Q(t) = amount of salt (pounds) in the tank at time t (minutes),

V(t) = volume of water (gallons) in the tank at time t,

ci(t) = inflow salt concentration (pounds/gallon) at time t,

co(t) = outflow salt concentration (pounds/gallon) at time t,

ri(t) = inflow rate (gallons/minute) at time t,

ro(t) = outflow rate (gallons/minute) at time t.
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Using these definitions, we can convert each term of equation (1) into a math-
ematical statement and obtain a mathematical model for the mixing process.

The rate at which salt enters the tank is given by the product of the inflow
rate and the inflow salt concentration. That is,

Rate at which
salt enters the tank

= ri(t)ci(t).

(
Dimensionally,

pounds
minute

= gallons
minute

· pounds
gallon

.

)

Similarly, the rate at which salt leaves the tank is the product of the outflow rate
and the outflow salt concentration. But, while the inflow salt concentration is
a known function, ci(t), the outflow salt concentration is not a known function
of t. In particular, outflow salt concentration, co(t), is determined by volume
V(t) and by how much salt is in the tank at time t:

co(t) = Q(t)
V(t)

.

Thus,

Rate at which
salt leaves the tank

= ro(t)co(t) = ro(t)
Q(t)
V(t)

.

Combining these two calculations, we have a mathematical model for the mix-
ing process:

dQ
dt

= ri(t)ci(t) − ro(t)
Q
V(t)

, Q(0) = Q0. (2)

In equation (2), Q(0) = Q0 gives the amount of salt in the tank at the starting
time, t = 0.

In equation (2), the volume of water in the tank, V(t), is related to the flow
rates by the differential equation

dV
dt

= ri(t) − ro(t).

Solving this equation by antidifferentiation, we obtain an expression for V(t),

V(t) = V(0) +
∫ t

0
[ri(s) − ro(s)] ds.

Having V(t), we can solve the first order linear equation (2) for Q(t). [In many
cases, the inflow rate and the outflow rate are equal. In such cases, V(t) = V(0)
is constant.]

E X A M P L E

1 A tank initially contains 1000 gal of water in which is dissolved 20 lb of salt.
A valve is opened and water containing 0.2 lb of salt per gallon flows into the
tank at a rate of 5 gal/min. The mixture in the tank is well stirred and drains
from the tank at a rate of 5 gal/min.

(a) Find Q(t), the amount of salt in the tank after t minutes.

(b) Find the limiting value: lim t→∞Q(t). Why should you expect such a limit
to exist?

(continued)
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(continued)

(c) Let the limit in part (b) be designated as QL. How long will it be until Q(t)
is within 1% of QL?

Solution: Since the inflow rate and the outflow rate are the same, the volume
of water in the tank remains constant at 1000 gal. Equation (2), together with
the condition that there was 20 lb of salt in the tank at time t = 0, leads to the
following initial value problem:

dQ
dt

= (5)(0.2) − 5
Q

1000
, Q(0) = 20.

(a) Solving the nonhomogeneous differential equation using the tech-
niques of Section 2.2, we obtain the general solution

Q(t) = 200+ Ce−t/200.

Imposing the initial condition, we find

Q(t) = 200− 180e−t/200 lb.

(b) From part (a) we see that Q(t) → 200 as t → ∞. The discussion following
this example comments on the physical significance of the limit, why the
limit should exist, and why the limit should be QL = 200 lb.

(c) Given QL = 200, we need to determine when Q(t) is within 1% of 200.
Now, from the solution graphed in Figure 2.6, Q(t) is an increasing func-
tion. Thus, Q(t) is within 1% of QL when Q(t) ≥ 198. Solving the equation
Q(t) = 198, we find

−t = 200 ln
(

2
180

)
,

or t = 899.96 . . . min. Therefore, after about 900 min (15 hr), there will be
at least 198 lb of salt in the tank.

899.96

20

200

198

t

Q

y = Q(t)

FIGURE 2.6

For the mixing problem in Example 1, there is Q(t) lb of salt in the tank
after t min, where Q(t) = 200− 180e−t/200. ❖
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The general solution of the differential equation in Example 1 is

Q(t) = 200+ Ce−t/200.

Thus,Q(t) → 200 as t → ∞, regardless of the value of C. Note that the constant
functionQ(t) = 200 is an equilibrium solution of the differential equation. This
is the amount of salt needed to make the concentration of salt in the tank equal
to the inflow concentration.

This limiting behavior also can be seen in more general situations. For
instance, suppose the inflow and outflow rates are constant and equal, say
at r gal/min. Let the inflow concentration, ci, be constant as well. Let V0 de-
note the volume of water in the tank, and let Q(0) = Q0 denote the amount
of salt in the tank at time t = 0. Under these conditions, the mixing model
becomes

dQ
dt

= rci − r
Q
V0

, Q(0) = Q0. (3a)

The solution of this initial value problem is

Q(t) = ciV0 + (Q0 − ciV0)e
−(r/V0)t. (3b)

Note that the solution Q(t) tends to the same limiting value, ciV0, regardless
of the flow rate r. In fact, the constant function Q(t) = ciV0 is an equilibrium
solution of differential equation (3a). It is the amount of salt needed to make
the concentration of the solution in the tank equal to the inflow concentration.
Think about flushing out a tank with a salt solution. No matter how much salt
is initially in the tank, it is flushed out as time increases and the concentration
of salt in the tank approaches the inflow concentration of ci lb/gal. Hence,
equation (3b) is consistent with our physical intuition. Increasing or decreasing
the flow rate r affects how rapidly the limiting value is approached but does
not affect the limiting value itself.

Although we’ve talked only about tanks and salt, problems of this sort arise
in a variety of circumstances, such as environmental applications where the
tank is actually a body of water (such as a lake) and the solute is some pollutant
entering and leaving via connecting streams.

Cooling Problems
Imagine a bowl of hot soup placed on a kitchen table and left there to cool.
Suppose you wanted to develop a mathematical model to predict how the tem-
perature of the soup changes as time progresses. How would you proceed?

At any instant of time, we would expect the temperature at all points within
the soup itself to be approximately the same. (This is the thermal equivalent of
“well stirred.”) Therefore, we assume that the temperature of the soup is de-
scribed by a function of time alone. We make the same assumption about the
kitchen surroundings, and thus its temperature can be described by a second
function of time (quite possibly a constant function). Moreover, the kitchen
surroundings are sufficiently large that kitchen temperature is basically un-
changed by introducing the bowl of hot soup.

With this example as a guide, we’ll now set up the general framework for
Newton’s law of cooling. Instead of soup and a kitchen, we speak of an object
and its surroundings.
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Let �(t) and S(t) denote the temperatures of the object and its surround-
ings, respectively. The basic assumption underlying Newton’s law of cooling is
that the rate of change of the object’s temperature is proportional to the dif-
ference in temperatures between the object and its surroundings. Expressed
mathematically, Newton’s law of cooling is

�′(t) = k[S(t) − �(t)]. (4)

In the model given by equation (4), we assume that the temperature of the
surroundings, S(t), is known for all time of interest and is unaffected by the
presence of the object.

In equation (4) we also assume that the constant of proportionality, k, is
positive. Does that make sense to you? Suppose that, at some instant in time,
the temperature of the surroundings is less than the temperature of the object.
Should the object’s temperature be increasing or decreasing at that instant?

E X A M P L E

2 A metal object is heated to 200◦C and then placed in a large room to cool. The
temperature of the room is held constant at 20◦C. After 10 min, the object’s
temperature is 100◦C. How long will it take the object to cool to 25◦C?

Solution: Using equation (4), we can model the object’s temperature, �(t), by

�′(t) = k[20− �(t)], �(0) = 200.

Here, t is measured in minutes and temperature in degrees Celsius.
The general solution of �′(t) = k[20− �(t)] is

�(t) = 20+ Ce−kt.

Imposing the initial condition, we get �(t) = 20+ 180e−kt. Knowing
�(10) = 100, we determine the rate constant k, finding k = 0.08109 (min)−1.
Thus, �(t) is given (approximately) by

�(t) = 20+ 180e−0.0811t.

Solving �(t) = 25, we find that the metal object cools to 25◦C after 44.186. . .
min. ❖

Consider a cooling problem (such as the one in Example 2) where the sur-
rounding temperature S(t) is constant. In particular, let S(t) = S0 for all t of
interest. The initial value problem modeling constant-temperature surround-
ings is

�′(t) = k[S0 − �(t)], �(0) = �0. (5)

From a mathematical point of view, equations (3a) and (5) are the same. We
need only identify k with r/V0 and S0 with V0ci. Equation (5) has equilibrium
solution �(t) = S0. Therefore, if the object has the same initial temperature as
the surroundings (that is, if�0 = S0), then its temperaturewill remain constant.
If the object’s initial temperature is not equal to that of the surroundings, we
expect the object’s temperature to approach S0 as t → ∞. These common-sense
checks are satisfied by the solution of (5):

�(t) = S0 + (�0 − S0)e
−kt.



2.3 Introduction to Mathematical Models 37

You can also gain insight into this behavior by examining the direction field for
the differential equation, shown in Figure 2.7. Observe from the direction field
that�(t) = S0 is an equilibrium solution. This analysis together with Figure 2.7
clearly suggests that the temperature of the body tends toward the temperature
of the surroundings as time evolves.

Θ

t

S0

FIGURE 2.7

The direction field for the differential equation �′(t) = k[S0 − �(t)] that
models a cooling problem. The constant function �(t) = S0 is an
equilibrium solution. The direction field shows that the temperature of the
body, �(t), tends toward the temperature of the surroundings, S0.

E X E R C I S E S

1. A tank originally contains 100 gal of fresh water. At time t = 0, a solution containing
0.2 lb of salt per gallon begins to flow into the tank at a rate of 3 gal/min and the
well-stirred mixture flows out of the tank at the same rate.

(a) How much salt is in the tank after 10 min?

(b) Does the amount of salt approach a limiting value as time increases? If so, what
is this limiting value and what is the limiting concentration?

2. A tank initially holds 500 gal of a brine solution having a concentration of 0.1 lb of
salt per gallon. At some instant, fresh water begins to enter the tank at a rate of 10
gal/min and the well-stirred mixture leaves at the same rate. How long will it take
before the concentration of salt is reduced to 0.01 lb/gal?

3. An auditorium is 100 m in length, 70 m in width, and 20 m in height. It is ventilated
by a system that feeds in fresh air and draws out air at the same rate. Assume that
airborne impurities form a well-stirred mixture. The ventilation system is required
to reduce air pollutants present at any instant to 1% of their original concentration
in 30 min. What inflow (and outflow) rate is required? What fraction of the total
auditorium air volume must be vented per minute?

4. A tank originally contains 5 lb of salt dissolved in 200 gal of water. Starting at time
t = 0, a salt solution containing 0.10 lb of salt per gallon is to be pumped into the
tank at a constant rate and the well-stirred mixture is to flow out of the tank at the
same rate.
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(a) The pumping is to be done so that the tank contains 15 lb of salt after 20 min of
pumping. At what rate must the pumping occur in order to achieve this objective?

(b) Suppose the objective is to have 25 lb of salt in the tank after 20 min. Is it
possible to achieve this objective? Explain.

5. A 5000-gal aquarium is maintained with a pumping system that passes 100 gal of
water per minute through the tank. To treat a certain fish malady, a soluble an-
tibiotic is introduced into the inflow system. Assume that the inflow concentration
of medicine is 10te−t/50 mg/gal, where t is measured in minutes. The well-stirred
mixture flows out of the aquarium at the same rate.

(a) Solve for the amount of medicine in the tank as a function of time.

(b) What is the maximum concentration of medicine achieved by this dosing and
when does it occur?

(c) For the antibiotic to be effective, its concentration must exceed 100 mg/gal for
a minimum of 60 min. Was the dosing effective?

6. A tank initially contains 400 gal of fresh water. At time t = 0, a brine solution with
a concentration of 0.1 lb of salt per gallon enters the tank at a rate of 1 gal/min and
the well-stirred mixture flows out at a rate of 2 gal/min.

(a) How long does it take for the tank to become empty? (This calculation deter-
mines the time interval on which our model is valid.)

(b) How much salt is present when the tank contains 100 gal of brine?

(c) What is themaximumamount of salt present in the tank during the time interval
found in part (a)? When is this maximum achieved?

7. A tank, having a capacity of 700 gal, initially contains 10 lb of salt dissolved in 100
gal of water. At time t = 0, a solution containing 0.5 lb of salt per gallon flows into
the tank at a rate of 3 gal/min and the well-stirred mixture flows out of the tank at
a rate of 2 gal/min.

(a) How much time will elapse before the tank is filled to capacity?

(b) What is the salt concentration in the tank when it contains 400 gal of solution?

(c) What is the salt concentration at the instant the tank is filled to capacity?

Exercises 8–10:

A tank, containing 1000 gal of liquid, has a brine solution entering at a constant rate of
2 gal/min. The well-stirred solution leaves the tank at the same rate. The concentration
within the tank is monitored and is found to be the function of time specified. In each
exercise, determine

(a) the amount of salt initially present within the tank.

(b) the inflow concentration ci(t), where ci(t) denotes the concentration of salt in the
brine solution flowing into the tank.

8. c(t) = e−t/500

50
lb/gal 9. c(t) = 1

20
(1− e−t/500) lb/gal 10. c(t) = te−t/500

500
lb/gal

11. A 500-gal aquarium is cleansed by the recirculating filter system schematically
shown in the figure. Water containing impurities is pumped out at a rate of
15 gal/min, filtered, and returned to the aquarium at the same rate. Assume that
passing through the filter reduces the concentration of impurities by a fractional
amount α, as shown in the figure. In other words, if the impurity concentration
upon entering the filter is c(t), the exit concentration is αc(t), where 0 < α < 1.

(a) Apply the basic conservation principle (rate of change = rate in − rate out) to
obtain a differential equation for the amount of impurities present in the aquarium
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at time t. Assume that filtering occurs instantaneously. If the outflow concentration
at any time is c(t), assume that the inflow concentration at that same instant is αc(t).

(b) What value of filtering constant α will reduce impurity levels to 1% of their
original values in a period of 3 hr?

15 gal/min 15 gal/minV = 500 gal

Q(t) lb of impurities

Filter

Aquarium

Concentration �c(t) Concentration c(t)

Figure for Exercise 11

12. Consider the mixing process shown in the figure. A mixing chamber initially con-
tains 2 gal of a clear fluid. Clear fluid flows into the chamber at a rate of 10 gal/min. A
dye solution having a concentration of 4 oz/gal is injected into the mixing chamber
at a rate of r gal/min. When the mixing process is started, the well-stirred mixture
is pumped from the chamber at a rate of 10+ r gal/min.

(a) Develop a mathematical model for the mixing process.

(b) The objective is to obtain a dye concentration in the outflowmixture of 1 oz/gal.
What injection rate r is required to achieve this equilibrium solution? Would this
equilibrium value of r be different if the fluid in the chamber at time t = 0 contained
some dye?

(c) Assume the mixing chamber contains 2 gal of clear fluid at time t = 0. How
long will it take for the outflow concentration to rise to within 1% of the desired
concentration?

10 gal/min

Inflow

Mixing chamber
10 + r gal/min

r gal/min

Outflow

Dye solution

Figure for Exercise 12
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13. Series Connections of Tanks Consider the sketch shown below, where two ponds
are connected and fed by a single stream flowing through them. Pond A holds
500,000 gal of water, while Pond B holds 200,000 gal of water. The fresh water
stream flows through these ponds at a rate of 1000 gal/hr. Assume that at some time,
say t = 0, 1000 lb of a toxin is spilled into Pond A and disperses rapidly enough that
a well-stirred assumption is reasonable.

(a) Let QA(t) and QB(t) denote the amounts of toxin in Ponds A and B, respectively,
at time t. Apply the “conservation of salt” principle to each pond and formulate
initial value problems governing how the amount of toxin in each pond varies with
time.

(b) Solve the two initial value problems for QA(t) and QB(t). (Because of the way
the two ponds are connected by the feeder stream, the problem for Pond A can be
solved independently of that for Pond B and the solution, in turn, used to specify
the problem for Pond B.)

(c) What is themaximum amount of toxin present in Pond B and at what time after
the spill is this maximum value reached?

(d) How much time must elapse before the concentration of toxin in both ponds
has been reduced to 1 lb per million gallons?

Pond A

Pond B

Figure for Exercise 13

14. Oscillating Flow Rate A tank initially contains 10 lb of solvent in 200 gal of
water. At time t = 0, a pulsating or oscillating flow begins. To model this flow, we
assume that the input and output flow rates are both equal to 3+ sin t gal/min.
Thus, the flow rate oscillates between a maximum of 4 gal/min and a minimum
of 2 gal/min; it repeats its pattern every 2π ≈ 6.28 min. Assume that the inflow
concentration remains constant at 0.5 lb of solvent per gallon.

(a) Does the amount of solution in the tank, V , remain constant or not? Explain.

(b) Let Q(t) denote the amount of solvent (in pounds) in the tank at time t (in min-
utes). Explain, on the basis of physical reasoning, whether you expect the amount
of solvent in the tank to approach an equilibrium value or not. In other words, do
you expect lim t→∞Q(t) to exist and, if so, what is this limit?

(c) Formulate the initial value problem to be solved.

(d) Solve the initial value problem. Determine lim t→∞Q(t) if it exists.

15. Oscillating Inflow Concentration A tank initially contains 10 lb of salt dissolved in
200 gal of water. Assume that a salt solution flows into the tank at a rate of 3 gal/min
and the well-stirred mixture flows out at the same rate. Assume that the inflow
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concentration oscillates in time, however, and is given by ci(t) = 0.2(1+ sin t) lb of
salt per gallon. Thus, as time evolves, the concentration oscillates back and forth
between 0 and 0.4 lb of salt per gallon.

(a) Make a conjecture, on the basis of physical reasoning, as to whether or not you
expect the amount of salt in the tank to reach a constant equilibrium value as time
increases. In other words, will lim t→∞Q(t) exist?

(b) Formulate the corresponding initial value problem.

(c) Solve the initial value problem.

(d) PlotQ(t) versus t. How does the amount of salt in the tank vary as time becomes
increasingly large? Is this behavior consistent with your intuition?

Assume Newton’s law of cooling applies in Exercises 16–23.

16. A chef removed an apple pie from the oven and allowed it to cool at room tem-
perature (72◦F). The pie had a temperature of 350◦F when removed from the oven;
10 min later, the pie had cooled to 290◦F. How long will it take for the pie to cool to
120◦F?

17. The temperature of an object is raised from 70◦F to 150◦F in 10 min when placed
within a 300◦F oven. What oven temperature will raise the object’s temperature
from 70◦F to 150◦F in 5 min?

18. An object, initially at 150◦F, was placed in a constant-temperature bath. After 2
min, the temperature of the object had dropped to 100◦F; after 4 min, the object’s
temperature was observed to be 90◦F. What is the temperature of the bath?

Exercises 19–21:

A metal casting is placed in an environment maintained at a constant temperature, S0.
Assume the temperature of the casting varies according to Newton’s law of cooling.
A thermal probe attached to the casting records the temperature θ(t) listed. Use this
information to determine

(a) the initial temperature of the casting.

(b) the temperature of the surroundings.

19. θ(t) = 70+ 270e−t ◦F 20. θ(t) = 390e−t/2 ◦F 21. θ(t) = 80− 40e−2t ◦F

22. Food, initially at a temperature of 40◦F, was placed in an oven preheated to 350◦F.
After 10 min in the oven, the food had warmed to 120◦F. After 20 min, the food was
removed from the oven and allowed to cool at room temperature (72◦F). If the ideal
serving temperature of the food is 110◦F, when should the food be served?

23. A student performs the following experiment using two identical cups of water. One
cup is removed from a refrigerator at 34◦F and allowed to warm in its surround-
ings to room temperature (72◦F). A second cup is simultaneously taken from room
temperature surroundings and placed in the refrigerator to cool. The time at which
each cup of water reached a temperature of 53◦F is recorded. Are the two recorded
times the same or not? Explain.

2.4 Population Dynamics and Radioactive Decay
In this section, we study simple population models based on first order linear
equations.We also examinemodels for radioactive decay and applications such
as radiocarbon dating.
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From Discrete to Continuous Models
Many physical systems are inherently discrete in nature. For example, a pop-
ulation is composed of an integer number of individuals and the size of a
population changes in time by integer jumps. However, we sometimes can use
differential equations to model such discrete systems. Differential equation
models provide useful approximations when the population is large and indi-
vidual births and deaths occur frequently during our time interval of interest.

Population Models
Let P(t) represent the population of a species at time t. We assume the pop-
ulation lives in some well-defined environment that we call a colony. For this
introductory model we will be quite naïve, making no distinction among pop-
ulation members as to age, gender, health, or location within the colony.

Assume that the population can change in time through births, deaths,
and migration in and out of the colony. Also assume that the population is
sufficiently large to warrant describing its evolution in time by a differential
equation based on the following “conservation of population” law:

Rate of change
of population

= Rate of
population increase

− Rate of
population decrease.

(1)

For our model, population can increase through either births or migration into
the colony. Similarly, population decreases through either deaths or migration
out of the colony.

To translate the principle in equation (1) into mathematics, we’ll need to
introduce some notation. Let rb and rd be positive constants representing the
birth and death rates per unit population. In other words, rbP(t) represents the
rate of population increase through births at time t. Similarly, rdP(t) represents,
at time t, the rate of population decrease through deaths.

LetM(t) denote the migration rate at time t. Note thatM(t) can be positive
or negative, depending on whether or not the rate of immigration into the
colony exceeds the exodus rate. Combining this notation with the conservation
of population principle in equation (1), we obtain the differential equation

dP
dt

= rbP− rdP+M(t),

or

dP
dt

= (rb − rd)P+M(t). (2)

If there is no migration, then equation (2) takes the form

dP
dt

= kP. (3)

When k is positive in equation (3), we often refer to it as the growth rate; if k
is negative, we refer to it as the decay rate. As Example 1 illustrates, we can
sometimes use data about the population to estimate this rate k.
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E X A M P L E

1 For a population of about 100,000 bacteria in a petri dish, we decide to model
population growth by the differential equation

dP
dt

= kP.

Suppose, 2 days later, that the population has grown to about 150,000 bacteria.
Find the growth rate k and estimate the bacteria population after 7 days.

Solution: The general solution of P ′ = kP is

P(t) = Cekt,

where, for this problem, t is measured in days. Imposing the initial condition,
P(0) = 100,000, we obtain

P(t) = 100,000ekt.

Knowing P(2) = 150,000, we find

150,000 = 100,000e2k, or 1.5 = e2k.

Therefore,

k = 1
2 ln (1.5) days−1.

Having k, we arrive at an expression for the bacteria population:

P(t) = 100,000e(ln(1.5)/2)t = 100,000(1.5)t/2.

At the end of 7 days, there will be about 413,000 bacteria. [The formula for P(t)
gives P(7) = 413,351.] ❖

E X A M P L E

2 An aquaculture firm raises catfish in ponds. At the beginning of the year, the
ponds contain approximately 500,000 catfish. The net growth rate coefficient,
rb − rd, is estimated to be about 6.1 per 1000 perweek. The firmwants to harvest
at a constant rate ofR fish per week, but it also wants to increase the population
to about 600,000 fish by the end of the year. Find the appropriate harvest rate,R.

Solution: Using the model in equation (2), we have

dP
dt

= (rb − rd)P+M(t).

For our problem, t is measured in weeks. The growth rate coefficient, rb − rd,
is 6.1 per 1000 per week. Therefore,

rb − rd = 6.1
1000

= 0.0061 week−1
.

For this problem, the migration rate is the same as the harvest rate. Since
the harvest rate is constant, we set M(t) = −R, where R is a positive constant.
Therefore, we arrive at the following model for the catfish population:

dP
dt

= 0.0061P− R, P(0) = 500,000. (4)

(continued)
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(continued)

Our objective is to choose R so that P(52) = 600,000. [In the absence of any
harvesting (that is, with R = 0), the population P(t) would be

P(t) = 500,000e0.0061t.

So, with no harvesting, the population at the end of the year would be about
P(52) = 500,000e0.3172, or about 685,000 fish.]

To determine a reasonable harvest rate R, we first find the general solution
for nonhomogeneous differential equation (4):

P(t) = Ce0.0061t + R
0.0061

.

Imposing the initial condition P(0) = 500,000, we obtain

P(t) =
(
500,000− R

0.0061

)
e0.0061t + R

0.0061
,

or

P(t) = R
0.0061

(
1− e0.0061t

) + 500,000e0.0061t.

We want to choose R so that P(52) = 600,000. Thus,

600,000 = R
0.0061

(
1− e0.3172

) + 500,000e0.3172.

Solving for R, we arrive at a harvest rate of R = 1416 per week. Thus, the firm
can harvest at a rate of about 1400 fish per week and still see its fish population
grow to about 600,000 by year’s end. ❖

Radioactive Decay
The process of radioactive decay is, inmany respects, like the behavior of a large
population in which there are deaths but no births. At the atomic level, individ-
ual atoms of a radioactive element spontaneously undergo change, transform-
ing themselves into new material.

At the macroscopic level (the level of continuous modeling), we’ll let Q(t)
represent the amount of radioactive material present at time t. It has been
observed empirically that the rate of decrease of radioactive material is pro-
portional to the amount present. That is, the mathematical model is

dQ
dt

= −kQ, k > 0. (5)

We can obtain differential equation (5) by invoking the same basic conser-
vation law, equation (1), that was used to derive the population model
P ′(t) = (rb − rd)P(t) +M(t). Here, the birth rate rb is zero since no radioactive
material is being created. The death rate constant rd has been replaced by k.
Likewise, we are tacitly assuming that nomaterial is being added or taken away,
and therefore the migration rate M(t) is also zero.

E X A M P L E

3 Initially, 50mgof a radioactive substance is present. Five days later, the quantity
has decreased to 43 mg. How much will remain after 30 days?
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Solution: The general solution of equation (5) is

Q(t) = Ce−kt,

where t is measured in days. Imposing the initial condition, we obtain

Q(t) = 50e−kt.

As in Example 1, we use the fact that Q(5) = 43 mg to determine the decay
rate k:

k = − 1
5 ln

43
50 = 0.03016 . . . days−1.

After 30 days, therefore, we expect to have

Q(30) = 50e−k30 = 20.228 . . . mg. ❖

The half-life of a radioactive substance is the length of time it takes a given
amount of the substance to be reduced to one half of its original amount. Thus,
the half-life τ is defined by the equation

Q(t+ τ) = 1
2Q(t).

Since Q(t) = Ce−kt, this equation reduces to e−kτ = 0.5 and hence

τ = ln 2
k

.

For example, the substance in Example 3 has a half-life of about

ln 2
0.0302

= 22.95 days.

If we had 300 mg of the substance at some given time, we would have about
150 mg of the substance 22.95 days later and 75 mg of the substance after 45.9
days.

E X E R C I S E S

Assume the populations in Exercises 1–4 evolve according to the differential equa-
tion P ′ = kP.

1. A colony of bacteria initially has 10,000,000 members. After 5 days, the population
increases to 11,000,000. Estimate the population after 30 days.

2. How many days will it take the colony in Exercise 1 to double in size?

3. A colony of bacteria is observed to increase in size by 30% over a 2-week period.
How long will the colony take to triple its initial size?

4. A colony of bacteria initially has 100,000 members. After 6 days, the population has
decreased to 80,000. At that time, 50,000 new organisms are added to replenish its
size. How many bacteria will be in the colony after an additional 6 days?

5. Initially, 100 g of a radioactive material is present. After 3 days, only 75 g remains.
How much additional time will it take for radioactive decay to reduce the amount
present to 30 g?
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6. Radioactive decay reduces an initial amount of material by 20% over a period of 90
days. What is the half-life of this material?

7. A radioactive material has a half-life of 2 weeks. After 5 weeks, 20 g of the material
is seen to remain. How much material was initially present?

8. After 30 days of radioactive decay, 100 mg of a radioactive substance was observed
to remain. After 120 days, only 30 mg of this substance was left.

(a) How much of the substance was initially present?

(b) What is the half-life of this radioactive substance?

(c) How long will it take before only 1% of the original amount remains?

9. Initially, 100 g of material A and 50 g of material B were present. Material A is
known to have a half-life of 30 days, while material B has a half-life of 90 days. At
some later time it was observed that equal amounts of the two radioactive materials
were present. When was this observation made?

10. The evolution of a population with constant migration rate M is described by the
initial value problem

dP
dt

= kP+M, P(0) = P0.

(a) Solve this initial value problem; assume k is constant.

(b) Examine the solution P(t) and determine the relation between the constants k
and M that will result in P(t) remaining constant in time and equal to P0. Explain,
on physical grounds, why the two constants k and M must have opposite signs to
achieve this constant equilibrium solution for P(t).

11. Assume that the population of fish in an aquaculture farm can be modeled by the
differential equation dP/dt = kP+M(t), where k is a positive constant. Themanager
wants to operate the farm in such a way that the fish population remains constant
from year to year. The following two harvesting strategies are under consideration.

Strategy I: Harvest the fish at a constant and continuous rate so that the popula-
tion itself remains constant in time. Therefore, P(t) would be a constant and M(t)
would be a negative constant; call it −M. (Refer to Exercise 10.)
Strategy II: Let the fish population evolve without harvesting throughout the year,
and then harvest the excess population at year’s end to return the population to its
value at the year’s beginning.

(a) Determine the number of fish harvested annually with each of the two strate-
gies. Express your answer in terms of the population at year’s beginning; call it P0.
(Assume that the units of k are year−1.)

(b) Suppose, as in Example 2, that P0 = 500,000 fish and k = 0.0061× 52 = 0.3172
year−1. Assume further that Strategy I, with its steady harvesting and return, pro-
vides the farm with a net profit of $0.75/fish while Strategy II provides a profit of
only $0.60/fish. Which harvesting strategy will ultimately prove more profitable to
the farm?

12. Assume that two colonies each have P0 members at time t = 0 and that each evolves
with a constant relative birth rate k = rb − rd. For colony 1, assume that individu-
als migrate into the colony at a rate of M individuals per unit time. Assume that
this immigration occurs for 0 ≤ t ≤ 1 and ceases thereafter. For colony 2, assume
that a similar migration pattern occurs but is delayed by one unit of time; that is,
individuals migrate at a rate of M individuals per unit time, 1 ≤ t ≤ 2. Suppose we
are interested in comparing the evolution of these two populations over the time
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interval 0 ≤ t ≤ 2. The initial value problems governing the two populations are

dP1
dt

= kP1 +M1(t), P1(0) = P0, M1(t) =
{
1, 0 ≤ t ≤ 1

0, 1 < t ≤ 2;
dP2
dt

= kP2 +M2(t), P2(0) = P0, M2(t) =
{
0, 0 ≤ t < 1

1, 1 ≤ t ≤ 2.

(a) Solve both problems to determine P1 and P2 at time t = 2.

(b) Show that P1(2) − P2(2) = (M/k)
(
ek − 1

)2
. If k > 0, which population is larger

at time t = 2? What happens if k < 0?

(c) Suppose that there is a fixed number of individuals that can be introduced into a
population at any time through migration and that the objective is to maximize the
population at some fixed future time. Do the calculations performed in this problem
suggest a strategy (based on the relative birth rate) for accomplishing this?

13. Radiocarbon Dating Carbon-14 is a radioactive isotope of carbon produced in the
upper atmosphere by radiation from the sun. Plants absorb carbon dioxide from
the air, and living organisms, in turn, eat the plants. The ratio of normal carbon
(carbon-12) to carbon-14 in the air and in living things at any given time is nearly
constant. When a living creature dies, however, the carbon-14 begins to decrease as
a result of radioactive decay. By comparing the amounts of carbon-14 and carbon-
12 present, the amount of carbon-14 that has decayed can therefore be ascertained.

Let Q(t) denote the amount of carbon-14 present at time t after death. If we
assume its behavior is modeled by the differential equation Q ′(t) = −kQ(t), then
Q(t) = Q(0)e−kt. Knowing the half-life of carbon-14, we can determine the constant
k. Given a specimen to be dated, we can measure its radioactive content and de-
duce Q(t). Knowing the amount of carbon-12 present enables us to determine Q(0).
Therefore, we can use the solution of the differential equation Q(t) = Q(0)e−kt to
deduce the age, t, of the radioactive sample.

(a) The half-life of carbon-14 is nominally 5730 years. Suppose remains have been
found in which it is estimated that 30% of the original amount of carbon-14 is
present. Estimate the age of the remains.

(b) The half-life of carbon-14 is not known precisely. Let us assume that its half-life
is 5730 ± 30 years. Determine how this half-life uncertainty affects the age estimate
you computed in (a); that is, what is the corresponding uncertainty in the age of the
remains?

(c) It is claimed that radiocarbon dating cannot be used to date objects older
than about 60,000 years. To appreciate this practical limitation, compute the ratio
Q(60,000)/Q(0), assuming a half-life of 5730 years.

14. Suppose that 50 mg of a radioactive substance, having a half-life of 3 years, is
initially present. More of this material is to be added at a constant rate so that
100 mg of the substance is present at the end of 2 years. At what constant rate must
this radioactive material be added?

15. Iodine-131, a fission product created in nuclear reactors and nuclear weapons ex-
plosions, has a half-life of 8 days. If 30 micrograms of iodine-131 is detected in
a tissue site 3 days after ingestion of the radioactive substance, how much was
originally present?

16. U-238, the dominant isotope of natural uranium, has a half-life of roughly 4 billion
years. Determine how long it takes for a sample to be reduced in amount by 1%
through radioactive decay.
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2.5 First Order Nonlinear Differential Equations
Thus far we have studied first order linear differential equations, equations of
the form

y′ + p(t)y = g(t).

We now consider first order nonlinear differential equations. The term “nonlin-
ear differential equation” encompasses all differential equations that are not
linear. In particular, a first order nonlinear differential equation has the
form

y′ = f (t, y),

where f (t, y) �= −p(t)y+ g(t).
Three examples of first order nonlinear differential equations are

(a) y′ = t2 + y2 (b) y′ = t+ cos y (c) y′ = t
y
.

Nonlinear differential equations arise in many models of physical phenom-
ena, such as population dynamics influenced by environmental constraints and
one-dimensional motion in the presence of air resistance. We’ll consider such
applications in Sections 2.8 and 2.9.

Because the set of nonlinear differential equations is so diverse, the type of
theoretical statement that can be made about the behavior of their solutions
is less comprehensive than that made in Theorem 2.1 for linear equations. In
addition, unlike the situation for linear equations, we cannot derive a general
solution procedure that applies to the entire class of nonlinear equations. We
therefore concentrate on certain subclasses of nonlinear differential equations
for which solution procedures do exist.

Existence and Uniqueness
We begin our study of nonlinear equations by considering questions of exis-
tence and uniqueness for initial value problems. In particular, given the initial
value problem

y′ = f (t, y), y(t0) = y0, (1)

what conditions on the function f (t, y) guarantee that problem (1) has a unique
solution? On what t-interval does this unique solution exist? The answers to
these questions provide a framework within which we can work.

For example, if we use some special technique to find a solution of problem
(1), then it is essential to know whether the solution we found is the only solu-
tion. In fact, if the initial value problem does not have a unique solution, then
it probably is not a good mathematical model for the physical phenomenon
under consideration.

Existence and uniqueness are also important considerations if we need to
use numerical methods to approximate a solution. For example, if a numeri-
cal solution “blows up,” we want to know whether this behavior arises from
inaccuracies in the numerical method or correctly depicts the behavior of the
solution.
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We now state a theorem that guarantees the existence of a unique solution
to an initial value problem. The proof of this theorem is usually studied in a
more advanced course in differential equations; we do not give a proof here.

Theorem 2.2
Let R be the open rectangle defined by a < t < b, α < y < β. Let f (t, y)
be a function of two variables defined on R, where f (t, y) and the partial
derivative ∂f/∂y are continuous onR. Suppose (t0, y0) is a point inR. Then
there is an open t-interval (c,d), contained in (a,b) and containing t0, in
which there exists a unique solution of the initial value problem

y′ = f (t, y), y(t0) = y0.

A typical open rectangleR, initial point (t0, y0), and interval (c,d) are shown
in Figure 2.8. (The rectangle R is called an open rectangle because it does not
contain the four line segments forming its boundary.)

y0

y(t)

�

�

a c bdt0

t

y

FIGURE 2.8

The open rectangle R, defined by a < t < b, α < y < β, contains the initial
point (t0, y0). If the hypotheses of Theorem 2.2 hold on R, we are
guaranteed a unique solution to the initial value problem on some open
interval (c,d).

Although presented in the context of nonlinear differential equations, The-
orem 2.2 makes no distinction between linear and nonlinear differential equa-
tions. It applies to linear first order equations where

f (t, y) = −p(t)y+ g(t),

as well as to nonlinear first order equations.
Two important observations can be made about Theorem 2.2.

1. The hypotheses of Theorem 2.2 are a natural generalization of those
made in Theorem 2.1 for linear differential equations. That is, if
f (t, y) = −p(t)y+ g(t), then ∂f/∂y = −p(t). Therefore, requiring f (t, y)
and ∂f/∂y to be continuous on the rectangle R means that any linear
differential equation satisfying the hypotheses of Theorem 2.2 also sat-
isfies the hypotheses of Theorem 2.1. Conversely, a linear differential
equation satisfying the hypotheses of Theorem 2.1 also satisfies the hy-
potheses of Theorem 2.2.
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2. The conclusions of Theorem2.2, however, differ substantially from those
of Theorem 2.1. Since we have broadened our perspective to encompass
nonlinear differential equations, the corresponding conclusions of The-
orem 2.2 are weaker than those of Theorem 2.1. Theorem 2.1 guarantees
existence and uniqueness on the entire (a,b) interval. Theorem 2.2 guar-
antees existence and uniqueness only on some subinterval (c,d) of (a,b)
containing t0; it does not guarantee existence and uniqueness on the
entire (a,b) interval. Moreover, Theorem 2.2 gives no insight into how
large (c,d) is or how we might go about estimating it.

Although Theorem 2.2 leaves many questions unanswered, it does provide us
with the framework we need to study solution techniques for certain classes
of nonlinear differential equations. Examining these special cases will give us
valuable insight into the behavior of solutions of nonlinear equations.

Autonomous Differential Equations
First order autonomous equations have the form y′ = f (y). The right-hand side
of the differential equation does not explicitly depend on the independent vari-
able t. Solution curves for an autonomous differential equation have the im-
portant geometric property that they can be translated parallel to the t-axis.

As an example, consider the autonomous equation

y′ = y(2− y).

The direction field for this equation, along with portions of some solution
curves, is shown in Figure 2.9. As observed in Section 1.3, the slopes of the
direction field filaments for an autonomous equation remain constant along
horizontal lines. For instance (see Figure 2.9), at every point along the line
y = 1, the direction field filaments have slope equal to 1. Similarly, at every
point along the line y = 3, the direction field filaments have slope equal to −3.
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FIGURE 2.9

The direction field for the autonomous equation y′ = y(2− y), together
with portions of some typical solutions. Notice that the graph of y1(t), when
translated to the right, looks as though it coincides with the graph of y2(t).
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Besides illustrating that horizontal lines are isoclines for the autonomous
equation, Figure 2.9 illustrates an important property of solutions to autono-
mous differential equations. That is, it looks as though the graph of y1(t), when
translated about 2 units to the right, will fall exactly on the graph of y2(t). This
is indeed the case, and we show in Theorem 2.3 that the solution y2(t) is related
to the solution y1(t) by

y2(t) = y1(t− c),

where c is a constant.

Theorem 2.3
Let the initial value problem

y′ = f (y), y(0) = y0

satisfy the conditions of Theorem 2.2, and let y1(t) be the unique solution,
where the interval of existence for y1(t) is a < t < b, with a < 0 < b.

Consider the initial value problem

y′ = f (y), y(t0) = y0. (2)

Then the function y2(t) defined by y2(t) = y1(t− t0) is the unique solution
of initial value problem (2) and has an interval of existence

t0 + a < t < t0 + b.

● PROOF: Since y1(t) is defined for a < t < b, we know that y2(t) = y1(t− t0)
is defined for a < t− t0 < b and hence for t0 + a < t < t0 + b. We next observe
that y2(t) satisfies the initial condition of (2), since y2(t0) = y1(t0 − t0) = y1(0) =
y0. Therefore, to complete the proof of Theorem 2.3, we need to show that y2(t)
is a solution of the differential equation y′ = f (y).

Using the definition of y2(t), the chain rule, and the fact that y1(t) solves the
differential equation y′ = f (y), we have

y′
2(t) = d

dt
y1(t− t0) = y′

1(t− t0)
d
dt

(t− t0) = y′
1(t− t0) = f (y1(t− t0)) = f (y2(t)).

Therefore, the function y2(t) = y1(t− t0) is a solution of the initial value prob-
lem. ●

The important conclusion to be reached from Theorem 2.3 is that the so-
lution of the autonomous initial value problem y′ = f (y), y(t0) = y0 depends on
the independent variable t and the initial condition time t0 as a function of
the combination t− t0. What matters is time t measured relative to the initial
time t0. As a simple example, recall that the solution of the linear autonomous
equation y′ = ky, y(t0) = y0 is

y(t) = y0e
k(t−t0).
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Bernoulli Equations
We conclude this section by studying a class of nonlinear differential equations
known as Bernoulli equations. By making an appropriate change of dependent
variable, these nonlinear equations can be transformed into first order linear
equations and solved using the techniques described in Section 2.2.

Bernoulli differential equations4 are first order differential equations
having the special structure

dy
dt

+ p(t)y = q(t)yn,

where n is an integer. We do not consider n = 0 and n = 1 since, in those cases,
the Bernoulli equation is a first order linear equation.

A simple example of a Bernoulli equation is

dy
dt

+ e2ty = y3 sin t.

Bernoulli equations arise in applications such as populationmodels andmodels
of one-dimensional motion influenced by drag forces.

Consider a Bernoulli equation

dy
dt

+ p(t)y = q(t)yn, (3)

where n is a given integer (n �= 0 and n �= 1). We look for a change of dependent
variable of the form v(t) = y(t)m, wherem is a constant to be determined. Using
the chain rule, we have

dv
dt

= mym−1 dy
dt

and therefore
dy
dt

= m−1y1−m
dv
dt

= m−1v(1−m)/m dv
dt

.

Equation (3) transforms into the following differential equation for v(t):

dv
dt

+mp(t)v = mq(t)v(m+n−1)/m. (4)

At first glance, it may seem that our change of variables has accomplished little.
The structure of equation (4) seems similar to what we started with. However,
we are free to choose the constantm. In particular, if we selectm = 1− n, then
equation (4) reduces to the first order linear equation

dv
dt

+ (1− n)p(t)v = (1− n)q(t). (5)

We can solve this equation for v(t) and then obtain the desired solution,
y(t) = v(t)1/(1−n).

4Jacob Bernoulli (1654–1705) is one of eight members of the extended Bernoulli family remem-
bered for their contributions to mathematics and science. While at the University of Basel, Jacob
made important contributions to such areas as infinite series, probability theory, geometry, and
differential equations. In 1696 he solved the differential equation that now bears his name. Jacob
always had a particular fascination for the logarithmic spiral and requested that this curve be
carved on his tombstone.
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E X A M P L E

1 Solve the initial value problem

y′ + y = ty3, y(0) = 2.

Solution: The differential equation is a Bernoulli equation with n = 3.
Wemake the change of dependent variable v = y1−n or, since n = 3, v = y−2.

The initial value problem for v(t) then becomes [recall equation (5)]

v′ − 2v = −2t, v(0) = y(0)−2 = 1
4 .

The general solution is

v = Ce2t + (
t+ 1

2

)
.

Imposing the initial condition, we have

v = − 1
4e
2t + (

t+ 1
2

)
.

Finally, since y = v−1/2, we arrive at the desired solution

y =
[
− 1
4e
2t + (

t+ 1
2

)]−1/2
. ❖

E X E R C I S E S

Exercises 1–8:

For the given initial value problem,

(a) Rewrite the differential equation, if necessary, to obtain the form

y′ = f (t, y), y(t0) = y0.

Identify the function f (t, y).

(b) Compute ∂f/∂y. Determine where in the ty-plane both f (t, y) and ∂f/∂y are continu-
ous.

(c) Determine the largest open rectangle in the ty-plane that contains the point (t0, y0)
and in which the hypotheses of Theorem 2.2 are satisfied.

1. 3y′ + 2t cos y = 1, y(π/2) = −1 2. 3ty′ + 2 cos y = 1, y(π/2) = −1
3. 2t+ (1+ y2)y′ = 0, y(1) = 1 4. 2t+ (1+ y3)y′ = 0, y(1) = 1

5. y′ + ty1/3 = tan t, y(−1) = 1 6. (y2 − 9)y′ + e−y = t2, y(2) = 2

7. (cos y)y′ = 2+ tan t, y(0) = 0 8. (cos 2t)y′ = 2+ tan y, y(π) = 0

9. Consider the initial value problem t2y′ − y2 = 0, y(1) = 1.

(a) Determine the largest open rectangle in the ty-plane, containing the point
(t0, y0) = (1,1), in which the hypotheses of Theorem 2.2 are satisfied.

(b) A solution of the initial value problem is y(t) = t. This solution exists on
−∞ < t < ∞. Does this fact contradict Theorem 2.2? Explain your answer.

10. The solution of the initial value problem y′ = f (y), y(0) = 8 is known to be
y(t) = (4+ t)3/2. Let y(t) represent the solution of the initial value problem
y′ = f (y), y(t0) = 8. Suppose we know that y(0) = 1. What is t0?

11. The solution of the initial value problem y′ = f (y), y(0) = 2 is known to be
y(t) = 2/

√
1− t. Let y(t) represent the solution of the initial value problem y′ = f (y),

y(1) = 2. What is the value of y(0)?
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12. The graph shows the solution of y′ = −1/(2y), y(0) = 1. Use the graph to answer
questions (a) and (b).

(a) If z1(t) is the solution of z
′
1 = −1/(2z1), z1(−2) = 1, what is z1(−5)?

(b) If z2(t) is the solution of z
′
2 = −1/(2z2), z2(2) = 1, what is z2(3)?
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Figure for Exercise 12

Exercises 13–19:

(a) Solve the initial value problem by

(i) transforming the given Bernoulli differential equation and initial con-
dition into a first order linear differential equation with its correspond-
ing initial condition,

(ii) solving the new initial value problem,

(iii) transforming back to the dependent variable of interest.

(b) Determine the interval of existence.

13. y′ = y(2− y), y(0) = 1 14. y′ = 2ty(1− y), y(0) = −1
15. y′ = −y+ ety2, y(−1) = −1 16. y′ = y+ y−1, y(0) = −1
17. ty′ + y = t3y−2, y(1) = 1 18. y′ − y = ty1/3, y(0) = −8
19. y′ = −(y+ 1) + t(y+ 1)−2, y(0) = 1 [Hint: Let z = y+ 1.]

20. The initial value problem y′ + y = q(t)y2, y(0) = y0 is known to have solution

y(t) = 3

(1− 3t)et

on the interval −∞ < t < 1
3 . Determine the coefficient function q(t) and the initial

value y0.

2.6 Separable First Order Equations
In Section 2.2, we obtained an explicit representation for the solution of a
first order linear differential equation; recall equation (10) in Section 2.2. By
contrast, there is no all-encompassing technique that leads to an explicit rep-
resentation for the solution of a first order nonlinear differential equation.

For certain types of nonlinear equations, however, techniques have been
discovered that give us some information about the solution. We have already
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seen one type, the Bernoulli equations, in the previous section. In this section
we study another type, called separable differential equations.

Separable Equations
The term separable differential equation is used to describe any first order
differential equation that can be put into the form

n(y)
dy
dt

+ m(t) = 0.

For example, the differential equations

(a)
dy
dt

+ t2 sin y = 0 and (b) y′ + et+y = ey sin t

are separable since they can be rewritten (respectively) as

(a′) csc y
dy
dt

+ t2 = 0 and (b′) e−yy′ + [et − sin t] = 0.

A simple example of a nonseparable differential equation is

y′ = 2ty2 + 1.

The structure of a separable differential equation,

n(y)
dy
dt

+ m(t) = 0,

gives the equation its name. The first term is the product of dy/dt and a term
n(y) that involves only the dependent variable y. The second term,m(t), involves
only the independent variable t. In this sense, the variables “separate.”

Solving a Separable Differential Equation
We can get some information about the solution of a separable equation by
“reversing the chain rule.” We illustrate this technique in Example 1 and then
describe the general procedure.

E X A M P L E

1 Solve the initial value problem

y′ = 2ty2, y(0) = 1.

Solution: First, notice that f (t, y) = 2ty2 is continuous on the entire ty-plane,
as is the partial derivative ∂f/∂y = 4ty. Therefore, the conditions of Theorem
2.2 are satisfied on the open rectangle R defined by −∞ < t < ∞, −∞ < y < ∞.
Theorem 2.2 guarantees the existence of a unique solution of the initial value
problem, but it provides no insight into the interval of existence of the solution.

The differential equation is separable. It can be rewritten as

y′

y2
− 2t = 0.

(continued)
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(continued)

To emphasize the fact that y is the dependent variable, we express the equation
as

y′(t)
y(t)2

− 2t = 0.

Taking antiderivatives, we find∫
y′(t)
y(t)2

dt−
∫
2t dt = C.

Evaluating the integrals on the left-hand side yields

−1
y(t)

− t2 = C.

Solving for y(t), we obtain a family of solutions

y(t) = −1
t2 + C

.

Imposing the initial condition, y(0) = 1, yields the unique solution of the initial
value problem:

y(t) = 1

1− t2
.

Having determined the solution, we are now able to see that the interval of
existence is −1 < t < 1. ❖

The solution process of Example 1 can be viewed as reversing the chain
rule. To explain, we return to the general separable differential equation,

n(y)
dy
dt

+ m(t) = 0. (1)

Let y be a differentiable function of t, and letN(y) be any antiderivative of n(y).
By the chain rule,

d
dt
N(y) = n(y)

dy
dt

. (2a)

Similarly, let M(t) be any antiderivative of m(t),

d
dt
M(t) = m(t). (2b)

Combining (2a) and (2b), we can rewrite the left-hand side of equation (1) as

n(y)
dy
dt

+m(t) = d
dt
N(y) + d

dt
M(t) = d

dt
[N(y) +M(t)].

Therefore, equation (1) reduces to

d
dt

[N(y) +M(t)] = 0.
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Since the term N(y) +M(t) is a function of t whose derivative vanishes identi-
cally, we have

N(y) +M(t) = C, (3)

where C is an arbitrary constant.
Equation (3) provides us with information about the solution y(t). It is not

an explicit expression for the solution; rather, it is an equation that the solution
must satisfy. An equation in y and t, such as (3), is called an implicit solution.
Sometimes (as in Example 1 and in Example 2 below) we can “unravel” the
implicit solution and solve for y(t) as an explicit function of the independent
variable t. In other cases, we must be content with the implicit solution.

Whether or not we can unravel the implicit solution given by equation
(3), we can always determine the constant C by imposing the initial condition
y(t0) = y0, finding

C = N(y0) +M(t0).

E X A M P L E

2 Solve the initial value problem

dy
dt

= − t
y
, y(0) = −2.

Solution: Separating the variables, we obtain

y
dy
dt

+ t = 0.

Integrating, we find an implicit solution

y2

2
+ t2

2
= C.

Imposing the initial condition, we find C = 2. Thus, an implicit solution of the
initial value problem is given by

y2 + t2 = 4.

Suppose we want an explicit solution. Solving the equation above, we find

y = ±
√
4− t2.

Which root should we take? To satisfy the initial condition, y(0) = −2, we must
take the negative root. Thus, the solution is

y = −
√
4− t2. (4)

This choice of roots is also obvious geometrically, since the graph of y2 + t2 = 4
is a circle of radius 2 in the ty-plane, as shown in Figure 2.10. The solution of
the initial value problem has the lower semicircle as its graph. The function
given by equation (4) is defined and continuous on [−2,2]. It is differentiable
and satisfies the differential equation on the open interval (−2,2).

(continued)
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(continued)

t

y

(0, –2)y = –√4 – t2

FIGURE 2.10

The implicit solution of the initial value problem in Example 2 is
y2 + t2 = 4; its graph is a circle of radius 2. The explicit solution of the

initial value problem is y = −
√
4− t2; its graph is the lower semicircle. ❖

E X A M P L E

3 Solve the initial value problem

(2+ sin y)y′ + t = 0, y(2) = 0.

Solution: Computing the antiderivatives yields

2y− cos y+ t2

2
= C.

Imposing the initial condition, we obtain the implicit solution

2y− cos y+ t2

2
= 1. (5)

Although we cannot unravel this equation and determine an explicit solution,
we can plot the graph of equation (5); see Figure 2.11. Observe that if the cosine
term in (5) were absent, the graph would be that of a concave-down parabola.
Loosely speaking, therefore, the cosine term creates the ripples displayed by
the graph in Figure 2.11. ❖

Differences between Linear and Nonlinear
Differential Equations
We can use Examples 1–3 to make several points about Theorem 2.2 and to
illustrate some of the differences between nonlinear and linear differential
equations.

1. The Interval of Existence May Not Be Obvious If the coefficient func-
tions for a linear differential equation are continuous on an interval
(a,b), where (a,b) contains the initial point t0, then a unique solution
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The initial value problem posed in Example 3 has an implicitly defined
solution given by equation (5). The graph of equation (5) is shown above.

of the initial value problem y′ + p(t)y = g(t), y(t0) = y0 exists and is de-
fined on all of (a,b).

By way of contrast, consider the initial value problem in Example
1. The function f (t, y) = 2ty2 is continuous everywhere and is about as
nice a nonlinear function as we can expect. However, the solution of
the initial value problem has vertical asymptotes at t = −1 and at t = 1.
Note that we cannot predict that the interval of existence is (−1,1) by
simply looking at the equation y′ = 2ty2. In fact, if the initial condition
is changed from y(0) = 1 to y(0) = −1, then the interval of existence
changes to (−∞, ∞). (See Exercise 4.)

Example 2 provides another illustration. The interval of existence in
Example 2 is −2 < t < 2. Suppose we leave the initial condition alone
and simply change the sign on the right-hand side of the differential
equation. This change produces a new initial value problem

dy
dt

= t
y
, y(0) = −2.

In this case, the solution is defined for all t. (See Exercise 12.)
In each of these examples, a harmless-looking change in the differ-

ential equation or in the initial condition leads to a pronounced change
in the nature of the solution and in the interval of existence.

2. There May Not Be a Single Formula That Gives All Solutions Note that
the family of solutions found in Example 1,

y(t) = −1
t2 + C

, (6)

does not include the zero function. The zero function is, however, a solu-
tion of y′ = 2ty2. In particular, given the initial value problem y′ = 2ty2,
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y(0) = 0, there is no choice for C in equation (6) that yields the unique
solution, y(t) = 0, that is guaranteed by Theorem 2.2.

3. We May Have to Be Content with Implicitly Defined Solutions In Ex-
amples 1 and 2 we were able to find an explicit formula for the solution,
y(t), of the initial value problem. However, as Example 3 illustrates, it
may not be possible to obtain an explicit formula for the solution. By
contrast [see equation (10) in Section 2.2], there is an explicit formula
for the solution of any first order linear differential equation.

E X E R C I S E S

Exercises 1–17:

(a) Obtain an implicit solution and, if possible, an explicit solution of the initial value
problem.

(b) If you can find an explicit solution of the problem, determine the t-interval of exis-
tence.

1. y
dy
dt

− sin t = 0, y(π/2) = −2 2.
dy
dt

= 1

y2
, y(1) = 2

3. y′ + 1
y+ 1

= 0, y(1) = 0 4. y′ − 2ty2 = 0, y(0) = −1

5. y′ − ty3 = 0, y(0) = 2 6.
dy
dt

+ eyt = ey sin t, y(0) = 0

7.
dy
dt

= 1+ y2, y(π/4) = −1 8. t2y′ + sec y = 0, y(−1) = 0

9.
dy
dt

= t− ty2, y(0) = 1
2

10. 3y2
dy
dt

+ 2t = 1, y(−1) = −1

11.
dy
dt

= et−y, y(0) = 1 12.
dy
dt

= t
y
, y(0) = −2

13. ety′ + (cos y)2 = 0, y(0) = π/4 14. (2y− sin y)y′ + t = sin t, y(0) = 0

15. eyy′ + t
y+ 1

= 2
y+ 1

, y(1) = 2 16. (ln y)y′ + t = 1, y(3) = e

17. eyy′ = 1+ ey, y(2) = 0

18. For what values of the constants α, y0 and integer n is the function y(t) = (4+ t)−1/2

a solution of the initial value problem

y′ + αyn = 0, y(0) = y0?

19. For what values of the constants α, y0 and integer n is the function y(t) = 6/(5+ t4)
a solution of the initial value problem

y′ + αtny2 = 0, y(1) = y0?

20. State an initial value problem, with initial condition imposed at t0 = 2, having im-
plicit solution y3 + t2 + sin y = 4.

21. State an initial value problem, with initial condition imposed at t0 = 0, having im-
plicit solution yey + t2 = sin t.
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22. Consider the initial value problem

y′ = 2y2, y(0) = y0.

For what value(s) y0 will the solution have a vertical asymptote at t = 4 and a
t-interval of existence −∞ < t < 4?

23. (a) A first order autonomous differential equation has the form y′ = f (y). Show that
such an equation is separable.

(b) Solve y′ = y(2− y), y(2) = 1.

Exercises 24–26:

A differential equation of the form

y′ = p1(t) + p2(t)y+ p3(t)y
2

is known as a Riccati equation.5 Equations of this form arise when we model one-
dimensional motion with air resistance; see Section 2.9. In general, this equation is not
separable. In certain cases, however (such as in Exercises 24–26), the equation does
assume a separable form.

Solve the given initial value problem and determine the t-interval of existence.

24. y′ = 2+ 2y+ y2, y(0) = 0 25. y′ = t(5+ 4y+ y2), y(0) = −3
26. y′ = (y2 + 2y+ 1) sin t, y(0) = 0

27. Let Q(t) represent the amount of a certain reactant present at time t. Suppose that
the rate of decrease of Q(t) is proportional to Q3(t). That is, Q ′ = −kQ3, where k is
a positive constant of proportionality. How long will it take for the reactant to be
reduced to one half of its original amount? Recall that, in problems of radioactive
decay where the differential equation has the form Q ′ = −kQ, the half-life was in-
dependent of the amount of material initially present. What happens in this case?
Does half-life depend on Q(0), the amount initially present?

28. The rate of decrease of a reactant is proportional to the square of the amount
present. During a particular reaction, 40% of the initial amount of this chemical
remained after 10 sec. How long will it take before only 25% of the initial amount
remains?

29. Consider the differential equation y′ = |y|.
(a) Is this differential equation linear or nonlinear? Is the differential equation
separable?

(b) A student solves the two initial value problems y′ = |y|, y(0) = 1 and y′ = y,
y(0) = 1 and then graphs the two solution curves on the interval −1 ≤ t ≤ 1. Sketch
what she observes.

(c) She next solves both problems with initial condition y(0) = −1. Sketch what she
observes in this case.

30. Consider the following autonomous first order differential equations:

y′ = −y2, y′ = y3, y′ = y(4− y).

Match each of these equations with one of the solution graphs shown. Note that
each solution satisfies the initial condition y(0) = 1. Can you match them without
solving the differential equations?

5Jacopo Riccati (1676–1754) worked on many differential equations, including the one that now
bears his name. His work in hydraulics proved useful to his native city of Venice.
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Figure for Exercise 30

31. Let S(t) represent the amount of a chemical reactant present at time t, t ≥ 0. Assume
that S(t) can be determined by solving the initial value problem

S′ = − αS
K + S

, S(0) = S0,

where α, K, and S0 are positive constants. Obtain an implicit solution of the initial
value problem. (The differential equation, often referred to as theMichaelis-Menten
equation, arises in the study of biochemical reactions.)

32. Change of Dependent Variable Sometimes a change of variable can be used to con-
vert a differential equation y′ = f (t, y) into a separable equation.

(a) Consider a differential equation of the form y′ = f (αt+ βy+ γ ), where α, β, and
γ are constants. Use the change of variable z = αt+ βy+ γ to rewrite the differential
equation as a separable equation of the form z′ = g(z). List the function g(z).

(b) A differential equation that can be written in the form y′ = f (y/t) is called an
equidimensional differential equation. Use the change of variable z = y/t to rewrite
the equation as a separable equation of the form tz′ = g(z). List the function g(z).
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Exercises 33–38:

Use the ideas of Exercise 32 to solve the given initial value problem. Obtain an explicit
solution if possible.

33. y′ = y− t
y+ t

, y(2) = 2 34. y′ = y+ t
y+ t+ 1

, y(−1) = 0

35. y′ = (t+ y)2 − 1, y(1) = 2 36. y′ = 1
2t+ 3y+ 1

, y(1) = 0

37. y′ = 2t+ y+ 1
2t+ y

, y(1) = 1 38. t2y′ = y2 − ty, y(−2) = 2

39. Consider the initial value problem

y′ =
√
1− y2, y(0) = 0.

(a) Show that y = sin t is an explicit solution on the t-interval −π/2 ≤ t ≤ π/2.

(b) Show that y = sin t is not a solution on either of the intervals−3π/2 < t < −π/2
or π/2 < t < 3π/2.

(c) What are the equilibrium solutions of y′ =
√
1− y2? Suppose a solution y(t)

reaches an equilibrium value at t = t∗. What happens to the graph of y(t) for t > t∗?

(d) Show that the solution of the initial value problem is given by

y =
⎧⎨
⎩

−1, −∞ < t < −π/2
sin t, −π/2 ≤ t ≤ π/2
1, π/2 < t < ∞.

2.7 Exact Differential Equations
The class of differential equations referred to as exact includes separable equa-
tions as a special case. As with separable equations, the solution procedure for
this new class consists of reversing the chain rule. This time, however, we use
a chain rule that involves a function of two variables.

The Extended Chain Rule
Suppose H(t, y) is a function of two independent variables t and y, where
H(t, y) has continuous partial derivatives with respect to t and y. If the sec-
ond independent variable y is replaced with a differentiable function of t,
call it y(t), we obtain a composition H(t, y(t)) which is now a function of t
only. What is dH/dt?

The appropriate chain rule is

d
dt
H(t, y(t)) = ∂H(t, y(t))

∂t
+ ∂H(t, y(t))

∂y
dy(t)
dt

. (1)

To understand this equation, note that the partial derivatives on the right-hand
side refer to H viewed as a function of the two independent variables t and y.
Once these partial derivatives are computed, the variable y is replaced by the
function y(t).

Formula (1) is an extension of the chain rule for functions of a single vari-
able. If the function H has the form H(y) so that it is only a function of the
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single variable y, then the first term on the right-hand side of (1) vanishes and
the formula reverts to the usual chain rule for the composite function H(y(t)).

Solving Exact Differential Equations
The basic idea underlying the solving of exact differential equations is to reverse
the extended chain rule when possible. To that end, consider a differential
equation of the form

M(t, y) +N(t, y)
dy
dt

= 0. (2)

Notice the similarity between the form of differential equation (2) and that
of the chain rule (1). Suppose there exists some function, call it H(t, y), that
satisfies the following two conditions:

∂H
∂t

= M(t, y) and
∂H
∂y

= N(t, y). (3)

Because of (3), we can rewrite differential equation (2) as

∂H
∂t

+ ∂H
∂y

dy
dt

= 0. (4)

By the chain rule (1), equation (4) is the same as

d
dt
H(t, y) = 0.

Therefore, we obtain an implicitly defined solution of equation (4),

H(t, y) = C. (5)

If there is a functionH(t, y) satisfying the conditions in (3), then differential
equation (2) is called an exact differential equation. If we can identify the
function H(t, y), then an implicitly defined solution is given by (5).

Recognizing an Exact Differential Equation
Once we know that a given differential equation is exact and once we identify
a function H(t, y) satisfying the conditions in (3), then we can write down an
implicit solution,H(t, y) = C, for the differential equation. Two basic questions
therefore need to be answered.

1. Given a differential equation of the form M(t, y) +N(t, y)y′ = 0, how
do we know whether or not it is exact? That is, how do we determine
whether there is a function H(t, y) satisfying the conditions

∂H
∂t

= M(t, y) and
∂H
∂y

= N(t, y)?

2. Suppose we are somehow assured that such a function exists. How do
we go about finding H(t, y)?

The answer to the first question is given in Theorem 2.4, which is stated
without proof. To answer the second question, we will use a process of “anti-
partial-differentiation.”
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Theorem 2.4
Consider the differential equation M(t, y) +N(t, y)y′ = 0. Let the func-
tions M,N, ∂M/∂y, and ∂N/∂t be continuous in an open rectangle R of
the ty-plane. Then the differential equation is exact in R if and only if

∂M
∂y

= ∂N
∂t

(6)

for all points (t, y) in R.

Theorem 2.4 provides an easy test for whether or not a given differential
equation is exact. The theorem does not, however, tell how to construct the
implicitly defined solution H(t, y) = C.

E X A M P L E

1 Which of the following differential equations is (are) exact?

(a) y+ t+ ty′ = 0 (b) y+ sin t+ (y cos t)y′ = 0 (c) sin y+ (2y+ t cos y)y′ = 0

Solution:

(a) Using the notation of Theorem 2.4, we have

M(t, y) = y+ t and N(t, y) = t.

Calculating the partial derivatives, we find

∂M
∂y

= 1 and
∂N
∂t

= 1.

Therefore, by Theorem 2.4, the differential equation is exact.

(b) For this equation,

M(t, y) = y+ sin t and N(t, y) = y cos t.

Calculating the partial derivatives yields

∂M
∂y

= 1 and
∂N
∂t

= −y sin t.

Since the partial derivatives are not equal, the differential equation is not
exact.

(c) Calculating the partial derivatives, we have

∂M
∂y

= cos y and
∂N
∂t

= cos y.

Since the partial derivatives are equal, the differential equation is
exact. ❖

REMARK: Recall that a separable differential equation is one that can be writ-
ten in the form n(y)dy/dt+m(t) = 0. Notice that

∂m
∂y

= 0 and
∂n
∂t

= 0.

Thus, by Theorem 2.4, any separable differential equation is also exact.
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Anti-Partial-Differentiation
WecanuseTheorem2.4 to determinewhether the differential equationM(t, y) +
N(t, y)y′ = 0 is exact. If it is exact, thenwe know theremust be a functionH(t, y)
such that

∂H
∂t

= M(t, y) and
∂H
∂y

= N(t, y).

Once we determine H(t, y), we have an implicitly defined solution,

H(t, y) = C.

A process of anti-partial-differentiation can be used to construct H.
As an illustration, recall from Example 1 that the following differential

equation is exact:

sin y+ (2y+ t cos y)y′ = 0. (7)

Thus, there is a function H(t, y) such that

∂H
∂t

= sin y and
∂H
∂y

= 2y+ t cos y. (8)

Choose one of these equalities, say ∂H/∂y = 2y+ t cos y, and compute an “anti-
partial-derivative.” Antidifferentiating 2y+ t cos y with respect to y, we obtain

H(t, y) = y2 + t sin y+ g(t), (9)

where g(t) is an arbitrary function of t. [Note: The “constant of integration” in
equation (9) is an arbitrary function of t since t is treated as a constant when
the partial derivative with respect to y is computed.]

We now determine g(t) so that the representation (9) forH satisfies the first
equality in (8). Taking the partial derivative of H with respect to t, we find

∂H
∂t

= ∂

∂t

[
y2 + t sin y+ g(t)

]
= sin y+ dg

dt
.

Comparing the preceding result with the first condition of equation (8), it fol-
lows that we need

dg
dt

= 0

or g(t) = C1, where C1 is an arbitrary constant. Thus, from equation (9), we
know

H(t, y) = y2 + t sin y+ C1. (10)

We can drop the arbitrary constant C1, since we will eventually setH(t, y) equal
to an arbitrary constant in the implicit solution. Therefore,H(t, y) = y2 + t sin y.

In this illustration,we startedwith the second equation in (8), ∂H/∂y = 2y+
t cos y.We could just aswell have startedwith the first equation, ∂H/∂t = sin y. If
we had done so, we would have arrived at the same functionH; see Exercise 21.

E X A M P L E

2 Consider the initial value problem

1+ y2 + 2(t+ 1)y
dy
dt

= 0, y(0) = 1.

Verify that the differential equation is exact and solve the initial value problem.
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Solution: To verify that the differential equation is exact, we appeal to The-
orem 2.4, using M(t, y) = 1+ y2 and N(t, y) = 2(t+ 1)y. The functions M,N,
∂M/∂y, and ∂N/∂t are continuous in the entire ty-plane. Since

∂M
∂y

= 2y and
∂N
∂t

= 2y,

the differential equation is exact.
We now find H(t, y). Since the equation is exact,

∂H
∂t

= 1+ y2.

Antidifferentiating with respect to t yields

H(t, y) = t(1+ y2) + g(y). (11)

To determine g(y), we differentiate (11) with respect to y, finding

∂H
∂y

= 2ty+ dg
dy

.

Since the differential equation is exact,

2ty+ dg
dy

= 2(t+ 1)y.

Therefore,

g(y) = y2 + C1.

Without loss of generality, we let C1 = 0 to obtain

H(t, y) = t(1+ y2) + y2 = (t+ 1)y2 + t.

Thus, we have the following implicitly defined solution of the differential equa-
tion:

(t+ 1)y2 + t = C.

Imposing the initial condition, we obtain an implicit solution of the initial value
problem:

(t+ 1)y2 + t = 1.

We can solve for y:

y2 = 1− t
1+ t

, or y = ±
√
1− t
1+ t

.

Choosing the positive sign so as to satisfy the initial condition y(0) = 1, we
arrive at an explicit solution of the initial value problem:

y =
√
1− t
1+ t

. ❖

The explicit solution y = √
(1− t)/(1+ t) has −1 < t < 1 as an interval of

existence. This should not be surprising in light of the existence-uniqueness
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statement in Theorem 2.2. The differential equation in Example 2 has the form
y′ = f (t, y), where

f (t, y) = − 1+ y2

2(t+ 1)y
.

Since the initial condition point is (t0, y0) = (0,1), the hypotheses of Theorem
2.2 are satisfied in the infinite rectangle defined by −1 < t < ∞, 0 < y < ∞.
Along the lines t = −1 and y = 0, both f and ∂f/∂y are undefined. As Figure 2.12
shows, the solution curve has a vertical asymptote at the boundary line t = −1
and approaches the boundary line y = 0 as t → 1 from the left.
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FIGURE 2.12

A portion of the direction field for the differential equation in Example 2.
The solution y = √

(1− t)/(1+ t) is shown as a solid curve.

E X E R C I S E S

Exercises 1–10:

Show that the given nonlinear differential equation is exact. (Some algebraic manipula-
tion may be required. Also, recall the remark that follows Example 1.) Find an implicit
solution of the initial value problem and (where possible) an explicit solution.

1. (2y− t)y′ − y+ 2t = 0, y(1) = 0 2. (t+ y3)y′ + y+ t3 = 0, y(0) = −2
3. y′ = (3t2 + 1)(y2 + 1), y(0) = 1 4. (y3 + cos t)y′ = 2+ y sin t, y(0) = −1
5. (et+y + 2y)y′ + (et+y + 3t2) = 0, y(0) = 0

6. (y3 − t3)y′ = 3t2y+ 1, y(−2) = −1
7. (e2y + t2y)y′ + ty2 + cos t = 0, y(π/2) = 0

8. y′ = − y cos (ty) + 1

t cos (ty) + 2yey
2 , y(π) = 0 9.

(
2ty+ 1

y

)
y′ + y2 = 1, y(1) = 1

10. (2y ln t− t sin y)y′ + t−1y2 + cos y = 0, y(2) = 0
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Exercises 11–16:

Determine the general form of the function M(t, y) or N(t, y) that will make the given
differential equation exact.

11. (2t+ y)y′ +M(t, y) = 0 12. (t2 + y2 sin t)y′ +M(t, y) = 0

13. (tey + t+ 2y)y′ +M(t, y) = 0 14. N(t, y)y′ + 2t+ y = 0

15. N(t, y)y′ + t2 + y2 sin t = 0 16. N(t, y)y′ + ey
2 + 2ty = 1

Exercises 17–20:

The given equation is an implicit solution of N(t, y)y′ +M(t, y) = 0, satisfying the given
initial condition. Assuming the equation N(t, y)y′ +M(t, y) = 0 is exact, determine the
functions M(t, y) and N(t, y), as well as the possible value(s) of y0.

17. t3y+ et + y2 = 5, y(0) = y0 18. 2ty+ cos (ty) + y2 = 2, y(0) = y0

19. ln (2t+ y) + t2 + eyt = 1, y(0) = y0 20. y3 + 4ty+ t4 + 1 = 0, y(0) = y0
21. The differential equation (2y+ t cos y)y′ + sin y = 0 is exact, and thus there exists a

functionH(t, y) such that ∂H/∂t = sin y and ∂H/∂y = 2y+ t cos y. Antidifferentiating
the second equationwith respect to y, we ultimately arrived atH(t, y) = y2 + t sin y+
C1; see equation (10). Show that the same result would be obtained if we began the
solution process by antidifferentiating the first equation, ∂H/∂t = sin y, with respect
to t.

22. Making a Differential Equation Exact Suppose the differential equation N(t, y)y′ +
M(t, y) = 0 is not exact; that is, Nt(t, y) �= My(t, y). Is it possible to multiply the equa-
tion by a function, call it μ(t, y), so that the resulting equation is exact?

(a) Show that if μ(t, y)N(t, y)y′ + μ(t, y)M(t, y) = 0 is exact, the function μ must be
a solution of the partial differential equation

N(t, y)μt −M(t, y)μy = [My(t, y) −Nt(t, y)]μ.

Parts (b) and (c) of this exercise discuss special cases where the function μ can
be chosen to be a function of a single variable. In these special cases, the partial
differential equation in part (a) reduces to a first order linear ordinary differential
equation and can be solved using the techniques of Section 2.2.

(b) Suppose the quotient [My(t, y) −Nt(t, y)]/N(t, y) is just a function of t, call it p(t).
Let P(t) be an antiderivative of p(t). Show that μ can be chosen as μ(t) = eP(t).

(c) Suppose the quotient [Nt(t, y) −My(t, y)]/M(t, y) is just a function of y, call it q(y).
Let Q(y) be an antiderivative of q(y). Show that μ can be chosen as μ(y) = eQ( y).

Exercises 23–28:

In each exercise,

(a) Show that the given differential equation is not exact.

(b) Multiply the equation by the functionμ, if it is provided, and show that the resulting
differential equation is exact. If the function μ is not given, use the ideas of Exercise
22 to determine μ.

(c) Solve the given problem, obtaining an explicit solution if possible.

23. 4tyy′ + y2 − t = 0, y(1) = 1, μ(t, y) = t−1/2

24. (t2y2 + 1)y′ + ty3 = 0, y(0) = 1, μ(t, y) = y−1

25. (2t+ y)y′ + y = 0, y(2) = −3 26. ty2y′ + 2y3 = 1, y(1) = −1
27. tyy′ + y2 + et = 0, y(1) = −2 28. (3ty+ 2)y′ + y2 = 0, y(−1) = −1
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2.8 The Logistic Population Model
The art of mathematical modeling involves a trade-off between realism and
complexity. A model should incorporate enough reality to make it useful as a
predictive tool. However, the model must also be tractable mathematically; if
it’s too complex to analyze and if we cannot deduce any useful information
from it, then the model is worthless.

A key assumption of the population model described in Section 2.4,
often referred to as theMalthusian6 model, is that relative birth rate is indepen-
dent of population. (Recall that the relative birth rate, rb − rd, is the difference
between birth and death rates per unit population.) The assumption that rb − rd
is independent of population leads to uninhibited exponential growth or decay
of solutions. Such behavior is often a poor approximation of reality.

For a colony possessing limited resources, a more realistic model is one
that accounts for the impact of population on the relative birth rate. When
population size is small, resources are relatively plentiful and the population
should thrive and grow. When the population becomes larger, however, we
expect that resources become scarcer, the population becomes stressed, and
the relative birth rate begins to decline (eventually becoming negative). In this
section we consider amodel that attempts to account for this effect. This model
leads to a nonlinear differential equation.

The Verhulst, or Logistic, Model
The Verhulst population model7 assumes that the population P(t) evolves
according to the differential equation

dP
dt

= r
(
1− P

Pe

)
P. (1)

In equation (1), r and Pe are positive constants. Equation (1) is also known as
the logistic equation. Comparing equation (1) with the Malthus equation

dP
dt

= (rb − rd)P, (2)

we see that the constant relative birth rate rb − rd of equation (2) has been
replaced by the population-dependent relative birth rate

r
(
1− P(t)

Pe

)
,

where r is a positive constant. If P(t) > Pe, then dP/dt < 0 and the population
is decreasing. Conversely, if P(t) < Pe, then dP/dt > 0 and the population is
increasing.

The qualitative behavior of solutions of the logistic equation can also be
deduced from the direction field. Figure 2.13, for example, shows the direction
field for the logistic equation for the parameters r = 3 and Pe = 1.

6Thomas Malthus (1766–1834) was an English political economist whose Essay on the Principle of
Population had an important influence on Charles Darwin’s thinking. Malthus believed that human
population growth, if left unchecked, would inevitably lead to poverty and famine.
7Pierre Verhulst (1804–1849) was a Belgian scientist remembered chiefly for his research on pop-
ulation growth. He deduced and studied the nonlinear differential equation named after him.
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FIGURE 2.13

The direction field for the logistic equation P ′ = 3(1− P)P. The equilibrium
solutions are P = 0 and P = 1.

The logistic equation has two equilibrium solutions, the trivial solution
P(t) = 0 and the nontrivial equilibrium solution P(t) = Pe. If P(t0) = Pe, then
the population remains equal to this value as time evolves. The constant pop-
ulation, Pe, is called an equilibrium population. In terms of its structure,
the logistic equation is a nonlinear separable differential equation. It is also a
Bernoulli equation. We solve it below as a separable equation. Its treatment as
a Bernoulli equation is left to the exercises.

Solution of the Logistic Equation
To solve equation (1), we separate variables, obtaining

1(
1− P

Pe

)
P

dP
dt

= r.

An implicit solution is therefore∫
dP(

1− P
Pe

)
P

= r t+ K, (3)

whereK is an arbitrary constant. Recalling themethod of partial fractions from
calculus (also see Section 5.3), we obtain∫

dP(
1− P

Pe

)
P

=
∫ (

1
P

− 1
P− Pe

)
dP = ln

∣∣∣∣ P
P− Pe

∣∣∣∣ .

Therefore,

ln

∣∣∣∣ P
P− Pe

∣∣∣∣ = r t+ K.

Hence, ∣∣∣∣ P(t)
P(t) − Pe

∣∣∣∣ = Cer t, (4)
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where C = eK is an arbitrary positive constant. We can remove the absolute
value signs by arguing as follows. The exponential function er t is never zero.
Therefore, the quotient P(t)/[P(t) − Pe] is never zero and, being a continuous
function of t, never changes sign; it is either positive or negative for all t. There-
fore, we can remove the absolute value signs if we allow the constant C to be
either positive or negative.

Assume that the initial population P(0) = P0 is positive and P0 �= Pe. Then

C = P0
P0 − Pe

.

After some algebraic manipulation, we obtain the explicit solution

P(t) = P0Pe
P0 − (P0 − Pe)e

−r t . (5)

The derivation leading to equation (5) tacitly assumes that P(t) never takes on
the value 0 or Pe. The final expression (5), however, is valid for any value of P0
(including the equilibrium values 0 and Pe).

What behavior is predicted by the solution (5)? Since r > 0, we see that

lim
t→∞P(t) = Pe

for all positive values ofP0. Therefore, any given nonzero populationwill tend to
the equilibrium population value, Pe, as time increases. Figure 2.13 illustrates
this behavior, showing the direction field for the special case P ′ = 3(1− P)P.

We can ask additional questions. What happens if we allow temporal vari-
ations in the relative birth rate by allowing r = r(t) in equation (1)? What hap-
pens if migration is introduced into the logistic model? When migration is
introduced, the population model has the form

dP
dt

= r
(
1− P

P∗

)
P+M. (6)

If r,P∗, and M are constants, the equation is separable. Moreover, the ques-
tion of equilibrium populations is relevant. What happens to the equilibria as
the migration level M changes? Some of these questions are addressed in the
exercises.

Example 1 illustrates how sketching a diagram similar to a direction field
enables us to predict the behavior of solutions of equation (6) without actually
solving the equation. The basis for such predictions is found in Exercises 14–15.
These exercises set r = 1,P∗ = 1 in equation (6), considering the equation P ′ =
−(P− P1)(P− P2) with equilibrium populations P1 ≥ P2 > 0. These exercises
show the following:

1. If P(0) > P2, then P(t) exists for 0 ≤ t < ∞ and P(t) → P1 as t → ∞.

2. If 0 ≤ P(0) < P2, then lim t→t
∗ P(t) = −∞ for some finite t∗ > 0.



2.8 The Logistic Population Model 73

E X A M P L E

1 Let P(t) denote the population of a colony, where P is measured in units of
100,000 individuals and time t is in years. Assume that population is modeled
by the logistic model with constant out-migration,

dP
dt

= (1− P)P− 2
9

, P(0) = 2.

(a) Determine all the equilibrium populations (that is, the nonnegative equi-
librium solutions). Sketch a diagram indicating those regions in the first
quadrant of the tP-plane where the population is increasing [P ′(t) > 0] and
those regions where the population is decreasing [P ′(t) < 0]. This diagram
gives a rough indication of how the solutions behave.

(b) Without solving the initial value problem, use the results of Exercise 14 (as
summarized above) to determine lim t→∞P(t).

Solution:

(a) The equilibrium solutions are the constant solutions P(t) = 2
3 and P(t) = 1

3 .
Since these equilibrium solutions are nonnegative, they correspond to equi-
librium populations. The diagram sketched in Figure 2.14 indicates the
regions in the first quadrant where P ′(t) > 0 and where P ′(t) < 0.

(b) From Figure 2.14, it follows that the solution of the initial value problem
P ′ = (1− P)P− 2

9 ,P(0) = 2 is decreasing at t = 0, since P ′(0) = − 20
9 . This so-

lution curve cannot cross the line P = 2
3 , since P = 2

3 is also a solution of
P ′ = (1− P)P− 2

9 . By Exercise 14, either solutions of equation (6) are un-
bounded or they tend to an equilibrium value as t → ∞. The diagram in
Figure 2.14 indicates that

lim
t→∞P(t) = 2

3 .

t

P

2
3

1
3

P'(t) < 0

P'(t) > 0

P'(t) = 0

P'(t) = 0

P'(t) < 0

FIGURE 2.14

Consider the population model P ′ = (1− P)P− 2
9 . The equilibrium

populations are P = 2
3 and P = 1

3 ; see Example 1. The diagram shows the
regions where population is increasing [P ′(t) > 0] and where it is
decreasing [P ′(t) < 0]. The solution satisfying the initial condition P(0) = 2
is decreasing and bounded below by the line P = 2

3 . Therefore, by Exercise
14, P(t) → 2

3 as t → ∞.
(continued)
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(continued)

[Similarly, if P(0) = P0 where
1
3 < P0 < 2

3 , we again obtain lim t→∞P(t) = 2
3 .

However, if P(0) = P0 where P0 < 1
3 , then the population becomes extinct

when the graph of P(t) intersects the t-axis. At that point, the population
model ceases to be meaningful.] ❖

The Spread of an Infectious Disease
The logistic differential equation also arises in modeling the spread of an infec-
tious disease. Suppose we have a constant population of N individuals and at
time t the number of infected members is P(t). The corresponding number of
uninfected individuals is thenN − P(t). A reasonable assumption is that the rate
of spread of the disease at time t is proportional to the product of noninfected
and infected individuals. This assumption leads to the differential equation

dP
dt

= k(N − P)P,

where k is the constant of proportionality. If the equation is rewritten as

dP
dt

= kN
(
1− P

N

)
P, (7)

we can see that it is similar to the logistic equation (1). The corresponding initial
value problem is completed by specifying the number of infected individuals
at some initial time, P(t0) = P0.

Note that the differential equation (7) has two equilibrium solutions, P = 0
and P = N. This certainly makes sense. If no one is infected or if everyone is
infected, the disease will not spread. We consider aspects of this infectious
disease model in the exercises.

E X E R C I S E S

Exercises 1–3:

Let P(t) represent the population of a colony, in millions of individuals. Assume that the
population evolves according to the equation

dP
dt

= 0.1
(
1− P

3

)
P,

with time tmeasured in years. Use the explicit solution given in equation (5) to answer
the questions.

1. Suppose the colony starts with 100,000 individuals. How long will it take the pop-
ulation to reach 90% of its equilibrium value?

2. Suppose the colony is initially overpopulated, starting with 5,000,000 individuals.
How long will it take for the population to decrease to 110% of its equilibrium
value?
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3. Suppose, after 3 years of existence, the colony population is found to be 2,000,000
individuals. What was the initial population?

Exercises 4–10:

Constant Migration Consider a population modeled by the initial value problem

dP
dt

= (1− P)P+M, P(0) = P0, (8)

where the migration rateM is constant. [The model (8) is derived from equation (6) by
setting the constants r and P∗ to unity. We did this so that we can focus on the effectM
has on the solutions.]

For the given values of M and P(0),

(a) Determine all the equilibrium populations (the nonnegative equilibrium solutions)
of differential equation (8). As inExample 1, sketch a diagramshowing those regions
in the first quadrant of the tP-plane where the population is increasing [P ′(t) > 0]
and those regions where the population is decreasing [P ′(t) < 0].

(b) Describe the qualitative behavior of the solution as time increases. Use the informa-
tion obtained in (a) as well as the insights provided by the figures in Exercises 11–13
(these figures provide specific but representative examples of the possibilities).

4. M = − 3
16 , P(0) = 3

2 5. M = − 3
16 , P(0) = 1

2 6. M = − 1
4 , P(0) = 1

4

7. M = − 1
4 , P(0) = 1 8. M = − 1

4 , P(0) = 1
2 9. M = 2, P(0) = 0

10. M = 2, P(0) = 4

Exercises 11–13:

The direction fields shown correspond to the differential equation

dP
dt

=
(
1− P

P∗

)
P+M.

Determine the constants P∗ and M.

11. The equilibrium solutions are
P(t) = 2 and P(t) = 1.
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12. The equilibrium solution is
P(t) = 2.
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13. The equilibrium solutions are
P(t) = 2 and P(t) = −1.

–2

–3

–1

1

2

3

P

t
0.5 1 1.5 2 2.5 3 3.5

14. Consider the initial value problem (8). Let P1 and P2 denote the roots of
P2 − P−M = 0, and assume that P1 > P2 > 0. [Since P1 and P2 are positive con-
stant solutions of P ′ = (1− P)P+M, they correspond to equilibrium populations.]

(a) What does the assumption P1 > P2 > 0 imply about the sign ofM? Is migration
occurring at a constant rate into or out of the colony?

(b) Solve initial value problem (8), assuming that P(0) �= P1 and P(0) �= P2. Note
that the differential equation is separable. Your solution will have the form

|P(t) − P1|
|P(t) − P2|

= Ke−λt,

where K and λ are positive constants. Unravel this implicit solution. [Hint: The
graph of P(t) cannot cross the lines P = P1 and P = P2. Therefore, the terms P(t) − P1
and P(t) − P2 have the same signs as P0 − P1 and P0 − P2, respectively. In order to
unravel the solution, consider the separate cases P0 > P1, P1 > P0 > P2, and P2 > P0
and remove the absolute values.]

(c) Use the explicit solutions found in part (b) to show that ifP0 > P1, thenP(t) → P1
as t → ∞. Similarly, show that if P1 > P0 > P2, then P(t) → P1 as t → ∞. Finally,
show that ifP2 > P0, then lim t→t

∗ P(t) = −∞ at somefinite time t∗. Since populations
are nonnegative, what actually happens to the population in this last case?

15. Repeat the analysis of Exercise 14 for the case of a positive repeated root of
P2 − P−M = 0 (that is, for the case of P1 = P2 > 0).

(a) What does the assumption P1 = P2 > 0 imply about the sign ofM? Is migration
occurring at a constant rate into or out of the colony?

(b) Solve initial value problem (8) for the case inwhichP(0) �= P1. Argue thatP1 = P2
can happen only if P1 = P2 = 1

2 .

(c) By taking limits of the explicit solution found in part (b), show that P(t) → P1
as t → ∞ if P0 ≥ P1. What happens if P0 < P1?

Variable Birth Rates In certain situations, a population’s relative birth rate may vary
with time. For example, environmental conditions that change over a period of time
may affect the birth rate. When food is stored, variations in temperature may affect the
growth of harmful bacteria. It is of interest, therefore, to understand the behavior of the
logistic equation when the relative birth rate r(t) is variable.

16. Consider the initial value problem

dP
dt

= r(t)
(
1− P

Pe

)
P, P(0) = P0.

Observe that the differential equation is separable. Let R(t) = ∫ t
0 r(s)ds. Solve the

initial value problem. Note that your solution will involve the function R(t).
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17. Solve the initial value problem in Exercise 16 for the particular case of r(t) =
1+ sin 2π t, Pe = 1, and P0 = 1

4 . Here, time is measured in years and population in
millions of individuals. (The varying relative birth rate might reflect the impact of
seasonal changes on the population’s ability to reproduce over the course of a year.)
How does the population behave as time increases? In particular, does lim t→∞P(t)
exist, and if so, what is this limit?

18. Let P(t) represent the number of individuals who, at time t, are infected with a
certain disease. Let N denote the total number of individuals in the population.
Assume that the spread of the disease can be modeled by the initial value problem

dP
dt

= k(N − P)P, P(0) = P0,

where k is a constant. Obtain an explicit solution of this initial value problem.

19. Consider the special case of the infectious disease model in Exercise 18, where
N = 2,000,000 and P0 = 100,000. Suppose that after 1 year, the number of infected
individuals had increased to 200,000. How many members of the population will
be infected after 5 years?

20. Consider a chemical reaction of the form A+ B → C, in which the rates of change of
the two chemical reactants, A and B, are described by the two differential equations

A′ = −kAB, B′ = −kAB,

where k is a positive constant. Assume that 5 moles of reactant A and 2 moles of
reactant B are present at the beginning of the reaction.

(a) Show that the difference A(t) − B(t) remains constant in time. What is the value
of this constant?

(b) Use the observationmade in (a) to derive an initial value problem for reactant A.

(c) It was observed, after the reaction had progressed for 1 sec, that 4 moles of
reactant A remained. How much of reactants A and B will be left after 4 sec of
reaction time?

21. Solve the initial value problem

dP
dt

= r
(
1− P

Pe

)
P, P(0) = P0

by viewing the differential equation as a Bernoulli equation.

2.9 Applications to Mechanics
In Chapter 1, we considered a falling object acted upon only by gravity. For that
case, with y(t) used to represent the vertical position of the body at time t and
v(t) to represent its velocity, Newton’s second law ofmotion,ma = F, reduces to

m
dv
dt

= −mg.

Here, m is the mass of the object and g the acceleration due to gravity, nom-
inally 32 ft/sec2 or 9.8 m/s2. The minus sign on the right-hand side is present
because we measure y(t) and v(t) as positive upward while the force of grav-
ity acts downward. For the simple model above, we solved for v(t) and y(t) by
computing successive antiderivatives.
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A more realistic model of one-dimensional motion is one that incorporates
the effects of air resistance. As an object moves through air, a retarding aerody-
namic force is created by the combination of pressure and frictional forces. The
air close to the object exerts a normal pressure force upon it. Likewise, friction
creates a tangential force that opposes the motion of air past the object. The
combination of these effects creates a drag force that acts to reduce the speed
of the moving object.

The drag force depends on the velocity v(t) of the object and acts on it in
such a way as to reduce its speed, |v(t)|. We consider two idealized models of
drag force that are consistent with these ideas.

Case 1: Drag Force Proportional to Velocity
Assume that velocity v(t) is positive in the upward direction and that the drag
force is proportional to velocity. If k is the positive constant of proportionality,
Newton’s second law of motion leads to

m
dv
dt

= −mg− kv. (1)

Does the model of drag that we have postulated act as we want it to? If the
object is moving upward [that is, if v(t) > 0], then the drag force −kv(t) is
negative and thus acts downward. Conversely, if v(t) < 0, then the object is
moving downward. In this case, the drag force −kv(t) = k|v(t)| is a positive
(upward) force, as it should be. Therefore, whether the object ismoving upward
or downward, drag acts to slow the object; this drag model is consistent with
our ideas of how drag should act. See Figure 2.15.

y

y = 0

v < 0

drag force

–mg

y

y = 0

v > 0
drag force–mg

(a) (b)

FIGURE 2.15

Assume a drag force of the form kv(t), k > 0; see equation (1). (a) When the
object is moving downward, drag acts upward and tends to slow the object.
(b) When the object is moving upward, drag acts downward and likewise
tends to slow the object.

This drag model leads to equation (1), a first order linear constant co-
efficient equation; we can solve it using the ideas of Section 2.2. Before we
do, however, let’s consider the question of equilibrium solutions to see if the
model makes sense in that regard. The only constant solution of equation (1)
is v(t) = −mg/k. At the velocity v(t) = −mg/k, the drag force and gravitational
force acting on the object are equal and opposite. This equilibrium velocity is
often referred to as the terminal velocity of the object.
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The initial value problem corresponding to equation (1) is

m
dv
dt

= −mg− kv, v(0) = v0. (2)

Solving initial value problem (2), we obtain

v(t) = −mg
k

+
(
v0 + mg

k

)
e−(k/m)t.

From this explicit solution it is clear that, for any initial velocity v0, v(t) tends
to the terminal velocity

lim
t→∞ v(t) = −mg

k
.

The concept of terminal velocity is a mathematical abstraction since, in any
application, the time interval of interest is finite. However, whether the object
is initially moving up or down, it eventually begins to fall and its velocity ap-
proaches terminal velocity as the time of falling increases. The velocity that
the object actually has the instant before it strikes the ground is called the im-
pact velocity. Once impact occurs, the mathematical model (2) is no longer
applicable.

Case 2: Drag Force Proportional to the Square of Velocity
A drag force having magnitude κv2(t) (where the constant of proportionality κ

is assumed to be positive) has been found inmany cases to be a reasonably good
approximation to reality over a range of velocities. However, since it involves
an even power of velocity, incorporating this model of drag into the equations
of motion requires more care.

Drag must act to reduce the speed of the moving object. Therefore, if the
object is moving upward, the drag force acts downward and should be −κv2(t).
If the object is moving downward, the drag force acts upward and should be
κv2(t). In other words, when we use this model for drag, Newton’s second law
leads to

m
dv
dt

= −mg− κv2, v(t) ≥ 0,

m
dv
dt

= −mg+ κv2, v(t) ≤ 0.

Here again we can ask about equilibrium solutions and see if the answer
makes sense physically. Note that no equilibrium solution exists if v(t) > 0
since −mg− κv2 is never zero. When v(t) < 0, however, there is an equilibrium
solution:

v(t) = −
√
mg
κ

.

This equilibrium solution is again a terminal velocity corresponding to down-
ward motion; at this velocity, drag and gravity exert equal and opposite forces.

Each of the preceding equations is a first order separable equation. If the
problem involves a falling (rising) object, then velocity is always nonpositive
(nonnegative) and a single equation is valid for the entire problem (that is,
over the entire t-interval of interest). If, however, the problem involves both
upward and downward motion, then both equations will ultimately be needed.
The first equation must be used to model the upward dynamics, the behavior
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of the projectile from launch until the time tm at which it reaches its highest
point [that is, when v(tm) = 0]. After time tm, the projectile begins to fall and
the second differential equation [with initial condition v(tm) = 0] is needed to
model the descending dynamics.

E X A M P L E

1 Assume a projectile having massm is launched vertically upward from ground
level at time t = 0 with initial velocity v(0) = v0. Further assume that the drag
force experienced by the projectile is proportional to the square of its velocity,
with drag coefficient κ. Determine the maximum height reached by the projec-
tile and the time at which this maximum height is reached.

Solution: The projectile motion being considered involves only upward mo-
tion. Therefore,

mv′ = −mg− κv2, v(0) = v0.

Separating variables yields

v′

1+ κ

mg
v2

= −g.

Integrating, we find∫
dv

1+ κ

mg
v2

=
√
mg
κ

tan−1
(√

κ

mg
v
)

= −gt+ C.

Imposing the initial condition gives

C =
√
mg
κ

tan−1
(√

κ

mg
v0

)
.

Finally, after some algebra, we obtain the explicit solution

v(t) =
√
mg
κ

tan
[
tan−1

(√
κ

mg
v0

)
−

√
κg
m

t
]

. (3)

As a check on (3), note that v(0) does reduce to the given initial velocity v0. As a
further check, one can show (using L’Hôpital’s rule8) that for every fixed time t,

lim
κ→0

v(t) = v0 − gt,

which is the velocity in the absence of drag.
Let tm denote the time when the maximum height is reached; that is,

v(tm) = 0. From equation (3), we see that the maximum height is attained at
the first positive value t where the argument of the tangent function is zero.
Thus,

tan−1
(√

κ

mg
v0

)
−

√
κg
m

tm = 0,

8Guillaume de L’Hôpital (1661–1704) wrote the first textbook on differential calculus, Analyse des
infiniment petits pour l’intelligence des lignes courbes, which appeared in 1692. The book contains
the rule that bears his name.
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or

tm =
√
m
κg
tan−1

(√
κ

mg
v0

)
. (4)

We next want to determine the maximum height, y(tm), reached by the pro-
jectile. To find y(tm), we need an expression for position, y(t). To determine
position, y(t), we integrate velocity:

y(t) − y(0) =
∫ t

0
v(s)ds.

For our problem, y(0) = 0. Therefore,

y(tm) =
∫ tm

0
v(t)dt, (5)

where v(t) is given by equation (3). To carry out the integration in equation (5),
we use the fact that

∫
tanudu = −ln | cosu| + C, finding

y(tm) = m
2κ

ln

(
1+ κv20

mg

)
.

Here again, as a check, one can show using L’Hôpital’s rule that

lim
κ→0

y(tm) = v20
2g

(6)

is the maximum height reached in the absence of drag. Figure 2.16 shows how
the size of the drag constant affects the quantities tm and y(tm) for the case of
a 2-lb object launched upward from ground level with an initial velocity of 60
mph (v0 = 88 ft/sec).
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FIGURE 2.16

A 2-lb object is launched upward from ground level with an initial velocity
of 88 ft/sec. The graph in (a) shows the maximum altitude as a function of
the drag constant κ; see equation (5). The graph in (b) shows the time
when the maximum altitude is reached as a function of the drag constant
κ; see equation (4). ❖
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The computations in Example 1 are relatively complicated. The task of find-
ing maximum projectile height can be simplified by transforming the problem
to one in which height rather than time is the independent variable. This trans-
formation is discussed in the next subsection.

One-Dimensional Dynamics with Distance
as the Independent Variable
In many applications, velocity is always nonnegative or always nonpositive
over the entire time interval of interest. For the present discussion, assume
that motion occurs in a straight line, along the x-axis. Then position x(t) is a
monotonic function of time. If velocity is nonnegative, the position of the object
is an increasing function of time; if velocity is nonpositive, then position is a
decreasing function of time. In these cases, we can simplify the differential
equation describing the object’s motion if we use position x as the independent
variable rather than time t.

Suppose (for definiteness) that position x(t) is an increasing function of
time t [a similar analysis is valid if x(t) is decreasing]. Then an inverse function
exists and we can express time as a function of position. We can ultimately
view velocity as a function of position and use the chain rule to relate dv/dt to
dv/dx:

dv
dt

= dv
dx

dx
dt

= v
dv
dx

. (7)

This change of independent variable is useful when the net force acting on the
body is a function of velocity or position or both but does not explicitly depend

on time. In such a case, when F = F(x, v), the equation m
dv
dt

= F transforms

into

mv
dv
dx

= F(x, v). (8)

We adopt the customary notation and write v = v(x) when referring to velocity
as a function of position and v = v(t) when referring to velocity as a function
of time.

Equation (8) is typically supplemented by an initial condition that pre-
scribes velocity at some initial position v(x0) = v0. Equation (8) and the ini-
tial condition define an initial value problem on the underlying x-interval of
interest.

To illustrate the simplifications that can be realized by adopting distance as
the independent variable, we reconsider the problem solved in Example 1, that
of determining the maximum height reached by a projectile when subjected to
a drag force proportional to the square of the velocity.

E X A M P L E

2 Consider the problem treated in Example 1. The initial value problem describ-
ing the projectile’s upward motion is

m
dv
dt

= −mg− κv2, v(0) = v0,

where v = dy/dt. Determine the maximum height reached by the projectile.
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Solution: We view velocity as a function of position y. Since y = 0 when t = 0,
the initial value problem satisfied by v(y) becomes

mv
dv
dy

= −mg− κv2, v(0) = v0.

Therefore,

m
κ

∫
v

v2 + (mg/κ)
dv = m

2κ
ln [v2 + (mg/κ)] = −y+ C.

Imposing the initial condition yields

m
2κ

ln [v2 + (mg/κ)] = −y+ m
2κ

ln [v20 + (mg/κ)]. (9)

If we would like to have velocity expressed as a function of height y, we can
“unravel” the implicit solution (9). However, to determine ym, the maximum
height reached by the projectile, we need only note that the velocity is zero at
the maximum height. Setting v = 0 in (9) leads to

m
2κ

ln [mg/κ] = −ym + m
2κ

ln [v20 + (mg/κ)], or ym = m
2κ

ln

[
1+ κv20

mg

]
.

This is the same expression we found in Example 1. ❖

Impact Velocity
The next example, concerning an object falling through the atmosphere, shows
that using position as the independent variable may convert a problem we
cannot solve into one that we can solve.

The force of Earth’s gravitational attraction diminishes as a body moves
higher above the surface. For objects near the surface, the usual assumption
of constant gravity is fairly reasonable. However, for a body falling from a
great height (such as a satellite reentering the atmosphere), a constant gravity
assumption is not accurate andmay lead to erroneous predictions of the reentry
trajectory.

While most of the realistic gravity models used in aerospace applications
are quite complicated, they are all based on Newton’s law of gravitation, which
states that the force of mutual attraction between two bodies is

F = GmM

r2
. (10)

In equation (10), G = 6.673× 10−11 m3/(kg · s2) is the universal gravitational
constant, m and M are the masses of the two bodies, and r is the distance
between the centers ofmass of the two bodies. [If the bodies aremoving relative
to each other, then r varies with time and therefore r = r(t).]

As a first approximation to the force of gravitational attraction for an object
falling to the surface of Earth, we assume Earth is a sphere of homogeneous
material. Under this assumption, we can use equation (10) to model gravity.
The mass of Earth is Me = 5.976× 1024 kg, and its radius is Re = 6371 km or
6.371× 106 m.
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E X A M P L E

3 Consider an object having mass m = 100 kg which is released from rest at an
altitude of h = 200 km above the surface of Earth. Neglecting drag and consid-
ering only the force of gravitational attraction, calculate the impact velocity of
the object at Earth’s surface.

Solution: In this problem we do not assume that the force of gravitational
attraction is constant. Rather, we take into account the variation of this force
with the separation distance between the two bodies. See Figure 2.17.

Re
m

h

r

FIGURE 2.17

An object of mass m is released at an altitude of 200 km above the surface
of Earth. As the object falls, its distance from the center of Earth is r. Earth
has radius Re, and therefore r = Re + h defines the object’s altitude, h, above
Earth. The quantity r is positive in the direction of increasing altitude.

As shown in Figure 2.17, separation distance r is measured positively from
Earth’s center to the 100-kg body. If v = dr/dt, then the application of Newton’s
second law of motion leads to the differential equation

m
dv
dt

= −GmMe

r2
. (11)

If time is retained as the independent variable, we obtain a differential equation
for the dependent variable r(t) by using the fact that v = dr/dt. The resulting
differential equation, however, is second order and nonlinear:

m
d2r

dt2
= −GmMe

r2
.

Note that the separation distance r(t) is a decreasing function of time. If
we transform differential equation (11) into one in which distance r is the
independent variable and use the fact that v = 0 when r = Re + h, we obtain
the following initial value problem:

mv
dv
dr

= −GmMe

r2
, Re < r < Re + h,

v(Re + h) = 0.
(12)

The differential equation in (12), while nonlinear, is a first order separable equa-
tion for the quantity of interest, v. Solving, we obtain

v2

2
= GMe

r
+ C.



2.9 Applications to Mechanics 85

Imposing the initial condition, we find the implicit solution

v2

2
= GMe

(
1
r

− 1
Re + h

)
.

Since separation distance is decreasing with time, velocity is negative. There-
fore, an explicit solution of the problem is

v = −
√
2GMe

(
1
r

− 1
Re + h

)
.

The impact velocity is found by evaluating velocity at r = Re:

vimpact = −
√
2GMe

(
1
Re

− 1
Re + h

)
.

Using the values given, we obtain vimpact = −1952 m/s (a speed of about 4350
mph). [Note: The impact velocity does not depend on the mass of the object,
but only on its distance from Earth when it is released.] ❖

In the Exercises, we ask you to consider the same problem in the presence
of a drag force that is proportional to the square of the velocity. In particular,
the governing differential equation becomes

m
dv
dt

= −GmMe

r2
+ κv2. (13)

After the independent variable is changed from time to distance, the resulting
differential equation can be recast as a Bernoulli equation and then solved; see
Exercise 16.

E X E R C I S E S

1. An object of mass m is dropped from a high altitude. How long will it take the
object to achieve a velocity equal to one half of its terminal velocity if the drag force
is assumed to be proportional to the velocity?

2. A drag chute must be designed to reduce the speed of a 3000-lb dragster from 220
mph to 50 mph in 4 sec. Assume that the drag force is proportional to the velocity.

(a) What value of the drag coefficient k is needed to accomplish this?

(b) How far will the dragster travel in the 4-sec interval?

3. Repeat Exercise 2 for the case in which the drag force is proportional to the square
of the velocity. Determine both the drag coefficient κ and the distance traveled.

4. A projectile of massm is launched vertically upward from ground level at time t = 0
with initial velocity v 0 and is acted upon by gravity and air resistance. Assume the
drag force is proportional to velocity, with drag coefficient k. Derive an expression
for the time, tm, when the projectile achieves its maximum height.

5. Derive an expression for the maximum height, ym = y(tm), achieved in Exercise 4.

6. An object of massm is dropped from a high altitude and is subjected to a drag force
proportional to the square of its velocity. How far must the object fall before its
velocity reaches one half its terminal velocity?

7. An object is dropped from altitude y0. Determine the impact velocity if air resistance
is neglected—that is, if we assume no drag force.
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Exercises 8–11:

An object undergoes one-dimensional motion along the x-axis subject to the given de-
celerating forces. At time t = 0, the object’s position is x = 0 and its velocity is v = v0.
In each case, the decelerating force is a function of the object’s position x(t) or its veloc-
ity v(t) or both. Transform the problem into one having distance x as the independent
variable. Determine the position xf at which the object comes to rest. (If the object does
not come to rest, xf = ∞.)

8. m
dv
dt

= −kx2v 9. m
dv
dt

= −kxv2 10. m
dv
dt

= −ke−x 11. m
dv
dt

= − kv
1+ x

12. A boat having mass m is pushed away from a dock with an initial velocity v0. The
water exerts on the boat a drag force that is proportional to the square of its velocity.
Determine the velocity of the boat when it is a distance d from the dock.

13. An object is dropped from altitude y0.

(a) Determine the impact velocity if the drag force is proportional to the square of
velocity, with drag coefficient κ.

(b) If the terminal velocity is known to be −120 mph and the impact velocity was
−90mph,whatwas the initial altitude y0? (Recall that we take velocity to be negative
when the object is moving downward.)

14. An object is dropped from altitude y0.

(a) Assume that the drag force is proportional to velocity, with drag coefficient k.
Obtain an implicit solution relating velocity and altitude.

(b) If the terminal velocity is known to be −120 mph and the impact velocity was
−90 mph, what was the initial altitude y0?

15. We need to design a ballistics chamber to decelerate test projectiles fired into it.
Assume the resistive force encountered by the projectile is proportional to the
square of its velocity and neglect gravity. As the figure indicates, the chamber is
to be constructed so that the coefficient κ associated with this resistive force is not
constant but is, in fact, a linearly increasing function of distance into the cham-
ber. Let κ(x) = κ0x, where κ0 is a constant; the resistive force then has the form
κ(x)v2 = κ0xv

2. If we use time t as the independent variable, Newton’s law of motion
leads us to the differential equation

m
dv
dt

+ κ0xv
2 = 0 with v = dx

dt
. (14)

(a) Adopt distance x into the chamber as the new independent variable and rewrite
differential equation (14) as a first order equation in terms of the new independent
variable.

(b) Determine the value κ0 needed if the chamber is to reduce projectile velocity to
1% of its incoming value within d units of distance.

Projectile

Ballistics chamber

�(x) = �0 xx

Figure for Exercise 15
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16. The motion of a body of mass m, gravitationally attracted to Earth in the presence
of a resisting drag force proportional to the square of its velocity, is given by

m
dv
dt

= −GmMe

r2
+ κv2

[recall equation (13)]. In this equation, r is the radial distance of the body from the
center of Earth, G is the universal gravitational constant, Me is the mass of Earth,
and v = dr/dt. Note that the drag force is positive, since it acts in the positive r
direction.

(a) Assume that the body is released from rest at an altitude h above the surface of
Earth. Recast the differential equation so that distance r is the independent variable.
State an appropriate initial condition for the new problem.

(b) Show that the impact velocity can be expressed as

vimpact = −
[
2GMe

∫ h

0

e−2(κ/m)s

(Re + s)2
ds

]1/2
,

where Re represents the radius of Earth. (The minus sign reflects the fact that
v = dr/dt < 0.)

17. On August 24, 1894, Pop Shriver of the Chicago White Stockings caught a base-
ball dropped (by Clark Griffith) from the top of the Washington Monument. The
Washington Monument is 555 ft tall and a baseball weighs 518 oz.

(a) If we ignore air resistance and assume the baseball was acted upon only by
gravity, how fast would the baseball have been traveling when it was 7 ft above the
ground?

(b) Suppose we now include air resistance in our model, assuming that the drag
force is proportional to velocity with a drag coefficient k = 0.0018 lb-sec/ft. How
fast is the baseball traveling in this case when it is 7 ft above the ground?

18. A 180-lb skydiver drops from a hot-air balloon. After 10 sec of free fall, a parachute
is opened. The parachute immediately introduces a drag force proportional to ve-
locity. After an additional 4 sec, the parachutist reaches the ground. Assume that
air resistance is negligible during free fall and that the parachute is designed so that
a 200-lb person will reach a terminal velocity of −10 mph.
(a) What is the speed of the skydiver immediately before the parachute is opened?

(b) What is the parachutist’s impact velocity?

(c) At what altitude was the parachute opened?

(d) What is the balloon’s altitude?

19. When modeling the action of drag chutes and parachutes, we have assumed that
the chute opens instantaneously. Real devices take a short amount of time to fully
open and deploy.

In this exercise, we try to assess the importance of this distinction. Consider
again the assumptions of Exercise 2. A 3000-lb dragster is moving on a straight
track at a speed of 220 mph when, at time t = 0, the drag chute is opened. If we
assume that the drag force is proportional to velocity and that the chute opens
instantaneously, the differential equation to solve is mv′ = −kv.

If we assume a short deployment time to open the chute, a reasonable differen-
tial equation might be mv′ = −k(tanh t)v. Since tanh(0) = 0 and tanh(1) ≈ 0.76, it
will take about 1 sec for the chute to become 76% deployed in this model.

Assume k = 25 lb-sec/ft. Solve the two differential equations and determine in
each case how long it takes the vehicle to slow to 50mph. Which time do you antici-
pate will be larger? (Explain.) Is the idealization of instantaneous chute deployment
realistic?
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20. An object of mass m is dropped from a high platform at time t = 0. Assume the
drag force is proportional to the square of the velocity, with drag coefficient κ. As
in Example 1, derive an expression for the velocity v(t).

21. Assume the action of a parachute can bemodeled as a drag force proportional to the
square of the velocity. Determine the drag coefficient κ of the parachute needed so
that a 200-lb person using the parachute will have a terminal velocity of −10 mph.

PendulumMotion: Conservation of Energy InExercises 22 and 23, our goal is to describe
the rotational motion of the pendulum shown in the figure. We neglect the weight of
the rod when modeling the motion of this pendulum.

g

ml

O

�

Figure for Exercises 22 and 23

Applying the rotational version of Newton’s laws to the pendulum leads to the sec-
ond order differential equation

ml2θ ′′ = −mgl sin θ. (15)

In equation (15), the right-hand side is negative because it acts to cause clockwise
rotation—that is, rotation in the negative θ direction.

22. Suppose that at some initial time the pendulum is located at angle θ0 with an angular
velocity dθ/dt = ω0 radians/sec.

(a) Equation (15) is a second order differential equation. Rewrite it as a first order
separable equation by adopting angle θ as the independent variable, using the fact
that

θ ′′ = d
dt

(
dθ
dt

)
= dω

dt
= dω

dθ
dθ
dt

= ω
dω
dθ

.

Complete the specification of the initial value problem by specifying an appropriate
initial condition.

(b) Obtain the implicit solution

ml2
ω2

2
−mgl cos θ = ml2

ω2
0

2
−mgl cos θ0. (16)

The pendulum is a conservative system; that is, energy is neither created nor de-
stroyed. Equation (16) is a statement of conservation of energy. At a position defined
by the angle θ , the quantity ml2ω2/2 is the kinetic energy of the pendulum while
the term −mgl cos θ is the potential energy, referenced to the horizontal position
θ = π/2. The constant right-hand side is the total initial energy.

(c) Determine the angular velocity at the instant the pendulum reaches the verti-
cally downward position, θ = 0. Express your answer in terms of the constants ω0
and θ0.

23. A pendulum, 2 ft in length and initially in the downward position, is launched with
an initial angular velocity ω0. If it achieves a maximum angular displacement of
135 degrees, what is ω0?
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2.10 Euler’s Method
Up to this point, we have focused on analytical techniques for solving the initial
value problem

y′ = f (t, y), y(t0) = y0. (1)

In Section 2.2, we saw that there is an explicit representation, in terms of in-
tegrals, for the solution of a linear differential equation. However, we also saw
that it might be difficult to work with this representation if the integrand does
not have an elementary antiderivative.

Sections 2.5–2.7 discussed analytical techniques for solving certain special
types of nonlinear differential equations (Bernoulli equations, separable equa-
tions, exact equations, etc.). These techniques, however, often lead to implicit
solutions, and it may be difficult to “unravel” the implicit solution in order
to obtain an explicit solution. In addition, there are many nonlinear differen-
tial equations that do not belong to the special categories for which analytical
techniques have been developed.

Therefore, it’s clear that the analytical methods we’ve discussed, while im-
portant and useful, are not totally adequate. We need tools that enable us to
obtain quantitative information about the solution of (1) in the general case.
Numerical methods are one such tool. We introduce numerical techniques by
considering Euler’s method,9 perhaps the simplest and most intuitive numeri-
cal method.

Besides serving as an introduction to numerical techniques, Euler’smethod
also provides us with a means (albeit a relatively crude one) to analyze initial
value problems for which analytical methods are not applicable. Numerical
methods are discussed in greater detail in Chapter 7.

We begin by asking the most basic question: “What is a numerical solution
of initial value problem (1)?” Aswewill see, a numericalmethod for (1) typically
generates values

y1, y2, . . . , yn

that approximate corresponding solution values

y(t1), y(t2), . . . , y(tn)

9Leonhard Euler (1707–1783) was one of the most gifted individuals in the history of mathematics
and science; his 866 publications (books and articles) make him arguably the most prolific as
well. He established the foundations of mathematical analysis, the theory of special functions,
and analytical mechanics. Complex analysis, number theory, differential equations, differential
geometry, lunar theory, elasticity, acoustics, fluid mechanics, and the wave theory of light are some
of the other areas to which Euler made important contributions. A backlog of his work continued
to be published for nearly 50 years after his death.
Euler’s achievements become even more remarkable when one appreciates the circumstances

surrounding his work. He was involved in the world about him. In Russia, he worked on state
projects involving cartography, science education, magnetism, fire engines, machines, and ship-
building. Later, in Berlin, he served as an advisor to the government on state lotteries, insurance,
annuities, and pensions. He fathered thirteen children, although only five survived infancy. Euler
claimed that he made some of his greatest discoveries while holding an infant in his arms with
other children playing at his feet. In 1771 Euler became totally blind, but he was able to maintain
a prodigious output of work until his death.
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at designated abscissa values t0 < t1 < t2 < · · · < tn. Figure 2.18 illustrates the
output of a numerical method, where the solid curve indicates the actual (un-
known) solution of initial value problem (1).

y(t)

yn

y0y0

t0 t1 t2 t3 t4 tn

y1
y2 y3 y4

t

y

FIGURE 2.18

The solid curve indicates the actual (unknown) solution of initial value
problem (1). For i = 1,2, . . . ,n, the points (ti, yi) are approximations to
corresponding points (ti, y(ti)) on the actual solution curve. We say that yi
is a numerical approximation to the unknown value y(ti).

In Figure 2.18, the values y1, y2, y3, . . . are found sequentially—first y1, then
y2, and so forth. Note that the starting value y0 = y(t0) is known exactly, since
it is specified in the initial value problem (1). The numerical problem therefore
reduces to this question:

Given (t0, y0), how do we determine (t1, y1)? And in general, given an
approximation (tk, yk), how do we determine the next approximation,
(tk+1, yk+1)?

The simplest answer, the simplest numerical algorithm, isEuler’smethod (also
known as the tangent line method).

Derivation of Euler’s Method
The geometric ideas underlying Euler’s method can be understood in terms
of direction fields. At the initial condition point (t0, y0), the differential equa-
tion specifies the slope of the solution curve at (t0, y0); it is equal to f (t0, y0).
Therefore, the line tangent to the solution curve y(t) at the point (t0, y0) has
equation

y = y0 + f (t0, y0)(t− t0). (2)

We follow this tangent line over a short time interval, to t = t1, where t0 < t1.
At t = t1, we reach the point (t1, y1), where

y1 = y0 + f (t0, y0)(t1 − t0).

The value found above, y1, is the Euler’s method approximation to the solution
value y(t1). (See Figure 2.19.)

While the new point (t1, y1) does not exactly coincide with the point
(t1, y(t1)), it is generally close to that point (assuming t1 is sufficiently close to
t0). Moreover, since f (t, y) is continuous, the direction field filament at (t1, y1)



2.10 Euler’s Method 91

y0

t0 t1

y0

y1

y(t1)
y(t)

t

y

FIGURE 2.19

The line tangent to y(t) at the initial point (t0, y0) has slope f (t0, y0).
Following the tangent line to time t1, we arrive at the point (t1, y1) and have
an approximation, y1, to the solution value, y(t1).

has nearly the same slope as the filament at (t1, y(t1)). Hence, although we do
not know the exact value of y(t) when t = t1, we are close to it and we do have
a good idea of which direction the graph of y(t) is heading. At t = t1, the graph
of y(t) has slope f (t1, y(t1)), which is nearly equal to f (t1, y1). So, in an attempt
to follow the solution curve y(t), we proceed from (t1, y1) along a line having
slope f (t1, y1):

y = y1 + f (t1, y1)(t− t1).

Following this line until t = t2, we reach a point (t2, y2), where

y2 = y1 + f (t1, y1)(t2 − t1).

This process is repeated, leading to the algorithm

yk+1 = yk + f (tk, yk)(tk+1 − tk), k = 0,1,2, . . . . (3)

Iteration (3) is known as Euler’smethod and is illustrated in Figure 2.20. Euler’s
method amounts to tracing a polygonal path through the direction field.
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FIGURE 2.20

Starting on the solution curve at (t0, y0), Euler’s method attempts to track
the solution y(t), tracing a polygonal path through the direction field. As
the path proceeds, its direction is constantly corrected by sampling the
direction field; see equation (3).
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E X A M P L E

1 Apply Euler’s method to the initial value problem

y′ = t2 + y, y(2) = 1.

Use t1 = 2.1, t2 = 2.2, and t3 = 2.3. Generate approximations y1 to y(2.1), y2 to
y(2.2), and y3 to y(2.3).

Solution: The actual (unknown) solution starts at (t0, y0) = (2,1) and has a
starting slope of f (t0, y0) = f (2,1) = 5. Following the line of slope 5 passing
through (2, 1), we obtain, by (3),

y1 = y0 + f (t0, y0)(t1 − t0) = 1+ 5(0.1) = 1.5.

Having (t1, y1) = (2.1,1.5), we take the next step to (t2, y2):

y2 = y1 + f (t1, y1)(t2 − t1) = 1.5+ 5.91(0.1) = 2.091.

Having (t2, y2) = (2.2,2.091), we take the next step to (t3, y3):

y3 = y2 + f (t2, y2)(t3 − t2) = 2.091+ 6.931(0.1) = 2.7841.

Note that the differential equation in this example is linear, and hence a formula
for the solution can be found. The exact solution is

y(t) = 11et−2 − (t2 + 2t+ 2).

Figure 2.21 compares the Euler’s method approximations with the exact solu-
tion at the points t = 2,2.1,2.2, and 2.3.
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FIGURE 2.21

The values y1, y2, and y3 are the Euler’s method approximations found in
Example 1. ❖

Implementing Euler’s Method
The simplest way to organize an Euler’s method calculation is to choose an
appropriate step size, h, and then use h to define the equally spaced sample
points:

t1 = t0 + h, t2 = t1 + h,

and, in general,
tk+1 = tk + h, k = 0,1, . . . ,n− 1.
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In Example 1 we used a step size of h = 0.1 to define sample points t0 = 2.0,
t1 = 2.1, t2 = 2.2, and t3 = 2.3.

For a constant step size h, the term tk+1 − tk in (3) is equal to h. Thus, Euler’s
method takes the form

yk+1 = yk + hf (tk, yk), k = 0,1, . . . ,n− 1. (4)

We anticipate that Euler’s method should becomemore accurate when we take
smaller steps, sampling the direction field more often and using this informa-
tion to correct the “Euler path” that is tracking the solution y(t) (see Exercise
15). Using a small step size h, however, may lead to a significant amount of
computation. Therefore, numerical methods are usually programmed and run
on a computer or programmable calculator.

In this section, we have assumed a constant step size h in order to simplify
the discussion. Many implementations of numerical methods, however, use
variable-step algorithms rather than a fixed-step algorithm. Such variable-step
algorithms use error estimates that monitor errors as the algorithm proceeds.
When errors are increasing, the steplength is reduced; when errors are decreas-
ing, the steplength is increased.

E X A M P L E

2 Apply Euler’s method to the initial value problem

y′ = y(2− y), y(0) = 0.1. (5)

Use h = 0.2 and approximate the solution on the interval 0 ≤ t ≤ 4.

Solution: Using a fixed step size of h = 0.2, Euler’s method samples the direc-
tion field at time values t1 = 0.2, t2 = 0.4, . . . , t19 = 3.8, and t20 = 4.0. For this
test case, initial value problem (5) can be solved, since the differential equation
is separable. Figure 2.22 shows a portion of the direction field for y′ = y(2− y).
The solid curve in Figure 2.22 is the graph of the actual solution of (5), and the
dots show the Euler path through the direction field.
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FIGURE 2.22

The direction field for y′ = y(2− y). The curve denotes the solution of
y′ = y(2− y), y(0) = 0.1, the initial value problem posed in Example 2.
The dots are the points generated by Euler’s method, using a step
size of h = 0.2. ❖
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Runge-Kutta Methods
Euler’s method is conceptually important, but it is a relatively crude numeri-
cal algorithm. The question then becomes “How do we systematically develop
algorithms that are more accurate?”

A key to systematically achieving greater accuracy is to viewEuler’s method
from another, slightly different perspective. Consider the initial value problem
(1). Suppose we assume not only that the solution y(t) is differentiable, but also
that it has a Taylor series expansion that converges in the interval of interest,
a ≤ t ≤ b. We then have, for t and t+ h in [a,b],

y(t+ h) = y(t) + y′(t)h+ y′′(t)
2! h2 + y′′′(t)

3! h3 + · · · . (6)

If we set t = tk, t+ h = tk+1 and use the fact that y
′(t) = f (t, y(t)), we obtain

y(tk+1) = y(tk) + f (tk, y(tk))h+ y′′(tk)
2! h2 + y′′′(tk)

3! h3 + · · · . (7)

As shown in (7), Euler’s method can be viewed as truncating the Taylor series
after the linear term. Equation (7) also shows that the error made in taking one
step of Euler’s method is the infinite sum that begins with the term y′′(tk)h

2/2!.
In most applications, it can be shown (using Taylor’s theorem) that this error
is bounded by a constant multiple of h2.

Equation (7) provides a blueprint for improving accuracy; an improved
algorithm should somehow incorporate more terms of the Taylor series. For
example, if the algorithm incorporated the term y′′(tk)h

2/2!, then it would be
including concavity information in addition to the slope information given by
the term y′(tk)h. Moreover, such an algorithm would have an error bounded by
a constant multiple of h3 instead of a multiple of h2. Since h is small, we would
expect increased accuracy.

It is shown in Chapter 7 that the terms y(n)(tk)h
n/n! can be obtained directly

from the differential equation y′ = f (t, y). In principle, therefore, retaining ad-
ditional terms in (7) in order to create a more accurate algorithm is straightfor-
ward. There are two practical difficulties, however. The computations necessary
to determine

y(n)(tk) = d(n−1)

dt(n−1) f (t, y(t))

∣∣∣∣∣
t=tk

(8)

very quickly become unwieldy as n increases.Moreover, the resulting algorithm
is problem specific, since the calculations in (8) have to be redone every time
the method is applied to a new differential equation.

The challenge facing the numerical analyst is to retain more terms of the
Taylor series (7), but in a way that is both problem independent and compu-
tationally friendly. One operation that computers perform very easily is the
evaluation of functions. Knowing this, numerical analysts have achieved the
desired objectives by creating algorithms that use nested compositions of func-
tions to approximate the higher derivatives y(n)(tk),n = 2,3, . . . . Several such
algorithms are discussed in Chapter 7. One popular example is the fourth-order
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Runge-Kutta10 method listed in (9). For initial value problem (1), this method
has the form

yk+1 = yk + h
6

[K1 + 2K2 + 2K3 + K4], (9a)

where

K1 = f (tk, yk)

K2 = f (tk + h/2, yk + (h/2)K1)

K3 = f (tk + h/2, yk + (h/2)K2)

K4 = f (tk + h, yk + hK3).

(9b)

Note that the terms Kj in (9b) are formed by sequentially evaluating com-
positions of the function f ; for example,

K3 = f (tk + h/2, yk + (h/2)f (tk + h/2, yk + (h/2)f (tk, yk))).

When the compositions in (9) are unraveled, it can be seen that the algorithm
correctly replicates the Taylor series expansion (7) up to and including the term
y(4)(tk)h

4/4!.

E X A M P L E

3 As a test case to illustrate how the Runge-Kutta philosophy can improve accu-
racy, consider the initial value problem

y′ = 2ty+ 1, y(0) = 2.

(a) Solve this initial value problem mathematically.

(b) Solve this initial value problem numerically on the interval 0 ≤ t ≤ 2, using
Euler’s method and the Runge-Kutta method (9). Use a constant step size
of h = 0.05.

(c) Tabulate the exact solution values and both sets of numerical approxima-
tions from t = 0 to t = 2 in steps of t = 0.25. Is the Runge-Kutta method
more accurate than Euler’s method for this test case?

Solution:

(a) This initial value problemwas given in Exercise 45 in Section 2.2. The exact
solution is

y(t) = et
2
[
2+

√
π

2
erf(t)

]
,

where erf(t) denotes the error function, erf(t) = 2√
π

∫ t

0
e−s

2

ds.

(continued)

10Carle David Tolmé Runge (1856–1927) was a German scientist whose initial interest in pure
mathematics was eventually supplanted by an interest in spectroscopy and applied mathematics.
During his career, he held positions at universities in Hanover and Gottingen. Runge was a particu-
larly fit and active man; it is reported that he entertained grandchildren on his seventieth birthday
by doing handstands.
Martin Wilhelm Kutta (1867–1944) held positions at Munich, Jena, Aachen, and Stuttgart. In

addition to the Runge-Kutta method (1901), he is remembered for his work in the study of airfoils.
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(continued)

(b) We coded the Runge-Kutta method (9) for this initial value problem, using
MATLAB as a programming environment; a listing, together with a dis-
cussion of the practical aspects of coding a Runge-Kutta, is given in the
next subsection. (We also provide brief tutorials for MATLAB and Mathe-
matica in our Technical Resource Manual. You may view these tutorials at
http://www.aw-bc.com/kohler/.)

(c) The results are shown in Table 2.1. As is shown in the table, theRunge-Kutta
results for the constant step size h = 0.05 are considerably more accurate
than those of Euler’s method using h = 0.05.

TA B L E 2 . 1

The Results of Example 3
Here, yE denotes the Euler’s method estimates of y(t),
yRK denotes the Runge-Kutta method estimates, and yT

the true values.

t yE yRK yT

0.0000 2.0000 2.0000 2.0000
0.2500 2.3594 2.3897 2.3897
0.5000 3.0726 3.1603 3.1603
0.7500 4.3960 4.6162 4.6162
1.0000 6.9084 7.4666 7.4666
1.2500 11.9543 13.4434 13.4434
1.5000 22.8447 27.0987 27.0988
1.7500 48.3243 61.4573 61.4577
2.0000 113.2709 157.3539 157.3563

❖

Coding a Runge-Kutta Method
We conclude with a short discussion of the practical aspects of writing a pro-
gram to implement a Runge-Kutta method. Figures 2.23 and 2.24 list the pro-
grams used to generate the numerical solution in Example 3. This particular
code was written in MATLAB, but the principles are the same for any program-
ming language.

We note first that no matter what numerical method we decide to use for
the initial value problem

y′ = f (t, y), y(t0) = y0,

weneed towrite a subprogram (ormodule) that evaluates f (t, y). Such amodule
is listed in Figure 2.24 for the initial value problem of Example 3. Figure 2.23
lists aMATLABprogram that executes 40 steps of the fourth-order Runge-Kutta
method (9) for the initial value problem of Example 3.

The program listed in Figure 2.23 is not as general as it could be. Normally
a Runge-Kutta code is written as a subprogram or module that we can call

http://www.aw-bc.com/kohler/
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%
% Set the initial conditions for the
% initial value problem of Example 3
%
t=0;
y=2;
h=0.05;
output=[t,y];
%
% Execute the fourth-order Runge-Kutta method
% on the interval [0,2]
%
for i=1:40

ttemp=t;
ytemp=y;
k1=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k1;
k2=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k2;
k3=f(ttemp,ytemp);
ttemp=t+h;
ytemp=y+h*k3;
k4=f(ttemp,ytemp);
y=y+(h/6)*(k1+2*k2+2*k3+k4);
t=t+h;
output=[output;t,y];

end

FIGURE 2.23

A Runge-Kutta code for the initial value problem in Example 3.

function yp=f(t,y)
yp=2*t*y+1;

FIGURE 2.24

A function subprogram that evaluates f (t, y) for the differential equation of
Example 3.

whenever we have an initial value problem to solve numerically. Such subpro-
grams allow the user to input a step size h, the number of steps to execute,
and the initial conditions. They can be used over and over again and do not
have to be modified whenever the initial value problem changes. We did not
list a general module for Figure 2.23 because we wanted the basic steps of a
Runge-Kutta program to be obvious.
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Observe that the code listed in Figure 2.23 stays as close as possible to the
notation and format of the fourth-order Runge-Kutta method (9). In general, it
is a good idea to use variable names (such as K1 and K2) that match the names
in the algorithm. Beyond the choice of variable names, the code in Figure 2.23
also mimics the steps of algorithm (9) as closely as possible. Adhering to such
conventions makes programs much easier to read and debug.

E X E R C I S E S

Exercises 1–6:

In each exercise,

(a) Write the Euler’s method iteration yk+1 = yk + hf (tk, yk) for the given problem. Also,
identify the values t0 and y0.

(b) Using step size h = 0.1, compute the approximations y1, y2, and y3.

(c) Solve the given problem analytically.

(d) Using the results from (b) and (c), tabulate the errors ek = y(tk) − yk for k = 1,2,3.

1. y′ = 2t− 1, y(1) = 0 2. y′ = −y, y(0) = 1

3. y′ = −ty, y(0) = 1 4. y′ = −y+ t, y(0) = 0

5. y′ = y2, y(0) = 1 6. y′ = y, y(−1) = −1
Exercises 7–10:

Reducing the Step Size These exercises examine graphically the effects of reducing step
size on the accuracy of the numerical solution. A computer or programmable calculator
is needed.

(a) Use Euler’s method to obtain numerical solutions on the specified time interval for
step sizes h = 0.1, h = 0.05, and h = 0.025.

(b) Solve the problem analytically and plot the exact solution and the three numerical
solutions on a single graph. Does the error appear to be getting smaller as h is
reduced?

7. y′ = 2y− 1, y(0) = 1, 0 ≤ t ≤ 0.5 8. y′ = y+ e−t, y(0) = 0, 0 ≤ t ≤ 1

9. y′ = y−1, y(0) = 1, 0 ≤ t ≤ 1 10. y′ = −y2, y(−1) = 2, −1 ≤ t ≤ 0

11. Assume we are considering the direction field of an autonomous first order differ-
ential equation.

(a) Suppose we can qualitatively establish, by examining this direction field, that
all solution curves y(t) in a given region of the ty-plane have one of the following
four types of behavior:

(i) increasing, concave up (ii) increasing, concave down

(iii) decreasing, concave up (iv) decreasing, concave down.

Suppose we implement an Euler’s method approximation to one of the solution
curves in the region, using some reasonable step size h. Consider each of the four
cases. In each case, will the values yk underestimate the exact values or overestimate
the exact values or is it impossible to reach a definite conclusion?

(b) What do you think will happen if Euler’s method is used to approximate an
“S-shaped solution curve” similar to the logistic curve shown in Figure 2.22 on
page 93. In that case, a solution curve changes from increasing and concave up
to increasing and concave down. Are your answers to part (a) consistent with the
behavior exhibited by the Euler approximation shown in the figure?



2.10 Euler’s Method 99

Exercises 12–15:

A programmable calculator or computer is needed for these exercises.

12. Use Euler’s method with step size h = 0.01 to numerically solve the initial value
problem

y′ − ty = sin 2πt, y(0) = 1, 0 ≤ t ≤ 1.

Graph the numerical solution. [Note: Although the differential equation in this prob-
lem is a first order linear equation and we can get an explicit representation for the
exact solution, the representation involves antiderivatives that we cannot express
in terms of known functions. From a quantitative point of view, the representation
itself is of little use.]

13. Assume a tank having a capacity of 200 gal initially contains 90 gal of fresh water.
At time t = 0, a salt solution begins flowing into the tank at a rate of 6 gal/min and
the well-stirred mixture flows out at a rate of 1 gal/min. Assume that the inflow con-
centration is given by c(t) = 2− cosπt oz/gal, where time t is in minutes. Formulate
the appropriate initial value problem for Q(t), the amount of salt (in ounces) in the
tank at time t. Use Euler’s method to approximately determine the amount of salt
in the tank when the tank contains 100 gal of liquid. Use a step size of h = 0.01.

14. Let P(t) denote the population of a certain colony,measured inmillions ofmembers.
The colony is modeled by

P ′ = 0.1
(
1− P

3

)
P+M(t), P(0) = P0,

where time t is measured in years. Assume that the colony experiences a migra-
tion influx that is initially strong but that soon tapers off. Specifically assume that
M(t) = e−t. Suppose the colony had 500,000 members initially. Use Euler’s method
to estimate its size after 2 years.

15. In Chapter 7, wewill examine how the error in numerical algorithms, such as Euler’s
method, depends on step size h. In this exercise, we further examine the dependence
of errors on step size by studying a particular example,

y′ = y+ 1, y(0) = 0.

(a) Use Euler’smethod to obtain approximate solutions to this initial value problem
on the interval 0 ≤ t ≤ 1, using step sizes h1 = 0.02 and h2 = 0.01. You will therefore
obtain two sets of points,

(t(1)k , y(1)
k ), k = 0, . . . ,50

(t(2)k , y(2)
k ), k = 0, . . . ,100

where t(1)k = 0.02k, k = 0,1, . . . ,50 and t(2)k = 0.01k, k = 0,1, . . . ,100.

(b) Determine the exact solution, y(t).

(c) Print a table of the errors at the common points, t(1)k , k = 0,1, . . . ,50:

e(1)(t(1)k ) = y(t(1)k ) − y(1)
k and e(2)(t(1)k ) = y(t(1)k ) − y(2)

2k .

(d) Note that the approximations y(2)
2k were found using a step size equal to one half

of the step size used to obtain the approximations y(1)
k ; that is, h2 = h1/2. Compute

the corresponding error ratios. In particular, compute∣∣∣∣∣ e
(2)(t(1)k )

e(1)(t(1)k )

∣∣∣∣∣ , k = 1, . . . ,50.

On the basis of these computations, conjecture how halving the step size affects the
error of Euler’s method.
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16. This exercise treats the simple initial value problem y′ = λy, y(0) = y0, where we can
see the behavior of the numerical solution as the step size h approaches zero.

(a) Show that the solution of the initial value problem is y = eλty0.

(b) Apply Euler’s method to the initial value problem, using a step size h. Show that
yn is related to the initial value by the formula yn = (1+ hλ)ny0.

(c) Consider any fixed time t∗, where t∗ > 0. Let h = t∗/n so that t∗ = nh. (The exact
solution is y(t) = y0e

λt.) Show that letting h → 0 and n → ∞ in such a way that t∗

remains fixed leads to

lim
h→0
t∗=nh

yn = y(t∗).

17. Consider the initial value problem y′ = 2t− 1, y(1) = 0.

(a) Solve this initial value problem.

(b) SupposeEuler’smethod is used to solve this problemnumerically on the interval
1 ≤ t ≤ 5, using step size h = 0.1. Will the numerical solution values be the same as
the exact solution values found in part (a)? That is, will yk = y(tk), k = 1,2, . . . ,40?
Explain.

(c) What will be the answer to the question posed in part (b) if the Runge-Kutta
method (9) is used instead of Euler’s method?

Exercises 18–22:

In each exercise,

(a) Using step size h = 01, compute the first estimate y1 using Euler’s method and the
Runge-Kutta method (9). Let these estimates be denoted by yE1 and y

RK
1 , respectively.

(b) Solve the problem analytically.

(c) Compute the errors |y(t1) − y1| for the two estimates obtained in (a).
18. y′ = −y, y(0) = 1 19. y′ = −ty, y(0) = 1 20. y′ = −y+ t, y(0) = 0

21. y′ = y2, y(0) = 1 22. y′ = y, y(−1) = −1
Exercises 23–27:

A computer or programmable calculator is needed for these exercises. For the given
initial value problem, use the Runge-Kutta method (9) with a step size of h = 0.1 to
obtain a numerical solution on the specified interval.

23. y′ = −ty+ 1, y(0) = 0, 0 ≤ t ≤ 2 24. y′ = y3, y(1) = 0.5, 1 ≤ t ≤ 2

25. y′ = −y+ t, y(1) = 0, 1 ≤ t ≤ 5 26. y′ + 2ty = sin t, y(0) = 0, 0 ≤ t ≤ 3

27. y′ = y2, y(0) = 1, 0 ≤ t ≤ 0.9

C H A P T E R 2 R E V I E W E X E R C I S E S

These review exercises provide you with an opportunity to test your understanding
of the concepts and solution techniques developed in this chapter. The end-of-section
exercises deal with the topics discussed in the section. These review exercises, however,
require you to identify an appropriate solution technique before solving the problem.

Exercises 1–30:

If the differential equation is linear, determine the general solution. If the differential
equation is nonlinear, obtain an implicit solution (and an explicit solution if possible).
If an initial condition is given, solve the initial value problem.
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1. y′ + 2y = 6 2.
y′

t2 + 4
= 3y

3. y′ − 3t2y−1 = 0 4. y2y′ = 1+ y3, y(0) = 0

5. y′ + 2ty = 2t 6. y′ − y√
t

= 0, y(1) = 3e2

7. (t+ 3y2)y′ + y+ 2t = 0 8. y′ = sin t, y(0) = 4

9.
y′

t2 + 1
= 3y, y(0) = 4 10. y′ − 2y = 0

11.
√
t y′ − √

y t = 0 12. y′ − 4y = 6e2t

13. (t sin y)y′ − cos y = 0 14. y′ = e3t+2y, y(0) = 0

15. y′ + p(t)y = 0, y(0) = 1; p(t) =
{
2, 0 ≤ t < 1

1, 1 ≤ t ≤ 2

16. y′ − y = g(t), y(0) = 0; g(t) =
{
3et, 0 ≤ t < 1

0, 1 ≤ t ≤ 2

17. y′ = y3, y(0) = 1 18. ty′ − 2y = 0, t > 0

19. y′ + (cos t)y = cos t 20. y2y′ = 2t(1+ y3)

21. y′ = t
√
y− 1, y(1) = 5 22. (2y+ 3t3)y′ + 9yt2 = 0

23. 2
√
t y′ − y = 8, t > 0 24. 2yy′ = et−y2

25. y′ + y = 12, y(0) = 5 26. t+ 5yy′ = 0

27. 2yy′ + 3t2 = 4, y(0) = 1 28. t2(1+ 9y2)y′ + 2ty(1+ 3y2) = 0

29. y′ + (sin 2t)y = sin 2t, y(π/4) = 4 30. t2y′ + csc y = 0, t > 0

PROJECTS

Project 1: Flushing Out a Radioactive Spill

A lake holding 5,000,000 gallons of water is fed by a stream. Assume that fresh water
flows into the lake at a rate of 1000 gal/min and that water flows out at the same rate. At
a certain instant, an accidental spill introduces 5 lb of soluble radioactive pollutant into
the lake. Assume that the radioactive substance has a half-life of 2 days and dissolves in
the lake water to form a well-stirred mixture.

1. Let Q(t) denote the amount of radioactive material present within the lake at time
t, measured in minutes from the instant of the spill. Use the conservation principle
[rate of change of Q(t) equals rate in minus rate out] to derive a differential equation
describing how Q(t) changes with time. Note that the solute is removed by both
outflow and radioactive decay. Add the appropriate initial condition to obtain the
initial value problem of interest.

2. Solve the initial value problem formulated in part 1.

3. How long will it take for the concentration of the radioactive pollutant to be reduced
to 0.01% of its original value?
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Project 2: Processing Seafood

Many foods, such as crabmeat, are sterilized by cooking. Harvested crabs are laden
with bacteria, and the crabmeat must be steamed to reduce the bacteria population to
an acceptable level. The longer the crabmeat is steamed, the lower the final bacteria
count. But steaming forces moisture out of the meat, reducing the amount of crabmeat
for sale. Excessive cooking also destroys taste and texture. The processor is therefore
faced with a tradeoff when choosing an appropriate steaming time.

The basis for a choice of steaming time is the concept of “shelf life.” After the steam-
ing treatment is completed, the product is placed in a sterile package and refrigerated.
Under refrigeration, the bacterial content in the meat slowly increases and eventually
reaches a size where the crabmeat is no longer suitable for consumption. The time span
during which packaged crabmeat is suitable for sale is called the shelf life of the product.
We study the following problem: How long must the crabmeat be steamed to achieve a
desired shelf life?

The first step inmodeling shelf life is to choose amodel that describes the population
dynamics of the bacteria. For simplicity, assume

dP
dt

= k(T)P, (1)

where P(t) denotes the bacteria population at time t. In equation (1), k(T) represents
the difference between birth and death rates per unit population per unit time. In this
model, k is not constant; it is a function of T, where T denotes the temperature of the
crabmeat. [Note that k(T) is ultimately a function of time, since the temperature T of
the crabmeat varies with time in the steamer and in the refrigeration case.]

We need to choose a reasonable model for the bacteria growth rate, k(T). We do so
by reasoning as follows. At low temperatures (near freezing), the rate of growth of the
bacteria population is slow; that’s why we refrigerate foods. Mathematically, k(T) is a
relatively small positive quantity at those temperatures. As temperature increases, the
bacterial growth rate, k(T), first increases, with the most rapid rate of growth occurring
near 90◦F. Beyond this temperature, the growth rate begins to decrease. Beyond about
145◦F, the death rate exceeds the birth rate and the bacteria population begins to decline.
A simple model that captures this qualitative behavior is the quadratic function

k(T) = k0 + k1(T − 34)(140− T), (2)

where k0 and k1 are positive constants that are typically determined experimentally.
We also need a model that describes the thermal behavior of the crabmeat—how

the crabmeat temperature T varies in response to the temperature of the surroundings.
Assuming Newton’s law of cooling, we have

dT
dt

= η[S(t) − T]. (3)

In equation (3), η is a positive constant and S(t) is the temperature of the surroundings.
Note that the surrounding temperature is not constant, since the crabmeat is initially
in the steamer and then in the refrigeration case.

We now apply this model to a specific set of circumstances. Assume the following:

(i) Initially the crabmeat is at room temperature (75◦F) and contains about 107

bacteria per cubic centimeter.

(ii) The steam bath is maintained at a constant 250◦F temperature.

(iii) When the crabmeat is placed in the steam bath, it is observed that its temper-
ature rises from 75◦F to 200◦F in 5 min.

(iv) When the crabmeat is kept at a constant 34◦F temperature, the bacterial count
in the crabmeat doubles in 60 hr.
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(v) The bacterial count in the crabmeat begins to decline once the temperature
exceeds 145◦F; that is [see equation (2)], k(145) = 0.

(vi) A bacterial count of 105 bacteria per cubic centimeter governs shelf life. Once
this bacterial count is reached, the crabmeat can no longer be offered for sale.

Determine how long the crabmeat must be steamed to achieve a shelf life of 16
days. Assume that the crabmeat goes directly from the 250◦F steam bath to the 34◦F
refrigeration case. Assume the 16-day shelf life requirement includes transit time to the
point of sale; that is, assume that the measurement of shelf life begins the moment the
crabmeat is removed from the steam bath.

Project 3: Belt Friction

The slippage of flexible belts, cables, and ropes over shafts or pulleys of circular cross-
section is an important consideration in the design of belt drives. When the frictional
contact between the belt and the shaft is about to be broken (that is, when slippage
is imminent), a belt drive is acting under the most demanding of conditions. The belt
tension (force) is not constant along the contact region. Rather, it increases along the
contact region between belt and shaft in the direction of the impending slippage.

Consider the belt drive shown inFigure 2.25. Supposewe ask the following question:
“How much greater can we make tension T2 relative to the opposing tension T1 before
the belt slips over the pulley in the direction of T2?” The answer obviously depends in
part on friction—that is, on the roughness of the belt-shaft contact surface.

�2
�1

T1T2

FIGURE 2.25

Consider the belt drive. How much greater can we make tension T2 relative
to the opposing tension T1 before the belt slips over the pulley in the
direction of T2?

When slippage is imminent, the tension in the belt has been found to satisfy the
differential equation

dT(θ)

dθ
= μT(θ),

where the angle θ (in radians) is measured in the direction of the impending slippage
over the belt-pulley contact region. The parameter μ is an empirically determined con-
stant knownas the coefficient of friction. The larger the value ofμ, the rougher the contact
surface. In Figure 2.25, with slippage impending in the direction of T2, the value of T2
is determined relative to T1 by solving the initial value problem

dT
dθ

= μT, T(θ1) = T1, θ1 ≤ θ ≤ θ2.

Consider the belt drive configurations shown in Figures 2.26 and 2.27. Assume that
belt slippage is impending in the direction shown by the dashed arrow. Compute the
belt tensions at the locations shown for the geometries and coefficients of friction given.
Which configuration can support the greater load Tl before slipping?
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a

a

4a
T2 = ?

Tl = ?

T1 = 100 lb

� = 0.2

� = 0.2

FIGURE 2.26

a a2a

5a 5a

T2 = ? T3 = ?

Tl = ?

T1 = 100 lb � = 0.2

FIGURE 2.27

Project 4: The Baranyi Population Model

Milk and milk products depend on refrigeration for storage after pasteurization. Most
microorganisms do not grow at refrigeration temperatures (0◦C–7◦C). One exception is
Listeria monocytogenes. This anaerobic pathogen can multiply at refrigeration temper-
atures, and the microbe has been responsible for some recent outbreaks of listeriosis,
caused by human consumption of contaminated milk products.

Food scientists are interested in developing predictive mathematical models that
can accurately model the growth of harmful organisms. These models should be able
to relate environmental conditions (such as temperature and pH) to the growth rate of
a microbial population. In this regard, the modeler walks a fine line. On the one hand,
there is an ongoing need to “build more reality” into the model. On the other hand, the
model must be kept simple enough to be mathematically tractable and useful.

A population model currently being studied and used in food science research is
the Baranyi population model.11 It attempts to account for the way certain critical sub-
stances affect bacterial cell growth. The essence of the model is a pair of initial value
problems,

dP(t)
dt

= μ
q(t)

1+ q(t)

[
1−

(
P(t)
Pe

)m]
P(t), P(0) = P0,

dq(t)
dt

= νq(t), q(0) = q0.

(4)

11J. Baranyi, T. A. Roberts, and P. McClure, “A Non-autonomous Differential Equation to Model
Bacterial Growth,” Food Microbiology, Vol. 10, 1993, pp. 43–59.
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In this model, P(t) represents the population of bacteria at time t, while q(t) represents
the concentration of critical substance present. The positive constant ν represents the
growth rate of the critical substance. The parameter μ accounts for the effects of envi-
ronmental conditions, such as temperature, on the growth rate of the bacteria. We shall,
for simplicity, assume both μ and ν to be constants. In (4), the initial values P0 and q0
represent the bacterial population and the amount of critical substance present at time
t = 0, respectively. The integer exponent m is introduced into the relative birth rate to
allow for greater modeling flexibility. (Whenm = 1, the differential equation reduces to
the logistic equation.)

1. Solve the initial value problem for q(t). For brevity, let

α(t) = q(t)
1+ q(t)

.

The differential equation for P(t) now takes the form

dP(t)
dt

= μα(t)
[
1−

(
P(t)
Pe

)m]
P(t). (5)

2. Show that

lim
t→∞ α(t) = 1.

Therefore, in the model (5), the critical substance exerts only a certain limited effect
on bacterial growth.

3. Make a “change-of-clock” change of independent variable by introducing the new
independent variable τ , where

dτ
dt

= μα(t), τ (0) = 0.

Therefore,

τ(t) = μ

∫ t

0
α(s)ds. (6)

Using the chain rule, show that if we introduce the normalized dependent variable
p = P/Pe and view p to be a function of τ , then the initial value problem for p becomes

dp(τ )

dτ
= [1− pm(τ )]p(τ ), p(0) = P0

Pe
. (7)

4. Solve initial value problem (7) for p(τ ). Note that this differential equation is sepa-
rable (as well as being a Bernoulli equation). For a general integer m, the equation
is most easily solved as a Bernoulli equation. In particular, show that

p(τ ) =
[
1+

([
P0
Pe

]−m
− 1

)
e−mτ

]− 1
m

. (8)

5. Noting that P(t) = Pep(τ (t)), determine P(t).



This page intentionally left blank 



107

3C H A P T E R

Second and Higher Order
Linear Differential

Equations

C H A P T E R O V E R V I E W

3.1 Introduction

3.2 The General Solution of Homogeneous Equations

3.3 Constant Coefficient Homogeneous Equations

3.4 Real Repeated Roots; Reduction of Order

3.5 Complex Roots

3.6 Unforced Mechanical Vibrations

3.7 The General Solution of a Linear Nonhomogeneous
Equation

3.8 The Method of Undetermined Coefficients

3.9 The Method of Variation of Parameters

3.10 Forced Mechanical Vibrations, Electrical Networks,
and Resonance

3.11 Higher Order Linear Homogeneous Differential Equations

3.12 Higher Order Homogeneous Constant Coefficient
Differential Equations

3.13 Higher Order Linear Nonhomogeneous Differential
Equations

Review Exercises



108 CHAPTER 3 Second and Higher Order Linear Differential Equations

3.1 Introduction
Most of this chapter discusses initial value problems of the form

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0, a < t < b. (1)

In equation (1), p(t), q(t), and g(t) are continuous functions on the interval
a < t < b, and t0 is some point in this t-interval of interest. The differential
equation in problem (1) is called a second order linear differential equa-
tion. If g(t) is the zero function, then the differential equation is a homoge-
neous differential equation; otherwise the equation is a nonhomogeneous
differential equation. An initial value problem for a second order equation
involves two supplementary or initial conditions, y(t0) = y0 and y

′(t0) = y′
0.

Second order differential equations owe much of their relevance and im-
portance toNewton’s laws ofmotion. Since acceleration is the second derivative
of position, modeling one-dimensional dynamics often leads to a differential
equation of the form

my′′ = F(t, y, y′).

When the applied force F is a linear function of position and velocity, we obtain
a second order linear differential equation. The two supplementary conditions
in (1) specify position and velocity at time t0.

The concepts and techniques used to analyze the second order initial value
problem (1) extend naturally to analogous problems involving higher order
linear equations. We consider these extensions in Sections 3.11–3.13.

An Example: The Bobbing Motion of a Floating Object
We have all observed a cork, a block of wood, or some other object bobbing
up and down in a liquid such as water. How do we mathematically model this
bobbing motion?

In its rest or equilibrium state, a floating object is subjected to two equal
and opposite forces—the weight of the object is counteracted by an upward
buoyant force equal to the weight of the displaced liquid. (This is the law of
buoyancy discovered by Archimedes.1) If we disturb this equilibrium state by
pushing down or pulling up on the object and then releasing it, the object
will begin to bob up and down. The physical principle governing the object’s
movement is Newton’s second law of motion:ma = F, the product of the mass
and acceleration of an object is equal to the sum of the forces acting on it.

For example, consider a cylindrical object having uniform mass density
ρ, constant cross-sectional area A, and height L (see Figure 3.1). We assume
the object is floating in a liquid having density ρl, where ρ < ρl. In its rest or
equilibrium state, the object sinks into the liquid until the weight of the liquid

1Archimedes of Syracuse (287–212 B.C.) was a remarkable mathematician and scientist, contribut-
ing important results in geometry, mechanics, and hydrostatics. Archimedes developed an early
form of integration that empowered his work. He was also an inventor, developing the compound
pulley, a pump known as Archimedes’ screw, andmilitary machines used to defend his native Syra-
cuse in Sicily from attack by the Romans. Archimedes was killed when Syracuse was captured by
the Romans during the Second Punic War.
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Perturbed state

Density �

Density �l

Cross-sectional
area A

L

Y

Equilibrium state

(a) (b)

FIGURE 3.1

(a) The floating object is in its equilibrium or rest state when the weight of
the displaced liquid is equal to the weight of the object.
(b) The object is in a perturbed state when it is displaced from its
equilibrium position. At any time t, the quantity y(t) measures how far the
object is from its equilibrium position.

displaced equals the weight of the object; we denote the depth to which the
object sinks as Y . It can be shown (see Exercise 12) that

Y = ρ

ρl
L. (2)

Suppose now that the object is displaced from its equilibrium state, as il-
lustrated in Figure 3.1(b). Let the depth to which the body is immersed in the
liquid at time t be denoted by Y + y(t). Thus, y(t) represents the time-varying
displacement of the object from its equilibrium state. For definiteness, we as-
sume y(t) to be positive in the downward direction. In the perturbed state, the
net force acting upon the object is typically nonzero. In Exercise 12, you are
asked to show that Newton’s law, ma = F, leads to the equation

y′′(t) + ω2y(t) = 0, ω2 = ρlg
ρL

, (3)

where g is the acceleration due to gravity. The perturbation depth, y(t), is thus
described by a second order linear homogeneous differential equation.

We need more than just the differential equation to uniquely characterize
the motion of the bobbing object. Specifying the object’s depth and velocity at
some particular instant of time by specifying y(t0) = y0 and y′(t0) = y′

0 would
seem (onphysical grounds) to uniquely characterize themotion. The discussion
of existence and uniqueness issues given later shows that this physical intuition
is, in fact, correct.

Consider the differential equation in (3). Assume for the present discussion
that the initial value problem

y′′(t) + ω2y(t) = 0, y(0) = y0, y′(0) = y′
0 (4)

has a unique solution on any time interval of interest. For simplicity, we’ve
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chosen the initial time to be t0 = 0. Does the solution of initial value problem (4)
describe a bobbing or oscillatingmotion that is consistent with our experience?

For some insight and a preview of what’s to come, note that the functions
y(t) = sinωt and y(t) = cosωt are each solutions of the differential equation in
(4). Section 3.5 shows how to obtain these solutions. For now, the assertion can
be verified by direct substitution. In fact, for any choice of constants C1 and C2,
the function

y(t) = C1 sinωt+ C2 cosωt (5)

is a solution of y′′ + ω2y = 0.
Youwill see later that y(t) = C1 sinωt+ C2 cosωt is, in fact, the general solu-

tion of the differential equation; that is, any solution of the differential equation
can be constructed bymaking an appropriate choice of the constantsC1 andC2.
For initial value problem (4), imposing the initial conditions upon the general
solution (5) leads to the set of equations

y(0) = C1 sin(0) + C2 cos(0) = y0
y′(0) = C1ω cos(0) − C2ω sin(0) = y′

0.

Solving this system of equations, we find C1 = y′
0/ω and C2 = y0. The unique

solution of initial value problem (4) is therefore

y(t) = y′
0

ω
sinωt+ y0 cosωt. (6)

If either y0 = 0 or y′
0 = 0, it’s obvious that the solution represents the type of si-

nusoidal oscillating behavior that is consistent with our experience. In general,
as you will see later in this chapter, the solution (6) can always be written as a
sinusoid. Figure 3.2, for example, shows the behavior of (6) for the special case
y0 = y′

0 = 1, ω = 2. Thus, the mathematical model (4) and its solution (6) do, in
fact, predict an oscillatory behavior that is consistent with physical intuition
about the motion of a bobbing body.

2 4 6 8 10 12 14 16 18 20

–1.5

–1

–0.5

0.5

1

1.5

t

y

FIGURE 3.2

The graph of the solution of y′′ + 4y = 0, y(0) = 1, y′(0) = 1. The solution is
given by equation (6), using values ω = 2, y0 = 1, y′

0 = 1.
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Existence and Uniqueness
We begin to develop the necessary mathematical underpinnings by stating an
existence-uniqueness theorem proved in advanced texts.

Theorem 3.1
Let p(t), q(t), and g(t) be continuous functions on the interval (a,b), and
let t0 be in (a,b). Then the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0

has a unique solution defined on the entire interval (a,b).

Compare this theorem with Theorem 2.1, which states an analogous
existence-uniqueness result for first order linear initial value problems. Both
theorems assume that the coefficient functions and the nonhomogeneous term
on the right-hand side are continuous on the interval of interest. Both theorems
reach the same three conclusions:

1. The solution exists.

2. The solution is unique.

3. The solution exists on the entire interval (a,b).

Theorem 3.1 defines the framework within which we will work. It assures us
that, given an initial value problem of the type described, there is one and only
one solution. Our job is to find it. The similarity of Theorems 2.1 and 3.1 is
no accident. You will see in Chapter 4 that these two theorems, as well as an
analogous theorem stated for higher order linear initial value problems, can
be viewed as special cases of a single, all-encompassing existence-uniqueness
theorem for first order linear systems.

E X A M P L E

1 Determine the largest t-interval on which we can guarantee the existence of a
solution of the initial value problem

ty′′ + (cos t)y′ + t2y = t, y(−1) = −1, y′(−1) = 2.

Solution: Before we apply Theorem 3.1, we need to write the differential equa-
tion in standard form:

y′′ + cos t
t

y′ + ty = 1.

With the equation in this form, we can identify the coefficient functions in the
hypotheses of Theorem 3.1. One of the coefficient functions is not continuous
at t = 0, but there are no other points of discontinuity on the t-axis. Since the
initial conditions are posed at the point t0 = −1, it follows from Theorem 3.1
that the given initial value problem is guaranteed to have a unique solution on
the interval −∞ < t < 0.

Figure 3.3 shows a numerical solution for this initial value problem on the
interval [−1, −0.002]. As you can see, it appears that the solution is not defined
at t = 0.

(continued)
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(continued)
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FIGURE 3.3

The graph of a numerical solution of the initial value problem in Example
1. The solution appears to have a vertical asymptote at t = 0. ❖

E X E R C I S E S

Exercises 1–4:

For each initial value problem, determine the largest t-interval on which Theorem 3.1
guarantees the existence of a unique solution.

1. y′′ + 3t2y′ + 2y = sin t, y(1) = 1, y′(1) = −1
2. y′′ + y′ + 3ty = tan t, y(π) = 1, y′(π) = −1

3. ety′′ + 1

t2 − 1
y = 4

t
, y(−2) = 1, y′(−2) = 2

4. ty′′ + sin 2t

t2 − 9
y′ + 2y = 0, y(1) = 0, y′(1) = 1

5. Consider the initial value problem t2y′′ − ty′ + y = 0, y(1) = 1, y′(1) = 1.

(a) What is the largest interval on which Theorem 3.1 guarantees the existence of
a unique solution?

(b) Show by direct substitution that the function y(t) = t is the unique solution of
this initial value problem.What is the interval onwhich this solution actually exists?

(c) Does this example contradict the assertion of Theorem 3.1? Explain.

Exercises 6–7:

Let y(t) denote the solution of the given initial value problem. Is it possible for the
corresponding limit to hold? Explain your answer.

6. y′′ + 1

t2 − 16
y = 0, y(0) = 1, y′(0) = 1, lim

t→3
− y(t) = +∞

7. y′′ + 2y′ + 1
t− 3

y = 0, y(1) = 1, y′(1) = 2, lim
t→0

+ y(t) = +∞

Exercises 8–10:

In each exercise, assume that y(t) = C1 sinω t+ C2 cosω t is the general solution of
y′′ + ω2y = 0. Find the unique solution of the given initial value problem.
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8. y′′ + y = 0, y(π) = 0, y′(π) = 2 9. y′′ + 4y = 0, y(0) = −2, y′(0) = 0

10. y′′ + 16y = 0, y(π/4) = 1, y′(π/4) = −4
11. Concavity of the Solution Curve In the discussion of direction fields in Section 1.3,

you saw how the differential equation defines the slope of the solution curve at a
point in the ty-plane. In particular, given the initial value problem y′ = f (t, y), y(t0) =
y0, the slope of the solution curve at initial condition point (t0, y0) is y

′(t0) = f (t0, y0).
In like manner, a second order equation provides direct information about the con-
cavity of the solution curve. Given the initial value problem y′′ = f (t, y, y′), y(t0) =
y0, y

′(t0) = y′
0, it follows that the concavity of the solution curve at the initial condi-

tion point (t0, y0) is y
′′(t0) = f (t0, y0, y

′
0). (What is the slope of the solution curve at

that point?)
Consider the four graphs shown. Each graph displays a portion of the solution of

one of the four initial value problems given. Match each graph with the appropriate
initial value problem.

(a) y′′ + y = 2− sin t, y(0) = 1, y′(0) = −1
(b) y′′ + y = −2t, y(0) = 1, y′(0) = −1
(c) y′′ − y = t2, y(0) = 1, y′(0) = 1

(d) y′′ − y = −2 cos t, y(0) = 1, y′(0) = 1
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12. The Bobbing Cylinder Model Using Figure 3.1 for reference, carry out the following
derivations.

(a) Derive expressions for the mass of the cylinder and the displaced liquid, in
terms of the mass densities and cylinder geometry. Recall that weightW is given by
W = mg. Apply the law of buoyancy to the equilibrium state shown in Figure 3.1(a)
and establish equation (2), Y = (ρ/ρl)L.

(b) Apply Newton’s law ma = F to the cylinder shown in its perturbed state in Fig-
ure 3.1(b). Since y is positive downward, the net force F equals the cylinder weight
minus the buoyant force. Show that

y′′ + ρlg
ρL

y = 0.

[Hint: The equilibrium equality of part (a) can be used to simplify the differential
equation obtained from ma = F.]

13. Since sin(ωt+ 2π) = sinωt and cos(ωt+ 2π) = cosωt, the amount of time T it takes
a bobbing object to go through one cycle of its motion is determined by the relation
ωT = 2π , or T = 2π/ω. This time T is called the period of the motion (see Section
3.6). As the period decreases, the bobbing motion of the floating object becomes
more rapid.

(a) Two identically shaped cylindrical drums, made of different material, are float-
ing at rest as shown in part (a) of the figure.

(b) Two cylindrical drums, made of identical material, are floating at rest as shown
in part (b).

For each case, when the drums are put into motion, is it possible to identify the
drum that will bob up and down more rapidly? Explain.

1

12

(a) (b)

2

Figure for Exercise 13

14. A buoy having the shape of a right circular cylinder 3 ft in diameter and 5 ft in
height is initially floating upright in water. When it was put into motion at time
t = 0, the following 10-sec record of its displacement from equilibrium, measured
in inches positive in the downward direction, was obtained.

(a) Determine the initial displacement y0 and the period T of the motion (see Ex-
ercise 13).

(b) Determine the constant ω and the initial velocity y′
0 of the buoy.
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Figure for Exercise 14

3.2 TheGeneralSolutionofHomogeneousEquations
Consider the second order linear homogeneous differential equation

y′′ + p(t)y′ + q(t)y = 0, a < t < b, (1)

where p(t) and q(t) are are continuous on (a,b). We begin with this homoge-
neous equation because understanding its solution structure is basic to de-
veloping methods for solving linear differential equations, whether they are
homogeneous or nonhomogeneous.

The general solution of equation (1) is often described as a “linear combi-
nation” of functions. In particular, let f1(t) and f2(t) be any two functions having
a common domain, and let c1 and c2 be any two constants. A function of the
form

f (t) = c1f1(t) + c2f2(t)

is called a linear combination of the functions f1 and f2. For example, the
function f (t) = 3 sin t+ 8 cos t is a linear combination of the functions sin t and
cos t.

The Principle of Superposition
The first result we establish for the homogeneous equation (1) is a superpo-
sition principle. It shows that a linear combination of two solutions is also
a solution. An analogous superposition principle is also valid for higher order
linear homogeneous equations; see Section 3.11.
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Theorem 3.2
Let y1(t) and y2(t) be any two solutions of

y′′ + p(t)y′ + q(t)y = 0

defined on the interval (a,b). Then, for any constants c1 and c2, the linear
combination

y(t) = c1y1(t) + c2 y2(t)

is also a solution on (a,b).

● PROOF: The hypotheses state that y1(t) and y2(t) are both solutions of the
homogeneous equation. Therefore,

y′′
1 + p(t)y′

1 + q(t)y1 = 0 and y′′
2 + p(t)y′

2 + q(t)y2 = 0.

Substituting y(t) = c1y1(t) + c2y2(t) into the differential equation, we obtain

y′′ + p(t)y′ + q(t)y = (c1y1 + c2 y2)
′′ + p(t)(c1y1 + c2 y2)

′ + q(t)(c1y1 + c2 y2). (2)

Using basic properties from calculus, we can write the right-hand side of (2) as

c1[y′′
1 + p(t)y′

1 + q(t)y1] + c2[y′′
2 + p(t)y′

2 + q(t)y2] = c1[0] + c2[0] = 0.

Therefore, the linear combination y(t) = c1y1(t) + c2y2(t) is also a solution. ●

It is important to understand that the superposition principle of Theorem
3.2 is valid for homogeneous linear equations. In general, a linear combina-
tion of solutions of a linear nonhomogeneous equation is not a solution of the
nonhomogeneous equation. Similarly, a linear combination of solutions of a
nonlinear differential equation is normally not a solution of the nonlinear equa-
tion.

Fundamental Sets of Solutions
Theorem 3.2 shows that we can form a linear combination of two solutions of
equation (1) and create a new solution. We now turn this idea around and ask,
“Is it possible to find two solutions, y1(t) and y2(t), such that every solution of

y′′ + p(t)y′ + q(t)y = 0, a < t < b (3)

can be expressed as a linear combination of y1(t) and y2(t)?” In other words,
if we are given any solution, y(t), of the homogeneous equation (3), can we
determine constants c1 and c2 such that

y(t) = c1y1(t) + c2 y2(t), a < t < b?

If there are two such solutions y1(t) and y2(t), we say that {y1(t), y2(t)} is a
fundamental set of solutions for equation (3). The term “fundamental set”
is an appropriate one, since every solution of equation (3) can be constructed
using the basic building blocks y1(t) and y2(t).
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E X A M P L E

1 Consider the linear homogeneous differential equation

y′′ + 4y = 0. (4)

(a) Show, by direct substitution, that y1(t) = cos 2t and y2(t) = sin 2t are solu-
tions of differential equation (4).

(b) Show, by direct substitution, that y(t) = 3 cos[2t+ (π/4)] is a solution of (4).
(c) It can be shown (see Example 2) that y1(t) and y2(t) form a fundamental

set of solutions for equation (4). Find constants c1 and c2 such that
3 cos[2t+ (π/4)] = c1 cos 2t+ c2 sin 2t.

Solution:

(a) Inserting y1(t) = cos 2t into equation (4), we obtain

y′′
1 + 4y1 = (cos 2t)′′ + 4 cos 2t = −4 cos 2t+ 4 cos 2t = 0.

A similar calculation shows that y2(t) = sin 2t is also a solution of equation
(4).

(b) We leave this part as an exercise.

(c) We want to find constants c1 and c2 such that

3 cos
(
2t+ π

4

)
= c1 cos 2t+ c2 sin 2t.

Rewriting the left-hand side of this equation using the trigonometric iden-
tity

cos
(
θ1 + θ2

) = cos θ1 cos θ2 − sin θ1 sin θ2

yields

3 cos
(
2t+ π

4

)
= 3 cos 2t cos

π

4
− 3 sin 2t sin

π

4

=
(
3 cos

π

4

)
cos 2t+

(
−3 sin π

4

)
sin 2t.

The constants c1 and c2 are therefore

c1 = 3 cos
π

4
= 3

√
2

2
and c2 = −3 sin π

4
= −3

√
2

2
. ❖

Fundamental Sets and the General Solution
Assume that {y1(t), y2(t)} is a fundamental set of solutions for the linear homo-
geneous equation

y′′ + p(t)y′ + q(t)y = 0, a < t < b, (5)

where p(t) and q(t) are continuous on (a,b). Therefore, if y(t) is any solution of
(5), there are corresponding constants c1 and c2 such that

y(t) = c1y1(t) + c2 y2(t), a < t < b. (6)
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Expression (6) is called the general solution of equation (5). Once we obtain
the general solution, we can use it to solve an initial value problem such as

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′
0. (7)

In particular, since every solution of the differential equation has the form (6),
solving initial value problem (7) reduces to finding constants c1 and c2 such
that

c1y1(t0) + c2 y2(t0) = y0
c1y

′
1(t0) + c2 y

′
2(t0) = y′

0.

These equations can be written in matrix form as[
y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

][
c1
c2

]
=
[
y0
y′
0

]
. (8)

Theorem 3.1 guarantees that initial value problem (7) has a unique solution
for any choice of the initial conditions. Therefore, equation (8) has a unique
solution for any choice of y0 and y

′
0, and this means that the coefficient matrix

has a nonzero2 determinant:∣∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣ = y1(t0)y
′
2(t0) − y′

1(t0)y2(t0) �= 0. (9)

The Wronskian
The determinant in (9) plays a key role in characterizing fundamental sets of
solutions. As we saw above, if {y1(t), y2(t)} is a fundamental set of solutions for
equation (5), then the determinant in (9) is nonzero at every point t0 in (a,b).

The converse is true as well. That is, if {y1(t), y2(t)} is a set of solutions such
that the determinant in (9) is nonzero at every point t in (a,b), then {y1(t), y2(t)}
is a fundamental set of solutions. To prove this, let u(t) be any solution of
equation (5), and let t0 be a point in (a,b). Let u(t0) = α,u′(t0) = β, and consider
the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = α, y′(t0) = β. (10)

Since we are assuming the determinant in (9) is nonzero, there are c1 and c2
such that [

y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

][
c1
c2

]
=
[
α

β

]
.

Let us define ŷ(t) = c1y1(t) + c2y2(t). Therefore, ŷ(t) is a solution of initial value
problem (10). Since the solution of (10) is unique and since solutions u(t)
and ŷ(t) both satisfy the initial conditions, it follows that u(t) = ŷ(t) = c1y1(t) +
c2y2(t). Since the solution u(t) is a linear combination of y1(t) and y2(t), we have
that {y1(t), y2(t)} is a fundamental set of solutions for equation (5).

To summarize: Let y1(t) and y2(t) be solutions of (5). Then {y1(t), y2(t)} is a
fundamental set of solutions if and only ifW(t) �= 0 for all t in (a,b), where

2From linear algebra, if a (2× 2) matrix equation Ax = b is consistent for every right-hand side b,
then A is invertible. Equivalently, the determinant of A is nonzero.
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W(t) =
∣∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣∣ = y1(t)y
′
2(t) − y′

1(t)y2(t). (11)

The determinant in (11),W(t), is called theWronskian determinant or simply
theWronskian3 of {y1(t), y2(t)}.

In Section 3.11, we prove an important result known as Abel’s theorem.
Abel’s theorem shows that if y1(t) and y2(t) are solutions of (5), thenW(t) either
is identically zero on (a,b) or is never zero in (a,b). Therefore, if we want to
decide whether or not solutions y1(t) and y2(t) form a fundamental set, all we
need to do is check the value of W(t) at some convenient test point, t = t0. If
W(t0) �= 0, then {y1(t), y2(t)} is a fundamental set of solutions. IfW(t0) = 0, then
{y1(t), y2(t)} is not a fundamental set.

E X A M P L E

2 Example 1 showed that y1(t) = cos 2t and y2(t) = sin 2t are solutions of the ho-
mogeneous linear equation y′′ + 4y = 0, −∞ < t < ∞. Show that {y1(t), y2(t)} is
a fundamental set of solutions.

Solution: We compute the Wronskian of the solution pair. If it is nonzero in
the interval of interest, then {y1(t), y2(t)} is a fundamental set of solutions. The
Wronskian is

W(t) =
∣∣∣∣∣ cos 2t sin 2t

−2 sin 2t 2 cos 2t

∣∣∣∣∣ = 2 cos2 2t+ 2 sin2 2t = 2.

Since the Wronskian is nonzero on −∞ < t < ∞, we see that {y1(t), y2(t)} is a
fundamental set of solutions and the general solution of y′′ + 4y = 0,
−∞ < t < ∞ is

y(t) = c1 cos 2t+ c2 sin 2t. ❖

E X A M P L E

3 Consider the initial value problem

y′′ − 1
t
y′ − 3

t2
y = 0, y(1) = 4, y′(1) = 8, 0 < t < ∞.

(a) Verify that the functions y1(t) = t3 and y2(t) = t−1 form a fundamental set
of solutions for the differential equation on the interval 0 < t < ∞.

(b) Solve the initial value problem.

Solution:

(a) We leave it as an exercise to verify that y1(t) and y2(t) are solutions of the dif-
ferential equation. To show that they form a fundamental set, we calculate
the Wronskian:

W(t) =
∣∣∣∣∣t
3 t−1

3t2 −t−2
∣∣∣∣∣ = −4t.

(continued)

3Hoene Wronski (1778–1853) was born Josef Hoene but changed his name just after he married.
The determinants we now know as Wronskians were given their name by Muir in 1882.
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(continued)

Since the Wronskian is nonzero on 0 < t < ∞, it follows that {y1(t), y2(t)} is
a fundamental set of solutions.

(b) By part (a), the general solution is y(t) = c1t
3 + c2t

−1. Imposing the initial
conditions at t = 1, we find

c1 + c2 = 4

3c1 − c2 = 8.

Solving, we obtain c1 = 3 and c2 = 1. The solution of the initial value prob-
lem is

y(t) = 3t3 + t−1, 0 < t < ∞. ❖

E X E R C I S E S

Exercises 1–15:

In these exercises, the t-interval of interest is −∞ < t < ∞ unless indicated otherwise.

(a) Verify that the given functions are solutions of the differential equation.

(b) Calculate theWronskian. Do the two functions form a fundamental set of solutions?

(c) If the two functions form a fundamental set, determine the unique solution of the
initial value problem.

1. y′′ − 4y = 0; y1(t) = e2t, y2(t) = 2e−2t; y(0) = 1, y′(0) = −2
2. y′′ − y = 0; y1(t) = 2et, y2(t) = e−t+3; y(−1) = 1, y′(−1) = 0

3. y′′ + y = 0; y1(t) = 0, y2(t) = sin t; y(π/2) = 1, y′(π/2) = 1

4. y′′ + y = 0; y1(t) = cos t, y2(t) = sin t; y(π/2) = 1, y′(π/2) = 1

5. y′′ − 4y′ + 4y = 0; y1(t) = e2t, y2(t) = te2t; y(0) = 2, y′(0) = 0

6. 2y′′ − y′ = 0; y1(t) = 1, y2(t) = et/2; y(2) = 0, y′(2) = 2

7. y′′ − 3y′ + 2y = 0; y1(t) = 2et, y2(t) = e2t; y(−1) = 1, y′(−1) = 0

8. 4y′′ + y = 0; y1(t) = sin[(t/2) + (π/3)], y2(t) = sin[(t/2) − (π/3)];
y(0) = 0, y′(0) = 1

9. ty′′ + y′ = 0, 0 < t < ∞; y1(t) = ln t, y2(t) = ln 3t; y(3) = 0, y′(3) = 3

10. ty′′ + y′ = 0, 0 < t < ∞; y1(t) = ln t, y2(t) = ln 3; y(1) = 0, y′(1) = 3

11. t2y′′ − ty′ − 3y = 0, −∞ < t < 0; y1(t) = t3, y2(t) = −t−1; y(−1) = 0,
y′(−1) = −2

12. y′′ + 2y′ + y = 0; y1(t) = e−t, y2(t) = 2e1−t; y(0) = 1, y′(0) = 0

13. y′′ = 0; y1(t) = t+ 1, y2(t) = −t+ 2; y(1) = 4, y′(1) = −1
14. y′′ + π2y = 0; y1(t) = sinπt+ cosπt, y2(t) = sinπt− cosπt;

y
(
1
2

) = 1, y′ ( 1
2

) = 0

15. 4y′′ + 4y′ + y = 0; y1(t) = e−t/2, y2(t) = te−t/2; y(1) = 1, y′(1) = 0

Exercises 16–18:

The given pair of functions {y1, y2} forms a fundamental set of solutions of the differen-
tial equation.

(a) Show that the given function y(t) is also a solution of the differential equation.

(b) Determine coefficients c1 and c2 such that y(t) = c1y1(t) + c2 y2(t).

16. y′′ + 4y = 0; y1(t) = 2 cos 2t, y2(t) = sin 2t; y(t) = sin[2t+ (π/4)]
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17. t2y′′ − ty′ + y = 0, 0 < t < ∞; y1(t) = t, y2(t) = t ln t; y(t) = 2t+ t ln 3t

18. 4y′′ − y = 0; y1(t) = e−t/2, y2(t) = −2et/2; y(t) = 2 cosh(t/2)

19. The functions y1(t) = e3t and y2(t) = e−3t are known to be solutions of
y′′ + αy′ + βy = 0, where α and β are constants. Determine α and β. [Hint: Obtain a
system of two equations for the two unknown constants.]

20. The functions y1(t) = sin(t+ α) and y2(t) = sin(t− α) are solutions of y′′ + y = 0 on
−∞ < t < ∞. For what values of the constant α, if any, is {y1, y2} a fundamental set?

Exercises 21–22:

In each exercise, assume that y1 and y2 are solutions of y
′′ + p(t)y′ + q(t)y = 0, where p(t)

and q(t) are continuous on (a,b). Explain why y1(t) and y2(t) cannot form a fundamental
set of solutions.

21. y1(t) and y2(t) have a common zero in (a,b); that is, y1(t0) = 0 and y2(t0) = 0 at some
point t0 in (a,b).

22. y1(t) and y2(t) achieve a local extremum at the same point t0 in (a,b).

3.3 Constant Coefficient Homogeneous Equations
The discussion in Section 3.2 established the solution structure for second
order linear homogeneous differential equations. We saw that to obtain the
general solution, we need to find a fundamental set of solutions—that is, a
pair of solutions whose Wronskian is nonzero on the t-interval of interest. This
section, along with Sections 3.4 and 3.5, shows how to find a fundamental set
of solutions for the important special case of a constant coefficient equation,

ay′′ + by′ + cy = 0. (1)

In equation (1), a, b, and c are constants and we assume that a �= 0. When
discussing equation (1), we can assume the t-interval of interest is−∞ < t < ∞
or any subinterval of (−∞, ∞), since the coefficient functions are constant and
hence continuous everywhere.

Finding Solutions of Second Order Constant
Coefficient Equations
We look for solutions of the form y(t) = eλt, where λ is a constant to be de-
termined. The motivation for assuming this form for a solution comes from
observing how the function eλt behaves under repeated differentiation:

d
dt

eλt = λeλt and
d2

dt2
eλt = λ2eλt.

Each differentiation of eλt simply multiplies eλt by a power of the constant, λ.
Substituting y(t) = eλt into differential equation (1) leads to

ay′′ + by′ + cy = aλ2eλt + bλeλt + ceλt = eλt(aλ2 + bλ + c) = 0. (2)

Equation (2) must hold for all t in the interval of interest. Since the factor eλt is
never zero, equation (2) is valid only if λ is a root of the polynomial equation

aλ2 + bλ + c = 0. (3)
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The quadratic equation (3) is called the characteristic equation for
ay′′ + by′ + cy = 0, and the polynomial P(λ) = aλ2 + bλ + c is called the char-
acteristic polynomial. The roots of the characteristic equation are exactly
those values λ for which y(t) = eλt is a solution of the differential equation
ay′′ + by′ + cy = 0.

E X A M P L E

1 Consider the homogeneous linear differential equation

y′′ + 8y′ + 15y = 0.

(a) Find all values λ such that y(t) = eλt is a solution of the differential equation.

(b) Do the functions found in part (a) form a fundamental set of solutions for
the differential equation? If so, what is the general solution of the differen-
tial equation?

Solution:

(a) The characteristic polynomial for y′′ + 8y′ + 15y = 0 is

P(λ) = λ2 + 8λ + 15 = (λ + 5)(λ + 3).

The roots of the characteristic equation are λ1 = −5 and λ2 = −3. Thus, the
trial form y(t) = eλt leads to two solutions of the differential equation:

y1(t) = e−5t and y2(t) = e−3t.

(b) To decide whether {y1, y2} is a fundamental set of solutions, we form the
Wronskian:

W(t) =
∣∣∣∣∣ e−5t e−3t

−5e−5t −3e−3t
∣∣∣∣∣ = 2e−8t.

Since W(t) = 2e−8t is never zero, {y1, y2} is a fundamental set of solu-
tions for y′′ + 8y′ + 15y = 0 on any t-interval. The general solution of
y′′ + 8y′ + 15y = 0 is therefore

y(t) = c1e
−5t + c2e

−3t. ❖

Roots of the Characteristic Equation
The function y(t) = eλ1t is a solution of ay′′ + by′ + cy = 0 provided λ1 is a root
of the characteristic equation

aλ2 + bλ + c = 0. (4)

As we know, the quadratic equation aλ2 + bλ + c = 0 might have two dis-
tinct real roots, one real root, or two complex roots. Figure 3.4 shows the graph
of P(λ) = aλ2 + bλ + c versus λ, illustrating each of these three cases.

We can obtain the roots of characteristic equation (4) from the quadratic
formula,

λ1,2 = −b±
√
b2 − 4ac
2a

. (5)
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FIGURE 3.4

Three possibilities for the graph of P(λ) = aλ2 + bλ + c, a > 0.
(a) The characteristic equation has two real distinct roots, λ1 and λ2.
(b) The characteristic equation has a single repeated real root, λ1.
(c) The characteristic equation has two complex roots but no real roots.

As illustrated in Figure 3.4, there are three cases, depending on the value of the
discriminant, b2 − 4ac:

(a) Suppose b2 − 4ac > 0. In this case, the two roots λ1 and λ2 are real and
distinct. We obtain two solutions, y1(t) = eλ1t and y2(t) = eλ2t. We show later
in this section that these two solutions form a fundamental set of solutions
for equation (1).

(b) Suppose b2 − 4ac = 0. In this case, the two roots are equal,

λ1 = λ2 = −b
2a

.

Our computation, based on the trial form y(t) = eλt, therefore yields only
one solution, namely

y1(t) = e−(b/2a)t.

Since a fundamental set of solutions consists of two solutions having a
nonvanishing Wronskian, we must find another solution having a different
functional form. In Section 3.4, wewill discuss this real “repeated root” case
and show how to obtain the second function needed for a fundamental set.

(c) Suppose b2 − 4ac < 0. In this case, the roots are complex-valued and we
have

λ1,2 = − b
2a

± i

√
4ac− b2

2a
.

Since a, b, and c are real constants, the roots λ1,2 form a complex conjugate
pair. For brevity, let

α = − b
2a

, β =
√
4ac− b2

2a
.

Then λ1,2 = α ± iβ, where β is nonzero. Several questions arise.Whatmath-
ematical interpretation do we give to expressions of the form e(α±iβ)t? Once
we make sense of such expressions mathematically, how do we obtain real-
valued, physically meaningful solutions of equation (1)? These issues will
be addressed in Section 3.5.
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The General Solution When the Characteristic Equation
Has Real Distinct Roots
We now consider case (a), where the discriminant b2 − 4ac is positive. In this
case, the two roots λ1 and λ2 are real and distinct and y1(t) = eλ1t and y2(t) = eλ2t

are two solutions of ay′′ + by′ + cy = 0. To determine whether {y1, y2} forms a
fundamental set of solutions, we calculate the Wronskian:

W(t) =
∣∣∣∣∣ e

λ1t eλ2t

λ1e
λ1t λ2e

λ2t

∣∣∣∣∣ = (λ2 − λ1)e
(λ1+λ2)t.

The factor (λ2 − λ1) is nonzero since the roots are distinct. In addition, the
exponential function e(λ1+λ2)t is nonzero for all t. This calculation establishes,
once and for all, that the two exponential solutions obtained in the real, distinct
root case form a fundamental set of solutions. There is no need to reestablish
this fact for every particular example. The corresponding general solution of
ay′′ + by′ + cy = 0 is

y(t) = c1e
λ1t + c2e

λ2t. (6)

E X A M P L E

2 Solve the initial value problem

y′′ + 4y′ + 3y = 0, y(0) = 7, y′(0) = −17.

Solution: The characteristic equation is

λ2 + 4λ + 3 = 0,

or

(λ + 1)(λ + 3) = 0.

Therefore, the general solution is

y(t) = c1e
−t + c2e

−3t,

and its derivative is

y′(t) = −c1e−t − 3c2e
−3t.

To satisfy the initial conditions, c1 and c2 must satisfy

c1 + c2 = 7

−c1 − 3c2 = −17.
We find c1 = 2 and c2 = 5. The unique solution of the initial value problem is

y(t) = 2e−t + 5e−3t. ❖

E X A M P L E

3 Solve the initial value problem

y′′ + y′ − 2y = 0, y(0) = y0, y′(0) = y′
0.

For what values of the constants y0 and y′
0 can we guarantee that

lim t→∞ y(t) = 0?
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Solution: The characteristic polynomial for y′′ + y′ − 2y = 0 is

λ2 + λ − 2 = (λ + 2)(λ − 1).

Thus, the general solution is

y(t) = c1e
−2t + c2e

t.

Imposing the initial conditions, we have

c1 + c2 = y0
−2c1 + c2 = y′

0.

The solution of this system of equations is c1 = (y0 − y′
0)/3, c2 = (2y0 + y′

0)/3.
The solution of the initial value problem is therefore

y(t) =
(
y0 − y′

0

3

)
e−2t +

(
2y0 + y′

0

3

)
et.

Since lim t→∞ e−2t = 0 and lim t→∞ et = +∞, the solution of the initial value
problem will tend to zero as t increases if the coefficient of et in the solution is
zero. Therefore, lim t→∞ y(t) = 0 if y′

0 = −2y0. ❖

E X E R C I S E S

Exercises 1–15:

(a) Find the general solution of the differential equation.

(b) Impose the initial conditions to obtain the unique solution of the initial value prob-
lem.

(c) Describe the behavior of the solution y(t) as t → −∞ and as t → ∞. Does y(t) ap-
proach −∞, +∞, or a finite limit?

1. y′′ + y′ − 2y = 0, y(0) = 3, y′(0) = −3
2. y′′ − 1

4y = 0, y(2) = 1, y′(2) = 0

3. y′′ − 4y′ + 3y = 0, y(0) = −1, y′(0) = 1

4. 2y′′ − 5y′ + 2y = 0, y(0) = −1, y′(0) = −5
5. y′′ − y = 0, y(0) = 1, y′(0) = −1
6. y′′ + 2y′ = 0, y(−1) = 0, y′(−1) = 2

7. y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = −1
8. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = −1
9. y′′ − 4y = 0, y(3) = 0, y′(3) = 0

10. 8y′′ − 6y′ + y = 0, y(1) = 4, y′(1) = 3
2

11. 2y′′ − 3y′ = 0, y(−2) = 3, y′(−2) = 0

12. y′′ − 6y′ + 8y = 0, y(1) = 2, y′(1) = −8
13. y′′ + 4y′ + 2y = 0, y(0) = 0, y′(0) = 4

14. y′′ − 4y′ − y = 0, y(0) = 1, y′(0) = 2+ √
5

15. 2y′′ − y = 0, y(0) = −2, y′(0) = √
2
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16. Consider the initial value problem y′′ + αy′ + βy = 0, y(0) = 1, y′(0) = y′
0, where α, β,

and y′
0 are constants. It is known that one solution of the differential equation is

y1(t) = e−3t and that the solution of the initial value problemsatisfies lim t→∞ y(t) = 2.
Determine the constants α, β, and y′

0.

17. Consider the initial value problem y′′ + αy′ + βy = 0, y(0) = 3, y′(0) = 5. The differ-
ential equation has a fundamental set of solutions, {y1(t), y2(t)}. It is known that
y1(t) = e−t and that the Wronskian formed by the two members of the fundamental
set isW(t) = 4e2t.

(a) Determine the second member of the fundamental set, y2(t).

(b) Determine the constants α and β.

(c) Solve the initial value problem.

18. The three graphs display solutions of initial value problems on the interval
0 ≤ t ≤ 3. Each solution satisfies the initial conditions y(0) = 1, y′(0) = −1. Match
the differential equation with the graph of its solution.

(a) y′′ + 2y′ = 0 (b) 6y′′ − 5y′ + y = 0 (c) y′′ − y = 0
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19. Obtain the general solution of y′′′ − 5y′′ + 6y′ = 0. [Hint: Make the change of depen-
dent variable u(t) = y′(t), determine u(t), and then antidifferentiate to obtain y(t).]

20. Rectilinear Motion with a Drag Force In Chapter 2, we considered rectilinear mo-
tion in the presence of a drag force proportional to velocity. We solved the first order
linear equation for velocity and antidifferentiated the solution to obtain distance
as a function of time. We now consider directly the second order linear differential
equation for the distance function.

A particle of mass m moves along the x-axis and is acted upon by a drag force
proportional to its velocity. The drag constant is denoted by k. If x(t) represents the
particle position at time t, Newton’s law of motion leads to the differential equation
mx′′(t) = −kx′(t).

(a) Obtain the general solution of this second order linear differential equation.

(b) Solve the initial value problem if x(0) = x0 and x
′(0) = v0.

(c) What is lim t→∞ x(t)?

3.4 Real Repeated Roots; Reduction of Order
In Section 3.3, it was shown that the constant coefficient differential equation
ay′′ + by′ + cy = 0 has the general solution

y(t) = c1e
λ1t + c2e

λ2t

whenever the characteristic equation aλ2 + bλ + c = 0 has distinct real roots λ1
and λ2. In this section, we consider the case where the characteristic equation
has a repeated real root (that is, when the discriminant b2 − 4ac = 0). In this
event, looking for solutions of the form y(t) = eλt leads to only one solution,
since the characteristic equation has just one distinct root. We must somehow
find a second solution in order to form a fundamental set of solutions.

The Method of Reduction of Order
To obtain a second solution for ay′′ + by′ + cy = 0 in the repeated root case,
we use a method called reduction of order. We apply the method first to the
problem at hand,

ay′′ + by′ + cy = 0. (1)

Then, at the end of this section, we’ll discuss reduction of order as a tech-
nique for finding a second solution of the general homogeneous linear equation,
y′′ + p(t)y′ + q(t)y = 0, given that we have somehow found one solution, y1(t),
of the equation.

Assume, without loss of generality, that a = 1 in equation (1). Then, since
b2 − 4c = 0, we know that c is positive. We can represent c as c = α2 and choose
b = −2α. With these simplifications in notation, differential equation (1) be-
comes

y′′ − 2αy′ + α2y = 0. (2)

The characteristic polynomial for equation (2) is

λ2 − 2αλ + α2 = (λ − α)
2 ,

and therefore one solution is

y1(t) = eαt.
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To find a second solution, y2(t), we use themethod of reduction of order.
The basic idea underlying the method is to look for a second solution, y2(t), of
the form

y2(t) = y1(t)u(t) = eαtu(t). (3)

The function u(t) in (3) must be chosen so that y2(t) is also a solution of equa-
tion (2).

At this point, there’s no obvious reason to believe that this assumed form of
the solution provides any simplification.Wemust substitute (3) into differential
equation (2) and see what happens. Substituting, we obtain

y′′
2 − 2αy′

2 + α2y2 = (eαtu)′′ − 2α(eαtu)′ + α2(eαtu), (4)

which simplifies to

y′′
2 − 2αy′

2 + α2y2 = eαtu′′. (5)

Since the exponential function is nonzero everywhere, y2(t) = eαtu(t) is a so-
lution of y′′ − 2αy′ + α2y = 0 if and only if u′′ = 0. The equation u′′ = 0 can be
solved by antidifferentiation to obtain u(t) = a1t+ a2, where a1 and a2 are ar-
bitrary constants.

Thus, the method of reduction of order has led us to a second solution,

y2(t) = eαt(a1t+ a2) = a1te
αt + a2e

αt.

Notice that the term a2e
αt is simply a constant multiple of y1(t). Since the gen-

eral solution of the differential equation contains y1(t) multiplied by an arbi-
trary constant, we lose no generality by setting a2 = 0. We can likewise take
a1 = 1 since y2(t) will also be multiplied by an arbitrary constant in the general
solution. With these simplifications, the second solution is

y2(t) = teαt.

To verify that {y1, y2} = {eαt, teαt} forms a fundamental set, we compute the
Wronskian:

W(t) =
∣∣∣∣∣ e

αt teαt

αeαt (αt+ 1)eαt

∣∣∣∣∣ = e2αt.

Since the Wronskian is nonzero, we have shown that the general solution is

y(t) = c1e
αt + c2te

αt. (6)

E X A M P L E

1 Solve the initial value problem

4y′′ + 4y′ + y = 0, y(2) = 1, y′(2) = 0.

Solution: Looking for solutions of the form y(t) = eλt leads to the characteristic
equation

4λ2 + 4λ + 1 = (2λ + 1)2 = 0.

Therefore, the characteristic equation has real repeated roots λ1 = λ2 = − 1
2 . By

(6), the general solution is

y(t) = c1e
−t/2 + c2te

−t/2.
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Imposing the initial conditions leads to

c1e
−1 + c22e

−1 = 1

−c1
2
e−1 = 0.

The solution is c1 = 0, c2 = e/2. The solution of the initial value problem is

y(t) = e
2
te−t/2 = t

2
e1−t/2. ❖

Method of Reduction of Order (General Case)
The method of reduction of order is not restricted to constant coefficient equa-
tions. It can be applied to the general second order linear homogeneous equa-
tion

y′′ + p(t)y′ + q(t)y = 0, (7)

where p(t) and q(t) are continuous functions on the t-interval of interest. Sup-
pose we know one solution of equation (7); call it y1(t). We again assume that
there is another solution, y2(t), of the form

y2(t) = y1(t)u(t).

Substituting the assumed form into (7) leads (after some rearranging of terms)
to

y1u
′′ + [2y′

1 + p(t)y1]u′ + [y′′
1 + p(t)y′

1 + q(t)y1]u = 0.

At first it seems as though this equation offers little improvement. Recall, how-
ever, that y1 is not an arbitrary function; it is a solution of differential equa-
tion (7). Therefore, the factormultiplying u in the preceding equation vanishes,
and we obtain a considerable simplification:

y1u
′′ + [2y′

1 + p(t)y1]u′ = 0. (8)

The structure of equation (8) is what gives the method its name. Although
equation (8) is a second order linear differential equation for u, we can define
a new dependent variable v(t) = u′(t). Under this change of variables, equation
(8) reduces to a first order linear differential equation for v,

y1(t)v
′ + [2y′

1(t) + p(t)y1(t)]v = 0. (9)

Thus, the task of solving a second order linear differential equation has been
replaced by that of solving a first order linear differential equation. Once we
have v = u′, we obtain u (and ultimately y2) by antidifferentiation.

E X A M P L E

2 Observe that y1(t) = t is a solution of the homogeneous linear differential equa-
tion

t2y′′ − ty′ + y = 0, 0 < t < ∞. (10)

(a) Use reduction of order to obtain a second solution, y2(t). Does the pair{y1, y2} form a fundamental set of solutions for this differential equation?

(continued)
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(continued)

(b) If {y1, y2} is a fundamental set of solutions, solve the initial value problem
t2y′′ − ty′ + y = 0, y(1) = 3, y′(1) = 8.

Solution: Note that the initial value problem, written in standard form, be-
comes

y′′ − 1
t
y′ + 1

t2
y = 0, y(1) = 3, y′(1) = 8. (11)

The coefficient functions are not continuous at t = 0. Our t-interval of interest,
0 < t < ∞, is the largest interval containing t0 = 1 on which we are guaranteed
the existence of a unique solution of the initial value problem.

(a) Since one solution is known, we apply reduction of order. Assuming
y2(t) = tu(t), we have

y′
2 = u+ tu′ and y′′

2 = 2u′ + tu′′.

Substituting these expressions into the differential equation,
t2y′′ − ty′ + y = 0, we find

t2(2u′ + tu′′) − t(u+ tu′) + tu = t2(tu′′ + u′) = 0.

Therefore, tu′′ + u′ = 0. Setting v = u′ leads to the first order linear equation

tv′ + v = 0. (12)

The general solution of equation (12) is

v(t) = c
t
.

Since v(t) = u′(t), it follows that u(t) = c ln t+ d, and we obtain a second
solution,

y2(t) = tu(t) = t(c ln t+ d). (13)

[Note that ln |t| = ln t since t > 0.] Using the same rationale as before, we
can take c = 1,d = 0 and let

y2(t) = t ln t.

The Wronskian of y1 and y2 is W(t) = t, which is nonzero on the interval
0 < t < ∞. Therefore, the general solution is

y(t) = c1y1(t) + c2 y2(t) = c1t+ c2t ln t, 0 < t < ∞. (14)

(b) For y(t) = c1t+ c2t ln t, we have y
′(t) = c1 + c2(1+ ln t). Imposing the initial

conditions y(1) = 3 and y′(1) = 8, we obtain

c1 = 3

c1 + c2 = 8.

The solution of the initial value problem is

y(t) = 3t+ 5t ln t. ❖
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E X E R C I S E S

Exercises 1–9:

(a) Obtain the general solution of the differential equation.

(b) Impose the initial conditions to obtain the unique solution of the initial value
problem.

(c) Describe the behavior of the solution as t → −∞ and t → ∞. In each case, does y(t)
approach −∞, +∞, or a finite limit?

1. y′′ + 2y′ + y = 0, y(1) = 1, y′(1) = 0

2. 9y′′ − 6y′ + y = 0, y(3) = −2, y′(3) = − 5
3

3. y′′ + 6y′ + 9y = 0, y(0) = 2, y′(0) = −2
4. 25y′′ + 20y′ + 4y = 0, y(5) = 4e−2, y′(5) = − 3

5 e
−2

5. 4y′′ − 4y′ + y = 0, y(1) = −4, y′(1) = 0

6. y′′ − 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

7. 16y′′ − 8y′ + y = 0, y(0) = −4, y′(0) = 3

8. y′′ + 2
√
2y′ + 2y = 0, y(0) = 1, y′(0) = 0

9. y′′ − 5y′ + 6.25y = 0, y(−2) = 0, y′(−2) = 1

10. Consider the simple differential equation y′′ = 0.

(a) Obtain the general solution by successive antidifferentiation.

(b) View the equation y′′ = 0 as a second order linear homogeneous equation with
constant coefficients, where the characteristic equation has a repeated real root.
Obtain the general solution using this viewpoint. Is it the same as the solution
found in part (a)?

Exercises 11–12:

In each exercise, the graph shown is the solution of y′′ − 2αy′ + α2y = 0, y(0) = y0,
y′(0) = y′

0. Determine the constants α, y0, and y′
0 as well as the solution y(t). In Exer-

cise 11, the maximum point shown on the graph has coordinates (2,8e−1).

11.
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13. The graph of a solution y(t) of the differential equation 4y′′ + 4y′ + y = 0 passes
through the points (1, e−1/2) and (2,0). Determine y(0) and y′(0).
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Exercises 14–20:

One solution, y1(t), of the differential equation is given.

(a) Use the method of reduction of order to obtain a second solution, y2(t).

(b) Compute the Wronskian formed by the solutions y1(t) and y2(t).

14. ty′′ − (2t+ 1)y′ + (t+ 1)y = 0, y1(t) = et

15. t2y′′ − ty′ + y = 0, y1(t) = t

16. y′′ − (2 cot t)y′ + (1+ 2 cot2 t)y = 0, y1(t) = sin t

17. (t+ 1)2y′′ − 4(t+ 1)y′ + 6y = 0, y1(t) = (t+ 1)2

18. y′′ + 4ty′ + (2+ 4t2)y = 0, y1(t) = e−t2

19. (t− 2)2y′′ + (t− 2)y′ − 4y = 0, y1(t) = (t− 2)2

20. y′′ −
(
2+ n− 1

t

)
y′ +

(
1+ n− 1

t

)
y = 0, where n is a positive integer, y1(t) = et

3.5 Complex Roots
We now complete the discussion of finding the general solution for the differ-
ential equation

ay′′ + by′ + cy = 0,

by obtaining the general solution when the discriminant is negative.
Looking for solutions of the form y(t) = eλt when the discriminant is nega-

tive leads to a characteristic equation aλ2 + bλ + c = 0 having complex conju-
gate roots,

λ1,2 = − b
2a

± i

√
4ac− b2

2a
.

Using α = −b/2a and β =
√
4ac− b2/2a for simplicity, we have for the roots

λ1,2 = α ± iβ. (1)

The Complex Exponential Function
The approach to solving ay′′ + by′ + cy = 0 has been based on looking for so-
lutions of the form y(t) = eλt. When the roots (1) of the characteristic equation
are complex, we are led to consider exponential functions with complex argu-
ments:

y1(t) = e(α+iβ)t and y2(t) = e(α−iβ)t. (2)

We need to clarify the mathematical meaning of these two expressions. How
is the definition of the exponential function extended or broadened to accom-
modate complex as well as real arguments? Once such a generalization is un-
derstood mathematically, we then need to demonstrate for complex λ that the
function eλt is, in fact, a differentiable function of t satisfying the fundamental
differentiation formula

d
dt
eλt = λeλt.
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This differentiation formulawas tacitly assumed in Section 3.3, and it is needed
now if we want to show that y = e(α+iβ)t and y = e(α−iβ)t are, in fact, solutions of
ay′′ + by′ + cy = 0.

A second issue that needs to be addressed is that of physical relevance. We
will be able to show that the functions {e(α+iβ)t, e(α−iβ)t} form a fundamental set
of solutions. How do we use them to obtain real-valued solutions?

As a case in point, recall the buoyancy example discussed in Section 3.1.
Whenwemodeled the object’s position, y(t), we arrived at a differential equation
of the form

y′′ + ω2y = 0.

The characteristic equation for this differential equation is λ2 + ω2 = 0 and has
roots λ1 = iω and λ2 = −iω. How do we relate the two solutions

y1(t) = eiωt and y2(t) = e−iωt

to the real-valued general solution

y = A sinωt+ B cosωt

used to describe the bobbing motion of the object?

The Definition of the Complex Exponential Function
In calculus, the exponential function y = et is often introduced as the inverse
of the natural logarithm function. For our present purposes, however, we want
a representation of the exponential function that permits us to generalize from
a real argument to a complex argument in a straightforward and natural way.
In this regard, the power series representation of the function ez is very conve-
nient.

From calculus, the Maclaurin4 series expansion for ez is the infinite series

ez = 1+ z+ z2

2! + z3

3! + · · · =
∞∑
n=0

zn

n! , (3)

where z0 and 0! are understood to be equal to 1. For a given value of z, the
Maclaurin series (3) is interpreted as the limit of the sequence of partial sums,

ez = lim
M→∞

M∑
n=0

zn

n! . (4)

When limit (4) exists, we say that the series converges. It is shown in calculus
that the Maclaurin series (3) converges to ez for every real value of z. Although
we do not do so here, it is possible to derive a number of familiar properties
of the exponential function from the power series (3). For example, it can be
shown that ez is differentiable and that

ez1+z2 = ez1ez2 .

4Colin Maclaurin (1698–1746) was a professor of mathematics at the University of Aberdeen and
later at the University of Edinburgh. In a two-volume exposition of Newton’s calculus, titled the
Treatise of Fluxions (published in 1742), Maclaurin used the special form of Taylor series now
bearing his name. Maclaurin also is credited with introducing the integral test for the convergence
of an infinite series.
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The importance of the power series representation (3) for ez is that the repre-
sentation is not limited to real values of z. It can be shown that power series (3)
converges for all complex values of z. In this manner, the function eλt is given
meaning even for a complex value of λ. The power series representation can
also be used to show that

eλt = e(α+iβ)t = eαt+iβt = eαteiβt. (5)

Euler’s Formula
From equation (5),

eλt = eαt+iβt = eαteiβt.

This result simplifies our task of understanding the function y = eλt, since we
already know the behavior of the factor eαt when α is real. Thus, we focus on
the other factor, eiβt. Using z = iβt in power series (3), we obtain

eiβt = 1+ (iβt) + (iβt)2

2! + (iβt)3

3! + (iβt)4

4! + (iβt)5

5! + · · ·

=
[
1− (βt)2

2! + (βt)4

4! − · · ·
]

+ i

[
βt− (βt)3

3! + (βt)5

5! − · · ·
]

=
∞∑
n=0

(−1)n(βt)2n
(2n)! + i

∞∑
n=0

(−1)n(βt)2n+1

(2n+ 1)! .

(6)

In (6), we used the fact that i2 = −1 and regrouped the terms into real and
imaginary parts. The two series on the right-hand side of (6) are Maclaurin
series representations of familiar functions:

cosβt = 1− (βt)2

2! + (βt)4

4! − · · · =
∞∑
n=0

(−1)n(βt)2n
(2n)! ,

sinβt = βt− (βt)3

3! + (βt)5

5! − · · · =
∞∑
n=0

(−1)n(βt)2n+1

(2n+ 1)! .

Using these results in equation (6), we obtain Euler’s formula,

eiβt = cosβt+ i sinβt. (7)

The symmetry properties of the sine and cosine functions [cos(−θ) = cos θ and
sin(−θ) = − sin θ ], together with Euler’s formula (7), lead to an analogous ex-
pression for e−iβt,

e−iβt = ei(−βt) = cos(−βt) + i sin(−βt) = cosβt− i sinβt. (8)

Equations (5), (7), and (8) can be used to express e(α+iβ)t and e(α−iβ)t in terms of
familiar functions:

e(α+iβ)t = eαteiβt = eαt(cosβt+ i sinβt),

e(α−iβ)t = eαte−iβt = eαt(cosβt− i sinβt).
(9)

We can use equation (9) to show that the Wronskian of y1(t) = e(α+iβ)t and
y2(t) = e(α−iβ)t is W(t) = −i2βe2αt, which is nonzero for all t since β �= 0. The
two solutions, y1 and y2, therefore form a fundamental set of solutions.
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Fromamathematical point of view,we are donewith the complex roots case
since we have found a fundamental set. From a physical point of view, however,
if the mathematical problem arises from a (real-valued) physical process and
we seek real-valued, physically meaningful answers, the two solutions in (9) are
not satisfactory. We want a fundamental set consisting of real-valued solutions.

The Real and Imaginary Parts of a Complex-Valued Solution Are
Also Solutions
We now state and prove a theorem that shows how to obtain a fundamental set
of real-valued solutions when the characteristic equation has complex roots.

Theorem 3.3
Let y(t) = u(t) + iv(t) be a solution of the differential equation

y′′ + p(t)y′ + q(t)y = 0,

where p(t) and q(t) are real-valued and continuous on a < t < b andwhere
u(t) and v(t) are real-valued functions defined on (a,b). Then u(t) and v(t)
are also solutions of the differential equation on this interval.

● PROOF: Since y(t) is known to be a solution, we have

(u+ iv)′′ + p(t)(u+ iv)′ + q(t)(u+ iv) = 0.

Therefore,

u′′ + iv′′ + p(t)(u′ + iv′) + q(t)(u+ iv) = 0.

Collecting real and imaginary parts, we have

[u′′ + p(t)u′ + q(t)u] + i[v′′ + p(t)v′ + q(t)v] = 0, a < t < b.

Since a complex quantity vanishes if and only if its real and imaginary parts
both vanish, we know that

u′′ + p(t)u′ + q(t)u = 0, a < t < b

and

v′′ + p(t)v′ + q(t)v = 0, a < t < b.

Therefore, u(t) and v(t) are both solutions of y′′ + p(t)y′ + q(t)y = 0. ●

We now apply Theorem 3.3 to the equation y′′ + ay′ + by = 0 in the case
where the characteristic equation has complex roots λ1 = α + iβ and
λ2 = α − iβ and corresponding complex-valued solutions

y1(t) = eαt(cosβt+ i sinβt) and y2(t) = eαt(cosβt− i sinβt).

Taking the real and imaginary parts of y1(t) [or, equivalently, of y2(t)], we obtain
a pair of real-valued solutions

u(t) = eαt cosβt and v(t) = eαt sinβt.
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The Wronskian is

W(t) =
∣∣∣∣∣ eαt cosβt eαt sinβt

eαt(α cosβt− β sinβt) eαt(α sinβt+ β cosβt)

∣∣∣∣∣ = βe2αt �= 0.

Therefore, the general solution of ay′′ + by′ + cy = 0 is

y(t) = Aeαt cosβt+ Beαt sinβt = eαt(A cosβt+ B sinβt). (10)

E X A M P L E

1 Find the general solution for the differential equation

y′′ + 25y = 0.

Solution: The characteristic equation is λ2 + 25 = 0. The roots are λ1 = 5i and
λ2 = −5i. Therefore, in equation (10), we have α = 0 and β = 5. The general
solution is

y(t) = A cos 5t+ B sin 5t. ❖

E X A M P L E

2 Solve the initial value problem

y′′ + 2y′ + 5y = 0, y(0) = 2, y′(0) = 2.

Solution: The characteristic equation is λ2 + 2λ + 5 = 0. The roots are

λ1,2 = −2± √
4− 20
2

= −1± 2i.

The general solution of the differential equation is

y(t) = e−t(A cos 2t+ B sin 2t).

In order to impose the initial conditions, we differentiate y(t), obtaining

y′(t) = −e−t(A cos 2t+ B sin 2t) + e−t(−2A sin 2t+ 2B cos 2t).

The initial conditions at t = 0 lead to the equations

A = 2

−A+ 2B = 2.

Solving this system,we find that the unique solution of the initial value problem
is

y(t) = 2e−t(cos 2t+ sin 2t). ❖

The graph of the solution found in Example 2, y(t) = 2e−t(cos 2t+ sin 2t),
is shown in Figure 3.5. Notice that the dashed curves, which are actually the
graphs of y = ±2√2 e−t, represent an envelope that describes the (decreasing)
size of the sinusoidal oscillations. We will discuss this envelope in the next
subsection.
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FIGURE 3.5

The graph of the solution found in Example 2, y(t) = 2e−t(cos 2t+ sin 2t).
The dashed curves, y = 2

√
2 e−t and y = −2√2 e−t, constitute an envelope

containing the graph of the solution.

Amplitude and Phase
Consider an initial value problem whose characteristic equation has complex
roots, λ1,2 = α ± iβ. The solution has the form

y(t) = eαt(A cosβt+ B sinβt), (11)

where A and B are constants determined from the given initial conditions. We
now show that this solution can also be expressed as

y(t) = Reαt cos(βt− δ), (12)

whereR and δ are positive constants. In this form, the behavior of the solution as
a function of time is more easily understood—it is the product of a sinusoidally
oscillating function, cos(βt− δ), and a term, Reαt, that is increasing with time
when α > 0, constant when α = 0, and decreasing with time when α < 0.

In (12), the term Reαt is often referred to as the amplitude of the os-
cillations. The constant δ is referred to as the phase, the phase angle, or
the phase shift. The term “phase shift” reflects the fact that we obtain the
graph of cos(βt− δ) by shifting the graph of cosβt to the right by an amount
t = δ/β. To see how equation (11) can be recast as (12), first recall the trigono-
metric identity

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2.

Using this trigonometric identity on the right-hand side of equation (12), we see
that R cos(βt− δ) = R cosβt cos δ + R sinβt sin δ. Equating the corresponding
expressions in (11) and (12), we obtain

R(cosβt cos δ + sinβt sin δ) = A cosβt+ B sinβt.
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Comparing like terms, we see R and δ must be chosen so that

R cos δ = A and R sin δ = B. (13)

From (13), it follows that

R =
√
A2 + B2,

tan δ = B
A

, A �= 0.
(14)

We need to examine the signs of both cos δ = A/R and sin δ = B/R in order to
determine the quadrant in which the angle δ lies, since there are two different
choices for an angle δ that satisfies tan δ = B/A:

δ = tan−1
(
B
A

)
or δ = tan−1

(
B
A

)
+ π. (15)

E X A M P L E

3 Consider the solution of the initial value problem found in Example 2,
y(t) = 2e−t(cos 2t+ sin 2t). The solution is graphed in Figure 3.5. Rewrite y(t)
in the form

y(t) = Reαt cos(βt− δ).

Use this form to identify the main features of the graph of y(t).

Solution: Compare the solution, y(t) = 2e−t(cos 2t+ sin 2t), with expression
(11). We see that A = 2,B = 2, α = −1, and β = 2. Therefore,

R = 2
√
2 and tan δ = 1.

SinceR cos δ = 2 andR sin δ = 2, it follows that cos δ and sin δ are both positive.
Therefore, δ is in the first quadrant and not in the third quadrant. Having
identified the proper quadrant, we obtain δ = tan−1(1) = π/4.

Knowing R, β, and δ, we can rewrite y(t) = 2e−t(cos 2t+ sin 2t) as

y(t) = 2
√
2 e−t cos

(
2t− π

4

)
. (16)

From expression (16), we can readily deduce the main features of the graph in
Figure 3.5. As mentioned earlier, the envelope function y(t) = 2

√
2 e−t governs

the amplitude of the oscillations, and this fact is clear from equation (16). The
phase angle, π/4, determines the shift of the cosine function. For instance, in
t > 0, y(t) is zero at t = 3π/8,7π/8,11π/8, . . . . ❖

E X A M P L E

4 Solve the initial value problem

y′′ + y = 0, y(0) = −1, y′(0) = −√
3

and put the solution in the form Reαt cos(βt− δ).

Solution: The characteristic equation is λ2 + 1 = 0 and has roots λ1,2 = ±i. The
general solution is

y(t) = A cos t+ B sin t.

Imposing the initial conditions, we obtain the solution

y(t) = − cos t− √
3 sin t.
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Using R cos δ = −1 and R sin δ = −√
3, we have

R = 2 and tan δ = √
3.

Since cos δ and sin δ are both negative, the phase angle δ must lie in the third
quadrant,

δ = tan−1√3+ π = 4π
3

.

Hence [see (12)],

y(t) = 2 cos
(
t− 4π

3

)
.

The graph of y(t) is shown in Figure 3.6. It is the graph of 2 cos t shifted to the
right by 4π/3 ≈ 4.19 radians.
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FIGURE 3.6

The graph of the solution found in Example 4, y(t) = 2 cos[t− (4π/3)]. ❖

E X E R C I S E S

The identity ez1+z2 = ez1ez2 , from which we obtain (ez)n = enz, is useful in some of the
exercises.

1. Write each of the complex numbers in the form α + iβ, where α and β are real
numbers.

(a) 2eiπ/3 (b) −2√2 e−iπ/4 (c) (2− i)ei3π/2

(d)
1

2
√
2
ei7π/6 (e)

(√
2 eiπ/6)4

2. Write each of the functions in the form Aeαt cosβt+ iBeαt sinβt, where α, β,A, and
B are real numbers.

(a) 2ei
√
2 t (b)

2
π
e−(2+3i)t (c) −1

2
e2t+i(t+π)

(d)
(√
3 e(1+i)t)3 (e)

(
− 1√

2
eiπt

)3
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Exercises 3–12:

For the given differential equation,

(a) Determine the roots of the characteristic equation.

(b) Obtain the general solution as a linear combination of real-valued solutions.

(c) Impose the initial conditions and solve the initial value problem.

3. y′′ + 4y = 0, y(π/4) = −2, y′(π/4) = 1

4. y′′ + 2y′ + 2y = 0, y(0) = 3, y′(0) = −1
5. 9y′′ + y = 0, y(π/2) = 4, y′(π/2) = 0

6. 2y′′ − 2y′ + y = 0, y(−π) = 1, y′(−π) = −1
7. y′′ + y′ + y = 0, y(0) = −2, y′(0) = −2
8. y′′ + 4y′ + 5y = 0, y(π/2) = 1/2, y′(π/2) = −2
9. 9y′′ + 6y′ + 2y = 0, y(3π) = 0, y′(3π) = 1/3

10. y′′ + 4π2y = 0, y(1) = 2, y′(1) = 1

11. y′′ − 2
√
2 y′ + 3y = 0, y(0) = −1/2, y′(0) = √

2

12. 9y′′ + π2y = 0, y(3) = 2, y′(3) = −π

Exercises 13–21:

The function y(t) is a solution of the initial value problem y′′ + ay′ + by = 0, y(t0) = y0,
y′(t0) = y′

0, where the point t0 is specified. Determine the constants a,b, y0, and y
′
0.

13. y(t) = sin t− √
2 cos t, t0 = π/4

14. y(t) = 2 sin 2t+ cos 2t, t0 = π/4

15. y(t) = e−2t cos t− e−2t sin t, t0 = 0

16. y(t) = et−π/6 cos 2t− et−π/6 sin 2t, t0 = π/6

17. y(t) = √
3 cosπ t− sinπ t, t0 = 1/2

18. y(t) = √
2 cos(2t− π/4), t0 = 0

19. y(t) = 2et cos(π t− π), t0 = 1

20. y(t) = e−t cos(π t− π), t0 = 0

21. y(t) = 3e−2t cos(t− π/2), t0 = 0

Exercises 22–26:

Rewrite the function y(t) in the form y(t) = Reαt cos(βt− δ), where 0 ≤ δ < 2π . Use this
representation to sketch a graph of the given function, on a domain sufficiently large to
display its main features.

22. y(t) = sin t+ cos t 23. y(t) = cosπ t− sinπt

24. y(t) = et cos t+ √
3 et sin t 25. y(t) = −e−t cos t+ √

3 e−t sin t

26. y(t) = e−2t cos 2t− e−2t sin 2t

Exercises 27–29:

In each exercise, the figure shows the graph of the solution of an initial value problem
y′′ + ay′ + by = 0, y(0) = y0, y

′(0) = y′
0. Use the information given to express the solu-

tion in the form y(t) = R cos(βt− δ), where 0 ≤ δ < 2π . Determine the constants a,b, y0,
and y′

0.
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27. The graph has a maximum value
at (0,2) and a t-intercept at (1,0).
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28. The graph has a maximum value at
(π/12,1) and a t-intercept at (5π/12,0).
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29. The graph has a maximum value at
(5π/12,1/2) and a t-intercept at (π/6,0).
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30. Consider the differential equation y′′ + ay′ + by = 0, where a and b are positive real
constants. Show that lim t→∞ y(t) = 0 for every solution of this equation.

31. Consider the differential equation y′′ + ay′ + 9y = 0, where a is a real constant. Sup-
pose we know that theWronskian of a fundamental set of solutions for this equation
is constant. What is the general solution for this equation?

32. Buoyancy Problems with Drag Force We discussed modeling the bobbing motion
of floating cylindrical objects in Section 3.1. Bobbing motion will not persist indef-
initely, however. One reason is the drag resistance a floating object experiences as it
moves up and down in the liquid. If we assume a drag force proportional to velocity,
an application of Newton’s second law of motion leads to the differential equation
y′′ + μy′ + ω2y = 0, where y(t) is the downward displacement of the object from
its static equilibrium position, μ is a positive constant describing the drag force,
and ω2 is a positive constant determined by the mass densities of liquid and
object and the vertical extent of the cylindrical object. (See Figure 3.1.)

(a) Obtain the general solution of this differential equation, assuming that
μ2 < 4ω2.

(b) Assume that a cylindrical floating object is initially displaced downward a dis-
tance y0 and released from rest [so the initial conditions are y(0) = y0, y

′(0) = 0].
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Obtain, in terms of μ, ω, and y0, the solution y(t) of the initial value problem. Show
that lim t→∞ y(t) = 0.

33. This section has focused on the differential equation ay′′ + by′ + cy = 0, where a, b,
and c are real constants. The fact that the roots of the characteristic equation occur
in conjugate pairs when they are complex is due to the fact that the coefficients a,
b, and c are real numbers. To see that this may not be true if the coefficients are
allowed to be complex, determine the roots of the characteristic equation for the
differential equation

y′′ + 4iy′ + 5y = 0.

Find two complex-valued solutions of this equation.

3.6 Unforced Mechanical Vibrations
In this section, we model the motion of a simple mechanical system—that of a
mass suspended from the end of a hanging spring and subjected to some initial
disturbance. The resulting up-and-down motion of the mass will be similar to
the bobbing motion of a floating cylindrical object.

Hooke’s Law
A spring hangs vertically from a ceiling. We assume that the weight of the
spring is negligibly small. The natural or unstretched length of the spring is
denoted by l, as in Figure 3.7. Suppose we now apply a vertical force to the
end of the spring. If the force is directed downward, the spring will stretch.
As it stretches, the spring develops an upward restoring force that resists this
stretching or elongation. Conversely, if the applied force is directed upward,
the spring compresses or shortens in length. In this case, the spring develops a
counteracting downward restoring force that tends to resist compression.

Δy1 < 0

Δy2 > 0

l

Distance y
( positive
downward)

FR = 0 FR = –kΔy1

      = k⏐Δy1⏐ > 0
FR = –kΔy2 < 0

(a) (b) (c)

FIGURE 3.7

(a) A spring with natural length l. (b) The restoring force, FR = −k
y1, is
positive (directed downward) when the spring is compressed. (c) The
restoring force, FR = −k
y2, is negative (directed upward) when the spring
is stretched.
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Weneed an equation that relates the restoring force developed by the spring
to the amount of elongation or compression that has occurred. The relation
we use is Hooke’s law,5 which assumes the restoring force is proportional to
the amount of stretching or compression that the spring has undergone. We
assume that the displacement 
y is positive when the spring is stretched and
negative when it is compressed.Whether the spring is stretched or compressed,
its length is given by the quantity l + 
y.

Hooke’s law states that the restoring force is

FR = −k
y, (1)

where 
y is the displacement and k is a positive constant of proportionality,
called the spring constant. The negative sign in equation (1) arises because
the restoring force acts to counteract the displacement of the spring end.

The spring constant k in equation (1) has the dimensions of force per unit
length and represents a measure of spring stiffness. A stiffer spring has a larger
value of k, and the same restoring force arises from a smaller displacement.

Hooke’s law is a useful description of reality when the displacement magni-
tude, |
y|, is reasonably small. It cannot remain valid for arbitrarily large |
y|
since one cannot stretch or compress a spring indefinitely. We assume in all our
modeling and computations that displacement magnitudes are small enough
to permit the use of Hooke’s law.

A Mathematical Model for the Spring-Mass System
An object having massm is attached to the end of the unstretched spring, as in
Figure 3.8. The weight of the object is

W = mg,

Distance
(positive
downward)

Y

y(t)

Equilibrium
or rest position

Perturbed state

m

m

FIGURE 3.8

As the mass moves, the quantity y(t) measures its displacement from the
equilibrium position.

5Robert Hooke (1635–1703) served as professor of geometry at Gresham College, London, for 30
years. He worked on problems in elasticity, optics, and simple harmonic motion. Hooke invented
the conical pendulum and was the first to build a Gregorian reflecting telescope. He was a compe-
tent architect and helped Christopher Wren rebuild London after the Great Fire of 1666.
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where g is the acceleration due to gravity. The spring stretches until it achieves
a new rest or equilibrium configuration. Let Y represent the distance the spring
stretches to achieve this new equilibrium position. The displacement, Y , is de-
termined by Hooke’s law—the spring stretches until the restoring force exactly
counteracts the object’s weight:

W + FR = mg− kY = 0. (2)

It follows that Y = mg/k.
When the spring-mass system in Figure 3.8 is perturbed from its equilib-

rium position, we have from Newton’s second law of motion

m
d2

dt2
(Y + y) = W + FR = mg− k(Y + y).

Using (2) and noting that Y is a constant, we can reduce this equation to

my′′ + ky = 0. (3)

If we define ω2 = k/m, we obtain the differential equation y′′ + ω2y = 0, which
characterizes the bobbing motion of a floating object.

Suppose we now assume a damping mechanism, a dashpot, is attached
and suppresses the vibrating motion of the spring-mass system. It is shown
schematically in Figure 3.9. We assume the damping force is proportional to
velocity,

FD = −γ
dy(t)
dt

. (4)

In (4), γ is a positive constant of proportionality, referred to as the damping
coefficient. The negative sign is present because the damping force acts to
oppose the motion. A similar model of velocity damping was assumed in the
linear model of projectile motion with air resistance discussed in Section 2.9.

m

FIGURE 3.9

A spring-mass-dashpot system.

The differential equation describing themotion of themass, again obtained
from Newton’s second law of motion, is

m
d2y

dt2
= W + FR + FD = mg− k(Y + y) − γ

dy
dt

. (5)
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Since mg− kY = 0, equation (5) simplifies to

m
d2y

dt2
+ γ

dy
dt

+ ky = 0. (6)

Equation (6) is a second order linear constant coefficient differential equation.
It is homogeneous becausewe are considering only the unforced or free vibra-
tion of the system. That is, there are no external forces applied to the system.

In Section 3.10, we will consider forced vibrations, where equation (6) is
modified to include a time-varying applied force, F(t). Inclusion of an applied
force leads to a nonhomogeneous equation of the form

m
d2y

dt2
+ γ

dy
dt

+ ky = F(t). (7)

Behavior of the Model
In this subsection, we discuss the solutions of equation (6),my′′ + γ y′ + ky = 0.
These solutions describe how the mass-spring-dashpot system behaves—pre-
dicting the position, y(t), and the velocity, y′(t), of themovingmass at any time t.
The characteristic equation,

mλ2 + γ λ + k = 0,

has roots

λ1,2 = −γ ±
√

γ 2 − 4mk

2m
. (8)

The corresponding mass-spring-dashpot system exhibits different behavior,
depending on the roots of the characteristic equation. The roots, in turn, are
determined by the relative values of the mass, spring constant, and damping
coefficient.

Case 1 If γ 2 > 4km (if damping is relatively strong), the characteristic equa-
tion has two negative real roots

λ1,2 = −γ ±
√

γ 2 − 4mk

2m
.

(Both roots are negative since
√

γ 2 − 4mk is less than γ .) As shown in Sec-
tion 3.3, the general solution is given by

y(t) = c1e
λ1t + c2e

λ2t. (9a)

Therefore, the strong damping suppresses any vibratory motion of the mass.
The general solution is a linear combination of two decreasing exponential
functions. This case is referred to as the overdamped case.

Case 2 If γ 2 = 4km, then the roots are real and repeated. As we saw in Section
3.4, the general solution is given by

y(t) = c1e
λ1t + c2te

λ1t, (9b)
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where λ1 = −γ /2m. In this case, known as the critically damped case, damp-
ing is also sufficiently strong to suppress oscillatory vibrations of the mass.

Case 3 If γ 2 < 4km, then the roots are complex conjugates,

λ1,2 = −γ

2m
± i

√
4mk− γ 2

2m
= α ± iβ.

As we saw in Section 3.5, the general solution is given by

y(t) = eαt(c1 cosβt+ c2 sinβt). (9c)

In this case, known as the underdamped case, damping is too weak to totally
suppress the vibrations of the mass. Note that the underdamped case also in-
cludes the case where there is no damping whatsoever—that is, the case where
γ = 0. Later, we refer to this as the undamped case. Finally, recall from Sec-
tion 3.5 that solution (9c) can be restated in amplitude-phase form as

y(t) = Reαt cos(βt− δ), (10)

where R =
√
c21 + c22, R cos δ = c1, and R sin δ = c2. If damping is present (that

is, if γ > 0), then α = −γ /2m < 0 and themotion of themass described by equa-
tion (10) consists of damped vibrations (oscillations that decrease in amplitude
as time progresses). If there is no damping, then α = 0 and the oscillations do
not decrease in magnitude.

Representative examples of the motion that occurs in these three cases are
shown in Figure 3.10, parts (a)–(c). When damping is present, it follows from
equations (9a)–(9c) that lim t→∞ y(t) = 0 for any choices of c1 and c2. This is to
be expected, since energy is dissipated and any initial disturbance will diminish
in strength as time increases.

Vibrations and Periodic Functions
As a special case, assume that damping is absent; that is, γ = 0. In this case,
α = 0 and solution (10) reduces to

y(t) = R cos

(√
k
m
t− δ

)
. (11)

If we set ω = √
k/m, equation (11) becomes

y(t) = R cos(ωt− δ). (12)

In this case, the amplitude of the vibrations remains constant and equal to R.
The function y(t) in (12) is an example of a periodic function.

In general, let f (t) be defined on −∞ < t < ∞ or a ≤ t < ∞ for some a. The
function f (t) is called a periodic function if there exists a positive constant T,
called the period, such that

f (t+ T) = f (t) (13)

for all values of t in the domain. The smallest value of the constant T satisfying
(13) is called the fundamental period of the function.
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(a) Overdamped motion

(b) Underdamped motion

(c) Undamped motion

Equation: y ″ + 4y ′ + 3y = 0

     y(0) = 1,   y ′(0) = –9

Solution: y(t) = 4e–3t – 3e–t

Equation: y ″ + 2y ′ + 17y = 0

     y(0) = 1,   y ′(0) = –5

Solution: y(t) = e–t(cos 4t – sin 4t)

                          = √2 e–t cos(4t + �/4)

Equation: y ″ + 16y = 0

     y(0) = 1,   y ′(0) = –4

Solution: y(t) = cos 4t – sin 4t

                          = √2 cos(4t + �/4)

FIGURE 3.10

Examples of (a) overdamped motion, (b) underdamped motion with
nonzero damping, and (c) undamped motion.
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The basic qualitative feature of a periodic function is that its graph repeats
itself. If we know what the graph looks like on any time segment of duration
T, we can obtain the graph on the entire domain simply by replicating this
segment. Figure 3.11 provides an illustration.

t

f (t)

T

FIGURE 3.11

The graph of a periodic function repeats itself over any time period of
duration T, where T is the fundamental period of the function.

Consider again the solution y(t) = R cos(ωt− δ) in equation (12). Since the
cosine function repeats itself whenever its argument changes by 2π , y(t) is a
periodic function. To find the period for y(t), we set y(t+ T) = y(t):

y(t+ T) = R cos[ω(t+ T) − δ]
= R cos[ωt+ ωT − δ]
= y(t), if ωT = 2nπ, n = 1,2, . . . .

Therefore, the function y(t) has fundamental period T = 2π/ω. In terms of the
spring-mass system, T = 2π/ω is referred to as the fundamental period of
the motion or simply the period. The period represents the time required for
the mass to execute one cycle of its oscillatory motion. The motion itself is
often referred to as periodic motion. The reciprocal of the period, f = 1/T,
is called the frequency of the oscillations. The frequency represents the num-
ber of cycles of the periodic motion executed per unit time. For example, if
T = 0.01 sec, the system completes 100 cycles of its motion per second. In
current terminology, one cycle per second is referred to as one Hertz.6 There-
fore, we would say that the system oscillations have a frequency of 100 Hertz
(100 Hz). From the relations T = 2π/ω and f = 1/T, it follows that ω = 2π f .
The constant ω is called the angular frequency or the radian frequency. It
represents the change, in radians, that cos(ωt− δ) undergoes in one period.

It’s worthwhile to check that the model predictions are consistent with
our everyday experience. In the absence of damping, angular frequency is
ω = √

k/m and frequency is f = (1/2π)
√
k/m. Frequency therefore increases

as either k increases or m decreases. Thus, when a given mass is attached in
turn to two springs of differing stiffness, the model predicts it will vibrate more
rapidly when suspended from the stiffer spring. Likewise, if two bodies of dif-

6Heinrich Hertz (1857–1894) was a German physicist who confirmed Maxwell’s theory of electro-
magnetism by producing and studying radio waves. He demonstrated that these waves travel at the
velocity of light and can be reflected, refracted, and polarized. The unit of frequency was named
in his honor.
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fering mass (and therefore weight) are suspended from the same spring, the
smaller mass will vibrate more rapidly than the larger mass.

Now consider what happens when damping is added. The solution y(t) in
equation (10) has the form

y(t) = Reαt cos(βt− δ), (14)

where

α = −γ

2m
and β =

√
4km− γ 2

2m
.

Equation (14) predicts that when two different masses are attached to a spring-
dashpot system having the same damping coefficient γ and spring constant k,
the solution envelope of the larger mass (the heavier body) will decrease more
slowly with time because the associated value α is smaller.

Note also that the introduction of damping changes the cosine term in
equation (12) from cos[(√k/m)t− δ], when damping is absent, to

cos

(√
4km− γ 2

2m
t− δ

)
,

when damping is present. Since√
k
m

>

√
4km− γ 2

2m
,

the introduction of damping causes the vibrations to “slow down” while simul-
taneously being reduced in amplitude.

Are these model predictions consistent with your everyday experience?
What experiments might test these predictions, both qualitatively and quan-
titatively?

We conclude this section with two examples illustrating the motion of a
spring-mass-dashpot system.

E X A M P L E

1 A block weighing 8 lb is attached to the end of a spring, causing the spring to
stretch 6 in. beyond its natural length. The block is then pulled down 3 in. and
released. Determine the motion of the block, assuming there are no damping
forces or external applied forces.

Solution: The motion of the block is governed by equation (3),

my′′ + ky = 0,

along with the initial conditions of the problem. Assuming the gravitational
constant to be g = 32 ft /sec2 and noting that the weight is given by W = mg,
we find the block has mass

m = 1
4
lb-sec2

ft
.

[Note that 1 lb-sec2/ft = 1 slug.] The spring constant k can be determined by
the fact that an 8-lb force (the weight of the block) causes the spring to stretch

(continued)
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(continued)

6 in.; Hooke’s law implies k = 8
6 lb/in. = 16 lb/ft. Since 3 in. = 1

4 ft, the initial
value problem governing the motion is

1
4y

′′ + 16y = 0, y(0) = 1
4 , y′(0) = 0. (15)

The units of y(t) are feet and of y′(t) are feet per second. The solution of the
initial value problem is y(t) = 1

4 cos 8t. A graph of the block’s position, y(t), is
shown in Figure 3.12(a). ❖
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FIGURE 3.12

(a) The position, y(t), of the mass in Example 1 (no damping).
(b) The position, y(t), of the mass in Example 2 (includes damping).

E X A M P L E

2 Consider the spring-mass system inExample 1. Assume that damping is present
and that the damping coefficient is given by γ = 1 lb-sec/ft. Determine the mo-
tion of the block.

Solution: To account for the assumed damping force, the equation of Exam-
ple 1 will be modified to include a damping term γ y′, where γ = 1:

1
4y

′′ + y′ + 16y = 0.

Therefore, the initial value problem governing the motion of the block is

y′′ + 4y′ + 64y = 0, y(0) = 1
4 , y′(0) = 0.

The general solution is

y(t) = e−2t
[
c1 cos(2

√
15 t) + c2 sin(2

√
15 t)

]
.

Imposing the initial conditions y(0) = 1
4 and y

′(0) = 0, we obtain

y(t) = 1
4
e−2t

[
cos(2

√
15 t) + 1√

15
sin(2

√
15 t)

]
.

The graph of y(t) is shown in Figure 3.12(b). The block still oscillates about
its equilibrium position, but the envelope of the oscillations decreases with
time. ❖
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E X E R C I S E S

1. The given function f (t) is periodic with fundamental period T; therefore,
f (t+ T) = f (t). Use the information given to sketch the graph of f (t) over the time
interval 0 ≤ t ≤ 4T.

(a) f (t) = t(2− t), 0 ≤ t < 2, T = 2 (b) f (t) =
{
1, 0 ≤ t ≤ 3

2

0, 3
2 < t < 2

, T = 2

(c) f (t) =
{

t, 0 ≤ t ≤ 2

4− t, 2 < t < 4
, T = 4 (d) f (t) = −1+ t, 0 ≤ t < 2, T = 2

(e) f (t) = 2e−t, 0 ≤ t < 1, T = 1 (f ) f (t) = sin t, 0 ≤ t < π, T = π

(g) f (t) =
{
2 sinπt, 0 ≤ t ≤ 1

0, 1 < t < 2
, T = 2

Exercises 2–8:

These exercises deal with undamped vibrations of a spring-mass system,

my′′ + ky = 0, y(0) = y0, y′(0) = y′
0. (16)

Use a value of 9.8 m/s2 or 32 ft/sec2 for the acceleration due to gravity.

2. A 10-kg mass, when attached to the end of a spring hanging vertically, stretches the
spring 30 mm. Assume the mass is then pulled down another 70 mm and released
(with no initial velocity).

(a) Determine the spring constant k.

(b) State the initial value problem (giving numerical values for all constants) for y(t),
where y(t) denotes the displacement (in meters) of the mass from its equilibrium
rest position. Assume that y is measured positive in the downward direction.

(c) Solve the initial value problem formulated in part (b).

3. A 3-kg mass is attached to a spring having spring constant k = 300 N/m. At time
t = 0, the mass is pulled down 10 cm and released with a downward velocity of 100
cm/s.

(a) Determine the resulting displacement, y(t).

(b) Solve the equation y′(t) = 0, t > 0, to find the time when the maximum down-
ward displacement of the mass from its equilibrium position is first achieved.

(c) What is the maximum downward displacement?

4. A 20-kg mass was initially at rest, attached to the end of a vertically hanging spring.
When given an initial downward velocity of 2 m/s from its equilibrium rest posi-
tion, the mass was observed to attain a maximum displacement of 0.2 m from its
equilibrium position. What is the value of the spring constant?

5. A 9-lb weight, suspended from a spring having spring constant k = 32 lb/ft, is per-
turbed from its equilibrium state with a certain upward initial velocity. The ampli-
tude of the resulting vibrations is observed to be 4 in.

(a) What is the initial velocity?

(b) What are the period and frequency of the vibrations?

6. (a) Derive an expression for the amplitude of the undamped vibrations modeled by
equation (16). [Hint: From equations (10)–(12), the general solution ofmy′′ + ky = 0

is y = c1 cosβt+ c2 sinβt. The amplitude R is given by R =
√
c21 + c22. Use the initial

conditions in equation (16) to determine c1 and c2. Your expression forRwill involve
y0, y

′
0, and β = √

k/m.]
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(b) Two experiments are performed. A mass is given an initial downward displace-
ment y0 and then released with a downward initial velocity y

′
0. Next, the mass is

given the same downward displacement y0, but this time released with an upward
initial velocity −y′

0. Which experiment (if any) would you expect to yield the larger
amplitude? Using the result of part (a), compare the amplitudes of the resulting
vibrations.

7. A 4-kg mass was attached to a spring and set in motion. A record of the displace-
ments was made and found to be described by y(t) = 25 cos(2t− π/6), with dis-
placement measured in centimeters and time in seconds. Determine the initial
displacement y0, initial velocity y

′
0, spring constant k, and period T of the vibra-

tions.

8. The graph shows the displacement from equilibrium of a mass-spring system as a
function of time after the vertically hanging system was set in motion at t = 0.
Assume that the units of time and displacement are seconds and centimeters, re-
spectively.

(a) What is the period T of the periodic motion?

(b) What is the frequency f (inHertz)?What is the angular frequencyω (in rad/sec)?

(c) Determine the amplitude R and the phase angle δ (in radians), and express the
displacement in the form y(t) = R cos(ωt− δ), with y in meters.

(d) With what initial displacement y(0) and initial velocity y′(0) was the system set
into motion?

1 2 3 4

–2

–3

–1

1

2

3

t

y

Figure for Exercise 8

The first t-intercept is
(
3
4 ,0

)
, and the

first minimum has coordinates
(
5
4 , −3

)
.

9. A spring-mass-dashpot system consists of a 10-kg mass attached to a spring with
spring constant k = 100 N/m; the dashpot has damping constant 7 kg/s. At time
t = 0, the system is set into motion by pulling the mass down 0.5 m from its equi-
librium rest position while simultaneously giving it an initial downward velocity of
1 m/s.

(a) State the initial value problem to be solved for y(t), the displacement from equi-
librium (in meters) measured positive in the downward direction. Give numerical
values to all constants involved.
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(b) Solve the initial value problem. What is lim t→∞ y(t)? Explain why your answer
for this limit makes sense from a physical perspective.

(c) Plot your solution on a time interval long enough to determine how long it takes
for the magnitude of the vibrations to be reduced to 0.1 m. In other words, estimate
the smallest time, τ , for which |y(t)| ≤ 0.1m, τ ≤ t < ∞.

10. A spring and dashpot system is to be designed for a 32-lb weight so that the overall
system is critically damped.

(a) How must the damping constant γ and spring constant k be related?

(b) Assume the system is to be designed so that the mass, when given an initial
velocity of 4 ft/sec from its rest position, will have a maximum displacement of
6 in. What values of damping constant γ and spring constant k are required?

11. A 4-kg mass is attached to a spring having spring constant k = 100 N/m. The sys-
tem is set in motion and measurements are taken. A dashpot is then attached and
the experiment repeated. It is observed that the time interval between successive
zero crossings is 20% larger for the damped vibration displacement than for the
undamped vibration displacement. What is the damping constant γ ?

12. A spring-mass-dashpot system is released from rest with an initial displacement
given by y(0) = y0. Consider the following question: “What happens to the displace-
ment y(t) if we keep the values of mass m and spring constant k fixed but increase
the damping constant γ ?” In particular, select an arbitrary but fixed time t > 0, think
of the solution y(t) as being a function of the damping constant γ , and determine
lim γ→∞ y(t). Do you have any intuitive insight as to what the answer should be?

Develop the answer with the following steps.

(a) Show that the roots of the characteristic polynomial are

λ1 = − γ

2m
−
√

γ 2 − 4mk
2m

, λ2 = − γ

2m
+
√

γ 2 − 4mk
2m

.

Solve the initial value problem, assuming the system to be overdamped. Express the
solution in terms of the two roots λ1 and λ2. (Since we are interested in the system’s
behavior for large values of γ , the overdamped assumption is appropriate.)

(b) Show that lim γ→∞ λ1 = −∞ and lim γ→∞ λ2 = 0.

(c) Use the results of parts (a) and (b) to determine lim γ→∞ y(t) (with k,m, and
t > 0 fixed). What is the physical meaning of your answer? Does it agree with your
intuition? Does it make physical sense in retrospect?

13. In this problem, we explore computationally the question posed in Exercise 12.
Consider the initial value problem

y′′ + γ y′ + y = 0, y(0) = 1, y′(0) = 0,

where, for simplicity, we have given the mass, spring constant, and initial displace-
ment all a numerical value of unity.

(a) Determine γcrit, the damping constant value that makes the given spring-mass-
dashpot system critically damped.

(b) Use computational software to plot the solution of the initial value problem
for γ = γcrit, 2γcrit, and 20γcrit over a common time interval sufficiently large to
display the main features of each solution. What trend do you observe in the behav-
ior of the solutions as γ increases? Is it consistent with the conclusions reached in
Exercise 12?
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3.7 The General Solution of a Linear
Nonhomogeneous Equation

We consider the linear second order nonhomogeneous differential equation

y′′ + p(t)y′ + q(t)y = g(t), a < t < b (1)

and ask, “What is the general solution of this equation?”

The General Solution
We begin by posing a second question: “To what extent can two solutions of
equation (1) differ from one another?” Once we can answer this question, we
will know how every solution of equation (1) is related to a single particular
solution that we may somehow have found.

Assume we have two solutions of nonhomogeneous equation (1); call them
u(t) and v(t). Since both are solutions,

u′′ + p(t)u′ + q(t)u = g(t) and v′′ + p(t)v′ + q(t)v = g(t), a < t < b. (2)

Subtracting, we obtain

[u′′ − v′′] + p(t)[u′ − v′] + q(t)[u− v] = g(t) − g(t) = 0, a < t < b.

Therefore, the difference function, w(t) = u(t) − v(t), is a solution of the asso-
ciated linear homogeneous equation:

y′′ + p(t)y′ + q(t)y = 0. (3)

Now, let yP(t) be a particular solution of equation (1) that we somehow have
found. Let y(t) be any solution whatsoever of equation (1). As we saw above,
the difference function y(t) − yP(t) is a solution of equation (3). Let y1(t) and
y2(t) form a fundamental set of solutions for the homogeneous equation (3).
Since {y1, y2} is a fundamental set of solutions, there are constants c1 and c2
such that

y(t) − yP(t) = c1y1(t) + c2 y2(t).

Equivalently,

y(t) = [c1y1(t) + c2 y2(t)] + yP(t). (4)

Since y(t) was any solution whatsoever of equation (1), it follows that the gen-
eral solution of (1) is given by (4). We can express result (4) in the following
schematic form:

The general solution of
the nonhomogeneous

equation
=

The general solution of
the homogeneous

equation
+

A particular solution of
the nonhomogeneous

equation.

Note that the right-hand side of equation (4) contains two arbitrary constants
c1 and c2 that we can select to satisfy given initial conditions, y(t0) = y0 and
y′(t0) = y′

0; we illustrate this point in Example 1.
We call the general solution of the homogeneous equation the complemen-

tary solution and denote it yC. The solution of the nonhomogeneous equation
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that we somehow have found is called a particular solution and is denoted by
yP. If we use y to represent the general solution of nonhomogeneous equation
(1), then the preceding schematic statement has the structural form

y(t) = yC(t) + yP(t). (5)

In Sections 3.8 and 3.9, we will discuss methods for finding a particular solu-
tion, yP. For now, we illustrate equation (5) with an example.

E X A M P L E

1 (a) Verify that yP(t) = 3t− 4 is a solution of y′′ − y′ − 2y = 5− 6t.

(b) Use the result of (a) together with equation (5) to solve the initial value
problem

y′′ − y′ − 2y = 5− 6t, y(0) = 3, y′(0) = 11.

Solution:

(a) Inserting yP into the differential equation, we obtain

y′′
P − y′

P − 2yP = (0) − (3) − 2(3t− 4) = 5− 6t.

Therefore, yP = 3t− 4 is a particular solution of the nonhomogeneous dif-
ferential equation.

(b) The complementary solution of y′′ − y′ − 2y = 0 is yC(t) = c1e
−t + c2e

2t.
Therefore, by equation (5), the general solution of y′′ − y′ − 2y = 5− 6t is
y(t) = yC(t) + yP(t), or

y(t) = c1e
−t + c2e

2t + 3t− 4.

Imposing the initial conditions, we obtain the system of equations

c1 + c2 − 4 = 3

−c1 + 2c2 + 3 = 11.

The solution of this system is c1 = 2 and c2 = 5. Thus, the solution of the
initial value problem is

y(t) = 2e−t + 5e2t + 3t− 4. ❖

The Superposition of Particular Solutions
As we noted in Section 3.2, the principle of superposition does not apply to
nonhomogeneous linear equations. If u1(t) and u2(t) are two solutions of the
nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t), (6)

where g(t) is nonzero, the sum w(t) = u1(t) + u2(t) is not a solution of equation
(6). In fact, whenw = u1 + u2 is inserted into the left-hand side of (6), we obtain

w′′ + p(t)w′ + q(t)w = g(t) + g(t) = 2g(t).

Therefore, w = u1 + u2 is not a solution of equation (6).
There is, however, a different form of superposition that applies to nonho-

mogeneous equations. We state this result formally as a theorem since we will
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find it useful in Sections 3.8 and 3.9, which deal with the practical aspects of
finding a particular solution, yP, for equation (6). The proof is left as Exercise 13.

Theorem 3.4
Let u(t) be a solution of y′′ + p(t)y′ + q(t)y = g1(t), a < t < b. Let v(t) be
a solution of y′′ + p(t)y′ + q(t)y = g2(t), a < t < b. Let a1 and a2 be any
constants. Then the function yP(t) = a1u(t) + a2v(t) is a particular solution
of

y′′ + p(t)y′ + q(t)y = a1g1(t) + a2g2(t).

Theorem 3.4 is a simplifying principle. For example, suppose we need to
find a particular solution of

y′′ + p(t)y′ + q(t)y = e2t + cos t. (7)

It often is simpler to separately find a particular solution u1 that solves

y′′ + p(t)y′ + q(t)y = e2t

and then find a particular solution u2 that solves

y′′ + p(t)y′ + q(t)y = cos t.

The desired particular solution of (7) is yP(t) = u1(t) + u2(t).

E X A M P L E

2 We ask you to show in Exercise 3 that u(t) = 2e4t is a particular solution of
y′′ − y′ − 2y = 20e4t. Recall from Example 1 that v(t) = 3t− 4 is a particular
solution of y′′ − y′ − 2y = 5− 6t. Find the general solution of

y′′ − y′ − 2y = −5e4t + 20− 24t.

Solution: Applying Theorem 3.4, we know that a particular solution of the
equation

y′′ − y′ − 2y = −5e4t + 20− 24t

is

yP(t) = − 1
4u(t) + 4v(t) = − 1

2e
4t + 12t− 16.

Therefore, the general solution is

y(t) = yC(t) + yP(t) = c1e
−t + c2e

2t − 1
2e
4t + 12t− 16. ❖

E X E R C I S E S

Exercises 1–12:

(a) Verify that the given function, yP(t), is a particular solution of the differential equa-
tion.

(b) Determine the complementary solution, yC(t).

(c) Form the general solution and impose the initial conditions to obtain the unique
solution of the initial value problem.
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1. y′′ − 2y′ − 3y = −9t− 3, y(0) = 1, y′(0) = 3, yP(t) = 3t− 1

2. y′′ − 2y′ − 3y = e2t, y(0) = 1, y′(0) = 0, yP(t) = −e2t/3
3. y′′ − y′ − 2y = 20e4t, y(0) = 0, y′(0) = 1, yP(t) = 2e4t

4. y′′ − y′ − 2y = 10, y(−1) = 0, y′(−1) = 1, yP(t) = −5
5. y′′ + y′ = 2t, y(1) = 1, y′(1) = −2, yP(t) = t2 − 2t

6. y′′ + y′ = 2e−t, y(0) = 2, y′(0) = 2, yP(t) = −2te−t

7. y′′ + y = 2t− 3 cos 2t, y(0) = 0, y′(0) = 0, yP(t) = 2t+ cos 2t

8. y′′ + 4y = 10et−π , y(π) = 2, y′(π) = 0, yP(t) = 2et−π

9. y′′ − 2y′ + 2y = 10t2, y(0) = 0, y′(0) = 0, yP(t) = 5(t+ 1)2

10. y′′ − 2y′ + 2y = 5 sin t, y(π/2) = 1, y′(π/2) = 0, yP(t) = 2 cos t+ sin t

11. y′′ − 2y′ + y = et, y(0) = −2, y′(0) = 2, yP(t) = 1
2 t
2et

12. y′′ − 2y′ + y = t2 + 4+ 2 sin t, y(0) = 1, y′(0) = 3, yP(t) = t2 + 4t+ 10+ cos t

13. Assume that u(t) and v(t) are, respectively, solutions of the differential equations

u′′ + p(t)u′ + q(t)u = g1(t) and v′′ + p(t)v′ + q(t)v = g2(t),

where p(t), q(t), g1(t), and g2(t) are continuous on the t-interval of interest. Let a1 and
a2 be any two constants. Show that the function yP(t) = a1u(t) + a2v(t) is a particular
solution of the differential equation

y′′ + p(t)y′ + q(t)y = a1g1(t) + a2g2(t)

on the same t-interval.

Exercises 14–16:

The functions u1(t),u2(t), and u3(t) are solutions of the differential equations

u′′
1 + p(t)u′

1 + q(t)u1 = 2et + 1, u′′
2 + p(t)u′

2 + q(t)u2 = 4,

u′′
3 + p(t)u′

3 + q(t)u3 = 3t.

Use the functions u1(t),u2(t), and u3(t) to construct a particular solution of the given
differential equation.

14. y′′ + p(t)y′ + q(t)y = et 15. y′′ + p(t)y′ + q(t)y = t+ 2

16. y′′ + p(t)y′ + q(t)y = et + t+ 1

Exercises 17–21:

The function yP(t) is a particular solution of the given differential equation. Determine
the function g(t).

17. y′′ + y′ − y = g(t), yP(t) = e2t − t2

18. y′′ − 2y′ = g(t), yP(t) = 3t+ √
t, t > 0

19. ty′′ + ety′ + 2y = g(t), yP(t) = 3t, t > 0

20. y′′ + y = g(t), yP(t) = ln (1+ t), t > −1
21. y′′ + (sin t)y′ + ty = g(t), yP(t) = t+ 1

Exercises 22–26:

The general solution of the nonhomogeneous differential equation y′′ + αy′ + βy = g(t)
is given, where c1 and c2 are arbitrary constants. Determine the constants α and β and
the function g(t).

22. y(t) = c1e
t + c2e

2t + 2e−2t 23. y(t) = c1 + c2e
−t + t2
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24. y(t) = c1e
t + c2te

t + t2et 25. y(t) = c1e
t cos t+ c2e

t sin t+ et + sin t

26. y(t) = c1 sin 2t+ c2 cos 2t− 1+ sin t

3.8 The Method of Undetermined Coefficients
In Section 3.7, we discussed the structure of the general solution for the non-
homogeneous equation

y′′ + p(t)y′ + q(t)y = g(t), a < t < b.

We saw that the general solution has the form

y(t) = yC(t) + yP(t), (1)

where yC is the general solution of the homogeneous equation y′′ + p(t)y′+
q(t)y = 0 and yP is a particular solution of the nonhomogeneous equation
y′′ + p(t)y′ + q(t)y = g(t).

In this section, we describe a technique that often can be used to find a par-
ticular solution, yP. The technique is known as themethod of undetermined
coefficients.

We first illustrate the method through a series of examples. Later, we sum-
marize the method in tabular form. In Section 3.9, we describe a different
technique for finding a particular solution, the method of variation of param-
eters.

Before we discuss these two methods for obtaining a particular solution,
it’s worth stating the procedure that should be followed to obtain the general
solution (1):

1. The first step is to find the complementary solution, yC. As you will see,
knowledge of the complementary solution is a prerequisite for using ei-
ther themethod of undetermined coefficients or themethod of variation
of parameters.

2. Next, use undetermined coefficients or variation of parameters (or any-
thing else that works) to find a particular solution, yP.

3. Finally, obtain the general solution by forming yC + yP.

If you are solving an initial value problem, the initial conditions are imposed
as a last step, step 4.

Introduction to the Method of Undetermined Coefficients
Consider the nonhomogeneous differential equation

ay′′ + by′ + cy = g(t), (2)

where a, b, and c are constants. You will see that we can guess the form of
a particular solution for certain types of functions g(t). Example 1 introduces
some of the main ideas.
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E X A M P L E

1 Find the general solution of the nonhomogeneous equation

y′′ − y′ − 2y = 8e3t.

Solution: We always begin by finding the complementary solution, yC. The
characteristic polynomial for y′′ − y′ − 2y = 0 is λ2 − λ − 2 = (λ + 1)(λ − 2).
Therefore, the complementary solution is

yC(t) = c1e
−t + c2e

2t.

We now look for a particular solution, a function yP(t) such that

y′′
P − y′

P − 2yP = 8e3t. (3)

Since all derivatives of y = e3t are again multiples of e3t, it seems reasonable
that a particular solution might have the form

yP = Ae3t,

where A is a coefficient to be determined. Inserting yP = Ae3t into equation (3),
we obtain

9Ae3t − 3Ae3t − 2(Ae3t) = 8e3t.

Collecting terms on the left-hand side yields 4Ae3t = 8e3t. Therefore, A = 2, and
yP(t) = 2e3t is a particular solution of the nonhomogeneous equation.

Having the complementary solution yC and a particular solution yP, we
form the general solution of the nonhomogeneous equation

y(t) = yC(t) + yP(t) = c1e
−t + c2e

2t + 2e3t. ❖

Example 1 suggests a reasonable approach to finding a particular solution,
yP. If the right-hand side of nonhomogeneous equation (2) is of a certain special
type, then it might be possible to guess an appropriate form for yP. The method
of undetermined coefficients amounts to a recipe for choosing the form of yP.
This recipe involves unknown (or undetermined) coefficients that must be eval-
uated by inserting the form, yP, into the differential equation. (The role that the
complementary solution plays in this process will be clarified shortly.)

Trial Forms for the Particular Solution
The method of undetermined coefficients can be applied to differential equa-
tions of the form

ay′′ + by′ + cy = g(t),

where a, b, and c are constants and where the nonhomogeneous term g(t) is one
of several possible types. It’s important to understand what types of functions
g(t) are suitable and why. To gain insight, we start with some examples.

The first few examples will treat, for various right sides g(t), the differential
equation

y′′ − y′ − 2y = g(t). (4)
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Equation (4) with g(t) = 8e3t was discussed in Example 1; the complementary
solution of (4) is

yC(t) = c1e
−t + c2e

2t.

E X A M P L E

2 Find the general solution of

y′′ − y′ − 2y = 4t2.

Solution: We already know the complementary solution from Example 1.
Therefore, we can form the general solution after finding a particular solution.

Following the approach taken in Example 1, we are tempted to look for a
solution of the form

yP(t) = At2,

where A is an unknown (undetermined) coefficient. The guess yP(t) = At2, how-
ever, does not work because forming the first and second derivatives of t2 gener-
ates multiples of some new functions, t and 1. In particular, this guess leads to
a contradiction when the trial form yP(t) = At2 is inserted into the differential
equation.

Instead, we assume a particular solution of the form

yP(t) = At2 + Bt+ C,

where the constants A, B, and C must be chosen so that

y′′
P − y′

P − 2yP = 4t2.

Substituting yP, we obtain the condition

(2A) − (2At+ B) − 2(At2 + Bt+ C) = 4t2

or, after collecting terms,

−2At2 − (2A+ 2B)t+ (2A− B− 2C) = 4t2. (5)

This equality must hold for all t in the interval of interest. Therefore, the co-
efficients of t2, t, and 1 on the left-hand side of this equation must equal their
counterparts on the right-hand side. We obtain the following three equations
for the three unknown coefficients A, B, and C.

−2A = 4
−2A − 2B = 0
2A − B − 2C = 0.

(6)

The solution of this system is A = −2, B = 2, C = −3. Therefore, a particular
solution is given by

yP(t) = −2t2 + 2t− 3.

The desired general solution is y(t) = yC(t) + yP(t), or

y(t) = c1e
−t + c2e

2t − 2t2 + 2t− 3. ❖
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REMARKS ABOUT EXAMPLE 2:

1. In retrospect, it is clear why our first guess, yP(t) = At2, failed. Substi-
tution into the nonhomogeneous equation leads [see system (6)] to the
contradictory constraints −2A = 4, −2A = 0,2A = 0. The emergence of
such contradictions is a clear indicator that the assumed form for the
particular solution is incorrect.

2. The assumed form yP(t) = At2 + Bt+ C of the particular solution is ap-
propriate because of another fact that we did not mention—none of the
functions 1, t, or t2 is a part of the complementary solution, yC. If one of
these functions had been part of the complementary solution, then (see
Examples 4 and 5) our guess would have failed.

E X A M P L E

3 Find the general solution of

y′′ − y′ − 2y = −20 sin 2t.

Solution: The complementary solution is

yC(t) = c1e
−t + c2e

2t.

In choosing a guess for the particular solution, we observe that differentiation
of the right-hand side,

g(t) = −20 sin 2t,
produces a multiple of cos 2t but that continued differentiation of the set of
functions {sin 2t, cos 2t} simply producesmultiples of the functions in the set. In
addition, neither of the functions sin 2t or cos 2t appears as part of the comple-
mentary solution. Therefore, we choose the following trial form for a particular
solution:

yP(t) = A sin 2t+ B cos 2t.

Substituting the trial form yP(t) = A sin 2t+ B cos 2t, we obtain

y′′
P − y′

P − 2yP = −20 sin 2t,
or

(−4A sin 2t−4B cos 2t)− (2A cos 2t−2B sin 2t)−2(A sin 2t+B cos 2t)= −20 sin 2t.
Collecting like terms reduces this equation to

(−6A+ 2B) sin 2t− (2A+ 6B) cos 2t = −20 sin 2t.
Since this equation must hold for all t in the interval of interest, it follows that

−6A+ 2B = −20
−2A− 6B = 0.

The solution of this system is A = 3 and B = −1, leading to a particular solution
yP(t) = 3 sin 2t− cos 2t

and the general solution

y(t) = c1e
−t + c2e

2t + 3 sin 2t− cos 2t. ❖
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Our next two examples illustrate how the trial form for yP must be modi-
fied if portions of g(t) or derivatives of g(t) are present in the complementary
solution.

E X A M P L E

4 Find the general solution of

y′′ − y′ − 2y = 4e−t.

Solution: In this case, we observe that the function e−t is a solution of the ho-
mogeneous equation. To illustrate that the trial form yP(t) = Ae−t is not correct,
we substitute it into the differential equation, obtaining

Ae−t − (−Ae−t) − 2Ae−t = 4e−t,

or

0Ae−t = 4e−t.

Since the condition 0A = 4 cannot hold for any value A, the assumed form of
the trial solution is not correct.

We obtain the correct form for a particular solution of y′′ − y′ − 2y = 4e−t

if we multiply e−t by t—that is, if we assume a trial solution of the form

yP(t) = Ate−t. (7)

At first glance, it may seem surprising that this form is correct. Nevertheless,
when we substitute yP(t) = Ate−t, we obtain

(Ate−t − 2Ae−t) − (−Ate−t + Ae−t) − 2Ate−t = 4e−t, (8)

or

−3Ae−t = 4e−t.

This equation is satisfied by choosing A = − 4
3 , leading to a particular solution

yP(t) = − 4
3 te

−t

and the general solution

y(t) = yC(t) + yP(t) = c1e
−t + c2e

2t − 4
3 te

−t. ❖

REMARK: In retrospect, it should be clear why the te−t terms vanish on the
left-hand side of equation (8). After yP(t) = Ate−t is substituted into the dif-
ferential equation, the terms that survive as te−t terms are precisely those in
which differentiation under the product rule has acted on the e−t factor and
not on the t factor. Such terms ultimately vanish because e−t is a solution of the
homogeneous equation.

E X A M P L E

5 Find the general solution of

y′′ + 2y′ + y = 2e−t.

Solution: For this problem, the homogeneous equation has characteristic
equation λ2 + 2λ + 1 = (λ + 1)2 = 0. We obtain two real repeated roots,
λ1 = λ2 = −1, and the complementary solution is

yC(t) = c1e
−t + c2te

−t.
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It’s clear that a guess of the form

yP(t) = Ae−t

will not be the appropriate form for a particular solution, because e−t is a
solution of the homogeneous equation. A guess of the form yP(t) = Ate−t will
fail for the same reason. It’s perhaps not surprising that a guess of the form

yP(t) = At2e−t

does work. Substituting this form of the trial solution leads to

(At2e−t − 4Ate−t + 2Ae−t) + 2(−At2e−t + 2Ate−t) + At2e−t = 2e−t.

Simplifying, we obtain

2Ae−t = 2e−t,

so 2A = 2 and hence yP(t) = t2e−t. The general solution is

y(t) = c1e
−t + c2te

−t + t2e−t. ❖

A Table Summarizing the Method
of Undetermined Coefficients
We summarize the method of undetermined coefficients in Table 3.1. The
method applies to the nonhomogeneous linear differential equation

ay′′ + by′ + cy = g(t),

where a, b, and c are constants and g(t) has one of the forms listed on the left-
hand side of the table. The corresponding form to assume for the particular
solution is listed on the right-hand side of the table. The forms listed in Table 3.1
will work; that is, they will always yield a particular solution. In the Exercises,
we ask you to solve problems using Table 3.1. The role of the factor tr in the

TA B L E 3 . 1

The right-hand column gives the proper form to assume for a particular solution of
ay ′′ + by ′ + cy = g(t). In the right-hand column, choose r to be the smallest nonnegative integer such
that no term in the assumed form is a solution of the homogeneous equation ay ′′ + by ′ + cy = 0. The
value of r will be 0, 1, or 2.

Form of g(t) Form to Assume for a Particular Solution yP(t)

ant
n + · · · + a1t+ a0 tr[Antn + · · · + A1t+ A0]

[antn + · · · + a1t+ a0]eαt tr[Antn + · · · + A1t+ A0]eαt

[antn + · · · + a1t+ a0] sinβt

or

[ant
n + · · · + a1t+ a0] cosβt

⎫⎪⎬
⎪⎭ tr[(Antn + · · · + A1t+ A0) sinβt+ (Bnt

n + · · · + B1t+ B0) cosβt]

eαt sinβt or eαt cosβt tr[Aeαt sinβt+ Beαt cosβt]
eαt[antn + · · · + a0] sinβt

or

eαt[antn + · · · + a0] cosβt

⎫⎪⎬
⎪⎭ tr[(Antn + · · · + A0)e

αt sinβt+ (Bnt
n + · · · + B0)e

αt cosβt]
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right-hand column of Table 3.1 is to ensure that no term in the assumed form
for yP is present in the complementary solution. You need to choose the proper
value for r; the procedure for doing so is described in the table.

E X A M P L E

6 Using Table 3.1, choose an appropriate form for a particular solution of

(a) y′′ + 4y = t2e3t (b) y′′ + 4y = te2t cos t

(c) y′′ + 4y = 2t2 + 5 sin 2t+ e3t (d) y′′ + 4y = t2 cos 2t

Solution: We note first that the complementary solution for each of parts
(a)–(d) is

yC(t) = c1 sin 2t+ c2 cos 2t.

(a) For g(t) = t2e3t, Table 3.1 specifies yP(t) = tr[A2t2 + A1t+ A0]e3t. If r = 0, no
term in the assumed form for yP is present in the complementary solution.
So the appropriate form for a trial particular solution is

yP(t) = [A2t2 + A1t+ A0]e3t.
(b) For g(t) = te2t cos t, the specified form is

yP(t) = tr[(A1t+ A0)e
2t sin t+ (B1t+ B0)e

2t cos t].
If r = 0, no term in the assumed form for yP is present in the complementary
solution. So the appropriate form for a trial particular solution is

yP(t) = (A1t+ A0)e
2t sin t+ (B1t+ B0)e

2t cos t.

(c) Note that the nonhomogeneous term g(t) = 2t2 + 5 sin 2t+ e3t does not
match any of the forms listed in Table 3.1. However, we can use the super-
position principle described by Theorem 3.4. Suppose u(t) is a particular
solution of

y′′ + 4y = 2t2,

v(t) is a particular solution of

y′′ + 4y = 5 sin 2t,

and w(t) is a particular solution of

y′′ + 4y = e3t.

By Theorem 3.4, yP(t) = u(t) + v(t) +w(t) is a particular solution of

y′′ + 4y = 2t2 + 5 sin 2t+ e3t. (9)

To determine the individual particular solutions u(t), v(t), and w(t), we
turn to Table 3.1 to find suitable trial forms. In particular, an appropriate
trial form for y′′ + 4y = 2t2 is u(t) = A2t

2 + A1t+ A0. A suitable trial form for
y′′ + 4y = 5 sin 2t is the function v(t) = B0t cos 2t+ C0t sin 2t and a suitable
trial form for y′′ + 4y = e3t is w(t) = D0e

3t. (In the first and last cases, r = 0.
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In the second case, r = 1.) Therefore,

yP(t) = A2t
2 + A1t+ A0 + B0t cos 2t+ C0t sin 2t+D0e

3t.

(d) For g(t) = t2 cos 2t, Table 3.1 prescribes the form

yP(t) = tr[(A2t2 + A1t+ A0) sin 2t+ (B2t
2 + B1t+ B0) cos 2t].

If we set r = 0, the assumed form for yP(t) will contain two terms, A0 sin 2t
and B0 cos 2t, that are solutions of the homogeneous equation. Therefore,
r cannot be zero. With r = 1, we see that no term in the assumed form is a
solution of the homogeneous equation. Therefore, the appropriate form is

yP(t) = t[(A2t2 + A1t+ A0) sin 2t+ (B2t
2 + B1t+ B0) cos 2t]

= (A2t
3 + A1t

2 + A0t) sin 2t+ (B2t
3 + B1t

2 + B0t) cos 2t. ❖

Although we presented Table 3.1 in the context of discussing nonhomo-
geneous constant coefficient second order linear differential equations, the
method of undetermined coefficients is not restricted to second order equa-
tions; the ideas extend naturally to nonhomogeneous constant coefficient linear
equations of order higher than two.

E X E R C I S E S

Exercises 1–15:

For the given differential equation,

(a) Determine the complementary solution.

(b) Use the method of undetermined coefficients to find a particular solution.

(c) Form the general solution.

1. y′′ − 4y = 4t2 2. y′′ − 4y = sin 2t 3. y′′ + y = 8et

4. y′′ + y = et sin t 5. y′′ − 4y′ + 4y = e2t 6. y′′ − 4y′ + 4y = 8+ sin 2t

7. y′′ + 2y′ + 2y = t3 8. 2y′′ − 5y′ + 2y = tet 9. y′′ + 2y′ + 2y = cos t+ e−t

10. y′′ + y′ = 6t2 11. 2y′′ − 5y′ + 2y = −6et/2
12. y′′ + y′ = cos t 13. 9y′′ − 6y′ + y = 9tet/3

14. y′′ + 4y′ + 5y = 5t+ e−t 15. y′′ + 4y′ + 5y = 2e−2t + cos t

Exercises 16–22:

For the given differential equation,

(a) Determine the complementary solution.

(b) List the form of particular solution prescribed by the method of undetermined co-
efficients; you need not evaluate the constants in the assumed form. [Hint: In Exer-
cises 20 and 22, rewrite the hyperbolic functions in terms of exponential functions.
In Exercise 21, use trigonometric identities.]

16. y′′ − 2y′ − 3y = 2e−t cos t+ t2 + te3t 17. y′′ + 9y = t2 cos 3t+ 4 sin t

18. y′′ − y′ = t2(2+ et) 19. y′′ − 2y′ + 2y = e−t sin 2t+ 2t+ te−t sin t

20. y′′ − y = cosh t+ sinh 2t 21. y′′ + 4y = sin t cos t+ cos2 2t

22. y′′ + 4y = 2 sinh t cosh t+ cosh2t
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Exercises 23–27:

Consider the differential equation y′′ + αy′ + βy = g(t). In each exercise, the complemen-
tary solution, yC(t), and nonhomogeneous term, g(t), are given. Determine α and β and
then find the general solution of the differential equation.

23. yC(t) = c1e
−t + c2e

2t, g(t) = 4t

24. yC(t) = c1 + c2e
−t, g(t) = t

25. yC(t) = c1e
−2t + c2te

−2t, g(t) = 5 sin t

26. yC(t) = c1 cos t+ c2 sin t, g(t) = t+ sin 2t

27. yC(t) = c1e
−t cos 2t+ c2e

−t sin 2t, g(t) = 8e−t

Exercises 28–30:

Consider the differential equation y′′ + αy′ + βy = g(t). In each exercise, the nonhomo-
geneous term, g(t), and the form of the particular solution prescribed by the method of
undetermined coefficients are given. Determine the constants α and β.

28. g(t) = t+ e3t, yP(t) = A1t
2 + A0t+ B0te

3t

29. g(t) = 3e2t − e−2t + t, yP(t) = A0te
2t + B0te

−2t + C1t+ C0
30. g(t) = −et + sin 2t+ et sin 2t,

yP(t) = A0e
t + B0t cos 2t+ C0t sin 2t+D0e

t cos 2t+ E0e
t sin 2t

31. Consider the initial value problem y′′ + 4y = e−t, y(0) = y0, y
′(0) = y′

0. Suppose we
know that y(t) → 0 as t → ∞. Determine the initial conditions y0 and y

′
0 as well as

the solution y(t).

32. Consider the initial value problem y′′ − 4y = e−t, y(0) = 1, y′(0) = y′
0. Suppose we

know that y(t) → 0 as t → ∞. Determine the initial condition y′
0 as well as the solu-

tion y(t).

33. Consider the initial value problem y′′ − y′ + 2y = 3, y(0) = y0, y
′(0) = y′

0. Suppose we
know that | y(t) | ≤ 2 for all t ≥ 0. Determine the initial conditions y0 and y

′
0 as well

as the solution y(t).

Exercises 34–36:

Consider the initial value problem y′′ + ω2y = g(t), y(0) = 0, y′(0) = 0, where ω is a real
nonnegative constant. For the given function g(t), determine the values of ω, if any, for
which the solution satisfies the constraint | y(t) | ≤ 2, 0 ≤ t < ∞.

34. g(t) = 1 35. g(t) = cos 2ωt 36. g(t) = sinωt

37. Each of the five graphs on the next page is the solution of one of the five differen-
tial equations listed. Each solution satisfies the initial conditions y(0) = 1, y′(0) = 0.
Match each graph with one of the differential equations.

(a) y′′ + 3y′ + 2y = sin t (b) y′′ + y = sin t (c) y′′ + y = sin
3t
2

(d) y′′ + 3y′ + 2y = et/10 (e) y′′ + y′ + y = sin
t
3

Complex-Valued Solutions Althoughwehave emphasized theneed to obtain real-valued,
physically relevant solutions to problems of interest, it is sometimes computationally
convenient to consider differential equations with complex-valued nonhomogeneous
terms. The corresponding particular solutions will then likewise be complex-valued
functions. Exercises 38 and 39 illustrate some aspects of this type of calculation. Exer-
cises 40–44 provide some additional examples.

38. Consider the differential equation y′′ + p(t)y′ + q(t)y = g1(t) + ig2(t), where p(t),
q(t), g1(t), and g2(t) are all real-valued functions continuous on some t-interval of
interest. Assume that yP(t) is a particular solution of this equation. Generally, yP(t)
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will be a complex-valued function. Let yP(t) = u(t) + iv(t), where u(t) and v(t) are
real-valued functions. Show that

u′′ + p(t)u′ + q(t)u = g1(t) and v′′ + p(t)v′ + q(t)v = g2(t).

That is, show that the real and imaginary parts of the complex-valued particular
solution, yP(t), are themselves particular solutions corresponding to the real and
imaginary parts of the complex-valued nonhomogeneous term, g(t).
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39. Consider the nonhomogeneous differential equation y′′ − y = ei2t. The complemen-
tary solution is yC = c1e

t + c2e
−t. Recall from Euler’s formula that ei2t = cos 2t+

i sin 2t. Therefore, the right-hand side is a (complex-valued) linear combination of
functions for which the method of undetermined coefficients is applicable.

(a) Assume a particular solution of the form yP = Aei2t, where A is an undetermined
(generally complex) coefficient. Substitute this trial form into the differential equa-
tion and determine the constant A.

(b) With the constant A as determined in part (a), write yP(t) = Aei2t in the form
yP(t) = u(t) + iv(t), where u(t) and v(t) are real-valued functions.

(c) Show that u(t) and v(t) are themselves particular solutions of the following
differential equations:

u′′ − u = Re[ei2t] = cos 2t and v′′ − v = Im[ei2t] = sin 2t.

Therefore, the single computation with the complex-valued nonhomogeneous term
yields particular solutions of the differential equation for the two real-valued non-
homogeneous terms forming its real and imaginary parts.

Exercises 40–44:

For each exercise,

(a) Use the indicated trial form for yP(t) to obtain a (complex-valued) particular solution
for the given differential equation with complex-valued nonhomogeneous term g(t).

(b) Write yP(t) as yP(t) = u(t) + iv(t), where u(t) and v(t) are real-valued functions. Show
that u(t) and v(t) are particular solutions of the given differential equation with
nonhomogeneous terms Re[g(t)] and Im[g(t)], respectively.

40. y′′ + 2y′ + y = eit, yP(t) = Aeit 41. y′′ + 4y = eit, yP(t) = Aeit

42. y′′ + 4y = ei2t, yP(t) = Atei2t 43. y′′ + y′ = e−i2t, yP(t) = Ae−i2t

44. y′′ + y = e(1+i)t, yP(t) = Ae(1+i)t

3.9 The Method of Variation of Parameters
Section 3.8 discussed the method of undetermined coefficients as a technique
for finding a particular solution of the constant coefficient equation

ay′′ + by′ + cy = g(t). (1)

The method of undetermined coefficients can be applied to equation (1) as
long as the nonhomogeneous term, g(t), is one of the types listed in Table 3.1
of Section 3.8 or is a linear combination of types listed in the table.

In this section, we consider the general linear second order nonhomoge-
neous differential equation

y′′ + p(t)y′ + q(t)y = g(t). (2)

Unlike in Section 3.8, we do not insist that this differential equation have con-
stant coefficients or that g(t) belong to some special class of functions. The only
restriction we place on differential equation (2) is that the functions p(t), q(t),
and g(t) be continuous on the t-interval of interest.

The technique we discuss, the method of variation of parameters, is one
that uses a knowledge of the complementary solution of (2) to construct a
corresponding particular solution.
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Discussion of the Method
Assume that {y1(t), y2(t)} is a fundamental set of solutions of the homogeneous
equation y′′ + p(t)y′ + q(t)y = 0. In other words, the complementary solution is
given by

yC(t) = c1 y1(t) + c2 y2(t).

To obtain a particular solution of (2), we “vary the parameters.” That is, we
replace the constants c1 and c2 by functions u1(t) and u2(t) and look for a
particular solution of (2) having the form

yP(t) = y1(t)u1(t) + y2(t)u2(t). (3)

In (3), there are two functions, u1(t) and u2(t), that we are free to specify. One
obvious constraint on u1(t) and u2(t) is that they must be chosen so that yP is
a solution of nonhomogeneous equation (2). Generally speaking, however, two
constraints can be imposed when we want to determine two functions. We will
impose a second constraint as we proceed, choosing it so as to simplify the
calculations.

Substituting (3) into the left-hand side of equation (2) requires us to com-
pute the first and second derivatives of (3). Computing the first derivative leads
to

y′
P = [y′

1u1 + y′
2u2] + [y1u′

1 + y2u
′
2].

The grouping of terms in this equation is motivated by the fact that we now
impose a constraint on the functions u1(t) and u2(t). We require

y1u
′
1 + y2u

′
2 = 0. (4)

With this constraint, the derivative of yP becomes

y′
P = y′

1u1 + y′
2u2, (5)

while y′′
P is

y′′
P = y′′

1u1 + y′′
2u2 + y′

1u
′
1 + y′

2u
′
2. (6)

Notice that the first and second derivatives of yP have been simplified and y
′′
P

does not involve u′′
1 or u

′′
2.

Inserting yP = y1u1 + y2u2 into the differential equation y′′ + p(t)y′ +
q(t)y = g(t) and using (5) and (6), we find

[y′′
1u1 + y′′

2u2 + y′
1u

′
1 + y′

2u
′
2] + p(t)[y′

1u1 + y′
2u2] + q(t)[y1u1 + y2u2] = g(t).

Rearranging terms yields

[y′′
1 + p(t)y′

1 + q(t)y1]u1 + [y′′
2 + p(t)y′

2 + q(t)y2]u2 + [y′
1u

′
1 + y′

2u
′
2] = g(t). (7)

Since y1 and y2 are solutions of y
′′ + p(t)y′ + q(t)y = 0, equation (7) reduces to

y′
1u

′
1 + y′

2u
′
2 = g(t). (8)

We therefore obtain two constraints, equations (4) and (8), for the twounknown
functions u′

1(t) and u
′
2(t). We can combine these two equations into the matrix

equation [
y1(t) y2(t)

y′
1(t) y′

2(t)

][
u′
1(t)

u′
2(t)

]
=
[
0

g(t)

]
. (9)
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If the (2× 2) coefficient matrix has an inverse, then we can solve equation (9)
for the unknowns u′

1(t) and u
′
2(t). Once they are determined, we can find u1(t)

and u2(t) by computing antiderivatives.
The coefficient matrix in equation (9) is invertible if and only if its deter-

minant is nonzero. Note, however, that the determinant of this matrix is the
Wronskian of the functions y1 and y2,

W(t) = y1(t)y
′
2(t) − y′

1(t)y2(t).

Since {y1(t), y2(t)} is a fundamental set of solutions, we are assured that the
Wronskian is nonzero for all values of t in our interval of interest. Solving
equation (9) for u′

1 and u
′
2 gives[

u′
1(t)

u′
2(t)

]
= 1
W(t)

[
y′
2(t) −y2(t)

−y′
1(t) y1(t)

][
0

g(t)

]
,

or

u′
1(t) = −y2(t)g(t)

W(t)
and u′

2(t) = y1(t)g(t)
W(t)

.

Antidifferentiating to obtain u1(t) and u2(t), we have a particular solution,

yP(t) = y1(t)u1(t) + y2(t)u2(t).

Explicitly, the particular solution we have obtained is

yP(t) = −y1(t)
∫

y2(s)g(s)
W(s)

ds+ y2(t)
∫

y1(s)g(s)
W(s)

ds. (10)

Once we calculate the two antiderivatives in equation (10), we will have deter-
mined a particular function that solves the nonhomogeneous equation (2).

E X A M P L E

1 Find the general solution of the differential equation

y′′ − 2y′ + y = et ln t, t > 0. (11)

Solution: Note that the nonhomogeneous term, g(t) = et ln t, does not appear
in Table 3.1 as a candidate for the method of undetermined coefficients. Since
the method of undetermined coefficients is not applicable, we turn to the
method of variation of parameters.

For equation (11), the complementary solution is

yC(t) = c1y1(t) + c2y2(t) = c1e
t + c2te

t.

Using variation of parameters to find a particular solution, we assume

yP(t) = etu1(t) + tetu2(t).

Substituting this expression into the nonhomogeneous differential equa-
tion (11) and applying the constraint from equation (4), etu′

1(t) + tetu′
2(t) = 0,

we obtain [
et tet

et et + tet

][
u′
1(t)

u′
2(t)

]
=
[

0

et ln t

]
.
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The determinant of the coefficient matrix is W(t) = e2t. Solving this matrix
equation gives [

u′
1(t)

u′
2(t)

]
=
[
−t ln t

ln t

]
.

Computing antiderivatives yields

u1(t) =
∫
u′
1(t)dt = −

∫
t ln t dt = − t2

2
ln t+ t2

4
+ K1

and

u2(t) =
∫
u′
2(t)dt =

∫
ln t dt = t ln t− t+ K2.

We can choose the constants of integration to suit our convenience because all
we need is some particular solution, yP = y1u1 + y2u2. For convenience, we set
both K1 and K2 equal to zero and obtain

yP(t) = et
[
− t2

2
ln t+ t2

4

]
+ tet[t ln t− t]

= t2et

2

[
ln t− 3

2

]
.

The general solution of equation (11) is, therefore,

y(t) = c1e
t + c2te

t + t2et

2

[
ln t− 3

2

]
. ❖

E X A M P L E

2 Observe that y1(t) = t is a solution of the homogeneous equation

t2y′′ − ty′ + y = 0, t > 0.

Use this observation to solve the nonhomogeneous initial value problem

t2y′′ − ty′ + y = t, y(1) = 1, y′(1) = 4.

Solution: The first step in finding the general solution of the nonhomogeneous
equation is determining a fundamental set of solutions {y1, y2}. Thus, we need
to find a second solution, y2(t), to go along with the given solution, y1(t) = t.

The method of reduction of order, described in Section 3.4, can be used. It
leads to a second solution,

y2(t) = t ln t.

The functions t and t ln t can be shown to form a fundamental set of solutions
for the homogeneous equation. Therefore, the complementary solution of the
nonhomogeneous equation is

yC(t) = c1t+ c2t ln t, t > 0.

Since the differential equation has variable coefficients, we cannot use the
method of undetermined coefficients to find a particular solution. Instead, we

(continued)
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(continued)

use the method of variation of parameters. Assume a particular solution of the
form

yP(t) = tu1(t) + [t ln t]u2(t).
The simplest approach is to substitute this form into the given nonhomoge-
neous differential equation to determine one equation for u′

1 and u
′
2, then use

the constraint

tu′
1(t) + [t ln t]u′

2(t) = 0

to form a second equation for u′
1 and u

′
2.

As an alternative, we could go directly to equation (9) or equation (10) to
determine a particular solution. If we proceed in this fashion, however, we have
to make certain that the nonhomogeneous equation under consideration is in
the standard form given by equation (2). Since the differential equation in this
example does not have this form, we need to rewrite it as

y′′ − 1
t
y′ + 1

t2
y = 1

t
.

Doing so, we can identify the term g(t) in equations (9) and (10), g(t) = 1/t.
Both approaches lead to the following system of equations for u′

1 and u
′
2:[

t t ln t

1 1+ ln t

][
u′
1

u′
2

]
=
⎡
⎣01
t

⎤
⎦ .

Solving this system, we obtain[
u′
1

u′
2

]
=
[
−t−1 ln t

t−1

]
.

Computing antiderivatives yields

u1(t) = −
∫
1
t
ln t dt = − (ln t)2

2
+ K1,

u2(t) =
∫
1
t
dt = ln t+ K2.

We can set both of the arbitrary constants equal to zero, obtaining a particular
solution

yP(t) = t

[
− (ln t)2

2

]
+ [t ln t] ln t = t

2
(ln t)2.

The general solution of the nonhomogeneous equation is therefore

y(t) = c1t+ c2t ln t+
t
2

(ln t)2, t > 0.

Imposing the initial conditions shows that the solution of the initial value prob-
lem is

y(t) = t+ 3t ln t+ t
2

(ln t)2, t > 0. ❖
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Figure 3.13 displays the graphof the solution y(t). Note that lim t→0
+ y(t) = 0.

The solution is well behaved near t = 0, even though the differential equation
has coefficient functions that are not defined at t = 0.
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FIGURE 3.13

The solution of the initial value problem in Example 2. Even though some
of the coefficient functions are not defined at t = 0, the solution y(t) has a
limit as t approaches 0 from the right.

E X E R C I S E S

Exercises 1–14:

For the given differential equation,

(a) Determine the complementary solution, yC(t) = c1y1(t) + c2 y2(t).

(b) Use the method of variation of parameters to construct a particular solution. Then
form the general solution.

1. y′′ + 4y = 4 2. y′′ + y = sec t, −π/2 < t < π/2

3. y′′ − [2+(1/t)]y′ +[1+(1/t)]y = tet, 0 < t < ∞. [The functions y1(t) = et and y2(t) =
t2et are solutions of the homogeneous equation.]

4. y′′ − y = 1

1+ et
5. y′′ − y = et

6. y′′ − (2/t)y′ + (2/t2)y = t/(1+ t2), 0 < t < ∞. [The function y1(t) = t2 is a solution
of the homogeneous equation.]

7. y′′ − 2y′ + y = et 8. y′′ + 36y = csc3(6t)

9. y′′ − (2 cot t)y′ + (2 csc2 t− 1)y = t sin t, 0 < t < π . [The functions y1(t) = sin t and
y2(t) = t sin t are both solutions of the homogeneous equation.]

10. t2y′′ − ty′ + y = t ln t, 0 < t < ∞. [The functions y1(t) = t and y2(t) = t ln t are both
solutions of the homogeneous equation.]

11. y′′ + [t/(1− t)]y′ − [1/(1− t)]y = (t− 1)et,1 < t < ∞. [The functions y1(t) = t and
y2(t) = et are both solutions of the homogeneous equation.]

12. y′′ + 4ty′ + (2+ 4t2)y = t2e−t2 . [The functions y1(t) = e−t2 and y2(t) = te−t2 are both
solutions of the homogeneous equation.]
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13. (t− 1)2y′′ − 4(t− 1)y′ + 6y = t, 1 < t < ∞. [The function y1(t) = (t− 1)2 is a solu-
tion of the homogeneous equation.]

14. y′′ − [2+ (2/t)]y′ + [1+ (2/t)]y = et, 0 < t < ∞. [The function y1(t) = et is a solu-
tion of the homogeneous equation.]

15. Consider the homogeneous differential equation y′′ + p(t)y′ + q(t)y = g(t). Let
{y1, y2} be a fundamental set of solutions for the corresponding homogeneous equa-
tion, and let W(t) denote the Wronskian of this fundamental set. Show that the
particular solution that vanishes at t = t0 is given by

yP(t) =
∫ t

t0

[y1(t)y2(λ) − y2(t)y1(λ)] g(λ)

W(λ)
dλ.

Exercises 16–18:

The given expression is the solution of the initial value problem

y′′ + αy′ + βy = g(t), y(0) = y0, y′(0) = y′
0.

Determine the constants α, β, y0, and y
′
0.

16. y(t) = 1
2

∫ t

0
sin[2(t− λ)]g(λ)dλ

17. y(t) = e−t +
∫ t

0

et−λ − e−(t−λ)

2
g(λ)dλ = e−t +

∫ t

0
sinh(t− λ)g(λ)dλ

18. y(t) = t+
∫ t

0
(t− λ)g(λ)dλ

3.10 Forced Mechanical Vibrations, Electrical
Networks, and Resonance

In this section, we use what we know about solving nonhomogeneous second
order linear differential equations to study the behavior of mechanical systems
(such as floating objects and spring-mass-dashpot systems) that are subjected
to externally applied forces.

We also consider simple electrical networks containing resistors, inductors,
and capacitors (called RLC networks) that are driven by voltage and current
sources. All of these applications ultimately give rise to the same mathematical
problem. And, as we shall see, the physical phenomenon of resonance is an
important consideration common to all of these applications.

Forced Mechanical Vibrations

A Buoyant Body Consider again the problem of the buoyant body discussed
in Section 3.1. (See Figure 3.1.) A cylindrical block of cross-sectional area A,
height L, and mass density ρ is placed in a liquid having mass density ρl. Since
we assume ρ < ρl, the block floats in the liquid. In equilibrium, it sinks a depth
Y into the liquid; at this depth, the weight of the block equals the weight of
the liquid displaced. The quantity y(t) represents the instantaneous vertical
displacement of the block from its equilibrium position, measured positive
downward. Suppose now that an externally applied vertical force, Fa(t), acts
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on the buoyant body. Newton’s second law of motion ultimately leads to a
nonhomogeneous differential equation for the displacement y(t):

d2y

dt2
+ ρlg

ρL
y = 1

ρAL
Fa(t). (1)

In equation (1), g denotes gravitational acceleration and the term ρAL is the
block’s mass. Defining a radian frequency, ω0 = √

ρlg/ρL, and a force per unit
mass, fa(t) = (1/ρAL)Fa(t), we can rewrite equation (1) as

y′′ + ω20 y = fa(t). (2)

Equation (2) is a second order constant coefficient linear nonhomogeneous
differential equation. To uniquely prescribe the bobbing motion of the floating
body, we would add initial conditions that specify the initial displacement,
y(t0) = y0, and the initial velocity, y

′(t0) = y′
0, of the block.

A Spring-Mass-Dashpot System As in Section 3.6, we can use Newton’s second
law of motion to derive a nonhomogenous differential equation for the dis-
placement of a mass suspended from a spring-dashpot connection and acted
upon by an applied force. The resulting differential equation is

my′′ + γ y′ + ky = Fa(t), (3)

where Fa(t) denotes an applied vertical force. The positive constantsm, γ , and
k represent the mass, damping coefficient, and spring constant of the system,
respectively. The dependent variable y(t) measures downward displacement
from the equilibrium rest position. (See Figure 3.8.)

If there is no damping (that is, if γ = 0) and if we define radian frequency
ω0 = √

k/m and force per unit mass fa(t) = (1/m)Fa(t), equation (3) can be
rewritten as

y′′ + ω20 y = fa(t). (4)

Note that equation (4), describing a spring-mass system, is identical in structure
to equation (2), which describes the bobbing motion of a buoyant body. Both
applications lead to the same mathematical problem. As we shall see shortly,
other applications (such as RLC networks) also lead to differential equations
having exactly the same structure as equations (2) and (3). Since these applica-
tions all lead to the same mathematical problem, we will discuss equations (2)
and (3) in their own right rather than investigate each application separately.
The Exercises focus on specific applications.

Oscillatory Applied Forces and Resonance
Examples 1 and 2 concern an important special case of equation (2) where the
applied force is a sinusoidally varying force,

fa(t) = F cosω1t,

where F is a constant. For simplicity, we assume the system is initially at rest in
equilibrium. Thus, for the special case under consideration, the corresponding
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initial value problem is

y′′ + ω20 y = F cosω1t, t > 0,

y(0) = 0, y′(0) = 0.
(5)

The complementary solution of (5) is

yC(t) = c1 sinω0t+ c2 cosω0t. (6)

In order to find a particular solution, we need to consider two separate cases,
ω1 �= ω0 and ω1 = ω0. From amathematical perspective, themethod of undeter-
mined coefficients discussed in Section 3.8 leads us to expect two different types
of particular solutions. If ω1 �= ω0, the nonhomogeneous term, g(t) = F cosω1t,
is not a solution of the homogeneous equation; when ω1 = ω0, g(t) is a solution
of the homogeneous equation.

This mathematical perspective is consistent with the physics of the prob-
lem. We should expect different behavior on purely physical grounds. Radian
frequency ω0 (or, more properly, f0 = ω0/2π) is called the natural frequency
of the vibrating system. It represents the frequency at which the system would
vibrate if no applied force were present and the system were merely respond-
ing to some initial disturbance. The applied force acts on the system with its
own applied frequency ω1. In the special case where the natural and applied
frequencies are equal, the applied force pushes and pulls on the system with a
frequency precisely equal to that at which the system tends naturally to vibrate.
This precise reinforcement leads to the phenomenon of resonance. For this
reason, the natural frequency of the system is also referred to as its resonant
frequency.

E X A M P L E

1 Assume ω1 �= ω0. Solve the initial value problem (5).

Solution: Since ω1 �= ω0, Table 3.1 in Section 3.8 suggests a particular solution
of the form

yP(t) = A cosω1t+ B sinω1t.

Substituting this form into the nonhomogeneous equation, we obtain (see Ex-
ercise 1)

yP(t) = − F

ω21 − ω20
cosω1t.

Imposing the initial conditions on the general solution

y(t) = c1 sinω0t+ c2 cosω0t−
F

ω21 − ω20
cosω1t,

we obtain the solution of initial value problem (5),

y(t) = F

ω21 − ω20
[cosω0t− cosω1t]. (7)

Figure 3.14 shows solution (7) for the special case where ω1 = 12π s−1,
ω0 = 10π s−1, and F is chosen so that F/(ω21 − ω20) = 2 cm. The example there-
fore assumes that the natural frequency of the system is 5 Hz while the applied
frequency is 6 Hz. (For definiteness, the unit of length is chosen to be the cen-
timeter.)
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FIGURE 3.14

The solution of initial value problem (5), as given by equation (7). For the
case shown, ω1 = 12π, ω0 = 10π , and F = 2(ω2

1 − ω2
0).

We can better understand Figure 3.14, including the dashed envelope, if
we use trigonometric identities to recast equation (7). Suppose we define an
average radian frequency, ω, and a difference (or beat) radian frequency, β, by

ω = ω1 + ω0

2
, β = ω1 − ω0

2
.

With these definitions, we have ω1 = ω + β and ω0 = ω − β. Equation (7) be-
comes

y(t) = F
4ωβ

[cos(ωt− βt) − cos(ωt+ βt)].

Using the trigonometric identity cos(θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2, we
note that

cos(ωt− βt) − cos(ωt+ βt) = 2 sinωt sinβt.

Therefore, we obtain an alternative representation for the solution y(t):

y(t) = A(t) sinωt, (8)

where

A(t) = F sinβt
2ωβ

.

Using equation (8), we can interpret solution (7) as the product of a variable
amplitude term, A(t), and a sinusoidal term, sinωt. In cases where ω1 and ω0
are nearly equal, the amplitude term, whose behavior is governed by the factor
sinβt, is slowly varying relative to the sinusoidal term, sinωt (because |β| � ω).
The combination of these disparate rates of variation gives rise to the phe-
nomenon of “beats” seen in Figure 3.14.

Since ω = 11π s−1 and β = π s−1, sinβt = sinπt varies much more slowly
than sinωt = sin 11π t. The multiplicative factor

A(t) = F sinβt
2ωβ

= 4 sinπ t

(continued)
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(continued)

defines a slowly varying sinusoidal envelope for the more rapidly varying
sinωt = sin 11π t. The dashed envelope shown in Figure 3.14 is defined by the
graphs of y = ±4 sinπt. ❖

E X A M P L E

2 Assume ω1 = ω0. Solve initial value problem (5).

Solution: In this case,

y′′ + ω20 y = F cosω0t.

Since the functions cosω0t and sinω0t are both solutions of the homogeneous
equation, Table 3.1 of Section 3.8 prescribes a trial solution of the form

yP(t) = At cosω0t+ Bt sinω0t.

Substituting this form leads (see Exercise 1) to the particular solution

yP(t) = F
2ω0

t sinω0t

and the general solution

y(t) = c1 sinω0t+ c2 cosω0t+
F
2ω0

t sinω0t.

The initial conditions imply that c1 and c2 are zero. The solution of initial value
problem (5) is therefore

y(t) = F
2ω0

t sinω0t. (9)

Figure 3.15 shows solution (9) for the case

ω0 = 10π s−1 and
F
2ω0

= 4π cm/s.
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FIGURE 3.15

The solution of initial value problem (5) as given by equation (9). For the
case shown, ω0 = 10π and F = 8πω0. The solution envelope grows linearly
with time, illustrating the phenomenon of resonance.
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In this case, the applied force reinforces the natural frequency vibrations of the
mechanical system and the envelope of the solution (shown by the dashed lines
in Figure 3.15) grows linearly with time. This is the phenomenon of resonance.

Does the solution (9)make sense? The vibration amplitude of a real physical
system certainly does not continue to grow indefinitely. Therefore, one would
expect equation (9) to describe the behavior of a real system for a limited time
at best. Once the vibration amplitude becomes sufficiently large, the assump-
tions made in deriving the mathematical models cease to be valid. For exam-
ple, equation (3) and special case (4) for the spring-mass system assume the
validity of Hooke’s law.Whenmass displacement amplitude becomes too large,
however, the force-displacement relation becomes more complicated than the
simple linear relation embodied in Hooke’s law. ❖

REMARK: One property of a well-posed problem is continuous dependence
upon the data. Roughly speaking, if an initial value problem is to be a rea-
sonable model of reality, its solution should not change uncontrollably when a
parameter (such as a coefficient in the differential equation or an initial con-
dition) is changed slightly. Therefore, we might reasonably ask whether it is
possible to see resonant solution (9) emerge from nonresonant solution (7) or
(8) in the limit as ω1 → ω0. Note that (8) can be rewritten as

y(t) = F
2ω

t
(
sinβt

βt

)
sinωt. (10)

Suppose we fix t and let ω1 → ω0. Then, from their definitions, ω → ω0 and
β → 0. We know from calculus that

lim
x→0

sin x
x

= 1.

Therefore, for any fixed value of t, we do indeed obtain resonant solution (9)
from nonresonant expression (8) in the limit as ω1 → ω0.

The Effect of Damping on Resonance
There are no perpetual motion machines. All physical systems have at least
some small loss or damping present. Therefore, it is of interest to see what
happens if we add damping to an otherwise resonant system. Suppose we con-
sider the initial value problem

y′′ + 2δy′ + ω20 y = F cosω0t, y(0) = 0, y′(0) = 0, (11a)

where δ is a positive constant (the factor 2 is added for convenience). What
does the solution look like? In Exercise 11(a), you are asked to show that the
solution of this initial value problem is

y(t) = F
2δ

⎡
⎢⎢⎣sinω0t

ω0
−
e−δt sin

(√
ω20 − δ2 t

)
√

ω20 − δ2

⎤
⎥⎥⎦ . (11b)

[In (11), we tacitly assume that ω20 > δ2.] As a check, you can show [see Exercise
11(b)] that for any fixed t and ω0, expression (11b) reduces to (9) as δ → 0.

Equation (11b) shows the effect of damping on the otherwise resonant
system. If we fix δ at some positive value and let t → ∞, the second term in equa-
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tion (11b) tends to zero. Therefore, with the addition of damping, displacement
does not grow indefinitely, as it appears to in Figure 3.15. As time increases,
displacement approaches a steady-state behavior given by the first term,

F
2δω0

sinω0t.

As δ becomes smaller, the amplitude of these steady-state oscillations becomes
correspondingly larger. Figure 3.16 shows the variation of displacement for the
case

ω0 = 10π s−1,
F
2ω0

= 4π cm/s, δ = 0.5 s−1.
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FIGURE 3.16

The solution of y′′ + 2δy′ + ω2
0y = F cosω0t for the case ω0 = 10π,F = 8πω0,

and δ = 0.5. As you can see by comparing this graph with the resonant
solution graphed in Figure 3.15, the inclusion of damping eliminates the
unbounded linear growth in the solution envelope that characterizes the
resonant case. As noted, however, the steady-state oscillations,
(F/2δω0) sinω0t, have an amplitude proportional to δ−1.

Nonresonant Excitation with Damping Present
Suppose we now change the radian frequency of the applied force in the pre-
vious problem to ω1 �= ω0. In that case, the problem becomes

y′′ + 2δy′ + ω20 y = F cosω1t, y(0) = 0, y′(0) = 0. (12a)

This amounts to the addition of a damping force to the problem defined by
equation (5). Again assuming that ω20 > δ2, the solution of problem (12a) is

y(t) = F

(ω20 − ω21)
2 + (2δω1)

2 [(ω20 − ω21) cosω1t+ 2δω1 sinω1t]

− Fe−δ t

(ω20 − ω21)
2 + (2δω1)

2

[
(ω20 − ω21) cos

(√
ω20 − δ2 t

)

+ δ(ω20 + ω21)√
ω20 − δ2

sin
(√

ω20 − δ2 t
)⎤⎦.

(12b)
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This solution seems relatively complicated. However, two checks can be made.
At a fixed value of t, the solution should reduce to (11b) in the limit as ω1 → ω0.
Also, the solution should reduce to (7) if we fix ω1 but let δ → 0. Exercise 12
asks you not only to derive this solution, but also to make these checks upon
its correctness.

The second term in the solution of equation (12a) represents a transient
term, one that tends to zero as time increases. The first term is the steady-state
portion of the solution. Figure 3.17 shows the behavior of the solution for the
case where

ω0 = 10π s−1, ω1 = 12π s−1,
F
2ω0

= 4π cm/s, δ = 0.5 s−1.

Compare this behavior with that exhibited in Figures 3.14 and 3.16. When time
t is relatively small, before the effects of damping become pronounced, the so-
lution exhibits a difference frequency modulation envelope that is qualitatively
similar to the behavior shown in Figure 3.14. As time progresses, however,
damping eventually diminishes the second term in the solution to a negligibly
small contribution and the solution becomes essentially the steady-state por-
tion given by the first term. In this respect, the long-term behavior qualitatively
resembles the damping-perturbed resonant case exhibited in Figure 3.16.
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FIGURE 3.17

The solution of equation (12) for representative values of ω0, ω1,F, and δ.
Initially, for small values of t, damping is not significant and the motion is
similar to that shown in Figure 3.14, exhibiting beats. As t grows, damping
diminishes the second term in equation (12) and the motion has a period
similar to the applied force.

RLC Networks
We now consider networks containing resistors, inductors, and capacitors. The
application of Kirchhoff ’s7 voltage law and Kirchhoff ’s current law to these
networks leads us to second order differential equations.

7Gustav Robert Kirchhoff (1824–1887) was a German physicist whomade important contributions
to network theory, elasticity, and our understanding of blackbody radiation. A lunar crater is named
in his honor.
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Consider first the seriesRLCnetwork shown inFigure 3.18. A voltage source
VS(t) having the polarity shown is connected in series with circuit elements
having resistance R, inductance L, and capacitance C. A current I(t), assumed
positive in the sense shown, flows in the loop. In essence, Kirchhoff’s voltage
law asserts that the voltage at each point in the network is a well-defined single-
valued quantity. Therefore, as we make an excursion around the loop, the sum
of the voltage rises must equal the sum of the voltage drops. If we proceed
around the loop in Figure 3.18 in a clockwise manner, the voltage rise is the
source voltage VS(t), while the voltage drops are the drops across the three
circuit elements. The voltage drop across the resistor is I(t)R, the drop across
the inductor is L (dI/dt), and the drop across the capacitor is (1/C)Q(t), where
Q(t) represents the electric charge on the capacitor.

I(t)

VS(t)

LR

+

–
~ C

Voltage
source

FIGURE 3.18

A series RLC network, with voltage source VS(t) and loop current I(t).

An application of Kirchhoff’s voltage law therefore leads to the equation

VS(t) = RI + L
dI
dt

+ 1
C
Q(t). (13a)

To obtain a differential equation for a single dependent variable, we use the
fact that electric current is the rate of change of electric charge with respect to
time,

I(t) = dQ
dt

.

One approach is to rewrite equation (13a) as a second order differential equa-
tion for the electric charge, obtaining

L
d2Q

dt2
+ R

dQ
dt

+ 1
C
Q = VS(t).

This equation, supplemented by initial conditions specifying the charge Q(t0)
and current Q ′(t0) = I(t0) at some initial time t0, can be solved for the charge
Q(t). Differentiating this solution yields the desired current, I(t). A second ap-
proach is simply to differentiate equation (13a), obtaining a second order dif-
ferential equation for the current I(t). In that case,

d2I

dt2
+ R
L
dI
dt

+ 1
LC

I = 1
L
dVS(t)
dt

. (13b)

Equation (13b) is a nonhomogeneous second order linear differential equation
for the unknown loop current I(t). To uniquely prescribe circuit performance,
we must add initial conditions I(t0) = I0 and I′(t0) = I′

0 at some initial time
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t0. [Specifying I
′(t0) is tantamount to specifying the voltage drop across the

inductor at time t0.]
As a second example of an RLC network, consider the network shown in

Figure 3.19. In this case, the three circuit elements are connected in parallel
with a current source IS(t), whose current output is assumed to flow in the
direction shown. This time, the dependent variable of interest is nodal voltage
V(t), assumed to have the polarity shown.

V(t)IS (t)
L

R

+

–

C
Current
source

FIGURE 3.19

A parallel RLC network, with current source IS(t) and nodal voltage V(t).

The governing physical principle, Kirchhoff’s current law, states that elec-
tric current does not accumulate at a circuit node. Therefore, the total current
flowing into a nodemust equal the total current flowing out. Consider the upper
node. The current flowing in is the source current, while the current flowing out
is the current flowing “down” through each of the circuit elements. The current
through the resistor is (1/R)V(t), the current through the capacitor is C(dV/dt),
and the current through the inductor is (1/L)

∫
V(s)ds (an antiderivative of the

nodal voltage). Applying Kirchhoff’s current law to the network in Figure 3.19
leads us to the equation

IS(t) = 1
R
V + C

dV
dt

+ 1
L

∫
V(s)ds.

Upon differentiating and rearranging terms, the equation becomes

d2V

dt2
+ 1
RC

dV
dt

+ 1
LC

V = 1
C
dIS(t)
dt

. (14)

Specifying V and V ′ (that is, the currents through the resistor and capacitor)
at some initial time t0 will uniquely determine circuit performance.

REMARK: If we short circuit the resistor (that is, set R = 0) in the series circuit
(Figure 3.18) or if we open circuit the resistor (that is, letR → ∞) in the parallel
circuit (Figure 3.19), we remove the dissipative (damping) element in each case
and obtain a lossless LC circuit. Such circuits can exhibit resonance. Note that
equations (13b) and (14) become identical in structure to equations (2) and (4)
with a resonant radian frequency defined by

ω20 = 1
LC

.
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E X E R C I S E S

1. Consider the differential equation y′′ + ω2
0 y = F cosωt.

(a) Determine the complementary solution of this differential equation.

(b) Use the method of undetermined coefficients to find a particular solution in
each of the cases: (i) ω = ω1 �= ω0, (ii) ω = ω0.

Exercises 2–5:

A 10-kg object suspended from the end of a vertically hanging spring stretches the spring
9.8 cm. At time t = 0, the resulting spring-mass system is disturbed from its rest state
by the given applied force, F(t). The force F(t) is expressed in newtons and is positive in
the downward direction; time is measured in seconds.

(a) Determine the spring constant, k.

(b) Formulate and solve the initial value problem for y(t), where y(t) is the displacement
of the object from its equilibrium rest state, measured positive in the downward
direction.

(c) Plot the solution and determine the maximum excursion from equilibrium made
by the object on the t-interval 0 ≤ t < ∞ or state that there is no such maximum.

2. F(t) = 20 cos 10t 3. F(t) = 20e−t

4. F(t) = 20 cos 8t 5. F(t) =
{
20, 0 ≤ t ≤ π

0, π < t < ∞
[Hint: Solve Exercise 5 on the t-interval 0 ≤ t ≤ π and then use the fact that position
y(t) and velocity y′(t) are both continuous at t = π to formulate and solve a second
initial value problem on the t-interval π < t < ∞.]

6. Consider the initial value problem my′′ + ky = 20 cos 8πt, y(0) = 0, y′(0) = 0, mod-
eling the response of a spring-mass system, initially at rest, to an applied force; as-
sume that the unit of force is the newton. Suppose the motion shown in the figure is
recorded and can be described mathematically by the formula
y(t) = 0.1 sin(π t) sin(7πt) m. What are the values of mass m and spring constant
k for this system? [Hint: Recall the identity cos(α ± β) = cosα cosβ ∓sinα sinβ.]

0.4 0.8 1.2 1.6

–0.08

–0.1

–0.06

–0.04

–0.02

0.02

0.04

0.06

0.08

y

t

Figure for Exercise 6

Exercises 7–10:

Consider the initial value problem

my′′ + γ y′ + ky = F(t), y(0) = 0, y′(0) = 0,
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modeling the motion of a spring-mass-dashpot system initially at rest and subjected to
an applied force F(t), where the unit of force is the newton (N). Assume that
m = 2 kg, γ = 8 kg/s, and k = 80 N/m.

(a) Solve the initial value problem for the given applied force. In Exercise 10, use the
fact that the system displacement y(t) and velocity y′(t) remain continuous at times
when the applied force is discontinuous.

(b) Determine the long-time behavior of the system. In particular, is lim t→∞ y(t) = 0? If
not, describe in qualitative terms what the system is doing as t → ∞.

7. F(t) = 20 cos 8t 8. F(t) = 20e−t

9. F(t) = 20 sin 6t 10. F(t) =

⎧⎪⎨
⎪⎩
20, 0 ≤ t ≤ π

2

0,
π

2
< t < ∞

11. Consider the initial value problem my′′ + γ y′ + ky = F cos
√
k/mt, y(0) = 0,

y′(0) = 0. If we set γ /m = 2δ, ω2
0 = k/m, and F/m = F, we obtain initial value prob-

lem (11a). Assume that ω2
0 > 2δ. Note that the radian frequency of the applied force

is ω0; this is the resonant radian frequency of the corresponding undamped system.

(a) Derive equation (11b), showing that the solution of this initial value problem is

y(t) = F
2δ

⎡
⎣sin(ω0t)

ω0

−
e−δt sin

(√
ω2
0 − δ2 t

)
√

ω2
0 − δ2

⎤
⎦ .

(b) Show, for any fixed values t > 0 and ω0 > 0, that

lim
δ→0

+

⎧⎨
⎩ F
2δ

⎡
⎣sin(ω0t)

ω0

−
e−δt sin

(√
ω2
0 − δ2 t

)
√

ω2
0 − δ2

⎤
⎦
⎫⎬
⎭ = F

2ω0

t sin(ω0t).

This limit is the response of the undamped spring-mass system to resonant fre-
quency excitation.

(c) Suppose that we know the values of mass m and spring constant k (and F, the
amplitude of the applied force). Explain how we might use our knowledge of the
solution in part (a) (observed over a long time interval) to estimate the damping
constant δ.

12. Consider the initial value problem given in equation (12a),

y′′ + 2δy′ + ω2
0 y = F cosω1t, y(0) = 0, y′(0) = 0,

where ω2
0 > δ2 and ω1 �= ω0. The radian frequency of the applied force is therefore

not equal to ω0.

(a) Solve the initial value problem for y(t) and verify that equation (12b) represents
the solution.

(b) Assume that t > 0 and δ > 0 are fixed. Show that

lim
ω1→ω0

y(t) = F
2δ

⎡
⎣sin(ω0t)

ω0

−
e−δt sin

(√
ω2
0 − δ2 t

)
√

ω2
0 − δ2

⎤
⎦ .

(c) Assume now that t > 0 and ω1 are fixed. Show that

lim
δ→0

+ y(t) = F

ω2
1 − ω2

0

[
cos(ω0t) − cos(ω1t)

]
.

13. The Great Zacchini, daredevil extraordinaire, is a circus performer whose act con-
sists of being “shot from a cannon” to a safety net some distance away. The “cannon”
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is a frictionless tube containing a large spring, as shown in the figure. The spring
constant is k = 150 lb/ft, and the spring is precompressed 10 ft prior to launching
the acrobat. Assume that the spring obeys Hooke’s law and that Zacchini weighs
150 lb. Neglect the weight of the spring.

(a) Let x(t) represent spring displacement along the tube axis, measured positive
in the upward direction. Show that Newton’s second law of motion leads to the
differential equation mx′′ = −kx−mg cos(π/4), x < 0, where m is the mass of the
daredevil. Specify appropriate initial conditions.

(b) With what speed does he emerge from the tube when the spring is released?

(c) If the safety net is to be placed at the same height as the mouth of the “cannon,”
how far downrange from the cannon’smouth should the center of the net be placed?

Compressed spring
prior to launch

45° 45°

Uncompressed
spring 10

 ft
g

y (t)

y'(t)

y' = 0

3 ft

2-ft unstretched
rubber band

g

1-oz ball

Figure for Exercise 13 Figure for Exercise 14

14. A Change of Independent Variable (see Section 2.9) A popular child’s toy consists of
a small rubber ball attached to a wooden paddle by a rubber band; see the figure. As-
sume a 1-oz ball is connected to the paddle by a rubber band having an unstretched
length of 2 ft. When the ball is launched vertically upward by the paddle with an
initial speed of 30 ft/sec, the rubber band is observed to stretch 1 ft (to a total length
of 3 ft) when the ball has reached its highest point. Assume the rubber band behaves
like a spring and obeys Hooke’s law for this amount of stretching. Our objective is
to determine the spring constant k. (Neglect the weight of the rubber band.)

The motion occurs in two phases. Until the ball has risen 2 ft above the paddle,
it acts like a projectile influenced only by gravity. Once the height of the ball exceeds
2 ft, the ball acts like a mass on a spring, acted upon by the elastic restoring force
of the rubber band and gravity.

(a) Assume the ball leaves the paddle at time t = 0. Let t2 and t3 represent the times
at which the height of the ball is 2 ft and 3 ft, respectively, and letm denote the mass
of the rubber ball. Show that an application of Newton’s second law of motion leads
to the following two-part description of the problem:

(i) my′′ = −mg, 0 < t < t2, y(0) = 0, y′(0) = 30

(ii) my′′ = −k(y− 2) −mg, t2 < t < t3.

Here, y and y′ are assumed to be continuous at t = t2.We also know that y(t2) = 2,
y(t3) = 3, and y′(t3) = 0.

If we attempt to solve the problem “directly” with time as the independent vari-
able, it is relatively difficult, since the times t2 and t3 must be determined as part of
the problem. Since height y(t) is an increasing function of time t over the interval
of interest, however, we can view time t as a function of height, y, and use y as the
independent variable.
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(b) Let v = y′ = dy/dt. If we adopt y as the independent variable, the acceleration
becomes y′′ = dv/dt = (dv/dy) (dy/dt) = v(dv/dy). Therefore,

(i) mv
dv
dy

= −mg, 0 < y < 2, v(0) = 30

(ii) mv
dv
dy

= −k(y− 2) −mg, 2 < y < 3.

Here, v is continuous at y = 2 and v|y=3 = 0.

Solve these two separable differential equations, impose the accompanying sup-
plementary conditions, and determine the spring constant k.

Network Problems Use the following consistent set of scaled units (referred to as the
Scaled SI Unit System) in Exercises 15–18.

Quantity Unit Symbol

Voltage volt V
Current milliampere (mA) I
Time millisecond (ms) t
Resistance kilohm (k) R
Inductance henry (H) L
Capacitance microfarad (μF) C

Exercises 15–16:

Consider the series LC network shown in the figure. Assume that at time t = 0, the
current and its time rate of change are both zero. For the given source voltage, determine
the current I(t).

I(t)

VS(t)

L = 1 H

~ C = 4 �F
+

–

Figure for Exercises 15–16

15. VS(t) = 5 sin 3t volts 16. VS(t) = 10te−t volts

Exercises 17–18:

Consider the parallel RLC network shown in the figure. Assume that at time t = 0, the
voltage V(t) and its time rate of change are both zero. For the given source current,
determine the voltage V(t).

V(t)IS (t)
L

R

+

–

C

R = 1 kΩ
L = 1 H
C =     �F1

2

Figure for Exercises 17–18

17. IS(t) = 1− e−t mA 18. IS(t) = 5 sin t mA
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3.11 Higher Order Linear Homogeneous
Differential Equations

So far in this chapter, we have studied second order linear differential equations

y′′ + p1(t)y
′ + p0(t)y = g(t),

with emphasis on the important special case of constant coefficient equations.
We now consider higher order linear equations. An nth order linear differential
equation has the form

y(n) + pn−1(t)y
(n−1) + · · · + p2(t)y

′′ + p1(t)y
′ + p0(t)y = g(t). (1)

Our study of equation (1) and the associated initial value problem follows a
familiar pattern. We first generalize the existence and uniqueness results of
Section 3.1, then examine the homogeneous case of equation (1), and finally
discuss nonhomogeneous equations. The basic theory and solution techniques
for second order linear equations extend naturally to the higher order case.

Our motivation for studying higher order equations is twofold. The theory
of higher order linear differential equations is important in certain applica-
tions, and the way it generalizes second order linear theory is aesthetically
appealing. Fourth order linear equations arise, for example, in modeling the
loading and bending of beams (see the Projects at the end of this chapter).

Existence and Uniqueness
Theorem 3.5 generalizes the existence and uniqueness results presented earlier
for initial value problems involving linear differential equations; see Theorem
2.1 (first order problems) and Theorem 3.1 (second order problems).

Theorem 3.5
Let p0(t),p1(t), . . . ,pn−1(t) and g(t) be continuous functions defined on the
interval a < t < b, and let t0 be in (a,b). Then the initial value problem

y(n) + pn−1(t)y
(n−1) + · · · + p2(t)y

′′ + p1(t)y
′ + p0(t)y = g(t),

y(t0) = y0, y′(t0) = y′
0, y′′(t0) = y′′

0, . . . , y(n−1)(t0) = y(n−1)
0

has a unique solution defined on the entire interval (a,b).

Comparing Theorems 2.1, 3.1, and 3.5, we see that the language and con-
clusions of the three theorems are virtually identical. In fact, we shall see in
Chapter 4 that Theorems 2.1, 3.1, and 3.5 can all be viewed as special cases of
an overarching existence-uniqueness theorem for systems of first order linear
equations (see Theorem 4.1 in Section 4.2).

The Principle of Superposition and
Fundamental Sets of Solutions
Consider the nth order linear homogeneous equation

y(n) + pn−1(t)y
(n−1) + · · · + p2(t)y

′′ + p1(t)y
′ + p0(t)y = 0, a < t < b. (2)
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The principle of superposition, stated in Theorem 3.2 for second order linear
equations, applies to higher order linear equations as well. In particular, if
y1(t), y2(t), . . . , yr(t) are solutions of equation (2), then the linear combination

y(t) = c1y1(t) + c2y2(t) + · · · + cryr(t)

is also a solution of equation (2).
The idea of a fundamental set of solutions for a second order linear homo-

geneous differential equation also extends to nth order linear homogeneous
equations. Let {y1(t), y2(t), . . . , yn(t)} be a set of n solutions of the homogeneous
differential equation (2). This set is a fundamental set of solutions if every
solution of (2) can be represented as a linear combination of the form

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t), a < t < b. (3)

Constructing Fundamental Sets
Consider the initial value problem

y(n) + pn−1(t)y
(n−1) + · · · + p2(t)y

′′ + p1(t)y
′ + p0(t)y = 0,

y(t0) = y0, y′(t0) = y′
0, y′′(t0) = y′′

0, . . . , y(n−1)(t0) = y(n−1)
0 .

(4)

Note that every solution of homogeneous equation (2) can be viewed as the
unique solution of some initial value problem represented by (4). Simply fix a
point t0 in (a,b), and use the values of the function and its first n− 1 derivatives
at t0 as initial conditions.

Let y0, y
′
0, . . . , y

(n−1)
0 be an arbitrary set of n constants, and let u(t) be the

corresponding unique solution of initial value problem (4). Assume that
{y1, y2, . . . , yn} is a fundamental set of solutions of (2). Since {y1, y2, . . . , yn}
is a fundamental set of solutions, there are constants c1, c2, . . . , cn such that
u(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t), a < t < b. The initial conditions in (4) lead
to a system of equations that can be written in matrix form as⎡

⎢⎢⎢⎢⎣
y1(t0) y2(t0) · · · yn(t0)

y′
1(t0) y′

2(t0) y′
n(t0)

...
...

y(n−1)
1 (t0) y(n−1)

2 (t0) · · · y(n−1)
n (t0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
c1
c2
...

cn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y0
y′
0
...

y(n−1)
0

⎤
⎥⎥⎥⎥⎦. (5)

By Theorem 3.5, initial value problem (4) has a unique solution for any choice
of the initial conditions. Therefore, matrix equation (5) has a solution for any
choice of y0, y

′
0, . . . , y

(n−1)
0 , and this means that the (n× n) coefficient matrix

has a nonzero determinant. [From linear algebra, if an (n× n)matrix equation
Ax = b is consistent for every right-hand side b, then the matrix A is invertible.
Equivalently, the determinant of A is nonzero.]

As in Section 3.2, the determinant of the coefficient matrix in equation (5)
is called theWronskian and is denoted asW(t):

W(t) =

∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) · · · yn(t)

y′
1(t) y′

2(t) y′
n(t)

...
...

y(n−1)
1 (t) y(n−1)

2 (t) · · · y(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣
. (6)
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We have just seen that if {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions
for (2), then the corresponding Wronskian (6) is nonzero for all t, a < t < b.
Conversely, if {y1(t), y2(t), . . . , yn(t)} is a set of n solutions of (2) and if the cor-
responding Wronskian is nonzero on (a,b), then {y1(t), y2(t), . . . , yn(t)} is a fun-
damental set of solutions. To prove this, let u(t) be any solution of (2), and let
y0 = u(t0), y

′
0 = u′(t0), . . . , y

(n−1)
0 = u(n−1)(t0). Solve equation (5) for c1, c2, . . . , cn,

and define ŷ(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t). Note that u(t) and ŷ(t) are both
solutions of initial value problem (4). Therefore, by Theorem 3.5, u(t) = ŷ(t) =
c1y1(t) + c2y2(t) + · · · + cnyn(t), a < t < b.

E X A M P L E

1 Consider the fourth order differential equation

d4y

dt4
− y = 0, −∞ < t < ∞.

It can be verified that the functions y1(t) = et, y2(t) = e−t, y3(t) = cos t, and
y4(t) = sin t are solutions of this equation.

(a) Show that these four solutions form a fundamental set of solutions.

(b) Represent the solution y(t) = sinh t+ sin(t+ π/3) in terms of this funda-
mental set.

Solution:

(a) Computing the Wronskian, we obtain

W(t) =

∣∣∣∣∣∣∣∣∣∣

et e−t cos t sin t

et −e−t − sin t cos t

et e−t − cos t − sin t

et −e−t sin t − cos t

∣∣∣∣∣∣∣∣∣∣
= −8(cos 2t+ sin 2t) = −8.

Since the Wronskian is nonzero on (−∞, ∞), it follows that {y1, y2, y3, y4}
is a fundamental set of solutions.

(b) We use the fact that sinh t = (et − e−t)/2 and the trigonometric identity
sin(A+ B) = sinA cosB+ sinB cosA to obtain

y(t) = sinh t+ sin
(
t+ π

3

)
= 1
2
et − 1

2
e−t + 1

2
sin t+

√
3
2
cos t. ❖

Abel’s Theorem
Let {y1(t), y2(t), . . . , yn(t)} be a set of solutions of the linear homogeneous equa-
tion (2). We have seen that {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solu-
tions if and only if the corresponding Wronskian, W(t), is nonzero on (a,b).
Abel’s theorem shows that the Wronskian is either zero throughout (a,b) or
is never zero in (a,b). This fact allows us to choose a single convenient test
point, t0, and use the value W(t0) to decide whether {y1(t), y2(t), . . . , yn(t)} is a
fundamental set of solutions.

We state Abel’s theorem for the general nth order case, but prove it only
for n = 2.
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Theorem 3.6
Let y1(t), y2(t), . . . , yn(t) denote n solutions of the differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = 0, a < t < b,

where p0(t),p1(t), . . . ,pn−1(t) are continuous on (a,b). Let W(t) be the
Wronskian of y1(t), y2(t), . . . , yn(t). Then the functionW(t) is a solution of
the first order linear differential equation

W ′ = −pn−1(t)W.

Therefore, if t0 is any point in the interval (a,b), it follows that

W(t) = W(t0)e
− ∫ t

t0
pn−1(s)ds, a < t < b. (7)

● PROOF: We prove Theorem 3.6 for the case n = 2. Let y1 and y2 be solu-
tions of the second order linear equation

y′′ + p1(t)y
′ + p0(t)y = 0.

The Wronskian isW = y1y
′
2 − y2y

′
1. Differentiating and simplifying, we obtain

W ′ = y1y
′′
2 − y2y

′′
1

= y1[−p1(t)y′
2 − p0(t)y2] − y2[−p1(t)y′

1 − p0(t)y1]
= −p1(t)[y1y′

2 − y2y
′
1]

= −p1(t)W.

Solving the resulting first order linear equationW ′ = −p1(t)W leads to (7). ●

The proof of Theorem 3.6 for general n can be found in most advanced
texts on differential equations. The basic argument is similar to that used for
the case n = 2. The computations are more involved, however, since one needs
to compute the derivative of an (n× n) determinant of functions.

By equation (7), if W(t0) �= 0, then W(t) �= 0 for all t in (a,b). On the other
hand, ifW(t0) = 0 thenW(t) is also zero for all t in (a,b). The point t0 is arbitrary;
Abel’s theorem implies that the Wronskian of a set of solutions of (2) either is
zero throughout (a,b) or is never zero in (a,b).

Additional Observations
We conclude by making some additional observations about fundamental sets
of solutions of the homogeneous equation (2).

Fundamental Sets Always Exist

When differential equation (2) has constant coefficients, we can explicitly con-
struct fundamental sets of solutions. For the general case of variable coeffi-
cients, however, we are usually unable to explicitly construct solutions of (2).
In such cases, it is logical to ask whether fundamental sets of solutions do, in
fact, exist. The following theorem provides an affirmative answer.
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Theorem 3.7
Consider the nth order linear homogeneous differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = 0, a < t < b,

where p0(t),p1(t), . . . ,pn−1(t) are continuous on (a,b). A fundamental set
of solutions exists for this equation.

● PROOF: We prove Theorem 3.7 for the case n = 2. Let t0 be any point in
(a,b), and let y1 and y2 be solutions of the initial value problems

y′′
1 + p1(t)y

′
1 + p0(t)y1 = 0, y1(t0) = 1, y′

1(t0) = 0

y′′
2 + p1(t)y

′
2 + p0(t)y2 = 0, y2(t0) = 0, y′

2(t0) = 1.

Existence-uniqueness Theorem 3.5 assures us that each of these initial value
problems has a unique solution on (a,b). The fact that {y1, y2} forms a funda-
mental set of solutions follows immediately from the observation that

W(t0) =
∣∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣∣ =
∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ = 1. ●

Fundamental Sets of Solutions Are Linearly Independent

A set of functions defined on a common domain, say f1(t), f2(t), . . . , fr(t) de-
fined on the interval a < t < b, is called a linearly dependent set if there exist
constants k1, k2, . . . , kr, not all zero, such that

k1f1(t) + k2f2(t) + · · · + krfr(t) = 0, a < t < b. (8)

A set of functions that is not linearly dependent is called linearly independent.
Thus, a set of functions is linearly independent if equation (8) implies k1 = k2 =
· · · = kr = 0. If a set of functions is linearly dependent, then at least one of the
functions can be expressed as a linear combination of the others. For example,
if k1 �= 0 in (8), then

f1(t) = −(k2/k1)f2(t) − (k3/k1)f3(t) − · · · − (kr/k1)fr(t), a < t < b.

Loosely speaking, the functions comprising a linearly independent set are all
“basically different,” while those forming a linearly dependent set are not. The
following theorem, whose proof is left to the exercises, shows that a fundamen-
tal set of solutions is a linearly independent set.

Theorem 3.8
Consider the nth order linear homogeneous differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = 0, a < t < b,

where p0(t),p1(t), . . . ,pn−1(t) are continuous on (a,b). A fundamental set
of solutions for this equation is necessarily a linearly independent set of
functions.
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How Fundamental Sets Are Related

Fundamental sets of solutions for equation (2) always exist. In fact, this linear
homogeneous equation has infinitelymany fundamental sets. These fundamen-
tal sets must be related to each other, since any given fundamental set can be
used to construct all solutions of (2). The following theorem shows how these
fundamental sets are related.

Theorem 3.9
Let {y1(t), y2(t), . . . , yn(t)} be a fundamental set of solutions of the nth
order linear homogeneous differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = 0, a < t < b,

where p0(t),p1(t), . . . ,pn−1(t) are continuous on (a,b). Let {y1(t), y2(t), . . . ,
yn(t)} be a set of solutions of the differential equation. Then there exists
an (n× n) matrix A such that

[y1(t), y2(t), . . . , yn(t) ] = [y1(t), y2(t), . . . , yn(t)]A.

Moreover, {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions if and
only if the determinant of A is nonzero.

● PROOF: We prove Theorem 3.9 for the case n = 2. Since {y1, y2} is a fun-
damental set, we can express y1 and y2 as linear combinations of y1 and y2:

y1 = a11y1 + a21y2
y2 = a12y1 + a22y2

or [y1, y2] = [y1, y2]
[
a11 a12
a21 a22

]
= [y1, y2]A.

Since the equation [y1, y2] = [y1, y2]A holds for all t in (a,b), we can differentiate
it and obtain the matrix equation[

y1 y2
y′
1 y′

2

]
=
[
y1 y2
y′
1 y′

2

]
A.

Using the fact that the determinant of the product of twomatrices is the product
of their determinants, we have

W(t) = W(t) det(A),

whereW(t) andW(t) denote theWronskians of {y1, y2} and {y1, y2}, respectively.
SinceW(t) �= 0 on (a,b), it follows thatW(t) �= 0 if and only if det(A) �= 0. ●

E X E R C I S E S

Exercises 1–6:

In each exercise,

(a) Verify that the given functions form a fundamental set of solutions.

(b) Solve the initial value problem.

1. y′′′ = 0; y(1) = 4, y′(1) = 2, y′′(1) = 0

y1(t) = 2, y2(t) = t− 1, y3(t) = t2 − 1
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2. y′′′ − y′ = 0; y(0) = 4, y′(0) = 1, y′′(0) = 3

y1(t) = 1, y2(t) = et, y3(t) = e−t

3. y(4) + 4y′′ = 0; y(0) = 0, y′(0) = −1, y′′(0) = −4, y′′′(0) = 8

y1(t) = 1, y2(t) = t, y3(t) = cos 2t, y4(t) = sin 2t

4. y′′′ + 2y′′ = 0; y(0) = 0, y′(0) = 3, y′′(0) = −8
y1(t) = 1, y2(t) = t, y3(t) = e−2t

5. ty′′′ + 3y′′ = 0, t > 0; y(2) = 1
2 , y′(2) = − 5

4 , y′′(2) = 1
4

y1(t) = 1, y2(t) = t, y3(t) = t−1

6. t2y′′′ + ty′′ − y′ = 0, t < 0; y(−1) = 1, y′(−1) = −1, y′′(−1) = −1
y1(t) = 1, y2(t) = ln(−t), y3(t) = t2

Exercises 7–10:

Consider the given differential equation on the interval −∞ < t < ∞. Assume that the
members of a solution set satisfy the initial conditions. Do the solutions form a funda-
mental set?

7. y′′ + 2ty′ + t2y = 0, y1(1) = 2, y′
1(1) = −1, y2(1) = −4, y′

2(1) = 2

8. y′′ + ty = 0, y1(0) = 0, y′
1(0) = 2, y2(0) = −1, y′

2(0) = 0

9. y′′′ + (sin t)y = 0, y1(0) = 1, y′
1(0) = −1, y′′

1(0) = 0, y2(0) = 0, y′
2(0) = 0,

y′′
2(0) = 2, y3(0) = 2, y′

3(0) = −2, y′′
3(0) = 1

10. y′′′ + ety′′ + y = 0, y1(1) = 0, y′
1(1) = 1, y′′

1(1) = 1, y2(1) = 1, y′
2(1) = −1,

y′′
2(1) = 0, y3(1) = −1, y′

3(1) = 0, y′′
3(1) = 0

Exercises 11–15:

The given differential equation has a fundamental set of solutions whose Wronskian
W(t) is such thatW(0) = 1. What isW(4)?

11. y′′ + t
2
y′ + y = 0 12. y′′′ + t

2
y′ + y = 0 13. y′′′ + y′′ + ty = 0

14. y(4) − y′′ + y = 0 15. (t2 + 1)y′′′ − 2ty′′ + y = 0

Exercises 16–19:

Find a fundamental set {y1, y2} satisfying the given initial conditions.
16. y′′ − y = 0, y1(0) = 1, y′

1(0) = 0, y2(0) = 0, y′
2(0) = 1

17. y′′ + y = 0, y1(0) = 1, y′
1(0) = 1, y2(0) = 1, y′

2(0) = −1
18. y′′ + 4y′ + 5y = 0, y1(0) = 1, y′

1(0) = −1, y2(0) = 0, y′
2(0) = 1

19. y′′ + 4y′ + 4y = 0, y1(0) = −1, y′
1(0) = 2, y2(0) = 1, y′

2(0) = −1
Exercises 20–22:

In each exercise, {y1, y2, y3} is a fundamental set of solutions and {y1, y2, y3} is a set of
solutions.

(a) Find a (3× 3) constant matrix A such that [y1(t), y2(t), y3(t)] = [y1(t), y2(t), y3(t)]A.
(b) Determine whether {y1, y2, y3} is also a fundamental set by calculating det(A).

20. y′′′ − y′ = 0, {y1(t), y2(t), y3(t)} = {1, et, e−t},
{y1(t), y2(t), y3(t)} = {cosh t,1− sinh t,2+ sinh t}

21. y′′′ − y′′ = 0, {y1(t), y2(t), y3(t)} = {1, t, e−t},
{y1(t), y2(t), y3(t)} = {1− 2t, t+ 2, e−(t+2)}
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22. t2y′′′ + ty′′ − y′ = 0, t > 0, {y1(t), y2(t), y3(t)} = {1, ln t, t2},
{y1(t), y2(t), y3(t)} = {2t2 − 1,3, ln t3}

Exercises 23–26:

The Wronskian formed from a solution set of the given differential equation has the
specified value at t = 1. DetermineW(t).

23. y′′′ − 3y′′ + 3y′ − y = 0; W(1) = 1

24. y′′′ + (sin t)y′′ + (cos t)y′ + 2y = 0; W(1) = 0

25. t3y′′′ + t2y′′ − 2y = 0, t > 0; W(1) = 3

26. t3y′′′ − 2y = 0, t > 0; W(1) = 3

27. Linear Independence For definiteness, consider Theorem 3.8 in the case n = 3. Let
{y1, y2, y3} be a fundamental set of solutions for y′′′ + p2(t)y

′′ + p1(t)y
′ + p0(t)y = 0,

where p0,p1,p2 are continuous on a < t < b. Show that the fundamental set is lin-
early independent. [Hint: Consider the equation k1y1(t) + k2y2(t) + k3y3(t) = 0 along
with the first and second derivatives of this equation, evaluated at some point t0 in
a < t < b.]

3.12 HigherOrderHomogeneousConstantCoefficient
Differential Equations

Consider the nth order linear homogeneous differential equation

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0, −∞ < t < ∞, (1)

where a0, a1, . . . , an−1 are real constants. The general solution is given by

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t),

where {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions. How do we de-
termine a fundamental set of solutions for equation (1)?

As in Section 3.3, we look for solutions of the form y(t) = eλt, where λ is a
constant to be determined. Substituting this form into equation (1) leads to

(λn + an−1λ
n−1 + · · · + a1λ + a0)e

λt = 0, −∞ < t < ∞.

The exponential function eλt is nonzero for all values of λ (whether real or
complex). Therefore, in order for y(t) = eλt to be a solution, we need

λn + an−1λ
n−1 + · · · + a1λ + a0 = 0. (2)

The nth degree polynomial in equation (2) is called the characteristic polyno-
mial, while equation (2) itself is called the characteristic equation. The roots
of the characteristic equation define solutions of (1) having the form y(t) = eλt.

Roots of the Characteristic Equation
When we considered the case n = 2, we were able to list three possibilities for
the roots of the characteristic polynomial (two distinct real roots, one repeated
real root, or twodistinct complex roots).Whilewe cannot list all the possibilities
for the general case, we can make some useful observations.
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Complex Roots Occur in Complex Conjugate Pairs

Since the coefficients a0, a1, . . . , an−1 are real constants, the complex-valued
roots of the characteristic equation always occur in complex conjugate pairs.
One simple consequence of this observation is the fact that every characteristic
polynomial of odd degree has at least one real root.

We noted in Section 3.5 that if λ = α + iβ and λ = α − iβ are a complex
conjugate pair of roots of the characteristic equation, then real-valued solutions
corresponding to these two roots are

y1(t) = eαt cosβt and y2(t) = eαt sinβt. (3)

This result is true for the general nth order linear homogeneous equation as
well.

E X A M P L E

1 Find the general solution of the third order differential equation

y′′′ + 4y′ = 0, −∞ < t < ∞.

Solution: Looking for solutions of the form eλt leads to the characteristic equa-
tion λ3 + 4λ = 0, or

λ(λ2 + 4) = λ(λ + 2i)(λ − 2i) = 0.

The three roots are therefore λ1 = 0, λ2 = 2i, and λ3 = λ2 = −2i. The corre-
sponding real-valued solutions are

y1(t) = 1, y2(t) = cos 2t, y3(t) = sin 2t.

To show these three solutions constitute a fundamental set, we calculate the
Wronskian and find

W(t) =

∣∣∣∣∣∣∣
1 cos 2t sin 2t

0 −2 sin 2t 2 cos 2t

0 −4 cos 2t −4 sin 2t

∣∣∣∣∣∣∣ = 8(sin 2 2t+ cos 2 2t) = 8.

Since the Wronskian is nonzero, the three solutions form a fundamental set of
solutions. The general solution of the differential equation is

y(t) = c1 + c2 cos 2t+ c3 sin 2t, −∞ < t < ∞.

In this example, we computed the determinant W(t). But, recalling Abel’s the-
orem, we could have simply evaluated W(t) at a convenient point, say t = 0.
Note, for this equation, that Abel’s theorem would also have anticipated that
W(t) is a constant function. ❖

If the Characteristic Polynomial Has Distinct Roots, the Corresponding
Solutions Form a Fundamental Set

In Example 1, the characteristic equation had three distinct roots: the real
number λ1 = 0 and the complex conjugate pair λ2 = 2i and λ3 = −2i. The cor-
responding set of solutions formed a fundamental set of solutions. In the ex-
ercises, we ask you to show that this result holds in general. That is, if the
characteristic equation has n distinct roots λ1, λ2, . . . , λn, then the set of solu-
tions {eλ1t, eλ2t, . . . , eλnt} forms a fundamental set of solutions. (If some of these
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distinct roots are complex-valued, we can replace the conjugate pair of com-
plex exponentials with the corresponding real-valued pair of solutions and the
conclusion remains the same.)

Roots of the Characteristic Equation May Have Multiplicity Greater than
2 and May Be Complex

For the second order linear homogeneous equations discussed earlier, a re-
peated root of the corresponding quadratic characteristic equation is, of neces-
sity, real-valued. If λ1 is a repeated root of the quadratic characteristic equation,
then the corresponding solutions

y1(t) = eλ1t and y2(t) = teλ1t

form a fundamental set of solutions.
For higher order differential equations, the situation is more complicated.

For example,

(a) A root can be repeated more than once. In particular, if the characteristic
polynomial has the form

p(λ) = λn + an−1λ
n−1 + · · · + a1λ + a0 = (λ − λ1)

rq(λ), (4)

where q is a polynomial of degree n− r and q(λ1) �= 0, then we say λ1 is a
root of multiplicity r. If λ1 is a root of multiplicity r, then the functions

eλ1t, teλ1t, t2eλ1t, . . . , tr−1eλ1t (5)

form a set of r solutions of the differential equations. The remaining n− r
solutions needed to form a fundamental set of solutions can be determined
by examining the roots of q(λ) = 0.

(b) A repeated root might be complex. We recall, however, that complex roots
arise in complex conjugate pairs. Therefore, if λ1 = α + iβ is a root of mul-
tiplicity r, then λ1 = α − iβ is also a root of multiplicity r. In such cases, the
characteristic polynomial has the form

λn + an−1λ
n−1 + · · · + a1λ + a0 = (λ − λ1)

r(λ − λ1)
rq̂(λ),

where q̂(λ) is a polynomial of degree n− 2r and where q̂(λ1) �= 0 and
q̂(λ1) �= 0. In this case, the functions

eαt cosβt, teαt cosβt, t2eαt cosβt, . . . , tr−1eαt cosβt

eαt sinβt, teαt sinβt, t2eαt sinβt, . . . , tr−1eαt sinβt
(6)

form a set of 2r real-valued solutions.

E X A M P L E

2 Find the general solution of

(a) y(6) + 3y(5) + 3y(4) + y′′′ = 0 (b) y(5) − y(4) + 2y′′′ − 2y′′ + y′ − y = 0

Solution:

(a) The characteristic polynomial is

p(λ) = λ6 + 3λ5 + 3λ4 + λ3 = λ3(λ3 + 3λ2 + 3λ + 1) = λ3(λ + 1)3.

(continued)
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(continued)

Therefore, λ = 0 and λ = −1 are each roots of multiplicity 3. By (5), the
functions {1, t, t2, e−t, te−t, t2e−t} are solutions. TheWronskian can be shown
to be nonzero, and hence the solutions form a fundamental set; the general
solution is

y(t) = c1 + c2t+ c3t
2 + c4e

−t + c5te
−t + c6t

2e−t.

(b) The characteristic polynomial is

p(λ) = λ5 − λ4 + 2λ3 − 2λ2 + λ − 1 = (λ − 1)(λ2 + 1)2.

The characteristic equation has one real root, λ = 1, and a repeated pair of
complex conjugate roots,±i. The set of solutions {et, cos t, sin t, t cos t, t sin t}
forms a fundamental set of solutions. The general solution is

y(t) = c1e
t + c2 cos t+ c3 sin t+ c2t cos t+ c3t sin t. ❖

It can be shown that solutions (5) and (6), arising from repeated roots, will
always form a fundamental set of solutions when they are combined with the
solutions that arise from any remaining roots of the characteristic equation.

Solving the Differential Equation y (n) – ay = 0
Let a be a real number. The characteristic equation for y(n) − ay = 0 is
λn − a = 0. Finding the roots of this equation amounts to finding the n different
nth roots of the real number a. The first step is to write a in polar form as

a = Reiα,

whereR = |a| andwhere α = 0when a > 0 and α = π when a < 0. Recall Euler’s
formula from Section 3.5,

eiθ = cos θ + i sin θ.

For any integer k, it follows that ei2kπ = 1. Therefore, we canwrite a = Rei(α+2kπ),
k = 0, ±1, ±2, . . . , and hence

a1/n = R1/nei(α+2kπ)/n, k = 0, ±1, ±2, . . . . (7)

In equation (7), R1/n is the positive real nth root of R = |a|. We generate the n
distinct roots of λn − a = 0 by setting k = 0,1, . . . ,n− 1 in equation (7). (Other
integer values of k simply replicate these values.) Once we determine the n
roots, we can use Euler’s formula to rewrite them in the form x+ iy.

E X A M P L E

3 Find the general solution of

y(4) + 16y = 0, −∞ < t < ∞.

Solution: The characteristic equation is λ4 + 16 = 0. Therefore, in this exam-
ple, a = −16 and n = 4. Using equation (7) with R = 16 and α = π , we find the
four roots are

λk = 2ei(π+2kπ)/4, k = 0,1,2,3,
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or

λ0 = 2e iπ/4 = √
2+ i

√
2

λ1 = 2e i3π/4 = −√
2+ i

√
2

λ2 = 2e i5π/4 = −√
2− i

√
2

λ3 = 2e i7π/4 = √
2− i

√
2.

The general solution, expressed in terms of real-valued solutions, is

y(t) = e
√
2 t
(
c1 cos

√
2 t+ c2 sin

√
2 t
)

+ e−
√
2 t
(
c3 cos

√
2 t+ c4 sin

√
2 t
)

. ❖

When a is a real number, the complex roots of λn − a = 0 occur in complex
conjugate pairs. If we plot these n roots in the complex plane, we see they all
lie on a circle of radius |a|1/n and the angular separation between roots is 2π/n.
Figure 3.20 shows the four roots of λ4 + 16 = 0 found in Example 3.

Im

Re

–√2 + i√2 √2 + i√2

–√2 – i√2 √2 – i√2

FIGURE 3.20

The four roots of λ4 + 16 = 0 lie on a circle of radius 161/4 = 2 and have an
angular separation of 2π/4 = π/2 radians. The roots occur in two complex
conjugate pairs.

E X E R C I S E S

Exercises 1–18:

In each exercise,

(a) Find the general solution of the differential equation.

(b) If initial conditions are specified, solve the initial value problem.

1. y′′′ − 4y′ = 0 2. y′′′ + y′′ − y′ − y = 0 3. y′′′ + y′′ + 4y′ + 4y = 0

4. 16y(4) − 8y′′ + y = 0 5. 16y(4) + 8y′′ + y = 0 6. y′′′ − y = 0

7. y′′′ − 2y′′ − y′ + 2y = 0 8. y(4) − y = 0 9. y′′′ + 8y = 0

10. 2y′′′ − y′′ = 0 11. y′′′ + y′ = 0 12. y(4) + 2y′′ + y = 0

13. y(6) − y = 0 14. y(4) − y′′′ + y′ − y = 0

15. y′′′ + 2y′′ + y′ = 0, y(0) = 0, y′(0) = 0, y′′(0) = 1
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16. y′′′ + 4y′ = 0, y(0) = 1, y′(0) = 6, y′′(0) = 4

17. y′′′ + 3y′′ + 3y′ + y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0

18. y(4) − y′′′ = 0, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 1

Exercises 19–20:

The given differential equations have repeated roots; α and β are real constants.

(a) Use equation (5) or (6), as appropriate, to determine a solution set.

(b) Show that the solution set found in part (a) is a fundamental set of solutions by
evaluating the Wronskian at t = 0.

19. y′′′ − 3αy′′ + 3α2y′ − α3y = 0 20. y(4) + 2β2y′′ + β4y = 0

Exercises 21–25:

In each exercise, you are given the general solution of

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0,

where a3, a2, a1, and a0 are real constants. Use the general solution to determine the
constants a3, a2, a1, and a0. [Hint: Construct the characteristic equation from the given
general solution.]

21. y(t) = c1 + c2t+ c3 cos 3t+ c4 sin 3t

22. y(t) = c1 cos t+ c2 sin t+ c3 cos 2t+ c4 sin 2t

23. y(t) = c1e
t + c2te

t + c3e
−t + c4te

−t

24. y(t) = c1e
−t sin t+ c2e

−t cos t+ c3e
t sin t+ c4e

t cos t

25. y(t) = c1e
t + c2te

t + c3t
2et + c4t

3et

Exercises 26–30:

Consider the nth order homogeneous linear differential equation

y(n) + an−1y
(n−1) + · · · + a3y

′′′ + a2y
′′ + a1y

′ + a0y = 0,

where a0, a1, a2, . . . , an−1 are real constants. In each exercise, several functions belonging
to a fundamental set of solutions for this equation are given.

(a) What is the smallest value n for which the given functions can belong to such a
fundamental set?

(b) What is the fundamental set?

26. y1(t) = t, y2(t) = et, y3(t) = cos t

27. y1(t) = et, y2(t) = et cos 2t, y3(t) = e−t cos 2t

28. y1(t) = t2 sin t, y2(t) = et sin t

29. y1(t) = t sin t, y2(t) = t2et

30. y1(t) = t2, y2(t) = e2t

Exercises 31–35:

Consider the nth order differential equation

y(n) − ay = 0,

where a is a real number. In each exercise, some information is presented about the
solutions of this equation. Use the given information to deduce both the order n (n ≥ 1)
of the differential equation and the value of the constant a. (If more than one answer is
possible, determine the smallest possible order n and the corresponding value of a.)

31. |a| = 1 and lim t→∞ y(t) = 0 for all solutions y(t) of the equation.
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32. |a| = 2 and all nonzero solutions of the differential equation are exponential func-
tions.

33. y(t) = t3 is a solution of the differential equation.

34. |a| = 4 and all solutions of the differential equation are bounded functions on the
interval −∞ < t < ∞.

35. Two solutions are y1(t) = e−t and y2(t) = et/2 sin(
√
3 t/2).

36. Assume the characteristic equation of y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0 has
distinct roots λ1, λ2, . . . , λn. It can be shown that the Vandermonde

8 determinant
has the value ∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

λ1 λ2 λn

λ21 λ22 λ2n
...

...

λn−1
1 λn−1

2 · · · λn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
i, j=1
i>j

(λi − λj).

Use this fact to show that {eλ1t, eλ2t, . . . , eλnt} is a fundamental set of solutions.

3.13 Higher Order Linear Nonhomogeneous
Differential Equations

We now consider the nth order linear nonhomogeneous differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = g(t), a < t < b. (1)

The arguments made in Section 3.7, establishing the solution structure for
second order equations, apply as well in the nth order case. The arguments rely
on the fact that the differential equation is linear; they do not depend on the
order of the equation. The solution structure of equation (1) can be represented
schematically as

The general solution
of the nonhomogeneous

equation
=

The general solution
of the homogeneous

equation
+

A particular solution
of the nonhomogeneous

equation.

The general solution of the homogeneous equation is the complementary so-
lution, denoted by yC(t). The one solution of the nonhomogeneous equation
that we have somehow found is the particular solution, denoted by yP(t). The
general solution of nonhomogeneous equation (1) has the form

y(t) = yC(t) + yP(t).

Finding a Particular Solution
In Sections 3.8 and 3.9, we discussed the method of undetermined coefficients
and themethodof variation of parameters for constructing particular solutions.

8Alexandre-Theophile Vandermonde (1735–1796) was a violinist who turned tomathematics when
he was 35 years old. His four published mathematical papers made noteworthy contributions
to the study of algebraic equations, topology, combinatorics, and determinants. Surprisingly, the
determinant that now bears his name appears nowhere in his published works.
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Both methods have straightforward generalizations to nth order equations.
With respect to undetermined coefficients, Table 3.1 in Section 3.8 applies to
higher order equations as well as second order equations. The only change is
that the integer r in Table 3.1 can now range as high as the order of the equation,
n. We illustrate the method of undetermined coefficients in Example 1.

E X A M P L E

1 Choose an appropriate form for a particular solution of

y(6) + 3y(5) + 3y(4) + y′′′ = t+ 2te−t + sin t, −∞ < t < ∞.

Solution: The first step is to find the complementary solution. The charac-
teristic polynomial is λ6 + 3λ5 + 3λ4 + λ3 = λ3(λ3 + 3λ2 + 3λ + 1) = λ3(λ + 1)3.
Since λ = 0 and λ = −1 are repeated roots, the general solution of the homo-
geneous equation is

yC(t) = c1 + c2t+ c3t
2 + c4 e

−t + c5 te
−t + c6 t

2e−t.

Therefore, the method of undetermined coefficients suggests that we look for
a particular solution having the form

yP(t) = t3(A1 t+ A0 ) + t3(B1 te
− t + B0 e

− t) + C cos t+D sin t.

The t3 multipliers ensure that no term in the assumed form is a solution of the
homogeneous equation. ❖

Variation of Parameters
The method of variation of parameters, discussed in Section 3.9, can be ex-
tended to find a particular solution of a linear nonhomogeneous nth order
equation. As with second order equations, we assume we know a fundamen-
tal set of solutions of the homogeneous equation, {y1(t), y2(t), . . . , yn(t)}. The
complementary solution is therefore

yC(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t), a < t < b.

We now “vary the parameters,” by replacing the constants c1, c2, . . . , cn with
functions u1(t),u2(t), . . . ,un(t), and assume a particular solution of the form

yP(t) = y1(t)u1(t) + y2(t)u2(t) + · · · + yn(t)un(t), a < t < b. (2)

The functions u1(t),u2(t), . . . ,un(t) must be chosen so that (2) is a solution of
nonhomogeneous equation (1). However, since there are n functions in (2), we
are free to impose n− 1 additional constraints on the n functions. Specifically,
we impose the following n− 1 constraints:

y1u
′
1 + y2u

′
2 + · · · + ynu

′
n = 0

y′
1u

′
1 + y′

2u
′
2 + · · · + y′

nu
′
n = 0

y′′
1u

′
1 + y′′

2u
′
2 + · · · + y′′

nu
′
n = 0

...

y(n−2)
1 u′

1 + y(n−2)
2 u′

2 + · · · + y(n−2)
n u′

n = 0.

(3)
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The purpose of (3) is to make successive derivatives of yP(t) [where yP(t) is
defined by equation (2)] have the following simple forms:

y′
P = y′

1u1 + y′
2u2 + · · · + y′

nun
y′′
P = y′′

1u1 + y′′
2u2 + · · · + y′′

nun
...

y(n−1)
P = y(n−1)

1 u1 + y(n−1)
2 u2 + · · · + y(n−1)

n un.

(4)

When we substitute representation (2) for yP into differential equation (1), use
(3), and also use the fact that each of the functions y1, y2, . . . , yn is a solution of
the homogeneous equation, we obtain

y(n−1)
1 u′

1 + y(n−1)
2 u′

2 + · · · + y(n−1)
n u′

n = g. (5)

Taken together, equations (3) and (5) form a set of n linear equations for the n
unknowns, u′

1,u
′
2, . . . ,u

′
n. In matrix form, this system of equations is⎡

⎢⎢⎢⎢⎣
y1 y2 · · · yn
y′
1 y′

2 · · · y′
n

...
...

y(n−1)
1 y(n−1)

2 · · · y(n−1)
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
u′
1

u′
2
...

u′
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0

0
...

g

⎤
⎥⎥⎥⎥⎦ , a < t < b. (6)

The determinant of the (n× n) coefficient matrix is the Wronskian of a fun-
damental set of solutions, {y1, y2, . . . , yn}. Therefore, since the Wronskian de-
terminant is nonzero for all values t in the interval (a,b), the system (6) has
a unique solution for the unknowns u′

1,u
′
2, . . . ,u

′
n. Once these n functions are

determined, we compute u1,u2, . . . ,un by antidifferentiation and form yP as
prescribed by equation (2).

In principle, the method of variation of parameters is very general. How-
ever, the practical limitations noted in Section 3.9 for the second order case
also apply to the nth order case. If the differential equation coefficients are
not constants, it may be very difficult to determine a fundamental set of so-
lutions of the homogeneous equation. Even if we know a fundamental set, it
may be impossible to express the antiderivatives of u′

1,u
′
2, . . . ,u

′
n in terms of

known functions. The following example, however, is one in which the entire
computational program of variation of parameters can be performed explicitly.

E X A M P L E

2 Consider the nonhomogeneous differential equation

t3y′′′ − 3t2y′′ + 6ty′ − 6y = t, 0 < t < ∞. (7)

(a) Verify that the functions y1(t) = t, y2(t) = t2, y3(t) = t3 form a fundamental
set of solutions for the associated homogeneous equation.

(b) Use variation of parameters to find a particular solution of the nonhomo-
geneous equation.

Solution:

(a) In Section 8.3, we discuss methods of finding solutions for homogeneous
equations such as t3y′′′ − 3t2y′′ + 6ty′ − 6y = 0. For now, the fact that these

(continued)
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(continued)

functions are solutions can be verified by direct substitution. The Wron-
skian of the solutions y1(t) = t, y2(t) = t2, y3(t) = t3 is nonzero on 0 < t < ∞:

W(t) =

∣∣∣∣∣∣∣
t t2 t3

1 2t 3t2

0 2 6t

∣∣∣∣∣∣∣ = 2t3.

Therefore, the given functions form a fundamental set of solutions.

(b) Assume a particular solution of the form

yP = tu1(t) + t2u2(t) + t3u3(t).

If we want to use equations (5) and (6), we must first divide equation (7)
by t3 to put it in the standard form (1); this step is necessary in order to
properly identify the nonhomogeneous term, g(t). Here, the function g(t) is
given by g(t) = t−2. Using equation (6), we arrive at⎡

⎢⎣
t t2 t3

1 2t 3t2

0 2 6t

⎤
⎥⎦
⎡
⎢⎣
u′
1

u′
2

u′
3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

t−2

⎤
⎥⎦ . (8)

Solving system (8), we find ⎡
⎢⎣
u′
1

u′
2

u′
3

⎤
⎥⎦ =

⎡
⎢⎣
1/(2t)

−1/t2
1/(2t3)

⎤
⎥⎦ .

Weobtain the functionsu1,u2,u3 by computing convenient antiderivatives:

u1(t) = 1
2
ln |t| = 1

2
ln t, u2(t) = 1

t
, u3(t) = − 1

4t2
,

where 0 < t < ∞. Thus, one particular solution is

yP(t) = t
2
ln t+ t2

(
1
t

)
+ t3

(−1
4t2

)
= t
2
ln t+ 3t

4
, 0 < t < ∞.

Since the term 3t/4 is a solution of the homogeneous equation, we can
dispense with it and use a simpler particular solution,

yP(t) = t
2
ln t, 0 < t < ∞.

The general solution is

y(t) = yC(t) + yP(t) = c1t+ c2t
2 + c3t

3 + t
2
ln t, 0 < t < ∞. ❖

E X E R C I S E S

Exercises 1–14:

For each differential equation,

(a) Find the complementary solution.

(b) Find a particular solution.

(c) Formulate the general solution.
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1. y′′′ − y′ = e2t 2. y′′′ − y′ = 4+ 2 cos 2t 3. y′′′ − y′ = 4t

4. y′′′ − y′ = −4et 5. y′′′ + y′′ = 6e−t 6. y′′′ − y′′ = 4e−2t

7. y′′′ − 2y′′ + y′ = t+ 4et 8. y′′′ − 3y′′ + 3y′ − y = 12et

9. y′′′ − y = et 10. y′′′ + y = et + cos t

11. y(4) − y = t+ 1 12. y(4) − y = cos 2t

13. y′′′ + y = t3 14. y′′′ + y′′ = 4

Exercises 15–21:

For each differential equation,

(a) Find the complementary solution.

(b) Formulate the appropriate form for the particular solution suggested by the method
of undetermined coefficients. You need not evaluate the undetermined coefficients.

15. y′′′ − 4y′′ + 4y′ = t3 + 4t2e2t 16. y′′′ − 3y′′ + 3y′ − y = et + 4et cos 3t+ 4

17. y(4) − 16y = 4t sin 2t 18. y(4) + 8y′′ + 16y = t cos 2t

19. y(4) − y = te−t + (3t+ 4) cos t 20. y′′′ − y′′ = t2 + cos t

21. y(4) + 4y = et sin t

Exercises 22–24:

Consider the nonhomogeneous differential equation

y′′′ + ay′′ + by′ + cy = g(t).

In each exercise, the general solution of the differential equation is given, where c1, c2,
and c3 represent arbitrary constants. Use this information to determine the constants
a,b, c and the function g(t).

22. y = c1 + c2t+ c3e
2t + 4 sin 2t 23. y = c1 sin 2t+ c2 cos 2t+ c3e

t + t2

24. y = c1 + c2t+ c3t
2 − 2t3

Exercises 25–26:

Consider the nonhomogeneous differential equation

t3y′′′ + at2y′′ + bty′ + cy = g(t), t > 0.

In each exercise, the general solution of the differential equation is given, where c1, c2,
and c3 represent arbitrary constants. Use this information to determine the constants
a,b, c and the function g(t).

25. y = c1 + c2t+ c3t
3 + t4 26. y = c1t+ c2t

2 + c3t
4 + 2 ln t

27. (a) Verify that {t, t2, t4} is a fundamental set of solutions of the differential equation
t3y′′′ − 4t2y′′ + 8ty′ − 8y = 0.

(b) Find the general solution of

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 2
√
t, t > 0.

[Hint: Cramer’s rule can be used to solve the system of equations arising in the
method of variation of parameters.]

28. Using the information of Exercise 27(a), find the general solution of

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 2t, t > 0.

29. Using the information of Exercise 27(a), find the general solution of

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 6t3, t > 0.
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Exercises 30–33:

Find the solution of the differential equation that satisfies the given conditions.

30. y(4) − y = e−t, y(0) = 0, lim t→∞ y(t) = 0

31. y′′′ + y = cos t, y(0) = 1, |y(t)| ≤ 2 for all t, 0 ≤ t < ∞
32. y′′′ + y′′ = 4e−2t, y(0) = 2, lim t→∞ y(t) = 1

33. y′′′ + y = e−t, y(0) = 1, lim t→∞ y(t) = 0

C H A P T E R 3 R E V I E W E X E R C I S E S

These review exercises provide you with an opportunity to test your understanding
of the concepts and solution techniques developed in this chapter. The end-of-section
exercises deal with the topics discussed in the section. These review exercises, however,
require you to identify an appropriate solution technique before solving the problem.

Exercises 1–30:

In each exercise, determine the general solution. If initial conditions are given, solve the
initial value problem.

1. y′′ + 2y′ + 2y = 0 2. y′′ − y = −6 sin t
3. y′′ + 4y = 0, y(0) = 3, y′(0) = 2 4. y′′′ + 9y′ = 0

5. y′′ − 5y′ + 6y = 0 6. y′′ − 4y′ + 13y = 0

7. y(4) − 81y = 0 8. y′′ + y = tan t, −π

2
< t <

π

2
9. y′′ + 9y = 0

10. y′′ + 5y′ + 6y = 6t, y(0) = −1, y′(0) = 1

11. y′′ − 2y′ + y = t−1et, t > 0 12. y′′ + 2y′ + 2y = 5 cos t

13. y′′ + 2y′ + y = 8, y(0) = 10, y′(0) = 1

14. y′′′ + y′ = e2t 15. y′′ = 6t+ 4

16. y′′ + 2y′ + y = 0 17. y(4) − y = 4t

18. y′′ − 3y′ + 2y = −3et 19. y′′ + y = sec t+ t, −π

2
< t <

π

2

20. y′′′ + y′′ − y′ − y = 0 21. y′′ − 6y′ + 9y = 0

22. y′′ + 6y′ + 8y = 0 23. y′′ − y = 6− t2

24. y′′ − 9y = 0 25. y′′ − 20y′ + 100y = 0

26. y′′ + 4y′ + 4y = e−2t 27. y′′ − 4y′ = 0

28. y′′ − 4y′ + 4y = 0 29. y(4) − 4y′′′ + 4y′′ = 0

30. y′′ + y = 2+ t2, y(0) = 2, y′(0) = 3

PROJECTS

Project 1: Modeling Buoyant Motion

Consider the paraboloid of revolution whose cross section is shown in Figure 3.21. The
upper radius of this solid body is r, and its height is h. Our initial goal is to derive a
differential equation modeling the bobbing motion of such a solid when it is floating in
liquid. The respective densities of the solid and liquid are ρ and ρl, where we assume
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Y + y(t)

(b)

r

Y
h

(a)

FIGURE 3.21

(a) The equilibrium state. (b) The dynamic state; y(t) is positive downward.

ρ < ρl so that the solid floats in the liquid. Assume further that the paraboloid bobs
vertically up and down when disturbed from its equilibrium rest state.

1. As shown in Figure 3.21,Y represents the depth towhich the paraboloid sinkswhen it
is floating at rest, and y(t) denotes the displacement of the body from its equilibrium
state (measured positive in the downward direction). Derive a differential equation
for y(t) as follows:

(a) Compute the weight of the solid. Apply the law of buoyancy (the weight of the
solid equals the weight of the liquid displaced) to obtain an expression for the
equilibrium depth Y .

(b)Assume that the solid is displaced from its equilibrium state and apply Newton’s
law of motionma = F to derive a differential equation for y(t). The net downward
force acting upon the body is the difference between its weight and the upward
buoyant force.

The differential equation you derive should have the form

y′′(t) + αy(t) + βy2(t) = 0, (1)

where α and β are positive constants. This is a second order autonomous nonlinear
differential equation. We have no techniques for solving such an equation. Neverthe-
less, we can use it to answer the question posed in part 2.

2. Consider the problem illustrated in Figure 3.22. A bullet-like projectile, having the
shape of a paraboloid of revolution, is dropped from rest a short distance l above

9 in.

(b)

4 in.

l

10 in.

(a)

FIGURE 3.22

(a) The initial state when dropped. (b) Maximum penetration into the
liquid.
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the surface of a liquid. Assume that ρ = 0.5ρl, h = 10 in., r = 4 in., and g = 32 ft/sec2.
Assume that the tip of the paraboloid penetrates the liquid to a maximum depth of
9 in.

Determine the distance l. Assume that the drag forces in the atmosphere and in
the liquid are negligible. [Hint: Divide the problem into two parts. Make a change
of independent variable in (1), adopting y as the new independent variable; recall
Section 2.9. Use this equation to determine the velocity with which the projectile
impacts the liquid surface. Use this information, in turn, to determine l.]

Project 2: A Simple Centrifuge

Themechanical system shown in Figure 3.23 is a simplemodel of a centrifuge. A particle
having mass m is initially positioned in a frictionless tube that rotates horizontally
about a fixed pivot. As the tube rotates, the particle’s radial distance from the pivot
will increase and the particle will eventually exit the tube. Our goal is to analyze this
behavior mathematically.

l

m

Ω

FIGURE 3.23

A simple centrifuge.

The key observation is the fact that at any given instant, the particle experiences
no forces in the radial direction. Newton’s law of motion tells us, therefore, that the
component of the acceleration vector in the radial direction must vanish. Obtain the
relevant differential equation as follows:

1. Consider Figure 3.24, where er and eθ are unit vectors in the radial and tangential
directions, respectively. Show that

er = (cos θ)i+ (sin θ)j, eθ = (− sin θ)i+ (cos θ)j, (2)

where i are j are unit vectors in the x and y directions, respectively.

2. If the angle θ changes with time, the unit vectors er and eθ will likewise change with
time since their orientations will change. Use equation (2) and the fact that i and j
are constant vectors to show that

der
dt

= θ ′eθ and
deθ

dt
= −θ ′er, (3)

where θ ′ = dθ/dt. Next, use equation (3) to derive expressions for d2er/dt
2 and

d2eθ /dt
2.

3. The position vector describing the particle’s location in the horizontal plane can be
represented as r = rer, where r is the (time-varying) radial distance of the particle
from the pivot. Differentiate this expression twice with respect to time, using the
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y

x

r

i

j �

e�

er

FIGURE 3.24

Diagram for equation (2).

product rule and the relations derived in part 2, to show that

a = d2r

dt2
= [r′′ − r(θ ′)2]er + [rθ ′′ + 2r′θ ′]eθ .

In our problem, angular velocity θ ′ =  is prescribed, whereas the radial acceleration
vanishes. The differential equation determining the radial distance of the particle
from the pivot is therefore

r′′ − 2r = 0. (4)

When angular velocity  is constant, equation (4) can be solved using the techniques
developed in this chapter.

4. A frictionless tube 2 m in length is rotating with a constant angular velocity of 30
revolutions per minute. At time t = 0 the tube is aligned with the positive x-axis, and
at that instant a particle is injected into the tube at the pivot with a radial velocity
r′(0) = r′0. What should the injection radial velocity r

′
0 be if we want the particle to

exit the tube at the first instant the tube becomes aligned with the negative x-axis?
What will be the radial velocity of the particle when it exits the tube?

Project 3: A Glimpse at Linear Two-Point
Boundary Value Problems

The problems considered in this chapter are initial value problems, problems in which
all supplementary constraints are imposed at a single value of the independent variable.
Another important type of problem is a two-point boundary value problem, in which
constraints (called boundary conditions) are imposed upon the solution at two different
values of the independent variable. In applications, the two points at which constraints
are imposed are typically the endpoints of the interval of interest. (Project 4 considers
an application of this type.)

The purpose of this exercise is to briefly illustrate some of the differences that
exist between initial value problems and boundary value problems. We have seen that
definitive statements can be made guaranteeing the existence of unique solutions of
initial value problems. For boundary value problems, however, the situation is more
complicated. The problems below illustrate that a two-point boundary value problem
may have a unique solution, infinitely many solutions, or no solution.

In each case, first obtain the general solution of the differential equation and then
impose the boundary conditions.
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1. Consider the two-point boundary value problem

y′′ − y = 0, y(0) = α, y(T) = β.

Show that this problem has a unique solution on the interval 0 ≤ t ≤ T for every
choice of the constants α, β, and T, where we assume T > 0. Obtain the solution in
the special case where α = 0, β = 2, and T = 1.

2. Consider the two-point boundary value problem

y′′ + y = 0, y(0) = α, y(T) = β.

Show that this problem has

(a) A unique solution for all choices of α and β if T �= nπ,n = 0,1,2, . . . .

(b) Infinitely many solutions if T = π and β = −α.

(c) No solution if T = π and β �= −α.

In each of the following exercises, obtain the general solution of the differential
equation and impose the boundary conditions. State whether the boundary value prob-
lem has a unique solution, infinitely many solutions, or no solution. If a solution exists,
whether unique or not, determine it.

3. y′′ + y = 0, y′(0) = 1, y(π) = 1

4. y′′ + 2y′ + y = 0, y(0) = 0, y(2) = −2
5. y′′ + 4y = 0, y(0) = 0, y(π/2) = 0

6. y′′ + y = 2, y(0) = 1, y(2π) = 0

7. y′′ − 2y′ + 2y = 0, y(0) = 0, y(1) = −2
8. y′′′ − y′ = 0, y(0) = 0, y′(0) = 0, y(1) = 1

Project 4: Vibrations of a Clamped-End Beam

Consider the beam shown in Figure 3.25(a). It is uniform in cross section and compo-
sition, has length l, and is clamped at both ends. Assume that a distributed loading or
force per unit length, denoted byw(x, t), is applied vertically to the beam. This loading is
a function of position x along the beam and time t. In response to this dynamic loading,
the beam will flex or deflect. We denote the beam displacement at point x and time t
by y(x, t). Both w and y are assumed positive in the downward direction [see Figure
3.25(b)].

x = 0 x = l x = 0 x = l

Distributed loading w(x, t) applied to beam

Beam deflection y (x, t)

(a) (b)

FIGURE 3.25

(a) The beam in an unloaded state. (b) The beam in a loaded state, at time t.

A mathematical description of how the beam deflects under loading is needed. A
model frequently used is the following partial differential equation, known as the Euler-
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Bernoulli beam equation:

ρ
∂2y(x, t)

∂t2
+ EI

∂4y(x, t)

∂x4
= w(x, t), 0 < x < l, 0 < t < ∞. (5)

In equation (5), ρ is the mass per unit length, E is Young’s modulus (a constant char-
acterizing the stiffness of the beam material), and I is the area moment of inertia (a
constant determined by the beam’s cross-sectional geometry).

Because the beam is clamped at its ends, beam displacement and the slope of this
displacement must vanish at both x = 0 and x = l. Therefore, beam displacement y(x, t)
must satisfy the following four constraints (known as boundary conditions):

y(0, t) = 0,
∂y(0, t)

∂x
= 0, y(l, t) = 0,

∂y(l, t)
∂x

= 0, 0 ≤ t < ∞. (6)

Consider the case where the loading function is

w(x, t) = w0 sin
2(πx/l) sin(ωt),

wherew0 is a positive constant. Therefore, at any fixed point x along the beam, the load-
ing varies sinusoidally in time with radian frequency ω = 2π f . When the factor sin(ωt)
is positive, the loading is pressing downward; when sin(ωt) is negative, the loading is
pulling upward. The amplitude or strength of the loading at point x is w0 sin

2(πx/l).
This amplitude is largest at the beam center, and it vanishes at both endpoints.

1. Assume a solution of the form

y(x, t) = u(x) sin(ωt). (7)

We are therefore assuming that the beam deflection has the same sin(ωt) time depen-
dence as the applied loading. Substitute (7) into equations (5) and (6). Show that we
obtain the following problem for u(x):

EI
d4u(x)

dx4
− ρω2u(x) = w0 sin

2(πx/l), 0 < x < l

u(0) = 0, u′(0) = 0, u(l) = 0, u′(l) = 0.

(8)

Problem (8) consists of a fourth order linear nonhomogeneous ordinary differential
equation and four supplementary conditions. Note, however, that the four constraints
are not all given at the same value of independent variable x. Problem (8) is not an
initial value problem; it is a two-point boundary value problem. The four constraints
in (8) are referred to as boundary conditions. Although the theory for such boundary
value problems will not be discussed here, this particular problem has a unique
solution that we can obtain using the techniques developed in this chapter.

2. Obtain the general solution of the differential equation in (8), assuming that
(ρω2/EI)1/4 �= 2π/l. [Hint: Use the trigonometric identity sin 2θ = (1− cos 2θ)/2.]

3. Impose the boundary conditions in (8). This will lead to a system of four equations
for the four arbitrary constants in the general solution found in part 2.

4. Use computer software to solve the linear system found in part 3 and obtain the
solution u(x) for the parameter values l = 2 m, ω = 2π (therefore, f = 1 Hz), ρ = 0.6
kg/m, EI = 32 N·m2, and w0 = 100 N.

5. Use computer software to plot the solution u(x) and determine the maximum deflec-
tion of the beam under this loading.
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4C H A P T E R

First Order Linear Systems

C H A P T E R O V E R V I E W

4.1 Introduction

4.2 Existence and Uniqueness

4.3 Homogeneous Linear Systems

4.4 Constant Coefficient Homogeneous Systems; the Eigenvalue
Problem

4.5 Real Eigenvalues and the Phase Plane

4.6 Complex Eigenvalues

4.7 Repeated Eigenvalues

4.8 Nonhomogeneous Linear Systems

4.9 Numerical Methods for Systems of Linear Differential
Equations

4.10 The Exponential Matrix and Diagonalization

Review Exercises

4.1 Introduction
A linear system of algebraic equations is a familiar concept. For instance, con-
sider this system of three linear equations in three unknowns:

2x1 + x2 − 2x3 = 3

5x1 + 2x2 + 9x3 = 7

3x1 − x2 + 4x3 = 6.

Solving this system entails finding all values x1, x2, x3 that simultaneously sat-
isfy each of the three equations. Inmost cases, such systemsof equations cannot
be solved “one equation at a time.” Rather, we have to deal with the system as
a whole, applying techniques from matrix theory to obtain the solution.
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Systems of First Order Linear Differential Equations
In this chapter, we consider systems of first order linear differential equations.
In general, we will be interested in systems of n first order linear differential
equations. When n = 3, such a system has the form

y′
1 = p11(t)y1 + p12(t)y2 + p13(t)y3 + g1(t)

y′
2 = p21(t)y1 + p22(t)y2 + p23(t)y3 + g2(t)

y′
3 = p31(t)y1 + p32(t)y2 + p33(t)y3 + g3(t), a < t < b.

(1)

Solving this problem amounts to finding all functions y1(t), y2(t), and y3(t) that
simultaneously satisfy the three differential equations on the interval of inter-
est. Here again, as with a system of algebraic equations, we cannot normally
solve a system of differential equations “one equation at a time.” We cannot,
for example, use the techniques of Chapter 2 to solve the first equation for y1(t),
because the functions y2(t) and y3(t) are not known. Instead, we have to develop
techniques that deal with the system of equations as a whole. In this regard,
techniques from matrix theory will be of central importance.

E X A M P L E

1 A Two-Tank Mixing Problem

Consider the two-tank connection shown in Figure 4.1. As in Chapter 2, the
solute and solvent are assumed to be salt and water, respectively, and the so-
lutions in both tanks are “well-stirred.” Assume each tank has a capacity of
500 gal. Initially, Tank 1 contains 200 gal of fresh water, while Tank 2 has 50
lb of salt dissolved in 300 gal of water. At time t = 0, the flow begins at the
rates and concentrations shown in Figure 4.1. Let the amounts of salt in the
two tanks at time t be denoted by Q1(t) and Q2(t), respectively. The problem
is to determine Q1(t) and Q2(t) on the time interval that is physically relevant
(that is, we will stop the flow if one of the tanks becomes completely filled or
completely drained). Time t is in minutes.

10 gal/min 12 gal/min

4 gal/min 8 gal/min

Tank 1 Tank 2

Q1(t) lb Q2(t) lb

V1(t) gal V2(t) gal

2 gal/min

6 gal/min

Fresh waterlb/gal1
2

lb/gal
Q1

V1

lb/gal
Q2

V2

lb/gal
Q2

V2
lb/gal

Q1

V1

FIGURE 4.1

The two-tank mixing problem described in Example 1.



4.1 Introduction 215

Solution: As a first step, we determine how the volumes of fluid vary in both
tanks. Tank 1 has a total of 16 gal of solution entering per minute and 6 gal
leaving per minute. Since Tank 1 contains 200 gal at t = 0 and gains 10 gal of
fluid perminute, the volume of liquid in Tank 1 is given byV1(t) = 200+ 10t gal.

Tank 2, on the other hand, gains 14 gal of fluid per minute but also loses
14 gal/min. Therefore, the volume of liquid in Tank 2 remains constant at
V2(t) = 300 gal. These considerations of volume determine the t-interval of in-
terest. Since the capacity of Tank 1 is 500 gal, it will be completely filled in
30 minutes. The interval of interest is therefore 0 ≤ t ≤ 30.

We obtain the relevant system of differential equations by applying the
principle of “conservation of salt” to each tank: The rate of change of the amount
of salt in a tank is equal to the rate at which salt enters the tank minus the rate
at which salt leaves the tank. From Figure 4.1, it follows that

dQ1

dt
= 5+ 6

[
Q2

V2

]
− 6

[
Q1

V1

]
= − 6

200+ 10t
Q1 + 6

300
Q2 + 5,

dQ2

dt
= 2

[
Q1

V1

]
− 14

[
Q2

V2

]
= 2
200+ 10t

Q1 − 14
300

Q2.

(2)

The initial value problem, to be solved on the interval 0 ≤ t ≤ 30, consists
of these differential equations together with initial conditions Q1(0) = 0,
Q2(0) = 50. ❖

The Calculus of Matrix Functions
Systems of differential equations such as (1) and (2) can be rewritten as a single
matrix equation, and techniques from matrix theory can be employed to find
solutions of such systems. We now discuss some helpful background in the
calculus of matrix functions.

Throughout Chapter 4, we will be concerned with (m× n) matrices whose
entries are real-valued functions of the real variable t. Such functions are called
matrix-valued functions or, simply,matrix functions. For example, a (3× 2)
matrix function has the form

A(t) =
⎡
⎢⎣
a11(t) a12(t)

a21(t) a22(t)

a31(t) a32(t)

⎤
⎥⎦ . (3)

In (3), the entries aij(t) are real-valued functions defined on a common interval
a < t < b.

When a matrix function has a single column, such as the (3× 1) matrix
function

y(t) =
⎡
⎢⎣
y1(t)

y2(t)

y3(t)

⎤
⎥⎦ ,

we usually refer to y(t) as a vector-valued function or, simply, a vector func-
tion. (In matrix theory, it is common practice to use boldface type to denote
column vectors. Therefore, whenever we refer to a vector function, we will use
boldface also.)
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The Arithmetic of Matrix Functions
For a fixed value of t, a matrix function is a constant matrix, and thus all the
familiar rules of matrix arithmetic hold for matrix functions as well. Rather
than stating general theorems giving detailed rules for the arithmetic of matrix
functions, we simply illustrate the rules in Example 2.

E X A M P L E

2 We consider (2× 1) and (2× 2) matrix functions for simplicity. All functions
are assumed to be defined on some common interval, say a < t < b, and all
equalities listed hold on that interval.

(a) Equality: [
a1(t)

a2(t)

]
=

[
b1(t)

b2(t)

]

if and only if a1(t) = b1(t) and a2(t) = b2(t).

(b) Addition: [
a1(t)

a2(t)

]
+

[
b1(t)

b2(t)

]
=

[
a1(t) + b1(t)

a2(t) + b2(t)

]

(c) Scalar Multiplication:

f (t)

[
a1(t)

a2(t)

]
=

[
f (t)a1(t)

f (t)a2(t)

]

(d) Matrix Multiplication:[
a11(t) a12(t)

a21(t) a22(t)

] [
b1(t)

b2(t)

]
=

[
a11(t)b1(t) + a12(t)b2(t)

a21(t)b1(t) + a22(t)b2(t)

]

(e) Matrix Inversion: Let A(t) be a (2× 2) matrix function,

A(t) =
[
a11(t) a12(t)

a21(t) a22(t)

]
.

Then A−1(t) exists for all t such that det[A(t)] �= 0. ❖

E X A M P L E

3 Consider the (2× 2) matrix function

A(t) =
[
t 1

4t 4t2

]
, −∞ < t < ∞.

Determine all values t such that A(t) is invertible, and find A−1(t) for those
values t.

Solution: Thematrix function A(t) is invertible if and only if det[A(t)] �= 0. For
this matrix,

det[A(t)] = 4t3 − 4t = 4t(t− 1)(t+ 1).
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Therefore, A−1(t) exists for all t except t = −1,0,1. The inverse of the (2× 2)
matrix [

a b

c d

]

is given by [
a b

c d

]−1
= 1
ad− bc

[
d −b

−c a

]
, ad− bc �= 0.

In our case,

A−1(t) = 1

4t(t2 − 1)

[
4t2 −1
−4t t

]
=

⎡
⎢⎢⎢⎣

t

t2 − 1

−1
4t(t2 − 1)

−1
t2 − 1

1

4(t2 − 1)

⎤
⎥⎥⎥⎦ , t �= −1,0,1. ❖

Limits and Derivatives of Matrix Functions
The concept of the limit of a vector function is familiar from calculus. For
example, let r(t) denote the vector function

r(t) = f (t)i+ g(t)j+ h(t)k,

where the three component functions f (t), g(t), and h(t) are defined in an open
interval containing the point t = a. The limit of r(t) as t approaches a is

lim
t→a

r(t) =
[
lim
t→a

f (t)
]
i+

[
lim
t→a

g(t)
]
j+

[
lim
t→a

h(t)
]
k,

provided the limits of the three component functions exist.
We take the same approach in defining limits of a matrix function. Let A(t)

be an (m× n)matrix function having component functions aij(t), all defined in
an open interval containing the point t = a. To say that

lim
t→a

A(t) = L

means

lim
t→a

aij(t) = lij, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For instance, if A(t) is a (2× 2) matrix function, then

lim
t→a

A(t) = L

if and only if

lim
t→a

A(t) = lim
t→a

[
a11(t) a12(t)

a21(t) a22(t)

]
=

⎡
⎢⎣limt→a

a11(t) lim
t→a

a12(t)

lim
t→a

a21(t) lim
t→a

a22(t)

⎤
⎥⎦ =

[
l11 l12
l21 l22

]
= L.

If one or more of the component function limits do not exist, then the limit of
the matrix function does not exist. For example, if

B(t) =
[
t t−1

0 et

]
, then lim

t→2
B(t) =

[
2 1

2

0 e2

]
.

However, lim t→0 B(t) does not exist.
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As in single variable calculus, we say thematrix function A(t) is continuous
at t = a if A(t) is defined in a neighborhood of t = a and if

lim
t→a

A(t) = A(a). (4)

To define a derivative (an instantaneous rate of change), we are led to a
limit of the form

A′(t) = lim
h→0

1
h

[A(t+ h) − A(t)].
For example, letA(t) be a (2× 2)matrix functionwith differentiable component
functions. Then

A′(t) = lim
h→0

1
h

[A(t+ h) − A(t)]

=

⎡
⎢⎢⎢⎣
lim
h→0

a11(t+ h) − a11(h)

h
lim
h→0

a12(t+ h) − a12(h)

h

lim
h→0

a21(t+ h) − a21(h)

h
lim
h→0

a22(t+ h) − a22(h)

h

⎤
⎥⎥⎥⎦

=
[
a′
11(t) a′

12(t)

a′
21(t) a′

22(t)

]
.

As this special case suggests, the derivative of a matrix function is the matrix of
derivatives of its component functions. In general, let A(t) be an (m× n)matrix
function

A(t) =

⎡
⎢⎢⎢⎢⎣
a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) a2n(t)
...

...

am1(t) am2(t) · · · amn(t)

⎤
⎥⎥⎥⎥⎦ ,

where each of the component functions is differentiable on the interval (a,b).
Then the derivative A′(t) exists and is given by

A′(t) =

⎡
⎢⎢⎢⎢⎣
a′
11(t) a′

12(t) · · · a′
1n(t)

a′
21(t) a′

22(t) a′
2n(t)

...
...

a′
m1(t) a′

m2(t) · · · a′
mn(t)

⎤
⎥⎥⎥⎥⎦ , a < t < b. (5)

Werefer toA(t) as adifferentiablematrix function or, simply, adifferentiable
matrix.

Representing Linear Systems in Matrix Terms
We can express systems of linear differential equations in matrix terms. For
example, recall the (3× 3) system (1)

y′
1 = p11(t)y1 + p12(t)y2 + p13(t)y3 + g1(t)

y′
2 = p21(t)y1 + p22(t)y2 + p23(t)y3 + g2(t)

y′
3 = p31(t)y1 + p32(t)y2 + p33(t)y3 + g3(t), a < t < b.
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Define y(t), P(t), and g(t) as follows:

y(t) =
⎡
⎢⎣
y1(t)

y2(t)

y3(t)

⎤
⎥⎦ , P(t) =

⎡
⎢⎣
p11(t) p12(t) p13(t)

p21(t) p22(t) p23(t)

p31(t) p32(t) p33(t)

⎤
⎥⎦ , g(t) =

⎡
⎢⎣
g1(t)

g2(t)

g3(t)

⎤
⎥⎦ .

Using these definitions, we can express the (3× 3) system in matrix terms as

y ′(t) = P(t)y(t) + g(t). (6)

The value of (6) is more than just shorthand. The notation also helps us under-
stand the principles of solving systems of linear differential equations because
it takes our eyes away from the details of individual equations and allows us to
see the system as a single entity.We can view (6) as a single differential equation
involving a matrix-valued dependent variable.

Some Useful Formulas
The fact that the derivative of a matrix function is simply the matrix of deriva-
tives can be used to verify the following familiar-looking formulas.

Let A(t) and B(t) be two differentiable (m× n) matrix functions. Then

[A(t) + B(t)]′ = A′(t) + B′(t). (7)

Let A(t) be a differentiable (m× n) matrix function, and let f (t) be a differen-
tiable scalar function. Then

[ f (t)A(t)]′ = f ′(t)A(t) + f (t)A′(t). (8)

Let A(t) be a differentiable (m× n) matrix function, and let B(t) be a differen-
tiable (n× p) matrix function. Then

[A(t)B(t)]′ = A′(t)B(t) + A(t)B′(t). (9)

Formula (9) is the analog of the familiar product formula in calculus. Since
the functions involved are matrix functions, however, it is imperative that the
order of matrix multiplications be preserved.

Antiderivatives of Matrix Functions
Since the derivative of a matrix function reduces to the matrix of derivatives,
it is not surprising that antiderivatives of matrix functions are found by an-
tidifferentiating each component of the matrix function. That is, if A(t) is the
(m× n) matrix function

A(t) =

⎡
⎢⎢⎢⎢⎣
a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) a2n(t)
...

...

am1(t) am2(t) · · · amn(t)

⎤
⎥⎥⎥⎥⎦ ,
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then the antiderivative of A(t) is the (m× n) matrix function

∫
A(t)dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
a11(t)dt

∫
a12(t)dt · · ·

∫
a1n(t)dt∫

a21(t)dt
∫
a22(t)dt

∫
a2n(t)dt

...
...∫

am1(t)dt
∫
am2(t)dt · · ·

∫
amn(t)dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

E X A M P L E

4 Determine the antiderivative of

A(t) =
[
2e2t 2t

0 −1

]
.

Solution: Since the antiderivative of a matrix function is the matrix of an-
tiderivatives,∫

A(t)dt =
[
e2t + c11 t2 + c12
c21 −t+ c22

]
=

[
e2t t2

0 −t

]
+

[
c11 c12
c21 c22

]
=

[
e2t t2

0 −t

]
+ C. ❖

As Example 4 illustrates, when we calculate the antiderivative of a ma-
trix function, we need to allow for different arbitrary constants in each com-
ponent function antidifferentiation. Therefore, the general antiderivative of a
matrix function is a matrix of convenient antiderivatives plus an arbitrary con-
stant matrix of comparable dimensions.

E X E R C I S E S

Exercises 1–5:

For the given matrix functions A(t), B(t), and c(t), make the indicated calculations

A(t) =
[
t− 1 t2

2 2t+ 1

]
, B(t) =

[
t −1
0 t+ 2

]
, c(t) =

[
t+ 1

−1

]
.

1. 2A(t) − 3tB(t) 2. A(t)B(t) − B(t)A(t) 3. A(t)c(t)

4. det[tA(t)] 5. det[B(t)A(t)]
Exercises 6–9:

Determine all values t such that A(t) is invertible and, for those t-values, find A−1(t).

6. A(t) =
[
t+ 1 t

t t+ 1

]
7. A(t) =

[
t 2

2 t− 3

]

8. A(t) =
[
sin t − cos t

sin t cos t

]
9. A(t) =

[
et e3t

e2t e4t

]
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Exercises 10–11:

Find lim t→0 A(t) or state that the limit does not exist.

10. A(t) =

⎡
⎢⎢⎢⎣
sin t
t

t cos t
3

t+ 1

e3t sec t
2t

t2 − 1

⎤
⎥⎥⎥⎦ 11. A(t) =

⎡
⎢⎣ te−t tan t

t2 − 2 esin t

⎤
⎥⎦

Exercises 12–13:

Find A′(t) and A′′(t). For what values of t are the matrices A(t), A′(t), and A′′(t) defined?

12. A(t) =
[
sin t 3t

t2 + 2 5

]
13. A(t) =

[
7 ln |t|√
1− t e3t

]

Exercises 14–15:

Each of the systems of linear differential equations can be expressed in the form
y ′ = P(t)y+ g(t). Determine P(t) and g(t).

14. y′
1 = t2y1 + 3y2 + sec t

y′
2 = (sin t)y1 + ty2 − 5

15. y′
1 = t−1y1 + (t2 + 1)y2 + t

y′
2 = 4y1 + t−1y2 + 8t ln t

Exercises 16–22:

Determine the general form of A(t) by constructing antiderivatives as needed and im-
posing any given constraints.

16. A′(t) =
[−1
2t

]
17. A′(t) = [1 t et], A(0) = [−1 1 0]

18. A′(t) =
[
2t 1

cos t 3t2

]
, A(0) =

[
2 5

1 −2

]

19. A′(t) =
[
t−1 4t

5 3t2

]
, A(1) =

[
2 5

1 −2

]

20. A′′(t) =
[
2

et

]

21. A′′(t) =
[
2t sin t

0 0

]
, A(0) =

[
0 1

0 0

]
, A′(0) =

[
0 0

1 0

]

22. A′′(t) =
[
1 t

0 0

]
, A(0) =

[
1 1

−2 1

]
, A(1) =

[−1 2

−2 3

]

Exercises 23–24:

Calculate A(t) = ∫ t
0 B(s)ds.

23. B(s) =
[
2s cos s 2

5 (s+ 1)−1 3s2

]
24. B(s) =

[
es 6s

cos 2πs sin 2πs

]

25. Let A(t) be an (n× n)matrix function. We use the notation A2(t) to mean the matrix
function A(t)A(t).

(a) Construct an explicit (2× 2) differentiable matrix function to show that

d
dt

[A2(t)] and 2A(t)
d
dt

[A(t)]
are generally not equal.
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(b) What is the correct formula relating the derivative of A2(t) to the matrices A(t)
and A′(t)?

26. Construct an example of a (2× 2) matrix function A(t) such that A2(t) is a constant
matrix but A(t) is not a constant matrix.

27. Let A(t) be an (n× n) matrix function that is both differentiable and invertible on
some t-interval of interest. It can be shown that A−1(t) is likewise differentiable on
this interval. Differentiate the matrix identity A−1(t)A(t) = I to obtain the following
formula:

d
dt

[A−1(t)] = −A−1(t)A′(t)A−1(t).

[Hint: Recall the product rule, equation (9). Notice that the formula you derive is
not the same as the power rule of single-variable calculus.]

28. Consider the matrix function

A(t) =
[
t t3

0 2t

]
.

Explicitly calculate both (d/dt)[A−1(t)] and −A−1(t)A′(t)A−1(t) for this special case to
illustrate the formula derived in Exercise 27.

Exercises 29–32:

Consider the two-tank mixing apparatus shown in the figure. Each tank has a capacity
of 500 gal and initially contains 100 gal of fresh water. At time t = 0, the well-stirred
mixing process begins with the specified input concentration and flow rates.

Tank 1

Tank 2

lb/gal1
2 r1

r3

r2r4

Figure for Exercises 29–32

(a) Determine the volume of solution in each tank as a function of time.

(b) Determine the time interval of interest. (The process stops when a tank is full or
empty.)

(c) LetQ1(t) andQ2(t) denote the amounts of salt (in pounds) in Tanks 1 and 2 at time t
(inminutes). Derive the initial value problemwithQ1 andQ2 as dependent variables
describing the mixing process.

29. r1 = r3 = 5 gal/min, r2 = r4 = 10 gal/min

30. r1 = r3 = 5 gal/min, r2 = 6 gal/min, r4 = 4 gal/min

31. r1 = 5 gal/min, r3 = 0, r2 = r4 = 5 gal/min

32. r1 = 5 gal/min, r3 = 10 gal/min, r2 = r4 = 5 gal/min
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4.2 Existence and Uniqueness
Section 4.1 introduced matrix and vector functions and showed how to deal
with the calculus of such functions. We now discuss initial value problems
involving systems of first order differential equations. Consider the initial value
problem

y′
1 = p11(t)y1 + p12(t)y2 + · · · + p1n(t)yn + g1(t)

y′
2 = p21(t)y1 + p22(t)y2 + · · · + p2n(t)yn + g2(t)

...

y′
n = pn1(t)y1 + pn2(t)y2 + · · · + pnn(t)yn + gn(t), a < t < b,

y1(t0) = y01, y2(t0) = y02, . . . , yn(t0) = y0n,

(1)

where y01, y
0
2, . . . , y

0
n are n constants specified at some point t0 in the t-interval

of interest, (a,b). The n2 coefficient functions p11(t),p12(t), . . . ,pnn(t) and the n
functions g1(t), g2(t), . . . , gn(t) are given functions, defined on a < t < b.

We can recast problem (1) in matrix form as

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, (2)

where, for a < t < b,

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ , P(t) =

⎡
⎢⎢⎢⎢⎣
p11(t) p12(t) · · · p1n(t)

p21(t) p22(t) p2n(t)
...

...

pn1(t) pn2(t) · · · pnn(t)

⎤
⎥⎥⎥⎥⎦ ,

g(t) =

⎡
⎢⎢⎢⎢⎣
g1(t)

g2(t)
...

gn(t)

⎤
⎥⎥⎥⎥⎦ , y0 =

⎡
⎢⎢⎢⎢⎢⎣

y01

y02
...

y0n

⎤
⎥⎥⎥⎥⎥⎦ .

The differential equation in (2) is referred to as a first order system of linear
differential equations or, more simply, a first order linear system. If the
(n× 1) vector function g(t) is the (n× 1) zero vector, then the system is called
a first order homogeneous linear system; if g(t) is not identically zero on the
interval of interest, the system is a first order nonhomogeneous linear system.

We sometimes need to distinguish the differential equation in (2), where
the dependent variable y(t) is a vector-valued function, from the differential
equations considered in Chapters 1–3, where the dependent variable y(t) is a
single real-valued function. We will refer to the differential equations studied
in Chapters 1–3 as scalar differential equations. In particular, Chapters 2 and
3 dealt with first order, second order, and nth order linear scalar differential
equations.

An Existence and Uniqueness Theorem
What are the conditions needed to ensure that initial value problem (2) has
a unique solution? A general theme emerged from the existence/uniqueness
results of Chapters 2 and 3—namely,
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If (a,b) denotes the interval of interest, then continuity of the coefficient
functions of a linear differential equation, together with continuity of
the nonhomogeneous term g(t), is sufficient to guarantee existence of a
unique solution of the initial value problem on the entire interval (a,b).

Theorem 4.1 continues this theme. The theory of linear differential equations—
whether scalar equations or first order systems—has an underlying conceptual
unity. Theorem 4.1 is an overarching result, including Theorems 2.1, 3.1, and
3.5 as special cases.

Theorem 4.1
Consider the initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0,

where y(t), P(t), g(t), and y0 are defined as in equation (2). Let the n
2

components of P(t) and the n components of g(t) be continuous on the
interval (a,b), and let t0 be in (a,b). Then the initial value problem has a
unique solution that exists on the entire interval (a,b).

E X A M P L E

1 Consider the initial value problem

y′
1 = (sin 2t)y1 + t

t2 − 2t− 8
y2 + 4, y1(1) = 2

y′
2 = (ln |t+ 1|)y1 + e−2ty2 + sec t, y2(1) = 0.

Determine the largest t-interval onwhich Theorem 4.1 guarantees the existence
of a unique solution of this problem.

Solution: The given problem can be rewritten as

y ′(t) = P(t)y(t) + g(t), a < t < b,

y(t0) = y0,

where

y(t) =
[
y1(t)

y2(t)

]
, P(t) =

⎡
⎢⎣ sin 2t

t

t2 − 2t− 8

ln |t+ 1| e−2t

⎤
⎥⎦ ,

g(t) =
[
4

sec t

]
, t0 = 1, y0 =

[
2

0

]
.

According toTheorem4.1, a unique solution is guaranteed to exist on the largest
interval (a,b), containing the point t0 = 1, in which the four components of P(t)
and the two components of g(t) are continuous.

The functions p11(t) = sin 2t, p22(t) = e−2t, and g1(t) = 4 are continuous for
all t, −∞ < t < ∞. The function

p12(t) = t

t2 − 2t− 8
= t

(t− 4)(t+ 2)
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has discontinuities at t = −2 and t = 4. Similarly, p21(t) = ln |t+ 1| is discontin-
uous at t = −1, while g2(t) = sec t has discontinuities at odd multiples of π/2.
Since π/2 ≈ 1.571, the largest interval containing t0 = 1 on which all six func-
tions are continuous is −1 < t < π/2. Theorem 4.1 guarantees the existence of
a unique solution on the interval −1 < t < π/2. ❖

Rewriting an nth Order Scalar Linear Equation
as a First Order Linear System
Theorem 4.1 is an overarching result because it is always possible to rewrite
an nth order scalar linear differential equation as a system of n first order lin-
ear differential equations. We introduce the technique with a simple example,
rewriting a second order scalar linear differential equation as a system of two
first order linear equations. Initial conditions can be transformed as well.

Consider the scalar initial value problem

y′′ − ety′ + 3y = sin 2t, y(0) = 2, y′(0) = −1. (3)

Make the change of variables

y1(t) = y(t), y2(t) = y′(t). (4)

Define the vector function y(t) by

y(t) =
[
y1(t)

y2(t)

]
.

From (3) and (4), we have

y′
1(t) = y′(t) = y2(t)

y′
2(t) = y′′(t) = ety′(t) − 3y(t) + sin 2t = ety2(t) − 3y1(t) + sin 2t.

Therefore, initial value problem (3) can be rewritten as[
y′
1(t)

y′
2(t)

]
=

[
y2(t)

ety2(t) − 3y1(t) + sin 2t

]
, y(0) =

[
2

−1

]
.

This initial value problem has the form y ′(t) = P(t)y(t) + g(t), y(0) = y0, where

P(t) =
[
0 1

−3 et

]
, g(t) =

[
0

sin 2t

]
, y0 =

[
2

−1

]
.

In general, consider the nth order scalar linear differential equation

y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y = g(t). (5)

Make the change of variables

y1(t) = y(t), y2(t) = y′(t), y3(t) = y′′(t), . . . , yn(t) = y(n−1)(t).
(6)

Define

y(t) =

⎡
⎢⎢⎢⎢⎢⎣

y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎥⎦ ,
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and calculate the components of y ′(t) using equations (6) and (5). The result is
a linear system, y ′(t) = P(t)y(t) + g(t). [If there are initial conditions associated
with differential equation (5), we can use (6) to express the initial conditions
in the form y(t0) = y0.]

E X A M P L E

2 Rewrite the scalar initial value problem as a first order linear system,

y′′′ − t2y′′ + 3ty′ + 5y = e−4t, y(0) = 1, y′(0) = 3, y′′(0) = 7.

Solution: Define y(t) using the change of variables (6):

y(t) =

⎡
⎢⎢⎣
y1(t)

y2(t)

y3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y(t)

y′(t)
y′′(t)

⎤
⎥⎥⎦ .

Differentiating y(t), we obtain

y ′(t) =

⎡
⎢⎢⎣
y′
1(t)

y′
2(t)

y′
3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y′(t)
y′′(t)
y′′′(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y2(t)

y3(t)

t2y3(t) − 3ty2(t) − 5y1(t) + e−4t

⎤
⎥⎥⎦ .

Therefore, the initial value problem can be written as⎡
⎢⎢⎣
y′
1(t)

y′
2(t)

y′
3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0

0 0 1

−5 −3t t2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1(t)

y2(t)

y3(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0

0

e−4t

⎤
⎥⎥⎦ , y(0) =

⎡
⎢⎢⎣
1

3

7

⎤
⎥⎥⎦ . ❖

The ability to rewrite an nth order scalar equation as a first order linear
system leads to an important conceptual unity for the theory of differential
equations. As we present the theory of first order linear systems in this chapter,
we will point out how the results being developed relate to analogous results
from Chapters 2 and 3.

What are the practical implications of this relationship? On one hand, the
techniques we have seen in prior chapters for solving nth order scalar problems
have not been rendered obsolete; they remain as relevant as ever. As we will see,
if an initial value problem for a scalar differential equation can be solved using
the techniques of Chapter 3, that process is usually easier than rewriting the
equation as a first order system and then solving the resulting matrix problem.

On the other hand, the ability to recast higher order scalar problems as first
order systems is very useful, for example, in applying numerical algorithms to
solve these problems. Consider, for instance, the initial value problem in Exam-
ple 2. Although Theorem 3.5 assures us that the problem has a unique solution
on −∞ < t < ∞, we have no method to explicitly construct the solution; the
third order nonhomogeneous differential equation, although linear, has vari-
able coefficients. Therefore, wemight choose to solve this problemnumerically.
As we will see in Section 4.9, Euler’s method (as well as other more accurate
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numerical methods) can be extended to apply to initial value problems for first
order systems. In fact, when we want to use a numerical method to solve a
higher order scalar problem, the first step normally is to rewrite the scalar
problem as a first order system.

E X E R C I S E S

Exercises 1–4:

Find the largest interval a < t < b such that a unique solution of the given initial value
problem is guaranteed to exist.

1. y′
1 = t−1y1 + (tan t)y2, y1(3) = 0

y′
2 = (ln |t|)y1 + ety2, y2(3) = 1

2. y′
1 = y1 + (tan t)y2 + (t+ 1)−2 y1(0) = 0

y′
2 = (t2 − 2)y1 + 4y2, y2(0) = 0

3. t2y′
1 = (cos t)y1 + y2 + 1, y1(1) = 0

y′
2 = 2y1 + 4ty2 + sec t, y2(1) = 2

4. (t+ 2)y′
1 = 3ty1 + 5y2, y1(1) = 0

(t− 2)y′
2 = 2y1 + 4ty2, y2(1) = 2

Exercises 5–6:

Verify, for any values c1 and c2, that the functions y1(t) and y2(t) satisfy the given system
of linear differential equations.

5. y′
1 = 4y1 + y2, y1(t) = c1e

5t + c2e
3t

y′
2 = y1 + 4y2, y2(t) = c1e

5t − c2e
3t

6. y′
1 = y1 + y2, y1(t) = c1e

t cos t+ c2e
t sin t

y′
2 = −y1 + y2, y2(t) = −c1et sin t+ c2e

t cos t

Exercises 7–8:

For each of the exercises,

(a) Rewrite the equations from the given exercise in vector form as y ′(t) = Ay(t), iden-
tifying the constant matrix A.

(b) Rewrite the solution of the equations in part (a) in vector form as y(t) = c1y1(t) +
c2y2(t).

7. Exercise 5 8. Exercise 6

Exercises 9–10:

Each exercise lists a candidate for the solution, y(t), of the equation y ′ = Ay, where A
is the given constant matrix. Verify that y(t) is indeed a solution for any choice of the
constants c1 and c2. Find values of c1 and c2 such that y(t) solves the given initial value
problem. [According to Theorem 4.1, you have found the unique solution of y ′ = Ay,
y(0) = y0.]

9. y ′ = Ay, y(0) =
[
4

−3

]
, where A =

[
1 −2
1 4

]
and y(t) = c1e

2t

[
2

−1

]
+ c2e

3t

[
1

−1

]

10. y ′ = Ay, y(0) =
[−1
8

]
, where A =

[
3 2

4 1

]
and y(t) = c1e

5t

[
1

1

]
+ c2e

−t
[−1
2

]
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Exercises 11–14:

As in Example 2, rewrite the scalar linear differential equation as a system of first order
linear differential equations of the form y′ = P(t)y+ g(t). Identify the matrix function
P(t) and the vector function g(t).

11. y′′ + t2y′ + 4y = sin t 12. (cos t)y′′ − 3ty′ + √
t y = t2 + 1

13. ety′′′ + 5y′′ + t−1y′ + (tan t)y = 1 14. 2y′′ + ty+ e3t = y′′′ + (cos t)y′

Exercises 15–17:

Each initial value problemwas obtained from an initial value problem for a higher order
scalar differential equation. What is the corresponding scalar initial value problem?

15. y ′ =
[
0 1

−3 2

]
y+

[
0

2 cos 2t

]
, y(−1) =

[
1

4

]

16. y ′ =
⎡
⎢⎣

y2
y3

−2y1 + 4y3 + e3t

⎤
⎥⎦ , y(0) =

⎡
⎢⎣

1

−2
3

⎤
⎥⎦

17. y ′ =

⎡
⎢⎢⎢⎣

y2
y3
y4

y2 + y3 sin( y1) + y23

⎤
⎥⎥⎥⎦ , y(1) =

⎡
⎢⎢⎢⎣

0

0

−1
2

⎤
⎥⎥⎥⎦

Exercises 18–21:

Exercises 11–17 dealt with rewriting a single scalar equation as a first order system.
Frequently, however, we need to convert systems of higher order equations into a sin-
gle first order system. In each exercise, rewrite the given system of two second order
equations as a system of four first order linear equations of the form y′ = P(t)y+ g(t).
In each exercise, use the following change of variables and identify P(t) and g(t):

y(t) =

⎡
⎢⎢⎢⎢⎢⎣

y1(t)

y2(t)

y3(t)

y4(t)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

y(t)

y′(t)

z(t)

z′(t)

⎤
⎥⎥⎥⎥⎥⎦ .

18. y′′ = tz′ + y′ + z

z′′ = y′ + z′ + 2ty

19. y′′ = t−1y′ + 4y− tz+ (sin t)z′ + e2t

z′′ = y− 5z′

20. y′′ = 7y′ + 4y− 8z+ 6z′ + t2

z′′ = 5z′ + 2z− 6y′ + 3y− sin t

21. 15z+ 9y′ + 3y′′ = 12y− 6z′ + 3t2

z′ + 5y− z′′ = 2z− 6y′ + t

4.3 Homogeneous Linear Systems
Our previous discussions of linear differential equations began with homoge-
nous equations. We use the same approach here. Consider the system of n first
order homogeneous linear differential equations,

y′
1 = p11(t)y1 + p12(t)y2 + · · · + p1n(t)yn
y′
2 = p21(t)y1 + p22(t)y2 + · · · + p2n(t)yn

...

y′
n = pn1(t)y1 + pn2(t)y2 + · · · + pnn(t)yn, a < t < b.

(1)
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This first order homogeneous linear system can be written in matrix form
as

y ′ = P(t)y, a < t < b, (2)

where

y(t) =

⎡
⎢⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎥⎦ and P(t) =

⎡
⎢⎢⎢⎢⎢⎣
p11(t) p12(t) · · · p1n(t)

p21(t) p22(t) p2n(t)
...

...

pn1(t) pn2(t) · · · pnn(t)

⎤
⎥⎥⎥⎥⎥⎦ .

The Principle of Superposition
Theorem 4.2 states a superposition principle for equation (2).

Theorem 4.2
Let y1(t), y2(t), . . . , yr(t) be any r solutions of the homogeneous linear
equation

y ′ = P(t)y, a < t < b.

Then, for any r constants c1, c2, . . . , cr, the linear combination

y(t) = c1y1(t) + c2y2(t) + · · · + cryr(t)

is also a solution on the t-interval a < t < b.

● PROOF: The proof of Theorem 4.2 is conceptually the same as the proof
of Theorem 3.2; we simply substitute the expression for y(t) into differential
equation (2), obtaining

y ′ = (c1y1 + c2y2 + · · · + cryr)
′ = c1y

′
1 + c2y

′
2 + · · · + cry

′
r. (3)

Since y ′
i = P(t)yi for 1 ≤ i ≤ n, we can rewrite (3) as

y ′ = c1P(t)y1 + c2P(t)y2 + · · · + crP(t)yr = P(t)(c1y1 + c2y2 + · · · + cryr) = P(t)y.

●

Fundamental Sets and the General Solution
We are mainly concerned with Theorem 4.2 in the case r = n. In this context,
we again introduce the concept of a fundamental set of solutions.

Let {y1(t), y2(t), . . . , yn(t)} be a set of n solutions of the linear system (2).
This set of solutions is called a fundamental set of solutions if every solution
of (2) can bewritten as a linear combination of the form c1y1(t) + c2y2(t) + · · · +
cnyn(t). If {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions of y ′ = P(t)y,
then the expression

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t)

is called the general solution.
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E X A M P L E

1 Consider the first order linear homogeneous system y ′ = Ay, − ∞ < t < ∞,
where

A =
⎡
⎢⎣

0 1 0

−6 5 0

0 0 1

⎤
⎥⎦ .

You can verify by direct substitution that the vector functions

y1(t) =

⎡
⎢⎢⎣
e2t

2e2t

0

⎤
⎥⎥⎦ , y2(t) =

⎡
⎢⎢⎣
e3t

3e3t

0

⎤
⎥⎥⎦ , y3(t) =

⎡
⎢⎣
0

0

et

⎤
⎥⎦

are a solution of y ′ = Ay. From Theorem 4.2, it follows that the linear combi-
nation

y(t) = c1y1(t) + c2y2(t) + c3y3(t) (4)

is also a solution for any choice of constants c1, c2, c3. Is (4) the general solution
of y ′ = Ay?We will show in Example 2 that the answer is “Yes.” Also, in Section
4.4, we describe how to obtain the three solutions y1(t), y2(t), and y3(t). ❖

Two Important Identities
We take note of a simple but important matrix identity known as the column
form for matrix-vector multiplication. Let A be an (m× n) matrix, and let x
be an (n× 1) vector. We can represent A in column form as

A = [A1,A2, . . . ,An].
[In this column form representation, A1,A2, . . . ,An denote the columns of A;
each Ai is an (m× 1) vector.] Let the vector x be given by

x =

⎡
⎢⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎥⎦ .

Then the matrix-vector product Ax is equal to the linear combination

Ax = x1A1 + x2A2 + · · · + xnAn. (5)

For instance, consider the linear combination y(t) = c1y1(t) + c2y2(t) + c3y3(t)
appearing in equation (4) in Example 1. Using identity (5), we can rewrite this
linear combination in the form y(t) = �(t)c, where

�(t) = [y1(t), y2(t), y3(t)] =

⎡
⎢⎢⎣
e2t e3t 0

2e2t 3e3t 0

0 0 et

⎤
⎥⎥⎦ and c =

⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ .

A related identity involvesmatrix-matrixmultiplication. LetBbe an (m× n)

matrix, and let C = [C1,C2, . . . ,Cr] be an (n× r)matrix. Then, in column form,
the matrix product BC can be written as

BC = [BC1,BC2, . . . ,BCr]. (6)
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In other words [see (6)], the ith column of BC is the product of the matrix B
and the ith column of C.

The Wronskian
Consider the initial value problem

y′ = P(t)y, y(t0) = y0, a < t < b, (7)

where the (n× n)matrix P(t) is continuous on (a,b) and where t0 is in (a,b). Let
{y1(t), y2(t), . . . , yn(t)} be a fundamental set of solutions for y ′ = P(t)y. There-
fore, the general solution of y ′ = P(t)y is

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t).

The unique solution of initial value problem (7) is found by imposing the initial
condition

c1y1(t0) + c2y2(t0) + · · · + cnyn(t0) = y0.

Using (5), we can write this vector equation as

[y1(t0), y2(t0), . . . , yn(t0)]

⎡
⎢⎢⎢⎢⎣
c1
c2
...

cn

⎤
⎥⎥⎥⎥⎦ = y0. (8a)

For brevity, let �(t) = [y1(t), y2(t), . . . , yn(t)], and let c denote the (n× 1) vector
of constants in equation (8a). Using this notation, we can write equation (8a) as

�(t0)c = y0. (8b)

By Theorem 4.1, equation (8b) has a unique solution for every right-hand side
y0 and choice of t0 in (a,b). Therefore, det [�(t)] �= 0 for all t in (a,b).

This discussion leads us once more to the definition of a Wronskian.
Let {y1(t), y2(t), . . . , yn(t)} be a set of n solutions of y ′ = P(t)y, and let �(t) =
[y1(t), y2(t), . . . , yn(t)]. TheWronskian,W(t), is defined to be

W(t) = det [�(t)].
We have seen that if the columns of �(t) form a fundamental set of solutions,
then W(t) �= 0 for all t in (a,b). The converse is true as well and can be estab-
lished with essentially the same arguments used in Section 3.11; see equations
(4)–(6) in Section 3.11. Theorem 4.3 gives the resulting characterization of fun-
damental sets.

Theorem 4.3
Let y1(t), y2(t), . . . , yn(t) be n solutions of the homogeneous linear equa-
tion

y ′ = P(t)y, a < t < b,

where P(t) is continuous on (a,b). LetW(t) denote theWronskian of these
solutions. Then {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions if
and only ifW(t) �= 0 on (a,b).
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E X A M P L E

2 Consider the initial value problem

y ′ = Ay, y(0) = y0, −∞ < t < ∞,

where

A =
⎡
⎣ 0 1 0

−6 5 0
0 0 1

⎤
⎦ , y0 =

⎡
⎢⎣
3

7

4

⎤
⎥⎦ .

From Example 1, we know that three solutions of the differential equation
y ′ = Ay are

y1(t) =
⎡
⎢⎣
e2t

2e2t

0

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣
e3t

3e3t

0

⎤
⎥⎦ , y3(t) =

⎡
⎢⎣
0

0

et

⎤
⎥⎦ .

(a) Show that {y1(t), y2(t), y3(t)} is a fundamental set of solutions.
(b) Solve the initial value problem.

Solution:

(a) The Wronskian is

W(t) =

∣∣∣∣∣∣∣
e2t e3t 0

2e2t 3e3t 0

0 0 et

∣∣∣∣∣∣∣ = et(3e5t − 2e5t) = e6t.

Since theWronskian is nonzero for all t, {y1(t), y2(t), y3(t)} is a fundamental
set of solutions on −∞ < t < ∞.

(b) From part (a), the general solution is

y(t) = c1y1(t) + c2y2(t) + c3y3(t) = �(t)c,

where

�(t) =
⎡
⎢⎣
e2t e3t 0

2e2t 3e3t 0

0 0 et

⎤
⎥⎦ .

Imposing the initial condition, y(0) = �(0)c = y0, we obtain⎡
⎢⎣
1 1 0

2 3 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ =

⎡
⎢⎣
3

7

4

⎤
⎥⎦ .

Therefore, c is given by

c = �(0)−1y0 =
⎡
⎢⎣

3 −1 0

−2 1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
3

7

4

⎤
⎥⎦ =

⎡
⎢⎣
2

1

4

⎤
⎥⎦ .
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The solution of the initial value problem is

y(t) = �(t)c =
⎡
⎢⎣
2e2t + e3t

4e2t + 3e3t

4et

⎤
⎥⎦ . ❖

Abel’s Theorem
In Section 3.11, we stated Abel’s theorem and used it to establish an impor-
tant dichotomy property forWronskians formed from solutions of scalar linear
homogeneous equations. We now present (without proof) a generalization of
Abel’s theorem. This generalization, stated in Theorem 4.4, again implies that
the Wronskian of a set of solutions either vanishes nowhere or vanishes every-
where on the t-interval of interest. Theorem 4.4 shows, therefore, that we need
only establish that the Wronskian is nonzero at some convenient point in order
to demonstrate that a solution set is a fundamental set.

Before stating Theorem 4.4, we need to define a new quantity. Let A be an
(n× n) matrix,

A =

⎡
⎢⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 a2n
...

...

an1 an2 · · · ann

⎤
⎥⎥⎥⎥⎦ .

The trace of A, denoted by tr[A], is defined to be the sum of the diagonal
elements of A,

tr[A] = a11 + a22 + a33 + · · · + ann.

For instance, the (3× 3) matrix A in Examples 1 and 2,

A =
⎡
⎢⎣ 0 1 0

−6 5 0
0 0 1

⎤
⎥⎦ ,

has tr[A] = 6. For the matrix function P(t) in equation (2),

tr[P(t)] = p11(t) + p22(t) + p33(t) + · · · + pnn(t).

Having this preliminary definition, we are ready to state Abel’s theorem.

Theorem 4.4
Let {y1(t), y2(t), . . . , yn(t)} be a set of solutions of

y ′ = P(t)y, a < t < b,

and let W(t) be the Wronskian of these solutions. Then W(t) satisfies the
scalar differential equation

W ′(t) = tr[P(t)]W(t).

Moreover, if t0 is any point in a < t < b, then

W(t) = W(t0)e
∫ t

t0
tr[P(s)]ds

, a < t < b. (9)
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As we see from equation (9), if W(t0) = 0, then the Wronskian vanishes
identically on the t-interval of interest. On the other hand, if W(t0) �= 0, then
the Wronskian is never zero in (a,b).

In the special case where an nth order linear scalar differential equation
is recast as a first order linear system, the definition of the Wronskian and
the conclusion of Abel’s theorem stated for systems reduce precisely to their
counterparts in Chapter 3; see Exercise 35.

Additional Observations
We make some additional observations about the linear system y ′ = P(t)y that
parallel those made in Section 3.11 for scalar linear homogeneous equations.
We leave the verification to the exercises.

1. Fundamental sets always exist; see Exercise 36.

2. Fundamental sets are linearly independent sets of functions; see Exer-
cise 37.

3. Fundamental sets are not unique. Fundamental sets are related as de-
scribed by Theorem 4.5.

Theorem 4.5
Let {y1(t), y2(t), . . . , yn(t)} be a fundamental set of solutions of

y ′ = P(t)y, a < t < b,

where the (n× n)matrix function P(t) is continuous on the interval (a,b).
Let

�(t) = [
y1(t), y2(t), . . . , yn(t)

]
denote the (n× n)matrix function formed from the fundamental set. Let
{ŷ1(t), ŷ2(t), . . . , ŷn(t)} be any other set of n solutions of the differential
equation, and let

�̂(t) = [
ŷ1(t), ŷ2(t), . . . , ŷn(t)

]
denote the (n× n) matrix formed from this other set of solutions. Then,

(a) There is a unique (n× n) constant matrix C such that

�̂(t) = �(t)C, a < t < b.

(b) Moreover, {ŷ1(t), ŷ2(t), . . . , ŷn(t)} is also a fundamental set of solutions
if and only if the determinant of C is nonzero.

Fundamental Matrices
As we have seen, it is often convenient to introduce an (n× n) matrix function

�(t) = [
y1(t), y2(t), . . . , yn(t)

]
,

where �(t) is formed using a set of solutions as its columns. We refer to such
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a matrix �(t) as a solution matrix. In addition, if the set of solutions forms a
fundamental set of solutions, we call �(t) a fundamental matrix of y ′ = P(t)y.

Part (a) of Theorem 4.5 states that any solution matrix can be expressed as
any given fundamental matrix multiplied on the right by an (n× n) constant
matrix C. Part (b) of Theorem 4.5 states that any other fundamental matrix can
be expressed as the given fundamental matrix multiplied on the right by an
invertible (n× n) constant matrix C.

E X E R C I S E S

Exercises 1–6:

(a) Rewrite the given system of linear homogeneous differential equations as a homo-
geneous linear system of the form y ′ = P(t)y.

(b) Verify that the given function y(t) is a solution of y ′ = P(t)y.

1. y′
1 = 9y1 − 4y2
y′
2 = 15y1 − 7y2

, y(t) =
[
2e3t

3e3t

]
2. y′

1 = −3y1 − 2y2
y′
2 = 4y1 + 3y2

, y(t) =
[
et + e−t

−2et − e−t

]

3. y′
1 = y1 + 4y2
y′
2 = −y1 + y2

, y(t) =
[
2et cos 2t

−et sin 2t

]

4. y′
1 = y2

y′
2 = 2

t2
y1 − 2

t
y2

, t > 0, y(t) =
[−t2 + 3t

−2t+ 3

]

5. y′
1 = y2 + y3
y′
2 = −6y1 − 3y2 + y3,

y′
3 = −8y1 − 2y2 + 4y3

y(t) =
⎡
⎢⎣
et

−et
2et

⎤
⎥⎦

6. y′
1 = 2y1 + y2 + y3
y′
2 = y1 + y2 + 2y3,

y′
3 = y1 + 2y2 + y3

y(t) =

⎡
⎢⎢⎣
2et + e4t

−et + e4t

−et + e4t

⎤
⎥⎥⎦

Exercises 7–14:

Determine whether the given functions form a fundamental set of solutions for the
linear system.

7. y ′ =
[
0 −1

−1 0

]
y, y1(t) =

[
et

−et
]

, y2(t) =
[
e−t

e−t

]

8. y ′ =
[
2 −2
0 1

]
y, y1(t) =

[
3e2t

0

]
, y2(t) =

[
2et

et

]

9. y ′ =
[
0 1

0 2

]
y, y1(t) =

[
1

0

]
, y2(t) =

[−2
0

]

10. y ′ =
[
0 2

−2 0

]
y, y1(t) =

[
cos 2t

− sin 2t

]
, y2(t) =

[−2 sin 2t
−2 cos 2t

]

11. y ′ =
[
1 −1
5 −1

]
y, y1(t) =

[
cos 2t

cos 2t+ sin 2t

]
, y2(t) =

[
sin 2t

sin 2t− 2 cos 2t

]

12. y ′ =
[−1 2

0 −1

]
y, y1(t) =

[
e−t

0

]
, y2(t) =

[
e−t

e−t

]
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13. y ′ =
⎡
⎢⎣
1 −2 1

0 −1 1

0 0 0

⎤
⎥⎦ y, y1(t) =

⎡
⎢⎣
et

0

0

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣
e−t

e−t

0

⎤
⎥⎦ , y3(t) =

⎡
⎢⎣
1

1

1

⎤
⎥⎦

14. y ′ =
[
0 1

t−2 −t−1
]
y, y1(t) =

[
t

1

]
, y2(t) =

[
t−1

−t−2
]

, 0 < t < ∞

Exercises 15–23:

(a) Verify that the given functions are solutions of the homogeneous linear system.

(b) Compute the Wronskian of the solution set. On the basis of this calculation, can
you assert that the set of solutions forms a fundamental set?

(c) If the given solutions form a fundamental set, state the general solution of the
linear homogeneous system. Express the general solution as the product y(t) =
�(t)c, where �(t) is a square matrix whose columns are the solutions forming the
fundamental set and c is a column vector of arbitrary constants.

(d) If the solutions form a fundamental set, impose the given initial condition and find
the unique solution of the initial value problem.

15. y ′ =
[
9 −4
15 −7

]
y, y(0) =

[
1

1

]
; y1(t) =

[
2e3t

3e3t

]
, y2(t) =

[
2e−t

5e−t

]

16. y ′ =
[
9 −4
15 −7

]
y, y(0) =

[
0

1

]
; y1(t) =

[
2e3t − 4e−t

3e3t − 10e−t

]
, y2(t) =

[
4e3t + 2e−t

6e3t + 5e−t

]

17. y ′ =
[
3 2

−4 −3

]
y, y(0) =

[
1

1

]
; y1(t) =

[
e−t

−2e−t

]
, y2(t) =

[−3e−t

6e−t

]

18. y ′ =
[−3 −5
2 −1

]
y, y(0) =

[
5

2

]
; y1(t) =

[ −5e−2t cos 3t

e−2t(cos 3t− 3 sin 3t)

]
,

y2(t) =
⎡
⎣ −5e−2t sin 3t

e−2t(3 cos 3t+ sin 3t)

⎤
⎦

19. y ′ =
[−3 −2
4 3

]
y, y(1) =

[
1

−3

]
; y1(t) =

[
et

−2et
]

, y2(t) =
[

e−t

−e−t

]

20. y ′ =
[
1 −1

−2 2

]
y, y(−1) =

[−2
4

]
; y1(t) =

[
1

1

]
, y2(t) =

[
e3t

−2e3t
]

21. y ′ =
[
2t−2 1− 2t−1 + 2t−2

−2t−2 2t−1 − 2t−2

]
y, y(2) =

[−2
2

]
, t > 0; y1(t) =

[
t2 − 2t

2t

]
,

y2(t) =
[
t− 1

1

]

22. y ′ =
⎡
⎢⎣

−2 0 0

0 1 4

0 −1 1

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

3

4

−2

⎤
⎥⎦ ; y1(t) =

⎡
⎢⎣e

−2t

0

0

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣

0

2et cos 2t

−et sin 2t

⎤
⎥⎦ ,

y3(t) =
⎡
⎢⎣

0

2et sin 2t

et cos 2t

⎤
⎥⎦
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23. y ′ =
⎡
⎢⎣

−21 −10 2

22 11 −2
−110 −50 11

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

3

−10
−16

⎤
⎥⎦; y1(t) =

⎡
⎢⎣

5et

−11et
0

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣

et

0

11et

⎤
⎥⎦,

y3(t) =
⎡
⎢⎣

e−t

−e−t

5e−t

⎤
⎥⎦

Exercises 24–27:

The given functions are solutions of the homogeneous linear system.

(a) Compute the Wronskian of the solution set and verify that the solution set is a
fundamental set of solutions.

(b) Compute the trace of the coefficient matrix.

(c) Verify Abel’s theorem by showing that, for the given point t0,

W(t) = W(t0)e
∫ t
t0
tr[P(s)]ds

.

24. y ′ =
[
6 5

−7 −6

]
y; y1(t) =

[
5e−t

−7e−t

]
, y2(t) =

[
et

−et
]

, t0 = −1, −∞ < t < ∞

25. y ′ =
[
9 5

−7 −3

]
y; y1(t) =

[
5e2t

−7e2t
]

, y2(t) =
[

e4t

−e4t
]

, t0 = 0, −∞ < t < ∞

26. y ′ =
[
1 t

0 −t−1
]
y, t �= 0; y1(t) =

[−1
t−1

]
, y2(t) =

[
et

0

]
, t0 = 1, 0 < t < ∞

27. y ′ =
⎡
⎢⎣
2 1 1

1 1 2

1 2 1

⎤
⎥⎦ y; y1(t) =

⎡
⎢⎣
2et

−et
−et

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣

0

−e−t

e−t

⎤
⎥⎦ , y3(t) =

⎡
⎢⎢⎣
e4t

e4t

e4t

⎤
⎥⎥⎦ ,

t0 = 0, −∞ < t < ∞
28. The homogeneous linear system

y ′ =
[
3 1

−2 α

]
y

has a fundamental set of solutions whose Wronskian is constant, W(t) = 4,
−∞ < t < ∞. What is the value α?

Exercises 29–32:

In each exercise,

(a) Verify that the matrix �(t) is a fundamental matrix of the given linear system.

(b) Determine a constant matrix C such that the given matrix �̂(t) can be represented
as �̂(t) = �(t)C.

(c) Use your knowledge of the matrix C and assertion (b) of Theorem 4.5 to determine
whether �̂(t) is also a fundamental matrix or simply a solution matrix.

29. y ′ =
[
0 1

1 0

]
y, �(t) =

[
et e−t

e t −e−t

]
, �̂(t) =

[
sinh t cosh t

cosh t sinh t

]

30. y ′ =
[
0 1

1 0

]
y, �(t) =

[
et e−t

e t −e−t

]
, �̂(t) =

[
2et − e−t e t + 3e−t

2et + e−t e t − 3e−t

]
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31. y ′ =
[
1 1

0 −2

]
y, �(t) =

[
et e−2t

0 −3e−2t

]
, �̂(t) =

[
2e−2t 0

−6e−2t 0

]

32. y ′ =
⎡
⎢⎣
1 1 1

0 −1 1

0 0 2

⎤
⎥⎦ y, �(t) =

⎡
⎢⎣
et e−t 4e2t

0 −2e−t e2t

0 0 3e2t

⎤
⎥⎦ , �̂(t) =

⎡
⎢⎣
et + e−t 4e2t e t + 4e2t

−2e−t e2t e2t

0 3e2t 3e2t

⎤
⎥⎦

Exercises 33–34:

The matrix �(t) is a fundamental matrix of the given homogeneous linear system. Find
a constant matrix C such that �̂(t) = �(t)C is a fundamental matrix satisfying �̂(0) = I,
where I is the (2× 2) identity matrix.

33. y ′ =
[
0 1

1 0

]
y, �(t) =

[
et e−t

e t −e−t

]
34. y ′ =

[
1 1

0 −2

]
y, �(t) =

[
et e−2t

0 −3e−2t

]

35. Consider the nth order scalar equation y(n) + pn−1(t)y
(n−1) + · · · + p1(t)y

′ + p0(t)y =
0. For the special cases n = 2,n = 3, and n = 4, rewrite the scalar equation as a
first order system y ′ = Ay. Verify that Abel’s theorem, as stated in Theorem 4.4 for
systems, has the same conclusion as does Abel’s theorem stated in Theorem 3.6 for
scalar equations.

36. Let e1,e2, . . . ,en denote the columns of the (n× n) identity matrix I. Let P(t) be
continuous on (a,b), and let t0 be in (a,b). Let y1(t), y2(t), . . . , yn(t) denote the so-
lutions of y ′

j = P(t)yj, yj(t0) = ej, j = 1,2, . . . ,n. Show that {y1(t), y2(t), . . . , yn(t)} is a
fundamental set of solutions.

37. Let {y1(t), y2(t), . . . , yn(t)} be a fundamental set of solutions of the linear system
y ′ = P(t)y, where the matrix function P(t) is continuous on a < t < b. Prove that
{y1(t), y2(t), . . . , yn(t)} is a linearly independent set of functions on (a,b). [Hint: One
approach is to rewrite the equation k1y1(t) + k2y2(t) + · · · + knyn(t) = 0 as�(t)k = 0,
where�(t) = [ y1(t), y2(t), . . . , yn(t)]. Nowconsider�(t)k = 0 at somearbitrary point
t0 in (a,b).]

4.4 Constant Coefficient Homogeneous Systems;
the Eigenvalue Problem

Consider the first order homogeneous equation

y ′ = Ay, −∞ < t < ∞,

where y(t) is an (n× 1) vector function and A is an (n× n)matrix of real-valued
constants. The general solution of y ′ = Ay has the form

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t), (1)

where {y1(t), y2(t), . . . , yn(t)} is a fundamental set of solutions. We now address
the problem of finding a fundamental set of solutions for y ′ = Ay.

The Eigenvalue Problem
In Chapters 2 and 3, we found solutions of the linear homogeneous constant
coefficient scalar equation by looking for solutions of the form y(t) = eλt. For
the present case, y ′ = Ay, we take a similar approach. This time, however, we
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must find solutions that are vector functions. Therefore, we look for solutions
of the form

y(t) = eλtx, (2)

where λ is a constant (possibly complex) and x is an (n× 1) constant vector. To
ensure that y(t) is a nonzero solution, we require that x be a nonzero vector.

Substituting the trial form y(t) = eλtx into the left-hand side of y ′ = Ay leads
to

y ′ = (eλtx)′ = (eλt)′x = λeλtx = eλt(λx). (3)

Substituting y(t) = eλtx into the right-hand side of y ′ = Ay yields

Ay = A(eλtx) = eλt(Ax). (4)

Equating expressions (3) and (4) gives

eλt(λx) = eλt(Ax).

Canceling the nonzero factor eλt and rearranging, we obtain

Ax = λx, x �= 0. (5)

Equation (5) is known as an eigenvalue problem and is important in mathe-
matics, science, and engineering. The problem posed by equation (5) is that of
finding constants λ, called eigenvalues, and corresponding nonzero vectors x,
called eigenvectors, such that Ax = λx.

The combination of an eigenvalue λ and a corresponding eigenvector x is
referred to as an eigenpair and denoted by (λ,x). For every eigenpair (λ,x) of
the matrix A, the associated vector function

y(t) = eλtx (6)

is a solution of y ′ = Ay.
If x is an eigenvector of A corresponding to an eigenvalue λ, then so is the

vector ax, where a is any nonzero constant. Hence, if (λ,x) is an eigenpair for
A, then so is (λ, ax), a �= 0. Eigenvectors are not unique. In view of equation
(6), however, lack of uniqueness is not surprising. That is, if y(t) = eλtx is a
solution of the homogeneous linear equation y ′ = Ay, then so is ỹ(t) = ay(t)
(see Theorem 4.2).

E X A M P L E

1 Consider the homogeneous first order system

y′
1 = y1 + 2y2
y′
2 = 2y1 + y2.

We can rewrite this system of equations as y ′ = Ay, where

y(t) =
[
y1(t)

y2(t)

]
and A =

[
1 2

2 1

]
.

Let

x1 =
[
1

−1

]
and x2 =

[
1

1

]
.

(continued)
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(continued)

(a) Use equation (5) to show that x1 and x2 are eigenvectors of A. Determine
the corresponding eigenvalues λ1 and λ2.

(b) Use equation (6) to determine two solutions, y1(t) and y2(t), of y
′ = Ay.

(c) Calculate the Wronskian, and decide whether {y1(t), y2(t)} is a fundamental
set of solutions.

Solution:

(a) Calculating Ax1, we find

Ax1 =
[
1 2

2 1

] [
1

−1

]
=

[
−1
1

]
= (−1)x1.

Therefore, (λ1,x1) = (−1,x1) is an eigenpair of A. Similarly, calculating Ax2,
we obtain

Ax2 =
[
1 2

2 1

] [
1

1

]
=

[
3

3

]
= 3x2.

Therefore, (λ2,x2) = (3,x2) is a second eigenpair of A.

(b) From part (a), we have eigenpairs (λ1,x1) and (λ2,x2). Using equation (6),
we can form two solutions, y1(t) = eλ1tx1 and y2(t) = eλ2tx2:

y1(t) = e−t
[
1

−1

]
=

[
e−t

−e−t
]
and y2(t) = e3t

[
1

1

]
=

[
e3t

e3t

]
.

(c) To determine whether these two solutions form a fundamental set of solu-
tions, we calculate the Wronskian, W(t), of y1 and y2. From part (b), our
solution matrix �(t) is

�(t) = [y1(t), y2(t)] =
[

e−t e3t

−e−t e3t

]
.

The Wronskian is

W(t) = det[�(t)] = 2e2t.

Since the Wronskian is never zero, we know by Theorem 4.3 that
{y1(t), y2(t)} is a fundamental set of solutions of y ′ = Ay. The general so-
lution is therefore

y(t) = c1

[
e−t

−e−t
]

+ c2

[
e3t

e3t

]
=

[
e−t e3t

−e−t e3t

] [
c1
c2

]
. ❖

Finding Eigenpairs
Example 1 suggests a procedure to find the general solution of y ′ = Ay when
A is an (n× n) constant matrix. Each eigenpair (λ,x) gives rise to a solution of
the form y(t) = eλtx. The general solution is the linear combination

y(t) = c1y1(t) + c2y2(t) + · · · + cnyn(t),

where {y1(t), y2(t), . . . , yn(t)} is a fundamental set.
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Some obvious questions are

1. Given an (n× n) constant matrix A, do there always exist eigenpairs
(λ,x)? Is it possible to find n different eigenpairs and thereby form n
different solutions? Will these solutions form a fundamental set?

2. How do we find these eigenpairs?

The eigenvalue problem (5) consists of finding scalars λ and nonzero vectors
x such that Ax = λx or, equivalently, Ax− λx = 0. We can rewrite the equation
Ax− λx = 0 as

(A− λI )x = 0, x �= 0, (7)

where I denotes the (n× n) identity matrix.
To solve (7), we use a result from linear algebra stating that the matrix

equation (A− λI)x = 0 has a nonzero solution x if and only if the determinant
of A− λI is zero. Therefore, λ is an eigenvalue of A if and only if det[A− λI] = 0;
that is, ∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n
a21 a22 − λ a2n
...

...

an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
= 0. (8)

Evaluating this determinant (by a cofactor expansion, for instance) shows
that (8) is a polynomial equation of the form

p(λ) = 0, (9)

where p(λ) is a polynomial of degree n in the variable λ. The polynomial p(λ)

is called the characteristic polynomial, and equation (8) is called the charac-
teristic equation. The eigenvalues of A are, therefore, the roots of the charac-
teristic equation. Since an nth degree polynomial has n zeros (counting multi-
plicity), an (n× n) matrix A always has n eigenvalues. The eigenvalues may be
zero or nonzero, real or complex, and some of them may be repeated (that is,
they may have multiplicity greater than one).

Since we are assuming the matrix A is real-valued, the coefficients of the
characteristic polynomial are real numbers. Consequently, any complex roots
of the characteristic equation occur in complex conjugate pairs. Thus, if λ =
α + iβ is an eigenvalue of A, so is λ = α − iβ.

For each eigenvalue λ, we know the homogeneous system of equations
(A− λI)x = 0 has a nontrivial solution. Therefore, an eigenvector is obtained
by forming the homogeneous system (A− λI)x = 0 and finding a nontrivial
solution.

E X A M P L E

2 (a) Find the eigenpairs of

A =
[
4 −2
1 1

]
.

(b) Do the solutions of y ′ = Ay created from these eigenpairs form a funda-
mental set?

(continued)
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(continued)

Solution:

(a) We first find the eigenvalues of A by finding the roots of p(λ) = 0:

p(λ) = det(A− λI) =
∣∣∣∣∣
4− λ −2
1 1− λ

∣∣∣∣∣
= (4− λ)(1− λ) + 2

= λ2 − 5λ + 6 = (λ − 3)(λ − 2).

The matrix therefore has two real distinct eigenvalues, λ1 = 3 and λ2 = 2.
For each eigenvalue, we solve the homogeneous system of equations

(A− λI)x = 0 and choose a nontrivial solution to serve as the eigenvector.
For λ1 = 3, the system is (A− 3I)x = 0, or[

1 −2
1 −2

] [
x1
x2

]
=

[
0

0

]
.

Because the coefficient matrix has a zero determinant, the homogeneous
system (A− 3I)x = 0 has nontrivial solutions. One such nontrivial solution
is

x1 =
[
2

1

]
.

We next obtain an eigenvector x2 corresponding to λ2 = 2 by solving
(A− 2I)x = 0: [

2 −2
1 −1

] [
x1
x2

]
=

[
0

0

]
.

A convenient nontrivial solution is

x2 =
[
1

1

]
.

Eigenpairs of A are

λ1 = 3,x1 =
[
2

1

]
and λ2 = 2,x2 =

[
1

1

]
.

(b) Two solutions of y ′ = Ay are

y1(t) =
[
2e3t

e3t

]
and y2(t) =

[
e2t

e2t

]
.

Forming the Wronskian, we obtain

W(t) =
∣∣∣∣ 2e3t e2t

e3t e2t

∣∣∣∣ = e5t.

Since the Wronskian is nonzero everywhere, the solutions form a funda-
mental set on (−∞, ∞). ❖
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E X A M P L E

3 (a) Find the eigenpairs of the (3× 3) matrix

A =
⎡
⎢⎣

1 −7 3

−1 −1 1

4 −4 0

⎤
⎥⎦ .

(b) Do the solutions of y ′ = Ay created from these eigenpairs form a funda-
mental set?

Solution:

(a) We find the eigenvalues by solving the characteristic equation
p(λ) = 0. To calculate the characteristic polynomial p(λ) = det(A− λI), we
use a cofactor expansion along the first row:

p(λ) =

∣∣∣∣∣∣∣
1− λ −7 3

−1 −1− λ 1

4 −4 −λ

∣∣∣∣∣∣∣
= (1− λ)

∣∣∣∣∣−1− λ 1

−4 −λ

∣∣∣∣∣ + 7

∣∣∣∣∣−1 1

4 −λ

∣∣∣∣∣ + 3

∣∣∣∣∣
−1 −1− λ

4 −4

∣∣∣∣∣
= (1− λ)(λ2 + λ + 4) + 7(λ − 4) + 3(4λ + 8)

= −λ3 + 16λ = −λ(λ − 4)(λ + 4).

The eigenvalues of A are λ1 = 0, λ2 = 4, and λ3 = −4. (In this example, λ1 =
0 is an eigenvalue. Although eigenvectors must be nonzero, eigenvalues
can be zero. In fact [see equation (8)], λ = 0 is an eigenvalue whenever
det[A] = 0.)

We now compute the eigenvectors. An eigenvector corresponding to
λ1 = 0 is a nonzero solution of Ax = 0,⎡

⎢⎣
1 −7 3

−1 −1 1

4 −4 0

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ . (10)

In this case, unlike the situation in Example 2, we cannot find a solution
by inspection. Instead, we solve system (10) using Gaussian elimination.
Elementary row operations can be used to row reduce system (10) into the
following equivalent system:⎡

⎢⎢⎢⎣
1 0 − 1

2

0 1 − 1
2

0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

The solution of this system is x1 = 1
2x3, x2 = 1

2x3. For convenience, we set
x3 = 2, obtaining the eigenvector

x1 =
⎡
⎢⎣
1

1

2

⎤
⎥⎦ .

Similarly, an eigenvector corresponding to λ2 = 4 is a nonzero solution of
(continued)
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(continued)

(A− 4I)x = 0, ⎡
⎢⎣

−3 −7 3

−1 −5 1

4 −4 −4

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

Using Gaussian elimination, we find the equivalent system⎡
⎢⎣
1 0 −1
0 1 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

Therefore, x1 = x3, x2 = 0. Choosing x3 = 1 leads to the eigenvector

x2 =
⎡
⎢⎣
1

0

1

⎤
⎥⎦ .

Lastly, we leave it as an exercise to show that

x3 =
⎡
⎢⎣

2

1

−1

⎤
⎥⎦

is an eigenvector corresponding to λ3 = −4.
Therefore, we have eigenpairs

λ1 = 0, x1 =
⎡
⎢⎣
1

1

2

⎤
⎥⎦ , λ2 = 4, x2 =

⎡
⎢⎣
1

0

1

⎤
⎥⎦ , λ3 = −4, x3 =

⎡
⎢⎣

2

1

−1

⎤
⎥⎦ .

(b) Three solutions of y ′ = Ay are

y1(t) =
⎡
⎢⎣
1

1

2

⎤
⎥⎦ , y2(t) =

⎡
⎢⎢⎣
e4t

0

e4t

⎤
⎥⎥⎦ , y3(t) =

⎡
⎢⎢⎣
2e−4t

e−4t

−e−4t

⎤
⎥⎥⎦ .

According to Abel’s theorem (Theorem 4.4), we can determine whether
these solutions form a fundamental set by evaluatingW(t0) at some conve-
nient choice of t0. Choosing t0 = 0, we obtain

W(0) =

∣∣∣∣∣∣∣
1 1 2

1 0 1

2 1 −1

∣∣∣∣∣∣∣ = 4.

Therefore, these three solutions form a fundamental set on the interval
−∞ < t < ∞. ❖

Eigenpair computations, such as those of the previous two examples, have
built-in checks available that should be exploited. In computing eigenvectors,
the Gaussian elimination process that transforms the coefficient matrix A− λI
to echelon form must produce at least one row of zeros. If that does not occur,
you should realize you’ve made a mistake. Another check is simply to compute
the product Ax and verify that it equals λx.
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E X E R C I S E S

Exercises 1–10:

Rewrite the linear system as a matrix equation y ′ = Ay, and compute the eigenvalues of
the matrix A.

1. y′
1 = 5y1 + 3y2
y′
2 = −6y1 − 4y2

2. y′
1 = 3y1 + 2y2
y′
2 = −4y1 − 3y2

3. y′
1 = y1 + y2
y′
2 = 2y1 + 2y2

4. y′
1 = 2y1 + y2
y′
2 = −y1

5. y′
1 = 2y2
y′
2 = −2y1

6. y′
1 = 4y1 − 2y2
y′
2 = 5y1 − 2y2

7. y′
1 = 5y1
y′
2 = y2 + 3y3
y′
3 = 2y2 + 2y3

8. y′
1 = y2 − 3y3
y′
2 = −5y2 − 4y3
y′
3 = 8y2 + 7y3

9. y′
1 = −2y1 + 3y2 + y3
y′
2 = −8y1 + 13y2 + 5y3
y′
3 = 11y1 − 17y2 − 6y3

10. y′
1 = y1 − 7y2 + 3y3
y′
2 = −y1 − y2 + y3
y′
3 = 4y1 − 4y2

Exercises 11–17:

In each exercise, λ is an eigenvalue of the given matrix A. Determine an eigenvector
corresponding to λ.

11. A =
[−4 3

−4 4

]
, λ = 2 12. A =

[
5 3

−4 −3

]
, λ = −1

13. A =
[
1 1

−4 6

]
, λ = 5 14. A =

⎡
⎢⎣

1 −7 3

−1 −1 1

4 −4 0

⎤
⎥⎦ , λ = −4

15. A =
⎡
⎢⎣

3 1 1

−1 1 −1
2 1 2

⎤
⎥⎦ , λ = 2 16. A =

⎡
⎢⎣
1 3 1

2 1 2

4 3 −2

⎤
⎥⎦ , λ = 5

17. A =
⎡
⎢⎣

−2 3 1

−8 13 5

11 −17 −6

⎤
⎥⎦ , λ = 0

Exercises 18–23:

For the given linear system y ′ = Ay,

(a) Compute the eigenpairs of the coefficient matrix A.

(b) For each eigenpair found in part (a), form a solution of y ′ = Ay.

(c) Does the set of solutions found in part (b) form a fundamental set of solutions?

18. y ′ =
[
4 2

−1 1

]
y 19. y ′ =

[
7 −3
16 −7

]
y 20. y ′ =

[
3 2

−9 −6

]
y

21. y ′ =
[
0 1

1 0

]
y 22. y ′ =

[
2 1

0 −1

]
y 23. y ′ =

[−5 −6
3 4

]
y
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Exercises 24–27:

In each exercise, an eigenvalue λ is given for the matrix A.

(a) Find an eigenvector corresponding to the given eigenvalue λ.

(b) Find the other two eigenvalues of the matrix A.

(c) Find eigenvectors corresponding to the eigenvalues found in part (b).

(d) Do the three solutions of y ′ = Ay formed from the eigenpairsmake up a fundamental
set of solutions?

24. A =
⎡
⎢⎣
2 1 2

0 2 2

0 4 0

⎤
⎥⎦ , λ = −2 25. A =

⎡
⎢⎣

1 2 0

−4 7 0

0 0 1

⎤
⎥⎦ , λ = 1

26. A =
⎡
⎢⎣

3 1 0

−6 −5 2

−7 −8 4

⎤
⎥⎦ , λ = 2 27. A =

⎡
⎢⎣

3 1 0

−8 −6 2

−9 −9 4

⎤
⎥⎦ , λ = 2

28. Consider the (2× 2) matrix

A =
[
a b

b d

]
,

where A has all real entries. Show that A has only real eigenvalues. [Hint: Calculate
the characteristic polynomial, and use the quadratic formula.] The matrix A is a
symmetric matrix since A = AT . The symbol AT denotes the transpose of A, where
AT is obtained by interchanging the rows and columns of A. For example,

if A =
[
x y

u v

]
, then AT =

[
x u

y v

]
.

29. Consider the (2× 2) matrix

A =
[

a b

−b a

]
,

where a and b are real numbers and b is nonzero. Show that the eigenvalues of A
are complex.

30. Let A be a (2× 2) matrix with eigenvalues λ1 and λ2, where λ1 �= λ2. Let x1 and
x2 be corresponding eigenvectors. Show that {x1,x2} is a linearly independent set.
[Hint: Suppose k1x1 + k2x2 = 0. Multiply this equation by A and obtain k1λ1x1 +
k2λ2x2 = 0. Next, multiply k1x1 + k2x2 = 0 by λ1 and obtain k1λ1x1 + k2λ1x2 = 0.
Argue that k1 = k2 = 0.]

31. LetAbe an (n× n)matrixwith eigenvalue λ and eigenvector x. Let α be any constant.
Use the definition, Ax = λx, x �= 0, to show that λ + α is an eigenvalue of the matrix
A+ αI and that αλ is an eigenvalue of αA. Similarly, if A is invertible, show that
λ �= 0 and that 1/λ is an eigenvalue of A−1.

32. Let A be an (n× n) matrix with eigenvalue λ and eigenvector x.

(a) Use the definition, Ax = λx, x �= 0, to show that λ2 is an eigenvalue of A2.

(b) Let A be a (2× 2) matrix such that Ax = λx, where λ = −2 and

x =
[
3

−1

]
.

Determine the vector A3x. [This is a special case of the general result: λk is an
eigenvalue of Ak.]
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4.5 Real Eigenvalues and the Phase Plane
Consider the linear system y ′ = Ay, whereA is an (n× n) constantmatrix. As we
saw in the previous section, solutions of y ′ = Ay can be found by determining
eigenpairs ofA. In particular, if (λ,x) is an eigenpair, then y(t) = eλtx is a solution
of y ′ = Ay.

In order to construct a fundamental set of solutions for y ′ = Ay, we need
to find a set of n solutions {y1(t), y2(t), . . . , yn(t)} such that det[�(t)] �= 0, where
�(t) is the (n× n) matrix

�(t) = [y1(t), y2(t), . . . , yn(t)].
Since every eigenpair (λ,x) leads to a solution y(t) = eλtx of y ′ = Ay, the first
step in finding a fundamental set of solutions is to calculate the eigenpairs of
A. We then ask whether there are n solutions of the form yi(t) = eλitxi such
that det[�(t) ] �= 0. As in Chapter 3, we first consider the case where A has real
and distinct eigenvalues. Section 4.6 examines the case where A has complex
eigenvalues, and then Section 4.7 considers the case of repeated eigenvalues.

This section also introduces a geometric tool known as the phase plane,
which allows us to visualize solutions of a two-dimensional constant coefficient
system

y′
1 = a11y1 + a12y2
y′
2 = a21y1 + a22y2.

Recognizing a Fundamental Set of Solutions
Suppose that we are given an (n× n) constant coefficient system y ′ = Ay and
that we have found n eigenpairs (λ1,x1), (λ2,x2), . . . , (λn,xn) for the coefficient
matrix A. Do the corresponding solutions yi(t) = eλitxi, i = 1,2, . . . ,n form a
fundamental set of solutions? One way to answer this question is to calculate
the Wronskian, det[�(t)], where �(t) = [y1(t), . . . , yn(t)]. However, in certain
cases, we can answer the question without having to actually calculate the
Wronskian. The basis for this assertion is Theorem 4.6.

Theorem 4.6
Consider the homogeneous linear system y ′ = Ay, −∞ < t < ∞. Let the
constant (n× n) matrix A have eigenpairs (λ1,x1), (λ2,x2), . . . , (λn,xn),
where the eigenvectors are linearly independent. Then the set of solutions

{eλ1tx1, eλ2tx2, . . . , eλntxn}
is a fundamental set of solutions.

Theorem 4.6 follows because det[x1,x2, . . . ,xn] �= 0 if {x1,x2, . . . ,xn} is a set of
linearly independent (n× 1) vectors andbecause det[�(0)] = det[x1,x2, . . . ,xn].

When A is an (n× n) constant matrix that possesses a set of n linearly in-
dependent eigenvectors, we say that A has a full set of eigenvectors. Theorem
4.6 shows how to form a fundamental set of solutions for y ′ = Ay when A has
a full set of eigenvectors. When A fails to have a set of n linearly independent
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eigenvectors, we say that A is defective. Section 4.7 discusses techniques for
finding a fundamental set of solutions when A is defective.

There are two cases where we can assert immediately that an (n× n) con-
stant matrix A has a full set of eigenvectors:

(a) If A has n distinct eigenvalues, then A has a full set of eigenvectors.

(b) If A is a symmetric real matrix, then A has a full set of eigenvectors.

The conclusion in Case (a) follows fromTheorem 4.6 and the fact that eigenvec-
tors corresponding to distinct eigenvalues are linearly independent. The fact
that distinct eigenvalues have linearly independent eigenvectors is proved in
most linear algebra texts; a proof is not given here. However, Exercise 30 in
Section 4.4 asks you to establish this fact when n = 2. The coefficient matrices
in Examples 2 and 3 of Section 4.4 have distinct eigenvalues, and consequently
each has a full set of eigenvectors.

An (n× n)matrix A is symmetric if AT = A, where AT denotes the transpose
of A. It can be shown that all the eigenvalues of a real symmetricmatrix are real.
In Exercise 28 of Section 4.4, you are asked to prove this when n = 2. It also
can be shown that a real symmetric matrix always has a full set of eigenvectors;
in Exercise 11, you are asked to prove this when n = 2.

E X A M P L E

1 Solve the initial value problem

y′
1 = y1 − 3y2, y1(0) = 1

y′
2 = y1 + 5y2, y2(0) = 1.

Solution: The coefficient matrix

A =
[
1 −3
1 5

]

has eigenpairs

λ1 = 4, x1 =
[
−1
1

]
and λ2 = 2, x2 =

[
−3
1

]
.

Since the eigenvalues are distinct,Ahas a full set of eigenvectors and the general
solution is

y(t) = c1e
4t

[
−1
1

]
+ c2e

2t

[
−3
1

]
=

[
−e4t −3e2t
e4t e2t

] [
c1
c2

]
.

Imposing the initial condition, we have

y(0) =
[
−1 −3
1 1

] [
c1
c2

]
=

[
1

1

]
or

[
c1
c2

]
=

[
2

−1

]
.

Therefore, the solution of the initial value problem is

y(t) =
[
−e4t −3e2t
e4t e2t

] [
2

−1

]
=

[
−2e4t + 3e2t

2e4t − e2t

]
. ❖
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E X A M P L E

2 Find the general solution of

y′
1 = 2y1 − y2 − y3
y′
2 = −y1 + 2y2 − y3
y′
3 = −y1 − y2 + 2y3.

Solution: The coefficient matrix is

A =
⎡
⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎥⎦ .

Since A is real and symmetric, we know that A has a full set of eigenvectors.
The characteristic polynomial is

p(λ) = −λ3 + 6λ2 − 9λ = −λ(λ − 3)2.

The matrix A therefore has an eigenvalue λ1 = 0 and repeated eigenvalues
λ2 = λ3 = 3. One eigenpair is

λ1 = 0, x1 =
⎡
⎢⎣
1

1

1

⎤
⎥⎦ .

To find eigenvectors corresponding to the repeated eigenvalue λ = 3, we solve
the system (A− 3I)x = 0,⎡

⎢⎣
−1 −1 −1
−1 −1 −1
−1 −1 −1

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

This system reduces to x1 + x2 + x3 = 0, and hence

x =
⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣

−x2 − x3
x2
x3

⎤
⎥⎦ = x2

⎡
⎢⎣

−1
1

0

⎤
⎥⎦ + x3

⎡
⎢⎣

−1
0

1

⎤
⎥⎦ .

Therefore, two linearly independent eigenvectors corresponding to λ = 3 are

x2 =
⎡
⎢⎣

−1
1

0

⎤
⎥⎦ and x3 =

⎡
⎢⎣

−1
0

1

⎤
⎥⎦ .

The general solution of the linear system y ′ = Ay is

y(t) = c1

⎡
⎢⎣
1

1

1

⎤
⎥⎦ + c2e

3t

⎡
⎢⎣

−1
1

0

⎤
⎥⎦ + c3e

3t

⎡
⎢⎣

−1
0

1

⎤
⎥⎦ =

⎡
⎢⎣
1 −e3t −e3t
1 e3t 0

1 0 e3t

⎤
⎥⎦

⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ . ❖

The Phase Plane
Given a scalar differential equation y′ = f (t, y), we can see how the solutions be-
have by graphing them in the ty-plane. If explicit solutions are not available, we
can construct a direction field in the ty-plane and use it to obtain approximate
solution curves.
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Now, consider a two-dimensional linear system y ′ = P(t)y+ g(t),

y′
1 = p11(t)y1 + p12(t)y2 + g1(t)

y′
2 = p21(t)y1 + p22(t)y2 + g2(t).

To graph the solutions of this system, we would need three dimensions, since
solutions would need to be plotted in (t, y1, y2)-space. There is, however, an
alternative approach that is very useful for a two-dimensional autonomous
system such as the constant coefficient system y ′ = Ay,

y′
1 = a11y1 + a12y2
y′
2 = a21y1 + a22y2.

(1)

The alternative approach uses a graphical tool known as the phase plane. In
the phase plane approach, we treat the independent variable t as a parameter
and plot solutions in the (y1, y2)-plane. For any fixed value of t, the solution is
represented as a point (y1(t), y2(t)) in the phase plane. As t varies, the points
(y1(t), y2(t)) trace out a curve in the phase plane. By plotting a collection of
such curves, we gain graphical insight into the behavior of solutions.

E X A M P L E

3 Construct a phase plane plot for the system

y′
1 = 0.6y1 + 0.8y2
y′
2 = 0.8y1 − 0.6y2.

(2)

Solution: For this system, the coefficient matrix is

A =
[
0.6 0.8

0.8 −0.6
]

.

The general solution is

y(t) = c1e
t
[
2

1

]
+ c2e

−t
[
1

−2
]

. (3)

Figure 4.2 displays a representative collection of phase plane solution curves.
These curves correspond to a sampling of starting points (y1(0), y2(0)). The
arrows on each curve indicate the direction in which the solution point moves
as t increases. The origin is an equilibrium point.

❖

y2

y1

0.6

0.4

0.2

–0.2
–0.2 0.2 0.4 0.6–0.4–0.6

–0.4

–0.6

FIGURE 4.2

Phase plane solution curves for the system in Example 3. The general
solution (3) shows that, except when c1 = 0, the points (y1(t), y2(t)) move
away from the origin and are asymptotic to the line y2 = 1

2y1.
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We can infer the qualitative behavior of these phase plane solution curves
from the general solution (3). For example, solutions originating on the line
y2 = −2y1 remain on this line and move inward, toward the origin. This special
case corresponds to c1 = 0 in (3). [When c1 = 0, it follows that y1(t) = c2e

−t and
y2(t) = −2c2e−t = −2y1(t). The motion is inward, toward the origin, since e−t

decreases as t increases.]
Solutions originating on the line y2 = 1

2y1 move away from the origin along
this line as t increases. Such solutions correspond to c2 = 0 in (3). [In this
special case, y1(t) = 2c1e

t and y2(t) = c1e
t = 1

2y1(t).]
All other nonzero solutions correspond to cases in which both constants c1

and c2 are nonzero. Since e
−t approaches zero and et grows as time increases,

these solution curvesmove away from the origin and approach the line y2 = 1
2y1

as an asymptote.
In Example 3, the general solution (3) gives us all the information necessary

to understand the phase plane behavior of solutions of the linear system (2).
One virtue of the phase plane, however, is that the situation can be reversed. In
amanner analogous to that used with direction fields, we can obtain qualitative
information without actually solving the differential equation. At any point in
the phase plane, we know from calculus that the slope of a line tangent to the
solution curve of system (1) passing through that point is

dy2
dy1

= dy2/dt
dy1/dt

= a21y1 + a22y2
a11y1 + a12y2

.

For system (2) in Example 3, we have

dy2
dy1

= 4y1 − 3y2
3y1 + 4y2

. (4)

Therefore, if we evaluate the right-hand side of (4) at a grid of phase plane sam-
pling points and place small filaments with slopes equal to these values at the
points, we can generate a qualitative picture of the flow of phase plane solution
curves. We can also assign a direction to the filaments, indicating the instanta-
neous direction in which the point (y1(t), y2(t)) is moving along the phase plane
curve. For example, at the point (y1, y2) = (1,0), we find dy2/dy1 = 4

3 . Therefore,
the filament has slope 4

3 and is directed upward and to the right, since both
dy1/dt and dy2/dt are positive at that point. At the point (0,1), the filament has
slope of − 3

4 . Moreover, since dy2/dt < 0 and dy1/dt > 0, the arrow on this fila-
ment is directed downward and to the right. Repeating this calculation at each
point on a phase plane grid, we obtain a phase plane direction field such as
that shown in Figure 4.3. (A phase plane direction field is sometimes referred
to as a vector field, since it attaches a vector to each point in the plane.)

While there are a number of computer software packages that can gener-
ate phase plane direction fields, we can obtain some rough qualitative infor-
mation from equation (4) without making the extensive calculations required
for a direction field. On the line 4y1 − 3y2 = 0, the numerator of (4) vanishes
and the phase plane filaments are horizontal; they are directed to the right
if the denominator 3y1 + 4y2 > 0 and directed to the left if 3y1 + 4y2 < 0. The
filaments are vertical on the line 3y1 + 4y2 = 0, where the denominator of (4)
vanishes. The arrows on these vertical filaments point upward if 4y1 − 3y2 > 0
and downward if 4y1 − 3y2 < 0. In the phase plane sectors lying between these
intersecting lines, we can evaluate the numerator and denominator of (4) and
get a sense of the typical directed filament. Figure 4.4 illustrates these ideas.
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–1
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–2 –1.5 –1 –0.5 0.5 1 1.5 2
y1

y2

FIGURE 4.3

A phase plane direction field for the system (2) in Example 3. When a
phase plane solution curve (y1(t), y2(t)) passes through a grid point, it is
moving in the direction of the arrow attached to that grid point.

y2

y1

FIGURE 4.4

We can obtain rough qualitative information about the phase plane
behavior of solutions of system (2) by dividing the phase plane into four
sectors, using the two lines 3y1 + 4y2 = 0 and 4y1 − 3y2 = 0; see
equation (4).

E X E R C I S E S

Exercises 1–10:

In each exercise, find the general solution of the homogeneous linear system and then
solve the given initial value problem.

1. y′
1 = −y1 − y2, y1(0) = −2
y′
2 = 6y1 + 4y2, y2(0) = 6

2. y′
1 = y1 + y2, y1(0) = 3

y′
2 = −2y1 − 2y2, y2(0) = −4

3. y ′ =
[−5 −2
12 5

]
y, y(1) =

[
1

0

]
4. y ′ =

[
1 2

0 3

]
y, y(0) =

[
4

1

]
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5. y ′ =
[
1 2

2 1

]
y, y(−1) =

[
2

2

]
6. y′

1 = 2y1 + y2 + 2y3, y1(0) = 4

y′
2 = 3y2 + 2y3, y2(0) = 3

y′
3 = y3, y3(0) = −1

7. y ′ =
⎡
⎢⎣
3 1 1

1 3 1

1 1 3

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

−1
1

6

⎤
⎥⎦ [For Exercise 7, the characteristic

polynomial is p(λ) = −(λ − 5)(λ − 2)2.]

8. y ′ =
⎡
⎢⎣
2 2 2

2 2 2

2 2 2

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣
2

5

5

⎤
⎥⎦ [For Exercise 8, the characteristic

polynomial is p(λ) = −λ2(λ − 6).]

9. y ′ =
⎡
⎢⎣

7 10 0

−5 −8 0

3 1 1

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

−6
4

−8

⎤
⎥⎦

10. y ′ =
⎡
⎢⎣
3 1 2

0 8 15

0 −6 −11

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

2

5

−2

⎤
⎥⎦

11. Let A =
[
a b
b c

]
be a (2× 2) real symmetric matrix. In Exercise 28 of Section 4.4, it

was shown that such a matrix has only real eigenvalues. We now show that A has
a full set of eigenvectors. Note, by Exercise 30 of Section 4.4, that if A has distinct
eigenvalues, then A has a full set of eigenvectors. Thus, the only case to consider is
the case where A has repeated eigenvalues, λ1 = λ2.

(a) If λ1 = λ2, show that a = c, b = 0, and therefore A = aI.

(b) Exhibit a pair of linearly independent eigenvectors in this case.

12. Let A be an (n× n) real symmetric matrix. Show that eigenvectors belonging to
distinct eigenvalues are orthogonal. That is, if Ax1 = λ1x1 and Ax2 = λ2x2, where
λ1 �= λ2, then x

T
1x2 = 0. [Hint: Consider the matrix product xT1Ax2, and use the sym-

metry of A to show that (λ1 − λ2)x
T
1x2 = 0. You will also need to recall that if the

matrix product of R and S is defined, then (RS)T = STRT .]

Tank-Flushing Problems Consider the flow systems schematically shown in the figures
for Exercises 13 and 14. In each case, a flushing out of the system is initiated at time
t = 0. Fresh water is pumped into each tank, and well-stirred mixtures flow out. Each
flow rate is equal to r gal/min, andwe letQj(t) represent the amount of solute (in pounds)
in the jth tank at time t. Each tank has fluid volume V , remaining constant. All tanks in
the system have an identical flow environment.

13. (a) Consider the two-tank flow system shown in the figure on the next page. Apply
the “conservation of salt” principle to each tank, and derive the homogeneous linear
equation for Qj(t), j = 1,2.

(b) The fact that the two tanks have identical capacity and experience the same
environment reflects itself in the fact that the coefficientmatrix is a (real) symmetric
matrix. Determine the eigenvalues and corresponding eigenvectors of this matrix,
and form the general solution of the homogeneous linear system.

(c) Assume that the initial amounts of solute in Tanks 1 and 2 are Q1(0) = Q0 and
Q2(0) = 2Q0, respectively, where Q0 is a positive constant. Assume that
r/V = 0.02 sec −1. Determine the amount of flushing time required to reduce the
amount of salt in each of the two tanks to 0.01Q0 or less.
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Tank 1 Tank 2

Q1(t) Q2(t)

V V

Fresh
water

Fresh
water

All flow rates = r.

Figure for Exercise 13

14. Consider the three-tank flow system shown in the figure.

(a) As in Exercise 13, derive a homogeneous linear equation for Qj(t), j = 1,2,3.

(b) Determine the eigenvalues and eigenvectors of the coefficient matrix. You will
find that one eigenvalue appears as a root of multiplicity two of the characteristic
equation. You should, however, be able to find two linearly independent eigenvec-
tors corresponding to this repeated eigenvalue. Form the general solution of the
homogeneous linear system.

(c) If the initial amounts of salt in the three tanks are Q1(0) = Q0, Q2(0) = 2Q0,
and Q3(0) = 3Q0, respectively, determine the solution of the resulting initial value
problem. (Your answer will involve the constants r/V and Q0 as well as time t.)

Tank 1 Tank 2

Q1(t) Q2(t)

V V

Fresh
water

Fresh
water

Fresh
water

Q3(t) V

Tank 3

All flow rates = r.

Figure for Exercise 14

15. (a) Let y(t) denote the solution of the autonomous linear system y ′ = Ay, y(0) = y0.
Show that y(t− t0) is the solution of the initial value problem y ′ = Ay, y(t0) = y0.
(Recall Theorem 2.3 in Section 2.5.)

(b) Let A be a constant (2× 2) matrix. Suppose the solution of y ′ = Ay, y(0) = y0 is
given by

y(t) =
[
et − 2e−t

3et + e−t

]
.

Let ŷ(t) denote the solution of y ′ = Ay, y(−1) = y0. Determine ŷ(2).
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16. Equilibrium Solutions Consider the linear system y ′ = Ay, where

A =
[
2 1

−4 α

]
.

(a) For what values of the constant α is y = 0 the only equilibrium solution?

(b) For what values of α doesmore than one equilibrium solution exist? In this case,
how many are there? Where do these values lie when plotted in the phase plane?

17. Match each linear system with one of the phase plane direction fields.

(a) y ′ =
[
1 −3
0 −2

]
y (b) y ′ = −1

3

[
4 1

2 5

]
y

(c) y ′ =
[
3 1

1 3

]
y (d) y ′ = 1

2

[
1 3

3 1

]
y
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Figure for Exercise 17

Exercises 18–21:

In each exercise, the general solution of a (2× 2) linear system y ′ = Ay is given, along
with an initial condition. Sketch the phase plane solution trajectory that satisfies the
given initial condition.
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18. y(t) = c1e
−t

[
1

−1

]
+ c2e

−2t
[
1

1

]
, y(0) =

[
3

−1

]

19. y(t) = c1e
2t

[
1

1

]
+ c2e

t

[
0

1

]
, y(0) =

[
0

−2

]

20. y(t) = c1e
−t

[
1

−1

]
+ c2e

t

[
1

1

]
, y(0) =

[
2

0

]

21. y(t) = c1

[
2

1

]
+ c2e

−t
[−1
1

]
, y(0) =

[
3

3

]

4.6 Complex Eigenvalues
In this section, we study the differential equation y ′ = Ay, where A is a real con-
stant (n× n)matrix possessing complex conjugate eigenvalues. As an example,
consider the linear system

y′
1 = y1 + y2
y′
2 = −y1 + y2.

The coefficient matrix

A =
[
1 1

−1 1

]

has a pair of complex eigenvalues, λ1 = 1+ i and λ2 = 1− i. To find an eigen-
vector corresponding to λ1, we seek a nontrivial solution of (A− λ1I)x = 0.
Therefore, [

−i 1

−1 −i

] [
x1
x2

]
=

[
0

0

]

or, equivalently, [
−i 1

0 0

] [
x1
x2

]
=

[
0

0

]
.

A nontrivial solution is given by

x1 =
[
1

i

]
.

Similarly, an eigenvector corresponding to λ2 = 1− i is

x2 =
[
1

−i

]
.

For this matrix, the eigenvalues and eigenvectors occur in conjugate pairs, and
this property is common to every real matrix with complex eigenvalues. If A is
a real matrix, then

1. Complex eigenvalues always occur in conjugate pairs.

2. If λ is a complex eigenvalue with a corresponding eigenvector x, then x
is an eigenvector for the eigenvalue λ.
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Therefore, if (λ,x) is an eigenpair of a real matrix A, then so is (λ,x). Note the
computational implications: Once an eigenvector x corresponding to a complex
eigenvalue λ has been determined, we need only form the complex conjugate
x to obtain an eigenvector corresponding to λ.

The Real and Imaginary Parts of a Complex-Valued Solution
Are Also Solutions
For applications, we often want to convert the complex solutions of y ′ = Ay
that arise from complex eigenpairs into real-valued solutions. For example, the
matrix

A =
[
1 1

−1 1

]

has eigenvalues λ1 = 1+ i and λ2 = λ1 = 1− i and corresponding eigenvectors

x1 =
[
1

i

]
and x2 = x1 =

[
1

−i

]
.

Since the eigenvalues are distinct, we conclude that

{y1(t), y2(t)} =
{
e(1+i)t

[
1

i

]
, e(1−i)t

[
1

−i

]}
(1)

is a fundamental set of solutions for y ′ = Ay. How do we convert these two
solutions into a fundamental set of real-valued solutions?

As in Chapter 3, the key result is that both the real and the imaginary parts
of a complex-valued solution are also solutions.

Theorem 4.7
Consider the differential equation y ′ = Ay, −∞ < t < ∞, where A is an
(n× n) real matrix. Let y(t) = u(t) + iv(t) be a complex-valued solution of
this differential equation, where u(t) and v(t) are each real-valued (n× 1)
vector functions representing the real and imaginary parts of y(t), respec-
tively. Then u(t) and v(t) are each solutions of y ′ = Ay, −∞ < t < ∞.

● PROOF: Substitute y(t) = u(t) + iv(t) into the left-hand side of the differ-
ential equation y ′ = Ay to obtain

[u(t) + iv(t)]′ =

⎡
⎢⎢⎢⎢⎣

[u1(t) + iv1(t)]′
[(u2(t) + iv2(t)]′

...

[(un(t) + ivn(t)]′

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
u′
1(t)

u′
2(t)
...

u′
n(t)

⎤
⎥⎥⎥⎥⎦ + i

⎡
⎢⎢⎢⎢⎣
v′
1(t)

v′
2(t)
...

v′
n(t)

⎤
⎥⎥⎥⎥⎦ = u′(t) + iv ′(t). (2)

Substituting y(t) = u(t) + iv(t) into the right-hand side of the differential equa-
tion y ′ = Ay, we obtain

A[u(t) + iv(t)] = Au(t) + A[iv(t)] = Au(t) + iAv(t). (3)
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Two complex quantities are equal if and only if their corresponding real and
imaginary parts are equal. Therefore, equating expressions (2) and (3), we see
that

u′(t) = Au(t), v ′(t) = Av(t), −∞ < t < ∞. ●

The following example illustrates the use of Theorem 4.7 to convert a set
of complex-valued solutions into a set of real-valued solutions.

E X A M P L E

1 Find a real-valued fundamental set of solutions of y ′ = Ay,−∞ < t < ∞, where

A =
[
1 1

−1 1

]
.

Solution: From equation (1),

y(t) = e(1+i)t
[
1

i

]
(4)

is a complex-valued solution of y ′ = Ay. From Euler’s formula [see equation (9)
in Section 3.5],

e(1+i)t = eteit = et(cos t+ i sin t) = et cos t+ iet sin t.

Therefore, we can write solution (4) as

y(t) = (et cos t+ iet sin t)

[
1

i

]

=
[
et cos t

−et sin t

]
+ i

[
et sin t

et cos t

]

= u(t) + iv(t).

It follows from Theorem 4.7 that the two real functions

u(t) =
[
et cos t

−et sin t

]
and v(t) =

[
et sin t

et cos t

]

are also solutions of the differential equation. (You can also verify this claim
by direct substitution into the differential equation.)

To show that they form a fundamental set of solutions on −∞ < t < ∞, we
calculate the Wronskian and find

W(t) =
∣∣∣∣∣ et cos t et sin t

−et sin t et cos t

∣∣∣∣∣ = e2t(cos2 t+ sin2 t) = e2t �= 0.

Therefore, the general solution of the differential equation is y(t) = c1u(t) +
c2v(t):

y(t) = c1

[
et cos t

−et sin t

]
+ c2

[
et sin t

et cos t

]
=

[
et cos t et sin t

−et sin t et cos t

] [
c1
c2

]
. ❖

REMARK: According to Theorem 4.5 in Section 4.3, the two fundamental sets
[the original set of complex-valued solutions (1) and the real-valued set con-
structed in Example 1] are related via multiplication on the right by a constant
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nonsingular matrix. We can illustrate Theorem 4.5 here by noting that

[
et cos t et sin t

−et sin t et cos t

]
=

[
e(1+i)t e(1−i)t

ie(1+i)t −ie(1−i)t
] ⎡

⎢⎢⎢⎣
1
2

−i
2

1
2

i
2

⎤
⎥⎥⎥⎦ ,

where the constant matrix on the right-hand side is nonsingular since∣∣∣∣∣∣∣∣
1
2

−i
2

1
2

i
2

∣∣∣∣∣∣∣∣
= i
2

�= 0.

E X A M P L E

2 Solve the initial value problem y ′ = Ay, −∞ < t < ∞,

A =
⎡
⎢⎣
1 2 −2
2 5 −2
4 12 −5

⎤
⎥⎦ , y(0) =

⎡
⎢⎣
1

1

0

⎤
⎥⎦ .

Solution: Since the characteristic polynomial is a cubic polynomial with real
coefficients, there will be at least one real eigenvalue. Using a cofactor expan-
sion along the first row, we obtain

p(λ) = det(A− λI) =

∣∣∣∣∣∣∣
1− λ 2 −2
2 5− λ −2
4 12 −5− λ

∣∣∣∣∣∣∣
= (1− λ)

∣∣∣∣5− λ −2
12 −5− λ

∣∣∣∣ − 2

∣∣∣∣2 −2
4 −5− λ

∣∣∣∣ − 2

∣∣∣∣2 5− λ

4 12

∣∣∣∣
= −(λ3 − λ2 + 3λ + 5).

Computer software could certainly be used to determine the roots of p(λ) = 0.
In this particular case, however, we see by inspection that λ = −1 is a root.
Therefore, synthetic division and the quadratic formula yields

p(λ) = −(λ + 1)(λ2 − 2λ + 5) = −(λ + 1)(λ − 1− 2i)(λ − 1+ 2i).

The eigenvalues are λ1 = −1, λ2 = 1+ 2i, λ3 = λ2 = 1− 2i. We now compute
the eigenvectors.

For λ1 = −1, we solve (A− λ1I)x1 = (A+ I)x1 = 0, or⎡
⎢⎣2 2 −2
2 6 −2
4 12 −4

⎤
⎥⎦

⎡
⎢⎣x1x2
x3

⎤
⎥⎦ =

⎡
⎢⎣00
0

⎤
⎥⎦ .

Using elementary row operations, we obtain an equivalent homogeneous sys-
tem ⎡

⎢⎣1 0 −1
0 1 0
0 0 0

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣00
0

⎤
⎥⎦ .

(continued)
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(continued)

A nontrivial solution is

x1 =
⎡
⎢⎣
1

0

1

⎤
⎥⎦ .

For λ2 = 1+ 2i, we solve (A− λ2I)x = [A− (1+ 2i)I]x = 0, or⎡
⎢⎣

−2i 2 −2
2 4− 2i −2
4 12 −6− 2i

⎤
⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

In this case, elementary row operations lead to an equivalent system⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 − i
2

0 1 −1
2

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ =

⎡
⎢⎣
0

0

0

⎤
⎥⎦ .

A nontrivial solution is

x2 =
⎡
⎢⎣
i

1

2

⎤
⎥⎦ .

Althoughwe do not need it to solve the given initial value problem, we know
an eigenvector x3 corresponding to the eigenvalue λ3 = λ2 = 1− 2i is given by

x3 = x2 =
⎡
⎢⎣

−i
1

2

⎤
⎥⎦ .

We now develop a real-valued fundamental set of solutions. One solution
[corresponding to the eigenpair (λ1,x1)] is

y1(t) = e−t

⎡
⎢⎣
1

0

1

⎤
⎥⎦ =

⎡
⎢⎣
e−t

0

e−t

⎤
⎥⎦ .

Since y ′ = Ay is a system of three first order equations, we know that a fun-
damental set must consist of three solutions. To obtain the two other solu-
tions needed, we take the complex-valued solution determined by the eigenpair
(λ2,x2),

y(t) = e(1+2i)t

⎡
⎢⎣
i

1

2

⎤
⎥⎦ ,

and decompose it into the form u(t) + iv(t). [The other complex-valued solu-
tion, determined by the eigenpair (λ3,x3), decomposes into u(t) − iv(t), yielding
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(essentially) the same pair of real-valued solutions.] Decomposing y(t), we ob-
tain

y(t) = e(1+2i)t

⎡
⎢⎣
i

1

2

⎤
⎥⎦ = et(cos 2t+ i sin 2t)

⎡
⎢⎣
i

1

2

⎤
⎥⎦

=
⎡
⎢⎣

−et sin 2t
et cos 2t

2et cos 2t

⎤
⎥⎦ + i

⎡
⎢⎣
et cos 2t

et sin 2t

2et sin 2t

⎤
⎥⎦ .

We complete the fundamental set by setting

y2(t) =
⎡
⎢⎣

−et sin 2t
et cos 2t

2et cos 2t

⎤
⎥⎦ and y3(t) =

⎡
⎢⎣
et cos 2t

et sin 2t

2et sin 2t

⎤
⎥⎦ .

The general solution, y(t) = c1y1(t) + c2y2(t) + c3y3(t), is therefore

y(t) = c1

⎡
⎢⎣
e−t

0

e−t

⎤
⎥⎦ + c2

⎡
⎢⎣

−et sin 2t
et cos 2t

2et cos 2t

⎤
⎥⎦ + c3

⎡
⎢⎣
et cos 2t

et sin 2t

2et sin 2t

⎤
⎥⎦

=
⎡
⎢⎣
e−t −et sin 2t et cos 2t

0 et cos 2t et sin 2t

e−t 2et cos 2t 2et sin 2t

⎤
⎥⎦

⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ .

(5)

The fact that our three solutions form a fundamental set can be verified directly
by noting that the Wronskian, evaluated at t = 0, is

W(0) =

∣∣∣∣∣∣∣
1 0 1

0 1 0

1 2 0

∣∣∣∣∣∣∣ = −1 �= 0.

To solve the given initial value problem, we impose the initial condition in
equation (5), finding ⎡

⎢⎣
1 0 1

0 1 0

1 2 0

⎤
⎥⎦

⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ =

⎡
⎢⎣
1

1

0

⎤
⎥⎦ .

The solution is ⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ =

⎡
⎢⎣

−2
1

3

⎤
⎥⎦ ,

and therefore the unique solution of the initial value problem is

y(t) = −2
⎡
⎢⎣
e−t

0

e−t

⎤
⎥⎦+

⎡
⎢⎣

−et sin 2t
et cos 2t

2et cos 2t

⎤
⎥⎦+ 3

⎡
⎢⎣
et cos 2t

et sin 2t

2et sin 2t

⎤
⎥⎦=

⎡
⎢⎣

−2e−t − et sin 2t+ 3et cos 2t

et cos 2t+ 3et sin 2t

−2e−t + 2et cos 2t+ 6et sin 2t

⎤
⎥⎦.

❖
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Phase Plane Trajectories
The following example develops phase plane trajectories for a pair of (2× 2)
systems y ′ = Ay, where A has complex eigenvalues.

E X A M P L E

3 Sketch several phase plane trajectories for

(a) y′
1 = y2
y′
2 = −4y1

(b) y′
1 = y1 + y2
y′
2 = −y1 + y2

Note that the solution of system (b) is given in Example 1.

Solution:

(a) The coefficient matrix has eigenpairs (λ1,x1) and (λ2,x2), where

λ1 = 2i, x1 =
[
1

2i

]
and λ2 = −2i, x2 =

[
1

−2i

]
.

Thus, the general solution, expressed in terms of a real-valued fundamental
set, is

y(t) = c1

[
cos 2t

−2 sin 2t

]
+ c2

[
sin 2t

2 cos 2t

]
.

Since the component functions cos 2t and sin 2t are periodic with period π ,
the trajectories are closed curves; as t increases by π units, the phase plane
point returns to its original position; see Figure 4.5(a). The phase plane
trajectories form a family of concentric ellipses centered at the equilibrium
solution y = 0, and they are traversed in a clockwise manner.

–20 –15 –10 –5 5 10 15 20 25
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15

y2

y1

(b)

–2 –1 1 2

–3

–2

–1

1

2

3

y2

y1

(a)

FIGURE 4.5

(a) Phase plane trajectories for the system in part (a) of Example 3 are
ellipses. These trajectories are traced in a clockwise manner. (b) Phase
plane trajectories for the system in part (b) are spirals, traced in a
clockwise manner.
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To establish that the trajectories are ellipses, we rewrite the arbitrary
constants as c1 = R cosα and c2 = R sinα. With this,

y1(t) = R(cosα cos 2t+ sinα sin 2t) = R cos(2t− α)

y2(t) = −2R(cosα sin 2t− sinα cos 2t) = −2R sin(2t− α).

Therefore, it follows that the phase plane points (y1(t), y2(t)) lie on the ellipse

y21
R2

+ y22
4R2

= 1.

(b) From Example 1, the general solution in component form is

y1(t) = et(c1 cos t+ c2 sin t)

y2(t) = et(−c1 sin t+ c2 cos t).

Setting c1 = R cosα and c2 = R sinα as in part (a), we obtain

y1(t) = Ret cos(t− α)

y2(t) = −Ret sin(t− α).

Therefore, the phase plane points (y1(t), y2(t)) lie on the spiral

y21 + y22 = R2e2t.

As t increases, the phase plane points spiral outward while moving clock-
wise about the origin; see Figure 4.5(b). ❖

E X E R C I S E S

Exercises 1–10:

Find the eigenvalues and eigenvectors of the given matrix A.

1. A =
[
2 1

−1 2

]
2. A =

[
0 −9
1 0

]
3. A =

[
0 1

−2 −2

]
4. A =

[
3 2

−5 −3

]

5. A =
[−5 −2
5 1

]
6. A =

[
3 1

−2 1

]
7. A =

⎡
⎢⎣

−1 −0.5 0

0.5 −1 0

0 0 2

⎤
⎥⎦

8. A =
⎡
⎢⎣
0 0 0

0 3 −5
0 2 −3

⎤
⎥⎦ 9. A =

⎡
⎢⎣

2 2 9

1 −1 3

−1 −1 −4

⎤
⎥⎦ 10. A =

⎡
⎢⎣
1 −4 −1
3 2 3

1 1 3

⎤
⎥⎦

Exercises 11–16:

In each exercise, one or more eigenvalues and corresponding eigenvectors are given
for a real matrix A. Determine a fundamental set of solutions for y ′ = Ay, where the
fundamental set consists entirely of real solutions.

11. A is (2× 2) with an eigenvalue λ = 4+ 2i and corresponding eigenvector

x =
[

4

−1+ i

]
.

12. A is (2× 2) with an eigenvalue λ = i and corresponding eigenvector

x =
[−2+ i

5

]
.
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13. A is (2× 2) with an eigenvalue λ = 2i and corresponding eigenvector

x =
[
−1− i

1

]
.

14. A is (2× 2) with an eigenvalue λ = 1+ i and corresponding eigenvector

x =
[−1+ i

i

]
.

15. A is (3× 3) with a complex eigenvalue λ = 2+ 3i and corresponding eigenvector

x =
⎡
⎢⎣

−5+ 3i

3+ 3i

2

⎤
⎥⎦ ,

and a real eigenvalue λ = 2 and corresponding eigenvector

x =
⎡
⎢⎣

1

0

−1

⎤
⎥⎦ .

16. A is (4× 4) and has two different complex eigenvalues: λ = 1+ 5i with correspond-
ing eigenvector

x =

⎡
⎢⎢⎢⎢⎣
i

1

0

0

⎤
⎥⎥⎥⎥⎦ ,

and λ = 1+ 2i with corresponding eigenvector

x =

⎡
⎢⎢⎢⎢⎣
0

0

i

1

⎤
⎥⎥⎥⎥⎦ .

Exercises 17–26:

Solve the initial value problem. Eigenpairs of the coefficient matrices were determined
in Exercises 1–10.

17. y′
1 = 2y1 + y2, y1(0) = 4

y′
2 = −y1 + 2y2, y2(0) = 7

18.
y ′ =

[
0 −9
1 0

]
y, y(0) =

[
6

2

]

19.
y ′ =

[
0 1

−2 −2

]
y, y(0) =

[
2

2

]
20. y′

1 = 3y1 + 2y2, y1(0) = −1
y′
2 = −5y1 − 3y2, y2(0) = 1

21. y′
1 = −5y1 − 2y2, y1(0) = 0

y′
2 = 5y1 + y2, y2(0) = −2

22.
y ′ =

[
3 1

−2 1

]
y, y(0) =

[
8

6

]

23.

y ′ =
⎡
⎢⎣

−1 −0.5 0

0.5 −1 0

0 0 2

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

2

3

−1

⎤
⎥⎦

24. y′
1 = 0, y1(π/2) = −1
y′
2 = 3y2 − 5y3, y2(π/2) = 1

y′
3 = 2y2 − 3y3, y3(π/2) = 2

25.

y ′ =
⎡
⎢⎣

2 2 9

1 −1 3

−1 −1 −4

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣
12

2

4

⎤
⎥⎦
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26.

y ′ =
⎡
⎢⎣
1 −4 −1
3 2 3

1 1 3

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

−1
9

4

⎤
⎥⎦

27. Let A be a real (2× 2) matrix having λ = α + iβ as a complex eigenvalue, with β

nonzero. Show that any eigenvector x corresponding to λ must have at least one
complex component. [Hint: Assume that x is a real vector and deduce a contradic-
tion.]

Exercises 28–31:

In each exercise, consider the initial value problem y ′ = Ay, y(0) = y0 for the given co-
efficient matrix A. In each exercise, the matrix A contains a real parameter μ.

(a) Determine all values of μ for which A has distinct real eigenvalues and all values of
μ for which A has distinct complex eigenvalues.

(b) For what values of μ found in part (a) does
√
y1(t)

2 + y2(t)
2 → 0 as t → ∞ for every

initial vector y0?

28. A =
[
1 3

μ −2

]
29. A =

[−2 μ

1 −3

]
30. A =

[−3 −μ

μ 1

]
31. A =

[−3 μ

μ 1

]

32. Match the phase plane plot of the solutionwith the appropriate initial value problem
given on the next page. (The arrows on the trajectories indicate how the solution
point moves as t increases.)
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Figure for Exercise 32
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(a) y ′ =
[
1 −0.5
0.5 1

]
y, y(0) =

[
1

0

]
(b) y ′ =

[
0 −1
1 0

]
y, y(0) =

[
1

0

]

(c) y ′ =
[
0 2

−2 0

]
y, y(0) =

[
1

0

]
(d) y ′ =

[−1 −0.5
0.5 −1

]
y, y(0) =

[
1

0

]

Exercises 33–36:

A complex solution of the differential equation y ′ = Ay is given, where A is a real (2× 2)
matrix. Let y(t) denote any solution of y ′ = Ay, where y(0) �= 0. As t increases, how
will the phase plane trajectory of the solution behave? Will the solution point (a) move
around the origin on a circular orbit, (b) move around the origin on an elliptical orbit,
(c) spiral inward toward the origin, or (d) spiral outward away from the origin?

33. y(t) = eit
[
i

2

]
34. y(t) = e(−1+i)t

[
1

i

]

35. y(t) = e−2it
[
i

2

]
36. y(t) = e(2−i)t

[
i

−1

]

4.7 Repeated Eigenvalues
In Section 3.4, we discussed the second order homogeneous scalar equation

y′′ − 2αy′ + α2y = 0. (1)

Looking for solutions of the form y(t) = eλt led us to a characteristic polynomial
with repeated roots,

λ2 − 2αλ + α2 = (λ − α)2.

One solution of equation (1) is y1(t) = eαt. A second solution needed to form a
fundamental set of solutions is y2(t) = teαt.

In our present study of the homogeneous first order linear system
y ′ = Ay, an analogous situation arises when the constant coefficient matrix A
has repeated eigenvalues. (We say that A has repeated eigenvalues whenever
the characteristic equation, det[A− λI] = 0, has repeated roots.) The problem
of finding a fundamental set of solutions is more complicated when A has re-
peated eigenvalues than in the repeated root scalar case. In some cases, such
as when A is a real symmetric matrix, the presence of repeated eigenvalues
presents no new difficulties. We now consider the other cases, where some new
ideas are required. An example illustrates the complications that may arise
from the presence of repeated eigenvalues.

Complications from Repeated Eigenvalues
If A has repeated eigenvalues, are there enough linearly independent eigenvec-
tors to form a fundamental set of solutions for y ′ = Ay? For an illustration of
the complications thatmay arise from repeated eigenvalues, consider the linear
system y ′ = Ay, where

A =
[
α β

0 α

]
. (2)
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The characteristic polynomial for A is

p(λ) = (λ − α)2.

Thus, λ = α is a repeated eigenvalue of A.
If β = 0 in equation (2), then

x1 =
[
1

0

]
and x2 =

[
0

1

]

are eigenvectors corresponding to the eigenvalue λ = α. [In fact, the matrix
A− αI is the zeromatrix, and thus any nonzero (2× 1) vector is an eigenvector.]
By Abel’s theorem, the functions

y1(t) = eαtx1 and y2(t) = eαtx2 (3)

form a fundamental set of solutions for y ′ = Ay. However, what happens if
β �= 0 in equation (2)? In this event, as shown below, there is (essentially) only
one eigenvector x1. Hence, we need a further analysis of y

′ = Ay in order to find
the second solution needed for a fundamental set of solutions.

If β �= 0, the eigenvector equation (A− αI)x = 0 is[
0 β

0 0

] [
x1
x2

]
=

[
0

0

]
.

Since β �= 0, it follows that x2 = 0. Thus, every eigenvector corresponding to
λ = α has the form

x =
[
x1
x2

]
=

[
c

0

]
= c

[
1

0

]
= cx1. (4)

We now have one member of a fundamental set of solutions, namely

y1(t) = eαtx1 =
[
eαt

0

]
.

How do we find a second solution, y2(t)?

Finding a Second Solution When the Value β in Matrix (2)
Is Nonzero
For the simple example (2), we can find a second solution y2(t) by sequentially
solving the component equations. Let

y(t) =
[
y1(t)

y2(t)

]
.

In component form, the differential equation y ′ = Ay is

y′
1 = αy1 + βy2
y′
2 = αy2.

(5)

We first solve the second equation, finding y2(t) = c2e
αt. Next, we substitute this

expression for y2(t) into the first equation, obtaining

y′
1 = αy1 + βc2e

αt.
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Solving this first order linear equation,we arrive at y1(t) = c1e
αt + c2βte

αt. There-
fore, the general solution of y ′ = Ay is

y(t) =
[
y1(t)

y2(t)

]
=

[
c1e

αt + c2βte
αt

c2e
αt

]
=

[
c1e

αt

0

]
+

[
c2βte

αt

c2e
αt

]

= c1e
αt

[
1

0

]
+ c2

{
teαt

[
β

0

]
+ eαt

[
0

1

]}

= c1y1(t) + c2y2(t).

As in the repeated-root scalar case, we see that the function teαt enters into the
second solution,

y2(t) = teαt
[
β

0

]
+ eαt

[
0

1

]
.

We also see, however, that the second solution is not simply of the form teαtx1;
rather, it has the form y2(t) = teαtv1 + eαtv2, where v1 and v2 are nonzero con-
stant vectors. [Note that the vector we are calling v1 is actually an eigenvector,
since v1 = βx1; see equation (4).]

To verify, for this example, that {y1(t), y2(t)} is a fundamental set of solu-
tions, let �(t) = [y1(t), y2(t)]. At t = 0, the Wronskian is nonzero since

W(0) = det[�(0)] = det[y1(0), y2(0)] =
∣∣∣∣∣1 0

0 1

∣∣∣∣∣ = 1.

How do we find a second solution when we cannot solve the component equa-
tions sequentially as we did in equation (5)? In the next subsection, we will
use this example as a guide to develop a procedure for finding a second solu-
tion of y ′ = Ay in the case where A is a (2× 2) constant matrix with a repeated
eigenvalue. Later, we comment on the general case whereA is an (n× n)matrix.

Finding a Fundamental Set of Solutions When an Eigenvalue
Is Repeated
Consider the differential equation y ′ = Ay, −∞ < t < ∞, where A is a real con-
stant (2× 2)matrix and where the characteristic polynomial is p(λ) = (λ − α)2.

If {x1,x2} is a set of two linearly independent eigenvectors corresponding
to the repeated eigenvalue λ = α, then

y1(t) = eαtx1 and y2(t) = eαtx2

form a fundamental set of solutions of y ′ = Ay. Suppose, however, that a set of
two linearly independent eigenvectors corresponding to the eigenvalue λ = α

does not exist. In such a case, y1(t) = eαtx1 is one solution. How do we find a
second solution, y2(t)?

Motivated by the previous example, we look for a second solution of the
form

y2(t) = teαtv1 + eαtv2, (6)
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where v1 and v2 are nonzero constant (2× 1) vectors to be determined. Substi-
tuting this representation into the differential equation, we obtain

(eαt + αteαt)v1 + αeαtv2 = A(teαtv1 + eαtv2).

We can rewrite this equation as

teαt(Av1 − αv1) + eαt(Av2 − αv2 − v1) = 0, −∞ < t < ∞. (7)

The set {teαt, eαt} is a linearly independent set of functions on any t-interval
of interest. Therefore, if equation (7) is to hold, each of the constant matrix
coefficients must vanish. We obtain, therefore, a pair of matrix equations that
the nonzero vectors v1 and v2 must satisfy:

(A− αI)v1 = 0

(A− αI)v2 = v1.
(8)

The first of these equations is simply the eigenvector equation, so we take v1 to
be an eigenvector corresponding to λ = α. Consider the second equation,

(A− αI)v2 = v1. (9)

At first glance, equation (9) should give us cause for concern. The coefficient
matrixA− αI is singular (that is, noninvertible) since α is an eigenvalue ofA.We
recall that a nonhomogeneous system of equations having a singular coefficient
matrix, such as system (9), has either no solution or infinitely many solutions.
In the present case, however, it can be shown that equation (9) always has
infinitely many solutions. Selecting a particular solution of (9) determines v2;
having v2, we can form a second solution, y2(t). It can be shown that the pair of
solutions obtained, {y1(t), y2(t)}, is a fundamental set of solutions. The vector
v2 in equation (8) is called a generalized eigenvector of order 2. See Exercises
34–37.

E X A M P L E

1 Solve the initial value problem

y ′ =
[
2 −1
1 4

]
y, y(1) =

[
1

3

]
.

Solution: The characteristic polynomial is

p(λ) = det[A− λI] =
∣∣∣∣∣2− λ −1
1 4− λ

∣∣∣∣∣ = λ2 − 6λ + 9 = (λ − 3)2.

The coefficient matrix, therefore, has λ = 3 as a repeated eigenvalue. The cor-
responding eigenvector equation is (A− 3I)x = 0, or[

−1 −1
1 1

] [
x1
x2

]
=

[
0

0

]
.

This equation reduces to x1 + x2 = 0, and hence the eigenvectors have the form

x =
[
x1
x2

]
=

[−x2
x2

]
= x2

[−1
1

]
, x2 �= 0.

(continued)
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(continued)

A convenient choice for an eigenvector is

v1 =
[
−1
1

]
.

Therefore, one solution of y ′ = Ay is

y1(t) = e3tv1.

The eigenvalue λ = 3does not have two linearly independent eigenvectors, since
every eigenvector is a nonzero multiple of v1. Therefore, we look for a second
solution having the form y2(t) = te3tv1 + e3tv2, where [see equation (9)] v2 sat-
isfies the equation (A− 3I)x = v1, or[

−1 −1
1 1

] [
x1
x2

]
=

[
−1
1

]
.

This equation reduces to x1 + x2 = 1, and hence the solution is

v2 =
[
1− x2
x2

]
=

[
1

0

]
+ x2

[
−1
1

]
.

There are infinitely many choices for x2, but we only need one solution. Choos-
ing x2 = 0 for convenience, we obtain

v2 =
[
1

0

]
.

Therefore, a second solution is y2(t) = te3tv1 + e3tv2:

y2(t) = te3t
[
−1
1

]
+ e3t

[
1

0

]
=

[−te3t + e3t

te3t

]
.

Computing the Wronskian of the two solutions, we find

W(t) =
∣∣∣∣∣−e

3t −te3t + e3t

e3t te3t

∣∣∣∣∣ = −e6t �= 0.

These two solutions form a fundamental set, and the general solution is given
by y(t) = c1y1(t) + c2y2(t):

y(t) = c1

[−e3t
e3t

]
+ c2

[−te3t + e3t

te3t

]
=

[−e3t −te3t + e3t

e3t te3t

] [
c1
c2

]
.

Imposing the initial condition,

y(1) =
[
1

3

]
=

[−e3 0

e3 e3

] [
c1
c2

]
,

leads to c1 = −e−3 and c2 = 4e−3. The solution of the initial value problem is,
therefore,

y(t) =
[−4te3(t−1) + 5e3(t−1)

4te3(t−1) − e3(t−1)

]
. ❖
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Algebraic Multiplicity and Geometric Multiplicity
So far in this section, we have concentrated on the equation y ′ = Ay in the
case where A is a constant (2× 2) matrix with a repeated eigenvalue. The case
where A is an (n× n) matrix with repeated eigenvalues is more complicated,
and a comprehensive treatment is beyond the scope of our present discussion.
We do, however, give some indications of the underlying ideas in the Exercises.
In addition, some observations about the (n× n) case can bemade at this point.

In looking for a fundamental set of solutions for y ′ = Ay, there is more to
consider than simply whether A has repeated eigenvalues. If an eigenvalue is
repeated, the question then arises as to whether there exist enough linearly in-
dependent eigenvectors. These considerations lead to the following definitions.

Let α be an eigenvalue of an (n× n) matrix A. The algebraic multiplicity
of α is the order of α as a root of the characteristic equation, p(λ) = 0. If

p(λ) = (λ − α)rq(λ),

where q(λ) is a polynomial of degree n− r and q(α) �= 0, then α is an eigenvalue
of algebraicmultiplicity r. The geometricmultiplicity of the eigenvalueα is the
number of linearly independent eigenvectors that can be found corresponding
to this eigenvalue.

Since the characteristic polynomial has degree n, the algebraic multiplicity
of α is an integer r, where 1 ≤ r ≤ n. Similarly, a set of (n× 1) vectors cannot
be linearly independent unless the set contains n or fewer vectors. Thus, the
geometric multiplicity of α is an integer s, where 1 ≤ s ≤ n. As we note later in
equation (10), the inequality s ≤ r holds for every matrix A.

E X A M P L E

2 In each of the following cases, determine the algebraic and geometric multi-
plicity of the eigenvalue λ = 2.

(a) A1 =
⎡
⎢⎣
2 1 0

0 2 1

0 0 2

⎤
⎥⎦ (b) A2 =

⎡
⎢⎣
2 1 0

0 2 0

0 0 2

⎤
⎥⎦ (c) A3 =

⎡
⎢⎣
2 0 0

0 2 0

0 0 2

⎤
⎥⎦

Solution: In each case, the characteristic polynomial is p(λ) = −(λ − 2)3.
Therefore, in each case, the eigenvalue λ = 2 has algebraic multiplicity 3.

(a) All solutions (see Exercise 13) of the eigenvector equation (A1 − 2I)x = 0
have the form

x =
⎡
⎢⎣
a

0

0

⎤
⎥⎦ = a

⎡
⎢⎣
1

0

0

⎤
⎥⎦ = ax1.

Therefore, for the matrix A1, the geometric multiplicity of the eigenvalue
λ = 2 is 1.

(b) All solutions of the eigenvector equation (A2 − 2I)x = 0 have the following
form (see Exercise 13):

x =
⎡
⎢⎣
b

0

c

⎤
⎥⎦ = b

⎡
⎢⎣
1

0

0

⎤
⎥⎦ + c

⎡
⎢⎣
0

0

1

⎤
⎥⎦ = bx1 + cx2,

(continued)
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(continued)

where x1 and x2 are linearly independent. Therefore, for the matrix A2, the
geometric multiplicity of the eigenvalue λ = 2 is 2.

(c) Finally, since the matrix A3 − 2I is the (3× 3) zero matrix, every nonzero
(3× 1) vector is an eigenvector of A3. Therefore, for the matrix A3, the
geometric multiplicity of λ = 2 is 3. ❖

If we want to solve the equation y ′ = A1y in Example 2, we need to find
two more solutions to form a fundamental set of solutions, as one solution is
y1(t) = e2tx1. By contrast, if we want to solve y

′ = A2y, we need find only one ad-
ditional solution, as we know two linearly independent solutions, y1(t) = e2tx1
and y2(t) = e2tx2. Finally, if we want to solve y

′ = A3y, then (since every three-
dimensional vector is an eigenvector of A3) we can select any three linearly
independent vectors u, v, w and we are assured (by Theorem 4.6) that the
solutions y1(t) = e2tu, y2(t) = e2tv, and y3(t) = e2tw form a fundamental set of
solutions.

Defective Matrices
The following inequality is established in advanced texts:

The geometric multiplicity
of an eigenvalue

≤ The algebraic multiplicity
of an eigenvalue.

(10)

In determining the structure of a fundamental set of solutions of y ′ = Ay, the
key question is “How does the geometric multiplicity of each eigenvalue relate
to its algebraic multiplicity?” If the two multiplicities for a given eigenvalue λ

are equal, the corresponding solutions entering into the fundamental set will
all be of the form eλtx (whether the eigenvalue is distinct or repeated). If the ge-
ometric multiplicity of an eigenvalue is strictly less than its algebraic multiplic-
ity, we have a “deficiency of eigenvectors” and solutions of a more complicated
form become part of the fundamental set.

A matrix that has at least one eigenvalue with a geometric multiplicity that
is strictly less than its algebraic multiplicity cannot have a full set of eigenvec-
tors; such a matrix is called defective. Thus, in Example 2, the matrices A1 and
A2 are defective but the matrix A3 has a full set of eigenvectors.

Phase Plane Trajectories
We examine the phase plane trajectories of the linear system y ′ = Ay, where
A is a real (2× 2) constant matrix with repeated eigenvalues λ1 = λ2 = α, with
α �= 0.

If A has a full set of eigenvectors, then it can be shown that A = αI; see
Exercise 24. In this case, the general solution has the form

y(t) = c1e
αt

[
1

0

]
+ c2e

αt

[
0

1

]
. (11)

From (11), we obtain c2y1(t) = c1y2(t), and thus the phase plane solution points
move on rays emanating from the origin. The motion is inward toward the
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origin if α < 0 and outward from the origin if α > 0. Figure 4.6 illustrates the
case where α < 0.

y2

y1(b)

(c)

(a)

(a) c1 > 0
c2 > 0

(b) c1 < 0
c2 = 0

(c) c1 > 0
c2 < 0

FIGURE 4.6

When A = αI, phase plane trajectories move along rays emanating from
the origin. Here, where α < 0, motion is toward the origin.

If A is defective, the general solution has the form

y(t) = c1e
αtv1 + c2e

αt(tv1 + v2).

In this case, as in equation (11), motion is toward the origin when α < 0 and
away from the origin when α > 0. Unlike the situation illustrated in Figure 4.6,
however, the solution points need not move along rays. Figure 4.7 shows the
phase plane direction field for the linear system treated in Example 1. In this
example, the general solution was found to be

y(t) = c1e
3t

[
−1
1

]
+ c2e

3t

[
−t+ 1

t

]
. (12)

As can be seen from Figure 4.7, all trajectories move outward from the origin.
If c2 = 0 in (12), the solution points move outward along the line y2 = −y1. If
c2 �= 0, then y2(t) ≈ −y1(t) for large values of t.

–2 –1.5 –1 –0.5 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0.5

1

1.5

2

y1

y2

FIGURE 4.7

The phase plane direction field for Example 1. From the general solution in
equation (12), we see that phase plane solution trajectories approach the
line y2 = −y1 as t increases.
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E X E R C I S E S

Exercises 1–12:

Consider the given initial value problem y ′ = Ay, y(t0) = y0.

(a) Find the eigenvalues and eigenvectors of the coefficient matrix A.

(b) Construct a fundamental set of solutions.

(c) Solve the initial value problem.

1. y′
1 = 2y1 + y2, y1(0) = 3

y′
2 = −y1, y2(0) = −1

2. y′
1 = y2, y1(0) = 0

y′
2 = −y1 − 2y2, y2(0) = 2

3.
y ′ =

[−2 1
0 −2

]
y, y(0) =

[
1

−1
]

4.
y ′ =

[
1 −1
4 5

]
y, y(0) =

[
1
1

]
5.

y ′ =
[
6 0
2 6

]
y, y(0) =

[−2
0

]
6. y′

1 = y2, y1(1) = −1
y′
2 = −y1 + 2y2, y2(1) = 2

7.
y ′ =

[−4 1

−1 −2

]
y, y(−1) =

[
1

0

]
8.

y ′ =
[
6 1

−1 4

]
y, y(0) =

[
4

−4

]

9.

y ′ =
⎡
⎢⎣
2 1 0

0 2 0

0 0 1

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

1

3

−2

⎤
⎥⎦

10.

y ′ =
⎡
⎢⎣
1 −1 0

1 3 0

0 0 2

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

−3
−2
0

⎤
⎥⎦

11. y′
1 = 0, y1(0) = 4

y′
2 = 5y2 − y3, y2(0) = 1

y′
3 = 4y2 + y3, y3(0) = 1

12.

y ′ =
⎡
⎢⎣

−3 0 −36
0 1 0

1 0 9

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

0

−1
2

⎤
⎥⎦

13. Find the eigenvalues and eigenvectors of

(a) A1 =
⎡
⎢⎣
2 1 0

0 2 1

0 0 2

⎤
⎥⎦ (b) A2 =

⎡
⎢⎣
2 1 0

0 2 0

0 0 2

⎤
⎥⎦

14. Consider the homogeneous linear system y ′ = A1y, where A1 is given in Exercise 13.

(a) Write the three component differential equations of y ′ = A1y, and solve these
equations sequentially, finding first y3(t), then y2(t), and then y1(t). [For example,
the third component equation is y′

3 = 2y3. Therefore, y3(t) = c3e
2t.]

(b) Rewrite the component solutions obtained in part (a) as a singlematrix equation
of the form y(t) = �(t)c, where �(t) is a (3× 3) solution matrix and

c =
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ .

Show that �(t) is, in fact, a fundamental matrix. [Note that this observation is
consistent with the fact that the component solutions obtained in part (a) form the
general solution.]
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15. Repeat Exercise 14 for the homogeneous linear system y ′ = A2y.

16. The Scalar Repeated-Root Equation Revisited Consider the homogeneous scalar
equation y′′ − 2αy′ + α2y = 0, where α is a real constant. Recall from Section 3.4
that the general solution is y(t) = c1e

αt + c2te
αt.

(a) Recast y′′ − 2αy′ + α2y = 0 as a first order linear system z ′ = Az.

(b) Show that the (2× 2) matrix A has eigenvalue α with algebraic multiplicity 2
and geometric multiplicity 1.

(c) Obtain the general solution of z ′ = Az. As a check, does z1(t) equal the general
solution y(t) = c1e

αt + c2te
αt? Is z2(t) equal to z

′
1(t)?

Exercises 17–23:

For each matrix A, find the eigenvalues and eigenvectors. Give the geometric and alge-
braic multiplicity of each eigenvalue. Does A have a full set of eigenvectors?

17. A =
⎡
⎢⎣
5 0 0

1 5 0

1 1 5

⎤
⎥⎦ 18. A =

⎡
⎢⎣
5 0 0

1 5 0

1 0 5

⎤
⎥⎦ 19. A =

⎡
⎢⎣
5 0 1

0 5 0

0 0 5

⎤
⎥⎦

20. A =
⎡
⎢⎣
5 0 0

0 5 0

0 0 5

⎤
⎥⎦ 21. A =

⎡
⎢⎢⎢⎣
2 0 0 0

1 2 0 0

0 0 3 0

0 0 1 3

⎤
⎥⎥⎥⎦

22. A =

⎡
⎢⎢⎢⎣
2 0 0 0

0 2 0 0

0 0 2 0

0 0 1 2

⎤
⎥⎥⎥⎦ 23. A =

⎡
⎢⎢⎢⎣
2 0 0 0

0 2 0 0

0 0 2 0

0 0 1 3

⎤
⎥⎥⎥⎦

24. Let A be a real (2× 2) matrix having repeated eigenvalue λ1 = λ2 = α and a full set
of eigenvectors, x1 and x2. Show that A = αI. [Hint: Let T = [x1,x2] be the invertible
(2× 2) matrix whose columns are the eigenvectors. Show that AT = αT.]

Exercises 25–28:

In each exercise, the general solution of the linear system y ′ = Ay is given. Determine
the coefficient matrix A.

25. y1(t) = c1e
−t(1+ 2t) + 4c2te

−t

y2(t) = −c1te−t + c2e
−t(1− 2t)

26.
y(t) =

[
c1e

−2t

c2e
−2t

]

27.
y(t) = c1

[
et(1+ t)

tet

]
+ c2

[ −tet
et(1− t)

]

28.
y(t) =

[
et/2 0

0 et/2

] [
c1
c2

]

29. Match the linear system with one of the phase plane direction fields on the next
page.

(a) y′
1 = −y1
y′
2 = 2y1 − y2

(b)
y ′ =

[
2 0

0 2

]
y

(c) y′
1 = y1 + y2
y′
2 = y2

(d)
y ′ =

[−0.5 0

0 −0.5

]
y
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Figure for Exercises 29

Exercises 30–33:

Consider the linear system y ′ = Ay, where A is a real (2× 2) constant matrix with re-
peated eigenvalues. Use the given information to determine the matrix A.

30. Phase plane solution trajectories have horizontal tangents on the line y2 = 2y1 and
vertical tangents on the line y1 = 0. The matrix A has a nonzero repeated eigenvalue
and a21 = −1.

31. All nonzero phase plane solution points move away from the origin on straight line
paths as t increases. In addition, a22 = 3

2 .

32. Phase plane solution trajectories have horizontal tangents on the line y2 = 0 and
vertical tangents on the line y2 = 2y1. All nonzero phase plane solution points move
away from the origin as t increases. In addition, a12 = −1.

33. All phase plane solution points remain stationary as t increases.

Generalized Eigenvectors Let A be an (n× n) matrix. The ideas introduced in equa-
tion (8) can be extended. Let v1 �= 0 be an eigenvector of A corresponding to the eigen-
value λ, and suppose we can generate the following “chain” of nonzero vectors:

(A− λI)v1 = 0
(A− λI)v2 = v1
(A− λI)v3 = v2

...

(A− λI)vr = vr−1

(13)
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In (13), the vector vj is called a generalized eigenvector of order j. Define

yk(t) = eλt

(
vk + tvk−1 + · · · + tk−1

(k− 1)!v1
)

. (14)

Exercise 36 asks you to show, for r = 3 and k = 1,2,3, that yk(t) is a solution of y
′ = Ay.

If λ has algebraic multiplicitym and geometric multiplicity 1, then it can be shown that
there is a chain (13) consisting of m different generalized eigenvectors and that these
generalized eigenvectors are linearly independent (see Exercise 37). Thus, equation (14)
defines a set of m linearly independent solutions of y ′ = Ay—as many solutions as the
multiplicity of the eigenvalue. (If λ has geometric multiplicity 2 or larger, the situation
is more complicated.)

Exercises 34–35:

Using equations (13) and (14), find a fundamental set of solutions for the linear sys-
tem y ′ = Ay. In each exercise, you are given an eigenvalue λ, where λ has algebraic
multiplicity 3 and geometric multiplicity 1 and an eigenvector v1.

34. A =
⎡
⎢⎣
2 1 0

0 2 1

0 0 2

⎤
⎥⎦ , λ = 2, v1 =

⎡
⎢⎣
1

0

0

⎤
⎥⎦ 35. A =

⎡
⎢⎣
4 0 0

2 4 0

1 3 4

⎤
⎥⎦ , λ = 4, v1 =

⎡
⎢⎣
0

0

1

⎤
⎥⎦

36. Let v1, v2, and v3 be a chain of nonzero vectors, as in equation (13). Show that the
vector function y3(t) defined in equation (14) is a solution of y

′ = Ay.

37. Let v1, v2, and v3 be a chain of nonzero vectors, as in equation (13). Show that these
vectors form a linearly independent set of vectors. [Hint: Begin with the dependence
equation c1v1 + c2v2 + c3v3 = 0 and multiply both sides by A− λI.]

4.8 Nonhomogeneous Linear Systems
We now address the problem of finding the general solution of a nonhomoge-
neous first order linear system,

y ′ = P(t)y+ g(t), a < t < b. (1)

In (1), y(t) is an (n× 1) vector function, P(t) is an (n× n) matrix function, and
the nonhomogeneous term, g(t), is an (n× 1) vector function. The component
functions of P(t) and g(t) are assumed to be continuous on a < t < b.

The Structure of the General Solution
In analyzing the structure of the general solution of (1), we return once more
to a theme that has permeated all our discussions of nonhomogeneous linear
equations. If y1(t) and y2(t) represent any two solutions of y

′ = P(t)y+ g(t), we
ask, “How do they differ?”

To answer this question, we form the difference function, w(t) = y1(t) −
y2(t). Differentiating w(t) yields

w ′ = (y1 − y2)
′

= y ′
1 − y ′

2

= [P(t)y1 + g(t)] − [P(t)y2 + g(t)]
= P(t)(y1 − y2)

= P(t)w.
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Thus, the difference between any two solutions of the nonhomogeneous linear
equation is a solution of the homogeneous linear equation. This leads to the
familiar decomposition

The general solution of
the nonhomogeneous

linear system
y ′ = P(t)y+ g(t)

=
The general solution of
the homogeneous
linear system
y ′ = P(t)y

+
A particular solution of
the nonhomogeneous

linear system
y ′ = P(t)y+ g(t).

As before, we refer to the general solution of the homogeneous system,
y ′ = P(t)y, as the complementary solution and denote it by yC(t). A solution of
the nonhomogeneous system that we have somehow found is called a particular
solution and is denoted by yP(t).

The following theorem, an analog of the superposition principle given in
Theorem 3.4, holds for nonhomogeneous linear systems. We leave the proof as
an exercise.

Theorem 4.8
Let u(t) be a solution of

y ′ = P(t)y+ g1(t), a < t < b,

and let v(t) be a solution of

y ′ = P(t)y+ g2(t), a < t < b.

Let a1 and a2 be any constants. Then the vector function yP(t) = a1u(t) +
a2v(t) is a particular solution of

y ′ = P(t)y+ a1g1(t) + a2g2(t), a < t < b.

The following example illustrates Theorem 4.8.

E X A M P L E

1 Find the general solution of

y ′ =
[
1 2

2 1

]
y +

[
e2t

−2t

]
, −∞ < t < ∞.

Solution: We saw earlier (in Example 1 of Section 4.4) that the general solution
of the homogeneous equation,

y ′ =
[
1 2

2 1

]
y, −∞ < t < ∞,

is

yC(t) = c1

[
e−t

−e−t
]

+ c2

[
e3t

e3t

]
=

[
e−t e3t

−e−t e3t

] [
c1
c2

]
.
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Having the complementary solution, yC(t), we turn our attention to the task
of somehow finding a particular solution, yP(t), of the nonhomogeneous equa-
tion. Note that the nonhomogeneous term,

g(t) =
[
e2t

−2t

]
,

can be decomposed as follows:[
e2t

−2t

]
= e2t

[
1

0

]
+ t

[
0

−2

]
.

Using the superposition principle in Theorem 4.8, we decompose the differen-
tial equation and separately find particular solutions of

u′ =
[
1 2

2 1

]
u+ e2t

[
1

0

]
and v ′ =

[
1 2

2 1

]
v+ t

[
0

−2

]
. (2)

Consider the first equation in (2). Remembering the method of undetermined
coefficients, we look for a solution of the form uP(t) = e2ta, where a is a con-
stant (2× 1) vector to be determined. Substituting uP(t) = e2ta into the first
differential equation in (2) leads to

2e2ta =
[
1 2

2 1

]
(e2ta) + e2t

[
1

0

]
, −∞ < t < ∞.

Canceling the common e2t factor and rearranging terms, we see that a must
satisfy the condition [

1 −2
−2 1

]
a =

[
1

0

]
, or a =

⎡
⎣− 1

3

− 2
3

⎤
⎦ .

Thus, a particular solution is

uP(t) = e2ta =
⎡
⎣− 1

3e
2t

− 2
3e
2t

⎤
⎦ .

To find a particular solution of the second equation in (2), we look for
a solution having the form vP(t) = tb+ c, where b and c are constant (2× 1)
vectors to be determined. Substituting this guess into the differential equation
leads to

b =
[
1 2

2 1

]
(tb+ c) + t

[
0

−2

]

or, after collecting like powers of t,

t

([
1 2

2 1

]
b+

[
0

−2

])
+

([
1 2

2 1

]
c− b

)
= 0, −∞ < t < ∞.

Since the set of functions {t,1} is linearly independent on any t-interval, this
equation holds only if the coefficients of t and 1 are 0—that is,[

1 2

2 1

] [
b1
b2

]
=

[
0

2

]
and

[
1 2

2 1

] [
c1
c2

]
=

[
b1
b2

]
. (3)

(continued)
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(continued)

The two matrix equations in (3) can be solved sequentially, yielding

b =
⎡
⎣ 4

3

− 2
3

⎤
⎦ and c =

⎡
⎣− 8

9

10
9

⎤
⎦ .

Therefore, the solution v(t) = tb+ c is

v(t) =
⎡
⎣ 4

3 t− 8
9

− 2
3 t+ 10

9

⎤
⎦ .

Applying Theorem 4.8, we have for a particular solution of the given differential
equation

yP(t) = u(t) + v(t) =
⎡
⎣ − 1

3e
2t + 4

3 t− 8
9

− 2
3e
2t − 2

3 t+ 10
9

⎤
⎦ .

The general solution is therefore

y(t) = yC(t) + yP(t) = c1

[
e−t

−e−t
]

+ c2

[
e3t

e3t

]
+

⎡
⎣ − 1

3e
2t + 4

3 t− 8
9

− 2
3e
2t − 2

3 t+ 10
9

⎤
⎦ . ❖

Comparing Solution Methods
In Chapter 3, the method of undetermined coefficients was seen to be an effec-
tiveway to find particular solutionswhen the differential equation had constant
coefficients and when the nonhomogeneous term was of a certain form; see Ta-
ble 3.1. Example 1 provides a simple illustration of how these ideas can be
extended and applied to the constant coefficient linear system y ′ = Ay+ g(t)
when the nonhomogeneous vector function g(t) has components of a certain
form. The Exercises give additional illustrations.

However, in contrast to the scalar problem, the complexity of the matrix
problem makes the “educated guesswork” at the core of this method difficult
to implement systematically. We shall not discuss the method of undetermined
coefficients any further.

Themethod of variation of parameters (considered in Sections 3.9 and 3.13
for scalar linear equations) extends to linear systems. Therefore, we shall con-
centrate on the method of variation of parameters. In Chapter 5, we show how
Laplace transforms also can be used to solve constant coefficient nonhomoge-
neous linear first order systems.

As the first step in applying the method of variation of parameters to a
nonhomogeneous system of differential equations, we revisit the concept of a
fundamental matrix.

Fundamental Matrices
Section 4.3 introduced the concepts of a solution matrix and a fundamental
matrix. A solution matrix, �(t), is an (n× n) matrix whose n columns are each
solutions of the homogeneous linear first order system y ′ = P(t)y, a < t < b.
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Thus, if y1(t), y2(t), . . . , yn(t) are solutions of y
′ = P(t)y, then

�(t) = [y1(t), y2(t), . . . , yn(t)]
is a solution matrix. In addition, if these solutions form a fundamental set of
solutions, then the solution matrix �(t) is called a fundamental matrix.

When we introduced the concepts of a solution matrix and a fundamental
matrix in Section 4.3, our primary focus was on the solutions {y1, y2, . . . , yn}.
We used solution matrices and fundamental matrices as a way to organize
solutions into an array. Initial conditions are conveniently imposed using such
arrays.We also use solutionmatrices to define theWronskian of the solution set.

At this point, we begin a subtle but important shift of emphasis. We now
view solution matrices and fundamental matrices as (n× n) matrix functions
that are mathematical entities in their own right. In particular, solution ma-
trices and fundamental matrices for y ′ = P(t)y can themselves be viewed as
solutions of thematrix differential equation � ′ = P(t)�. Some important prop-
erties of solution matrices and fundamental matrices are summarized in The-
orem 4.9.

Theorem 4.9
Consider the homogeneous linear first order system

y ′ = P(t)y, a < t < b,

where y(t) is an (n× 1) vector function and P(t) is an (n× n) coefficient
matrix, continuous on (a,b).

(a) Let �(t) be any solution matrix of y ′ = P(t)y, a < t < b. Then �(t)
satisfies the matrix differential equation

� ′ = P(t)�, a < t < b.

(b) Let�0 represent any given constant (n× n)matrix, and let t0 be any
fixed point in the interval a < t < b. Then there is a unique (n× n)

matrix �(t) that solves the initial value problem

� ′ = P(t)�, �(t0) = �0, a < t < b.

Moreover, if the constant matrix �0 is invertible, then the matrix
�(t) is a fundamental matrix of y ′ = P(t)y, a < t < b.

(c) If �(t) is any fundamental matrix and �̂(t) is any solution matrix
of y ′ = P(t)y, a < t < b, then there exists an (n× n) constant matrix
C such that

�̂(t) = �(t)C, a < t < b.

Moreover, the matrix �̂(t) is also a fundamental matrix if and only
if det[C] �= 0.

● PROOF:

(a) Express the solution matrix in column form as

�(t) = [y1(t), y2(t), . . . , yn(t)].
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Recall, from Section 4.1, that � ′(t) = [y ′
1(t), y

′
2(t), . . . , y

′
n(t)]. Therefore,

� ′(t) = [y ′
1(t), y

′
2(t), . . . , y

′
n(t)]

= [P(t)y1(t),P(t)y2(t), . . . ,P(t)yn(t)]
= P(t)[y1(t), y2(t), . . . , yn(t)]
= P(t)�(t), a < t < b.

(b) Let the constant matrix �0 be represented in terms of its columns as
�0 = [�1, �2, . . . ,�n]. The initial value problem

� ′ = P(t)�, �(t0) = �0, a < t < b

is equivalent to the n separate initial value problems

y ′
j = P(t)yj, yj(t0) = �j, 1 ≤ j ≤ n, a < t < b.

By Theorem 4.1, each of these initial value problems has a unique solution.
Hence, the solution matrix�(t) is also unique. Moreover, if�0 is invertible,
then det[�(t0)] �= 0. By Theorem 4.3,�(t) is a fundamental matrix since the
Wronskian,W(t0) = det[�(t0)], is nonzero at t0.

(c) This result is simply a restatement of Theorem 4.5. ●

Example 2 illustrates several parts of Theorem 4.9.

E X A M P L E

2 Find the unique matrix solution of the initial value problem � ′ = A�,
�(0) = �0, −∞ < t < ∞, where

A =
[
1 2

2 1

]
, �0 =

[
3 2

1 −4

]
.

Solution: We saw in Example 1 that the two vector functions

y1(t) =
[

e−t

−e−t
]

and y2(t) =
[
e3t

e3t

]

form a fundamental set of solutions of y ′ = Ay, −∞ < t < ∞. Therefore, the
(2× 2) matrix function

�(t) =
[

e−t e3t

−e−t e3t

]

is a fundamental matrix for y ′ = Ay. By part (a) of Theorem 4.9, the matrix
�(t) satisfies the given differential equation, � ′ = A�. However, �(t) does not
satisfy the initial condition since

�(0) =
[
1 1

−1 1

]
�= �0.

By part (c) of Theorem 4.9, we can represent the desired solution, �̂(t), as

�̂(t) = �(t)C,
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where C is a constant nonsingular (2× 2) matrix. Imposing the initial con-
ditions, we see that Cmust satisfy the equation �̂(0) = �(0)C = �0. Solving for
C, we find

C = [�(0)]−1�0 or C =
⎡
⎣ 1
2 − 1

2

1
2

1
2

⎤
⎦

[
3 2

1 −4

]
=

[
1 3

2 −1

]
.

The solution of the initial value problem is �̂(t) = �(t)C, or

�̂(t) =
[

e−t e3t

−e−t e3t

] [
1 3

2 −1

]
=

[
e−t + 2e3t 3e−t − e3t

−e−t + 2e3t −3e−t − e3t

]
. ❖

The Variation of Parameters Formula
Consider the nonhomogeneous initial value problem

y ′ = P(t)y+ g(t), y(t0) = y0, a < t < b. (4)

We assume that the (n× n) coefficient matrix P(t) and the (n× 1) vector func-
tion g(t) are continuous on (a,b) and that t0 is some point lying in this interval.

The method of variation of parameters, as developed in Sections 3.9 and
3.13, is based on an assumed knowledge of the complementary solution. For the
linear system (4), the analogous assumption is a knowledge of a fundamental
set of solutions of the homogeneous problem; that is, we assume we know a
fundamental matrix, �(t), where

� ′ = P(t)�, a < t < b. (5)

The complementary solution of (4) has the form yC(t) = �(t)c, where c is an
arbitrary constant (n× 1) vector. Therefore, we “vary the parameter” and look
for a solution of the nonhomogeneous equation (4) of the form y(t) = �(t)u(t),
where u(t) is an unknown (n× 1) matrix function to be determined. Substitut-
ing this representation into equation (4) leads to

[�(t)u(t)]′ = P(t)[�(t)u(t)] + g(t). (6)

Differentiating the product on the left-hand side of (6), we obtain

� ′(t)u(t) + �(t)u′(t) = P(t)[�(t)u(t)] + g(t). (7)

Using the fact that � ′(t) = P(t)�(t), we can reduce equation (7) to �(t)u′(t) =
g(t), or

u′(t) = �−1(t)g(t). (8)

[Note that �(t), being a fundamental matrix, is invertible.]
We can solve for the unknown matrix function u(t) in equation (8) by an-

tidifferentiation:

u(t) = u0 +
∫ t

t0

�−1(s)g(s)ds, (9)

where u(t0) = u0 is an arbitrary constant (n× 1) vector. By including an arbi-
trary vector u0 in (9), we have found a representation y(t) = �(t)u(t) for the
general solution of y ′ = P(t)y+ g(t), namely

y(t) = �(t)u0 + �(t)
∫ t

t0

�−1(s)g(s)ds. (10)
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Note that equation (10) has the structure mentioned at the beginning of this
section; that is, y(t) is the sum of the complementary solution, yC(t) = �(t)u0,
and a particular solution

yP(t) = �(t)
∫ t

t0

�−1(s)g(s)ds.

(This particular solution is the one that vanishes at t = t0.)
We can solve initial value problem (4) by imposing the initial condition in

equation (10). Since y(t0) = �(t0)u0, we have

u0 = �−1(t0)y0.

Thus, the solution of initial value problem (4) is

y(t) = �(t)�−1(t0)y0 + �(t)
∫ t

t0

�−1(s)g(s)ds. (11)

We refer to equation (11) as the variation of parameters formula for the so-
lution of the initial value problem.

E X A M P L E

3 Using variation of parameters, solve the initial value problem

y ′ =
[
1 2

2 1

]
y+

[
e2t

−2t

]
, y(0) = 0.

In Example 1, the general solution of this differential was found using the
method of undetermined coefficients. Verify that imposing the initial condi-
tions on the general solution of Example 1 yields the same solution as variation
of parameters.

Solution: In Example 2, we found a fundamental matrix to be

�(t) =
[

e−t e3t

−e−t e3t

]
.

The inverse of this fundamental matrix is

�−1(t) = 1
2

[
et −et

e−3t e−3t

]
.

By the variation of parameters formula (11),

y(t) =
[

e−t e3t

−e−t e3t

] ∫ t

0

1
2

[
es −es

e−3s e−3s

] [
e2s

−2s

]
ds

= 1
2

[
e−t e3t

−e−t e3t

] ∫ t

0

[
e3s + 2ses

e−s − 2se−3s

]
ds.

Performing the integration and then the matrix-vector multiplication, we ob-
tain

y(t) = 1
18

[
7e3t − 6e2t + 15e−t + 24t− 16

7e3t − 12e2t − 15e−t − 12t+ 20

]
. (12)

If we impose the initial condition y(t) = 0 on the general solution derived
in Example 1, we obtain c1 = 5

6 and c2 = 7
18 , and solution (12) again ensues. ❖
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E X E R C I S E S

Exercises 1–9:

Method of Undetermined Coefficients Consider the initial value problem y ′ = Ay+ g(t),
y(0) = y0.

(a) Form the complementary solution.

(b) Construct a particular solution by assuming the form suggested and solving for the
undetermined constant vectors a, b, and c.

(c) Form the general solution.

(d) Impose the initial condition to obtain the solution of the initial value problem.

1. y ′ =
[−2 1

1 −2

]
y+

[
1

1

]
, y0 =

[
3

1

]
. Try yP(t) = a.

2. y ′ =
[
0 1

−1 0

]
y+

[
1

2

]
, y0 =

[
1

1

]
. Try yP(t) = a.

3. y ′ =
[
2 1

1 2

]
y+

[
e−t

0

]
, y0 =

[
0

0

]
. Try yP(t) = e−ta.

4. y ′ =
[
0 1

−1 0

]
y+

[
et

−1

]
, y0 =

[
1

0

]
. Try yP(t) = eta+ b.

5. y ′ =
[
0 1

1 0

]
y+

[
t

−1

]
, y0 =

[
2

−1

]
. Try yP(t) = ta+ b.

6. y ′ =
[
0 −1

−1 0

]
y+

[
t

e2t

]
, y0 =

[
0

1

]
. Try yP(t) = e2ta+ tb+ c.

7. y ′ =
[−3 −2
4 3

]
y+

[
sin t

0

]
, y0 =

[
0

0

]
. Try yP(t) = (sin t)a+ (cos t)b.

8. y ′ =
⎡
⎢⎣
1 1 0

0 −1 0

0 0 1

⎤
⎥⎦ y+

⎡
⎢⎣
2

1

2

⎤
⎥⎦ , y0 =

⎡
⎢⎣
0

0

0

⎤
⎥⎦. Try yP(t) = a.

9. y ′ =
⎡
⎢⎣
1 1 0

0 1 0

0 0 1

⎤
⎥⎦ y+

⎡
⎢⎣
1

t

0

⎤
⎥⎦ , y0 =

⎡
⎢⎣
1

0

2

⎤
⎥⎦. Try yP(t) = ta+ b.

10. As an illustration of the difficulties that may arise in using the method of undeter-
mined coefficients, consider

y ′ =
[
1 1

1 1

]
y+

[
e2t

0

]
.

(a) Determine the complementary solution.

(b) Show that seeking a particular solution of the form yP(t) = e2ta does not work.

(c) Since amember of the fundamental set of solutions comprising the complemen-
tary solution is a constant vector multiplied by e2t, we might consider yP(t) = te2ta
to be a reasonable guess. Show that this guess does not work either. (We obtain the
general solution in Exercise 15, using the method of variation of parameters.)
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11. Consider the initial value problem

y ′ =
[
0 2

−2 0

]
y+ g(t), y

(π

2

)
= y0.

Suppose we know that

y(t) =
[
1+ sin 2t

et + cos 2t

]

is the unique solution. Determine g(t) and y0.

12. Consider the initial value problem

y ′ =
[
1 t

t2 1

]
y+ g(t), y(1) =

[
2

−1

]
.

Suppose we know that

y(t) =
[
t+ α

t2 + β

]

is the unique solution. Find g(t) and the constants α and β.

13. Let P(t) be a (2× 2) matrix with continuous entries. Consider the differential equa-
tion y ′ = P(t)y+ g(t). Suppose we know the solution is y1(t) when g(t) = g1(t) and
y2(t) when g(t) = g2(t). Determine P(t) if

g1(t) =
[−2
0

]
and y1(t) =

[
1

e−t

]
, g2(t) =

[
et

−1

]
and y2(t) =

[
et

−1

]
.

[Hint: Form the matrix equation [y ′
1, y

′
2] = P(t)[y1, y2] + [g1(t),g2(t)].]

Exercises 14–21:

Method of Variation of Parameters Use the method of variation of parameters to solve
the given initial value problem.

14. y′
1 = −2y1 + 5y2 +1, y1(0) = 3

y′
2 = y1 + 2y2 +1, y2(0) = 1

15. y ′ =
[
1 1

1 1

]
y+

[
e2t

0

]
, y(0) =

[
0

0

]

16. y′
1 = y2 + et, y1(0) = 5

4

y′
2 = y1, y2(0) = − 1

4

17. y ′ =
[
1 −1

−1 1

]
y+

[
0

1

]
, y(0) =

[
1

−1

]

18. y ′ =
[
9 −4
15 −7

]
y+

[
et

0

]
, y(0) =

[
2

5

]

19. y ′ =
[
0 1

−1 0

]
y+

[
2

1

]
, y(0) =

[
0

1

]

20. y ′ =
[
1 1

0 1

]
y+

[
1

1

]
, y(0) =

[
0

0

]
21. y ′ =

[
0 −2
2 0

]
y+

[
1

0

]
, y(π/2) =

[
0

0

]

Equilibrium Solutions Consider the linear system y ′ = Ay+ b, where A is a constant
(n× n) matrix and b is a constant (n× 1) vector. An equilibrium solution, y(t), is a
constant solution of the differential equation.

22. If the matrix A is invertible, show that y ′ = Ay+ b has a unique equilibrium so-
lution. If the matrix A is not invertible, must the differential equation y ′ = Ay+ b
possess an equilibrium solution? If an equilibrium solution does exist in this case,
is it unique?
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Exercises 23–27:

In each exercise, determine all equilibrium solutions (if any).

23. y ′ =
[
1 4

−1 −3

]
y+

[
2

1

]
24. y ′ =

[
2 −1

−1 1

]
y+

[
2

−1

]

25. y ′ =
[
1 −1

−1 1

]
y+

[
2

−2

]
26. y ′ =

⎡
⎢⎣
1 1 0

0 −1 2

0 0 1

⎤
⎥⎦ y+

⎡
⎢⎣
2

3

2

⎤
⎥⎦

27. y ′ =
⎡
⎢⎣
1 0 0

0 1 1

0 1 1

⎤
⎥⎦ y+

⎡
⎢⎣

−2
0

0

⎤
⎥⎦

Exercises 28–32:

Consider the homogeneous linear system y ′ = Ay. Recall that any associated fundamen-
tal matrix satisfies the matrix differential equation � ′ = A�. In each exercise, construct
a fundamental matrix that solves the matrix initial value problem � ′ = A�, �(t0) = �0.

28. � ′ =
[
1 −1

−1 1

]
�, �(1) =

[
1 0

0 1

]

29. � ′ =
[
0 2

−2 0

]
�, �

(π

4

)
=

[
1 −1
0 1

]

30. � ′ =
[
1 −1

−1 1

]
�, �(0) =

[
1 0

2 1

]

31. � ′ =
[
3 −4
2 −3

]
�, �(0) =

[
1 0

0 1

]

32. � ′ =
[
1 4

−1 1

]
�, �

(π

4

)
=

[
1 0

0 1

]

Exercises 33–35:

The flow system shown in the figure is activated at time t = 0. Let Qi(t) denote the
amount of solute present in the ith tank at time t. For simplicity, we assume all the flow
rates are a constant 10 gal/min. It follows that volume of solution in each tank remains
constant; we assume the volume to be 1000 gal.

Q1(t) lb Q2(t) lb

1000 gal 1000 gal

c1 c2

r r = 10 gal/min

r r

r

r

Figure for Exercises 33–35

(a) Derive a linear system of differential equations for Q(t) =
[
Q1(t)

Q2(t)

]
.
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(b) Solve the initial value problemdefined by the given inflow concentrations and initial
conditions. Also, determine lim t→∞Q(t).

(c) In Exercises 33 and 34, the inflow concentrations are constant. Compute the equi-
librium solution of the system in part (a). What is the physical significance of this
equilibrium solution?

(d) In Exercise 35, the system in part (a) is not autonomous. Graph Q1(t) and Q2(t).
Determine the maximum amounts of solute in each tank.

33. c1 = 0.5 lb/gal, c2 = 0, Q1(0) = Q2(0) = 0

34. c1 = c2 = 0.5 lb/gal, Q1(0) = 20 lb, Q2(0) = 0

35. c1 = 0.5e−2t/100 lb/gal, c2 = 0, Q1(0) = 0, Q2(0) = 20 lb

36. Consider the RL network shown in the figure. Assume that the loop currents I1 and
I2 are zero until a voltage source VS(t), having the polarity shown, is turned on at
time t = 0. Applying Kirchhoff’s voltage law to each loop, we obtain the equations

−VS(t) + L1
dI1
dt

+ R1I1 + R3(I1 − I2) = 0

R3(I2 − I1) + R2I2 + L2
dI2
dt

= 0.

(a) Formulate the initial value problem for the loop currents,

[
I1(t)

I2(t)

]
, assuming that

L1 = L2 = 0.5 H, R1 = R2 = 1 k�, and R3 = 2 k�.

(b) Determine a fundamentalmatrix for the associated linear homogeneous system.

(c) Use the method of variation of parameters to solve the initial value problem for
the case where VS(t) = 1 for t > 0.

I1(t) I2(t)VS (t)

R1L1

R3

L2R2

+

–
~

Figure for Exercise 36–37

37. Solve the network of Exercise 36 if the source voltage is VS(t) = 2e−2t volts.

4.9 Numerical Methods for Systems of Linear
Differential Equations

We introduced Euler’s method in Section 2.10 as a simple numerical algorithm
for approximating the solution of a first order scalar initial value problem,

y′ = f (t, y), y(a) = y0, a ≤ t ≤ b. (1)

In this section, we begin by extending Euler’s method to the first order linear
system

y ′ = P(t)y+ g(t), y(a) = y0, a ≤ t ≤ b. (2)
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We also describe how the familiar fourth order Runge-Kutta method [see equa-
tions (9a) and (9b) in Section 2.10] can be extended to the initial value problem
(2). Later, in Chapter 7, we will discuss methods for systems of first order non-
linear equations y ′ = f(t, y).

Recall the form of Euler’s method for a scalar equation. For initial value
problem (1), we often partition the interval [a,b] into N subintervals, each
having length h, where

h = b− a
N

.

For a given step size h, we define grid points t0, t1, . . . , tN by the formula
1

tk = t0 + kh, 0 ≤ k ≤ N, where t0 = a.

Note that a = t0 < t1 < t2 < . . . < tN = b and that tk+1 = tk + h, 0 ≤ k ≤ N − 1.
The numerical solution of initial value problem (1) consists of the points
(tk, yk),0 ≤ k ≤ N, where the values yk are numerical approximations to the
actual solution values y(tk).

Euler’s Method Is a Finite Difference Method
In Section 2.10, we developed Euler’s method from geometric considerations,
using the direction field for y′ = f (t, y) as a starting point. We now present a
different derivation, one that generalizes to systems of first order differential
equations.

Let y(t) be the solution of the initial value problem (1), and let h > 0 be a
given step size. From calculus, we know that the derivative, y′(t), is defined by

lim
�t→0

y(t+ �t) − y(t)
�t

= y′(t).

Therefore, if y(t) is the solution of initial value problem (1) and if the step size
h is small, we expect the following approximation to be good:

y(t+ h) − y(t)
h

≈ y′(t) = f (t, y(t)). (3)

Evaluating approximation (3) at a grid point t = tk, we obtain

y(tk + h) ≈ y(tk) + hf (tk, y(tk)), 0 ≤ k ≤ N − 1.

Therefore, once we have an estimate yk of y(tk), this approximation leads us to
an estimate yk+1 of y(tk+1):

yk+1 = yk + hf (tk, yk), 0 ≤ k ≤ N − 1, y0 = y(t0). (4)

Equation (4) is Euler’s method applied to the scalar initial value problem

y′ = f (t, y), y(t0) = y0.

The approximation (3) is called a finite difference approximation to y′(t).
Methods derived fromfinite difference approximations, such asEuler’smethod,

1We assume a constant step size h in order to simplify the discussion. As noted in Section 2.10,
many implementations of numerical methods use variable-step algorithms rather than a fixed-
step algorithm. Such variable-step methods use error estimates to monitor errors as the algorithm
proceeds; when errors exceed a prescribed upper level, the steplength is reduced, and when errors
are below a prescribed lower level, the steplength is lengthened.
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are known as finite difference methods. Finite difference methods can be
generalized in a natural way to systems of first order differential equations.

Extending Euler’s Method to First Order Linear Systems
Consider the initial value problem

y ′ = P(t)y+ g(t), y(t0) = y0, a ≤ t ≤ b, (5)

where the (n× n) matrix function P(t) and the (n× 1) vector function g(t) are
continuous on [a,b]. Euler’s method for initial value problem (5) begins with a
generalization of the finite difference approximation (3). In particular, let y(t)
be the unique solution of initial value problem (5), where

y(t) =

⎡
⎢⎢⎣
y1(t)

...

yn(t)

⎤
⎥⎥⎦ .

As we know from Section 4.1,

y ′(t) =

⎡
⎢⎢⎣
y′
1(t)
...

y′
n(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
lim
�t→0

y1(t+ �t) − y1(t)
�t

...

lim
�t→0

yn(t+ �t) − yn(t)
�t

⎤
⎥⎥⎥⎥⎥⎦

= lim
�t→0

1
�t

⎡
⎢⎢⎣
y1(t+ �t) − y1(t)

...

yn(t+ �t) − yn(t)

⎤
⎥⎥⎦

= lim
�t→0

1
�t

[y(t+ �t) − y(t)].

As before, let h > 0 be a given step size, where h = (b− a)/N, and let

tk = t0 + kh, 0 ≤ k ≤ N, t0 = a.

Since y ′(t) = P(t)y(t) + g(t), we expect (for small h) that

1
h

[y(t+ h) − y(t)] ≈ P(t)y(t) + g(t).

Evaluating this approximation at the grid point t = tk, we obtain

y(tk + h) ≈ y(tk) + h[P(tk)y(tk) + g(tk)].
Therefore, once we have an estimate yk of y(tk), this approximation gives us an
estimate yk+1 of y(tk+1). Define

yk+1 = yk + h[P(tk)yk + g(tk)], 0 ≤ k ≤ N − 1, y0 = y(t0). (6)

Iteration (6) is Euler’s method for the initial value problem (5).
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There are obvious mathematical questions about the algorithm (similar to
those raised in Section 2.10 for the scalar problem) that need to be answered.
These will be addressed in Chapter 7.

E X A M P L E

1 Consider the two-tank mixing problem formulated in Section 4.1. The flow
schematic is shown in Figure 4.8. The corresponding initial value problem is

d
dt

[
Q1

Q2

]
=

⎡
⎢⎢⎢⎣

− 6
200+ 10t

6
300

2
200+ 10t

− 14
300

⎤
⎥⎥⎥⎦
[
Q1

Q2

]
+

[
5
0

]
, 0 ≤ t ≤ 30,

[
Q1(0)

Q2(0)

]
=

[
0
50

]
.

(7)

10 gal/min 12 gal/min

4 gal/min 8 gal/min

Tank 1 Tank 2

Q1(t) lb Q2(t) lb

V1(t) gal V2(t) gal

2 gal/min

6 gal/min

Fresh waterlb/gal1
2

lb/gal
Q1

V1

lb/gal
Q2

V2

lb/gal
Q2

V2
lb/gal

Q1

V1

FIGURE 4.8

The two-tank mixing problem discussed in Example 1.

In (7), Q1(t) and Q2(t) represent the amounts of salt (in pounds) in Tanks 1
and 2, respectively, at time t (in minutes). Recall that salt solutions enter and
leave Tank 1 at different rates, leading to the variable coefficient matrix in (7).
At time t = 30 min, Tank 1 is filled to capacity and the flow stops. Use Euler’s
method (6) to estimate Q1(t) and Q2(t) on this time interval; use a step size of
h = 0.01. Plot Q1(t) and Q2(t) as functions of t, and also plot the concentration
of salt in each tank as a function of t.

Solution: The first order system has the form

Q′ = P(t)Q+ g, 0 ≤ t ≤ 30,

where [see equation (7)] P(t) is a (2× 2) matrix function and g is a (2× 1)
constant vector. Euler’s method, applied to this problem, is the iteration

Qk+1 = Qk + h[P(tk)Qk + g], 0 ≤ k ≤ N − 1, Q0 =
[
0
50

]
,

(continued)
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(continued)

where tk = kh,h = 30/N. In component form, the algorithm is

Q1,k+1 = Q1,k + h
[
− 6
200+ 10tk

Q1,k + 6
300

Q2,k + 5
]

Q2,k+1 = Q2,k + h
[

2
200+ 10tk

Q1,k − 14
300

Q2,k

]
, 0 ≤ k ≤ N − 1,

(8)

where Q1,0 = 0,Q2,0 = 50.
The vectorQj is an approximation to the exact solution,Q(tj), at time tj = jh.

Since h = 0.01, the number of steps is N = 3000.
Figure 4.9(a) shows the result of implementing Euler’s method with

h = 0.01. Figure 4.9(b) displays the Euler’s method approximations to the con-
centrations,

cm(t) = Qm(t)
Vm(t)

, m = 1,2.

As graphed in Figure 4.9, the answers seem reasonable. We expect the salt
concentration in Tank 1 to increase, but not to exceed the maximum inflow
concentration of 0.5 lb/gal. Likewise, the 2 gal/min inflow from Tank 1 into
Tank 2 mitigates the “flushing out” of Tank 2 that would otherwise occur. The
concentration in Tank 2 therefore decreases somewhat slowly over the 30-min
interval.
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FIGURE 4.9

The results of applying Euler’s method to the initial value problem in
Example 1. ❖

Runge-Kutta Methods for Systems
Euler’s method is a conceptually important but relatively crude numerical al-
gorithm. In order to obtain a high level of accuracy, Euler’s method usually
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demands a very small step size. And, of course, small steps require longer run-
times as well as close attention to the accumulation of roundoff errors. One
alternative described in Section 2.10, higher order Runge-Kutta methods, usu-
ally providesmore accuracy for a given step sizeh and is generallymore efficient
than Euler’s method.

Recall the fourth order Runge-Kutta method described in Section 2.10. For
the scalar initial value problem (1), this method has the form

yk+1 = yk + h
6

[K1 + 2K2 + 2K3 + K4], (9)

where

K1 = f (tk, yk)

K2 = f (tk + h/2, yk + (h/2)K1)

K3 = f (tk + h/2, yk + (h/2)K2)

K4 = f (tk + h, yk + hK3).

(10)

Just as Euler’s method can be extended to systems, most Runge-Kutta methods
can be extended to systems without any loss of accuracy. In particular, consider
the initial value problem

y ′ = f(t, y), y(t0) = y0. (11)

The extension of the Runge-Kutta method (9)–(10) takes the form

yk+1 = yk + h
6

[
K1 + 2K2 + 2K3 +K4

]
, (12)

where

K1 = f(tk, yk)

K2 = f(tk + h/2, yk + (h/2)K1)

K3 = f(tk + h/2, yk + (h/2)K2)

K4 = f(tk + h, yk + hK3).

(13)

E X A M P L E

2 As a test case to illustrate how the Runge-Kutta philosophy can improve accu-
racy, consider the initial value problem

y′
1 = y1 − y2 + 3, y1(0) = 1

y′
2 = −y1 + y2 + 2t, y2(0) = 3.

(a) Solve this initial value problem mathematically.

(b) Solve this initial value problem numerically on the interval 0 ≤ t ≤ 2, using
Euler’s method and the Runge-Kutta method (12). Use a constant step size
of h = 0.1.

(c) Tabulate the exact solution values and both sets of numerical approxima-
tions at t = 0.5, t = 1.0, t = 1.5, and t = 2.0. Is the Runge-Kutta method
more accurate than Euler’s method for this test case?

(continued)
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(continued)

Solution:

(a) The exact (mathematical) solution is

y(t) = 1
2

[
−e2t + t2 + 4t+ 3

e2t + t2 + 2t+ 5

]
.

(b) For this problem, we have

f(t, y) =
[
y1 − y2 + 3

−y1 + y2 + 2t

]
.

We used MATLAB as a programming environment for this example. The
MATLAB code that evaluates f(t, y) is shown in Figure 4.10. MATLAB codes
implementing Euler’s method and the Runge-Kutta method are shown in
Figures 4.11 and 4.12, respectively.

function yp=f(t,y)
yp=zeros(2,1);
yp(1)=y(1)-y(2)+3;
yp(2)=-y(1)+y(2)+2*t;

FIGURE 4.10

The MATLAB function subprogram to evaluate f(t, y) in Example 2.

%
% Set the initial conditions for the
% initial value problem in Example 2
%
t=0;
y=[1,3]’;
h=0.1;
output=[t,y(1),y(2)];
%
%
% Execute Euler’s method
% on the interval [0,2]
%
for i=1:20

y=y+h*f(t,y);
t=t+h;
output=[output;t,y(1),y(2)];

end

FIGURE 4.11

A MATLAB script that carries out Euler’s method for the initial value
problem in Example 2.
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%
% Set the initial conditions for the
% initial value problem in Example 2
%
t=0;
y=[1,3]’;
h=0.1;
output=[t,y(1),y(2)];
%
% Execute the fourth-order Runge-Kutta method
% on the interval [0,2]
%
for i=1:20

ttemp=t;
ytemp=y;
k1=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k1;
k2=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k2;
k3=f(ttemp,ytemp);
ttemp=t+h;
ytemp=y+h*k3;
k4=f(ttemp,ytemp);
y=y+(h/6)*(k1+2*k2+2*k3+k4);
t=t+h;
output=[output;t,y(1),y(2)];

end

FIGURE 4.12

A Runge-Kutta code for the initial value problem in Example 2.

(c) Table 4.1 compares the values.

❖

TA B L E 4 . 1

The results of Example 2. Here, yE
1 denotes Euler’s method estimates of y1(t), yRK

1 denotes the
Runge-Kutta method estimates of y1(t), and yT

1 denotes the true value of y1(t). Similar notation is
used in the last three columns. Note that the Runge-Kutta estimates are more accurate than the
Euler’s method estimates.

t yE
1 yRK

1 yT
1 yE

2 yRK
2 yT

2

0.5000 1.3558 1.2659 1.2659 4.3442 4.4841 4.4841
1.0000 0.8541 0.3056 0.3055 7.0459 7.6944 7.6945
1.5000 –2.1535 –4.4174 –4.4178 12.7535 15.1674 15.1678
2.0000 –11.7688 –19.7978 –19.7991 25.5688 33.7978 33.7991
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E X A M P L E

3 Use the fourth order Runge-Kutta method (12) to estimate the solution of

y′′ − 2ty′ + y = et/2, y(1) = 1, y′(1) = 0, 1 ≤ t ≤ 2.

Use a uniform step size of h = 0.01.

Solution: The differential equation is scalar, second order, linear, and non-
homogeneous, with variable coefficients. None of the analytic techniques de-
scribed in Chapter 3 are applicable. In order to use the Runge-Kutta method
(12), we have to reformulate the second order equation as a system of two first
order equations:

y′
1 = y2, y1(1) = 1

y′
2 = −y1 + 2ty2 + et/2, y2(1) = 0.

We can use the Runge-Kutta code listed in Figure 4.12, changing the first three
lines to read

t=1;
y=[1,0]’;
h=0.01;

We also have to change the for loop to read “for i=1:100” and modify the
last two lines of the function m-file in Figure 4.10 to read

yp(1)=y(2);
yp(2)=-y(1)+2*t*y(2)+exp(t/2);

After making these changes and executing the program, we obtain the results
shown in Figure 4.13.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1
2
3
4
5
6
7
8
9

10

y

t

y1(t)

y2(t)

FIGURE 4.13

The results of Example 3. The solid curve is the numerical estimate of the
graph of y1(t) = y(t); the dashed curve is the estimate of the graph of
y2(t) = y′(t). ❖
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E X E R C I S E S

Exercises 1–5:

In each exercise, assume that a numerical solution is desired on the interval
t0 ≤ t ≤ t0 + T, using a uniform step size h.

(a) As in equation (8), write the Euler’s method algorithm in explicit form for the given
initial value problem. Specify the starting values t0 and y0.

(b) Give a formula for the kth t-value, tk. What is the range of the index k if we choose
h = 0.01?

(c) Use a calculator to carry out two steps of Euler’s method, finding y1 and y2. Use a
step size of h = 0.01 for the given initial value problem. Hand calculations such as
these are used to check the coding of a numerical algorithm.

1. y ′ =
[
1 2

2 3

]
y+

[
1

1

]
, y(0) =

[−1
1

]
, 0 ≤ t ≤ 1

2. y ′ =
[
1 t

2+ t 2

]
y+

[
1

t

]
, y(1) =

[
2

1

]
, 1 ≤ t ≤ 1.5

3. y ′ =
[

−t2 t

2− t 0

]
y+

[
1

t

]
, y(1) =

[
2

0

]
, 1 ≤ t ≤ 4

4. y ′ =
⎡
⎢⎣
1 0 1

3 2 1

1 2 0

⎤
⎥⎦ y+

⎡
⎢⎣
0

2

t

⎤
⎥⎦ , y(−1) =

⎡
⎢⎣
0

0

1

⎤
⎥⎦ , −1 ≤ t ≤ 0

5. y ′ =
⎡
⎢⎣

1
t

sin t

1− t 1

⎤
⎥⎦ y+

[
0

t2

]
, y(1) =

[
0

0

]
, 1 ≤ t ≤ 6

Exercises 6–9:

In each exercise,

(a) As in Example 3, rewrite the given scalar initial value problem as an equivalent
initial value problem for a first order system.

(b) Write the Euler’s method algorithm, y k+1 = y k + h[P(tk)y k + g(tk)], in explicit form
for the given problem. Specify the starting values t0 and y0.

(c) Using a calculator and a uniform step size of h = 0.01, carry out two steps of Euler’s
method, finding y1 and y2. What are the corresponding numerical approximations
to the solution y(t) at times t = 0.01 and t = 0.02?

6. y′′ + y = t3/2, y(0) = 1, y′(0) = 0

7. y′′ + y′ + t2y = 2, y(0) = 1, y′(0) = 1

8. y′′′ + 2y′ + ty = t+ 1, y(0) = 1, y′(0) = −1, y′′(0) = 0

9.
d
dt

[
et
dy
dt

]
+ y = 2et, y(0) = −1, y′(0) = 1

Exercises 10–18:

For the problem in the exercise specified,

(a) Write a program that carries out Euler’s method. Use a step size of h = 0.01.

(b) Run your program on the interval given.
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(c) Check your numerical solution by comparing the first two values, y1 and y2, with
the hand calculations.

(d) Plot the components of the numerical solution on a common graph over the time
interval of interest.

10. Exercise 1 11. Exercise 2 12. Exercise 3

13. Exercise 4 14. Exercise 5 15. Exercise 6

16. Exercise 7 17. Exercise 8 18. Exercise 9

Estimating the Numerical Error of Euler’s Method When solving problems, we should
apply all available tests or checks before accepting an answer. In addition to the checks
provided by common sense, the physics of the problem being modeled, and the mathe-
matical theory of differential equations, there are additional checks available for testing
the accuracy of numerical algorithms. We now describe such a test.

Suppose we apply Euler’s method to the initial value problem y ′ = P(t)y+ g(t),
y(t0) = y0, a ≤ t ≤ b. We observed in Section 2.10 that the error in Euler’s method is
reduced approximately in half when the step size h is halved (this result will be justified
in Chapter 7). This approximate halving of the error leads to a process for estimating
the error. In particular, let t∗ be a point in [a,b] and choose a step size h by defining
h = (t∗ − t0)/n, where n is a positive integer. Let yn denote the Euler’s method estimate
to y(t∗) obtained using a step size h. Let y2n denote the Euler’s method estimate to y(t

∗)
obtained using a step size of h/2. We anticipate, by halving the step size, that the error
will be (approximately) halved as well:

y(t∗) − y2n ≈ y(t∗) − yn
2

.

Some algebraic manipulation leads to the following estimate of the error, y(t∗) − y2n:

y(t∗) − y2n ≈ y2n − yn. (14)

Exercises 19–22:

(a) Compute the error estimate (14) by using your Euler’s method program to solve the
given initial value problem. In each case, let t∗ = 1. Use h = 0.01 and h = 0.005.

(b) Solve the initial value problemmathematically, and determine the exact solution at
t = t∗.

(c) Compare the actual error, y(t∗) − y2n, with the estimate of the error y2n − yn.
[Note that estimate (14) is also applicable at any of the intermediate points
0.01,0.02, . . . ,0.99.]

19. y′′ − y = t, y(0) = 2, y′(0) = −1
20. y′′ + 4y = 3 cos t+ 3 sin t, y(0) = 4, y′(0) = 5

21. y ′ =
[
2 −1
1 2

]
y, y(0) =

[
0

2

]
22. y ′ =

[−1 1

1 −1

]
y, y(0) =

[
3

−1

]

23. Draining a Two-Tank System Consider the flow system shown in the figure. Tank 1
initially contains 40 lb of salt dissolved in 200 gal of water, while Tank 2 initially
contains 40 lb of salt dissolved in 500 gal of water. At time t = 0, the draining process
is initiated, with well-stirred mixtures flowing at the rates and directions shown.
The volumes of fluid in each tank change with time. Note, in particular, that Tank 1
empties in 20 min. Therefore, the flow processes shown in the figure cease to be
valid after 20 min. (Tank 2 will still contain 100 gal of fluid after 20 min.)

(a) Let Qj(t) represent the amount of salt in tank j at time t, j = 1,2. Formulate the
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initial value problem for

Q(t) =
[
Q1(t)

Q2(t)

]
,

valid for 0 < t < 20 min.

(b) Solve the initial value problem on the interval 0 ≤ t ≤ 19.9 min, using Euler’s
method. Use a uniform step size with h = 0.01.

(c) Plot the amounts of salt (in pounds) in each tank, Q1(t) and Q2(t), on the same
graph for 0 ≤ t ≤ 19.9 min.

(d) On what positive t-interval does Theorem 4.1 guarantee a unique solution of
the initial value problem formulated in (a)? Should we be on the alert for possible
numerical problems as time t increases to 20 min? Explain.

30 gal/min

Tank 1 Tank 2

Q1(t) lb Q2(t) lb

V1(t) gal V2(t) gal

15 gal/min

5 gal/min

lb/gal
Q1

V1

lb/gal
Q2

V2

lb/gal
Q2

V2

Figure for Exercise 23

24. A Spring-Mass-Dashpot System with Variable Damping As we saw in Section 3.6, the
differential equation modeling unforced dampedmotion of a mass suspended from
a spring is my′′ + γ y′ + ky = 0, where y(t) represents the downward displacement
of the mass from its equilibrium position. Assume a mass m = 1 kg and a spring
constant k = 4π2 N/m. Also assume the damping coefficient γ is varying with time:

γ (t) = 2te−t/2 kg/sec.

Assume, at time t = 0, the mass is pulled down 20 cm and released.

(a) Formulate the appropriate initial value problem for the second order scalar
differential equation, and rewrite it as an equivalent initial value problem for a first
order linear system.

(b) Applying Euler’s method, numerically solve this problem on the interval
0 ≤ t ≤ 10 min. Use a step size of h = 0.005.

(c) Plot the numerical solution on the time interval 0 ≤ t ≤ 10 min. Explain, in
qualitative terms, the effect of the variable damping upon the solution.

Exercises 25–27:

Write a program that applies the Runge-Kutta algorithm (12) to the given problem.
Run the program on the interval given, with a constant step size of h = 0.01. Plot the
components of the solution.

25. y′
1 = −y1 + y2 + 2, y1(0) = 1, 0 ≤ t ≤ 2

y′
2 = −y1 − y2, y2(0) = 0

26. y′
1 = −y1 + y2, y1(0) = 1, 0 ≤ t ≤ 1

y′
2 = y2 + t, y2(0) = 0



300 CHAPTER 4 First Order Linear Systems

27. y ′ =
[
1 t

0 1

]
y, y(1) =

[
0

1

]
, 1 ≤ t ≤ 2

28. Suppose the Runge-Kutta method (12) is applied to the initial value problem y ′ =
Ay, y(0) = y0, where A is a constant square matrix [thus, f(t, y) = Ay].

(a) Express each of the vectors Kj in terms of h,A, and yk, j = 1,2,3,4.

(b) Show that the Runge-Kutta method, when applied to this initial value problem,
can be unraveled to obtain

yk+1 =
(
I + hA+ h2

2! A
2 + h3

3! A
3 + h4

4! A
4

)
yk. (15)

(c) Use the differential equation y ′ = Ay to express the nth derivative, y(n)(t), in
terms of A and y(t). Express the Taylor series expansion

y(t+ h) =
∞∑
n=0

y(n)(t)
hn

n!
in terms of h,A, and y(t). Compare the Taylor series with the right-hand side of (15),
with t = tk and y(tk) = yk. How well does (15) replicate the Taylor series?

29. The exact solution of the initial value problem

y ′ =
[
0.5 1

1 0.5

]
y, y(0) =

[
1

0

]
is given by y(t) = 1

2

[
e−t/2 + e3t/2

−e−t/2 + e3t/2

]
.

(a) Write a program that applies the Runge-Kutta method (12) to this problem.

(b) Run your program on the interval 0 ≤ t ≤ 1, using step size h = 0.01.

(c) Run your program on the interval 0 ≤ t ≤ 1, using step size h = 0.005.

(d) Let y100 and y200 denote the numerical approximations to y(1) computed in parts
(b) and (c), respectively. Compute the error vectors y(1) − y100 and y(1) − y200. By
roughly what fractional amount is the error reduced when the step size is halved?

4.10 The Exponential Matrix and Diagonalization
The solution of the scalar initial value problem y′ = ay, y(0) = y0 is

y(t) = eaty0.

If A is a constant (n× n) matrix, the solution of y ′ = Ay, y(0) = y0 is

y(t) = 
(t)y0, (1)

where 
(t) is the fundamental matrix that reduces to the identity at t = 0. Is it
possible to represent the solution (1) in the form

y(t) = eAty0? (2)

There are two issues to be resolved. First, how do we give meaning to the expo-
nential of a square matrix? Second, if we can give meaning to eAt, is expression
(2) the unique solution of y ′ = Ay, y(0) = y0? In other words, is e

At = 
(t)?

The Exponential Matrix
To see how we might define the exponential matrix eAt, assume for the present
discussion that the solution y(t) of the initial value problem y ′ = Ay, y(0) = y0
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has the series expansion

y(t) =
∞∑
m=0

tm

m!y
(m)(0). (3)

We can use the initial value problem itself to evaluate the vectors y(m)(0):

y(0)(0) = y(0) = y0
y(1)(0) = y ′(0) = Ay(0) = Ay0
y(2)(t) = [Ay(t)]′ = Ay ′(t) = A2y(t); therefore, y(2)(0) = A2y0.

In general, we obtain y(m)(0) = Amy0, and hence the series (3) becomes

y(t) =
∞∑
m=0

tm

m!A
my0 =

(
I + tA+ t2

2!A
2 + t3

3!A
3 + · · ·

)
y0. (4)

The partial sums of the series of matrix powers in equation (4) have the form

Sk(t) =
(
I + tA+ t2

2!A
2 + t3

3!A
3 + · · · + tk

k!A
k

)
.

It can be shown, for any constant (n× n) matrix A, that

lim
k→∞

Sk(t)

exists for all values of t. We define the (n× n) limitmatrix to be the exponential
matrix and denote it as eAt. Therefore,

eAt =
∞∑

m=0

tm

m!A
m. (5)

It can be shown that the matrix exponential is differentiable and that its
derivative can be calculated by differentiating the series (5) term by term. As-
suming the validity of termwise differentiation, it follows that

d
dt
eAt = AeAt. (6)

By (6), y(t) = eAty0 is a solution of y
′ = Ay for any (n× 1) vector y0. Using this

fact, along with the observation that eAt reduces to the identity when t = 0 and
the fact that the solution of


′(t) = A
(t), 
(0) = I

is unique, it follows that eAt = 
(t).

Properties of the Exponential Matrix
In view of the close correspondence of the series defining eAt when A is a matrix
and eαt when α is a scalar, it is not surprising that the exponential matrix and
the scalar exponential function possess similar properties. For instance,

eAt1eAt2 = eA(t1+t2) (7a)

and

(eAt)−1 = e−At. (7b)
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While properties (7a) and (7b) resemble properties of the scalar exponential
function, they also have interpretations in terms of differential equations. In
particular, consider the initial value problem y ′ = Ay, y(0) = y0. We can think
of eAt as a matrix that propagates solutions forward by t units in time; that is,
multiplying the initial state y(0) = y0 by e

At moves the solution forward in time
to y(t) = eAty0.

Taking this propagator viewpoint, property (7a) says either we can move
the solution forward in one step or we can move it in stages. We can evolve
the solution forward in one step from time t = 0 to time t = t1 + t2 by forming
y(t1 + t2) = eA(t1+t2)y0. On the other hand, we can achieve the same result by first
moving forward t1 units in time using y(t1) = eAt1y0 and then moving forward
an additional t2 units by forming y(t1 + t2) = eAt2y(t1) = eAt2eAt1y0. In general, it
can be shown (see Exercise 20) that

y(t+ �t) = eA�ty(t). (8)

In a similar vein, suppose we are given y(t) = eAty0. We can recover the initial
state y0 either bymultiplying by the inversematrix, obtaining y0 = (eAt)−1y(t), or
by propagating the solution backwards t units in time by forming y0 = e−Aty(t).

E X A M P L E

1 Use the series (5) to calculate the exponential matrix eAt for

A =
[
λ1 0

0 λ2

]
.

Solution: Since A is a diagonal matrix,

Am =
[
λm1 0

0 λm2

]
.

Therefore, the matrix series (5) becomes

etA =
(
I + t

[
λ1 0

0 λ2

]
+ t2

2!

[
λ21 0

0 λ22

]
+ t3

3!

[
λ31 0

0 λ32

]
+ · · ·

)

=
∞∑

m=0

tm

m!

[
λm1 0

0 λm2

]
=

⎡
⎢⎢⎣

∞∑
m=0

t
m

m!λ
m
1 0

0
∞∑
m=0

t
m

m!λ
m
2

⎤
⎥⎥⎦

=
[
eλ1t 0

0 eλ2t

]
. ❖

E X A M P L E

2 Use the series (5) to calculate the exponential matrix eAt for

A =
[
λ 1

0 λ

]
.
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Solution: It can be shown (see Exercise 21) that Am = λmI +mλm−1E, where
E denotes the matrix

E =
[
0 1

0 0

]
.

Therefore,

etA =
∞∑

m=0

tm

m! (λ
mI +mλm−1E) =

⎡
⎢⎢⎣

∞∑
m=0

t
m

m!λ
m

∞∑
m=0

t
m

(m−1)!λ
m−1

0
∞∑
m=0

t
m

m!λ
m

⎤
⎥⎥⎦

=
[
eλt teλt

0 eλt

]
. ❖

Similar Matrices
We say that an (n× n) matrix A is similar to an (n× n) matrix B if there exists
an (n× n) invertible matrix T such that

T−1AT = B.

If A is similar to B, it follows that B is similar to A since T−1AT = B implies

A = TBT−1 = (T−1)−1B(T−1).

Therefore, it is appropriate to refer to the matrices A and B as a pair of similar
matrices. The act of forming the matrix product T−1AT is often referred to as
a similarity transformation. Among other things, the concept of similarity is
important because

(a) If A and B are similar (n× n)matrices, then A and B have the same charac-
teristic polynomial and, hence, the same eigenvalues (see Theorem 4.10).

(b) IfA andB are similar (n× n)matrices, then solutions ofw ′ = Bw are related
to solutions of y ′ = Ay by the transformation y(t) = Tw(t).

Theorem 4.10
Let A and B be similar (n× n) matrices. Then A and B have the same
characteristic polynomial.

● PROOF: Since A and B are similar, there is an invertible (n× n) matrix T
such that T−1AT = B. Let pA(λ) and pB(λ) denote the characteristic polynomials
of matrices A and B, respectively. Observe that

pB(λ) = det[B− λI] = det[T−1AT − λI] = det[T−1AT − λT−1T]
= det[T−1(A− λI)T] = det[T−1]det[A− λI]det[T]
= pA(λ).

(To obtain the last equality,weused the fact that det [T−1]det [T] = det [I] = 1.) ●
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Diagonalization
Consider a similarity transformation of the form T−1AT = D, where the matrix
D is a diagonal matrix,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 0 0 · · · 0

0 d22 0 · · · 0

0 0 d33 · · · 0
...

...

0 0 0 · · · dnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In such cases, we say that matrix A is similar to a diagonal matrix or that A
is diagonalizable. Two questions arise with regard to diagonalization:

1. When is it possible to diagonalize a square matrix A?

2. If it is possible to diagonalize a givenmatrixA, how dowe find thematrix
T that accomplishes the diagonalization?

Theorem 4.11 and its corollary address these two questions.

Theorem 4.11
Let A be an (n× n) matrix similar to a diagonal matrix D. Let T be an
invertible matrix such that T−1AT = D. Then the diagonal elements of
matrix D are the eigenvalues of matrix A, and the columns of matrix T
are corresponding eigenvectors of matrix A.

● PROOF: It follows fromTheorem4.10 thatmatricesA andDhave the same
eigenvalues. The eigenvalues of diagonal matrix D, however, are its diagonal
elements. Therefore, the diagonal elements of D are the eigenvalues of A.

To finish the proof, let D be the diagonal matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...

0 0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and let t1, t2, . . . , tn denote the n columns of the matrix T so that T =
[t1, t2, . . . , tn]. Because T−1AT = D, it follows that AT = TD:

A[t1, t2, . . . , tn] = [t1, t2, . . . , tn]

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...

0 0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)
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The matrix product on the left-hand side of equation (9) can be rewritten as
[At1,At2, . . . ,Atn]. Similarly, the matrix product on the right-hand side of equa-
tion (9) can be rewritten as [λ1t1, λ2t2, . . . , λntn]. Since matrix equality implies
that corresponding columns are equal, we obtain

At j = λjt j, j = 1,2, . . . ,n. (10)

To complete the argument, note that invertibility of the matrix T implies that
none of its columns can be the (n× 1) zero vector. Therefore, t j �= 0,1 ≤ j ≤
n, and this fact, in conjunction with (10), shows that the columns of T are
eigenvectors of A. ●

A corollary of Theorem 4.11 characterizes diagonalizable matrices.

Corollary
An (n× n)matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors.

From what we know already, matrices with distinct eigenvalues as well as
real symmetricmatrices andHermitianmatrices are diagonalizable. In general,
A is diagonalizable if and only if A has a full set of eigenvectors.

E X A M P L E

3 As noted, real symmetric matrices are diagonalizable. Let A be the matrix

A =
[
1 2

2 1

]
.

Find an invertible (2× 2) matrix T such that T−1AT = D.

Solution: We saw in Example 1 of Section 4.4 that eigenpairs of A are

λ1 = 3, x1 =
[
1

1

]
and λ2 = −1, x2 =

[
1

−1

]
.

Therefore, a matrix T made from the eigenvectors will diagonalize A. So, let T
be

T =
[
1 1

1 −1

]
.

A direct calculation shows

T−1AT =
⎡
⎣ 1
2

1
2

1
2 − 1

2

⎤
⎦[

1 2

2 1

] [
1 1

1 −1

]
=

[
3 0

0 −1

]
. ❖

The Exponential Matrix Revisited
We again consider the exponential matrix eAt, assuming now that A is an (n× n)

diagonalizable matrix. Therefore,

A = TDT−1, (11)
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where D is the (n× n) diagonal matrix consisting of the eigenvalues of A and T
is the (n× n)matrix formed from the corresponding eigenvectors; recall equa-
tions (9) and (10). We now see that equation (11) simplifies the infinite series
(5) defining eAt.

Observe, by (11), that

A2 = (TDT−1)(TDT−1) = TD(T−1T)DT−1 = TD2T−1.

In general, it can be shown that

Am = TDmT−1.

Therefore,

eAt =
∞∑

m=0

tm

m!A
m =

∞∑
m=0

tm

m!TD
mT−1 = T

( ∞∑
m=0

tm

m!D
m

)
T−1 = TeDtT−1. (12a)

Since D is a diagonal matrix, it follows (as in Example 1) that

∞∑
m=0

tm

m!D
m =

⎡
⎢⎢⎢⎢⎣
eλ1t 0 · · · 0

0 eλ2t 0
...

...

0 0 · · · eλnt

⎤
⎥⎥⎥⎥⎦ . (12b)

Using (12b) in (12a), we obtain

eAt = T

⎡
⎢⎢⎢⎢⎣
eλ1t 0 · · · 0

0 eλ2t 0
...

...

0 0 · · · eλnt

⎤
⎥⎥⎥⎥⎦T−1. (12c)

Decoupling Transformations
There is an alternative approach to solving y ′ = Ay when A is diagonalizable.
This alternative involves making an appropriate change of dependent variable
that transforms y ′ = Ay into a collection of decoupled scalar problems. This
decoupled system can then be solved using the techniques of Chapters 2 and 3.
Example 4 illustrates the ideas, and additional examples are considered in the
Exercises.

E X A M P L E

4 Solve the initial value problem

y′
1 = y1 + 2y2 + 1, y1(0) = 1

y′
2 = 2y1 + y2 + t, y2(0) = −1. (13)

Solution: This problem has the form y ′ = Ay+ g(t), y(0) = y0, where

A =
[
1 2

2 1

]
, g(t) =

[
1

t

]
, y0 =

[
1

−1

]
.
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From Example 3, we know that A is diagonalizable. In particular, T−1AT = D,
where

T−1 = 1
2

[
1 1

1 −1

]
, T =

[
1 1

1 −1

]
, D =

[
3 0

0 −1

]
.

Let us make the change of variable z(t) = T−1y(t) or, equivalently, y(t) = Tz(t).
Since y ′(t) = Tz ′(t), the equation y ′ = Ay+ g(t) transforms into

Tz ′ = ATz+ g(t),

or

z ′ = T−1ATz+ T−1g(t).

The initial condition for the transformed system is z(0) = T−1y(0) = T−1y0.
Since T−1AT = D, the original problem (13) has become z ′ = Dz+ T−1g(t),
z(0) = T−1y0, or

z ′ =
[
3 0

0 −1

]
z+ 1

2

[
1 1

1 −1

] [
1

t

]
, z(0) = 1

2

[
1 1

1 −1

] [
1

−1

]
.

In terms of components, this system has the form

z′1 = 3z1 + (1+ t)/2, z1(0) = 0

z′2 = − z2 + (1− t)/2, z2(0) = 1.
(14)

As can be seen, the system (14) is an uncoupled system of first order linear
equations of the type studied in Chapter 2. The solutions are

z1(t) = (4e3t − 3t− 4)/18

z2(t) = (2− t)/2.

In terms of the original variables, y(t) = Tz(t), or

y(t) =
[
1 1

1 −1

]
z(t) = 1

18

[
4e3t − 12t+ 14

4e3t + 6t− 22

]
. ❖

A Warning
Some properties of the scalar exponential function eat generalize to the expo-
nential matrix eAt; properties (7a) and (7b) are two such examples. There are
limits, however, to the extent to which the scalar properties generalize to eAt. If
A and B are (n× n) matrices, then it is generally the case that

eAteBt �= eBteAt and eAteBt �= e(A+B)t. (15)

The reason the expected results do not materialize is that matrix multiplication
is not commutative. That is, it is usually the case that

AB �= BA.
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E X E R C I S E S

Exercises 1–10:

The given matrix A is diagonalizable.

(a) Find T and D such that T−1AT = D.

(b) Using (12c), determine the exponential matrix eAt.

1. A =
[
5 −6
3 −4

]
2. A =

[
3 4

−2 −3

]
3. A =

[
1 1

1 1

]
4. A =

[
2 3

2 3

]

5. A =
[
2 3

3 2

]
6. A =

[
1 −2

−2 1

]
7. A =

[
2 0

1 1

]
8. A =

[−2 2

0 3

]

9. A =
[
0 2

−2 0

]
10. A =

[
1 2

−2 1

]

Exercises 11–16:

In each exercise, the coefficient matrix A of the given linear system has a full set of
eigenvectors and is therefore diagonalizable.

(a) As in Example 4, make the change of variables z(t) = T−1y(t), where T−1AT = D.
Reformulate the given problem as a set of uncoupled problems.

(b) Solve the uncoupled system in part (a) for z(t), and then form y(t) = Tz(t) to obtain
the solution of the original problem.

11.
y ′ =

[
6 −6
2 −1

]
y, y(0) =

[
1

−3

]
12.

y ′ =
[
1 1

2 2

]
y+

[
0

3

]

13.
y ′ =

[−4 −6
3 5

]
y+

[
e2t

−e2t
]

, y(0) =
[
0

0

]

14. y′
1 = 3y1 + 2y2 + 4

y′
2 = y1 + 4y2 + 1

15. y′
1 = −9y1 − 5y2, y1(0) = 1

y′
2 = 8y1 + 4y2 + 1, y2(0) = 0

y′
3 = y3 + 2, y3(0) = 0

16.
[
3 2

−4 −3

]
y ′ + y =

[
1

1

]

17. Consider the differential equation y ′ =
[
2 1
0 2

]
y. Example 2 shows that the corre-

sponding exponential matrix is eAt =
[
e2t te2t

0 e2t

]
. Suppose that y(1) =

[
1
2

]
. Use the

propagator property (8) to determine y(4) and y(−1).
18. Determine by inspection whether or not the matrix is diagonalizable. Give a reason

that supports your conclusion.

(a) A1 =
[
1 1

0 1

]
(b) A2 =

[
1 1

0 −1

]
(c) A3 =

[
1 1

1 1

]

19. Let A be a constant (n× n) diagonalizable matrix. Use the representation (12c)
to establish properties (7a) and (7b). That is, show that eAt1eAt2 = eA(t1+t2) and
(eAt)−1 = e−At.

20. Use property (7a) to establish the propagator property (8). That is, show that
y(t+ �t) = eA�ty(t).

21. Let A =
[
λ 1
0 λ

]
, and let E =

[
0 1
0 0

]
. Use mathematical induction or the binomial

formula to show that Am = λmI +mλm−1E.
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22. Consider the differential equation y ′ = Ay, where A =
⎡
⎣λ 1 0
0 λ 1
0 0 λ

⎤
⎦. Using the infinite

series (5), show that eAt =
⎡
⎢⎣e

λt teλt 1
2 t
2eλt

0 eλt teλt

0 0 eλt

⎤
⎥⎦.

Exercises 23–24:

In each exercise,

(a) Does AB = BA?

(b) Calculate the exponential matrices eAt, eBt, and e(A+B)t. Does eAteBt = e(A+B)t?

23. A =
[
1 1

0 −1

]
, B =

[
1 0

0 −1

]
24. A =

[
2 −1

−1 2

]
, B =

[
1 1

1 1

]

Exercises 25–30:

Second Order Linear Systems We consider systems of second order linear equations.
Such systems arise, for instance, when Newton’s laws are used to model the motion
of coupled spring-mass systems, such as those in Exercises 31–32. In each of Exercises

25–30, let A =
[
2 1
1 2

]
. Note that the eigenpairs of A are λ1 = 3,x1 =

[
1
1

]
and

λ2 = 1,x2 =
[
1

−1
]
.

(a) Let T = [x1,x2] denote the matrix of eigenvectors that diagonalizes A. Make the
change of variable z(t) = T−1y(t), and reformulate the given problem as a set of
uncoupled second order linear problems.

(b) Solve the uncoupled problem for z(t), and then form y(t) = Tz(t) to solve the original
problem.

25. y ′′ + Ay = 0

26. y′′
1 − 2y1 − y2 = 0, y1(0) = 0, y′

1(0) = 1

y′′
2 − y1 − 2y2 = 0, y2(0) = 0, y′

2(0) = −1

27. y ′′ + Ay =
[
1

0

]
, y(0) =

[
1

0

]
, y ′(0) =

[
0

1

]

28. y ′′ + y ′ + Ay = 0 29. y′′
1 + 4y′

1 + 2y′
2 = 0

y′′
2 + 2y′

1 + 4y′
2 = 1

30. Ay ′′ + 4y = 0

Exercises 31–32:

Consider the spring-mass system shown in the figure on the next page. The system can
execute one-dimensionalmotion on the frictionless horizontal surface. The unperturbed
and perturbed systems are labeled (a) and (b) respectively.

31. (a) Show that an application of Newton’s second law of motion leads the second
order system Mx ′′ + Kx = 0, where

M =
⎡
⎢⎣
m1 0 0

0 m2 0

0 0 m3

⎤
⎥⎦ , K =

⎡
⎢⎣
k1 −k1 0

−k1 k1 + k2 −k2
0 −k2 k2

⎤
⎥⎦ , x(t) =

⎡
⎢⎣
x1(t)

x2(t)

x3(t)

⎤
⎥⎦ .
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m1 m2 m3

k1 k2

m1 m2 m3

(a)

(b)

x1(t) x3(t)x2(t)

Figure for Exercises 31–32

(b) Letm1 = m2 = m3 = m and k1 = k2 = k. Determine the eigenpairs of A = M−1K.

(c) Obtain the general solution of x ′′ + Ax = 0.

32. Consider the second order linear system derived in part (a) of Exercise 31.

(a) Show that the matrix K has an eigenvalue λ = 0. Determine a corresponding
eigenvector and denote it as v0.

(b) Explain the physical significance of the eigenpair (0, v0). In particular, what
motion does the system execute if the initial conditions are x(0) = 0, x ′(0) = v0?
[Hint: Look for a solution of the form x(t) = f (t)v0, where f (t) is a scalar function
to be determined.] Describe, in words, how the system is behaving.

33. We know that similar matrices have the same eigenvalues (in fact, they have the
same characteristic polynomial). There are many examples that show the converse
is not true; that is, there are examples of matrices A and B that have the same
characteristic polynomial but are not similar. Show that the following matrices A
and B cannot be similar:

A =
[
1 0

3 1

]
and B =

[
1 0

0 1

]
.

34. Drawing on the ideas involved in working Exercise 33, show that if an (n× n) real
matrix A is similar to the (n× n) identity I, then A = I.

35. Give an example that shows that while similar matrices have the same eigenvalues,
they may not have the same eigenvectors.

36. Define matrices P(t) and Q(t) as follows:

P(t) =
[
1 cos t

2t 0

]
, Q(t) =

∫ t

0
P(s)ds.

Show that P(t) and its derivative Q(t) do not commute. That is, P(t)Q(t) �= Q(t)P(t).

C H A P T E R 4 R E V I E W E X E R C I S E S

These review exercises provide you with an opportunity to test your understanding
of the concepts and solution techniques developed in this chapter. The end-of-section
exercises deal with the topics discussed in the section. These review exercises, however,
require you to identify an appropriate solution technique before solving the problem.

Exercises 1–22:

In each exercise, determine the general solution. If initial conditions are given, solve the
initial value problem.
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1.
y ′ =

[
3 −4
2 −3

]
y

2.
y ′ =

[−7 6

−9 8

]
y

3.
y ′ =

[
0 −4
4 0

]
y

4.
y ′ =

[−2 −1
1 −4

]
y

5. y′
1 = 3y1 − y2
y′
2 = y1 + y2

6. y′
1 = − 2y1 + y2
y′
2 = − y1 − 2y2

7.
y ′ =

[
0 2

−1 3

]
y+

[
6

7

]
8.

y ′ =
[
3 −2
2 −1

]
y, y(0) =

[
4

2

]

9. y′
1 = 2y1 + y2 + y3
y′
2 = y1 + 2y2 + y3
y′
3 = y1 + y2 + 2y3

10. y′
1 = 2y1 + 2y2
y′
2 = 5y1 + 5y2
y′
3 = 2y3

11. y′
1 = − 4y1 + 6y2, y1(0) = 7

y′
2 = − 3y1 + 5y2, y2(0) = 5

12.
y ′ =

[
3 −5
1 −1

]
y+

[
1

1

]

13.
y ′ =

[−6 10

−4 6

]
y, y(0) =

[
5

5

]
14.

y ′ =
[−2 −1
2 −4

]
y

15.

y ′ =
⎡
⎢⎣

2 −1 1

−1 2 1

1 1 2

⎤
⎥⎦ y

16.

y ′ =
⎡
⎢⎣
1 1 0

0 1 0

0 0 1

⎤
⎥⎦ y

17.
y ′ =

[
1 4

−1 5

]
y+

[
7

11

]
18.

y ′ =
[
7 −5
10 −7

]
y

19.
y ′ =

[
0 4

−1 4

]
y

20.
y ′ =

[
9 20

−4 −9

]
y

21.
y ′ =

[−2 1

−1 0

]
y

22.
y ′ =

[
11 −3
30 −8

]
y

PROJECTS

Consider the configuration shown in Figure 4.14. The three identical springs of un-
stretched length l are assumed to be weightless, and the two identical masses are as-

m

m m

m

l l l

x1(t) x2(t)

(a)

(b)

FIGURE 4.14

A coupled spring-mass system. (a) The equilibrium state.
(b) The perturbed state.
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sumed to slide on a frictionless surface. In the vertical direction, the surface exerts a
normal force upon each mass equal and opposite to its weight. Therefore, we need only
consider motion in the horizontal direction.

Project 1: Derivation of the Equations of Motion

Assume the system is set in motion at time t = 0 and there are no externally applied
forces. Let x1(t) and x2(t) represent the respective horizontal displacements of the two
masses from their equilibrium positions, measured positive to the right as shown. Show
that the application of Newton’s second law of motion to each mass leads to the system
of equations

mx′′
1 = k

(
x2 − x1

) − kx1
mx′′

2 = −k (
x2 − x1

) − kx2, t > 0.

These equations can be rewritten as a second order linear system

mx ′′ = k

[−2 1

1 −2

]
x, t > 0, where x(t) =

[
x1(t)

x2(t)

]
. (1)

In addition to the equations of motion (1), we specify the initial position and velocity of
each mass by

x(0) = x0, x ′(0) = x ′
0. (2)

Project 2: Numerical Solution Using the Exponential Matrix

The initial value problem defined by equation (1) and initial condition (2) can be solved
by using the diagonalization techniques of Section 4.10 to transform the problem into
two decoupled scalar problems. In this project, however, we will solve the problem by
using the exponential matrix to propagate the solution forward in time. Our solution
will be numerical in the sense that we will tabulate the solution at discrete times.

The first task is to recast the problem as a first order system. Define

y1 = x1, y2 = x′
1, y3 = x2, y4 = x′

2.

With this, the initial value problem can be rewritten as

y ′ = Ay, y(0) = y0, (3)

where A is a (4× 4) constant matrix and y0 is a (4× 1) vector.

1. Determine A and y0.

2. Suppose we want to solve (3) on the interval 0 ≤ t ≤ T. Choose a time step�t = T/N,
where N is a positive integer. The solution of (3) can be tabulated in 0 ≤ t ≤ T at the
time steps tj = j�t, j = 0,1,2, . . . ,N, using the iteration

y(tj) = eA�ty(tj−1), j = 1,2, . . . ,N. (4)

[The iteration (4) comes from the propagator property of the exponential matrix,
y(t+ �t) = eA�ty(t); recall equation (8) in Section 4.10.] Assumem = 2 kg, k = 8 N/m,
l = 1 m, T = 10 sec, and �t = 0.05 sec. For the initial conditions

x0 =
[−0.25
0.25

]
m, x′

0 =
[
0

0

]
m/sec,

find y(tj) using iteration (4), and plot the spring displacements at times t0, t1, . . . , tN.

Interpret your results physically, describing how the two masses are moving in the
time interval 0 ≤ t ≤ T. [Software such as MATLAB has built-in exponential matrix
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routines you can call to form eA�t. Or you can simply solve the initial value problem

′ = A
, 
(0) = I and use the fact that 
(�t) = eA�t.]

3. Repeat part (2), but with the initial conditions

x0 =
[
0

0

]
m, x′

0 =
[
0.25

0.25

]
m/sec.

Project 3: Resonant Behavior of a Coupled Spring-Mass System

Consider the spring-mass system shown in Figure 4.15. The figure shows two springs of
negligible weight. The springs have unstretched lengths l1 and l2 and have spring con-
stants k1 and k2. Massesm1 andm2 are attached, and the springs stretch appropriately to
achieve the rest configuration shown. The amount of stretching done by each spring is
determined by imposing conditions of static equilibrium on each mass. Since the sum
of the vertical forces acting on each mass must vanish, we obtain k1Y1 = m1g+ k2Y2
and m2g = k2Y2. Therefore, k1Y1 = m1g+m2g, where g represents acceleration due to
gravity. When the system is disturbed from its equilibrium state, both masses move
vertically. Let y1(t) and y2(t) represent the displacements of the masses from their equi-
librium positions at time t, as shown in Figure 4.15. We assume the system is initially
at rest and is set into motion by a force f (t) = F sinωt, applied vertically to the massm2;
see Figure 4.15(c).

m1

m2

m1

m2

k1

k2

l1

l2

l1 + Y1
l1 + Y1 + y1(t)

l1 + Y1 +
l2 + Y2 + y2(t)

l2 + Y2

(a) Unstretched
      springs

(b) System at rest with
      masses attached

(c) System disturbed
     from rest state

f(t)

FIGURE 4.15

1. Show that Newton’s second law of motion leads to the following nonhomogeneous
system of second order differential equations:

m1y
′′
1 = −(k1 + k2)y1 + k2y2

m2y
′′
2 = k2y1 − k2y2 + F sinωt.

(5)

Since the system is initially at rest, the initial value problem is

y ′′ + Ay = b sinωt, y(0) = 0, y ′(0) = 0. (6)

Determine the constant matrix A and the constant vector b.

2. Assume that m1 = m2 = m and that k1 = 2k and k2 = k. Denote the eigenpairs of
the real symmetric matrix A by (λ1,x1) and (λ2,x2). Make the change of variable
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z(t) = T−1y(t), where T = [x1,x2], and reformulate problem (6) as a pair of decoupled
second order initial value problems.

3. Determine the resonant frequencies of the pair of initial value problems derived in
part (2). That is, for what values of ω will at least one component of z(t) have an
amplitude that grows linearly with time?

4. Solve the initial value problem derived in part (2) in the case where m = 1 kg, k = 1
N/m, l = 1 m, F = 0.1 N, and ω is equal to the largest of the values determined in
part (3). Form y(t) = Tz(t) to obtain the solution of equation (6). Discuss the physical
relevance of the solution. Is it physically meaningful for all t,0 ≤ t < ∞?

Project 4: A Control Problem in Charged Particle Ballistics

Consider a particle, having mass m and electric charge q, moving in a magnetic field.
The magnetic field is a vector field B. The motion of the particle in this magnetic field
is most conveniently described in terms of vectors.

Let i, j, and k represent unit vectors in the x, y, and z directions, respectively. The
position of the particle is defined by the position vector,

r(t) = x(t)i+ y(t)j+ z(t)k,

and its velocity by the corresponding velocity vector,

v(t) = vx(t)i+ vy(t)j+ vz(t)k.

Since v(t) = dr/dt, the velocity components are

vx(t) = d
dt

x(t), vy(t) = d
dt

y(t), vz(t) = d
dt

z(t).

Figure 4.16 illustrates the problem.

z

x
y

B

r(t)

v(t )

m, q

FIGURE 4.16

A charged particle having mass m and electric charge q moves in the
magnetic field B. Its motion is described by its position vector r(t) and
velocity vector v(t).
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If the weight of the charged particle is neglected, the only force acting on it is the
Lorentz2 force (the force the magnetic field exerts on the moving charge). The Lorentz
force, described using vector notation, is qv(t) ×B. An application of Newton’s second
law of motion leads to the vector equation

m
d
dt

v(t) = qv(t) ×B. (7)

Suppose the charged particle is launched from the origin at time t = 0 with initial
velocity v(0) = v0. Is it possible to select v0 so that the particle will be located at a desired
location R at a specific later time t = τ > 0? In other words, can we choose v(0) = v0 so
that r(τ ) = R?

1. Let B = Bk and define ωc = qB/m. The constant ωc is a radian frequency known as
the cyclotron frequency. Rewrite vector equation (7) in the form

v′ = Av, v(0) = v0.

2. Solve the initial value problem, expressing the solution in the form v(t) = eAtv0.

3. Form r(t) = ∫ t
0 v(s)ds and determine conditions under which we can choose v0 such

that r(τ ) = R = ∫ τ

0 v(s)ds.

2Hendrik Lorentz (1853–1928) was professor of mathematical physics at Leiden University from
1878 until 1912; he thereafter directed research at the Teyler Institute in Haarlem. Lorentz is
noted for his studies of atomic structure and of the mathematical transformations (called Lorentz
transformations) that form the basis of Einstein’s theory of special relativity. Along with his student
Pieter Zeeman, Lorentz was awarded the Nobel Prize in 1902.
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5C H A P T E R

Laplace Transforms

C H A P T E R O V E R V I E W

5.1 Introduction

5.2 Laplace Transform Pairs

5.3 The Method of Partial Fractions

5.4 Laplace Transforms of Periodic Functions and System
Transfer Functions

5.5 Solving Systems of Differential Equations

5.6 Convolution

5.7 The Delta Function and Impulse Response

5.1 Introduction
When you begin to study a new topic such as the Laplace transform, two ques-
tions arise: “What is it?” and “Why is it important?” A scientist often uses
Laplace1 transforms to solve a mathematical problem for the same reason that
a motorist leaves a congested highway and travels a network of back roads to
reach his or her destination. The most easily traveled path between two points
is not always the most direct one.

One of the important applications of Laplace transforms is solving con-
stant coefficient linear differential equations that have discontinuous right-
hand sides. In particular, many mechanical and electrical systems are driven
by sources that switch on and off. Such systems are often modeled by an initial
value problem of the form

y′′ + ay′ + by = g(t), y(t0) = y0, y′(t0) = y′
0,

1Pierre-Simon Laplace (1749–1827) was a French scientist renowned for his work in mathematics,
celestial mechanics, probability theory, and physics. The Laplace transform, the Laplace proba-
bility density function, and Laplace’s equation (arising in the study of potential theory) are some
mathematical entities named in his honor.
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where the right-hand side g(t) has discontinuities at those times when the
source changes abruptly. Laplace transform techniques are a convenient tool
for analyzing such initial value problems.

The philosophy underlying the use of Laplace transforms is illustrated in
Figure 5.1. We have a problem to solve—for example, determining the behav-
ior of some mechanical or electrical system. Instead of attacking the problem
directly, we transform (or map) the original problem into a new problem. This
mapping is accomplished by means of the mathematical operation known as
the Laplace transform. The original problem is often referred to as the time do-
main problem since the independent variable for the original problem is usually
time. The new problem, resulting from the Laplace transformation, is referred
to as the transform domain problem. After obtaining this new transform domain
problem, we solve it and then transform the solution back into the time domain
by performing another mapping, known as the inverse Laplace transform. The
inversemapping thus gives us the solution of the original time domain problem,
the problem of interest.

Original
problem of 

interest

Transform
domain
problem

Desired
solution

Solution of
transform
domain
problem

Time domain Transform domain

Laplace transform

Inverse Laplace

 transform

Solution

FIGURE 5.1

The philosophy underlying the use of Laplace transforms.

In order for the problem-solving approach diagrammed in Figure 5.1 to be
attractive, the following three stepsmust be easier to implement than the direct
solution approach:

1. calculating the Laplace transform,

2. solving the transformed problem, and

3. calculating the inverse Laplace transform.

For many of the problems we treat, this will be the case. Constant coefficient
linear differential equations will be transformed into algebraic equations. The
resulting transform domain problem typically entails solving a single linear
algebraic equation or a system of linear algebraic equations.

We will consider a variety of constant coefficient linear differential equa-
tions (both scalar equations and systems) and show how these problems can be
solved using Laplace transforms. We will also consider several problems, such
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as the parameter identification problem in the following example, that are not
so straightforwardly solved using the techniques developed so far.

E X A M P L E

1 Consider a vibrating mechanical system that exists in a “black box,” as in Fig-
ure 5.2. Assume you are confident that the vibrating system can be modeled as
the spring-mass-dashpot arrangement shown, but you do not have the internal
access needed to directly measure the spring constant k, the mass m, or the
damping constant γ . You can only apply a force at the external access point
and measure the resulting displacement.

m

k

�

Applied force
f (t)

FIGURE 5.2

A cutaway schematic of a “black box” vibrating system.

Mathematically (as we saw in Section 3.10), the mechanical system in Fig-
ure 5.2 is described by the initial value problem,

my′′ + γ y′ + ky = f (t), t ≥ 0, y(0) = 0, y′(0) = 0.

The system is at rest at time t = 0 when force f (t) is applied. The applied force
f (t) is known for t ≥ 0; the displacement y(t) is monitored and is thus known
for t ≥ 0. The parameters m, γ , and k, however, are unknown.

Assuming we know the input-output relation [that is, f (t) and y(t)] for one
given applied force and the corresponding measured displacement, we ask the
following two questions:

1. Is it possible to predict what the output will be if another input is applied
to the system? In other words, if we apply a different external force, f̃ (t),
is it possible to predict the resulting displacement, ỹ(t)?

2. Is it possible to determine the constants m, γ , and k from a knowledge
of the single input-output history given by f (t) and y(t)?

Wewill see in Section 5.4 that the use of Laplace transformsprovides a relatively
easy way to answer both questions. ❖
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The Laplace Transform
The first use of Laplace transforms as an operational tool for solving constant
coefficient linear differential equations is often attributed to the British physi-
cist Oliver Heaviside.2 As noted earlier, the Laplace transform maps a func-
tion of t, say f (t), into a new function, F(s), of a new transform variable s. [In
terms of notation, we generally use lowercase letters to designate time domain
functions, such as f (t), and capital letters to denote corresponding transform
domain functions, F(s).]

Let f (t) be a function defined on the interval 0 ≤ t < ∞. The Laplace trans-
form of f (t) is defined by the improper integral

L{ f (t)} = F(s) =
∫ ∞

0
f (t)e−st dt, (1)

provided the integral exists. As the notation of equation (1) indicates, we often
denote F(s), the Laplace transform of f (t), by the symbolL{ f (t)}. The new trans-
form variable s is assumed to be a real variable. (In more advanced treatments
of the Laplace transform, the variable s is allowed to be a complex variable.)

As we look at equation (1), the first issue to settle is that of identifying the
properties f (t) must possess in order for its Laplace transform to exist—that
is, in order for the improper integral in equation (1) to converge. Recall from
calculus that the improper integral in (1) is defined by∫ ∞

0
f (t)e−st dt = lim

T→∞

∫ T

0
f (t)e−st dt, (2)

provided the limit exists. When the limit (2) exists, we say that the improper
integral converges, and we define the improper integral to be this limit value.
If the limit in (2) does not exist, we say that the improper integral diverges.

Whether or not limit (2) exists depends on the nature of f (t) and on the
value of the transform variable s; note that s plays the role of a parameter in
the integral. In this section, we identify a large class of functions that possess
Laplace transforms. It is important to realize, however, that not every function
has a Laplace transform. The third function considered in Example 2 illustrates
this fact.

E X A M P L E

2 Find the Laplace transform, if it exists, of

(a) f (t) = eat (b) f (t) = t (c) f (t) = et
2

Solution:

(a) Applying the definition, we see that

L{eat} =
∫ ∞

0
eate−st dt = lim

T→∞

∫ T

0
e−(s−a)t dt, (3)

2Oliver Heaviside (1850–1925) studied electricity and magnetism while employed as a telegrapher.
He is remembered for his great simplification of Maxwell’s equations, his contributions to vector
analysis, and his development of operational calculus. In 1902, Heaviside conjectured that a con-
ducting layer exists in the atmosphere which allows radio waves to follow the curvature of Earth.
This layer, now called the Heaviside layer, was detected in 1923.
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provided the limit exists. Since

∫ T

0
e−(s−a)t dt =

⎧⎨
⎩
T, s = a

1− e−(s−a)T

s− a
, s �= a,

the improper integral defined by the limit (3) exists if and only if s > a.
Therefore,

F(s) = L{eat} = 1
s− a

, s > a. (4)

(b) Similarly,

L{t} =
∫ ∞

0
te−st dt = lim

T→∞

∫ T

0
te−st dt, (5)

provided the limit exists. Since

∫ T

0
te−st dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T2

2
, s = 0

−e−sT

s2
(1+ sT) + 1

s2
, s �= 0,

the improper integral defined by the limit (5) exists if and only if s > 0.
Therefore,

F(s) = L{t} = 1

s2
, s > 0. (6)

(c) Applying the definition gives

L{et2 } =
∫ ∞

0
et
2
e−st dt = lim

T→∞

∫ T

0
et(t−s) dt,

provided the limit exists. For any fixed value of s, however, the integrand,
et(t−s), is greater than 1 whenever t > s. Therefore, the limit does not ex-
ist for any value s and the function f (t) = et

2
does not possess a Laplace

transform. ❖

Piecewise Continuous Functions and
Exponentially Bounded Functions
We now identify a class of functions that possess Laplace transforms. If f (t) is
a member of this class, then its Laplace transform exists for all s > a, where a
is a constant that depends on the particular function f .

We begin with two definitions. A function f (t) is called piecewise contin-
uous on the interval 0 ≤ t ≤ T if

(a) There are at most finitely many points, 0 ≤ t1 < t2 < · · · < tNT
≤ T, at which

f (t) is not continuous, and

(b) At any point of discontinuity, tj, the one-sided limits

lim
t→t−j

f (t) and lim
t→ t+j

f (t)

both exist. (If a discontinuity occurs at an endpoint, 0 or T, then only the
interior one-sided limits need exist.) These discontinuities are called jump
discontinuities.
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Condition (b) says the only discontinuities allowed for a piecewise continuous
function are jump discontinuities. Condition (a) says a function that is piece-
wise continuous on the interval [0,T] never has more than a finite number of
jump discontinuities in [0,T]. Note that the number of discontinuity points
is a nondecreasing function of the interval length T; that is, if T2 > T1, then
NT2

≥ NT1
.

A function defined on 0 ≤ t < ∞ is called piecewise continuous on the
interval 0 ≤ t < ∞ if it is piecewise continuous on 0 ≤ t ≤ T for all T > 0.

An example of a function f (t) that is piecewise continuous on
0 ≤ t < ∞ is the “square wave” shown in Figure 5.3, where

f (t) =
{
1, 0 ≤ t ≤ 1,

0, 1 < t < 2,
f (t+ 2) = f (t).

Note that f (t) is a periodic function with period 2. Every discontinuity of f (t)
is a jump discontinuity. While f (t) has infinitely many discontinuities in
0 ≤ t < ∞, the function never has more than a finite number of discontinu-
ities in a finite interval 0 ≤ t ≤ T.

1

1 2 3 4 5 6
t

f f (t ) = 1,  0 ≤ t ≤  1
0,  1 < t < 2

f (t  + 2) = f (t )

FIGURE 5.3

The function f (t) is called a “square wave.” It has infinitely many
discontinuities in 0 ≤ t < ∞. They are all jump discontinuities, and there
are never more than a finite number in any finite subinterval of 0 ≤ t < ∞.
Therefore, f (t) is piecewise continuous on 0 ≤ t < ∞.

Our next definition is concerned with measuring how fast | f (t)| grows as
t → ∞. A function f (t) defined on 0 ≤ t < ∞ is called exponentially bounded
on 0 ≤ t < ∞ if there are constants M and a, with M ≥ 0, such that

| f (t)| ≤ Meat, 0 ≤ t < ∞.

Figure 5.4 illustrates the nature of this definition. A function f (t) is exponen-
tially bounded if we can find constants M and a such that the graph of f (t) is
contained in the region R, where R is bounded above by y = Meat and below by
y = −Meat.

If a function f (t) is bounded on 0 ≤ t < ∞, then it is also exponentially
bounded; that is, if | f (t)| ≤ M,0 ≤ t < ∞, then | f (t)| ≤ Meat,0 ≤ t < ∞, with
a = 0.

Existence of the Laplace Transform
Theorem 5.1 establishes the existence of the Laplace transform for all functions
that are piecewise continuous and exponentially bounded on 0 ≤ t < ∞. The
proof is given in advanced texts.
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t

y

y = Meat

y = –Meat

y = f (t)

FIGURE 5.4

The function f (t) is exponentially bounded because its graph is bounded
above by y = Meat and below by y = −Meat. Hence, | f (t)| ≤ Meat,0 ≤ t < ∞.

Theorem 5.1
Let f (t)bepiecewise continuous and exponentially boundedon0 ≤ t < ∞,
where | f (t)| ≤ Meat,0 ≤ t < ∞. Then the Laplace transform,

F(s) =
∫ ∞

0
f (t)e−st dt,

exists for all s > a.

In this chapter, we restrict our attention to functions that are piecewise
continuous and exponentially bounded on 0 ≤ t < ∞. The next theorem, stated
without proof, gives some closure properties for this special class of functions,
asserting that we can form linear combinations and products of functions in
the class and that any new functions produced will also belong to the class (and
thus have Laplace transforms).

Theorem 5.2
Let f1(t) and f2(t) be piecewise continuous and exponentially bounded on
0 ≤ t < ∞, where

| f1(t)| ≤ M1e
a1t and | f2(t)| ≤ M2e

a2t.

(a) Let f (t) = c1f1(t) + c2 f2(t), where c1 and c2 are arbitrary constants.
Then f (t) is also piecewise continuous and exponentially bounded
on 0 ≤ t < ∞. In fact, | f (t)| ≤ Meat, where M = |c1|M1 + |c2|M2 and
a = max {a1, a2}. Moreover, F(s) = L{ f (t)} is given by

F(s) = L{c1f1(t) + c2 f2(t)} = c1L{ f1(t)} + c2L{ f2(t)}
= c1F1(s) + c2F2(s), s > a.

(b) Let g(t) = f1(t)f2(t). Then g(t) is also piecewise continuous and expo-
nentially bounded on 0 ≤ t < ∞. In fact, | g(t)| ≤ Meat, where
M = M1M2 and a = a1 + a2. It follows that G(s) = L{ g(t)} exists for
s > a.
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Since the Laplace transform satisfies the formula

L{c1f1(t) + c2 f2(t)} = c1L{ f1(t)} + c2L{ f2(t)}, (7)

we say that the Laplace transform is a linear transformation on the set of
piecewise continuous, exponentially bounded functions.

E X A M P L E

3 Determine whether the functions are exponentially bounded and piecewise
continuous on 0 ≤ t < ∞:

(a) f (t) =
{
1, 0 ≤ t ≤ 1,

0, 1 < t < 2,
f (t) = f (t− 2) for t ≥ 2

(b) g(t) = tet, 0 ≤ t < ∞
(c) k(t) = et

2
, 0 ≤ t < ∞

Solution:

(a) The function f (t) is defined on 0 ≤ t < ∞ as a periodic function having
period 2. This function, whose graph was shown earlier in Figure 5.3, has
jump discontinuities at the positive integers. As was noted in Figure 5.3,
f (t) is piecewise continuous on 0 ≤ t < ∞. Since the function is bounded,
it is also exponentially bounded; in fact, we have

| f (t)| ≤ Meat, with M = 1 and a = 0.

We will calculate the Laplace transform of f (t) in Section 5.4 when we
discuss Laplace transforms of periodic functions.

(b) Since g(t) is continuous, it is certainly piecewise continuous on
0 ≤ t < ∞. It remains to show that g(t) is exponentially bounded. Let α > 1,
and consider the function

ϕ(t) = g(t)e−αt = te−(α−1)t, 0 ≤ t < ∞.

It can be shown that

0 ≤ ϕ(t) ≤ 1
(α − 1)e

, 0 ≤ t < ∞.

This inequality implies that

0 ≤ g(t) ≤ 1
(α − 1)e

eαt, 0 ≤ t < ∞,

and we conclude that g(t) is exponentially bounded on 0 ≤ t < ∞,withM =
1/[(α − 1)e] and a = α > 1.

(c) If k(t) were exponentially bounded, then there would be constants M and
a such that et

2 ≤ Meat for all nonnegative values t. In turn, this inequality
would imply

et(t−a) ≤ M, 0 ≤ t < ∞.

But, as t grows, the inequality has to fail eventually. Thus, k(t) = et
2
is not ex-

ponentially bounded. The function is, however, piecewise continuous since
it is continuous. ❖
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The Inverse Laplace Transform and Uniqueness
Using the Laplace transform to solve problems involves three separate steps:
(1) applying the transform to obtain a new transform domain problem, (2) solv-
ing the new transform domain problem, and (3) applying the inverse transform
that maps the transform domain solution back to the time domain, resulting
in the solution of the problem of interest.

In order to define the inverse mapping (that is, the inverse Laplace trans-
form), we need to know that the Laplace transform operation, when applied to
functions that are piecewise continuous and exponentially bounded, possesses
an underlying uniqueness property. In particular, given a transform domain
function F(s), we want unambiguously to identify a function f (t) that has F(s)
as its transform. The following theorem, which we present without proof, ad-
dresses the uniqueness question.

Theorem 5.3
Let f1(t) and f2(t) be piecewise continuous and exponentially bounded on
0 ≤ t < ∞. Let F1(s) and F2(s) represent their respective Laplace trans-
forms. Suppose, for some constant a, that

F1(s) = F2(s), s > a.

Then f1(t) = f2(t) at all points t ≥ 0 where both functions are continuous.

This theorem gives about the best result we can hope for. As an illustration,
consider the function f1(t) = e−t, t ≥ 0. We saw in Example 2 that

L{eat} = 1
s− a

, s > a.

Therefore,

L{e−t} = F(s) = 1
s+ 1

, s > −1.

Suppose we create a new function f2(t) by simply redefining f1(t) to be zero at
each of the positive integers:

f2(t) =
{
e−t, t not an integer

0, t an integer.
(8)

The graph of the function f2(t) is shown in Figure 5.5. Observe, even though
f1(t) and f2(t) are different functions, that∫ T

0
f1(t)e

−st dt =
∫ T

0
f2(t)e

−st dt (9)

for every T > 0. Therefore, L{ f1(t)} = L{ f2(t)} = F(s), s > −1.
As we see from equation (9), the improper integral defining the Laplace

transform is insensitive to changes in the value of a function at a finite num-
ber of points in 0 ≤ t ≤ T. This insensitivity, however, does not pose a serious
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FIGURE 5.5

The graph of the function f2(t) defined by equation (8). Note that the graph
of f2(t) is identical to the graph of f1(t) = e−t except at t = 0,1,2, . . . . Even
though the functions f1(t) and f2(t) are different, their Laplace transforms
are the same [see equation (9)].

practical problem since we are interested in physically relevant functions. For
example, in defining the inverse Laplace transform of

F(s) = 1
s− a

,

we will choose it to be the continuous function f (t) = eat, t ≥ 0.
Our approach to determining inverse Laplace transforms will be a tabu-

lar one. In the next several sections, we will compute Laplace transforms of
functions and build up a library of Laplace transform pairs, such as the pair

f (t) = eat, t ≥ 0 and F(s) = 1
s− a

, s > a. (10)

Determining an inverse Laplace transform will essentially consist of a simple
“table look-up” process. That is, we find the appropriate transform domain
function F(s) in the table and then take the corresponding time domain func-
tion f (t) in the table to be the inverse transform of F(s). The next example
illustrates this approach. (In more advanced treatments, within the theory of
complex variables, amore fundamental approach to computing inverse Laplace
transforms is developed.)

[Note: We will use the symbol L−1{ } to denote the operation of taking the
inverse Laplace transform.]

E X A M P L E

4 What is the inverse Laplace transform of

F(s) = 2s

s2 − 1
, s > 1?

That is, for what function f (t) do we have L{ f (t)} = F(s) = 2s/(s2 − 1)?
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Solution: We first observe that the rational function F(s) has the following
partial fraction expansion:

2s

s2 − 1
= 1
s− 1

+ 1
s+ 1

.

(The topic of partial fractions is reviewed in Section 5.3. For now you can
verify this claim by simply recombining the right-hand side.) Since the Laplace
transform is a linear transformation, the inverse Laplace transform is likewise
a linear transformation. In particular,

L−1
{

2s

s2 − 1

}
= L−1

{
1

s− 1
+ 1
s+ 1

}
= L−1

{
1

s− 1

}
+ L−1

{
1

s+ 1

}
.

Recalling the Laplace transform pair listed earlier in equation (10), we obtain

L−1
{

1
s− 1

}
= et and L−1

{
1

s+ 1

}
= e−t.

Therefore,

L−1
{

2s

s2 − 1

}
= et + e−t = 2 cosh t, t ≥ 0. ❖

E X E R C I S E S

Exercises 1–12:

As in Example 2, use the definition to find the Laplace transform for f (t), if it exists. In
each exercise, the given function f (t) is defined on the interval 0 ≤ t < ∞. If the Laplace
transform exists, give the domain of F(s). In Exercises 9–12, also sketch the graph
of f (t).

1. f (t) = 1 2. f (t) = e3t 3. f (t) = te−t 4. f (t) = t− 5

5. f (t) = tet
√
t 6. f (t) = e(t−1)2 7. f (t) = | t− 1| 8. f (t) = (t− 2)2

9. f (t) =
{
0, 0 ≤ t < 1

1, 1 ≤ t
10. f (t) =

{
0, 0 ≤ t < 1

t− 1, 1 ≤ t

11. f (t) =

⎧⎪⎨
⎪⎩
0, 0 ≤ t < 1

1, 1 ≤ t < 2

0, 2 ≤ t

12. f (t) =

⎧⎪⎨
⎪⎩
0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2

0, 2 ≤ t

13. Let n be a positive integer. Using integration by parts, establish the reduction for-
mula ∫

tne−st dt = − tne−st

s
+ n
s

∫
tn−1e−st dt, s > 0.

14. For s > 0 and n a positive integer, evaluate the limits:

(a) lim
t→0

tne−st (b) lim
t→∞ tne−st

[Hint: Use L’Hôpital’s rule to establish limit (b).]

15. (a) Use Exercises 13 and 14 to derive a reduction formula for the Laplace transform
of f (t) = tn,

L{tn} = n
s
L{tn−1}, s > 0. (11)
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(b) From Example 2, we have L{t} = 1/s2, s > 0. Use this fact, together with reduc-
tion formula (11), to calculate L{tk} for k = 2,3, . . . ,5.

(c) Formulate a conjecture as to the Laplace transform of f (t) = tm, where m is an
arbitrary positive integer.

Exercises 16–21:

From a table of integrals,∫
eαu sinβudu = eαu α sinβu− β cosβu

α2 + β2∫
eαu cosβudu = eαu α cosβu+ β sinβu

α2 + β2
.

Use these integrals to find the Laplace transform of f (t), if it exists. If the Laplace trans-
form exists, give the domain of F(s).

16. f (t) = cosωt 17. f (t) = sinωt 18. f (t) = cos[ω(t− 2)]
19. f (t) = sin[ω(t− 2)] 20. f (t) = e3t sin t 21. f (t) = e−2t cos 4t

Exercises 22–23:

Use the linearity property (7) along with the transforms found in Example 2,

L{eat} = 1
s− a

, s > a and L{t} = 1

s2
, s > 0,

to calculate the Laplace transform R(s) = L{r(t)} of the given function r(t). For what
values s does the Laplace transform exist?

22. r(t) = 2e−5t + 6t 23. r(t) = 5e−7t + t+ 2e2t

Exercises 24–31:

In each exercise, a function f (t) is given. In Exercises 28 and 29, the symbol [[u ]] de-
notes the greatest integer function, [[u ]] = n when n ≤ u < n+ 1, n an integer,
n = . . . , −2, −1,0,1,2, . . . .
(a) Is f (t) continuous on 0 ≤ t < ∞, discontinuous but piecewise continuous on

0 ≤ t < ∞, or neither?

(b) Is f (t) exponentially bounded on 0 ≤ t < ∞? If so, determine values ofM and a such
that | f (t)| ≤ Meat,0 ≤ t < ∞.

24. f (t) = tan t 25. f (t) = et sin t 26. f (t) = t 2e−t 27. f (t) = cosh 2t

28. f (t) = [[ t ]] 29. f (t) = [[
e2t

]]
30. f (t) = et

2

e2t + 1
31. f (t) = 1

t
Exercises 32–35:

Determine whether the given improper integral converges. If the integral converges,
give its value.

32.
∫ ∞

0

1

1+ t 2
dt 33.

∫ ∞

0

t

1+ t 2
dt

34.
∫ ∞

0
e−t cos(e−t)dt 35.

∫ ∞

0
te−t2 dt

Exercises 36–39:

Suppose that L{ f1(t)} = F1(s) and L{ f2(t)} = F2(s), s > a. Use the fact that

L−1{c1F1(s) + c2F2(s)} = c1L−1{F1(s)} + c2L−1{F2(s)}, a < s
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to determine the inverse Laplace transform of the given function. Refer to the examples
in this section and equation (11) in Exercise 15.

36. F(s) = 3
s− 2

37. F(s) = − 2

s2
+ 1
s+ 1

38. F(s) = 4s

s2 − 4
= 2
s+ 2

+ 2
s− 2

39. F(s) = 2

s2 − 1
= 1
s− 1

− 1
s+ 1

5.2 Laplace Transform Pairs
This section develops a library of Laplace transform pairs that we will use to
solve problems.We begin by defining a function known as the unit step function
or the Heaviside step function.

The Unit Step Function
The unit step function or Heaviside step function, h(t), is the piecewise
continuous function defined by

h(t) =
{
1, t ≥ 0

0, t < 0.

Figure 5.6 displays graphs of h(t) and its “shifted argument” counterpart,
h(t− α), α > 0.

1

t

h (t )

1

t

h (t – �)

�

FIGURE 5.6

The graphs of the unit step function, h(t), and
the shifted step function, h(t− α).

The Laplace transform of the unit step function, h(t), is given by

L{h(t)} =
∫ ∞

0
h(t)e−st dt =

∫ ∞

0
e−st dt = −e−st

s

∣∣∣∣
∞

0
= 1

s
, s > 0. (1a)

In equation (1a), we use a common notation:

f (t)
∣∣∞
a = lim

t→∞ f (t) − f (a).
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For the shifted step function, h(t− α), we obtain the Laplace transform

L{h(t− α)} =
∫ ∞

0
h(t− α)e−st dt =

∫ ∞

α

e−st dt = −e−st

s

∣∣∣∣
∞

α

= e−sα

s
,

s > 0 and α ≥ 0.

(1b)

Note that the unit step function h(t) and the constant function f (t) = 1 are
identical on 0 ≤ t < ∞. Therefore, they have the same Laplace transform,

L{1} = 1
s
, s > 0. (1c)

Transforms of Polynomial, Exponential,
and Trigonometric Functions
In this subsection, we develop some common transform pairs, starting with
the polynomial function f (t) = tn. Also see Exercise 15 in Section 5.1.

The Laplace Transform of f(t) = tn For n = 1, we use integration by parts to
obtain

L{t} =
∫ ∞

0
te−st dt =

[
− te−st

s
− e−st

s2

]∣∣∣∣
∞

0
= 1

s2
, s > 0. (2a)

In general, for any positive integer n, integration by parts yields

L{tn} =
∫ ∞

0
tne−st dt = − tne−st

s

∣∣∣∣
∞

0
+ n
s

∫ ∞

0
tn−1e−st dt.

You can use L’Hôpital’s rule to show that lim t→∞ tne−st = 0, s > 0. Therefore,
we obtain the following reduction formula for L{tn}:

L{tn} = n
s

L{tn−1}, s > 0. (2b)

Applying reduction formula (2b) recursively, we find, for s > 0,

L{t2} = 2
s
L{t} = 2

s3
, L{t3} = 3

s
L{t2} = 3 · 2

s4

and, in general,

L{tn} = n!
sn+1 , n = 1,2,3, . . . , s > 0. (3)

The Laplace Transform of f(t) = eαt We saw in Section 5.1 that

L{eαt} = 1
s− α

, s > α. (4)
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The Laplace Transforms of f(t) = sin ωt and f(t) = cos ωt Using integration by
parts twice yields

L{sinωt} =
∫ ∞

0
e−st sinωt dt

=
[
−e−st sinωt

s
− ωe−st cosωt

s2

]∣∣∣∣
∞

0
−ω2

s2

∫ ∞

0
e−st sinωt dt

= ω

s2
− ω2

s2
L{sinωt}, s > 0.

Solving for L{sinωt}, we find
L{sinωt} = ω

s2 + ω2
, s > 0. (5a)

Similarly,

L{cosωt} = s

s2 + ω2
, s > 0. (5b)

We know from Section 5.1 that the Laplace transform defines a linear
transformation on the set of piecewise continuous and exponentially bounded
functions; that is, if f (t) and g(t) are piecewise continuous and exponentially
bounded, then

L{c1f (t) + c2 g(t)} = c1L{ f (t)} + c2L{ g(t)}.
We can use this linearity property to extend our library of transforms. For
example, combining linearity with the transform forL{tn} listed in equation (3),
we obtain the Laplace transform of any polynomial. The next example provides
an illustration.

E X A M P L E

1 Use the transform pairs developed above to find the Laplace transform of

(a) p(t) = 2t3 + 5t− 3, t ≥ 0 (b) f (t) = 4 cos2 3t, t ≥ 0

Solution:

(a) Using linearity and equation (3), we have

L{p(t)} = L{2t3 + 5t− 3} = 2L{t3} + 5L{t} − 3L{1}

= 2
3!
s4

+ 5
1

s2
− 3

1
s

= 12+ 5s2 − 3s3

s4
, s > 0.

(b) We have no transform pair directly involving cos2ωt.However, we can use a
trigonometric identity to rewrite f (t) = 4 cos2 3t as f (t) = 2+ 2 cos 6t. Using
linearity and equation (5b) yields

L{ f (t)} = 2L{1} + 2L{cos 6t}

= 2
1
s

+ 2
s

s2 + 36
= 4s2 + 72

s(s2 + 36)
, s > 0. ❖
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Two Shift Theorems
The next two results, established in Theorem 5.4, are often referred to as the
first and second shift theorems. Like the linearity property illustrated in Ex-
ample 1, the shift theorems increase the number of functions for which we can
easily find Laplace transforms.

Theorem 5.4
Let f (t)bepiecewise continuous and exponentially boundedon0 ≤ t < ∞,
where |f (t)| ≤ Meat,0 ≤ t < ∞. Let F(s) = L{ f (t)}, and let h(t) denote the
unit step function. Then

(a) L{eαtf (t)} = F(s− α), s > a+ α

(b) L{ f (t− α)h(t− α)} = e−αsF(s), α ≥ 0, s > a.

Since h(t− α) = 0 when t < α (see Figure 5.6),

f (t− α)h(t− α) = 0, t < α.

The graph of f (t− α)h(t− α) looks just like the graph of f (t) except for the fact
that it is shifted to the right and remains zero until t = α. Figure 5.7 provides
an example.

t

f (t )

t

f (t – �)h (t – �)

�

FIGURE 5.7

The graphs of f (t) and f (t− α)h(t− α). Note that the graph of
f (t− α)h(t− α) looks like the graph of f (t) except that it is
shifted α units to the right.

● PROOF (of Theorem 5.4):

(a) The following calculation establishes part (a):

L{eαtf (t)} =
∫ ∞

0
eαtf (t)e−st dt =

∫ ∞

0
f (t)e−(s−α)t dt = F(s− α),

s > a+ α.
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(b) To establish the second shift theorem, we begin with

L{ f (t− α)h(t− α)} =
∫ ∞

0
f (t− α)h(t− α)e−st dt =

∫ ∞

α

f (t− α)e−st dt.

Making the change of variable τ = t− α, we have

L{ f (t− α)h(t− α)} =
∫ ∞

α

f (t− α)e−st dt =
∫ ∞

0
f (τ )e−s(τ+α) dτ

= e−sα
∫ ∞

0
f (τ )e−sτ dτ = e−sαF(s), s > a. ●

Note that parts (a) and (b) of Theorem5.4 possess a certain duality. Roughly
speaking,multiplying a function by an exponential function in the time domain
shifts the argument of its Laplace transform. Likewise, shifting the argument in
the time domain leads to an exponential multiplicative factor in the transform
domain.

E X A M P L E

2 Find

(a) L{e2tt4} (b) L{eαt cosωt} (c) L−1
{
e−5s

s2

}
(d) L−1

{
e−αs

s2 + 1

}

Solution:

(a) By Theorem 5.4, multiplying f (t) by eαt shifts the argument of its transform,
F(s). That is,

L{e2tt4} = L{t4}
∣∣∣
s→s−2

= 4!
(s− 2)5

, s > 2.

(b) As in part (a),

L{eαt cosωt} = L{cosωt}|s→s−α = s− α

(s− α)2 + ω2
, s > α.

(c) We know that L{t} = 1/s2, t ≥ 0. By the second shift theorem,

e−5s

s2
= L{(t− 5)h(t− 5)}.

Therefore,

L−1
{
e−5s

s2

}
= (t− 5)h(t− 5) =

{
0, 0 ≤ t < 5

t− 5, 5 ≤ t < ∞.

The graph of this inverse transform is shown in Figure 5.8.

(d) We know that L{sin t} = 1/(s2 + 1), t ≥ 0. Using the second shift theorem
yields

e−αs

s2 + 1
= L{[sin(t− α)]h(t− α)}.

(continued)
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(continued)

Therefore,

L−1
{

e−αs

s2 + 1

}
= [sin(t− α)]h(t− α) =

{
0, 0 ≤ t < α

sin(t− α), α ≤ t < ∞.

5

5 10

f

t

f (t) = (t – 5)h (t – 5)

FIGURE 5.8

The graph of f (t) = (t− 5)h(t− 5). ❖

The Laplace Transform of Derivatives and Antiderivatives
The utility of Laplace transforms as a tool to solve problems involving constant
coefficient linear differential equations is due in large part to the transform
pairs in the next theorem that relate the Laplace transform of derivatives and
integrals of a function to the Laplace transform of the function itself. We will
make extensive use of these results in Sections 5.4–5.7.

Theorem 5.5
(a) Let f (t) be continuous on 0 ≤ t < ∞, and let f ′(t) exist as a piecewise

continuous, exponentially bounded function on 0 ≤ t < ∞, where
| f ′(t)| ≤ Meat,0 ≤ t < ∞. Then

L{ f ′(t)} = sL{ f (t)} − f (0) = sF(s) − f (0), s > max{a,0}.
(b) Let f ′(t) be continuous on 0 ≤ t < ∞, and let f ′′(t) exist as a piecewise

continuous, exponentially bounded function on 0 ≤ t < ∞, where
| f ′′(t)| ≤ Meat,0 ≤ t < ∞. Then

L{ f ′′(t)} = sL{ f ′(t)} − f ′(0) = s [sF(s) − f (0)] − f ′(0)

= s2F(s) − sf (0) − f ′(0), s > max{a,0}.
(c) Let f (t) be piecewise continuous and exponentially bounded on

0 ≤ t < ∞, where | f (t)| ≤ Meat,0 ≤ t < ∞. Then

L
{∫ t

0
f (u)du

}
= L{ f (t)}

s
= F(s)

s
, s > max{a,0}.

● PROOF: The proof of part (a) is presented to illustrate the relevant ideas.
By hypothesis, the function f (t) is continuous. We now show it is also exponen-
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tially bounded, and thus f (t) has a Laplace transform. We have

| f (t)| =
∣∣∣∣ f (0) +

∫ t

0
f ′(u)du

∣∣∣∣ ≤ | f (0)| +
∣∣∣∣
∫ t

0
f ′(u)du

∣∣∣∣ ≤ | f (0)| +
∫ t

0
Meau du,

t ≥ 0.

Therefore, for 0 ≤ t < ∞,

| f (t)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

| f (0)| + M
a

(eat − 1) ≤
[
| f (0)| + M

a

]
eat, a > 0

| f (0)| +Mt, a = 0

| f (0)| + M
|a| (1− eat) ≤ | f (0)| + M

|a| , a < 0.

(6)

From these inequalities, we are able to conclude that L{f (t)} = F(s) exists for
s > max{a,0}.

To obtain (a), consider the interval 0 ≤ t ≤ T for some arbitrary T > 0. Let
t1 < t2 < · · · < tN represent the points of discontinuity of f

′(t) on this interval.
Then∫ T

0
f ′(t)e−st dt =

∫ t1

0
f ′(t)e−st dt

+
∫ t2

t1

f ′(t)e−st dt+ · · · +
∫ tN

tN−1

f ′(t)e−st dt+
∫ T

tN

f ′(t)e−st dt.

Performing integration by parts on each of these integrals yields∫ T

0
f ′(t)e−st dt = f (t)e−st

∣∣t1
0 + f (t)e−st

∣∣t2
t1

+ · · · + f (t)e−st∣∣tN
tN−1

+ f (t)e−st
∣∣T
tN

+ s

[∫ t1

0
f (t)e−st dt+

∫ t2

t1

f (t)e−st dt+ · · · +
∫ tN

tN−1

f (t)e−st dt+
∫ T

tN

f (t)e−st dt

]
.

Since f (t) is continuous, the sum of the endpoint evaluations reduces to
f (T)e−sT − f (0). Similarly, the sum of integrals on the right-hand side can be
expressed as a single integral from 0 to T. Therefore, we obtain∫ T

0
f ′(t)e−st dt = f (T)e−sT − f (0) + s

∫ T

0
f (t)e−st dt.

Now let T → ∞, while assuming that s > max{a,0}. For these values of s,
lim T→∞ f (T)e−sT = 0 and lim T→∞

∫ T
0 f (t)e−st dt = L{ f (t)} = F(s). Therefore, the

result follows. ●

Note that differentiation in the time domain corresponds, roughly speak-
ing, to multiplication by s in the transform domain, while antidifferentiation
in the time domain corresponds to division by s in the transform domain.

Solving Initial Value Problems
The next example, while quite simple, illustrates howwe can use Laplace trans-
forms to solve initial value problems. Following a review of the method of par-
tial fractions in Section 5.3, we give a more detailed discussion.
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E X A M P L E

3 Consider the initial value problem

y′ − 3y = g(t), y(0) = 1,

where g(t) is the step function given by

g(t) =
{
0, 0 ≤ t < 2

6, 2 ≤ t < ∞.

Let Y (s) denote the Laplace transform of y(t), where y(t) is the unique solution
of this initial value problem. Using Theorem 5.5, derive an equation for Y (s)
and, taking the inverse Laplace transform, find y(t).

Solution: The nonhomogeneous term g(t) can be represented as g(t) = 6h(t−
2), where h(t− 2) denotes the shifted Heaviside step function. (See Figure 5.6.)
Taking Laplace transforms of

y′(t) − 3y(t) = 6h(t− 2), 0 ≤ t < ∞,

we have

L{ y′(t)} − 3L{ y(t)} = 6L{h(t− 2)}.
Using part (a) of Theorem 5.5 to evaluate L{ y′(t)} and part (b) of Theorem 5.4
to evaluate L{h(t− 2)}, we find

[sY (s) − y(0)] − 3Y (s) = 6e−2s

s
.

Solving for Y (s) and using the fact that y(0) = 1, we obtain

Y (s) = 1
s− 3

+ 6e−2s

s(s− 3)
, s > 3.

Using a partial fraction expansion for the second term on the right-hand side
gives

Y (s) = 1
s− 3

+ e−2s
(

2
s− 3

− 2
s

)
, s > 3.

Therefore,

y(t) = L−1
{

1
s− 3

}
+ 2L−1

{
e−2s

1
s− 3

}
− 2L−1

{
e−2s

1
s

}
.

Using the second shifting theorem, we see that y(t) = e3t + 2h(t− 2)[e3t−6 − 1],
t ≥ 0, is the unique solution of the initial value problem. In particular, y(t) is
the piecewise-defined function

y(t) =
{
e3t, 0 ≤ t < 2

e3t + 2[e3t−6 − 1], 2 ≤ t < ∞.

Note that y(t) is continuous at t = 2, but it is not differentiable at t = 2. ❖
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We have restricted our attention in Theorem 5.5 to transform relations for
first and second derivatives, since these derivatives appear most frequently in
applications. It should be clear that, with appropriate hypotheses, the argu-
ments establishing Theorem 5.5 can be extended and we can obtain similar
formulas for higher derivatives. In general,

L{ f (n)(t)} = snF(s) − sn−1f (0) − sn−2f ′(0) − · · · − sf (n−2)(0) − f (n−1)(0),

n = 1,2,3, . . . .

The Laplace transform pairs and relations that we have developed so far are
summarized in Table 5.1 at the end of this section.

The importance of Theorem 5.5 cannot be overemphasized. As we have
seen, derivatives and antiderivatives of a function f (t) transform into alge-
braic expressions involving the function’s transform F(s). This is the key to
the problem simplification achieved by working in the transform domain. Ex-
ample 4, solving for the response of a simple RLC network, illustrates how
Laplace transforms achieve such simplifications. The example further illus-
trates the important role that partial fraction expansions play in the use of
Laplace transforms.

Changing Our Point of View
Until now, we have carefully stated the values of s for which the improper
integral

L{ f (t)} =
∫ ∞

0
f (t)e−st dt

converges and thus defines the domain of the Laplace transform F(s). Each en-
try in our table of transform pairs (Table 5.1 at the end of this section) includes
the domain of F(s).

It is important to understand and appreciate the underlying mathematical
issues. However, when we begin to use Laplace transforms to actually solve
initial value problems, we will no longer be so attentive to these details. Part of
the reason for this change is that wewill be “computing” the Laplace transform,
Y (s), of the unknown solution, y(t). Since the solution, y(t), is unknown, we
cannot easily determine the domain of its transform, Y (s).

Instead, we are going to use the Laplace transform as an operational tool.
We will simply assume that the unknown solution is a piecewise continuous
and exponentially bounded function whose Laplace transform exists for s > a
for some value a. After we formally execute the three steps—Laplace transfor-
mation, solution of the transformed problem, and inverse Laplace transforma-
tion—we will obtain what we can regard as a candidate for the solution of our
initial value problem. If we can directly verify that the “candidate solution”
obtained by the use of transforms is, in fact, the unique solution of the original
problemof interest, thenwe are done. Example 4 illustrates these points and the
three-step Laplace transform solution procedure, using it to analyze a network
problem.
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E X A M P L E

4 The seriesRLCnetwork shown in Figure 5.9 is assumed to be initially quiescent;
that is, the current and the charge on the capacitor are both zero for t ≤ 0. At
time t = 0, a voltage source v(t) = v0 te

−αt, having the polarity shown, is turned
on. Determine the current i(t) for t ≥ 0.

i(t)

v(t)

LR

+

–
~ C

FIGURE 5.9

The RLC network analyzed in Example 4.

Solution: Recall that the underlying principle for describing our problemmath-
ematically is Kirchhoff’s voltage law (see Section 3.10). As we traverse the net-
work in a clockwise manner, the voltage rise through the source must equal
the sum of the voltage drops through the resistor R, inductor L, and capac-
itor C. The resulting equation, along with the accompanying supplementary
conditions, is

v(t) = Ri(t) + L
di(t)
dt

+ 1
C

∫ t

0
i(u) du, i(0) = 0, t ≥ 0,

or

di(t)
dt

+ R
L
i(t) + 1

LC

∫ t

0
i(u) du = 1

L
v(t), i(0) = 0, t ≥ 0. (7)

When we considered this problem in Section 3.10, we differentiated equa-
tion (7) to obtain a second order differential equation for the current i(t).
Now, however, we will work directly with equation (7), which is an integro-
differential equation for the unknown current, i(t).

The first step is to compute the Laplace transform of both sides of equation
(7), obtaining

L
{
di
dt

}
+ R
L

L{i} + 1
LC

L
{∫ t

0
i(u) du

}
= 1
L

L{v(t)}.

This equation can be written as

sI(s) − i(0) + R
L
I(s) + 1

LC
I(s)
s

= 1
L
V(s). (8)

Notice that the supplementary condition involving i(0) enters directly into the
transformed equation (8). In our case, i(0) = 0. Since v(t) = v0te

−αt, we have

V(s) = v0L{te−αt} = v0L{t} ∣∣s→s+α
= v0

1

(s+ α)2
.
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The transform domain problem is therefore entirely defined by the algebraic
equation:

sI(s) + R
L
I(s) + 1

LC
I(s)
s

= v0
L

1

(s+ α)2
. (9)

The second step is to solve transform domain problem (9). We find

I(s) = v0
L

s

(s+ α)2
(
s2 + R

L
s+ 1

LC

) . (10)

The third step is to find the inverse Laplace transform of I(s). To accomplish
this, we use a partial fraction expansion to decompose rational function (10)
into a sum of terms, each of whose inverse Laplace transform is known.

For an illustration of this third step with a specific case, suppose that I(s)
in equation (10) is given by

I(s) = 50s

(s+ 1)2(s2 + 4s+ 13)
. (11)

Expression (11) has the partial fraction expansion

I(s) = 6
s+ 1

− 5

(s+ 1)2
− 6s+ 13

(s+ 2)2 + 9

= 6
s+ 1

− 5

(s+ 1)2
− 6

s+ 2

(s+ 2)2 + 9
− 1
3

3

(s+ 2)2 + 9
,

(12)

where we have used the fact that s2 + 4s+ 13 = (s+ 2)2 + 9. The algebraic ma-
nipulations leading to the last expression in (12) were done in anticipation of
the inverse Laplace transform computation.

Applying the inverse Laplace transform to I(s) yields

i(t) = L−1{I(s)}

= 6L−1
{

1
s+ 1

}
− 5L−1

{
1

(s+ 1)2

}

−6L−1
{

s+ 2

(s+ 2)2 + 9

}
− 1
3

L−1
{

3

(s+ 2)2 + 9

}
.

(13)

The required inverse transforms can be obtained from Table 5.1 at the end of
this section.When these inverse transforms are used in equation (13), it follows
that

i(t) = 6e−t − 5te−t − 6e−2t cos 3t− 1
3e

−2t sin 3t, t ≥ 0.

As a final check, one should verify that this expression for the network current
is, in fact, the desired solution. ❖

The network current is plotted in Figure 5.10; its behavior seems reason-
able. Since the source voltage is proportional to te−t, one would expect the
current to exhibit a transient behavior followed by an approach to zero as
t → ∞.
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1 2 3 4 5 6

–1

–0.5

0.5

1

1.5

2

t

i

i(t)

FIGURE 5.10

The network current found in Example 4 for the RLC network of Figure
5.9. Since the source voltage is proportional to te−t, we expect the current
to consist of an initial transient variation followed by an approach to zero
as time increases.

TA B L E 5 . 1

A Table of Laplace Transform Pairs

Time Domain Function f (t), t ≥ 0 Laplace Transform F (s)

1. h(t) =
{
1, t ≥ 0

0, t < 0

1
s
, s > 0

2. tn, n = 1,2,3, . . .
n!
sn+1 , s > 0

3. eαt 1
s− α

, s > α

4. sinωt
ω

s2 + ω2 , s > 0

5. cosωt
s

s2 + ω2 , s > 0

6. sinhαt
α

s2 − α2
, s > |α|

7. coshαt
s

s2 − α2
, s > |α|

8. eαtf (t), with |f (t)| ≤ Meat F(s− α), s > α + a

(9)–(12) are four special cases of (8):

9. eαth(t)
1

s− α
, s > α

10. eαttn, n = 1,2,3, . . .
n!

(s− α)n+1 , s > α

11. eαt sinωt
ω

(s− α)2 + ω2 , s > α

12. eαt cosωt
(s− α)

(s− α)2 + ω2 , s > α
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TA B L E 5 . 1 ( c o n t i n u e d )

13. f (t− α)h(t− α), α ≥ 0, e−αsF(s), s > a

with | f (t)| ≤ Meat

(14) is a special case of (13):

14. h(t− α), α ≥ 0
e−αs

s
, s > 0

15. f ′(t), with f (t) continuous
and | f ′(t)| ≤ Meat

sF(s) − f (0),
s > max{a,0}

16. f ′′(t), with f ′(t) continuous
and | f ′′(t)| ≤ Meat

s2F(s) − sf (0) − f ′(0),
s > max{a,0}

17. f (n)(t), with f (n−1)(t) continuous
and | f (n)(t)| ≤ Meat

snF(s) − sn−1f (0) − · · ·
− sf (n−2)(0) − f (n−1)(0),
s > max{a,0}, n = 1,2,3, . . .

18.
∫ t

0
f (u)du, with | f (t)| ≤ Meat

F(s)
s

, s > max{a,0}

19.
1

2ω3 (sinωt− ωt cosωt)
1

(s2 + ω2)2
, s > 0

20.
t
2ω

sinωt
s

(s2 + ω2)2
, s > 0

21. tf (t) −F′(s)

E X E R C I S E S

Exercises 1–12:

Use Table 5.1 to find L{ f (t)} for the given function f (t) defined on the interval t ≥ 0.

1. f (t) = 3t 2 + 2t+ 1 2. f (t) = 2et + 5 3. f (t) = 1+ sin 3t

4. f (t) = e3t−3h(t− 1) 5. f (t) = (t− 1)2h(t− 1) 6. f (t) = sin2 ωt

7. f (t) = 2te−2t 8. f (t) = sin 3t cos 3t 9. f (t) = 2th(t− 2)

10. f (t) = e2t cos 3t 11. f (t) = e3th(t− 1) 12. f (t) = e4t(t 2 + 3t+ 5)

Exercises 13–21:

Use Table 5.1 to find L−1{F(s)} for the given F(s).

13. F(s) = 3
s

+ 24

s4
14. F(s) = 10

s2 + 25
+ 4
s− 3

15. F(s) = 2s− 4

(s− 2)2 + 9
16. F(s) = 5

(s− 3)4

17. F(s) = e−2s 3

s2 + 9
18. F(s) = e−2s

s− 9

19. F(s) = 4s− 6

s2 − 2s+ 10
20. F(s) = e−3s(2s+ 7)

s2 + 16

21. F(s) = 48(e−3s + 2e−5s)
s5
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Exercises 22–33:

Combinations of Shifted Heaviside Step Functions Exercises 22–33 deal with combina-
tions of Heaviside step functions. As the two examples below show, we can use combi-
nations of shifted Heaviside step functions to represent pulses.

1 2 3 4
t

1

f

1 2 3 4
t

1

f

(a) f (t) = h(t – 1) – h(t – 3) (b)  f (t) = (t – 1)[h(t – 1) – h(t – 2)]

In each exercise, graph the function f (t) for 0 ≤ t < ∞, and use Table 5.1 to find the
Laplace transform of f (t).

22. f (t) = h(t− 1) + h(t− 3) 23. f (t) = sin(t− 2π)h(t− 2π)

24. f (t) = t[h(t− 1) − h(t− 3)] 25. f (t) = h(t) − h(t− 3)

26. f (t) = 3[h(t− 1) − h(t− 4)] 27. f (t) = (2− t)[h(t− 1) − h(t− 3)]
28. f (t) = |2− t|[h(t− 1) − h(t− 3)]
29. f (t) = [h(t− 1) − h(t− 2)] − [h(t− 2) − h(t− 3)]
30. h(2− t) 31. e−2th(1− t)

32. h(t− 1) + h(4− t) 33. h(t− 2) − h(3− t)

Exercises 34–37:

In each exercise, the graph of f (t) is given. Represent f (t) using a combination of Heav-
iside step functions, and use Table 5.1 to calculate the Laplace transform of f (t).

34.

1 2 3 4 5
t

1

f 35.

1 2 3 4
t

1

2

f

36.

1 2 3 4
t

1

f 37.

1 2 3 4
t

1

f

An Introduction to theMethod of Partial Fractions Wewill present a reviewof themethod
of partial fractions in Section 5.3. By way of introduction, however, we consider here a
special case of themethod and use it to solve some initial value problems, as in Examples
3 and 4. Suppose F(s) = 1/Q(s), where Q(s) = (s− r1)(s− r2) · · · (s− rn) and where the
roots r1, r2, . . . , rn are real and distinct. In this case, there are constants A1,A2, . . . ,An
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such that

F(s) = 1
(s− r1)(s− r2) · · · (s− rn)

= A1
s− r1

+ A2
s− r2

+ · · · + An
s− rn

. (14)

One way to determine the constants A1,A2, . . . ,An is to recombine the right-hand side
into a single rational function and equate the resulting numerator to 1.

Exercises 38–41:

Using a partial fraction expansion, find L−1{F(s)}. In Exercise 40, compare your answer
with (6) in Table 5.1.

38. F(s) = 12
(s− 3)(s+ 1)

39. F(s) = 4
s(s+ 2)

40. F(s) = 24e−5s

s2 − 9
41. F(s) = 10e−s

s2 − 5s+ 6

Exercises 42–45:

As in Examples 3 and 4, use Laplace transform techniques to solve the initial value
problem.

42. y′ + 4y = g(t), y(0) = 2, g(t) =

⎧⎪⎨
⎪⎩
0, 0 ≤ t < 1

12, 1 ≤ t < 3

0, 3 ≤ t < ∞

43. y′ − y = g(t), y(0) = 1, g(t) =
{
0, 0 ≤ t < 4

e3t, 4 ≤ t < ∞
44. y′′ − 4y = e3t, y(0) = 0, y′(0) = 0

45. y′′ − 2y′ − 8y = et, y(0) = 0, y′(0) = 1

46. Let f (t) be piecewise continuous and exponentially bounded on the interval
0 ≤ t < ∞, and let F(s) denote the Laplace transform of f (t). It is shown in advanced
calculus3 that it is possible to differentiate under the integral sign with respect to
the parameter s. That is,

d
ds

F(s) = d
ds

∫ ∞

0
e−stf (t) dt =

∫ ∞

0

d
ds

[e−stf (t)] dt.

(a) Use this result to show that L{tf (t)} = −F′(s).

(b) Use the result of part (a) to establish formula (20) in Table 5.1.

Exercises 47–48:

Obtain the Laplace transform of the given function in terms of L{ f (t)} = F(s). For Ex-
ercise 48, note that

∫ t
a f (λ) dλ = ∫ t

0 f (λ) dλ− ∫ a
0 f (λ) dλ.

47.
∫ t

0

∫ λ

0
f (σ )dσ dλ 48.

∫ t

2
f (λ) dλ, given that

∫ 2

0
f (λ) dλ = 3

49. Consider the functions f and g defined on 0 ≤ t < ∞,

f (t) = h(t)h(3− t) and g(t) = h(t) − h(t− 3).

(a) Are the two functions identical?

(b) Determine F(s) = L{ f (t)} and G(s) = L{ g(t)}. Is F(s) = G(s)?

3David V. Widder, Advanced Calculus, 2nd ed. (Englewood Cliffs, NJ: Prentice Hall, 1961).
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5.3 The Method of Partial Fractions
When we solve a problem in the transform domain, the solution is often a
rational function of s; this was the case in Examples 3 and 4 of Section 5.2. The
function F(s) is called a rational function if it has the form

F(s) = N(s)
D(s)

, (1)

where N(s) and D(s) are polynomials.
In order to findL−1{F(s)}, we proceed as in Examples 3 and 4 of Section 5.2,

using the method of partial fractions to decompose the rational function (1)
into a sum of simpler expressions whose inverse transform can be recognized
from a table of transform pairs.

The method of partial fractions is usually studied in calculus when an-
tiderivatives of rational functions are computed. Refer back to your calculus
text for a comprehensive discussion of the technique. The goal of this section
is simply to review the underlying ideas.

Using the Method of Partial Fractions
The starting point for the method of partial fractions is a rational function in
which the degree of the numerator polynomial is strictly less than the degree of
the denominator polynomial. The rational functions we will encounter in the
transform domain will have this form.

Let F(s) = N(s)/D(s), where N(s) and D(s) are polynomials having real co-
efficients and where the degree of N(s) is less than the degree of D(s). The form
of the partial fraction expansion is totally determined by the factorization of
the denominator polynomial, D(s). Table 5.2 lists the possible factors of the de-
nominator polynomial. For each of the factors in the left-hand column, we need
to include the terms in the right-hand column in the partial fraction expansion.
The complete partial fraction expansion is the sum of the contributions from
all of the denominator factors. This expansion contains constants that must
subsequently be determined.

Since the denominator polynomial,D(s), has real coefficients, any complex
zeros will occur in complex conjugate pairs. Therefore, irreducible quadratic
factors (which correspond to complex conjugate pairs of zeros) will have the
forms listed in Table 5.2. Cases 3 and 4 are special versions of cases 5 and 6 that
correspond to α = 0. Since the numerator polynomial also has real coefficients,
the constants in the partial fraction expansion will likewise be real valued.
These constants, denoted by capital letters on the right-hand side of Table 5.2,
must be determined.

When looking for the inverse transform of a term that arises in case 5 or
6, we usually rewrite the term. By completing the square, we can rewrite an
irreducible quadratic factor of the form s2 + 2αs+ β2, β2 > α2 as

(s2 + 2αs+ α2) + (β2 − α2) = (s+ α)2 + ω2.

This form is associatedwith the Laplace transforms of e−αt sinωt and e−αt cosωt;
see the transform pairs (11) and (12) in Table 5.1.
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TA B L E 5 . 2

Denominator Polynomial Factors and Their Corresponding Terms
in the Partial Fraction Expansion

Denominator Factor Partial Fraction Expansion Term

1. Simple real root

s− α
A

s− α
2. Repeated real root

(s− α)
n An

(s− α)
n + An−1

(s− α)
n−1 + · · · + A1

s− α

3. Irreducible quadratic factor

s2 + ω
2 Bs+ C

s2 + ω
2

4. Repeated irreducible
quadratic factor

(s2 + ω
2
)
n Bns+ Cn

(s2 + ω
2
)
n + Bn−1s+ Cn−1

(s2 + ω
2
)
n−1 + · · · + B1s+ C1

s2 + ω
2

5. Irreducible quadratic factor

s2 + 2αs+ β
2
, β

2
> α

2 Bs+ C

s2 + 2αs+ β
2

6. Repeated irreducible
quadratic factor

(s2 + 2αs+ β
2
)
n
, β

2
> α

2 Bns+ Cn

(s2 + 2αs+ β
2
)
n + · · · + B1s+ C1

s2 + 2αs+ β
2

E X A M P L E

1 Find L−1{F(s)}, where

F(s) = s2 + 4

s4 − s2
.

Solution: The function F(s) is a rational function in which the degree of nu-
merator N(s) = s2 + 4 is less than that of denominator D(s) = s4 − s2. The de-
nominator factors into

D(s) = s2(s2 − 1) = s2(s− 1)(s+ 1).

Therefore, the denominator has s = 0 as a repeated real root and s = ±1 as
simple real roots. According to Table 5.2, F(s) has a partial fraction expansion
of the form

F(s) = s2 + 4

s4 − s2
= A2

s2
+ A1

s
+ B
s− 1

+ C
s+ 1

, (2)

where the four constants A1,A2,B, and C must be determined.
One way to evaluate the unknown constants is to recombine the right-hand

side of (2), obtaining

s2 + 4

s4 − s2
= (A1 + B+ C)s3 + (A 2 + B− C)s2 − A 1s− A2

s4 − s2
. (3)

(continued)
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(continued)

Since the two expressions in (3) must be equal, the two numerator polynomials
must be identical. We therefore obtain four equations for the four unknown
constants:

A1 + B + C = 0

A2 + B − C = 1

−A1 = 0

−A2 = 4.

This system is easily solved, and we obtain A1 = 0,A2 = −4,B = 5
2 , and

C = − 5
2 . Thus, we have the partial fraction expansion

F(s) = − 4

s2
+

5
2

s− 1
−

5
2

s+ 1
. (4)

From Table 5.1 in the previous section,

L−1{F(s)} = −4L−1
{
1

s2

}
+ 5
2

L−1
{

1
s− 1

}
− 5
2

L−1
{

1
s+ 1

}

= −4t+ 5
2e

t − 5
2e

−t = −4t+ 5 sinh t, t ≥ 0. ❖

Alternative Approaches for Determining the Constants
in a Partial Fraction Expansion
We now consider two alternative approaches for determining the constants
in a partial fraction expansion. We explain the first approach below by re-
working the expansion in Example 1. We explain the second approach later, in
Example 2.

Consider equation (2) in Example 1,

s2 + 4

s2(s− 1)(s+ 1)
= A2

s2
+ A1

s
+ B

s− 1
+ C

s+ 1
.

If we multiply both sides by (s− 1) and cancel common factors, we obtain

s2 + 4

s2(s+ 1)
= A2

(s− 1)

s2
+ A1

(s− 1)
s

+ B+ C
(s− 1)
(s+ 1)

. (5)

We now determine B by setting s = 1 on both sides of expression (5), finding

B = s2 + 4

s2(s+ 1)

∣∣∣∣∣
s=1

= 5
2

.

Similarly, multiplying both sides by (s+ 1) leads to

s2 + 4

s2(s− 1)
= A2

(s+ 1)

s2
+ A1

(s+ 1)
s

+ B
(s+ 1)
(s− 1)

+ C,

and we find

C = s2 + 4

s2(s− 1)

∣∣∣∣∣
s=−1

= −5
2

.
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So far, we have determined the constants B and C in the expansion

s2 + 4

s4 − s2
= A2

s2
+ A1

s
+ B
s− 1

+ C
s+ 1

.

We next multiply both sides by s2, obtaining

s2 + 4

s2 − 1
= A2 + A1s+ B

s2

s− 1
+ C

s2

s+ 1
. (6)

We now evaluate the constant A2 by setting s = 0:

A2 = s2 + 4

s2 − 1

∣∣∣∣∣
s=0

= −4.

To determine A1, we differentiate both sides of equation (6), finding

−10s
(s2 − 1)2

= A1 + B
s2 − 2s

(s− 1)2
+ C

s2 + 2s

(s+ 1)2
.

Setting s = 0 leads to A1 = 0. In this way, we once more obtain expansion (4)
for F(s).

E X A M P L E

2 Find L−1{F(s)}, where

F(s) = s2 + s− 1

(s2 + 4s+ 4)(s2 + 2s+ 5)
.

Solution: Since the degree of the numerator is less than the degree of the de-
nominator, we proceed with the partial fraction expansion. The first quadratic
factor in the denominator can be factored as s2 + 4s+ 4 = (s+ 2)2. The sec-
ond quadratic factor, s2 + 2s+ 5, is irreducible. Therefore, the partial fraction
expansion of F(s) has the form

s2 + s− 1

(s+ 2)2(s2 + 2s+ 5)
= A2

(s+ 2)2
+ A1
s+ 2

+ Bs+ C

s2 + 2s+ 5
. (7)

We can certainly recombine the right-hand side of (7), obtaining four equations
for the four unknown constants. However, as an alternative strategy, we first
determine A1 and A2 as explained above and then use another approach to
determine B and C. Multiplying equation (7) by (s+ 2)2, we obtain A2:

A2 = s2 + s− 1

s2 + 2s+ 5

∣∣∣∣∣
s=−2

= 1
5

.

Next, we find A1:

A1 = d
ds

[
s2 + s− 1

s2 + 2s+ 5

]∣∣∣∣∣
s=−2

= s2 + 12s+ 7

(s2 + 2s+ 5)2

∣∣∣∣∣
s=−2

= −13
25

.

Using these values in (7), we have

s2 + s− 1

(s+ 2)2(s2 + 2s+ 5)
=

1
5

(s+ 2)2
−

13
25

s+ 2
+ Bs+ C

s2 + 2s+ 5
. (8)

(continued)
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(continued)

We now determine the constants B and C by selecting two convenient values
of s and evaluating (8) at these values. Setting s = 0 in (8) leads to

− 1
20

= 1
20

− 13
50

+ C
5

, or C = 4
5

.

Similarly, setting s = −1 in (8) gives

−1
4

= 1
5

− 13
25

+ −B+ 4
5

4
, or B = 13

25
.

Therefore, the partial fraction expansion is

F(s) =
1
5

(s+ 2)2
−

13
25

s+ 2
+

13
25s+ 4

5

(s+ 1)2 + 4
. (9)

From Table 5.1,

L−1
{

1
5

(s+ 2)2

}
= 1
5
te−2t and L−1

{
−

13
25

s+ 2

}
= −13

25
e−2t, t ≥ 0.

To obtain the inverse transform of the third expression on the right-hand side
of (9), we use formulas 11 and 12 of Table 5.1. To apply these formulas, we first
rewrite the term:

13
25s+ 4

5

(s+ 1)2 + 4
=

13
25 (s+ 1) + 7

25

(s+ 1)2 + 4
= 13
25

s+ 1

(s+ 1)2 + 4
+ 7
50

2

(s+ 1)2 + 4
.

From formulas 11 and 12, we conclude that

L−1
{

13
25s+ 4

5

(s+ 1)2 + 4

}
= 13
25

L −1
{

s+ 1

(s+ 1)2 + 4

}
+ 7
50

L−1
{

2

(s+ 1)2 + 4

}

= 13
25e

−t cos 2t+ 7
50e

−t sin 2t, t ≥ 0.

Combining these results, we obtain the final answer:

f (t) = L−1
{

s2 + s− 1

(s2 + 4s+ 4)(s2 + 2s+ 5)

}

= 1
5 te

−2t − 13
25e

−2t + 13
25e

−t cos 2t+ 7
50e

−t sin 2t, t ≥ 0. ❖

E X A M P L E

3 Use Laplace transforms to solve the initial value problem

y′′ + 4y = 4t+ 8, y(0) = 4, y′(0) = −1.

Solution: Let y(t) denote the solution, and let Y (s) = L{y(t)}. Taking Laplace
transforms of both sides of y′′ + 4y = 4t+ 8, we obtain

L{ y′′} + 4L{ y} = 4

s2
+ 8
s
. (10)

From Theorem 5.5,

L{ y′′} = s2Y (s) − sy(0) − y′(0),
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and therefore

s2Y (s) − 4s+ 1+ 4Y (s) = 4

s2
+ 8
s
. (11)

Note that both initial conditions enter into equation (11). The solution of the
problem in the transform domain is

Y (s) = 4s3 − s2 + 8s+ 4

s2(s2 + 4)
,

which has partial fraction expansion

Y (s) = 1

s2
+ 2
s

+ 2s

s2 + 4
− 2

s2 + 4
.

Weobtain the solution of the original initial value problemby taking the inverse
Laplace transform,

y(t) = L−1
{
1

s2

}
+ 2L−1

{
1
s

}
+ 2L−1

{
s

s2 + 4

}
− L−1

{
2

s2 + 4

}

= t+ 2+ 2 cos 2t− sin 2t, t ≥ 0. ❖

E X E R C I S E S

Exercises 1–8:

Give the form of the partial fraction expansion for the given rational function F(s). You
need not evaluate the constants in the expansion. However, if the denominator of F(s)
contains irreducible quadratic factors of the form s2 + 2αs+ β2, β2 > α2, complete the
square and rewrite this factor in the form (s+ α)2 + ω2.

1. F(s) = 2s+ 3

(s− 1)(s− 2)2
2. F(s) = s3 + 3s+ 1

(s− 1)3(s− 2)2

3. F(s) = s2 + 1

s2(s2 + 2s+ 10)
4. F(s) = s2 + 5s− 3

(s2 + 16)(s− 2)

5. F(s) = s2 − 1

(s2 − 9)2
6. F(s) = s3 − 1

(s2 + 1)2(s+ 4)2

7. F(s) = s2 + s+ 2

(s2 + 8s+ 17)(s2 + 6s+ 13)
8. F(s) = s4 + 5s2 + 2s− 9

(s2 + 8s+ 17)2(s− 2)2

Exercises 9–17:

Find the inverse Laplace transform.

9. F(s) = 2
s− 3

10. F(s) = 1

(s+ 1)3
11. F(s) = 4s+ 5

s2 + 9

12. F(s) = 2s− 3

s2 − 3s+ 2
13. F(s) = 3s+ 7

s2 + 4s+ 3
14. F(s) = 4s2 + s+ 1

s3 + s

15. F(s) = 3s2 + s+ 8

s3 + 4s
16. F(s) = s2 + 6s+ 8

s4 + 8s2 + 16
17. F(s) = s

s3 − 3s2 + 3s− 1

Exercises 18–29:

Use the Laplace transform to solve the initial value problem.

18. y′ + 2y = 26 sin 3t, y(0) = 3 19. y′ − 3y = 13 cos 2t, y(0) = 1

20. y′ + 2y = 4t, y(0) = 3 21. y′ − 3y = e3t, y(0) = 1
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22. y′′ + 3y′ + 2y = 6e−t, y(0) = 1, y′(0) = 2

23. y′′ + 4y = 8t, y(0) = 2, y′(0) = 6 24. y′′ + 4y = cos 2t, y(0) = 1, y′(0) = 1

25. y′′ + 4y = sin 2t, y(0) = 1, y′(0) = 0

26. y′′ − 2y′ + y = e2t, y(0) = 0, y′(0) = 0

27. y′′ + 2y′ + y = e−t, y(0) = 0, y′(0) = 1

28. y′′ + 9y = g(t), y(0) = 1, y′(0) = 3, g(t) =
{
6, 0 ≤ t < π

0, π ≤ t < ∞

29. y′′ + y = g(t), y(0) = 1, y′(0) = 0, g(t) =
{
t, 0 ≤ t < 2

0, 2 ≤ t < ∞
Exercises 30–32:

Consider the initial value problem y′′ + αy′ + βy = 0, y(0) = y0, y
′(0) = y′

0. The Laplace
transform of the solution, Y (s) = L{ y(t)}, is given. Determine the constants α, β, y0,
and y′

0.

30. Y (s) = 2s− 1

s2 + s+ 2
31. Y (s) = 3

s2 − 4
32. Y (s) = s

(s+ 1)2

5.4 Laplace Transforms of Periodic Functions
and System Transfer Functions

In many applications, the nonhomogeneous term in a linear differential equa-
tion is a periodic function. We now derive a formula for the Laplace transform
of such periodic functions.

Theorem 5.6
Let f (t) be a piecewise continuous periodic function defined on 0 ≤ t < ∞,
where f (t) has period T. Then

L{ f (t)} =

∫ T

0
e−stf (t) dt

1− e−sT
, s > 0.

● PROOF: Since f (t) is piecewise continuous, it is bounded on the interval
0 ≤ t ≤ T. Since the function is also periodic, it follows that f (t) is bounded on
0 ≤ t < ∞. Therefore, by Theorem 5.1, its Laplace transform exists for s > 0.
Computing the transform, we find

F(s) = L{ f (t)} =
∫ ∞

0
f (t)e−st dt =

∞∑
n=0

∫ (n+1)T

nT
f (t)e−st dt. (1)

[In the last step of equation (1), we have decomposed the improper integral
into a sum of integrals over the constituent periods.] Consider a representative
integral in (1), ∫ (n+1)T

nT
f (t)e−st dt,
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where n is an arbitrary but fixed integer. Making the change of variables
τ = t− nT yields∫ (n+1)T

nT
f (t)e−st dt =

∫ T

0
f (τ + nT)e−s(τ+nT) dτ = e−snT

∫ T

0
f (τ )e−sτ dτ,

where the last equality follows from the periodicity of f . Thus, equation (1)
reduces to

F(s) =
∞∑
n=0

e−snT
∫ T

0
f (τ )e−sτ dτ =

[∫ T

0
f (τ )e−sτ dτ

] ∞∑
n=0

e−snT . (2)

Since s > 0, it follows that 0 < e−sT < 1. Therefore, the infinite series in equation
(2) is a convergent geometric series,

∞∑
n=0

e−snT =
∞∑
n=0

(e−sT)n = 1

1− e−sT
,

and Theorem 5.6 follows. ●

E X A M P L E

1 Let T be a positive constant, and consider the square wave

f (t) =

⎧⎪⎪⎨
⎪⎪⎩
1, 0 ≤ t ≤ T

2
,

0,
T
2

< t < T,

f (t+ T) = f (t), t ≥ 0.

The graph of f (t) is shown in Figure 5.11. Use Theorem 5.6 to determine the
Laplace transform of f (t).

T/2 T 3T/2 2T
t

1

f

f (t ) = 1,      0 ≤ t ≤ T/2
0, T/2 < t < T

f (t  + T ) = f (t),  t ≥ 0

FIGURE 5.11

The graph of the square wave f (t) treated in Example 1. Note that f (t) is
periodic with period T and is piecewise continuous on 0 ≤ t < ∞.

Solution: By Theorem 5.6,

L{ f (t)} =

∫ T

0
e−stf (t)dt

1− e−sT
=

∫ T/2

0
e−st dt

1− e−sT
, s > 0.

Evaluating this last integral, we find

L{ f (t)} =
(
1− e−sT/2)s−1
1− e−sT

= 1

s
(
1+ e−sT/2) . ❖
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E X A M P L E

2 Find the inverse transform of

F(s) = 1

s2
− e−s

s(1− e−s)
, s > 0.

Solution: Applying the inverse transform operation yields

L−1{F(s)} = L−1
{
1

s2

}
− L−1

{
e−s

s(1− e−s)

}
= t− L−1

{
e−s

s(1− e−s)

}
.

Expanding the factor (1− e−s)−1 as a geometric series and applying the inverse
operation termwise to the convergent series, we obtain

L−1
{

e−s

s(1− e−s)

}
= L−1

{
e−s

s
[1+ e−s + e−2s + e−3s + · · ·]

}

= L−1
{
1
s
[e−s + e−2s + e−3s + · · ·]

}

= L−1
{
e−s

s

}
+ L−1

{
e−2s

s

}
+ L−1

{
e−3s

s

}
+ · · ·

= h(t− 1) + h(t− 2) + h(t− 3) + · · · .

The function g(t) = h(t− 1) + h(t− 2) + h(t− 3) + · · · has the staircase-like
graph shown in Figure 5.12(a). Thus, the inverse transform of F(s) is the saw-
tooth wave function f (t) = t− g(t) whose graph is shown in Figure 5.12(b).
[Note: For any fixed value of t, g(t) = h(t− 1) + h(t− 2) + h(t− 3) + · · · is actu-
ally a finite sum, since h(t− α) = 0 when t < α. For instance, if t = 2.5, then
g(2.5) = 2.]

1 2 3
t

1

2

g

1 2 3
t

1

f

(a) (b)

FIGURE 5.12

(a) The graph of g(t) = h(t− 1) + h(t− 2) + h(t− 3) + · · · resembles a
staircase. (b) The inverse transform of F(s) in Example 2 is f (t) = t− g(t);
this graph is often called a sawtooth wave. ❖

Solution of Parameter Identification Problems and
the System Transfer Function
Example 1 of Section 5.1 posed the problem of studying a “black box” that
housed a spring-mass-dashpotmechanical system (see Figure 5.2). Two specific
questions are

1. If we subject the initially quiescent system to a known force f (t), starting
at t = 0, and measure the subsequent displacement y(t) for t ≥ 0, can we
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use our measurements to predict what the displacement ỹ(t) would be
if a different force f̃ (t) were applied?

2. Can we use our knowledge of the input-output relation [that is, our
knowledge of f (t) and y(t)] to determine the massm, the spring constant
k, and the damping coefficient γ of the unknown mechanical system?

The relevant mathematical problem is

my′′ + γ y′ + ky = f (t), t > 0

y(0) = 0, y′(0) = 0.
(3)

We now use Laplace transforms to provide affirmative answers to these two
questions.

Taking Laplace transforms of both sides of equation (3) and noting the zero
initial conditions, we have

ms2Y (s) + γ sY (s) + kY (s) = F(s),

or

Y (s) =
[

1

ms2 + γ s+ k

]
F(s). (4)

Although the computations in (4) are simple, the result is important. In the
time domain, we obtain the output y(t) from the input f (t) by solving an initial
value problem. In the transform domain, however, we obtain the output Y (s)
from the input F(s) by multiplying F(s) by the function

�(s) = 1

ms2 + γ s+ k
. (5)

Note that the function �(s) in (5) depends only on the mechanical system; it
is sometimes referred to as the system transfer function. If we know �(s),
we can use multiplication to determine the output Y (s) arising from a given
input F(s). Conversely, if we know some input-output pair F(s) and Y (s), we
can determine the system transfer function �(s) by forming the quotient

�(s) = Y (s)
F(s)

.

The role of the system transfer function is shown schematically in Figure 5.13.

Solve the
initial value problem
my ″ + �y ′ + ky = f (t)
y (0) = 0, y ′(0) = 0

Form the product
Φ(s) F(s)

where Φ is the system
transfer function

Input

Output

f (t) F(s)

y(t) Y(s)

Time domain Transform domain

FIGURE 5.13

There are two ways to analyze the mechanical spring-mass-dashpot
system. In the time domain, solve the initial value problem given by
equation (3). In the transform domain, form the product of the system
transfer function �(s) and the input F(s), as in equation (4).



354 CHAPTER 5 Laplace Transforms

Example 3 illustrates how these transform domain ideas can be used to
answer the two questions posed above.

E X A M P L E

3 Suppose we know that the response of an initially quiescentmechanical system
to an applied force can be modeled as the solution of the spring-mass-dashpot
initial value problem

my′′ + γ y′ + y = f (t), t > 0

y(0) = 0, y′(0) = 0.

Assume, for a known applied force f (t), we can measure the resulting displace-
ment y(t) for t ≥ 0. We are, however, unable to directly determine the parame-
ters m, γ , and k.

In particular, suppose when we apply a unit step force f (t) = h(t), the dis-
placement is

y(t) = − 1
2e

−t cos t− 1
2e

−t sin t+ 1
2 , t ≥ 0.

Use this information to

(a) Predict the displacement should the force f̃ (t) = e−2t, t ≥ 0 be applied.

(b) Determine the parameters m, γ, and k.

Solution: To solve the problem, we first compute Laplace transforms of
the applied force f (t) = h(t) and the ensuing response y(t) = − 1

2e
−t cos t−

1
2e

−t sin t+ 1
2 . We obtain

F(s) = 1
s

Y (s) = −1
2

s+ 1

(s+ 1)2 + 1
− 1

2

1

(s+ 1)2 + 1
+ 1

2s
= 1

s(s2 + 2s+ 2)
.

In the transform domain, Y (s) = �(s)F(s), where �(s) is the system transfer
function. Therefore, the system transfer function is given by

�(s) = Y (s)
F(s)

= 1

s2 + 2s+ 2
. (6)

Once we know the system transfer function, we can readily predict the output
corresponding to any input.

(a) Suppose the applied force is f̃ (t) = e−2t. The Laplace transform of the ap-
plied force is F̃(s) = 1/(s+ 2). We can find the transform of the displace-
ment from the relationship Ỹ (s) = �(s)F̃(s):

Ỹ (s) =
[

1

s2 + 2s+ 2

]
1

s+ 2
= 1

(s2 + 2s+ 2)(s+ 2)

= 1

2

1

s+ 2
− 1

2

s+ 1

(s+ 1)2 + 1
+ 1

2

1

(s+ 1)2 + 1
.

The corresponding time domain output is thus

ỹ(t) = L−1{Ỹ (s)} = 1
2e

−2t − 1
2e

−t cos t+ 1
2e

−t sin t, t ≥ 0.
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(b) The problem posed in question (b) can be solved by comparing the transfer
function

�(s) = 1

s2 + 2s+ 2

with the previously determined formof the transfer function in equation (5),

�(s) = 1

ms2 + γ s+ k
.

Comparing coefficients, we conclude that

m = 1, γ = 2, k = 2. ❖

In the preceding discussion, we assumed that the mechanical system was
initially at rest and an applied force then activated the system at time t = 0. If
the initial conditions are nonzero but known, the same general approach can
be used. These ideas are developed in the Exercises.

E X E R C I S E S

Exercises 1–8:

Find the Laplace transform of the periodic function whose graph is shown.

1.

2 4 6
t

3

–3

y 2.

2 41 3 5
t

3

1

y

3.

2 4 6
t

2

–3

y 4.

2 4 6 81 3 5 7
t

2

1

y

5.

2 4 61 3 5
t

1

y 6.

2 4 61 3 5 7
t

1

y



356 CHAPTER 5 Laplace Transforms

7.

2 4 61 3 5
t

1

y

1 – t2

8.

2 4 61 3 5
t

2

1

y

Exercises 9–12:

Sketch the graph of f (t), state the period of f (t), and find L{ f (t)}.
9. f (t) = |sin 2t|

10. f (t) =
{
sin t, 0 ≤ t < π,

0, π ≤ t < 2π,
f (t+ 2π) = f (t)

11. f (t) = e−t, 0 ≤ t < 1, f (t+ 1) = f (t)

12. f (t) = 1− e−t, 0 ≤ t < 2, f (t+ 2) = f (t)

13. Let α be a positive constant. As in Example 2, show that

L−1
{

e−αs

s(1− e−αs)

}
= h(t− α) + h(t− 2α) + h(t− 3α) + · · · .

Sketch the graph of g(t) = h(t− α) + h(t− 2α) + h(t− 3α) + · · · for α = 1 and
0 ≤ t < 5.

Exercises 14–15:

In each exercise, use linearity of the inverse transformation and Exercise 13 to find
f (t) = L−1{F(s)} for the given transform F(s). Sketch the graph of f (t) for 0 ≤ t < 5 in
Exercise 14 and 0 ≤ t < 10 in Exercise 15.

14. F(s) = s− 1

s2
+ e−s

s(1− e−s)
15. F(s) = 3

s2
− 3e−2s

s(1− e−2s)

16. As in Example 2, find f (t) = L−1{F(s)} for F(s) = 1/2s2 − (1/s2)[e−2s/(1+ e−2s)].
Sketch the graph of f (t) for 0 ≤ t < 12.

Exercises 17–19:

One-Dimensional Motion with Drag and Periodic Thrust Assume a body of massmmoves
along a horizontal surface in a straight linewith velocity v(t). The body is subject to a fric-
tional force proportional to velocity and is propelled forward with a periodic propulsive
force f (t). Applying Newton’s second law, we obtain the following initial value problem:

mv′ + kv = f (t), t ≥ 0, v(0) = v0.

Assume that m = 1 kg, k = 1 kg/s, and v0 = 1 m/s.

(a) Use Laplace transformmethods to determine v(t) for the propulsive force f (t), where
f (t) is given in newtons.

(b) Plot v(t) for 0 ≤ t ≤ 10 [this time interval spans the first five periods of f (t)]. In
Exercise 17, explain why v(t) is constant on the interval 0 ≤ t ≤ 1.

17. f (t) =
{
1, 0 ≤ t ≤ 1,

0, 1 < t < 2,
f (t+ 2) = f (t)

18. f (t) =
{
0, 0 ≤ t ≤ 1,

1, 1 < t < 2,
f (t+ 2) = f (t)

19. f (t) = t/2, 0 ≤ t < 2, f (t+ 2) = f (t)
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20. An object having mass m is initially at rest on a frictionless horizontal surface. At
time t = 0, a periodic force is applied horizontally to the object, causing it to move
in the positive x-direction. The force, in newtons, is given by

f (t) =
{
f0, 0 ≤ t ≤ T/2,

0, T/2 < t < T,
f (t+ T) = f (t).

The initial value problem for the horizontal position, x(t), of the object is mx′′(t) =
f (t), x(0) = 0, x′(0) = 0.

(a) Use Laplace transforms to determine the velocity, v(t) = x′(t), and the position,
x(t), of the object.

(b) Let m = 1 kg, f0 = 1 N, and T = 1 s. What are the velocity v and position x of
the object at t = 1.25 s?

21. A lake containing 50 million gal of fresh water has a stream flowing through it.
Water enters the lake at a constant rate of 5 million gal/day and leaves at the same
rate. At some initial time, an upstreammanufacturer begins to discharge pollutants
into the feeder stream. Each day, during the hours from 8 A.M. to 8 P.M., the stream
has a pollutant concentration of 1 mg/gal (10−6 kg/gal); at other times, the stream
feeds in fresh water. Assume that a well-stirred mixture leaves the lake and that the
manufacturer operates seven days per week.

(a) Let t = 0 denote the instant that pollutants first enter the lake. Let q(t) denote
the amount of pollutant (in kilograms) present in the lake at time t (in days). Use
a “conservation of pollutant” principle (rate of change = rate in − rate out) to
formulate the initial value problem satisfied by q(t).

(b) Apply Laplace transforms to the problem formulated in (a) and determine
Q(s) = L{q(t)}.
(c) Determine q(t) = L−1{Q(s)}, using the ideas of Example 2. In particular, what is
q(t) for 1 ≤ t < 2, the second day of manfacturing?

22. Consider the RL and RC networks shown, with the associated equations for the
current i(t).

L(t)

e(t)

R

~ L

L(t)

e(t)

R

~ C

Ri + Li' = e(t), i(0) = 0 Ri + i (�)d� = e(t)1
C

t

0

Figure for Exercise 22

Assume that the network element values are R = 1 k�, L = 1 H, C = 1μF and
that e(t), given in volts, is

e(t) =
{
0, 0 ≤ t ≤ 0.5,
1, 0.5 < t < 1,

e(t+ 1) = e(t).

The associated units of current and time aremilliamperes andmilliseconds, respec-
tively.

(a) Determine i(t) for the RL network.

(b) Determine i(t) for the RC network.

Transfer Function Problems Consider the initial value problem

ay′′ + by′ + cy = f (t), 0 < t < ∞
y(0) = 0, y′(0) = 0,

(7)
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where a, b, and c are constants and f (t) is a known function. We can view problem (7) as
defining a linear system, as shown schematically in the figure,where f (t) is a known input
and the corresponding solution y(t) is the output. As we have seen, Laplace transforms
of the input and output functions satisfy the multiplicative relation, Y (s) = �(s)F(s),
where �(s) is the system transfer function.

Linear
system

Input Output

f (t) y(t)

Figure for Exercises 23–26

23. Show that the term “linear system” is appropriate. In particular, show that if an
input f1(t) produces an output y1(t) and an input f2(t) produces an output y2(t), then
the input f (t) = c1f1(t) + c2 f2(t) produces the output y(t) = c1y1(t) + c2 y2(t). [Hint:
Use the superposition principle discussed in Section 3.7.]

24. Suppose that the transfer function for linear system (7) is �(s) = 1/(2s2 + 5s+ 2).

(a) What are the constants a, b, and c?

(b) If f (t) = e−t, determine F(s),Y (s), and y(t).

25. Suppose an input f (t) = t, when applied to linear system (7), produces the output
y(t) = 2(e−t − 1) + t(e−t + 1), t ≥ 0. What is the system transfer function, �(s)?

26. Suppose an input f (t) = t, when applied to linear system (7), produces the output
y(t) = 2(e−t − 1) + t(e−t + 1), t ≥ 0. What will be the output if a Heaviside unit step
input f (t) = h(t) is applied to the system?

Exercises 27–31:

For the linear system defined by the given initial value problem,

(a) Determine the system transfer function, �(s).

(b) Determine the Laplace transform of the output, Y (s), corresponding to the specified
input, f (t).

27. y′′ + 4y = f (t), y(0) = 0, y′(0) = 0; f (t) = t 2

28. y′′ + y′ + y = f (t), y(0) = 0, y′(0) = 0; f (t) =
{
1, 0 ≤ t ≤ 1,

−1, 1 < t < 2,
f (t+ 2) = f (t)

29. y′′ + 4y′ + 4y = f (t), y(0) = 0, y′(0) = 0; f (t) = t, 0 ≤ t < 1, f (t+ 1) = f (t)

30. y′′′ − 4y = f (t), y(0) = 0, y′(0) = 0, y′′(0) = 0; f (t) = et + t

31. y′′′ + 4y′ = f (t), y(0) = 0, y′(0) = 0, y′′(0) = 0; f (t) = cos 2t

Exercises 32–33:

We now allow the initial values to be nonzero. Consider the initial value problem

y′′ + by′ + cy = f (t), 0 < t < ∞
y(0) = y0, y′(0) = y′

0.

The input function, f (t), and the Laplace transform of the output function, Y (s), are
given. Determine the constants b, c, y0, and y

′
0.

32. f (t) = h(t), the Heaviside unit step function; Y (s) = (s2 + 2s+ 1)/(s3 + 3s2 + 2s)

33. f (t) = e−t;Y (s) = (s2 + s+ 1)/[(s+ 1)(s2 + 4)]
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5.5 Solving Systems of Differential Equations
In this section, we extend the definition of the Laplace transform to matrix-
valued functions and take note of some simple consequences of the extension.
We then see how to use Laplace transforms to solve problems involving systems
of differential equations.

Laplace Transforms of Matrix-Valued Functions
As we saw in Section 4.1, the integral of a matrix-valued function is simply the
matrix of integrals. Similarly, the Laplace transformof amatrix-valued function
is the matrix of Laplace transforms. Consider the vector-valued function

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ , (1)

where each of the component functions is piecewise continuous and exponen-
tially bounded on 0 ≤ t < ∞. The Laplace transform, L{ y(t)}, is

L{ y(t)} =
∫ ∞

0
y(t)e−st dt

=
∫ ∞

0

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ e−st dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ ∞

0
y1(t)e

−st dt

∫ ∞

0
y2(t)e

−st dt
...∫ ∞

0
yn(t)e

−st dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
Y1(s)

Y2(s)
...

Yn(s)

⎤
⎥⎥⎥⎥⎦ = Y(s).

(2)

We will use uppercase bold letters to denote the Laplace transform of a vector-
valued function.

Similarly, the Laplace transformof an (m× n)matrix-valued function is the
(m× n) matrix consisting of the Laplace transforms of the component func-
tions. In general, if each component function of a matrix-valued function is
Laplace transformable, we say that the matrix function itself is Laplace trans-
formable.

E X A M P L E

1 Compute L{ y(t)}, where

y(t) =
⎡
⎢⎣
t

−1
et

⎤
⎥⎦ .

(continued)
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(continued)

Solution: Using Table 5.1, we have

Y(s) =
⎡
⎢⎣

L{t}
L{−1}
L{et}

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

s2

−1
s
1

s− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, s > 1.

Note that the domain of Y(s) is the intersection of the domains of the compo-
nent functions. ❖

Some Useful Matrix Formulas
The following results can be established by taking the Laplace transform of
each component function and then reassembling the components into a single
expression.

1. Let A be a constant (n× n) matrix, and let y(t) be an (n× p) Laplace
transformable matrix function. Then

L{Ay(t)} = AL{ y(t)} = AY(s). (3)

2. If each component function satisfies the appropriate hypotheses of The-
orem 5.5, then

L{ y ′(t)} = sY(s) − y(0)

L{ y ′′(t)} = s2Y(s) − sy(0) − y ′(0)

L
{∫ t

0
y(u)du

}
= 1

s
Y(s).

(4)

Solution of the Initial Value Problem
for a Nonhomogeneous System
Consider the initial value problem

y ′ = Ay+ g(t), t > 0, y(0) = y0, (5)

where y(t) is the (n× 1) vector of unknowns and A is a real-valued (n× n)

constant matrix. We also assume the nonhomogeneous term,

g(t) =

⎡
⎢⎢⎢⎢⎣
g1(t)

g2(t)
...

gn(t)

⎤
⎥⎥⎥⎥⎦,

is a Laplace transformable vector function.
Using formulas (3) and (4), we can take the Laplace transform of system (5)

and work directly with the matrices rather than dealing with the component
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equations. We obtain

sY(s) − y(0) = AY(s) +G(s),

or

(sI − A)Y(s) = y0 +G(s),

where G(s) = L{g(t)}. The solution of the transform domain problem is there-
fore

Y(s) = (sI − A)−1[y0 +G(s)]. (6)

To compute the desired time domain solution, y(t) = L−1{Y(s)}, we compute
the inverse Laplace transform of each component of Y(s). [Note that (sI − A)−1

does not exist when s is an eigenvalue of A.]

E X A M P L E

2 Solve the initial value problem

y ′ = Ay+ g(t), 0 ≤ t < ∞, y(0) = y0,

where

A =
[
1 2

2 1

]
, g(t) =

[
e2t

−2t

]
, y0 =

[
1

−2

]
.

(We computed the general solution of this nonhomogeneous linear first order
system earlier, in Example 1 of Section 4.8.)

Solution: Taking Laplace transforms and using equations (3) and (4), we ob-
tain [as in equation (6)]

Y(s) = (sI − A)−1[y0 +G(s)],
where

G(s) =

⎡
⎢⎢⎢⎣

1
s− 2

− 2

s2

⎤
⎥⎥⎥⎦.

Note that

(sI − A)−1 =
[
s− 1 −2
−2 s− 1

]−1
= 1

(s+ 1)(s− 3)

[
s− 1 2

2 s− 1

]
.

Therefore, the transform domain solution is

Y(s) = 1
(s+ 1)(s− 3)

[
s− 1 2

2 s− 1

]⎡⎢⎢⎢⎣
1+ 1

s− 2

−2− 2

s2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

s4 − 6s3 + 9s2 − 4s+ 8

s2(s+ 1)(s− 2)(s− 3)

−2s4 + 8s3 − 8s2 + 6s− 4

s2(s+ 1)(s− 2)(s− 3)

⎤
⎥⎥⎥⎥⎦.

(continued)
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(continued)

To obtain the time domain solution, we need to determine the inverse Laplace
transform of each component of Y(s). Using a partial fraction expansion, we
write Y1(s) and Y2(s) as

Y1(s) = s4 − 6s3 + 9s2 − 4s+ 8

s2(s+ 1)(s− 2)(s− 3)
= 4
3
1

s2
− 8
9
1
s

+ 7
3

1
s+ 1

− 1
3

1
s− 2

− 1
9

1
s− 3

Y2(s) = −2s4 + 8s3 − 8s2 + 6s− 4

s2(s+ 1)(s− 2)(s− 3)
= −2

3
1

s2
+ 10

9
1
s

− 7
3

1
s+ 1

− 2
3

1
s− 2

− 1
9

1
s− 3

.

Therefore,

y1(t) = L−1{Y1(s)} = 4
3 t− 8

9 + 7
3e

−t − 1
3e
2t − 1

9e
3t

y2(t) = L−1{Y2(s)} = − 2
3 t+ 10

9 − 7
3e

−t − 2
3e
2t − 1

9e
3t, t ≥ 0.

We can regroup these terms into the following matrix solution:

y(t) = t

⎡
⎣ 4

3

− 2
3

⎤
⎦ +

⎡
⎣− 8

9

10
9

⎤
⎦ + e−t

⎡
⎣ 7

3

− 7
3

⎤
⎦ + e2t

⎡
⎣− 1

3

− 2
3

⎤
⎦ + e3t

⎡
⎣− 1

9

− 1
9

⎤
⎦ , t ≥ 0. (7)

As a check, you can compare solution (7) with the general solution obtained in
Section 4.8, Example 1. What values of c1 and c2 are needed in Example 1 of
Section 4.8 in order to replicate solution (7)? ❖

The System Transfer Function
The preceding discussion indicates that we can identify a system transfer func-
tion for a linear constant coefficient system. Consider, in particular, the trans-
form domain solution given by equation (6),

Y(s) = (sI − A)−1[y0 +G(s)].
The vector y0 +G(s) is the sumof the initial condition and the transformednon-
homogeneous term; this sum represents the system input. The system output,
Y(s), is obtained by premultiplying the input by the square matrix (sI − A)−1.
Therefore, the matrix (sI − A)−1 is the system transfer function (also called the
system transfer matrix). Note that the system transfer matrix for y ′ = Ay+ g(t)
depends only on the coefficient matrix A.

We now show that the system transfer matrix, (sI − A)−1, is actually the
Laplace transform of the exponential matrix, etA. To see why, consider the ma-
trix initial value problem

�′ = A�, �(0) = I, (8)

where A is a constant (n× n) matrix and I is the (n× n) identity matrix. As we
saw in Section 4.10, the solution of initial value problem (8) is

�(t) = etA.

However, when we take the Laplace transform of equation (8), we obtain

sL{�} − I = AL{�}.
Solving for L{�}, we find L{�} = (sI − A)−1. But, since �(t) = etA, we are led to

L{ etA} = (sI − A)−1.
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This equation is an elegant generalization of the familiar formula

L{ eαt} = (s− α)−1.

A Network Example
Laplace transforms provide a convenient tool for analyzing networks having a
more complicated structure than the single loop or single node networks we
have studied thus far. As an example, consider the two-loop network shown
in Figure 5.14. We assume that the network is initially quiescent; that is, both
loop currents are zero at time t = 0, and the capacitor has no initial charge. At
time t = 0, the voltage source v(t) is turned on.

i1(t) i2(t)

L R2

R1v(t)
+

–
~ C

FIGURE 5.14

A two-loop network. The loop currents, i1(t) and i2(t), are found by solving
the linear system (9).

The mathematical description of this network’s behavior is obtained by
applying Kirchhoff’s voltage law to each loop:

v(t) = L
di1
dt

+ R1i1 − R1i2

0 = R1i2 − R1i1 + R2i2 + 1
C

∫ t

0
i2(λ) dλ

i1(0) = i2(0) = 0.

(9)

Taking the Laplace transform in equation (9), we obtain

V(s) = sLI1(s) + R1I1(s) − R1I2(s)

0 = R1I2(s) − R1I1(s) + R2I2(s) + 1
Cs

I2(s).

This system can be written in matrix form as⎡
⎣R1 + sL −R1

−R1 R1 + R2 + 1
Cs

⎤
⎦[

I1(s)

I2(s)

]
=

[
V(s)

0

]
, (10)

where V(s) is the Laplace transform of the known voltage v(t). Note that equa-
tion (10) incorporates the initial conditions i1(0) = i2(0) = 0. We obtain the
transform domain solution[

I1(s)

I2(s)

]
= sV(s)

(R1 + R2)Ls
2 +

(
R1R2 + L

C

)
s+ R1

C

⎡
⎢⎣R1 + R2 + 1

Cs

R1

⎤
⎥⎦ .
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As a convenient particular case, we’ll assume the following network element
values:

R1 = R2 = 1 k�, L = 0.5 H, C = 0.5 μF.

Likewise, we assume that the input voltage is v(t) = h(t), where h(t) is the unit
step function; in other words, a 1-volt DC voltage source is switched on at time
t = 0. Given these values, the transform domain solutions in (10) become

I1(s) = 2(s+ 1)

s(s2 + 2s+ 2)
= 1

s
−

[
s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1

]

I2(s) = 1

s2 + 2s+ 2
= 1

(s+ 1)2 + 1
.

Therefore, the resulting time domain network loop currents are

i1(t) = 1− e−t[cos t− sin t]
i2(t) = e−t sin t, t ≥ 0,

(11)

where the units of current and time are milliamperes and milliseconds, respec-
tively.

The loop currents behave qualitatively as onewould expect. In particular, as
t → ∞, the current in Loop 1 approaches a constant unit value and the current
in Loop 2 tends to zero. In the limit, the inductor voltage tends to zero and
the unit current produces a voltage drop across resistor R1 equal to the source
voltage of 1 volt. In Loop 2, the capacitor voltage,

1
C

∫ t

0
i2(λ) dλ = 2

∫ t

0
e−λ sin λ dλ = 1− e−t(sin t+ cos t),

tends to unity as t → ∞. In this loop, the voltage across resistor R2 tends to
zero; the buildup of charge and accompanying voltage drop across the capacitor
ultimately balance the voltage across resistor R1. Graphs of the loop currents,
i1(t) and i2(t), are displayed in Figure 5.15.

1 2 3 4 5

0.4

0.8

1.2

t

i1(t )

i2(t )

FIGURE 5.15

Graphs of the time domain loop currents given in equation (11).
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E X E R C I S E S

Exercises 1–5:

Compute the Laplace transform of the given matrix-valued function y(t).

1. y(t) =
⎡
⎢⎣
cos t

t

tet

⎤
⎥⎦ 2. y(t) = d

dt

⎡
⎢⎣
e−t cos 2t

0

t+ et

⎤
⎥⎦ 3. y(t) =

[
1 −1
0 2

][
2t

h(t− 2)

]

4. y(t) =
∫ t

0

⎡
⎢⎣
1

λ

e−λ

⎤
⎥⎦ dλ

5. y(t) =
[
h(t− 1) sin(t− 1) 0

et−1 t

][
1

−2

]

Exercises 6–8:

Compute the inverse Laplace transform of the given matrix function Y(s).

6. Y(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s

2

s2 + 2s+ 2

1

s2 + s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

7. Y(s) = e−s
[
1 −1
0 2

]⎡
⎢⎢⎢⎣

1
s

1

s2 + 1

⎤
⎥⎥⎥⎦

8. Y(s) =
⎡
⎢⎣
e−s −1 2

2 0 3

1 −2 1/s

⎤
⎥⎦
⎡
⎢⎣

L{ t3}
L{ e2t}
L{sin t}

⎤
⎥⎦

Exercises 9–20:

Use Laplace transforms to solve the given initial value problem.

9. y ′ =
[
5 −4
5 −4

]
y, y(0) =

[
5
6

]
10. y ′ =

[
5 −4
5 −4

]
y+

[
0

1

]
, y(0) =

[
0

0

]

11. y ′ =
[
5 −4
3 −2

]
y+

[
t

1

]
, y(0) =

[
0

0

]

12. y ′ =
[
5 −4
3 −2

]
y, y(0) =

[
3

2

]

13. y ′ =
[
1 4

−1 1

]
y, y(0) =

[
2

0

]

14. y ′ =
[
1 4

−1 1

]
y+

[
0

3et

]
, y(0) =

[
3

0

]

15. y ′ =
[
6 −3
8 −5

]
y, y(1) =

[
5

10

]
[Hint: Make the change of variable τ = t− 1.]

16. y ′′ =
[−3 −2
4 3

]
y, y(0) =

[
1

0

]
, y ′(0) =

[
0

1

]

17. y ′′ =
[
1 −1
1 −1

]
y+

[
t

1

]
, y(0) =

[
0

0

]
, y ′(0) =

[
0

0

]

18. y ′′ =
[
1 −1
1 −1

]
y+

[
2

1

]
, y(0) =

[
0

1

]
, y ′(0) =

[
0

0

]
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19. y ′ =
⎡
⎢⎣

6 5 0

−7 −6 0

0 0 −2

⎤
⎥⎦ y, y(0) =

⎡
⎢⎣

2

−4
−1

⎤
⎥⎦

20. y ′ =
⎡
⎢⎣
1 0 0

0 −1 1

0 0 2

⎤
⎥⎦ y+

⎡
⎢⎣
et

1

−2t

⎤
⎥⎦ , y(0) =

⎡
⎢⎣
0

0

0

⎤
⎥⎦

21. The Laplace transform was applied to the initial value problem y ′ = Ay, y(0) = y0,

where y(t) =
[
y1(t)
y2(t)

]
, A is a (2× 2) constant matrix, and y0 =

[
y1,0
y2,0

]
. The following

transform domain solution was obtained:

L{ y(t)} = Y(s) = 1

s2 − 9s+ 18

[
s− 2 −1
4 s− 7

][
y1,0
y2,0

]
.

(a) What are the eigenvalues of the coefficient matrix A?

(b) What is the coefficient matrix A?

22. A System Cascade Consider the linear system defined as follows:

y ′
1 = Ay1 + g(t), y1(0) = 0

y ′
2 = Ay2 + y1(t), y2(0) = 0,

where y1(t), y2(t), and g(t) are (2× 1) vector functions and A is a (2× 2) constant
matrix. A schematic of the system is shown in the figure. It consists of two identical
stages connected in cascade. The input g(t) is applied to the first stage, producing
an output y1(t). This output is then used as input to the second stage, producing
an output y2(t). We can view this cascade connection as forming an overall linear
system determined by input g(t) and output y2(t). Let Y1(s),Y2(s), and G(s) denote
the Laplace transforms of y1(t), y2(t), and g(t), respectively.

1st stage 2nd stage

Input
g(t) y2(t )y1(t )

Overall linear system

Figure for Exercise 22

(a) Show thatY2(s) andG(s) are related by an equation of the formY2(s) = �(s)G(s),
where�(s) is a (2× 2)matrix transfer function for the cascade system. How is�(s)
related to the coefficient matrix A?

(b) Suppose

A =
[
1 −1
1 −1

]
and g(t) =

[
1

t

]
.

Determine �(s) and y2(t), t ≥ 0.

Exercises 23–24:

System Identification We consider a system analog of the parameter identification
problem studied in Section 5.4. Assume that a linear system can be modeled by the
initial value problem y ′ = Ay+ g(t), y(0) = y0.
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Assume we can select the input g(t) and the initial state y0 and can measure the
output y(t), but we have no direct way of measuring the coefficient matrix A. The task
is to determine A by exciting the system with an appropriate selection of inputs and/or
initial states andmeasuring the corresponding outputs. Exercises 23–24 treat particular
two-dimensional cases.

In each exercise, use the given input-output information to determine the coef-
ficient matrix A. One approach is to use Laplace transforms. Let Y(s) and G(s) repre-
sent the Laplace transforms of y(t) and g(t), respectively. Then we know that
Y(s) = (sI − A)−1[y0 +G(s)]. Form (2× 2) matrices

[Y1(s),Y2(s)] and [y1,0 +G1(s), y2,0 +G2(s)],
using the transformed information as columns.We can obtain an equation relating these
two (2× 2) matrices and use this equation to determine A.

23. When g(t) = 0 and y0 =
[
1
1

]
, the observed output is y(t) =

[
e3t

e3t

]
. When g(t) = 0 and

y0 =
[
0
5

]
, the observed output is y(t) =

[
3e−2t − 3e3t

8e−2t − 3e3t

]
. Determine coefficient ma-

trix A.

24. When g(t) = 0 and y0 =
[
0
1

]
, the observed output is y(t) =

[
te−2t

e−2t

]
. When g(t) =

[
2
0

]
and y0 =

[
1
0

]
, the observed output is y(t) =

[
1
0

]
. Determine the coefficient matrix A.

25. For the network shown, initially both loop currents are zero and no charge is present
on the capacitor. At time t = 0, both voltage sources are turned on. An application
of Kirchhoff’s voltage law, equating the algebraic sum of the voltage drops in a
clockwise traversal of each loop to zero, leads to the system of equations

−v1(t) + R1i1 + L
di1
dt

+ R2(i1 − i2) = 0, i1(0) = 0

R2(i2 − i1) + 1
C

∫ t

0
i2(λ) dλ + R3i2 + v2(t) = 0, i2(0) = 0.

(a) Apply the Laplace transform to this system of equations. Solve the transformed
system of equations for the (2× 1) vector of transformed loop currents,[

I1(s)

I2(s)

]
.

(b) For simplicity, letR1 = R2 = R3 = 1 k�,L = 1H, andC = 1 μF; let v1(t) = v2(t) =
te−t volts. Solve for the currents, i1(t) and i2(t), t > 0 (the units being milliamperes).

i1(t) i2(t)

LR1 R3

R2v1(t) v2(t)
+

–
~ ~

+

–

C

Figure for Exercise 25
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5.6 Convolution
When we use Laplace transforms, we often need to find the inverse transform
of a product,

L−1{F(s)G(s)}.
For example, we have seen that the Laplace transform of a system output is
the product of the system transfer function and the Laplace transform of the
system input. To obtain the time domain output, wemust determine the inverse
Laplace transform of this product. It is clear from the integral definition of the
Laplace transform that the inverse transform of a product of transforms is not
the product of the inverse transforms. What, then, is it?

This section introduces a mathematical operation known as convolution.
The convolution operation, denoted by the symbol ∗, starts with two functions
f (t) and g(t) defined on 0 ≤ t < ∞ and creates a new function f ∗ g, also defined
on 0 ≤ t < ∞. After we define the convolution operation, we will state the con-
volution theorem; this theorem shows that the Laplace transform of the newly
created function f ∗ g is, in fact, the product of the Laplace transforms of the
two original functions. Thus, by the convolution theorem,

L−1{F(s)G(s)} = ( f ∗ g)(t),
where L{ f (t)} = F(s) and L{ g(t)} = G(s).

Although the terminology is new, convolution is an operation we have al-
ready encountered several times in our study of linear constant coefficient dif-
ferential equations.

The Convolution Integral
Let f (t) and g(t) be two functions defined on 0 ≤ t < ∞. The convolution of
f (t) and g(t), denoted f ∗ g, is the function defined by

( f ∗ g)(t) =
∫ t

0
f (t− λ)g(λ) dλ, 0 ≤ t < ∞, (1)

provided the integral exists. It can be shown that integral (1) exists whenever
f (t) and g(t) are piecewise continuous on 0 ≤ t < ∞. Moreover, the function
( f ∗ g)(t) is piecewise continuous and exponentially bounded on 0 ≤ t < ∞ if
both f (t) and g(t) possess these properties.

As equation (1) indicates, we use the notation ( f ∗ g)(t) to denote the newly
created function of t. When we want to designate the convolution of specific
functions such as f (t) = e−t and g(t) = sin 2t, we may simply write

e−t ∗ sin 2t.

E X A M P L E

1 Calculate the convolution f ∗ g, where f (t) = t and g(t) = e−t.

Solution: According to definition (1),

t ∗ e−t =
∫ t

0
(t− λ)e−λ dλ = t

∫ t

0
e−λ dλ −

∫ t

0
λe−λ dλ.
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Evaluating these integrals, we find

t ∗ e−t = t
[−e−λ

]t
0 − [

e−λ
(−λ − 1)

]t
0 = t+ e−t − 1. ❖

The next example illustrates convolution from a geometric point of view.

E X A M P L E

2 Calculate the convolution f ∗ g, where

f (t) =
{
t, 0 ≤ t < 1

0, 1 ≤ t < ∞,
g(t) =

⎧⎪⎨
⎪⎩
0, 0 ≤ t < 2

1, 2 ≤ t < 3

0, 3 ≤ t < ∞.

Solution: The piecewise definition of these two functions provides an oppor-
tunity to illustrate the graphical aspects of the convolution operation,

( f ∗ g)(t) =
∫ t

0
f (t− λ)g(λ) dλ.

The functions in the integrand, f (λ) and g(λ), are shown in Figure 5.16(a) on
the next page. Forming f (t− λ) reverses the orientation of the right triangle
and translates (or slides) the triangle so that the intersection point of its hy-
potenuse with the λ-axis occurs at λ = t [see Figure 5.16(b)]. As t increases, we
can envision this triangle as translating to the right and passing through the
region 2 ≤ λ < 3, where g(λ) �= 0 [see Figures 5.16(c) and 5.16(d)]. At each value
of t, the integrand is nonzero only in the overlap region of the right triangle
[the graph of f (t− λ)] and the rectangle [the graph of g(λ)]. For t in the interval
(2,4), the value ( f ∗ g)(t) is equal to the area of the overlap region. Therefore,
the convolution integral

∫ t
0 f (t− λ)g(λ) dλ can be evaluated graphically, as is

shown in Figures 5.16(b) through 5.16(e). We find

( f ∗ g)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 2

1
2 (t− 2)2, 2 ≤ t < 3

1
2 (4− t)(t− 2), 3 ≤ t < 4

0, 4 ≤ t < ∞.

The graph of the resulting function, ( f ∗ g)(t), is given in Figure 5.16(f ). ❖

Algebraic Properties of the Convolution Operation
Let f , g, and k be three scalar functions defined on 0 ≤ t < ∞, and let c1 and c2
represent arbitrary constants. It can be shown that

f ∗ (c1g+ c2k) = c1( f ∗ g) + c2( f ∗ k) (2a)

f ∗ g = g ∗ f (2b)

( f ∗ g) ∗ k = f ∗ ( g ∗ k). (2c)

The distributive property, equation (2a), says that the convolution of a function
f with a linear combination of functions equals the linear combination of the
convolutions. Property (2b) asserts that the convolution operation is commu-
tative; that is, the order in which we choose the two functions doesn’t matter
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FIGURE 5.16

A graphical interpretation of the calculation ( f ∗ g)(t), where f (t) and g(t)
are the functions shown in (a); the details are given in Example 2. A graph
of the function ( f ∗ g)(t) is shown in (f ). Note that ( f ∗ g)(t) is continuous
even though f (t) and g(t) have jump discontinuities.

(see Exercise 1). The associative property, equation (2c), says the convolution
of three functions can be done in any order. Therefore, parentheses are unnec-
essary in (2c), and we can simply write f ∗ g ∗ k.

Some Remarks about Convolution
While we have defined the convolution integral only for scalar functions f (t)
and g(t), it should be clear that the definition can be extended to compatibly
dimensioned matrix-valued functions. For example, if f(t) is an (m× n)matrix
function and g(t) is an (n× p) matrix function, then (f ∗ g)(t) is the (m× p)
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matrix function defined by

(f ∗ g)(t) =
∫ t

0
f(t− λ)g(λ) dλ, 0 ≤ t < ∞. (3)

Note that we have encountered the convolution integral in previous chapters
even though we did not use the term “convolution” there. For example:

1. In Chapter 2, we saw that the solution of the initial value problem
y′ = αy+ g(t), y(0) = y0 is given by

y(t) = eαty0 +
∫ t

0
eα(t−λ)g(λ) dλ.

The integral term is a convolution integral; therefore, we can interpret
the solution as

y(t) = eαty0 + eαt ∗ g(t). (4a)

2. In the discussion of first order constant coefficient linear systems in
Section 4.8, we developed the variation of parameters formula for the
solution of the initial value problem

y ′ = Ay+ g(t), y(0) = y0.

The solution can be represented as

y(t) = �(t)y0 +
∫ t

0
�(t− λ)g(λ) dλ,

where�(t) is the fundamental matrix that reduces to the identity matrix
at t = 0. Therefore,

y(t) = �(t)y0 + �(t) ∗ g(t). (4b)

In Section 4.10, we saw that �(t) = etA. Therefore, we can also write the
solution as

y(t) = etAy0 + etA ∗ g(t).

The Convolution Theorem
Equations (4a) and (4b) show two instances where the solution of an initial
value problem can be related to convolution of functions in the time domain.
Theorem 5.7 (the convolution theorem) establishes the connection between
convolution of functions in the time domain and multiplication of Laplace
transforms in the transform domain.

Theorem 5.7
Let f (t) and g(t) be piecewise continuous and exponentially bounded
functions defined on 0 ≤ t < ∞. Let F(s) and G(s) denote their respective
Laplace transforms. Then ( f ∗ g)(t) is a Laplace transformable function,
and its Laplace transform equals the product of F(s) and G(s); that is,

L{ f ∗ g} = F(s)G(s). (5)
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● PROOF: We first show that f ∗ g is Laplace transformable. Then we estab-
lish the result in equation (5).

The function f ∗ g is actually continuous on 0 ≤ t < ∞ whenever f (t) and
g(t) are piecewise continuous on 0 ≤ t < ∞. Thus (see Theorem 5.1), to show
that f ∗ g is Laplace transformable, we need only show that f ∗ g is exponentially
bounded on 0 ≤ t < ∞. From our hypotheses, we know that | f (t)| ≤ M1e

a1t and
| g(t)| ≤ M2e

a2t. Therefore,

|( f ∗ g)(t)| =
∣∣∣∣
∫ t

0
f (t− λ)g(λ) dλ

∣∣∣∣ ≤
∫ t

0

∣∣f (t− λ)g(λ)
∣∣ dλ

≤
∫ t

0
M1e

a1(t−λ)M2e
a2λ dλ =

⎧⎪⎨
⎪⎩
M1M2te

a1t, a1 = a2

M1M2
ea2t − ea1t

a2 − a1
, a1 �= a2,

and it follows that f ∗ g is exponentially bounded.
To complete the argument, we need to establish relation (5). From the def-

inition,

L{ ( f ∗ g)(t)} =
∫ ∞

0

[∫ t

0
f (t− λ)g(λ) dλ

]
e−st dt

=
∫ ∞

0

∫ t

0
f (t− λ)g(λ)e−st dλ dt,

(6)

where we view the integral in (6) as a double integral over the portion of the
λt-plane shown in Figure 5.17.

�

t �t-plane t = �

Region of integration

u

v uv-plane

Region of integration

v = t – �
u = �

FIGURE 5.17

The regions of integration for the double integrals in equations (6) and (7).

We now introduce the change of variables u = λ, v = t− λ. The boundary
lines λ = 0 and λ = t transform into the lines u = 0 and v = 0, respectively. Note
that the Jacobian determinant of this transformation is equal to 1. Therefore,
we can rewrite the integral in equation (6) as

L{ f ∗ g} =
∫ ∞

0

∫ ∞

0
f (v)g(u)e−s(u+v) dudv

=
(∫ ∞

0
f (v)e−sv dv

)(∫ ∞

0
g(u)e−su du

)
= F(s)G(s). ●

(7)
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As noted earlier, Theorem 5.7 can be used to find L−1{F(s)G(s)}:

L−1{F(s)G(s)} =
∫ t

0
f (t− λ)g(λ) dλ. (8)

E X A M P L E

3 Use equation (8) to find

L−1
{

1

s2(s+ 1)

}
.

Solution: Applying equation (8), F(s) = 1/s2, and G(s) = 1/(s+ 1), we have

L−1
{

1

s2(s+ 1)

}
= L−1

{
1

s2

}
∗ L−1

{
1

s+ 1

}
= t ∗ e−t = t+ e−t − 1.

(Recall that the convolution t ∗ e−t was computed earlier, in Example 1.) ❖

Multiple Convolutions
In some applications, such as a cascade connection of linear systems, the
solution of the problem of interest is a multiple convolution. Suppose
f1(t), f2(t), . . . , fn(t) are Laplace transformable functions with Laplace trans-
forms F1(s),F2(s), . . . ,Fn(s), respectively. From a repeated application of the
convolution theorem, it follows that

L{ f1 ∗ f2 ∗ · · · ∗ fn} = F1(s)F2(s) · · ·Fn(s).
Our next example treats such an application.

E X A M P L E

4 Consider the serial connection of n identical tanks shown in Figure 5.18. Each
tank contains V gallons of fresh water. At time t = 0, a solution having a con-
centration of c pounds of salt per gallon flows into Tank 1 at a rate of r gallons
per minute, and the well-stirred mixture flows out of Tank 1 and into Tank 2
at the same rate. The well-stirred mixture in Tank 2, in turn, flows into Tank 3
at the same rate. This behavior is replicated throughout the cascade. Since the
inflow and outflow rates are the same for each tank, the volume of fluid in each
tank remains constant and equal to V . Determine the outflow concentration,
cn(t), of Tank n as a function of time.

Tank n

Qn(t)

V

Tank 3

Q3(t)

V

Tank 2

Q2(t)

V

Tank 1

Q1(t)

V

Q1

V

rr

c
Q2

V

r

Q3

V

r

Qn – 1

V

r

Qn

V

r

FIGURE 5.18

The n-tank cascade described in Example 4.

Solution: As in Section 2.3, we apply the “conservation of salt” principle to
each tank. Let Qj(t), j = 1,2, . . . ,n represent the amount of salt (in pounds) in

(continued)
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(continued)

the jth tank at time t (inminutes). The following systemof initial value problems
models this process:

Q′
1 = rc− r

Q1

V
, Q1(0) = 0

Q′
j = r

Qj−1
V

− r
Qj

V
, Qj(0) = 0, j = 2,3, . . . ,n.

The solutions of these differential equations can be obtained recursively.We
use a convolution representation for each of the solutions. From equation (4a),

Q1(t) = e−(r/V)t ∗ rc
Qj(t) = e−(r/V)t ∗ r

V
Qj−1(t), j = 2,3, . . . ,n.

Therefore, the outflow concentration of the nth tank can be represented as the
following multiple convolution:

cn(t) = 1
V
Qn(t)

= 1
V
e−(r/V)t ∗ r

V
Qn−1(t)

= 1
V
e−(r/V)t ∗ r

V
e−(r/V)t ∗ r

V
Qn−2(t) = · · ·

= 1
V
e−(r/V)t ∗

n−1 functions︷ ︸︸ ︷
r
V
e−(r/V)t ∗ r

V
e−(r/V)t ∗ · · · ∗ r

V
e−(r/V)t ∗ rc

= c
( r
V

)n n functions︷ ︸︸ ︷
e−(r/V)t ∗ e−(r/V)t ∗ · · · ∗ e−(r/V)t ∗1.

By the convolution theorem,

L{cn(t)} = c
( r
V

)n [
L
{
e−(r/V)t

}]n
L{1}

= c
( r
V

)n ⎡⎢⎣ 1(
s+ r

V

)n
⎤
⎥⎦ 1
s
.

We can recover cn(t) by taking the inverse transform. From equations (10) and
(18) in Table 5.1,

L−1
{
1
s
F(s)

}
=

∫ t

0
f (u)du and L−1

⎧⎪⎨
⎪⎩

1(
s+ r

V

)n
⎫⎪⎬
⎪⎭ = tn−1

(n− 1)!e
−(r/V)t.

Therefore,

cn(t) = c
( r
V

)n ∫ t

0

un−1

(n− 1)!e
−(r/V)u du.
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We can simplify this integral by making the change of variable w = (r/V)u,
obtaining

cn(t) = c
(n− 1)!

∫ rt/V

0
wn−1e−w dw. (9)

This final expression can be evaluated for modestly large n using integration-
by-parts or using computer software. Figure 5.19 shows a plot of normalized
concentration cn/c vs. rt/V for n = 3 and n = 10. As we would expect, both
normalized concentrations approach a horizontal asymptote of unity. As time
evolves, the concentration in all tanks in the cascade builds up to the inflow con-
centration, c. Figure 5.19 shows, as one would expect, that the concentration
in the last tank of the three-tank cascade builds up to this limiting value more
rapidly than does the concentration of the last tank in the ten-tank cascade.

4 8 12 16 20

0.2

0.4

0.6

0.8

1

t

n = 3

cn
c

r
V 4 8 12 16 20

0.2

0.4

0.6

0.8

1

t

n = 10

cn
c

r
V

(a) (b)

FIGURE 5.19

Graphs of cn/c vs. rt/V for n = 3 and n = 10.
[See equation (9) in Example 4.] ❖

E X E R C I S E S

1. Show that f ∗ g = g ∗ f . That is, show that
∫ t
0 f (t− λ)g(λ) dλ = ∫ t

0 g(t− σ)f (σ )dσ .

[Hint: Use the change of integration variable σ = t− λ. This exercise shows that
the convolution operation is commutative.]

Exercises 2–7:

For the given functions f (t) and g(t) defined on 0 ≤ t < ∞, compute f ∗ g in two different
ways:

(a) by directly evaluating the integral

(b) by computing L−1{F(s)G(s)}, where F(s) = L{ f (t)} and G(s) = L{g(t)}
2. f (t) = g(t) = h(t) 3. f (t) = t, g(t) = t 2

4. f (t) = et, g(t) = e−2t 5. f (t) = t, g(t) = sin t

6. f (t) = sin t, g(t) = cos t 7. f (t) = t, g(t) = h(t) − h(t− 1)
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Exercises 8–9:

In each exercise, use Laplace transforms to compute the convolution.

8. P ∗ y, where P(t) =
[
h(t) et

0 t

]
and y(t) =

[
h(t)

e−t

]

9. t ∗
[

t

cos t

]

Exercises 10–12:

Compute and graph f ∗ g.
10. f (t) = h(t), g(t) = t[h(t) − h(t− 2)]
11. f (t) = g(t) = h(t− 1) − h(t− 2)

12. f (t) = h(t) − h(t− 1), g(t) = h(t− 1) − 2h(t− 2)

Exercises 13–15:

Compute the givenmultiple convolution. (Convolution operations, particularlymultiple
convolutions, have important applications in probability theory—for example, in com-
puting the probability density function for a sum of independent random variables.4)

13. t ∗ t ∗ t 14. h(t) ∗ e−t ∗ e−2t 15. t ∗ e−t ∗ et

16. Suppose it is known that

n functions︷ ︸︸ ︷
h(t) ∗ h(t) ∗ · · · ∗ h(t) = Ct8. Determine the constant C and

the positive integer n.

17. Suppose it is known that

n functions︷ ︸︸ ︷
e−t ∗ e−t ∗ · · · ∗ e−t = Ct4eαt. Determine the constants C and

α and the positive integer n.

Exercises 18–26:

The following equations are called integral equations because the unknown dependent
variable appears within an integral. When the equation also contains derivatives of
the dependent variable, it is referred to as an integro-differential equation. In each
exercise, the given equation is defined for t ≥ 0. Use Laplace transforms to obtain the
solution.

18.
∫ t

0
sin(t− λ)y(λ) dλ = t 2 19. t 2e−t =

∫ t

0
cos(t− λ)y(λ) dλ

20. y(t) −
∫ t

0
et−λy(λ) dλ = t

21.
∫ t

0
y(t− λ)y(λ) dλ = 6t3. Is the solution y(t) unique? If not, find all possible solutions.

22. t ∗ y(t) = t 2(1− e−t) 23.
dy
dt

+
∫ t

0
y(t− λ)e−2λ dλ = 1, y(0) = 0

24. y ′ = h(t) ∗ y, y(0) =
[
1

2

]

25. y′′ + h(t) ∗ y = 0, y(0) = 1, y′(0) = 0

26. y′′ − h(t) ∗ y = 0, y(0) = 0, y′(0) = 1

4Walter C. Giffin, Transform Techniques for Probability Modeling (New York: Academic Press, 1975).
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Exercises 27–28:

Solve the given initial value problem.

27.
dy
dt

= t ∗ t, y(0) = 1 28. y′ − y =
∫ t

0
(t− λ)eλ dλ, y(0) = −1

5.7 The Delta Function and Impulse Response
We often need to determine the behavior of a linear system that is suddenly
subjected to an input of short duration and large amplitude. In an electrical
network, such an input might be a large applied voltage spike. In a mechanical
system, the input might be a very sharp applied force.

System excitations of this sort cause a system response that approximates
what is known as the impulse response of the linear system. In this section, we
discuss the concept of an impulse response and show that it is equal to the
inverse Laplace transform of the system transfer function.

An Example of Impulse Response
To introduce the idea of impulse response,we beginwith amass-spring-dashpot
system. An example of the “short duration/large amplitude” scenario we want
to examine is the following initial value problem:

my′′ + γ y′ + ky = pε(t), t > 0

y(0) = 0, y′(0) = 0.
(1a)

In (1a), we assume that ε is a small positive parameter and that

pε(t) =

⎧⎪⎨
⎪⎩
1
ε
, 0 ≤ t ≤ ε

0, otherwise.

(1b)

Since ε is small, the applied force pε is a pulse of short duration and large
amplitude; Figure 5.20 shows the graph of a typical pulse. Note that the applied
force pε has “unit strength” in the sense that the area under the graph in Figure
5.20 is equal to 1 for any choice of ε.5 By choosing ε smaller and smaller, we can
use the pulse pε to model applied forces having larger and larger amplitudes
over shorter and shorter periods. Therefore, it is natural to ask the question

What happens to the system behavior as we make the applied force
progressively “sharper” and “stronger”?

In other words, what happens to the solution of initial value problem (1a) as
we let ε → 0?

It can be shown that the solution of initial value problem (1a) is

yε(t) =
∫ t

0
φ(t− λ)pε(λ) dλ, (2a)

5In physics, the linear impulse produced by a constant force is the product of the force times the
duration of its application. Therefore, the applied force pε has a linear impulse of unity for all ε.
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t

p�(t)
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1

FIGURE 5.20

The function pε(t) is a pulse; see equation (1b).
Note that

∫ ∞
−∞ pε(t)dt = 1.

where, if the system is underdamped,

φ(t) =
e−(γ /2m)t sin

√
k
m

− γ 2

4m2 t

m

√
k
m

− γ 2

4m2

. (2b)

We use the subscript ε in equation (2a) to denote the fact that the solution
yε(t) depends on the parameter ε. For t ≥ ε, we see from equation (2a) that

yε(t) = 1
ε

∫ ε

0
φ(t− λ) dλ, t ≥ ε. (3)

Since φ(t) is continuous for all t, we can use the mean value theorem for inte-
grals in equation (3), obtaining

yε(t) = φ(t− ξ), (4)

where ξ is some value in the interval 0 ≤ λ ≤ ε. As is typical with mean value
theorems, the value ξ is known to be sandwiched between 0 and ε but is other-
wise unknown. Because of this sandwiching, ξ must approach zero as ε → 0+.
Since φ is continuous,

lim
ε→0

+ yε(t) = φ(t).

Therefore, as we make ε progressively smaller (that is, as we make the applied
force both shorter in duration and correspondingly larger in amplitude), the
system response approaches φ(t), where φ(t) is the function given in equation
(2b). This limiting response is called the impulse response of the linear system.

Figure 5.21 shows the impulse response φ(t) of an underdamped spring-
mass-dashpot system with parameters m = 1, γ = 2, and k = 5. For these pa-
rameters, the function φ(t) is given by

φ(t) = 0.5e−t sin 2t. (5)
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From a heuristic point of view, φ(t) represents the response of the mechani-
cal system to an impulsive force—a force having essentially zero duration and
infinite amplitude, but unit area.

1 2 3 4 5

–0.1

0.1

0.2

0.3

t

�

FIGURE 5.21

The impulse response function φ(t) in equation (5).

The Delta Function
From the point of view of applications, it would be nice to have a function δ(t)
that we could use to model an impulsive force. That is, we would like to be able
to write

lim
ε→0

+ yε(t) = lim
ε→0

∫ t

0
φ(t− λ)pε(λ) dλ

=
∫ t

0
φ(t− λ)δ(λ) dλ

= φ(t).

(6)

The role of the function δ(λ) in (6) would be to evaluate the integrand at λ = 0.
It is important to appreciate, however, that we cannot simply obtain δ(λ) as a
limit of pε(λ) as ε → 0+; that is, we cannot interchange the operations of limit
and integration in the first line of (6) because (see Figure 5.20)

lim
ε→0

+ pε(λ) =
{
0, λ �= 0

∞, λ = 0.

The delta function, denoted by δ(t), is actually given precise mathematical
meaning as a “generalized function” within a branch of mathematics known as
the theory of distributions. For our purposes, we will define the delta function,
δ(t), by the limit ∫ b

a
f (t)δ(t− t0)dt = lim

ε→0
+

∫ b

a
f (t)pε(t− t0)dt, (7a)

whenever f (t) is a function defined and continuous on [a,b]. That is, δ(t) has
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the property that ∫ b

a
f (t)δ(t− t0)dt =

{
f (t0), a ≤ t0 < b

0, otherwise.
(7b)

REMARK: The delta function is sometimes referred to as theDirac delta func-
tion.6 Our definition of the delta function in equation (7a) follows directly from
our original definition of the pulse function, pε. We therefore obtain the value
f (a) when t0 = a and 0 when t0 = b. Other references use a pulse function that
is an even function (having value 1/ε in the interval−ε/2 ≤ t ≤ ε/2) as the basis
for their definition. In that case, the values in (7b) obtained when t0 = a and
t0 = bwill differ from ours. The reader should always check the definition used
by the reference being consulted.

The Laplace Transform of the Delta Function
Equation (7b) can be used as the basis for defining the Laplace transform of
δ(t). We obtain

L{δ(t− t0)} =
∫ ∞

0
e−stδ(t− t0)dt = e−st0 , t0 ≥ 0. (8)

As a special case, when t0 = 0, we have

L{δ(t)} = 1.

The Delta Function as a Formal Modeling Tool
It is important to be aware that the delta function is different from the usual
functions encountered in calculus. Nevertheless, in many applications people
have found it convenient to ignore this distinction; the delta function is often
viewed and formally treated as an ordinary function, usually modeling an im-
pulsive input. The solution of the problem of interest typically is given as a
convolution integral involving the delta function, and so the answer obtained
makes physical sense and can be interpreted as the system response to an ide-
alized impulsive input. The following example illustrates such a formal use of
the delta function.

E X A M P L E

1 Abody ofmassm is at the origin at time t = 0,moving in the positive x-direction
with velocity v0. Assume that a frictional force, proportional to the velocity
with proportionality constant k, acts to retard the motion. At a time t0 > 0, an
impulsive force of strength F0 acts on the moving body in the direction of the
motion. Find the velocity and position of the body as a function of time t.

6Paul Adrien Maurice Dirac (1902–1984) was an English mathematical physicist who held the Lu-
casian Professorship of Mathematics at Cambridge University from 1932 until 1969. After retiring,
hemoved to Florida, where he continued his research. Dirac is known for hismany contributions to
quantum theory, particularly the unification theories of quantummechanics and special relativity.
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Solution: We can use the delta function to formally model the impulsive force
as

F0δ(t− t0), t > 0.

Given this model of the impulsive force, Newton’s laws of motion lead to the
following initial value problem:

mv′ + kv = F0δ(t− t0), t > 0

v(0) = v0.
(9)

Once we know v(t), the position of the body is given by

x(t) =
∫ t

0
v(λ) dλ. (10)

We will use Laplace transforms to solve the problem. Let

V(s) = L{v(t)} and X(s) = L{x(t)}.
Noting equation (8), we have for the Laplace transform of equation (9)

m[sV(s) − v0] + kV(s) = F0e
−st0 .

Therefore,

V(s) = v0

s+ k
m

+ F0
m

e−st0(
s+ k

m

) ,

and hence

v(t) = v0e
−(k/m)t + F0

m
e−(k/m)(t−t0)h(t− t0), t ≥ 0. (11)

We can find position x(t) by computing the antiderivative of velocity v(t), as in
equation (10). Alternatively, we can use the fact that

X(s) = 1
s
V(s)

to obtain

X(s) = v0
m
k

⎡
⎢⎢⎣1s − 1

s+ k
m

⎤
⎥⎥⎦ + F0

k
e−st0

⎡
⎢⎢⎣1s − 1

s+ k
m

⎤
⎥⎥⎦ .

Taking inverse transforms, we find

x(t) = v0
m
k

[
1− e−(k/m)t

]
+ F0

k

[
1− e−(k/m)(t−t0)

]
h(t− t0), t ≥ 0. ❖ (12)

The solid curves in Figure 5.22 are graphs of velocity and position of the
body for the parameter values

m = 5 kg, k = 0.5 kg/s, v0 = 20 m/s, F0 = 500 N, t0 = 3 s. (13)
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FIGURE 5.22

The results from Example 1. (a) The graph of velocity, v(t), as given in
equation (11). The discontinuity is the result of an impulsive force applied
at t = 3. (b) The graph of position, x(t), as given in equation (12).

As the graph illustrates, application of the impulsive force creates a jump dis-
continuity in the velocity. This jump is the idealization of the very rapid velocity
transition that would occur if the applied force were a very narrow pulse of in-
tegrated strength 500 newton-seconds.

The dotted curves in Figure 5.23 show the velocity and position that would
result from a force of 5000 N being applied during the interval 3 ≤ t ≤ 3.1 sec.
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FIGURE 5.23

The graphs of (a) velocity and (b) position for the problems described by
equations (9) and (14). Equation (9) models the idealized problem, using
the delta function. Equation (14) models the problem using a large (but
finite) pulse applied over a t-interval of small (but nonzero) duration. As
you can see, the graphs are qualitatively similar.
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In other words, the dotted curves arise from solving the initial value problem

mv′ + kv = F0 pε(t− t0), t > 0

v(0) = v0,
(14)

with ε = 0.1 sec and all other parameter values as given by (13). The com-
parison of these graphs illustrates the “idealizing nature” of using the delta
function in modeling applications. [The solution of problem (14) is outlined in
the Exercises.]

The Impulse Response and the System Transfer Function
The formal use of the delta function as an impulsive source leads to the fact
that the impulse response and the system transfer function form a Laplace
transform pair. For example, consider the initial value problem

an
dny
dtn

+ an−1
dn−1y
dtn−1 + an−2

dn−2y
dtn−2 + · · · + a1

dy
dt

+ a0y = δ(t)

y(n−1)(0) = 0, y(n−2)(0) = 0, . . . , y′(0) = 0, y(0) = 0,

(15)

where we use the delta function to model an impulsive nonhomogeneous term.
The solution of (15) is the impulse response of an nth order linear system.

Taking Laplace transforms of (15) and using equation (8), we find

(ans
n + an−1s

n−1 + an−2s
n−2 + · · · + a1s+ a0)Y (s) = 1,

and therefore

Y (s) = 1

ans
n + an−1s

n−1 + an−2s
n−2 + · · · + a1s+ a0

. (16)

The right-hand side of equation (16) is the Laplace transform of the impulse
response and is equal to the system transfer function.

E X E R C I S E S

1. Evaluate

(a)
∫ 3

0
(1+ e−t)δ(t− 2)dt (b)

∫ 1

−2
(1+ e−t)δ(t− 2)dt

(c)
∫ 2

−1

[
cos 2t

te−t

]
δ(t)dt (d)

∫ 2

−3
(e2t + t)

⎡
⎢⎣

δ(t+ 2)

δ(t− 1)

δ(t− 3)

⎤
⎥⎦ dt

2. Let f (t) be a function defined and continuous on 0 ≤ t < ∞. Determine

f ∗ δ =
∫ t

0
f (t− λ)δ(λ) dλ.

3. Determine a value of the constant t0 such that
∫ 1
0 sin

2[π(t− t0)]δ(t− 1
2 )dt = 3

4 .

4. If
∫ 5
1 t

nδ(t− 2)dt = 8, what is the exponent n?

5. Sketch the graph of the function f (t) defined by f (t) = ∫ t
0 δ(λ − 1) dλ,0 ≤ t < ∞. Can

the graph obtained be characterized in terms of a Heaviside step function?
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6. Sketch the graph of the function g(t) that is defined by g(t) = ∫ t
0

∫ λ

0 δ(σ − 1)dσ dλ,

0 ≤ t < ∞.

7. Sketch the graph of the function k(t) = ∫ t
0 [δ(λ − 1) − δ(λ − 2)] dλ,0 ≤ t < ∞. Can

the graph be characterized in terms of a Heaviside step function or Heaviside step
functions?

8. The graph of the function g(t) = ∫ t
0 e

αtδ(t− t0)dt,0 ≤ t < ∞ is shown. Determine the
constants α and t0.

e–2

2
t

g(t)

Figure for Exercise 8

Exercises 9–11:

In each exercise, a function g(t) is given.

(a) Solve the initial value problem y′ − y = g(t), y(0) = 0, using the techniques devel-
oped in Chapter 2.

(b) Use Laplace transforms to determine the transfer function φ(t),

φ′ − φ = δ(t), φ(0) = 0.

(c) Evaluate the convolution integral φ ∗ g = ∫ t
0 φ(t− λ)g(λ) dλ, and compare the result-

ing function with the solution obtained in part (a).

9. g(t) = h(t) 10. g(t) = et 11. g(t) = t

Exercises 12–20:

Solve the given initial value problem, in which inputs of large amplitude and short
duration have been idealized as delta functions. Graph the solution that you obtain on
the indicated interval. (In Exercises 19 and 20, plot the two components of the solution
on the same graph.)

12. y′ + y = 2+ δ(t− 1), y(0) = 0, 0 ≤ t ≤ 6

13. y′ + y = δ(t− 1) − δ(t− 2), y(0) = 0, 0 ≤ t ≤ 6

14. y′′ = δ(t− 1) − δ(t− 3), y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 6

15. y′′ + 4π2y = 2πδ(t− 2), y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 6

16. y′′ − 2y′ = δ(t− 1), y(0) = 1, y′(0) = 0, 0 ≤ t ≤ 2

17. y′′ + 2y′ + 2y = δ(t− 1), y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 6

18. y′′ + 2y′ + y = δ(t− 2), y(0) = 0, y′(0) = 1, 0 ≤ t ≤ 6

19.
d
dt

[
y1
y2

]
=

[
1 1

1 1

][
y1
y2

]
+ δ(t− 1)

[
1
0

]
,

[
y1(0)

y2(0)

]
=

[
0

0

]
, 0 ≤ t ≤ 2

20.
d
dt

[
y1
y2

]
=

[
2 1

0 1

][
y1
y2

]
+

[
0

1

]
− δ(t− 1)

[
1

0

]
,

[
y1(0)

y2(0)

]
=

[
0

0

]
, 0 ≤ t ≤ 2
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PROJECTS

Project 1: Periodic Pinging of a Spring-Mass System

In Chapter 3, we considered the response of a spring-mass system to a periodic applied
force. In particular, we saw that the solution of the initial value problem

y′′ + ω2
0y = F cosω1t, y(0) = 0, y′(0) = 0

has an envelope that grows linearly with time when ω1 = ω0. When ω1 �= ω0, on the other
hand, the solution envelope remains bounded with time.

Suppose that, instead of applying a continuous force, we ping the spring-mass sys-
tem periodically. In other words, we apply a force of very short duration at equally
spaced time intervals. Can we achieve an analogous resonant growth in the solution
envelope if the time interval between pings is properly chosen?

Consider the initial value problem

y′′ + ω2
0y = F

∞∑
m=1

δ(t−mT), y(0) = 0, y′(0) = 0,

where we use the delta function to model applied pings of short duration. The positive
constant T represents the time interval between successive pings.

1. Solve the initial value problem using Laplace transforms. Assume that formal ma-
nipulations, such as interchanging the order of inverse Laplace transformation and
infinite summation, are valid.

2. Consider the case where the time interval is T = 2π/ω0. In this case, the interval
between pings equals the resonant period of the vibrating system. Discuss the qual-
itative behavior of the solution. Does the solution envelope exhibit some form of
resonant growth? As a specific case, assume ω0 = 2π and F = 2π . Plot the solution
over the time interval 0 ≤ t < 10.

3. Now consider the case where T = π/ω0. (This interval between pings is half the reso-
nant period.) Again, assume that ω0 = 2π and F = 2π . Plot the solution over the time
interval 0 ≤ t < 10. Does the solution envelope remain bounded or grow with time?
Provide a physical rationale for the observed behavior of the solution.

Project 2: Curing Sick Fish

Assume that the tropical fish in a 100-gal aquarium have contracted an ailment and
that a soluble medication must be administered to combat the illness. The medicine is
packaged in 800-mg doses, and one dose is to be administered daily. Assume that the
following facts are known:

(i) A “well-stirred” approximation is valid; that is, the medicine dissolves and
disperses itself throughout the tank very rapidly.

(ii) The medicine loses potency at a rate proportional to the amount of medicine
present. In fact, the half-life of the medicine (the time span over which the
potency is reduced to one-half its initial strength) is one day.

(iii) In order to effectively combat the illness, the concentration of medicine in the
tank must be maintained at a level greater than or equal to 5 mg per gallon
for a period of 7 days.
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Let q(t) denote the amount of potent medicine (in milligrams) in the tank at time
t (in days). Assume that the illness is detected at time t = 0 and that the first dose of
medicine is administered at time t = 1. IfN doses are administered on consecutive days,
the problem to be solved is

q′(t) + kq(t) = 800
N∑
n=1

δ(t− n), q(0) = 0.

Because of the well-stirred assumption, we can use the delta function to model the
administration of each dose. Moreover, the concentration is c(t) = q(t)/100 mg/gal.

1. Determine the constant k and solve the initial value problem using Laplace trans-
forms.

2. Determine the minimum number of doses needed to effectively combat the ailment.

3. What would happen if we continued to administer the medicine (that is, if N became
arbitrarily large)? Would the maximum amount of medicine in the tank continue to
grow, or would q(t) undergo an initial transient phase and then settle into a periodic,
steady-state behavior as time increased?

4. Suppose we define

q(N) =
N∫

N−1
q(λ) dλ, N = 1,2,3, . . . .

Thus, q(N) is the average amount of medicine present in the tank during the Nth
day. Show, from the differential equation itself, that if q(t) does settle into a periodic
behavior as time increases, then

lim
N→∞

q(N) = 800
k

.

Project 3: Locating a Transmission Line Fault

Laplace transformation is an operational tool that can be used to map a given problem
into a simpler “transformed problem.” We have seen how problems involving ordinary
differential equations can be transformed into problems involving simpler algebraic
equations. We now consider a problem where Laplace transforms can be used to trans-
form a problem involving partial differential equations into a simpler problem involving
ordinary differential equations. The steps outlined in Figure 5.1 remain the same; we
first solve this simpler problem and then use the inverse Laplace transform to find the
desired solution.

The problem considered is a simple application of the idea of echo location. Know-
ing how fast sound travels in air, we can determine the distance to a reflection point
by measuring the time separation between when a sound is emitted and when its echo
is heard. This basic idea can be used to determine where a transmission line fault or
disruption is located.

A transmission line is an example of a distributed network. A transmission line is
unlike the networks considered earlier in that the voltage and current are functions of
both space and time. Consider Figure 5.24, where the transmission line is represented
by two parallel cables. The variable x measures distance along the line, with a voltage
source or generator positioned at x = 0 and the fault (assumed to be an open circuit)
located at x = l. We assume that the location of the fault is unknown; our goal is to locate
it by sending a short pulse down the line and measuring the two-way transit time—the
time it takes for the pulse reflected by the fault to return to the source.

As shown in Figure 5.24, we represent the voltage across the line and the current
along the line at position x and time t by v(x, t) and i(x, t), respectively. The voltage
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eg(t)

Rg

~

x = 0 x = l

+

–

i(x, t)

v(x, t)

FIGURE 5.24

A transmission line network. A voltage generator is connected at x = 0, and
an open circuit is assumed to exist at the unknown fault location, x = l.

generator is assumed to have an internal resistance Rg. Figure 5.25 depicts a snapshot
of a differential transmission line segment taken at some time t. As the figure indicates,
the transmission line itself is characterized by a series inductance L per unit length and a
shunt capacitanceC per unit length. To determine how the transmission line voltage and
current behave as functions of space and time, we apply Kirchhoff’s voltage and current
laws to this differential segment of line. The voltage drop across the inductance is

L
∂i(x, t)

∂t
dx,

while the current flow through the capacitance is

C
∂v(x, t)

∂t
dx.

v(x, t)

L dx+

+ –

–

+

–

Cdx

i(x, t) i(x + dx, t)

v(x + dx, t)

x x + dx

FIGURE 5.25

Differential transmission line segment equivalent circuit.

If we apply Kirchhoff’s voltage law to the circuit in Figure 5.25, we obtain

v(x, t) − L
∂i(x, t)

∂t
dx− v(x+ dx, t) = 0.

Similarly, applying Kirchhoff’s current law leads to

i(x, t) − C
∂v(x, t)

∂t
dx− i(x+ dx, t) = 0.

If we divide by dx and let dx → 0, we obtain a pair of partial differential equations

∂v(x, t)
∂x

= −L ∂i(x, t)
∂t

∂i(x, t)
∂x

= −C∂v(x, t)
∂t

.

(1)

We assume that the transmission line is quiescent for t ≤ 0. That is, we assume

i(x,0) = 0, v(x,0) = 0, 0 ≤ x ≤ l. (2)
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At time t = 0, the voltage generator is turned on, emitting a signal eg(t), t > 0. Applying
Kirchhoff’s voltage law at the generator leads to

eg(t) − i(0, t)Rg − v(0, t) = 0, t > 0. (3)

Lastly, the assumption that an open circuit exists at fault location x = l leads us to the
constraint

i( l, t) = 0, t > 0. (4)

Equations (1)–(4) constitute the mathematical problem of interest. We are free to
select the generator voltage eg(t). Our goal is to determine a formula for v(0, t), t > 0. As
we will see, this formula contains l as a parameter. Since v(0, t) is a quantity that can be
measured, we will use a voltage measurement to determine the distance l to the fault.
Once the location of the fault is known, appropriate repairs can be made.

Since 0 < t < ∞ is the time interval of interest, we can define the Laplace trans-
forms:

V(x, s) ≡
∫ ∞

0
v(x, t)e−stdt, I(x, s) ≡

∫ ∞

0
i(x, t)e−stdt. (5)

In (5), the variable x is treated as a parameter.

1. Apply the Laplace transform (5) to both sides of equations (1)–(4). Assume that the
order of operations can be interchanged. For example,∫ ∞

0

∂v(x, t)
∂x

e−stdt = ∂

∂x

[∫ ∞

0
v(x, t)e−stdt

]
= ∂V(x, s)

∂x
.

Show that an application of the Laplace transform leads to the following transformed
problem:

∂V(x, s)
∂x

= −sLI(x, s) (6a)

∂I(x, s)
∂x

= −sCV(x, s) (6b)

Eg(s) − I(0, s)Rg = V(0, s) (6c)

I(l, s) = 0, (6d)

where Eg(s) denotes the Laplace transform of eg(t).
Note that problem (6) is, in fact, simpler. The only differentiation performed

in (6) is with respect to the spatial variable x. If we view the transform variable s
as a parameter, then equations (6a)–(6b) are essentially a linear system of ordinary
differential equations. A problem involving partial differential equations has been
transformed into one that de facto involves only ordinary differential equations. Note
that problem (6) is not an initial value problem. It is a two-point boundary value
problem; the spatial domain is 0 ≤ x ≤ l, and the supplementary conditions (6c)–(6d)
are prescribed at the two endpoints.

2. Obtain the general solution of equations (6a)–(6b), viewed as a linear system of or-
dinary differential equations. Note that since transform variable s is being viewed
as a parameter, the two arbitrary constants appearing in the general solution will
generally be functions of s.

The quantity
√
L/C has the dimensions of resistance; it is called the character-

istic impedance of the transmission line and is often denoted by the symbol Z0.
Assume that Rg = Z0. When this condition holds, the voltage generator is said to be
“matched to the transmission line.” Impose constraints (6c)–(6d) and show that

V(0, s) = Eg(s)

2

[
1+ e−s(2l

√
LC)

]
. (7)
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3. Determine v(0, t), t > 0 by computing the inverse Laplace transform of (7). The prod-
uct l

√
LC has the dimensions of time. Assume that the generator voltage eg(t) is a very

short pulse, say

eg(t) =
{
10, 0 < t ≤ 0.1
0, 0.1 < t < ∞,

and that l
√
LC = 5. Graph v(0, t) as a function of time t for t > 0.

Explain the physical significance of the two terms comprising v(0, t). Suppose,
for example, we know the properties of the transmission line; specifically, suppose
we know L and C and, therefore,

√
LC. Explain how your solution can be used to

determine the unknown distance l.
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6C H A P T E R

Nonlinear Systems

C H A P T E R O V E R V I E W

6.1 Introduction

6.2 Equilibrium Solutions and Direction Fields

6.3 Conservative Systems

6.4 Stability

6.5 Linearization and the Local Picture

6.6 Two-Dimensional Linear Systems

6.7 Predator-Prey Population Models

6.1 Introduction
In this chapter, we consider systems of nonlinear differential equations

y′
1 = f1(t, y1, y2, . . . , yn)

y′
2 = f2(t, y1, y2, . . . , yn)

...

y′
n = fn(t, y1, y2, . . . , yn), a < t < b.

(1)

To formulate an initial value problem, we specify n initial conditions

y1(t0) = y01, y2(t0) = y02, . . . , yn(t0) = y0n, (2)

where t0 is some point belonging to the interval a < t < b. The special case of
n = 1 reduces to the scalar nonlinear problem y′ = f (t, y), y(t0) = y0, treated in
Chapter 2.
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The Vector Form for a Nonlinear System
We can express the nonlinear system (1) in a compact fashion using vector
notation. In particular, define the vector functions

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ , f(t, y) =

⎡
⎢⎢⎢⎢⎣
f1(t, y1, y2, . . . , yn)

f2(t, y1, y2, . . . , yn)
...

fn(t, y1, y2, . . . , yn)

⎤
⎥⎥⎥⎥⎦ , y0 =

⎡
⎢⎢⎢⎢⎢⎣
y01
y02
...

y0n

⎤
⎥⎥⎥⎥⎥⎦ .

With this notation, we can write the initial value problem as

y ′(t) = f(t, y(t)), a < t < b

y(t0) = y0.
(3)

The linear systems considered in Chapter 4 correspond to a special case of
equation (3) where f(t, y) = A(t)y+ g(t).

Autonomous Systems
An important special case occurs when none of the n functions appearing on
the right-hand side of system (1) is an explicit function of the independent
variable t. In this case, system (1) has the form

y′
1 = f1(y1, y2, . . . , yn)

y′
2 = f2(y1, y2, . . . , yn)

...

y′
n = fn(y1, y2, . . . , yn).

(4)

System (4) is called an autonomous system. In the autonomous case, initial
value problems have the form

y ′ = f(y)

y(t0) = y0.
(5)

An important feature of solutions of autonomous systems is the nature
of their dependence on the independent variable t and the initial value t0. In
Section 2.5, we argued that the solution of a scalar autonomous equation is a
function of the time difference t− t0; whatmatters is the value of time tmeasured
relative to the starting time t0. The same basic argument can be applied to the
autonomous system (5), showing that solutions are functions of the difference
variable t− t0.

Two-Species Population Models
Modeling the interaction of different species of organisms is important in bio-
logical and ecological studies. Consider two species coexisting in some confined
environment, say a lake or an island. In some cases, the two species may in-
teract benignly with each other except for the fact that they both compete for
the same limited food supply. In other cases, one species may act as a predator
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and depend on the second species (the prey) as its food supply. Not surpris-
ingly, these two models are referred to as the competing species model and the
predator-prey model, respectively.

The ideas underlying the Verhulst population model discussed in Section
2.8 can be extended to describe two-species interactions. We now have two
dependent variables, the populations P1(t) and P2(t), and their interaction is
often modeled by the autonomous nonlinear system

P ′
1 = r1(1− α1P1 − β1P2)P1

P ′
2 = r2(1− β2P1 − α2P2)P2,

(6)

where the constants r1, r2, α1, and α2 are positive. The relative birth rates per
unit population are r1(1− α1P1 − β1P2) and r2(1− β2P1 − α2P2), respectively.

The nonlinear terms having β1 and β2 as coefficients are the interaction
terms that couple population dynamics. When β1 and β2 are positive, an in-
crease in either population decreases the relative birth rate of both populations,
since any population increase puts additional stress on the available resources
needed by both. If β1 and β2 are both zero in equation (6), then the two popula-
tions evolve independently of each other; in fact, the two differential equations
uncouple, and each population satisfies a separate logistic equation of the type
discussed in Section 2.8.

We will treat the predator-prey model in Section 6.7. For now, we leave it
as an exercise for you to decide how the competing species model (6) should
be modified if one population, say P1, is a population of predators that depends
on the second population, P2, for its food supply.

The Pendulum
Some problems, such as the motion of the pendulum in Figure 6.1, give rise
to second order scalar nonlinear differential equations. Such equations can be
recast as first order nonlinear systems and studied as such; this will be our
approach in the present chapter.

�

Pivot O

l

mg sin � Mass
m

Weight
mg

FIGURE 6.1

The pendulum.

Consider the pendulum shown in Figure 6.1. A mass m is attached to the
end of a rigid rod of length l. We neglect the weight of the rod and assume the
pivot is frictionless. Because of the constraining action of the rod, the (assumed
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planar) motion of the pendulum mass occurs on the circumference of a circle
of radius l centered at the pivot.

The equation of motion for the pendulum can be obtained by equating the
sum of the moments about pivot O to the product of the pendulum’s moment
of inertia and angular acceleration. The resulting formula,∑

MO = IOα,

can be viewed as a rotational analog of Newton’s second law ofmotion, F = ma.
The moment of inertia of the pendulum about pivot O is ml2. With the

counterclockwise direction taken as positive, the moment sum is∑
MO = −mgl sin θ,

while the angular acceleration is α = θ ′′. Therefore, we obtain −mgl sin θ =
ml2θ ′′, or

θ ′′ + g
l
sin θ = 0. (7)

To study pendulum motion, we typically specify pendulum position and angu-
lar velocity at some initial time, say t = 0. Nonlinear differential equation (7),
together with the initial conditions θ(0) = θ0, θ

′(0) = θ ′
0, forms the initial value

problem of interest.
We can recast this initial value problem as an initial value problem for a

first order nonlinear system by using the ideas introduced in Section 4.2 for
linear problems. In particular, let y1(t) = θ(t), y2(t) = θ ′(t), and

y(t) =
[
y1(t)

y2(t)

]
.

Under this change of variables, we have

y′
1 = θ ′ = y2 and y′

2 = θ ′′ = −g
l
sin θ = −g

l
sin y1.

Therefore, equation (7) can be rewritten as the first order nonlinear system

y′
1 = y2

y′
2 = −g

l
sin y1.

Note that this first order system is autonomous. In vector form, the associated
initial value problem is

y ′ = f(y), y(0) = y0,

where

f(y) =
⎡
⎢⎣ y2

−g
l
sin y1

⎤
⎥⎦ , y0 =

[
θ0

θ ′
0

]
.

Being able to rewrite an initial value problem for a higher order scalar
differential equation as an initial value problem for a first order system has
several important consequences. For example, in Theorem 6.1 we give the ba-
sic existence-uniqueness theory for first order nonlinear systems; this theory
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generalizes the scalar results of Section 2.5 in much the same way as Theorem
4.1 generalized the scalar results of Section 2.1 to linear systems. Since systems
of higher order nonlinear differential equations can be recast as first order
nonlinear systems, Theorem 6.1 will accommodate initial value problems for
these scalar higher order equations as well.

In many cases, it is not possible to explicitly solve a nonlinear differential
equation, and numerical methods are needed to obtain quantitative informa-
tion about the solutions. Chapter 7 discusses the development of numerical
algorithms, building on the ideas introduced in Section 2.10 and Section 4.9.

Existence and Uniqueness
Consider the initial value problem

y ′ = f(t, y), y(t0) = y0, (8)

where

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ and f(t, y) =

⎡
⎢⎢⎢⎢⎣
f1(t, y1, y2, . . . , yn)

f2(t, y1, y2, . . . , yn)
...

fn(t, y1, y2, . . . , yn)

⎤
⎥⎥⎥⎥⎦ . (9)

Because there are n dependent variables, we consider initial value problem (8)
in the (n+ 1)-dimensional open rectangular regionR defined by the inequalities

a < t < b, α1 < y1 < β1, α2 < y2 < β2, . . . , αn < yn < βn. (10)

Assume the initial condition point (t0, y0) lies in the region R. Theorem 6.1
asserts that continuity of the n component functions of f(t, y) in equation (9),
along with continuity of the n2 partial derivatives

∂f1(t, y1, y2, . . . , yn)
∂y1

,
∂f1(t, y1, y2, . . . , yn)

∂y2
, · · · , ∂f1(t, y1, y2, . . . , yn)

∂yn
∂f2(t, y1, y2, . . . , yn)

∂y1
,

∂f2(t, y1, y2, . . . , yn)
∂y2

, · · · , ∂f2(t, y1, y2, . . . , yn)
∂yn

...
...

∂fn(t, y1, y2, . . . , yn)
∂y1

,
∂fn(t, y1, y2, . . . , yn)

∂y2
, · · · , ∂fn(t, y1, y2, . . . , yn)

∂yn
,

(11)

is sufficient to ensure the existence of a unique solution of the initial value
problem on some interval c < t < d containing t0. As in the scalar case, how-
ever, Theorem 6.1 gives no insight into the size of the interval c < t < d.

Theorem 6.1
Consider the initial value problem

y ′ = f(t, y), y(t0) = y0,

where the initial value point (t0, y0) lies in the region R defined by the
inequalities in (10). Let f(t, y) and the partial derivatives in (11) be con-
tinuous in R. Then the initial value problem has a unique solution y(t)
that exists on some t-interval (c,d) containing t0.
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The following example illustrates the application of Theorem 6.1 to a pen-
dulum problem similar to the one shown in Figure 6.1.

E X A M P L E

1 Consider the following initial value problem for a forced pendulum:

mlθ ′′ +mg sin θ = F0 sinω t

θ(0) = 0, θ ′(0) = 0.
(12)

This equation describes a sinusoidal tangential force, having amplitude F0 and
radian frequency ω, applied to the pendulum. At time t = 0, the pendulum is in
the vertically downward position with no initial angular velocity. What can we
conclude from Theorem 6.1 about solutions of (12)?

Solution: In order to apply Theorem 6.1, wewrite the second order differential
equation as a first order system. Let y1(t) = θ(t), y2(t) = θ ′(t), and

y(t) =
[
y1(t)

y2(t)

]
.

We obtain the first order system y ′ = f(t, y), where

f(t, y) =
⎡
⎢⎣ y2

−g
l
sin y1 + F0

ml
sinω t

⎤
⎥⎦ .

According to Theorem 6.1, we need to examine continuity of the functions

f1(t, y1, y2) = y2 and f2(t, y1, y2) = −g
l
sin y1 + F0

ml
sinω t

and the four partial derivatives

∂f1(t, y1, y2)
∂y1

= 0,
∂f1(t, y1, y2)

∂y2
= 1,

∂f2(t, y1, y2)
∂y1

= −g
l
cos y1,

∂f2(t, y1, y2)
∂y2

= 0.

The functions f1 and f2, along with the four partial derivatives, are continuous
for all values (t, y1, y2) in ty-space. Therefore, applying Theorem 6.1, we can
take R to be any open three-dimensional rectangular region in ty-space that
contains the initial condition point (t0, y0) = (0,0,0). Theorem 6.1 concludes
that a unique solution of the initial value problem (12) exists on some t-interval
containing t = 0. ❖

Example 1 not only illustrates the application of the existence-uniqueness
theorembut also highlights its shortcomings. The theorem concludes that there
is some t-interval of existence-uniqueness but, unlike the linear system case,
gives no insight into how large this interval might be. On the one hand, a the-
orem such as Theorem 6.1 that deals with a very general class of nonlinear
systems cannot be expected to do more; it cannot give precise results for par-
ticular cases. As shown in Chapter 2, nonlinear initial value problems can have
solutions exhibiting a wide variety of behavior. On the other hand, our everyday
experience with pendulums suggests that the particular initial value problem
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considered in Example 1 should have a unique solution on an arbitrarily large
t-interval; that is, we don’t expect such a mechanical system to behave catas-
trophically.

For initial value problems involving nonlinear systems, there are virtually
no techniques for finding explicit or implicit representations of solutions; we
must look for other ways to understand the behavior of these solutions. Our
attention, therefore, will be focused in two directions: on determining qualita-
tive information by graphicalmeans and on obtaining quantitative information
from numerical methods.

E X E R C I S E S

Exercises 1–9:

In each exercise,

(a) Rewrite the given nth order scalar initial value problem as y ′ = f(t, y), y(t0) = y0, by
defining y1(t) = y(t), y2(t) = y′(t), . . . , yn(t) = y(n−1)(t) and

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

yn(t)

⎤
⎥⎥⎥⎥⎦ .

(b) Compute the n2 partial derivatives ∂fi(t, y1, . . . , yn)/∂yj, i, j = 1, . . . ,n.

(c) For the systemobtained in part (a), determinewhere in (n+ 1)-dimensional ty-space
the hypotheses of Theorem 6.1 are not satisfied. In other words, at what points
(t, y1, . . . , yn), if any, does at least one component function fi(t, y1, . . . , yn) and/or
at least one partial derivative function ∂fi(t, y1, . . . , yn)/∂yj, i, j = 1, . . . ,n fail to be
continuous? What is the largest open rectangular region R where the hypotheses of
Theorem 6.1 hold?

1. y′′ + ty′ + 2y = 0, y(0) = 1, y′(0) = 2

2. y′′ + ety = ln | t |, y(−1) = 0, y′(−1) = −1
3. y′′ + ty = sin y′, y(0) = 0, y′(0) = 1

4. y′′ + (y′)3 + y1/3 = tan(t/2), y(1) = 1, y′(1) = −2
5. ty′′ + 1

1+ y+ 2y′ = e−t, y(2) = 2, y′(2) = 1

6. y′′′ + t2y′′ = sin t, y(1) = 0, y′(1) = 1, y′′(1) = −1
7. y′′′ + y′ + y2 = 0, y(−1) = 0, y′(−1) = 1, y′′(−1) = 0

8. y′′′ + cos(ty′) = t(y′′)2, y(0) = 1, y′(0) = 1, y′′(0) = −2

9. y′′′ + 2t1/3

(y− 2)(y′′ + 2)
= 0, y(0) = 0, y′(0) = 2, y′′(0) = 2

Exercises 10–13:

In each exercise, an initial value problem for a first order nonlinear system is given.
Rewrite the problem as an equivalent initial value problem for a higher order nonlinear
scalar differential equation.

10.
d
dt

[
y1
y2

]
=

[
y2

t cos2(y2) − 3y1 + t4

]
,

[
y1(2)

y2(2)

]
=

[
1

−1

]
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11.
d
dt

[
y1
y2

]
=

[
y2

y2 tan(y1) + ey2

]
,

[
y1(0)

y2(0)

]
=

[
0

1

]

12.
d
dt

⎡
⎢⎢⎣
y1
y2
y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y2
y3

y1y2 + y23

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
y1(−1)
y2(−1)
y3(−1)

⎤
⎥⎥⎦ =

⎡
⎢⎣

−1
2

−4

⎤
⎥⎦

13.
d
dt

⎡
⎢⎢⎣
y1
y2
y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y2
y3√

y2y3 + t2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎣
y1(1)

y2(1)

y3(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
1
2

3

⎤
⎥⎥⎦

14. Consider the initial value problem

d
dt

[
y1

y2

]
=

[
5
4y

1/5
1 + y22
3y1y2

]
,

[
y1(0)

y2(0)

]
=

[
0

0

]
.

For the given autonomous system, the two functions f1(y1, y2) = 5
4y

1/5
1 + y22 and

f2(y1, y2) = 3y1y2 are continuous functions for all (y1, y2).

(a) Show by direct substitution that

y1(t) =
{
0, −∞ < t ≤ c,

(t− c)5/4, c < t < ∞,
y2(t) = 0

is a solution of this initial value problem on−∞ < t < ∞ for any positive constant c.

(b) Since c is an arbitrary positive constant, the solution of the given initial value
problem is clearly not unique. Does this example contradict Theorem 6.1? Explain
your answer.

15. Consider the initial value problem y′′ + y2 = t, y(0) = y0, y
′(0) = y′

0. Can Laplace
transforms be used to solve this initial value problem? Explain your answer.

Exercises 16–17:

Give an example of a two-dimensional nonlinear first order system for which the hy-
potheses of Theorem 6.1 are not satisfied at precisely the specified points in ty1y2-space.

16. The points satisfying 1+ t+ y1 + 3y2 = 0

17. The points (t, y1, y2) = (1,nπ,2), n = 0, ±1, ±2, . . .

18. Nonlinear Spring-Mass Systems Hooke’s law assumes the restoring force exerted
by a spring under tension or compression is proportional to the displacement (the
distance stretched or foreshortened). This assumption cannot be valid for large
displacements since there are limits to the amount a spring can be stretched or
compressed. Suppose we assume that the restoring force FR(x) is related to spring
displacement x by

FR(x) = −2kδ
π

tan
(πx
2δ

)
.

In this model, the restoring force has vertical asymptotes at x = ±δ; the value δ

represents the maximum amount the spring can be stretched or compressed. Con-
sider the figure, illustrating a mass m attached to such a spring. Assume that the
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mass moves on a frictionless horizontal surface and that the spring has unstretched
length l. Newton’s second law of motion leads to the nonlinear differential equation

mx′′ + 2kδ
π

tan
(πx
2δ

)
= 0. (13)

mm

l l + x(t)

(a) Unstretched state

Nonlinear
spring Mass

(b) Spring stretched
a distance x(t)

Figure for Exercise 18

(a) Consider tan(πx/2δ) as a function of x defined on−δ < x < δ. Expand this func-
tion in aMaclaurin series. Show that if we assume |πx/2δ| is small and approximate
tan(πx/2δ) by the first nonvanishing term in this series, we obtain the linear differ-
ential equation found previously when we assumed Hooke’s law to be valid.

(b) Show that if the first two nonvanishing terms of the Maclaurin expansion are
retained, we obtain the differential equation

mx′′ + k
[
x+ 1

3

( π

2δ

)2
x3

]
= 0. (14)

Equation (14) is often used to model the onset of nonlinear effects and is referred
to as modeling a spring-mass system with cubic nonlinearity.

(c) Rewrite differential equations (13) and (14) as equivalent first order systems.

(d) For each nonlinear system obtained in part (c), determine the points, if any,
where the hypotheses of Theorem 6.1 are not satisfied.

19. Chemical Reactions Nonlinear systems often arise when chemical reactions are
modeled. One example is described in the reaction diagram in the figure. In the
reaction shown, substance A interacts reversibly with enzyme E to form complex
C. Complex C, in turn, decomposes irreversibly into the reaction product B and the
original enzyme E. The reaction rates k1, k

′
1 and k2 (assumed to be constant) are

shown in the figure. With lowercase symbols used to designate concentrations, the
governing differential equations are

da
dt

= −k1ae+ k′
1c

db
dt

= k2c

dc
dt

= k1ae− (k′
1 + k2)c

de
dt

= −k1ae+ (k′
1 + k2)c.

(15)

Typical initial conditions are a(0) = a0, b(0) = 0, c(0) = 0, e(0) = e0.

A+ E

k1−→
k
′
1←−

C C
k2−→ B+ E

Figure for Exercise 19
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(a) Show that the differential equations (15) imply that d[c(t) + e(t)]/dt = 0, which
implies that c(t) + e(t) = c(0) + e(0) = e0.

(b) Use the observation made in part (a) to eliminate e(t) in (15) and obtain a two-
dimensional nonlinear system for the dependent variables a(t) and c(t).

(c) For the two-dimensional system obtained in part (b), at what points in tac-space
are the hypotheses of Theorem 6.1 satisfied?

6.2 Equilibrium Solutions and Direction Fields
In this section, we extend the concepts of direction fields and equilibrium solu-
tions to systems of autonomous equations. This extension provides a large-scale
overview of the qualitative behavior of solutions of autonomous systems.

Equilibrium Solutions
Consider a system of n autonomous differential equations

y′
1 = f1(y1, y2, . . . , yn)

y′
2 = f2(y1, y2, . . . , yn)

...

y′
n = fn(y1, y2, . . . , yn)

or, in vector terms,

y ′ = f(y). (1)

Let ye be a constant (n× 1) vector such that f(ye) = 0. The constant vector-
valued function y(t) = ye, −∞ < t < ∞ is called an equilibrium solution of
the autonomous system (1).

E X A M P L E

1 Find the equilibrium solutions for the pendulum equation

y′
1 = y2

y′
2 = −g

l
sin y1.

Solution: In vector form, the equation is y ′ = f(y), where

y =
[
y1
y2

]
and f(y) =

⎡
⎢⎣ y2

−g
l
sin y1

⎤
⎥⎦ . (2)

From (2), the equation f(y) = 0 requires y2 = 0 and y1 = mπ ,m = 0,±1,±2, . . . .
Therefore, the equilibrium solutions are

ym(t) =
[
mπ

0

]
, m = 0, ±1, ±2, . . . .

These constant solutions of the pendulum equation have a simple physical
interpretation. Recall that y1 = θ and y2 = θ ′ (see Figure 6.1). Thus, for an even
value of m, the pendulum is at rest (since it has zero angular velocity) and is
positioned so that it hangs downward. For an odd value ofm, the pendulum is
also at rest, but it is positioned in the vertically upward position. ❖
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E X A M P L E

2 Find the equilibrium solutions of the competing species model

P ′
1 = r1(1− α1P1 − β1P2)P1

P ′
2 = r2(1− β2P1 − α2P2)P2.

Solution: Setting both right-hand sides simultaneously equal to zero leads to
four equilibrium solutions. One of the equilibrium solutions is the trivial one,

(i) P1 = P2 = 0, or P(e)
1 = 0.

[This equilibrium solution corresponds to the absence of both species from the
colony.]

Two additional equilibrium solutions are

(ii) P1 = 0, P2 = 1
α2

, or P(e)
2 =

⎡
⎢⎣
0

1
α2

⎤
⎥⎦

(iii) P1 = 1
α1

, P2 = 0, or P(e)
3 =

⎡
⎢⎣
1
α1

0

⎤
⎥⎦ .

[Equilibrium solutions (ii) and (iii) correspond to the absence of one species.
The remaining species has the equilibrium value of the corresponding scalar
logistic equation (see Section 2.8).]

If neither P1 nor P2 is zero, we obtain a fourth equilibrium solution,

(iv) P1 = α2 − β1

α1α2 − β1β2
, P2 = α1 − β2

α1α2 − β1β2
, or P(e)

4 =

⎡
⎢⎢⎢⎣

α2 − β1

α1α2 − β1β2

α1 − β2

α1α2 − β1β2

⎤
⎥⎥⎥⎦ .

In (iv), we tacitly assume that α1α2 − β1β2 �= 0. Since populations are nonneg-
ative quantities, equilibrium solution (iv) is physically meaningful only if the
constants α1, α2, β1, and β2 are such that each component of P

(e)
4 is positive. In

that case, equilibrium solution (iv) corresponds to a state where both popula-
tions are present and coexist at constant levels within the colony. ❖

Two-Dimensional Autonomous Systems and the Phase Plane
We now consider a special case—the two-dimensional autonomous system

y′
1 = f1(y1, y2)

y′
2 = f2(y1, y2).

(3)

The qualitative behavior of solutions of system (3) can be described and stud-
ied graphically. Solution trajectories are plotted in a two-dimensional setting
known as the phase plane.

The phase plane was introduced in Section 4.5 for studying linear homo-
geneous constant coefficient systems. In Example 3, we review the main ideas.
As noted in Section 4.5, it is natural to graph solutions of a scalar equation
y′ = f (t, y) in the two-dimensional ty-plane. However, graphing solution curves
y(t) of system (3) requires three-dimensional ty1y2-space. As an alternative, we
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can view the solution components y1(t) and y2(t) as defining a parameterized
curve in the y1y2-plane, or phase plane.

E X A M P L E

3 Consider the initial value problem

y′
1 = −y1 − 6y2
y′
2 = 6y1 − y2
y1(0) = 1, y2(0) = 0.

In matrix terms, this autonomous initial value problem has the form y ′ = Ay,
y(0) = y0, where

y =
[
y1
y2

]
, A =

[−1 −6
6 −1

]
, and y0 =

[
1

0

]
. (4)

The solution of initial value problem (4) is[
y1(t)

y2(t)

]
=

[
e−t cos 6t

e−t sin 6t

]
. (5)

Figure 6.2(a) shows the solution graphed in three-dimensional ty1y2-space. The
graph evolves in a “shrinking” helical or screwlike manner as time increases.

❖

The two-dimensional phase-plane representation is found by graphing the
parameterized curve defined by (5). Figure 6.2(b) shows the graph of (5) for
0 ≤ t ≤ 3. The phase-plane graph is a spiral; it is simply the projection of the
three-dimensional “helical” trajectory of Figure 6.2(a) on the two-dimen-
sional y1y2-plane. As time increases, the solution point spirals counterclock-
wise inward toward the phase-plane origin (0, 0).

2 4

y2

y1

t

(a)

–0.8 –0.4 0.4 0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

y2

y1

(b)

FIGURE 6.2

(a) The solution of equation (4), graphed in ty1y2-space. (b) The solution of
equation (4) projected onto the y1y2-plane. The arrows show how the
phase-plane trajectory is traversed as time increases. Graph (b)
corresponds to what an observer would see standing behind the plane
t = 0 in graph (a) and looking in the direction of increasing t.
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Using the Phase Plane to Gather Qualitative Information
about Solutions
In studying the geometric aspects of two-dimensional systems, it is often de-
sirable to change the notation. In particular, we can drop the subscripts and
denote the dependent variables as x(t) and y(t). With this change of notation,
the general nonlinear autonomous two-dimensional system has the form

x′ = f (x, y)

y′ = g(x, y).
(6)

The phase plane is now simply the xy-plane.
As illustrated by Figure 6.2(b), we can think of the solution components

x(t) and y(t) as defining the coordinates of a point, (x(t), y(t)), that is moving
in the phase plane; we refer to this point as the solution point. [For equilib-
rium solutions, the components x(t) and y(t) are constant for all t. Therefore,
the solution point corresponding to an equilibrium solution is often called an
equilibrium point.] The plane curve traced out by a solution point is called a
solution curve. The question we now address is “What qualitative information
can we obtain about the motion of a solution point without actually solving the
system of differential equations?”

As we know from vector calculus, the vector v(t) given by

v(t) = x′(t)i+ y′(t)j (7)

is tangent to the solution curve at the point (x(t), y(t)) (see Figure 6.3). In par-
ticular, if we think of the solution point (x(t), y(t)) as moving along the solution
curve, then v(t) is the velocity vector and points in the direction of instanta-
neous motion at time t.
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v(t)

(x(t), y(t))

FIGURE 6.3

The solution point (x(t), y(t)) lies on a solution curve of system (6). The
velocity vector v(t) = x′(t)i+ y′(t)j is tangent to the solution curve at
(x(t), y(t)) and points in the direction the solution point is moving.

Suppose we select an arbitrary point in the phase plane, say (x, y). Assume
that a solution curve passes through this point at some time t = t; that is,

(x, y) = (x( t), y( t)).



404 CHAPTER 6 Nonlinear Systems

At the point (x, y), the velocity vector is given by

v = x′( t)i+ y′( t)j
= f (x, y)i+ g(x, y)j.

(8)

As illustrated in Figure 6.3, the vector v is tangent to the solution curve at (x, y)

and points in the direction of motion. Therefore, by simply evaluating the two
right-hand sides of system (6) at a point (x, y) in the phase plane, we can deduce
the direction of motion of the solution point at the instant it passes through
(x, y). In particular, we see from (8) that the slope m of the line tangent to the
solution curve at (x, y) is given by

m = g(x, y)

f (x, y)
, f (x, y) �= 0. (9)

[If f (x, y) = 0 but g(x, y) �= 0, then the solution curve has a vertical tangent at
the point (x, y). If the numerator and denominator both vanish, then (x, y) is
an equilibrium point.]

E X A M P L E

4 Consider the autonomous system

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

Let (x(t), y(t)) denote a solution curve in the phase plane. Determine the velocity
vector when the solution curve passes through the given point (x, y).

(a) (x, y) = (2,2) (b) (x, y) = (
1
2 ,

3
2

)
Solution: This system is the competing species autonomous system discussed
in Example 2, with the dependent variables renamed and specific values as-
signed to the constants.

(a) Since f (2,2) = −1 and g(2,2) = − 1
2 , the velocity vector at the point (2,2) is

v = −i− 1
2 j.

[At the instant a solution point passes through (2,2), it ismoving downward
and to the left. The slope of the line tangent to the phase-plane trajectory
at (2,2) is 1

2 .]

(b) At this point, f ( 12 ,
3
2 ) = 0 and g( 12 ,

3
2 ) = − 1

16 . Therefore, the velocity vector
at ( 12 ,

3
2 ) is

v = − 1
16 j.

[At the instant a solution point passes through ( 12 ,
3
2 ), it is moving vertically

downward.] ❖

Phase-Plane Direction Fields
Using equations (8) and (9), we can determine the tangent to a solution curve
at a point (x, y) in the phase plane. As in Example 4, we can also determine
the instantaneous direction of motion of the solution point when it passes
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through (x, y). We can use this information to deduce the qualitative behavior
of solutions.

A phase-plane direction field is constructed by first choosing a suitably
dense grid of sampling points in the phase plane. At each grid point, we draw a
small arrow, directed along the velocity vector at the grid point. In this way, we
generate a qualitative picture of how the solution pointmoves as time increases.
Figure 6.4 shows a direction field for the competing species system treated in
Example 4. In Figure 6.4, every arrow is drawn with the same length; this is
the construction referred to as a direction field. When the arrows at each phase-
plane point are drawn so that their lengths are proportional to the speed at
that point, the construction is referred to as a vector field. Since a vector field
contains more information, giving both magnitude and direction of velocity, it
might seem that such constructions would always be more desirable. However,
vector fields sometimes lead to information overload because the vector field
graphs may have intersecting arrows and be visually confusing.
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FIGURE 6.4

A portion of the direction field for the autonomous system discussed in
Example 4. The arrow at a grid point (x, y) indicates the direction of
motion of the solution point as it moves along a solution curve passing
through (x, y).

Figure 6.4 provides a good overview of the qualitative behavior of solutions
of the autonomous system discussed in Example 4. Recall that the variables x
and y correspond to the two populations P1 and P2. On the coordinate axes,
one or the other population is zero and the direction field arrows point toward
the single-species equilibrium points, (2,0) and (0, 32 ). Therefore, in the case
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where only one population is present in the colony, population tends toward the
appropriate nonzero equilibrium value, x = 2 or y = 3

2 , as time increases. In the
general case, where both populations are initially nonzero, the direction field
graphed inFigure 6.4 suggests that the populations tend toward the equilibrium
point (1,1) as time evolves.

Putting the Pieces Together
There are computer packages available that generate detailed direction fields
such as the one shown in Figure 6.4. However, it is often possible to combine,
by hand, the ideas discussed in this section and develop a less detailed phase-
plane picture that nevertheless displays the essential features of the system’s
behavior. For an illustration, consider the competing species model discussed
in Example 4,

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

(10)

First note that

f (x, y) = 1
2

(
1− 1

2x− 1
2y

)
x

vanishes on the phase-plane lines x = 0 and x+ y = 2. Likewise,

g(x, y) = 1
4

(
1− 1

3x− 2
3y

)
y

vanishes on the lines y = 0 and x+ 2y = 3. Such phase-plane curves, where one
of the right-side functions vanishes, are called nullclines. Equilibrium points
can occur only at a place where two nullclines intersect (although not every
intersection point leads to an equilibrium point). For autonomous system (10),
there are four equilibrium points:

(0,0), (2,0),
(
0, 32

)
, and (1,1).

The nullclines and equilibrium points for system (10) are shown in Fig-
ure 6.5(a). The nullclines divide the first quadrant of the phase plane into re-
gions where the functions f and g are either positive or negative. Figure 6.5(b)
shows the four phase-plane regions defined by the nullclines of system (10) and
the corresponding algebraic signs of f and g. From equation (8), we can see that
the signs of f and g determine the orientation of the direction field arrows. In
region 1, for instance, f > 0 and g > 0. Therefore, all the direction field arrows
in region 1 point upward and to the right.

Figure 6.6 shows, in schematic form, the general orientation of direction
field arrows in each of the four open regions. It also shows the orientation of the
direction field arrows on the nullclines; these arrows are either horizontal (if
f �= 0 and g = 0) or vertical (if f = 0 and g �= 0). The information in Figure 6.6 is
sufficient to deduce the general qualitative behavior of phase-plane trajectories.
For example, if x and y are both initially nonzero, then solutions will tend
toward the equilibrium state x = y = 1 as time increases.

While quite useful, a rough graph such as the one in Figure 6.6 may not be
detailed enough to yield a good qualitative picture of the phase-plane trajecto-
ries. The next example illustrates this point.
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y

x

1: f > 0, g > 0
2: f > 0, g < 0
3: f < 0, g < 0
4: f < 0, g > 0

f = 0

1

2 3

4

y

x

(1, 1)

(2, 0)(0, 0)

(0, )3
2

(a) (b)

g = 0

FIGURE 6.5

(a) The lines denote the nullclines for system (10). (b) The nullclines divide
the direction field of Figure 6.4 into regions where arrows all have the
same general orientation.

y

x

FIGURE 6.6

Along a nullcline, the arrows are either vertical or horizontal. In an open
region bounded by nullclines, the single arrow indicates the general
orientation of the solution curves in that region. This figure suggests that
any solution curve starting in one of the open regions will move toward the
equilibrium point (1,1).

E X A M P L E

5 Consider the pendulum equation treated in Example 1, where g/l = 1:

x′ = y

y′ = − sin x.

(a) Sketch the nullclines, as in Figure 6.5(a), marking the equilibrium points
with a heavy dot. Then, as in Figure 6.6, add arrows to indicate the flow of
solution curves. Does this sketch have enough detail to predict the qualita-
tive nature of phase-plane trajectories?

(continued)
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(continued)

(b) Using a computer, sketch a portion of the direction field for −8 ≤ x ≤ 8
and−6 ≤ y ≤ 6.Using your sketch, describe the twodifferent types of phase-
plane trajectories and give a physical interpretation for each type.
(Recall that x denotes angular displacement from the pendulum’s
downward-hanging equilibrium position and y denotes angular velocity.)

Solution:

(a) The nullclines consist of the x-axis and the infinite set of vertical lines
x = mπ ,m = 0,±1,±2, . . . . A portion of the phase plane is shown in Figure
6.7. This figure also shows the direction field arrows on the nullclines as
well as the general “sense of direction” arrows within the vertical phase-
plane strips. The arrows are vertical on the nullcline y = 0 (the x-axis) and
are horizontal on the nullclines x = mπ , m = 0, ±1, ±2, . . . . For gaining a
good qualitative picture of the phase-plane trajectories, however, this level
of description is inadequate.

y

(1, 1)

–2� 2�–� �
x

f = 0:
g = 0:

FIGURE 6.7

A sketch showing the main features of the direction field for the pendulum
equation in Example 5. Note that we cannot tell from this sketch whether a
solution curve passing through the point (1,1) will continue down until it
is below the x-axis or whether it will remain above the x-axis.

For example, consider a solution curve passing through the point (1,1).
As we see from Figure 6.7, the solution point is moving downward and to
the right when it passes through (1,1). But is the curve falling fast enough
that it will cross the x-axis and continue to move down but now to the
left? Or is its rate of descent slowing enough that it will intersect the line
x = π in the upper half of the phase plane and then move up and to the
right? We need a more detailed direction field in order to give a reasonable
assessment.

(b) Figure 6.8 presents a more detailed direction field plot. This plot indicates
that there are two basic types of trajectories. Near the x-axis, there appear
to be closed phase-plane trajectories; as time increases, the solution point
seems to make clockwise orbits around these closed curves. Far from the
x-axis, the trajectories no longer appear to be closed curves. Rather, they
appear to be undulating curves that are basically horizontally oriented and
that tend to become flatter as distance from the x-axis increases.
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FIGURE 6.8

A portion of the direction field for the pendulum equation in Example 5.
Some phase-plane trajectories appear to be closed curves, centered at
equilibrium points on the x-axis. Other trajectories appear to be
undulating curves where the solution point moves basically in one
direction (to the right above the x-axis and to the left below the x-axis). The
typical closed trajectory corresponds to a pendulum swinging back and
forth, motion in which the pendulum never reaches the vertically upward
position. The undulating trajectories correspond to a pendulum that
continues to rotate in one direction (counterclockwise if y = θ ′ is positive,
clockwise if y = θ ′ is negative). ❖

We can understand Figure 6.8 in terms of its physical interpretation. Recall
that x = θ represents the angular displacement of the pendulum from its down-
ward hanging equilibrium position and y = θ ′ represents the instantaneous an-
gular velocity of the pendulum. The closed orbits close to the x-axis therefore
correspond to motion in which the pendulum swings back and forth. For ex-
ample, consider a closed trajectory centered at the equilibrium point (0,0). On
such a trajectory, the maximum excursion of x = θ from zero is less than π .
This maximum displacement is reached when the trajectory intersects the x-
axis—that is, when angular velocity y is zero. In such a motion, the pendulum
never reaches the vertically upward position. It swings up to some maximum
angular displacement less than π and then swings back the same amount in the
other direction. The continual orbiting of the solution point around a closed
trajectory corresponds to this continual back-and-forth swing of the pendulum.

The horizontally configured undulating trajectories correspond to motion
in which the pendulum continually rotates about its pivot. In the upper half-
plane, y = θ ′ is positive and the pendulum is always rotating in the counter-
clockwise direction. In the lower half-plane, y = θ ′ is negative and the pendu-
lum is always rotating in the clockwise direction. Since y = θ ′ is never zero, the
pendulum never stops and consequently never changes direction.
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The pendulum is an example of a conservative system (that is, a system
in which energy is conserved). For such systems, and for a more general two-
dimensional class of autonomous systems known as Hamiltonian systems, we
can derive equations for the phase-plane trajectories.We consider such systems
in the next section.

E X E R C I S E S

Exercises 1–10:

Find all equilibrium points of the autonomous system.

1. x′ = −x+ xy

y′ = y− xy

2. x′ = y(x+ 3)

y′ = (x− 1)(y− 2)

3. x′ = (x− 2)(y+ 1)

y′ = x2 − 4x+ 3

4. x′ = xy− y+ x− 1

y′ = xy− 2y

5. x′ = x2 − 2xy

y′ = 3xy− y2
6. x′ = y2 − xy

y′ = 2xy+ x2

7. x′ = x2 + y2 − 8

y′ = x2 − y2
8. x′ = x2 + 2y2 − 3

y′ = 2x2 + y2 − 3

9. x′ = y− 1

y′ = xy+ x2

z′ = 2y− yz

10. x′ = z2 − 1

y′ = z− 2xz+ yz

z′ = −(1− x− y)2

Exercises 11–15:

Rewrite the given scalar differential equation as a first order system, and find all equi-
librium points of the resulting system.

11. y′′ + y+ y3 = 0 12. y′′ + eyy′ + sin2πy = 1

13. y′′ + 2y′

1+ y4
+ y2 = 1 14. y′′′ − y′′ + 2 sin y = 1

15. y′′′ − (y′)2 + 4− y2

2+ (y′)2
= 0

Exercises 16–19:

Use the information provided to determine the unspecified constants.

16. The system

x′ = x+ αxy+ β

y′ = γ y− 3xy+ δ

has equilibrium points at (x, y) = (0,0) and (2,1). Is (−2, −2) also an equilibrium
point?

17. The system

x′ = αx+ βxy+ 2

y′ = γ x+ δy2 − 1

has equilibrium points at (x, y) = (1,1) and (2,0).
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18. Consider the system

x′ = x+ αy3

y′ = x+ βy+ y4.

The slopes of the phase-plane trajectories passing through the points (x, y) = (2,1)
and (1, −1) are 1 and 0, respectively.

19. Consider the system

x′ = αx2 + βy+ 1

y′ = x+ γ y+ y2.

The slopes of the phase-plane trajectories passing through the points (x, y) = (1,1)
and (1, −1) are 0 and 4, respectively. The phase-plane trajectory passing through
the point (x, y) = (0, −1) has a vertical tangent.

20. Consider the system

x′ = x+ y2 − xyn

y′ = −x+ y−1.

The slope of the phase-plane trajectory passing through the point (x, y) = (1,2) is
1
6 . Determine the exponent n.

21. The scalar differential equation y′′ − y′ + 2y2 = α, when rewritten as a first order
system, results in a system having an equilibrium point at (x, y) = (2,0). Determine
the constant α.

22. For the given system, compute the velocity vector v(t) = x′(t)i+ y′(t)j at the point
(x, y) = (2,3).

(a) x′ = −x+ xy

y′ = y− xy

(b) x′ = y(x+ 3)

y′ = (x− 1)(y− 2)

(c) x′ = (x− 2)(y+ 1)

y′ = x2 − 4x+ 3

23. Let A be a (2× 2) constant matrix, and let (λ,u) be an eigenpair for A. Assume that
λ is real, λ �= 0, and

u =
[
u1
u2

]
.

Consider the phase plane for the autonomous linear system y ′ = Ay. We can define
a phase-plane line through the origin by the parametric equations x = τu1, y = τu2,
−∞ < τ < ∞. Let P be any point on this line, say P = (τ0u1, τ0u2) for some τ0 �= 0.

(a) Show that at the point P, x′ = τ0λu1 and y
′ = τ0λu2.

(b) How is the velocity vector v(t) = x′(t)i+ y′(t)j at point P oriented relative to the
line?

Exercises 24–27:

In each exercise, a matrix A is given. For each matrix, the vectors

u1 =
[
1
1

]
and u2 =

[
1

−1
]

are eigenvectors of A. As discussed in Exercise 23, these eigenvectors are associated with
the phase-plane lines y = x and y = −x. Solution points of y ′ = Ay originating on these
two lines remain on these lines as time evolves. Match the given matrix A to one of the
four direction fields shown (on the next page) for y ′ = Ay.

24. A =
[−9 1

1 −9

]
25. A =

[−1 −3
−3 −1

]
26. A =

[−4 6

6 −4

]
27. A =

[
4 2

2 4

]
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Figure for Exercises 24–27

28. Suppose that the nonlinear second order equation y′′ + f (y) = 0 is recast as an
autonomous first order system. Show that the nullclines for the resulting system
are the horizontal line y = 0 and vertical lines of the form x = α, where α is a
root of f (y) = 0. For each such root, what is the nature of the phase-plane point
(x, y) = (α,0)?

Exercises 29–31:

(a) Rewrite the given second order equation as an equivalent first order system.

(b) Graph the nullclines of the autonomous system and locate all equilibrium points.

(c) As in Figure 6.6, sketch direction field arrows on the nullclines. Also, sketch an
arrow in each open region that suggests the direction in which a solution point is
moving when it is in that region.

29. y′′ + y+ y3 = 0 30. y′′ + y(1− y2) = 0 31. y′′ + 2 sin2y = 1
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Exercises 32–36:

In each exercise,

(a) Graph the nullclines of the autonomous system and locate all equilibrium points.

(b) As in Figure 6.6, sketch direction field arrows on the nullclines. Also, sketch an
arrow in each open region that suggests the direction in which a solution point is
moving when it is in that region.

32. x′ = 3x− y− 2

y′ = x− y

33. x′ = −x− y+ 2

y′ = x− y

34. x′ = (2x− y− 2)(4− x− y)

y′ = x− 2y

35. x′ = (2x− y− 6)(x− y)

y′ = x+ y

36. x′ = x2 + y− 1

y′ = −x2 + y+ 1

6.3 Conservative Systems
A mathematical model of a physical system often neglects effects such as fric-
tion or electrical resistance if they are small enough. We have already en-
countered several of these idealized mathematical models in our discussion
of spring-mass systems, buoyant bodies, and pendulums.

As a consequence of such assumptions, these idealized models obey what
is usually called a conservation law. In particular, a conservation law means
that a quantity, such as energy, remains constant. For example, consider an
idealized pendulum. On its upswing, as the bob elevates and simultaneously
slows down, energy is converted from kinetic energy to potential energy. On the
downswing, potential energy is, in turn, transformed back into kinetic energy.
We will show, for this idealized pendulum model, that total pendulum energy
(the sum of kinetic and potential energy) remains constant in time. Thus, total
pendulum energy is a conserved quantity in the idealized pendulum model.

In general, consider a second order scalar differential equation

y′′ = f (t, y, y′),

and let y(t) be a solution of this differential equation. If there is a function of two
variables H(u, v) such that H(y(t), y′(t)) remains constant in time, then we call
H a conserved quantity and say that the differential equation y′′ = f (t, y, y′)
possesses a conservation law. We use the same terms to describe the general
case of an n-dimensional systemwith solution components y1(t), y2(t), . . . , yn(t)
for which some function H(y1(t), y2(t), . . . , yn(t)) remains constant.

In this section, we are interested in the following questions:

1. Given amathematical model, how canwe determine (from the structure
of the differential equation itself) whether or not it satisfies a conserva-
tion law?

2. If the model does possess a conserved quantity, how can we explicitly
describe this quantity and use its mathematical description to better
understand the system’s dynamics?
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An Important Class of Second Order Scalar Equations
Consider the differential equation

y′′ + f (y) = 0. (1)

Such differential equations often arise when we apply Newton’s laws to a body
in one-dimensional motion. In such applications, y′′ corresponds to accelera-
tion and the term−f (y) corresponds to the applied force per unit mass. In fact,
three of the mathematical models we have discussed—the undamped mass-
spring system, the buoyant body, and the pendulum—all have the structure of
equation (1).

We now show that equation (1) possesses a conservation law. To see why,
and to obtain a description of this law, we first multiply the equation by y′,
obtaining

y′y′′ + f (y)y′ = 0. (2)

Consider the terms in (2). Recalling the chain rule of calculus, we see that the
first term on the left-hand side can be written as

y′(t)y′′(t) = d
dt

[
1
2 (y

′(t))2
]
. (3)

If F(y) denotes an antiderivative of f (y), the chain rule allows us to express the
second term in (2) as

f (y(t))y′(t) = d
dt

F(y(t)). (4)

Using (3) and (4), we can rewrite (2) in the form

d
dt

[
1
2 (y

′(t))2 + F(y(t))
]

= 0. (5)

Therefore,
1
2y

′(t)2 + F(y(t)) = C. (6)

Equation (6) is the underlying conservation law. For instance, if y(t) represents
displacement, then the term 1

2y
′(t)2 is kinetic energy per unit mass. The other

term, F(y(t)), is potential energy per unit mass (measured relative to some
reference value that depends on the particular antiderivative F chosen). The
constant C can be interpreted as the (constant) total energy per unit mass.

Phase-Plane Interpretation
Differential equation (1) can be recast as the first order autonomous system

x′ = y
y′ = −f (x),

where x and y now play the roles of y(t) and y′(t), respectively. Thus, the con-
servation law (6) takes the form

1
2 (y)

2 + F(x) = C. (7)

The family of curves obtained by graphing this equation for different values of
C is a set of phase-plane trajectories describing the motion. The next example
develops these ideas for the pendulum.
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E X A M P L E

1 Consider the pendulum equation (recall Example 5, Section 6.2)

x′ = y

y′ = − sin x.

From (7), the corresponding conservation law is

1
2y

2 − cos x = C.

If we revert to the original variables, θ and θ ′, and use E to denote the constant
energy of the system, the conservation law has the form1

1
2 (θ

′)2 − cos θ = E. (8)

The term −cos θ represents the potential energy of the pendulum bob, mea-
sured relative to a zero reference at the horizontal position. Equation (8) is
graphed in Figure 6.9 for various energy levels. The direction of solution point
motion on these trajectories is indicated with arrows. (The direction field ar-
rows in Figure 6.8 of Section 6.2 are tangent to these phase-plane trajectories.)
The entire phase plane is simply a periodic repetition of the portion shown;
every 2π increment in x = θ brings the pendulum back to the same physical
configuration.

To understand Figure 6.9, observe from equation (8) that the equilibrium
point (θ, θ ′) = (0,0) (with the bob at rest hanging vertically downward) corre-
sponds to the energy level E = −1. In a similar fashion, the equilibrium points
(θ, θ ′) = (π,0) and (θ, θ ′) = (−π,0) (with the bob at rest and positioned verti-
cally upward) correspond to the energy level E = 1.

The energy value E = 1 is a delineating, or “separating,” value. Phase-plane
trajectories for−1 < E < 1 are the closed curves in Figure 6.9 centered at (0, 0).
These trajectories correspond to motion in which the pendulum continuously
swings back and forth; it does not have enough energy to reach the vertical up-
ward position. The pendulum swings upward to some θmax < π , stops, and then
swings downward, achieving the same maximum elevation on its backswing.
The two closed curves, labeled (b) and (c) in Figure 6.9, correspond to energy
levelsE = − 1

2 andE = 1
2 . Themaximum angular displacements achieved by the

pendulum in these two cases are |θmax| = π/3 and |θmax| = 2π/3, respectively.
These values correspond to the θ-axis intercepts of the curves.

Energy levels E > 1 correspond to motion in which the system possesses
enough energy to permit the pendulum to reach the vertical upward position
and continue to rotate. Since energy is conserved in this idealized model, the
pendulum continues to rotate forever. For each energy level greater than 1, two
trajectories are possible. These are not closed trajectories, since total angu-
lar displacement increases or decreases monotonically. The trajectories in the
upper half-plane (where θ ′ > 0) correspond to counterclockwise pendulum ro-
tation, while the counterpart trajectories in the lower half-plane (where θ ′ < 0)
represent clockwise pendulum rotation. The eight such trajectories shown in
Figure 6.9 correspond to E = 2, E = 3, E = 4, and E = 5.

(continued)

1In Section 2.9, Exercise 22, we derived this conservation law in a different way. A change of inde-
pendent variable was used to transform θ ′′ + (g/l) sin θ = 0 into a first order separable differential
equation. The implicit solution of this equation yielded the conservation law (8).
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(continued)
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(b) E = –1/2
(c) E = 1/2
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(f ) E = 3
(g) E = 4
(h) E = 5

FIGURE 6.9

Some of the phase-plane trajectories for the pendulum equation discussed
in Example 1. These curves are graphs of equation (8) for various energy
levels E.

The two trajectories corresponding to E = 1 appear to connect the equilib-
rium points (−π,0) and (π,0). These trajectories are called separatrices; they
separate the closed trajectory curves from the open ones. On the upper sep-
aratrix, the solution point approaches the equilibrium point (π,0) as t → ∞.
The pendulum swings upward in the counterclockwise direction, slowing down
as it approaches the vertical upward position. The pendulum bob approaches
this inverted position in the limit as t → ∞. On the lower separatrix, the solu-
tion point approaches the equilibrium point (−π,0) as t → ∞. In this case, the
pendulum swings upward in the clockwise direction, again slowing down and
approaching the inverted position in the limit as t → ∞. ❖

Hamiltonian Systems
We now discuss a class of autonomous first order systems, called Hamiltonian
systems, that always satisfy a conservation law. We restrict our attention to
two-dimensional systems; the Exercises show how the underlying principle
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can be extended to higher dimensional systems. Hamiltonian systems include
the second order scalar equation (1) as a special case.

As a first step, recall the following chain rule from calculus. Assume that
a function H(x, y), viewed as a function of two independent variables x and y,
is continuous and has continuous first and second partial derivatives (it will
be apparent later why continuous second partial derivatives are required). We
now form a composition, replacing the variables x and y with differentiable
functions of t; we refer to these two functions as x(t) and y(t). The resulting
composite function,

H(x(t), y(t)),

is a differentiable function of t, and its derivative can be found by the chain
rule:

d
dt

H(x(t), y(t)) = ∂H(x(t), y(t))
∂x

dx
dt

+ ∂H(x(t), y(t))
∂y

dy
dt

. (9)

Consider now the two-dimensional autonomous system

x′(t) = f (x(t), y(t))

y′(t) = g(x(t), y(t)).
(10)

System (10) is called a Hamiltonian system2 if there exists a function of two
variables H(x, y) that is continuous, with continuous first and second partial
derivatives, and such that

∂H(x, y)
∂x

= −g(x, y)
∂H(x, y)

∂y
= f (x, y).

(11)

The functionH(x, y) is called theHamiltonian function (or simply theHamil-
tonian) of the system.

If system (10) is a Hamiltonian system, then the composition H(x(t), y(t))
is a conserved quantity of the system. To see why, note that

d
dt

H(x(t), y(t)) = ∂H(x(t), y(t))
∂x

dx(t)
dt

+ ∂H(x(t), y(t))
∂y

dy(t)
dt

= [−g(x(t), y(t))]f (x(t), y(t)) + [
f (x(t), y(t))

]
g(x(t), y(t))

= 0.

It follows, therefore, that

H(x(t), y(t)) = C.

Two important questions about Hamiltonian systems are “How can we de-
termine whether a given autonomous system is a Hamiltonian system?” and

2SirWilliamRowanHamilton (1805–1865) was an Irishmathematician noted for his contributions
to optics and dynamics and for the development of the theory of quaternions. Shortly before his
death, he was elected the first foreign member of the United States National Academy of Sciences.
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“If a system is known to be a Hamiltonian system, how do we determine the
conserved quantity H?” We will address both of these questions after the next
example, which shows that the second order scalar equation (1), when recast
as an autonomous first order system, is a Hamiltonian system.

E X A M P L E

2 If the second order scalar equation y′′ + v(y) = 0 is rewritten as a first order
system, we obtain the autonomous system

x′ = y

y′ = −v(x).
Show that this system is aHamiltonian systemwithH(x, y) = 1

2y
2 + V(x), where

V(x) is any antiderivative of v(x).

Solution: With the notation of (10) and (11), f (x, y) = y and g(x, y) = −v(x).
Calculating the partial derivatives of H(x, y) = 1

2y
2 + V(x), we find

∂H(x, y)
∂x

= dV(x)
dx

= v(x) = −g(x, y)
∂H(x, y)

∂y
= y = f (x, y).

Thus, from equation (11), the system is a Hamiltonian system. ❖

Recognizing a Hamiltonian System
The following discussion about identifyingHamiltonian systems and construct-
ing Hamiltonians closely parallels the discussion in Section 2.7 about identify-
ing exact differential equations and constructing solutions of exact equations.

In particular, suppose H(x, y) is a Hamiltonian for system (10). Then, from
equation (11),

∂H(x, y)
∂x

= −g(x, y) and
∂H(x, y)

∂y
= f (x, y). (12)

From calculus, if the second partial derivatives of H(x, y) exist and are contin-
uous, then the second mixed partial derivatives are equal; that is,

∂2H(x, y)
∂x∂y

= ∂2H(x, y)
∂y∂x

.

Therefore, if system (10) is a Hamiltonian system, it necessarily follows that

∂f (x, y)
∂x

= −∂g(x, y)
∂y

.

The following theorem, stated without proof, asserts that this condition is both
necessary and sufficient.
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Theorem 6.2
Consider the two-dimensional autonomous system

x′ = f (x, y)

y′ = g(x, y).

Assume that f (x, y) and g(x, y) are continuous in the xy-plane. Assume as
well that the partial derivatives

∂f
∂x

,
∂f
∂y

,
∂g
∂x

,
∂g
∂y

exist and are continuous in the xy-plane. Then the system is aHamiltonian
system if and only if

∂f (x, y)
∂x

= −∂g(x, y)
∂y

(13)

for all (x, y).

Constructing Hamiltonians
Once a system is known to be a Hamiltonian system, we can construct the
Hamiltonian function by the same process of anti-partial-differentiation we
used to solve exact differential equations in Section 2.7. We illustrate the ideas
in the next example by constructing a Hamiltonian function for a Hamiltonian
system.

E X A M P L E

3 Consider the autonomous system

x′ = y2 + cos x

y′ = 2x+ 1+ y sin x.

(a) Use Theorem 6.2 to show that this system is a Hamiltonian system.

(b) Find a Hamiltonian function for the system.

Solution:

(a) Calculating the partial derivatives required by test (13), we find

∂f
∂x

= − sin x and
∂g
∂y

= sin x.

Since ∂f /∂x = −∂g/∂y, we know the system is a Hamiltonian system.

(b) Since the given system is a Hamiltonian system, there must be a function
H(x, y) such that

∂H(x, y)
∂x

= −g(x, y) = −2x− 1− y sin x

∂H(x, y)
∂y

= f (x, y) = y2 + cos x.

(14)

(continued)
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(continued)

Choose one of these equations, say the first, and compute an anti-partial-
derivative, obtaining

H(x, y) = −x2 − x+ y cos x+ q(y), (15)

where q(y) is an arbitrary differentiable function of y. [Note: Since the vari-
able y is held fixed when partial differentiation is performed with respect
to x, we must allow for this arbitrary function of y when reversing the op-
eration.] From equations (14) and (15), we find

∂H(x, y)
∂y

= y2 + cos x = cos x+ dq(y)
dy

.

Therefore,

dq(y)
dy

= y2,

and q(y) = y3/3+ C.We can drop the additive arbitrary constant and obtain
a Hamiltonian

H(x, y) = −x2 − x+ y cos x+ y3

3
. (16)

Figure 6.10 shows some phase-plane trajectories [that is, graphs of
H(x, y) = C] for a few representative values of the constant C.

–2–3 –1 1 2 3

–2

–3

–1

1

2

3

y

x

FIGURE 6.10

Some phase-plane trajectories for the autonomous system in Example 3.
These curves are level curves of the Hamiltonian (16). ❖
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E X E R C I S E S

Exercises 1–6:

In each exercise,

(a) As in Example 1, derive a conservation law for the given autonomous equation
x′′ + u(x) = 0. (Your answer should contain an arbitrary constant and therefore de-
fine a one-parameter family of conserved quantities.)

(b) Rewrite the given autonomous equation as a first order system of the form

x′ = f (x, y)

y′ = g(x, y)

by setting y(t) = x′(t). The phase plane is then the xy-plane. Express the family of
conserved quantities found in (a) in terms of x and y. Determine the equation of the
particular conserved quantity whose graph passes through the phase-plane point
(x, y) = (1,1).

(c) Plot the phase-plane graph of the conserved quantity found in part (b), using a com-
puter if necessary. Determine the velocity vector v = f (x, y)i+ g(x, y)j at the phase-
plane point (1,1). Add this vector to your graph with the initial point of the vector
at (1,1). What is the geometric relation of this velocity vector to the graph? What
information does the velocity vector give about the direction in which the solution
point traverses the graph as time increases?

(d) For the solution whose phase-plane trajectory passes through (1,1), determine
whether the solution x(t) is bounded. If the solution is bounded, use the phase-
plane plot to estimate the maximum value attained by |x(t)|.

1. x′′ + 4x = 0 2. x′′ − x = 1 3. x′′ + x3 = 0

4. x′′ − x3 = π sin(πx) 5. x′′ + x2 = 0 6. x′′ + x

1+ x2
= 0

Exercises 7–8:

The conservation law for an autonomous second order scalar differential equation hav-
ing the form x′′ + f (x) = 0 is given (where y corresponds to x′). Determine the differential
equation.

7. y2 + x2 cos x = C 8. y2 − e−x2 = C

9. Consider the differential equation x′′ + x+ x3 = 0. It has the same structure as the
equation used to model the cubically nonlinear spring.

(a) Rewrite the differential equation as a first order system. On the xy-phase plane,
sketch the nullclines and locate any equilibrium point(s). Place direction field ar-
rows on the nullclines, indicating the direction in which the solution point traverses
the nullclines.

(b) Compute the velocity vector v = x′i+ y′j at the four phase-plane points
(x, y) = (±1, ±1). Locate these points, and draw the velocity vectors on your phase-
plane sketch. Use this information, together with the information obtained in part
(a), to draw a rough sketch of some phase-plane solution trajectories. Indicate the
direction in which the solution point moves on these trajectories.

(c) Determine the conservation law satisfied by solutions of the given differential
equation. Determine the equation of the conserved quantity whose graph passes
through the phase-plane point (x, y) = (1,1). Plot the graph of this equation on
your phase plane, using computational software as appropriate. Does the graph
pass through the other three points, (−1,1), (−1, −1), and (1, −1), as well? Is the
sketch made in part (b) consistent with this graph of the conserved quantity?
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10. Each figure shows a phase-plane graph of a conserved quantity for the autonomous
differential equation x′′ + αx = 0, where α is a real constant.

(a) Determine the value of the constant α in each case. What is the equation whose
phase-plane graph is shown?

(b) Indicate the direction in which the solution point travels along these phase-
plane curves as time increases.
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(a) (b) (c)

Figure for Exercise 10

In (b), the asymptotes are y = ±x.

11. Consider the autonomous third order scalar equation y′′′ + f (y′) = 0, where f is a
continuous function. Does this differential equation have a conservation law? If so,
obtain the equation of the family of conserved quantities.

12. Consider the equationmx′′ + kx = 0. We saw in Chapter 3 that this equation models
the vibrations of a spring-mass system. The conserved quantity 1

2m(x′)2 + 1
2kx

2 = E
is the (constant) total energy of the system. The first term, 1

2m(x′)2, is the kinetic
energy, while the second term, 1

2kx
2, is the elastic potential energy. Suppose that

damping is now added to the system. The differential equation mx′′ + γ x′ + kx = 0
now models the motion (with γ a positive constant). Define E(t) = 1

2m(x′)2 + 1
2kx

2.

(a) Show, in the case of damping, that E(t) is no longer constant. Show, rather, that
dE(t)/dt ≤ 0.

(b) Discuss the physical relevance of the observation made in part (a).

Exercises 13–20:

For the given system,

(a) Use Theorem 6.2 to show that the system is a Hamiltonian system.

(b) Find a Hamiltonian function for the system.

(c) Use computational software to graph the phase-plane trajectory passing through
(1,1). Also, indicate the direction of motion for the solution point.

13. x′ = 2x

y′ = −2y
14. x′ = 2xy

y′ = −y2
15. x′ = x− x2 + 1

y′ = −y+ 2xy+ 4x

16. x′ = −8y
y′ = 2x

17. x′ = 2y cos x

y′ = y2 sin x

18. x′ = 2y− x+ 3

y′ = y+ 4x3 − 2x

19. x′ = −2y
y′ = 3x2

20. x′ = xexy

y′ = −2x− yexy
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Exercises 21–26:

Use Theorem 6.2 to decide whether the given system is a Hamiltonian system. If it is,
find a Hamiltonian function for the system.

21. x′ = x3 + 3 sin(2x+ 3y)

y′ = −3x2y− 2 sin(2x+ 3y)

22. x′ = exy + y3

y′ = −exy − x3

23. x′ = − sin(2xy) − x

y′ = sin(2xy) + y

24. x′ = −3x2 + xey

y′ = 6xy+ 3x− ey

25. x′ = y

y′ = x− x2
26. x′ = x+ 2y

y′ = x3 − 2x+ y

Exercises 27–30:

Let f (u) and g(u) be defined and continuously differentiable on the interval−∞ < u< ∞,
and let F(u) and G(u) be antiderivatives for f (u) and g(u), respectively. In each exercise,
use Theorem6.2 to show that the given system isHamiltonian.Determine aHamiltonian
function for the system, expressed in terms of F and/or G.

27. x′ = f (y)

y′ = g(x)

28. x′ = f (y) + 2y

y′ = g(x) + 6x

29. x′ = 3f (y) − 2xy

y′ = g(x) + y2 + 1

30. x′ = f (x− y) + 2y

y′ = f (x− y)

31. A Generalized Hamiltonian System Consider the two-dimensional autonomous sys-
tem

x′ = f (x, y)

y′ = g(x, y).

Suppose there exist two functions K(x, y) and μ(x, y) satisfying

∂K(x, y)
∂x

= −μ(x, y)g(x, y)

∂K(x, y)
∂y

= μ(x, y)f (x, y).

Does the given autonomous system have a conserved quantity? If so, what is the
conserved quantity?

32. Higher-Dimensional Autonomous Systems The ideas underlying Hamiltonian sys-
tems extend to higher-dimensional systems. For example, consider the three-
dimensional autonomous system

x′ = f (x, y, z)

y′ = g(x, y, z)

z′ = h(x, y, z).

(17)

(a) Use the chain rule to show that autonomous system (17) has a conserved quan-
tity if there exists a function H(x, y, z) for which

∂

∂x
H(x, y, z)f (x, y, z) + ∂

∂y
H(x, y, z)g(x, y, z) + ∂

∂z
H(x, y, z)h(x, y, z) = 0.

(b) Show that H(x, y, z) = cos2(x) + yez is a conserved quantity for the system

x′ = yez

y′ = y cos x sin x

z′ = cos x sin x.
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6.4 Stability
Differential equations can model different physical behavior at different equi-
librium points. For instance, consider the pendulum. The equilibrium points
are (θ, θ ′) = (mπ,0), wherem is an integer. Equilibrium points withm an even
integer correspond to the pendulum bob hanging vertically downward, while
equilibrium points form an odd integer correspond to the pendulum bob rest-
ing in the inverted position. Suppose a pendulum bob, initially in an equi-
librium state, is subjected to a slight perturbation; in other words, it is given
a slight displacement and/or a very small angular velocity. If the pendulum
is initially hanging downward, we expect the perturbation to remain small—
the bob will swing back and forth, making small excursions from the vertical.
If the pendulum is initially in the inverted position, however, we expect dra-
matic changes. The pendulum bob, displaced from its precarious equilibrium
state, will fall, ultimately making large departures from its initial equilibrium
position.

In everyday language, we might describe the pendulum’s downward rest
position as a “stable” configuration and the inverted rest position as an “un-
stable” configuration. Mathematicians have taken these everyday terms and
given them precise definitions consistent with our intuitive notion of stable
and unstable. In this section, we present and discuss these mathematical def-
initions. The next section introduces the technique of linearization, which, in
many cases, enables us to study and characterize equilibrium point stability by
analyzing a simpler associated linear system.

The pendulum example illustrates the question of primary concern: If per-
turbed slightly from an equilibrium state, will a system exhibit a markedly
different behavior? In the case of mechanical systems, instability often means
vibrations that grow in amplitude, leading to possible system failure.

Stable and Unstable Equilibrium Points
Consider the autonomous system

y′
1 = f1(y1, y2, . . . , yn)

y′
2 = f2(y1, y2, . . . , yn)

...
y′
n = fn(y1, y2, . . . , yn),

which we write in vector form as

y ′ = f(y). (1)

Assume that the constant vector function

y(t) = ye =

⎡
⎢⎢⎢⎢⎣
y1e
y2e
...

yne

⎤
⎥⎥⎥⎥⎦

is an equilibrium solution of the system; that is, f(ye) = 0.
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In order to define precisely what it means for the equilibrium point ye to be
stable or unstable, we need to be able to compute the distance between points
in n-dimensional space. Let u and v denote two points in n-dimensional space,

u =

⎡
⎢⎢⎢⎢⎣
u1
u2
...

un

⎤
⎥⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎢⎣
v1
v2
...

vn

⎤
⎥⎥⎥⎥⎦ .

We define the norm of u, denoted by ‖u‖, by
‖u‖ =

√
u21 + u22 + · · · + u2n.

The distance between u and v, denoted by ‖u− v‖, is the size (the norm) of the
difference u− v:

‖u− v‖ =
√

(u1 − v1)
2 + (u2 − v2)

2 + · · · + (un − vn)
2. (2)

Now, let ye be an equilibrium point of the autonomous system y ′ = f(y). We say
that the equilibrium point ye is stable if

Given any ε > 0, there exists a corresponding δ > 0 such that every
solution satisfying ‖y(0) − ye‖ < δ also satisfies ‖y(t) − ye‖ < ε for all
t ≥ 0.

If an equilibrium point of y ′ = f(y) is not stable, it is called unstable.

Interpreting Stability in the Phase Plane
When n = 2, we can use the phase plane to give a graphical interpretation of
stability. Consider the autonomous system

x′ = f (x, y)

y′ = g(x, y)

having equilibrium solution

ye =
[
xe
ye

]
.

We have adopted the notation

y(t) =
[
x(t)

y(t)

]
and f(y) =

[
f (x, y)

g(x, y)

]

so that we can speak of the phase plane as the xy-plane.
We can identify ye as the point in the phase plane having coordinates (xe, ye).

The set of all phase-plane points y satisfying ‖y− ye‖ < r is the set of all points
lying within a circle of radius r centered at (xe, ye).

Consider now the definition of stability. It involves two circles centered at
(xe, ye), one of radius ε and the other of radius δ (see Figure 6.11). The stability
criterion requires that all solutions lying within the circle of radius δ at the
initial time t = 0 remain within the circle of radius ε for all subsequent time.
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FIGURE 6.11

Two examples of behavior near a stable equilibrium point. In each case,
y(t) = (x(t), y(t)) represents a typical solution trajectory near an
equilibrium point of the autonomous system y ′ = f(y). (a) When the initial
point y(0) is sufficiently close to ye, the solution trajectory is a closed curve
surrounding ye. (b) When y(0) is sufficiently close to ye, the solution
trajectory spirals in toward ye.

This situationmust hold for all possible choices of ε > 0; whenever we are given
an ε > 0, we must be able to find a corresponding δ > 0 that “works.” The real
test of the definition occurs as we consider smaller and smaller ε > 0. Can we
continue to find corresponding values δ > 0 that work? If so, the equilibrium
point is stable; if not, it is unstable.

For higher order systems, the same geometrical ideas hold. However, in-
stead of circles in the phase plane, we must consider n-dimensional spheres.
We illustrate the concept of stability with two examples involving autonomous
linear systems for which explicit general solutions are known.

E X A M P L E

1 Consider the two-dimensional autonomous linear system y ′ = Ay, where

A =
[−2 1

1 −2

]
. (3)

Show that ye = 0 is the only equilibrium point, and determine whether it is
stable or unstable.

Solution: In this case, f(y) = Ay. The matrix A is invertible, and therefore solv-
ing Ay = 0 leads to a single equilibrium point, ye = 0.

To determine the stability properties of this equilibrium point, we apply
the stability definition directly to the general solution of this first order linear
system. Using the methods of Chapter 4, we find the general solution is

y(t) = c1e
−t

[
1

1

]
+ c2e

−3t
[
1

−1

]
=

[
c1e

−t + c2e
−3t

c1e
−t − c2e

−3t

]
. (4)
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In order to apply the definition of stability, we need to relate the following
two quantities:

1. the distance ‖y(0) − ye‖, between the initial point and the equilibrium
point, and

2. the distance ‖y(t) − ye‖, between y(t) and ye for t ≥ 0.

Since ye = 0, it follows from (4) that

‖y(0) − ye‖ = ‖y(0)‖ =
√

(c1 + c2)
2 + (c1 − c2)

2 =
√
2(c21 + c22).

Similarly, for t ≥ 0,

‖y(t) − ye‖ = ‖y(t)‖ =
√

(c1e
−t + c2e

−3t)2 + (c1e
−t − c2e

−3t)2

=
√
2(c21e

−2t + c22e
−6t) =

√
2(c21 + c22e

−4t)e−2t

≤
√
2(c21 + c22)e

−2t =
√
2(c21 + c22)e

−t

= ‖y(0)‖e−t.

(5)

Now consider the definition of stability where some value ε > 0 is given. We
need to determine a corresponding value δ > 0 such that

If y(t) is a solution of y ′ = Ay and if ‖y(0)‖ < δ, then ‖y(t)‖ < ε for all
t ≥ 0.

By (5), we know that

‖y(t)‖ ≤ ‖y(0)‖e−t ≤ ‖y(0)‖, t ≥ 0.

Therefore, we can guarantee that ‖y(t)‖ < ε by taking δ ≤ ε. This shows the
equilibrium point ye = 0 is a stable equilibrium point of the system y ′ = Ay. ❖

E X A M P L E

2 Consider the two-dimensional autonomous linear system y ′ = Ay, where

A =
[−1 −2
−2 −1

]
. (6)

Show that ye = 0 is the only equilibrium point, and determine whether it is
stable or unstable.

Solution: As in Example 1, f(y) = Ay, and we see that thematrix A is invertible.
Therefore, solving Ay = 0 leads to a single equilibrium point, ye = 0.

The general solution of y ′ = Ay is

y(t) = c1e
t

[
1

−1

]
+ c2e

−3t
[
1

1

]
=

[
c1e

t + c2e
−3t

−c1et + c2e
−3t

]
. (7)

In Example 1, the coefficient matrix had two negative eigenvalues. In this ex-
ample, however, the coefficient matrix has a positive eigenvalue, λ = 1. Since

(continued)
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(continued)

lim t→∞ et = ∞, we anticipate that any solution (7) with c1 �= 0 will become
unboundedly large in norm as t increases. Therefore, we anticipate that ye = 0
is an unstable equilibrium point of this system.

To prove that ye = 0 is an unstable equilibrium point, we show that, for
some ε > 0, there is no δ that works. That is, for every δ > 0, there is at least
one solution y(t) that originates in the circle of radius δ but that eventually gets
outside the circle of radius ε. In particular, solutions given by (7) with c2 = 0
and c1 �= 0 have the form

y(t) = c1e
t

[
1

−1

]
, t ≥ 0.

Moreover,

‖y(0)‖ = √
2
∣∣c1∣∣ and ‖y(t)‖ = √

2
∣∣c1∣∣et.

This particular family of solutions has phase-plane trajectories that lie on the
line y = −x (see Figure 6.12 and Exercise 23 in Section 6.2). Since ‖y(t)‖ =√
2
∣∣c1∣∣et, the solution moves away from the origin along this line, growing in

norm as t increases. No matter what value δ > 0 we take, we can always choose
|c1| �= 0 but sufficiently small that y(0) is within the circle of radius δ. But, as
long as |c1| �= 0, the solution y(t) eventually exits the circle of radius ε. Therefore,
ye = 0 is an unstable equilibrium point of the autonomous system y ′ = Ay.

y

x
–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

FIGURE 6.12

The direction field for the system in Example 2. The arrows indicate the
direction the solution point moves as time increases. ❖

In Examples 1 and 2, it was relatively straightforward to determine the
stability properties of the equilibrium point ye = 0 because we had an explicit
representation of the general solution. The obvious question is “How do we
analyze the stability properties of equilibrium points of nonlinear problems,
such as the pendulum and competing species problems, when explicit solutions
are not attainable?” We address this issue in the next section.
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Asymptotic Stability
Example 1 has an interesting aspect. The equilibrium point ye = 0 not only
is stable but also has the feature that all solutions approach it in the limit as
t → ∞. This additional feature, wherein all solutions originating sufficiently
close to a stable equilibrium point actually approach the equilibrium point as
t → ∞, is important enough to warrant its own definition.

Let ye be an equilibrium point of the autonomous system y ′ = f(y). We say
that ye is an asymptotically stable equilibrium point if

(a) it is a stable equilibrium point and

(b) there exists a δ0 > 0 such that lim t→∞ y(t) = ye for all solutions initially
satisfying ‖y(0) − ye‖ < δ0.

Roughly speaking, all solutions starting close enough to a stable equilibrium
point remain close to it for all subsequent time. All solutions starting sufficiently
close to an asymptotically stable equilibrium point not only remain close to it
for all subsequent time but, in fact, approach it in the limit as t → ∞. Note that
asymptotic stability implies stability. However, as the next example shows, an
equilibrium point can be stable but not asymptotically stable.

E X A M P L E

3 Consider the two-dimensional autonomous linear system y ′ = Ay, where

A =
[
0 1

−1 0

]
.

Show that ye = 0 is the only equilibrium point, and determine whether it is
asymptotically stable.

Solution: As in Examples 1 and 2, f(y) = Ay, where the matrix A is invertible.
Therefore, solving Ay = 0 leads to a single equilibrium point, ye = 0.

Eigenpairs of the matrix A are

λ1 = i, u1 =
[
1

i

]
and λ2 = λ1 = −i, u2 = u1 =

[
1

−i

]
.

Using the ideas of Section 4.6, we find a real-valued general solution of this
system to be

y(t) = c1

[
cos t

− sin t

]
+ c2

[
sin t

cos t

]
. (8)

It follows from (8) that

‖y(t) − ye‖ = ‖y(t)‖ =
√

(c1 cos t+ c2 sin t)
2 + (−c1 sin t+ c2 cos t)

2

=
√
c21 + c22 = ‖y(0)‖, t ≥ 0.

(9)

Therefore, the distance of a solution from the phase-plane origin remains con-
stant in time—the phase-plane trajectories are circles centered at the origin.

(continued)
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(continued)

Thus, the equilibrium point ye = 0 is stable (given ε > 0, we simply take δ = ε).
The equilibrium point is not asymptotically stable, however. In particular, no
nonzero solution approaches the equilibrium point as t → ∞. ❖

Stability Characteristics of y ′ = Ay
The three examples previously considered illustrate the following general sta-
bility result, which we present without proof.

Theorem 6.3
Let A be a real invertible (2× 2) matrix. Then the autonomous linear
system y ′ = Ay has a unique equilibrium point ye = 0. This equilibrium
point is

(a) asymptotically stable if all eigenvalues of A have negative real parts.
(In other words, the eigenvalues can be real and negative, or they can
be a complex conjugate pair with negative real parts.)

(b) stable but not asymptotically stable if the eigenvalues of A are purely
imaginary.

(c) unstable if at least one eigenvalue ofAhas a positive real part. (In other
words, the eigenvalues can be real with at least one being positive, or
they can be a complex conjugate pair with positive real parts.)

Equilibrium points are sometimes characterized as being isolated or not
isolated. A phase-plane equilibrium point is called an isolated point if it is the
center of some small disk whose interior contains no other equilibrium points.
The equilibrium point in Theorem 6.3 (as in all the examples in this section) is
the only equilibrium point. It is, therefore, an isolated equilibrium point.

We also note, with respect to Theorem 6.3, that the assumption that A is
invertible implies det(A) �= 0. Therefore, λ = 0 is not an eigenvalue of A. How-
ever, if A is not invertible, then ye = 0 is not the only equilibrium point (nor is
it isolated). For example, suppose

A =
[

α β

cα cβ

]
,

with α and β not both zero. Thus, det(A) = 0, but A is not the zero matrix. One
can show (see Exercise 33) that every point on the phase-plane line αx+ βy = 0
is an equilibrium point.

Theorem 6.3 applies equally well whether the (2× 2) matrix A has dis-
tinct or repeated eigenvalues. Recall that if A has a repeated (real) eigenvalue
λ1 = λ2 = λ, then solutions involving the function teλt, as well as eλt, are pos-
sible. If λ < 0, however, we know from calculus that teλt is bounded for t ≥ 0
and that lim t→∞ teλt = 0. It follows that ye = 0will always be an asymptotically
stable equilibrium point when λ < 0.
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In the higher-dimensional case, stability characterization is somewhat
more complicated. If A is a real invertible (n× n)matrix, then the unique equi-
librium point ye = 0 of y ′ = Ay is asymptotically stable if all eigenvalues of A
have negative real parts. The equilibrium point is unstable if at least one eigen-
value of A has a positive real part. For n ≥ 4, repeated complex conjugate pairs
of purely imaginary eigenvalues, say λ = ±iω, are possible. In this case, solu-
tions of the form t cosωt and t sinωt are possible when the matrix A does not
have n linearly independent eigenvectors; in that event, ye = 0 is an unstable
equilibrium point.

E X E R C I S E S

1. Assume that a two-dimensional autonomous system has an isolated equilibrium
point at the origin and that the phase-plane solution curves consist of the family of
concentric ellipses x2/4+ y2 = C, C ≥ 0.

(a) Apply the definition to show that the origin is a stable equilibrium point. In
particular, given an ε > 0, determine a corresponding δ > 0 so that all solutions
starting within a circle of radius δ centered at the origin stay within the circle of
radius ε centered at the origin for all t ≥ 0. (The δ you determine should be expressed
in terms of ε.)

(b) Is the origin an asymptotically stable equilibrium point? Explain.

2. Assume that a two-dimensional autonomous system has an isolated equilibrium
point at the origin and that the phase-plane solution curves consist of the family of
hyperbolas−x2 + y2 = C,C ≥ 0. Is the equilibriumpoint stable or unstable?Explain.

3. Consider the differential equation x′′ + γ x′ + x = 0, where γ is a real constant.

(a) Rewrite the given scalar equation as a first order system, defining y = x′.

(b) Determine the values of γ for which the system is (i) asymptotically stable, (ii)
stable but not asymptotically stable, (iii) unstable.

Exercises 4–15:

Each exercise lists a linear system y ′ = Ay, where A is a real constant invertible (2× 2)
matrix. Use Theorem 6.3 to determine whether the equilibrium point ye = 0 is asymp-
totically stable, stable but not asymptotically stable, or unstable.

4. y ′ =
[−3 −2
4 3

]
y 5. y ′ =

[
5 −14
3 −8

]
y 6. y ′ =

[
0 −2
2 0

]
y

7. y ′ =
[
1 4

−1 1

]
y 8. x′ = −7x− 3y

y′ = 5x+ y

9. x′ = 9x+ 5y

y′ = −7x− 3y

10. x′ = −3x− 5y

y′ = 2x− y

11. x′ = 9x− 4y

y′ = 15x− 7y

12. x′ = −13x− 8y

y′ = 15x+ 9y

13. x′ = 3x− 2y

y′ = 5x− 3y

14. x′ = x− 5y

y′ = x− 3y

15. x′ = −3x+ 3y

y′ = x− 5y

Exercises 16–23:

Each exercise lists the general solution of a linear system of the form

x′ = a11x+ a12 y

y′ = a21x+ a22 y,
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where a11a22 − a12a21 �= 0. Determine whether the equilibrium point ye = 0 is asymptot-
ically stable, stable but not asymptotically stable, or unstable.

16. x = c1e
−2t + c2e

3t

y = c1e
−2t + 2c2e

3t

17. x = c1e
2t + c2e

3t

y = c1e
2t + 2c2e

3t

18. x = c1e
−2t + c2e

−4t

y = c1e
−2t + 2c2e

−4t

19. x = c1e
t cos 2t+ c2e

t sin 2t

y = −c1et sin 2t+ c2e
t cos 2t

20. x = c1 cos 2t+ c2 sin 2t

y = −c1 sin 2t+ c2 cos 2t

21. x = c1e
−2t cos 2t+ c2e

−2t sin 2t

y = −c1e−2t sin 2t+ c2e
−2t cos 2t

22. x = c1e
−2t + c2e

3t

y = c1e
−2t − c2e

3t

23. x = c1e
−2t + c2e

−3t

y = c1e
−2t − c2e

−3t

24. Consider the nonhomogeneous linear system y ′ = Ay+ g0, where A is a real invert-
ible (2× 2) matrix and g0 is a real (2× 1) constant vector.

(a) Determine the unique equilibrium point, ye, of this system.

(b) Show how Theorem 6.3 can be used to determine the stability properties of this
equilibrium point. [Hint: Adopt the change of dependent variable z(t) = y(t) − ye.]

Exercises 25–28:

Locate the unique equilibrium point of the given nonhomogeneous system, and deter-
mine the stability properties of this equilibrium point. Is it asymptotically stable, stable
but not asymptotically stable, or unstable?

25. y ′ =
[−2 1

1 −2

]
y+

[−4
2

]
26. x′ = y+ 2

y′ = −x+ 1

27. y ′ =
[
3 2

−4 −3

]
y+

[−2
2

]
28. x′ = −x+ y+ 1

y′ = −10x+ 5y+ 2
Exercises 29–32:

Higher Dimensional Systems In each exercise, locate all equilibriumpoints for the given
autonomous system. Determine whether the equilibrium point or points are asymptot-
ically stable, stable but not asymptotically stable, or unstable.

29. y′
1 = 2y1 + y2 + y3
y′
2 = y1 + y2 + 2y3
y′
3 = y1 + 2y2 + y3

30.
d
dt

⎡
⎢⎢⎣
y1
y2
y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 −1 0

0 −1 2

0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
y3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
2

0

3

⎤
⎥⎥⎦

31.
d
dt

⎡
⎢⎢⎢⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−3 −5 0 0

2 −1 0 0

0 0 0 2

0 0 −2 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎥⎦

32. y′
1 = y2 − 1

y′
2 = y1 + 2

y′
3 = −y3 + 1

y′
4 = −y4

33. Let A be a real (2× 2)matrix. Assume that A has eigenvalues λ1 and λ2, and consider
the linear homogeneous system y ′ = Ay.

(a) Prove that if λ1 and λ2 are both nonzero, then ye = 0 is an isolated equilibrium
point.
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(b) Suppose that eigenvalue λ1 �= 0 but that λ2 = 0 with corresponding eigenvector[
β

−α

]
. Show that all points on the phase-plane line αx+ βy = 0 are equilibrium

points. (In this case, ye = 0 is not an isolated equilibrium point.)

34. Consider the linear system

y ′ =
[−1 α

α −1

]
y,

where α is a real constant.

(a) What information can be obtained about the eigenvalues of the coefficient ma-
trix simply by examining its structure?

(b) For what value(s) of the constant α is the equilibrium point ye = 0 an isolated
equilibrium point? For what value(s) of the constant α is the equilibrium point
ye = 0 not isolated?

(c) In the case where ye = 0 is not an isolated equilibrium point, what is the equa-
tion of the phase-plane line of equilibrium points?

(d) Is it possible in this example for ye = 0 to be an isolated equilibrium point that
is stable but not asymptotically stable? Explain.

(e) For what values of the constant α, if any, is the equilibrium point ye = 0 an
isolated asymptotically stable equilibrium point? For what values of the constant
α, if any, is the equilibrium point ye = 0 an unstable equilibrium point?

35. Let A =
[
1 a12
a21 a22

]
be a real (2× 2) matrix. Assume that

A

[
1

2

]
=

[
1 a12
a21 a22

] [
1

2

]
= 2

[
1

2

]

and that the origin is not an isolated equilibrium point of the system y ′ = Ay. De-
termine the constants a12, a21, and a22.

6.5 Linearization and the Local Picture
We now consider nonlinear autonomous systems and a technique, known as
linearization, for investigating the stability properties of such systems. The sta-
bility results cited in Theorem 6.3 for the linear system y ′ = Ay will be useful
for the nonlinear equations treated in this section. In Section 6.6, we will ex-
amine the phase-plane geometry of the linear two-dimensional system y ′ = Ay
in more detail.

Nonlinear Systems
Although we are going to focus on the case n = 2, the ideas are applicable to
general n-dimensional autonomous systems. Let

ye =
[
xe
ye

]
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be an equilibrium solution of y ′ = f(y). In component form, y ′ = f(y) is given
by

x′ = f (x, y)

y′ = g(x, y).
(1)

For a nonlinear system such as (1), it is usually impossible to obtain explicit
solutions. In the absence of explicit solutions, we look for approximations or
simplifications that provide qualitative insight into the stability properties of
the equilibrium point ye.

Linearization
From the definition, we know that the issue of equilibrium point stability is
ultimately determined by the behavior of solutions very close to the equilib-
rium point. If any nearby solutions diverge from the equilibrium point, it is an
unstable equilibrium point. If all nearby solutions can be suitably confined, the
equilibrium point is stable (and perhaps asymptotically stable).

To address the issue of equilibrium point stability, we begin with the obser-
vation that if the point (x, y) is near the equilibrium point (xe, ye), then the first
few terms of the Taylor series expansions of f (x, y) and g(x, y) will yield good
approximations to their values near the equilibrium point:

f (x, y) = f (xe, ye) + ∂f (xe, ye)
∂x

(x− xe) + ∂f (xe, ye)
∂y

(y− ye) + · · ·

g(x, y) = g(xe, ye) + ∂g(xe, ye)
∂x

(x− xe) + ∂g(xe, ye)
∂y

(y− ye) + · · · .
(2)

We make the following observations:

1. Since (xe, ye) is an equilibrium point, f (xe, ye) = g(xe, ye) = 0. Thus, the
first term on the right-hand side of each equation in (2) vanishes.

2. The error made in truncating the series [retaining only the linear terms
shown on the right-hand sides of (2)] can usually be bounded by a mul-
tiple of ‖y− ye‖2 = (x− xe)

2 + (y− ye)
2.

If the Taylor expansion (2) is used in differential equation (1), we can write the
system in matrix form as

y ′(t) =

⎡
⎢⎢⎢⎢⎣

∂f (xe, ye)
∂x

∂f (xe, ye)
∂y

∂g(xe, ye)
∂x

∂g(xe, ye)
∂y

⎤
⎥⎥⎥⎥⎦ (y(t) − ye) + · · · . (3)

Note that the (2× 2) coefficient matrix in (3) is a constant matrix since the
partial derivatives are evaluated at the equilibrium point. [In vector calculus,
the matrix of first order partial derivatives in (3) is called the Jacobian matrix
of f(y).]

Linearization is based on the following two ideas:
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1. Since ye is a constant vector, the term y ′(t) on the left-hand side of (3)
can be replaced by [y(t) − ye]′.

2. If we consider solutions close enough to the equilibrium point for the
purpose of determining its stability characteristics, the higher order
terms in (3) are typically small relative to the linear term, y(t) − ye. We
will neglect these higher order terms.

Introduce a new dependent variable, z(t) = y(t) − ye. Retaining only the linear
term in (3) leads to the corresponding linearized system,

z ′(t) =

⎡
⎢⎢⎢⎢⎣

∂f (xe, ye)
∂x

∂f (xe, ye)
∂y

∂g(xe, ye)
∂x

∂g(xe, ye)
∂y

⎤
⎥⎥⎥⎥⎦ z(t). (4)

Note that equation (4) is a homogeneous constant coefficient linear system and
that z = 0 is an equilibrium point of the linear system. The stability properties
of z = 0 are easy to analyze since we can explicitly find the general solution of
equation (4); these properties are summarized in Theorem 6.3.

The underlying premise of linearization is that the stability properties of
z = 0 for the linear system (4) should be the same as the stability properties of
y = ye for the original nonlinear system (1). We illustrate linearization in the
next example. Then we address the question “When does linearization work?”

E X A M P L E

1 Develop the linearized-systemapproximation for each of the equilibriumpoints
of the nonlinear autonomous system

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

Also, determine the stability characteristics of the linearized system in each
case.

Solution: This is the competing species model considered in Example 4 of
Section 6.2. Recall that this system has four equilibrium solutions,

y(1)
e =

[
0

0

]
, y(2)

e =
[
0
3
2

]
, y(3)

e =
[
2

0

]
, y(4)

e =
[
1

1

]
.

The Jacobian matrix is given by⎡
⎢⎢⎢⎢⎣

∂f (x, y)
∂x

∂f (x, y)
∂y

∂g(x, y)
∂x

∂g(x, y)
∂y

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ 1
2 − 1

2x− 1
4y − 1

4x

− 1
12y

1
4 − 1

12x− 1
3y

⎤
⎦ . (5)

The Jacobian matrix (5) must be evaluated at each of the equilibrium points in
order to obtain the coefficient matrix of the appropriate linearized system. At

(continued)
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(continued)

the equilibrium point (0,0), the coefficient matrix is⎡
⎣ 1
2 − 1

2x− 1
4y − 1

4x

− 1
12y

1
4 − 1

12x− 1
3y

⎤
⎦

∣∣∣∣∣∣
x=y=0

=
⎡
⎣ 1
2 0

0 1
4

⎤
⎦ .

The linearized system is therefore

z ′ =
⎡
⎣ 1
2 0

0 1
4

⎤
⎦ z.

[Observe, for this case, that z(t) = y(t) − y(1)
e = y(t).] Since the eigenvalues of the

coefficient matrix (λ = 1
2 and λ = 1

4 ) are positive, we conclude from Theorem
6.3 that z = 0 is an unstable equilibrium solution of the linearized system.
Therefore, we anticipate that y(1)

e will also be an unstable equilibrium point of
the nonlinear system.

The remaining three equilibrium points can be analyzed in the same man-
ner. The results for all four equilibrium points are summarized in Table 6.1.

TA B L E 6 . 1

Linearized Eigenvalues Stability
System of the Properties of

Equilibrium Coefficient Coefficient the Linearized
Point z(t) Matrix Matrix System

(0,0)

[
x(t)

y(t)

] ⎡
⎣ 1
2 0

0 1
4

⎤
⎦ 1

2
,
1
4

Unstable

(
0, 32

)
⎡
⎢⎢⎣ x(t)

y(t) − 3
2

⎤
⎥⎥⎦

⎡
⎣ 1

8 0

− 1
8 − 1

4

⎤
⎦ 1

8
, −1

4
Unstable

(2,0)

[
x(t) − 2

y(t)

] ⎡
⎣− 1

2 − 1
2

0 1
12

⎤
⎦ −1

2
,
1
12

Unstable

(1,1)

[
x(t) − 1

y(t) − 1

] ⎡
⎣ − 1

4 − 1
4

− 1
12 − 1

6

⎤
⎦ −5− √

13
24

,
−5+ √

13
24

Asymptotically
stable

❖

The stability properties obtained by studying the linearized systems inTable
6.1 are consistent with the phase-plane direction field portrait of Figure 6.4 in
Section 6.2. The three equilibria designated as unstable in Table 6.1 are the
ones that appear to have direction field arrows pointing away from them in
Figure 6.4. The fourth equilibrium point, designated as asymptotically stable
in Table 6.1, appears to have all trajectories moving toward it in Figure 6.4.
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When Does Linearization Work?
We restrict our attention to the two-dimensional autonomous system y ′ = f(y).
Let ye be an equilibrium solution,

ye =
[
xe
ye

]
.

We’ll proceed as before by introducing a new dependent variable that shifts
the equilibrium point to 0 and by rewriting y ′ = f(y) in a form that explicitly
exhibits the linearized part.

Let z(t) = y(t) − ye, and let A denote the Jacobian matrix evaluated at ye,

A =

⎡
⎢⎢⎢⎢⎣

∂f (xe, ye)
∂x

∂f (xe, ye)
∂y

∂g(xe, ye)
∂x

∂g(xe, ye)
∂y

⎤
⎥⎥⎥⎥⎦ . (6)

The system y ′ = f(y) can be rewritten (without any approximation) as

z ′(t) = f(z(t) + ye) = Az(t) + [f(z(t) + ye) − Az(t)]. (7)

Define g(z(t)) = f(z(t) + ye) − Az(t). With this, equation (7) becomes

z ′(t) = Az(t) + g(z(t)). (8)

Written in this form, we see that g(z(t)) represents a nonlinear perturbation of
the linearized system z ′(t) = Az(t). The linearization approximation amounts
to discarding the nonlinear term, g(z(t)).

If the behavior of the linearized system z ′ = Az is going to be qualitatively
similar to that of the nonlinear system (8) near the equilibrium point z = 0,
it seems clear that g(z) must be suitably “small” near z = 0. In other words,
the linear part of (8), Az, must control the basic behavior of solutions near the
equilibrium point. We will now describe such a class of nonlinear systems.

A two-dimensional autonomous system y ′ = f(y) is called an almost linear
system at an equilibrium point ye if

(a) f(y) is a continuous vector-valued function whose component functions
possess continuous partial derivatives in an open region of the phase plane
containing the equilibrium point, ye.

(b) The matrix

A =

⎡
⎢⎢⎢⎢⎣

∂f (xe, ye)
∂x

∂f (xe, ye)
∂y

∂g(xe, ye)
∂x

∂g(xe, ye)
∂y

⎤
⎥⎥⎥⎥⎦

is invertible.

(c) The perturbation function g(z) = f(z+ ye) − Az is such that

lim
‖z‖→0

‖g(z)‖
‖z‖ = 0. (9)
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REMARKS:

1. The perturbation function g(z) = f(z+ ye) − Az inherits the continuity
and differentiability properties assumed for f. Thus, g(z) is continuous
with continuous partial derivatives in an open region of the z-plane con-
taining the origin, z = 0.

2. Limit (9) establishes how “small” the nonlinear perturbation must be
near the equilibrium point; the norm of the perturbation must tend to
zero faster than ‖z‖ as z approaches the origin.

3. Since matrix A is invertible, z = 0 is the only equilibrium point of the
linearized problem z ′ = Az. It is also clear that g(0) = 0 [since f(ye) = 0].
Therefore, z = 0 is an equilibrium point of the nonlinear system
z ′ = Az+ g(z). In addition, it can be shown that the assumptions made
in (a)–(c) imply that z = 0 is an isolated equilibrium point of z ′ = Az+
g(z). Therefore, y = ye is an isolated equilibrium point of the original
system, y ′ = f(y).

Theorem 6.4
Let y ′ = f(y) be a two-dimensional autonomous system that is almost
linear at an equilibrium point y = ye. Let z

′ = Az be the corresponding
linearized system.

(a) If z = 0 is an asymptotically stable equilibrium point of z ′ = Az, then
y = ye is an asymptotically stable equilibrium point of y ′ = f(y).

(b) If z = 0 is an unstable equilibrium point of z ′ = Az, then y = ye is an
unstable equilibrium point of y ′ = f(y).

(c) If z = 0 is a stable (but not asymptotically stable) equilibrium point of
z ′ = Az, then no conclusions can be drawn about the stability prop-
erties of equilibrium point y = ye.

The proof of Theorem 6.4 can be found inmore advanced treatments of dif-
ferential equations, such as Coddington andLevinson.3 However, the assertions
made in Theorem 6.4 should strike you as reasonable. When the linearized sys-
tem is asymptotically stable, both eigenvalues of the coefficient matrix A have
negative real parts. We know, therefore, that the norm of the solution of the
linearized system, ‖z(t)‖, is exponentially decreasing to zero. If the nonlinear
perturbation is sufficiently weak, we might expect this qualitative behavior to
persist in the nonlinear system (8).

Similarly, if the linearized system is unstable, at least one of the two eigen-
values of A has a positive real part. The linearized system, therefore, has some
solutions that grow exponentially in norm. In this case, we might expect insta-
bility to persist when the nonlinear perturbation g is sufficiently weak. Finally,
if the linearized system is stable but not asymptotically stable, then the eigen-
values of A form a purely imaginary complex conjugate pair. In this case, the
linearized system is sitting on the fence between stability and instability. It is

3Earl A. Coddington and Norman Levinson, Theory of Ordinary Differential Equations (Malabar,
FL: R. E. Krieger, 1984).
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possible for the nonlinear perturbation (however small) to tip the balance either
way—causing the nonlinear system to be stable or causing it to be unstable.
Example 3, found later in this section, illustrates this last point [and thereby
proves condition (c) of Theorem 6.4].

E X A M P L E

2 Consider again the nonlinear system discussed in Example 1,

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

(10)

UseTheorem6.4 to determine the stability properties of equilibriumpoint (1, 1)
for the nonlinear system (10).

Solution: We begin by making the change of dependent variable z(t)=y(t)−ye:

z1(t) = x(t) − 1 and z2(t) = y(t) − 1.

With this change of variables, we can rewrite system (10) as

z ′ =
⎡
⎣ − 1

4 − 1
4

− 1
12 − 1

6

⎤
⎦ z+

⎡
⎣ − 1

4 (z
2
1 + z1z2)

− 1
12 (z1z2 + 2z22)

⎤
⎦ . (11)

We also know (see Table 6.1) that the linearized system

z ′ =
⎡
⎣ − 1

4 − 1
4

− 1
12 − 1

6

⎤
⎦ z

has an asymptotically stable equilibrium point at z = 0.
Theorem 6.4 asserts that z = 0will be an asymptotically stable equilibrium

point of nonlinear system (11) (and therefore ye is an asymptotically stable
equilibrium point of the original system) if we can show that the system is
almost linear at the equilibrium point ye. Note that the first two conditions of
the definition are clearly satisfied. So, to apply Theorem 6.4, all we need to do
is establish the limit (9):

‖g(z)‖
‖z‖ → 0 as ‖z‖ → 0,

where [see equation (11)]

g(z) =
⎡
⎣ − 1

4 (z
2
1 + z1z2)

− 1
12 (z1z2 + 2z22)

⎤
⎦ .

In order to calculate the quotient ‖g(z)‖/‖z‖, it is convenient to introduce polar
coordinates z1 = r cos θ and z2 = r sin θ . Under this change of variables, we see
that ‖z‖ = r and

g(z) =

⎡
⎢⎢⎢⎢⎣

− r2

4
(cos2θ + sin θ cos θ)

− r2

12
(sin θ cos θ + 2 sin2θ)

⎤
⎥⎥⎥⎥⎦ .

(continued)
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(continued)

Thus,

‖g(z)‖
‖z‖ = ‖g(z)‖

r

= r

√(
−1
4

(cos2θ + sin θ cos θ)

)2

+
(

− 1
12

(sin θ cos θ + 2 sin2θ)

)2

< r

√(
1
4

(1+ 1)
)2

+
(
1
12

(1+ 2)
)2

=
√
5
4
r.

Since the right-hand side of this inequality vanishes as r → 0, limit (9) is veri-
fied and we conclude that the nonlinear system is almost linear at equilibrium
point (1,1). By Theorem 6.4, this equilibrium point is an asymptotically stable
equilibrium point of the given nonlinear system. ❖

Polar Coordinates as Dependent Variables
Polar coordinates are often useful in studying the stability properties of two-
dimensional systems. Define new dependent variables r(t) and θ(t) by means of
the relations

z1(t) = r(t) cos[θ(t)], z2(t) = r(t) sin[θ(t)] (12a)

r(t) =
√
z21(t) + z22(t), tan[θ(t)] = z2(t)

z1(t)
. (12b)

We can transform system (8), z ′(t) = Az(t) + g(z(t)), into a new system of dif-
ferential equations in these polar variables.

The motivation for this transformation is the fact that stability properties
of the equilibrium point y = ye (or, equivalently, z = 0) depend on how the
distance of the solution point z(t) from the origin varies with time. The radial
variable, r(t) = ‖z(t)‖, is this distance.

Let the Jacobian matrix A be represented as

A =
[
a11 a12
a21 a22

]
.

Then, substituting (12a) into z ′(t) = Az(t) + g(z(t)), we obtain the matrix equa-
tion[

cos θ −r sin θ

sin θ r cos θ

] [
r ′

θ ′

]
=

[
a11 a12
a21 a22

] [
r cos θ

r sin θ

]
+

[
g1(r cos θ, r sin θ)

g2(r cos θ, r sin θ)

]
. (13)

The desired system of differential equations for the polar variables is obtained
by multiplying both sides of (13) by[

cos θ −r sin θ

sin θ r cos θ

]−1
=

[
cos θ sin θ

−r−1 sin θ r−1 cos θ

]
.

We illustrate the use of the polar coordinates transformation in the next ex-
ample. [As previously noted, this example establishes condition (c) of Theo-
rem 6.4.]
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E X A M P L E

3 Consider the nonlinear autonomous system

x′ = y+ αx(x2 + y2)

y′ = −x+ αy(x2 + y2),
(14)

where α is a constant. This system has ye = 0 as an equilibrium point for any
choice of the parameter α.

Although ye = 0 is a stable equilibrium point of the linearized system, it
is not asymptotically stable. We will show that if α = 1, ye = 0 is an unstable
equilibrium point of the nonlinear system, whereas if α = −1, ye = 0 is a stable
equilibrium point of the nonlinear system.

Set z(t) = y(t) − ye = y(t), and note that the system can be written as
z ′ = Az+ g(z), where

A =
[
0 1

−1 0

]
, g(z) =

[
αx(x2 + y2)

αy(x2 + y2)

]
= αr3

[
cos θ

sin θ

]
. (15)

The eigenvalues of matrix A are ±i, and we know from Example 3 in Section
6.4 that the associated linearized system is stable but not asymptotically stable
at z = 0. Note that the nonlinear system is almost linear at 0. In particular, it
follows from (15) that the quotient,

‖g(z)‖
‖z‖ = ‖g(z)‖

r
= |α|r2,

vanishes as r → 0.
When polar coordinate variables r(t) and θ(t) are introduced as in (12),

it follows (see Exercise 27) that equation (14) transforms into the following
simple decoupled system of equations for the new dependent variables:

r ′ = α r3

θ ′ = −1. (16)

Both of these equations are easy to solve; the differential equation for the radial
variable r(t) is a first order separable differential equation. The differential
equation for the angular variable θ(t) canbe solved by antidifferentiation. Initial
conditions for the original system (14) of the form[

x(0)

y(0)

]
=

[
x0
y0

]

transform to corresponding initial conditions for system (16):

r(0) = r0 =
√
x20 + y20

θ(0) = tan−1
(
y0
x0

)
.

We are interested in the case where r0 �= 0. The solution of the transformed
system (16) is

r(t) = r0√
1− 2r20αt

, θ(t) = −t+ θ0. (17)

(continued)
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(continued)

Consider the two cases α = 1 and α = −1. For the case α = 1, r(t) becomes
unbounded as t approaches 1

2 r
−2
0 . Therefore, since all nonzero solutions even-

tually move unboundedly far from the equilibrium point, z = 0, the origin is an
unstable equilibrium point of the nonlinear system. Therefore, the linearized
system is stable (but not asymptotically stable), and the nonlinear system is
unstable at the origin.

If α = −1, however, we see from (17) that

0 ≤ r(t) ≤ r0 and lim
t→∞ r(t) = 0. (18)

In this case, the origin is an asymptotically stable equilibrium point of the non-
linear system. The linearized system is stable (but not asymptotically stable),
and the nonlinear system is asymptotically stable at y = 0.

Therefore, we have established assertion (c) of Theorem 6.4: If the lin-
earized system is stable (but not asymptotically stable), nothing can be inferred
about the stability properties of the nonlinear system.

In both cases, as time increases and the radial variable changes, the angular
variable decreases at a constant rate. The solution point is moving clockwise
around the origin with unit angular velocity. Solution point behaviors corre-
sponding to the two cases, α = ±1, are illustrated in Figure 6.13.
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x

(a) (b)

FIGURE 6.13

(a) The phase-plane plot of the solution z(t) in Example 3 with α = 1,
r0 = 0.2, θ0 = π/4, and 0 ≤ t ≤ 12. For this case, z = 0 is an unstable
equilibrium point for the nonlinear system (16); the solution point moves
away from z = 0 as t increases. (b) The phase-plane plot of the solution z(t)
in Example 3 with α = −1 and 0 ≤ t ≤ 30. In this case, z = 0 is an
asymptotically stable equilibrium point for the nonlinear system (16); the
solution point moves toward z = 0 as t increases. ❖

The Pendulum Revisited
As a final example, we consider the stability properties of the pendulum in the
context of the ideas developed earlier in this chapter. Recall that, with g = l, the
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pendulum is described by the nonlinear system

x′ = y

y′ = − sin x.
(19)

There are basically two equilibrium configurations,

ye =
[
0

0

]
and ye =

[
π

0

]
.

The first corresponds to the pendulum resting in the vertically downward posi-
tion, and the second corresponds to the pendulum resting in an inverted posi-
tion. It can be shown (Exercise 11) that system (19) is an almost linear system
at both equilibrium points; thus, we can apply Theorem 6.4.

At the equilibrium point (0,0), the coefficient matrix of the linearized sys-
tem is

A =
[
0 1

−1 0

]
.

The eigenvalues of this matrix are ±i, and thus the linearized system is stable
but not asymptotically stable at (0,0). Therefore, Theorem 6.4 provides no
information about stability of the pendulum equation at (0,0).

At (π,0), the coefficient matrix of the linearized system is

A =
[
0 1

1 0

]
.

The eigenvalues of this matrix are ±1, and so the linearized system is unstable
(since one of the eigenvalues is positive). Therefore, Theorem 6.4 tells us that
(π,0) is an unstable equilibrium point for the pendulum equation.

There is another way of deducing stability information. In Section 6.3,
we saw that the pendulum leads to a conservative system, and we derived an
explicit formula,

1
2y

2 − cos x = E, (20)

for a pendulum trajectory having energy per unit mass equal to E [see equa-
tion (8) in Section 6.3]. Figure 6.14(a) is identical to Figure 6.9 of Section 6.3,
showing representative trajectories obtained by graphing equation (20) for var-
ious values of E, E ≥ −1. As the value of the constant E decreases toward the
equilibrium point value of E = −1, the corresponding phase-plane trajectories
form a nested family of “ellipse-like” closed curves. The uniqueness property of
solutions prevents these closed curves from intersecting. We expect, therefore,
that the origin is a stable equilibrium point of the nonlinear system.

A mathematical argument verifying that (0,0) is a stable equilibrium point
can be developed along the following lines. Given any ε > 0, construct a circle
of radius ε centered at the origin. For a value of energy E sufficiently close to
−1, we can find a closed trajectory lying entirely within this circle. Let this value
of energy be Eε. Now we choose δ > 0 sufficiently small that a circle of radius δ

lies within this closed trajectory. This choice of δ will work as far as satisfying
the stability definition is concerned—all solutions originating within the circle
of radius δ will remain within the closed trajectory of energy Eε since solutions
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FIGURE 6.14

(a) Some of the phase-plane trajectories for the pendulum equation (19).
Note that the separatrices approach the unstable equilibrium point (π,0).
(b) Any trajectory originating within the circle of radius δ must stay within
the trajectory having energy Eε and must therefore remain within the
circle of radius ε. (c) Every small circle centered at (π,0) has at least one
trajectory that eventually exits the circle.

cannot intersect. Consequently, the trajectories will remain within the circle of
radius ε. Figure 6.14(b) illustrates these ideas.

These geometrical ideas also provide another way of seeing that (π,0) is
an unstable equilibrium point of the nonlinear system. In particular [see Fig-
ure 6.14(c)], any circle of radius δ > 0 centered at (π,0)must contain portions of
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the separatrices and portions of some of the other trajectories that correspond
to large-scale motions of the pendulum. Solution points originating on the lat-
ter trajectories eventually exit any small circle of radius ε centered at (π,0).
Therefore, the definition fails, and the equilibrium point (π,0) is unstable.

E X E R C I S E S

Exercises 1–9:

In each exercise, the given system is an almost linear system at each of its equilibrium
points.

(a) Find the (real) equilibrium points of the given system.

(b) As in Example 2, find the corresponding linearized system z ′ = Az at each equilib-
rium point.

(c) What, if anything, can be inferred about the stability properties of the equilibrium
point(s) by using Theorem 6.4?

1. x′ = x2 + y2 − 32

y′ = y− x

2. x′ = x2 + 9y2 − 9

y′ = x

3. x′ = 1− x2

y′ = x2 + y2 − 2

4. x′ = x− y− 1

y′ = x2 − y2 + 1

5. x′ = (x− 2)(y− 3)

y′ = (x+ 2y)(y− 1)

6. x′ = (x− y)(y+ 1)

y′ = (x+ 2)(y− 4)

7. x′ = (x− 2y)(y+ 4)

y′ = 2x− y

8. x′ = xy− 1

y′ = (x+ 4y)(x− 1)

9. x′ = y2 − x

y′ = x2 − y

10. Perform a stability analysis of the competing species model at the equilibrium point
(0,0):

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

Specifically, repeat the analysis of Example 2 to determine the stability properties
of the nonlinear system at this point.

11. Consider the system encountered in the study of pendulum motion,

x′ = y

y′ = − sin x,

at its equilibrium points (0,0) and (π,0).

(a) Let z1 = x, z2 = y. Show that the system becomes

z ′ =
[
0 1

−1 0

]
z+

[
0

z1 − sin z1

]
.

(b) Let z1 = x− π, z2 = y. Show that the system becomes

z ′ =
[
0 1

1 0

]
z−

[
0

z1 − sin z1

]
.

(c) Show that the system is almost linear at both equilibrium points. [Hint: One
approach is to use Taylor’s theorem and polar coordinates.]
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Exercises 12–20:

Each exercise lists a nonlinear system z ′ = Az+ g(z), where A is a constant (2× 2) in-
vertible matrix and g(z) is a (2× 1) vector function. In each of the exercises, z = 0 is an
equilibrium point of the nonlinear system.

(a) Identify A and g(z).

(b) Calculate ‖g(z)‖.
(c) Is lim ‖z‖→0 ‖g(z)‖/‖z‖ = 0? Is z ′ = Az+ g(z) an almost linear system at z = 0?

(d) If the system is almost linear, use Theorem 6.4 to choose one of the three statements:

(i) z = 0 is an asymptotically stable equilibrium point.

(ii) z = 0 is an unstable equilibrium point.

(iii) No conclusion can be drawn by using Theorem 6.4.

12. z′
1 = 9z1 − 4z2 + z22
z′
2 = 15z1 − 7z2

13. z′
1 = 5z1 − 14z2 + z1z2

z′
2 = 3z1 − 8z2 + z21 + z22

14. z′
1 = −3z1 + z2 + z21 + z22

z′
2 = 2z1 − 2z2 + (z21 + z22)

1/3

15. z′
1 = −z1 + 3z2 + z2 cos

√
z21 + z22

z′
2 = −z1 − 5z2 + z1 cos

√
z21 + z22

16. z′
1 = −2z1 + 2z2 + z1z2 cos z2

z′
2 = z1 − 3z2 + z1z2 sin z2

17. z′
1 = 2z2 + z22

z′
2 = −2z1 + z1z2

18. z′
1 = −3z1 − 5z2 + z1e

−
√

z21+z22

z′
2 = 2z1 − z2 + z2e

−
√

z21+z22

19. z′
1 = 9z1 + 5z2 + z1z2

z′
2 = −7z1 − 3z2 + z21

20. z′
1 = 2z1 + 2z2

z′
2 = −5z1 − 2z2 + z21

21. Consider the autonomous system

x′ = −x+ xy+ y

y′ = x− xy− 2y.

This is the reduced system for the chemical reaction discussed in Exercise 19 of
Section 6.1 with a(t) = x(t), c(t) = y(t), e0 = 1, and all rate constants set equal to 1.

(a) Show that this system has a single equilibrium point, (xe, ye) = (0,0).

(b) Determine the linearized system z ′ = Az, and analyze its stability properties.

(c) Show that the system is an almost linear system at equilibrium point (0,0).

(d) Use Theorem 6.4 to determine the equilibrium properties of the given nonlinear
system at (0,0).

22. Consider the nonlinear scalar differential equation x′′ = 1− (1+ x)3/2. An equation
having this structure arises in modeling the bobbing motion of a floating parabolic
trough.

(a) Let y = x′ and rewrite the given scalar equation as an equivalent first order
system.

(b) Show that the system has a single equilibrium point at (xe, ye) = (0,0).

(c) Determine the linearized system z ′ = Az, and analyze its stability properties.

(d) Assume that the system is an almost linear system at equilibrium point (0,0).
Does Theorem 6.4 provide any information about the stability properties of the
nonlinear system obtained in part (a)? Explain.
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23. Consider again the differential equation of Exercise 22, x′′ = 1− (1+ x)3/2.

(a) In Section 6.3, equations having this structure were shown to have a conserva-
tion law. Derive this conservation law; it will have the form y2/2+ F(x) = C, where
y = x′.

(b) Let C = 1
2 ,

3
4 , and 1 in the conservation law derived in part (a). Plot the cor-

responding phase-plane solution trajectories, using computational software. Are
these phase-plane trajectories consistent with a bobbing motion? Assuming these
plots typify the behavior of solution trajectories near the origin, do they suggest
that the origin is a stable or unstable equilibrium point for the nonlinear system?
Explain.

24. Each of the autonomous nonlinear systems fails to satisfy the hypotheses of Theo-
rem 6.4 at the equilibrium point (0,0). Explain why.

(a) x′ = x− y+ xy

y′ = −x+ y+ 2x2y2
(b) x′ = x− 2y− x2/3

y′ = x+ y+ 2y1/3

25. Polar Coordinates Consider the system z ′ = Az+ g(z), where

A =
[
a11 a12

a21 a22

]
and g(z) =

[
g1(z)

g2(z)

]
.

Show that adopting polar coordinates z1(t) = r(t) cos[θ(t)] and z2(t) = r(t) sin[θ(t)]
transforms the system z ′ = Az+ g(z) into

r ′ = r[a11 cos2 θ + a22 sin
2 θ + (a12 + a21) sin θ cos θ] + [g1 cos θ + g2 sin θ ]

θ ′ = [a21 cos2 θ − a12 sin
2 θ + (a22 − a11) sin θ cos θ ] + r−1[−g1 sin θ + g2 cos θ ].

26. Use the polar equations derived in Exercise 25 to show that if

a11 = a22, a21 = −a12, g1(z) = z1h
(√

z21 + z22

)
, g2(z) = z2h

(√
z21 + z22

)

for some function h, then the polar equations uncouple into

r ′ = a11r + rh(r)

θ ′ = a21.

Note that the radial equation is a separable differential equation and the angle
equation can be solved by antidifferentiation.

27. Consider the system x′ = y+ αx(x2 + y2), y′ = −x+ αy(x2 + y2). Introduce polar co-
ordinates and use the results of Exercises 25 and 26 to derive differential equations
for r(t) and θ(t). Solve these differential equations, and then form x(t) and y(t).

Exercises 28–29:

Introduce polar coordinates and transform the given initial value problem into an equiv-
alent initial value problem for the polar variables. Solve the polar initial value problem,
and use the polar solution to obtain the solution of the original initial value problem. If
the solution exists at time t = 1, evaluate it. If not, explain why.

28. x′ = x+ x
√
x2 + y2, x(0) = 1

y′ = y+ y
√
x2 + y2, y(0) = √

3

29. x′ = y− x ln[x2 + y2], x(0) = e/
√
2

y′ = −x− y ln[x2 + y2], y(0) = e/
√
2
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6.6 Two-Dimensional Linear Systems
Wecontinue studying the phase-plane behavior of solutions of the linear system
y ′ = Ay, where A is a (2× 2) real invertible matrix. Since A is invertible, y = 0
is the only equilibrium solution of y ′ = Ay.

As we have seen, there are two principal reasons for studying this phase-
plane behavior. First, y ′ = Ay is an important and intrinsically interesting sys-
tem. Second, such systems arise whenever we linearize about an equilibrium
point, zooming in to study the behavior of a nonlinear autonomous system
close to an equilibrium point.

By studying the eigenvalues and the phase-plane geometry of the associated
eigenvectors at an equilibrium point, we can often sketch a good local picture—
one that gives a qualitative description of the nonlinear system behavior near
the equilibrium point. Such local pictures complement the large-scale overview
provided by the direction field. Taken together, they provide a good overall view
of system behavior.

To illustrate the ideas, we consider the competing species problem that has
served as a vehicle for discussion throughout this chapter.

E X A M P L E

1 We use linearized system approximations to develop local pictures of system
behavior near each of the equilibrium points of the nonlinear system

x′ = 1
2

(
1− 1

2x− 1
2y

)
x

y′ = 1
4

(
1− 1

3x− 2
3y

)
y.

(1)

System (1) has four equilibrium points, (0,0), (0, 32 ), (2,0), and (1,1). We focus
on the equilibrium point (0, 32 ) in order to illustrate the basic ideas. Using

z(t) =
[

x(t)

y(t) − 3
2

]
,

we have for the linearized system at (0, 32 )

z ′ =
⎡
⎣ 1

8 0

− 1
8 − 1

4

⎤
⎦ z.

The general solution of this linear system is

z(t) = c1e
t/8

[
3

−1

]
+ c2e

−t/4
[
0

1

]
. (2)

We can use the eigenpair information in (2) to sketch the qualitative behavior
of solution trajectories of z ′ = Az. In turn, these sketches provide qualitative
information about solutions of the original nonlinear system near the equilib-
rium point (0, 32 ).

To begin, consider the special case where c2 = 0 and c1 �= 0. In this case,

z1(t) = 3c1e
t/8 and z2(t) = −c1et/8. (3)
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From (3), these solutions lie on the z-plane line

z2 = − 1
3z1.

Since et/8 increases as t increases, we also see from (3) that both z1(t) and z2(t)
increase in magnitude as t increases. Therefore, solution points originating on
this line remain on this line and move away from the origin as t increases, as
shown in the direction field plot in Figure 6.15(a), on the next page. Similarly,
consider the companion case where c1 = 0 and c2 �= 0 in equation (2). In this
case, solution points lie on the phase-plane line z1 = 0 and approach the origin
as t increases, since e−t/4 decreases as t increases [see Figure 6.15(a)].

Solution point behavior in these two special cases enables us to determine
qualitatively the general phase-plane characteristics of (2). Consider the general
case where c1 �= 0, c2 �= 0. For sufficiently small values of t, both exponential
functions are roughly comparable in size and both terms in the general solution
influence solution point behavior. However, as t increases, the term

c1e
t/8

[
3

−1

]

becomes increasingly dominant and all solution trajectories approach the
phase-plane line z2 = − 1

3z1 as an asymptote. Therefore, we obtain the phase-
plane behavior shown in Figure 6.15(a).

A similar analysis can be used to study behavior near the other equilibrium
points, (0,0), (2,0), and (1,1). In all cases, the eigenvalues of the linearized
system coefficientmatrix are real and distinct. The eigenvectors determine lines
through the z-plane origin on which solution points travel either toward the
origin if the corresponding eigenvalue is negative or away from the origin if
the eigenvalue is positive. Using this behavior as a guide, we can sketch in the
qualitative behavior of solution points originating elsewhere in the plane. This
qualitative behavior is shown in Figures 6.15(b)–(d). ❖

The four z-plane-phase portraits in Figure 6.15, when positioned at the
corresponding y-plane equilibrium points, provide local pictures that are com-
plementary to and consistent with the large-scale overview developed in Sec-
tion 6.2. This is illustrated in Figure 6.16, where the local equilibrium pictures
from Figure 6.15 have been superimposed on Figure 6.6 from Section 6.2. At-
tention is restricted to the first quadrant, since the dependent variable y(t) has
components that represent (nonnegative) populations.

Classifying Equilibrium Points
In Example 1, the coefficient matrix of the linearized system at each of the four
equilibrium points had real, distinct eigenvalues. In two cases, the eigenvalues
had the same sign; in the other two, the eigenvalues had opposite signs. If A is
an invertible (2× 2) matrix, other possibilities exist for the (nonzero) pair of
eigenvalues. The eigenvalues might be real and repeated. They might be a com-
plex conjugate pair with nonzero real parts, or theymight be a purely imaginary
complex conjugate pair. Table 6.2 enumerates the various possibilities and the
names assigned to them.



450 CHAPTER 6 Nonlinear Systems

z2

z1
–2 –1 1 2 3–3

–2

–3

–1

1

2

3

(a)

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

z2

z1

(b)

z2 = – z1
1
3

z2

z1

z2

z1

(c) (d)

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

–2

–3

–1

1

2

3

z2 = – z1
7
6

z2 = (       ) z1
2

1 + √13

z2 = (       ) z1
2

1 – √13

FIGURE 6.15

Direction fields for the various linearizations z ′ = Az associated with the
nonlinear system (2). Each z-plane direction field corresponds to an
equilibrium point of the nonlinear system. The equilibrium points are
(a) (0, 32 ), (b) (0,0), (c) (2,0), and (d) (1,1).
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FIGURE 6.16

The local equilibrium pictures from Figure 6.15, superimposed on the
qualitative picture developed in Section 6.2 (see Figure 6.6 of Section 6.2).

TA B L E 6 . 2

Classification of the Equilibrium Point at the Origin for y ′ = Ay

Type of Stability Characteristics
Eigenvalues of A Equilibrium Point of the Linear System

Real eigenvalues λ1, λ2 where
λ1 ≤ λ2 < 0 Node Asymptotically stable
0 < λ1 ≤ λ2 Node Unstable

Real eigenvalues λ1, λ2 where
λ1 < 0 < λ2 Saddle point Unstable

Complex eigenvalues where
λ1,2 = α ± iβ, α < 0 Spiral point Asymptotically stable
λ1,2 = α ± iβ, α > 0 Spiral point Unstable

Complex eigenvalues where
λ1,2 = ±iβ, β �= 0 Center Stable but not

asymptotically stable

The “node” designation is often divided into two subcategories. If matrix A
has two equal (real) eigenvalues and is a scalar multiple of the (2× 2) identity
matrix, the equilibrium point is called a proper node. In all other cases (when
A has equal real eigenvalues but only one linearly independent eigenvector or
when A has unequal real eigenvalues of the same sign), the equilibrium point
is called an improper node.

Figures 6.15 and 6.17–6.19 provide some examples of phase-plane behav-
ior at nodes and saddle points. The following three examples illustrate typical
behavior at a proper node, a spiral point, and a center.
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E X A M P L E

2 Proper Node

Consider the linear system

y ′ =
[
α 0

0 α

]
y, α �= 0.

Theorigin is a proper node since the eigenvalues are real and equal (λ1= λ2 = α),
and the coefficient matrix is a nonzero multiple of the identity matrix. The
phase-plane behavior of trajectories is easily recognized if we adopt polar co-
ordinates. Let

x = r cos θ and y = r sin θ.

With this change of variables, the component equations transform into the
differential equations for the polar variables,

r ′ = αr

θ ′ = 0.

As time increases, the solution points move on rays, since the polar angle θ

remains constant. If α < 0, solutions approach the origin and the origin is an
asymptotically stable equilibriumpoint. If α > 0, solution pointsmove outward
along the rays and the origin is an unstable equilibriumpoint. Note that the rays
(the trajectories themselves) are independent of the value of α. The parameter
α governs only how quickly solution points move inward or outward along the
rays. Figure 6.17 depicts behavior for the case α > 0.

y

x
–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

FIGURE 6.17

The origin is a proper node for the system in Example 2. Since α > 0 in
this example, the origin is an unstable equilibrium point. ❖

E X A M P L E

3 Spiral Point

Consider the linear system

y ′ =
[
−1 −1
1 −1

]
y.
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The eigenvalues of the coefficient matrix are the complex conjugate pair
λ1 = −1+ i, λ2 = −1− i. According to Table 6.2, the origin is an asymptoti-
cally stable spiral point. The behavior of solutions, as well as the reason for the
terminology “spiral point,” can be clearly seen when we change to polar coor-
dinates. For this system, we obtain the following pair of differential equations
for the polar variables:

r ′ = −r
θ ′ = 1.

Let the initial conditions be r(0) = r0 and θ(0) = θ0. Then the solutions are

r(t) = r0e
−t, θ(t) = t+ θ0.

Thus, as time increases, a solution point spirals inward toward the origin. Its
distance from the origin decreases at an exponential rate while it moves coun-
terclockwise about the origin. This behavior is shown in Figure 6.18.

y

x
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–1

1

2

3

FIGURE 6.18

The origin is a spiral point for the system in Example 3. Since the
eigenvalues of A have real part −1, the origin is asymptotically stable. A
solution point follows a trajectory that spirals in toward the origin. ❖

E X A M P L E

4 Center

Consider the linear system

y ′ =
[
−4 5

−5 4

]
y.

The eigenvalues of the coefficient matrix are the purely imaginary complex
conjugate pair λ1 = 3i, λ2 = −3i. According to Table 6.2, the origin is classified
as a stable center. Phase-plane behavior is shown in Figure 6.19.

One way to derive the equations for the elliptical trajectories in Figure 6.19
is to change to polar coordinates. For this linear system, the differential equa-
tions for the polar variables are

r ′ = −4r cos 2θ
θ ′ = −5+ 4 sin 2θ. (continued)
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(continued)
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FIGURE 6.19

The origin is a center for the system in Example 4 since the eigenvalues of
A are purely imaginary. The origin is a stable equilibrium point, but it is
not asymptotically stable. The solution points follow elliptical trajectories
about the origin.

Notice that θ is a decreasing function of t. Therefore, an inverse function exists,
and we can view r as a function of θ . Using the chain rule, we have

dr
dθ

= dr
dt

dt
dθ

= −4r cos 2θ 1
−5+ 4 sin 2θ

,

or
dr
dθ

= 4 cos 2θ
5− 4 sin 2θ

r.

This equation is a first order linear differential equation. Assuming an initial
condition of r = r0 when θ = 0, we find the solution

r = r0√
1− 0.8 sin 2θ

.

Note that r is a periodic function of θ , with period π . Since θ is a decreas-
ing function of t, the solution points (r, θ) move clockwise around the closed
elliptical trajectories, as shown in Figure 6.19. ❖

An alternative derivation of the trajectory equations is outlined in Exer-
cise 31. This approach leads to equations in terms of the original x, y phase-
plane variables.

E X E R C I S E S

Exercises 1–5:

In each exercise, the eigenpairs of a (2× 2) matrix A are given where both eigenvalues
are real. Consider the phase-plane solution trajectories of the linear system y ′ = Ay,
where

y(t) =
[
x(t)

y(t)

]
.
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(a) Use Table 6.2 to classify the type and stability characteristics of the equilibrium
point at y = 0.

(b) Sketch the two phase-plane lines defined by the eigenvectors. If an eigenvector is[
u1
u2

]
, the line of interest is u2x− u1y = 0. Solution trajectories originating on such

a line stay on the line; they move toward the origin as time increases if the corre-
sponding eigenvalue is negative or away from the origin if the eigenvalue is positive.

(c) Sketch appropriate direction field arrows on both lines. Use this information to
sketch a representative trajectory in each of the four phase-plane regions having
these lines as boundaries. Indicate the direction of motion of the solution point on
each trajectory.

1. λ1 = 2, x1 =
[
1

1

]
; λ2 = −1, x2 =

[
1

−1

]

2. λ1 = 1, x1 =
[
1

2

]
; λ2 = 2, x2 =

[
2

−1

]

3. λ1 = 2, x1 =
[
2

0

]
; λ2 = 1, x2 =

[
0

2

]

4. λ1 = −2, x1 =
[
1

0

]
; λ2 = −1, x2 =

[
1

1

]

5. λ1 = 1, x1 =
[
1

0

]
; λ2 = −1, x2 =

[
2

1

]

Exercises 6–20:

In each exercise, consider the linear system y ′ = Ay. Since A is a constant invertible
(2× 2) matrix, y = 0 is the unique (isolated) equilibrium point.

(a) Determine the eigenvalues of the coefficient matrix A.

(b) Use Table 6.2 to classify the type and stability characteristics of the equilibrium
point at the phase-plane origin. If the equilibrium point is a node, designate it as
either a proper node or an improper node.

6. y ′ =
[
1 −6
1 −4

]
y 7. y ′ =

[
6 −10
2 −3

]
y 8. y ′ =

[−6 14

−2 5

]
y

9. y ′ =
[
1 2

−5 −1

]
y 10. y ′ =

[−1 1

−1 −1

]
y 11. y ′ =

[
1 −6
2 −6

]
y

12. y ′ =
[
2 −3
3 2

]
y 13. y ′ =

[−2 −4
5 2

]
y 14. y ′ =

[
7 −24
2 −7

]
y

15. y ′ =
[−1 8

−1 5

]
y 16. y ′ =

[−2 1

−1 −2

]
y 17. y ′ =

[
2 4

−4 −6

]
y

18. y ′ =
[
3 0

0 3

]
y 19. y ′ =

[
1 2

−8 1

]
y 20. y ′ =

[−1 −2
2 3

]
y

21. Consider the linear system y ′ = Ay. Four direction fields are shown. Determine
which of the four coefficient matrices listed corresponds to each of the direction
fields shown.
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(a) A1 =
[−2 1

1 −2

]
(b) A2 =

[
1 2

−2 −1

]

(c) A3 =
[
2 1

−1 −2

]
(d) A4 =

[
1 2

−2 1

]
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Figure for Exercise 21

Exercises 22–25:

Use the information given about the nature of the equilibrium point at the origin to
determine the value or range of permissible values for the unspecified entry in the co-
efficient matrix.

22. The origin is a center for the linear system y ′ =
[
2 3

−3 α

]
y; determine α.

23. Given y ′ =
[−4 α

−2 2

]
y, for what values of α (if any) can the origin be an asymptoti-

cally stable spiral point?

24. The origin is an asymptotically stable proper node of y ′ =
[−2 0

α −2
]
y; determine

the value(s) of α.
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25. Given y ′ =
[
4 −2
α −4

]
y, for what values of α (if any) can the origin be an (unstable)

saddle point?

Exercises 26–29:

Locate the equilibrium point of the given nonhomogeneous linear system y ′ = Ay+ g0.
[Hint: Introduce the change of dependent variable z(t) = y(t) − y0, where y0 is chosen
so that the equation can be rewritten as z ′ = Az.] Use Table 6.2 to classify the type and
stability characteristics of the equilibrium point.

26. y ′ =
[
1 4

−1 1

]
y+

[
3

2

]
27. y ′ =

[
6 5

−7 −6

]
y+

[
4

−6

]

28. x′ = 5x− 14y+ 2

y′ = 3x− 8y+ 1

29. x′ = −x+ 2

y′ = 2y− 4

30. Let

A =
[
a11 a12
a21 a22

]

be a real invertible matrix, and consider the system y ′ = Ay.

(a) What conditions must the matrix entries aij satisfy to make the equilibrium
point ye = 0 a center?

(b) Assume that the equilibrium point at the origin is a center. Show that the system
y ′ = Ay is a Hamiltonian system.

(c) Is the converse of the statement in part (b) true? In other words, if the system
y ′ = Ay is a Hamiltonian system, does it necessarily follow that ye = 0 is a center?
Explain.

31. Consider the linear system of Example 4,

y ′ =
[−4 5

−5 4

]
y.

The coefficient matrix has eigenvalues λ1 = 3i, λ2 = −3i; the equilibrium point at
the origin is a center.

(a) Show that the linear system is a Hamiltonian system. Either use the results of
Exercise 30 or apply the criterion directly to this example.

(b) Derive the conservation law for this system. The result, 52x
2− 4xy+ 5

2y
2 = C > 0,

defines a family of ellipses. These ellipses are the trajectories on which the solution
point moves as time changes.

(c) Plot the ellipses found in part (b) for C = 1
4 ,

1
2 , and 1. Indicate the direction in

which the solution point moves on these ellipses.

Exercises 32–34:

A linear system is given in each exercise.

(a) Determine the eigenvalues of the coefficient matrix A.

(b) Use Table 6.2 to classify the type and stability characteristics of the equilibrium
point at y = 0.

(c) The given linear system is a Hamiltonian system. Derive the conservation law for
this system.

32.
y ′ =

[−2 1

5 2

]
y

33. x′ = x+ 3y

y′ = −3x− y

34.
y ′ =

[
2 1

0 −2

]
y
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6.7 Predator-Prey Population Models
By way of introduction, we pose a question. This question involves the familiar
problem of a predatory population being introduced into a colony, either by
accident or by design. If the predator is undesirable, our goal may be to remove
it from the colony. If the predator is desirable, our goal may be to establish
a coexisting ecological balance between the predators and their prey. Which
scenarios lead to predator eradication, and which scenarios lead to predator-
prey coexistence?Andwhat are the factors responsible for the desired outcome?

Mathematical Modeling
We develop a mathematical model of two-species predator-prey interaction to
gain insight into the question posed above.4 Let P1(t) and P2(t) represent the
populations of predators and prey (respectively) in a colony at time t. Both pop-
ulations change with time because of births, deaths, and harvesting. A “con-
servation of population” principle of the type discussed in Section 2.4 leads to
differential equations having the following general structure:

dP1
dt

= R1P1 − μ1P1

dP2
dt

= R2P2 − μ2P2.

(1)

In equation (1), the term Rj represents the net birth rate per unit population
of the jth species. We assume that R1 and R2 are functions of the populations
P1 and P2 (but not explicit functions of time t). The nonnegative constants
μ1 and μ2 represent harvesting rates per unit population. Applying the ideas
underlying the logistic population model developed in Section 2.8, we assume
the rate functions R1 and R2 have the form

R1 = r1(−1− α1P1 + β1P2)

R2 = r2(1− β2P1 − α2P2),
(2)

where the parameters rj, αj, and βj are nonnegative constants, j = 1, 2.
What are we actually assuming in (2)? In the absence of prey for food (that

is, if β1 = 0), the predator rate function would be R1 = −r1(1+ α1P1) < 0 and
the predator population would continually decrease. The β1P2 term embodies
the beneficial aspects of the prey food supply on the predator growth rate. The
−α1P1 term allows for competition among the predators for the available food.

Consider now the prey rate function, R2. In the absence of predators and
limitations on the prey’s food supply (that is, if β2 = 0 and α2 = 0), the rate
function would be R2 = r2 > 0. In that case, the prey population would grow
exponentially whenever r2 > μ2. The terms −β2P1 and −α2P2 account for the

4Important early work in developing and applying suchmodels was done by Volterra. Vito Volterra
(1860–1940) was an Italian mathematician and scientist noted for his work on functional calculus,
partial differential equations, integral equations and mathematical biology. During his career, he
held distinguished positions at the universities of Pisa, Turin, and Rome. In 1931, he was forced to
leave the University of Rome after refusing to take an oath of allegiance to the Fascist government.
He left Italy the following year and spent the rest of his life abroad.
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negative effects of predation and limits on the prey’s food supply, respectively.
The predator-prey equations we use as our basic model are therefore

dP1
dt

= r1(−1− α1P1 + β1P2)P1 − μ1P1

dP2
dt

= r2(1− β2P1 − α2P2)P2 − μ2P2.

(3)

Managing a Predator Population
We now take up the question posed at the beginning of this section: How do we
manage a predator population that has been introduced into a colony, whether
by accident or by design?

We assume the colony has resource limitations that exert a constraining
influence on each of the predator and prey populations. We allow for the possi-
bility of harvesting the predator population but not the prey population. Under
these assumptions, system (3) becomes

dP1
dt

= r1

(
−1− μ

r1
− α1P1 + β1P2

)
P1

dP2
dt

= r2
(
1− β2P1 − α2P2

)
P2,

(4)

where all the constants on the right-hand side of (4) are assumed positive with
the possible exception of the harvesting rate μ, which we may allow to be zero.

From an ecological point of view, we want to know what combination of
harvesting strategies and environmental factors will cause the predator popu-
lation to

(a) die out or

(b) achieve a coexisting balance with the prey population as time evolves.

Rephrasing inmathematical terms, wewant to discover which relations among
the constants in (4) will cause all solutions to

(a) converge to an equilibrium value (0,P2e), where P2e > 0, or

(b) converge to an equilibrium value (P1e,P2e), where P1e > 0, P2e > 0.

Autonomous system (4) has at most three equilibrium points in the first quad-
rant of the phase plane:

P(1)
e =

[
0

0

]
, P(2)

e =
⎡
⎢⎣
0

1
α2

⎤
⎥⎦ , P(3)

e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2

(
1+ μ

r1

)
+ β1

α1α2 + β1β2

β2

(
1+ μ

r1

)
+ α1

α1α2 + β1β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The equilibrium point P(1)
e , where P1e = P2e = 0, corresponds to neither species

being present. The equilibrium point P(2)
e , where

P1e = 0, P2e = 1
α2

, (5)

corresponds to a complete absence of predators. The third equilibrium point,
P(3)
e , is found by solving the system of equations

−1− μ

r1
− α1P1e + β1P2e = 0

1− β2P1e − α2P2e = 0.

This equilibrium point is given by

P1e =
−α2

(
1+ μ

r1

)
+ β1

α1α2 + β1β2
, P2e =

β2

(
1+ μ

r1

)
+ α1

α1α2 + β1β2
. (6)

By definition, the two species coexist when both P1e and P2e are positive. Thus,
model (4) predicts that both species can coexist in equilibrium only if

β1 > α2

(
1+ μ

r1

)
. (7)

If inequality (7) does not hold, then the two species cannot coexist in equilib-
rium and the only nontrivial equilibrium solution in the first quadrant is (5),
wherein predators are absent.

Suppose our goal is to eradicate the predators. We see from (7) that we
can eliminate the possibility of equilibrium predator-prey coexistence by suffi-
ciently increasing α2[1+ (μ/r1)] and/or by decreasing β1. Does this make sense?
Increasing μ corresponds to increasing the harvesting rate of predators, while
decreasing β1 corresponds to somehow reducing the beneficial effects of the
prey as food for the predators. It seems reasonable that either of these two
strategies would be harmful to the predators.

What about increasing α2, however? Recall that α2 is the parameter model-
ing the constraining effects of the available colony resources on the prey popu-
lation. In the absence of predators, the equilibrium prey population P2e = 1/α2
decreases as α2 increases. Is it reasonable to conclude that we can adversely
impact the predator population by indirectly constraining its food supply?

We want to focus on the role of the parameter α2 in controlling the popula-
tion. Toward that end, the parameters r1, r2, α1, β1, β2, and μwill all be assigned
the value 1, leading to the system

dP1
dt

= (−2− P1 + P2)P1

dP2
dt

= (1− P1 − α2P2)P2.

(8)

Table 6.3 summarizes the information we can deduce from linearizing system
(8). In either case (whether equilibrium coexistence is possible or impossible),
the origin is an unstable saddle point. If equilibrium coexistence is possible,
then the equilibrium point (0,1/α2) is an unstable saddle point. If coexistence is
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TA B L E 6 . 3

Linearized Stability
Equilibrium System z ′ = Az Properties
Point [z(t) = P(t) − Pe] Eigenvalues of System (4)

P1e = 0

P2e = 0
A =

⎡
⎢⎣−2 0

0 1

⎤
⎥⎦ λ1 = −2

λ2 = 1
Unstable

P1e = 0

P2e = 1/α2
A =

⎡
⎣−2+ 1/α2 0

−1/α2 −1

⎤
⎦ λ1 = −2+ 1/α2

λ2 = −1

Unstable if
α2 < 1

2 ,

asymptotically
stable if
α2 > 1

2

P1e = 1− 2α2
α2 + 1

P2e = 3
α2 + 1

A =

⎡
⎢⎢⎢⎣

−1− 2α2
α2 + 1

1− 2α2
α2 + 1

− 3
α2 + 1

− 3α2
α2 + 1

⎤
⎥⎥⎥⎦ λ1,2 = −1

2
± 1
2

√
1− 12(1− α2 − 2α22)

(1+ α2)
2

Asymptotically
stable if
α2 < 1

2

impossible, however, this equilibrium point becomes an asymptotically stable
node.

The third equilibrium point in Table 6.3, corresponding to the coexistence
of predators and prey, requires [see equation (7)] that the numerator of P1e be
positive; that is,

α2 < 1
2 .

When α2 < 1
2 , this third equilibrium point is either an asymptotically stable

spiral point or a node.
The three phase-plane plots in Figure 6.20 correspond to different values

of α2 in system (8). In Figure 6.20(a), α2 = 0. In this case, no resource limi-
tations constrain prey growth, and predator-prey coexistence is possible. All
solution trajectories having both species initially present spiral in toward the
asymptotically stable equilibrium point (1,3). In Figure 6.20(b), α2 has been
increased to α2 = 9

20 . In this case, the equilibrium point of the linearized system
is a stable node. Here again, all solution trajectories of the nonlinear system
having both species initially present approach the asymptotically stable equi-
librium point at ( 2

29 ,
60
29 ). Lastly [see Figure 6.20(c)], when α2 = 1, coexistence

is not possible. All solution trajectories having both species initially present
approach the asymptotically stable equilibrium point (0,1) as t → ∞. In this
last case, the predator population tends toward extinction as time progresses.
These direction field observations support our previous conclusions.

On one hand, the parametric study illustrated in Figure 6.20 indicates that
our interpretation of the model’s behavior seems correct. On the other hand,
a model such as (4) is at best a gross simplification of reality. The trade-off in
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FIGURE 6.20

Portions of the direction field for the predator-prey equations (8), with
different choices of α2: (a) α2 = 0, (b) α2 = 9

20 , (c) α2 = 1.

modeling is always one of reducing a problem to its essential features without
“throwing away” reality. In particular, when model predictions seem counter-
intuitive, we need to proceed with a healthy skepticism—both scrutinizing and
refining the model to gain further confidence and insight.

E X E R C I S E S

Exercises 1–4:

Assume the given autonomous system models the population dynamics of two species,
x and y, within a colony.

(a) For each of the two species, answer the following questions.
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(i) In the absence of the other species, does the remaining population continuously
grow, decline toward extinction, or approach a nonzero equilibrium value as
time evolves?

(ii) Is the presence of the other species in the colony beneficial, harmful, or amatter
of indifference?

(b) Determine all equilibrium points lying in the first quadrant of the phase plane (in-
cluding any lying on the coordinate axes).

(c) The given system is an almost linear system at the equilibrium point (x, y) = (0,0).
Determine the stability properties of the system at (0,0).

1. x′ = x− x2 − xy

y′ = y− 3y2 − 1
2xy

2. x′ = −x− x2

y′ = −y+ xy

3. x′ = x− x2 − xy

y′ = −y− y2 + xy

4. x′ = x− x2 + xy

y′ = y− y2 + xy

5. A scientist adopted the following mathematical model for a colony containing two
species, x and y:

x′ = r1(1+ α1x+ β1y)x

y′ = r2(1+ β2x+ α2y)y.

The following information is known:

(i) If only species x is present in the colony, any initial amount will vary with time
as shown in graph (a). If only species y is present, any initial amount will vary
as shown in graph (b).

(ii) If both species are initially present, (xe, ye) = (2,3) is an equilibrium point.

ln[y(t)]

t

1

1

21

–2

1

–4

4 6

ln[x(t)]

t
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2

2

2

–1

4

4 6

(a) (b)

Figure for Exercise 5

(a) Determine the six constants r1, α1, β1, r2, α2, and β2.

(b) How do the two populations relate to each other? Is population x beneficial,
harmful, or indifferent to population y? Is population y beneficial, harmful, or in-
different to population x?

Exercises 6–7:

Two Competing Species These exercises explore the question “When one of two species
in a colony is desirable and the other is undesirable, is it better to use resources to
nurture the growth of the desirable species or to harvest the undesirable one?”
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Let x(t) and y(t) represent the populations of two competing species, with x(t) the
desirable species. Assume that if resources are invested in promoting the growth of the
desirable species, the population dynamics are given by

x′ = r(1− αx− βy)x+ μx

y′ = r(1− αy− βx)y.
(9)

If resources are invested in harvesting the undesirable species, the dynamics are

x′ = r(1− αx− βy)x

y′ = r(1− αy− βx)y− μy.
(10)

In (10), r, α, β, and μ are positive constants. For simplicity, we assume the same param-
eter values for both species. For definiteness, assume that α > β > 0.

6. Consider system (9), which describes the strategy in which resources are invested
into nurturing the desirable species.

(a) Determine the four equilibrium points for the system.

(b) Show that it is possible, by investing sufficient resources (that is, by making μ

large enough), to prevent equilibrium coexistence of the two species.

(c) Assume that μ is large enough to preclude equilibrium coexistence of the two
species. Compute the linearized system at each of the three physically relevant equi-
librium points. Determine the stability characteristics of the linearized system at
each of these equilibrium points.

(d) System (9) can be shown to be an almost linear systemat each of the equilibrium
points. Use this fact and the results of part (c) to infer the stability properties of
system (9) at each of the three equilibrium points of interest.

(e) Sketch the direction field. Will a sufficiently aggressive nurturing of species
x ultimately drive undesirable species y to extinction? If so, what is the limiting
population of species x?

7. Consider system (10), which describes the strategy in which resources are invested
in harvesting the undesirable species. Again assume that α > β > 0.

(a) Determine the four equilibrium points for the system.

(b) Show that it is possible, by investing sufficient resources (that is, by making
μ large enough), to prevent equilibrium coexistence of the two species. In fact, if
μ > r, show that there are only two physically relevant equilibrium points.

(c) Assume μ > r. Compute the linearized system at each of the two physically
relevant equilibrium points. Determine the stability characteristics of the linearized
system at each of these equilibrium points.

(d) System (10) can be shown to be an almost linear system at each of the equilib-
rium points. Use this fact and the results of part (c) to infer the stability properties
of system (10) at each of the two equilibrium points of interest.

(e) Sketch the direction field. Will sufficiently aggressive harvesting of species y
ultimately drive undesirable species y to extinction? If so, what is the limiting pop-
ulation of species x?

8. Compare the conclusions reached in Exercises 6 and 7. Assume we have sufficient
resources to implement either strategy. Which strategy will result in the larger num-
ber of desirable species x eventually being present: promoting the desirable species
or harvesting the undesirable one? Could this answer have been anticipated by as-
suming that both strategies will lead to the eventual extinction of species y? Will
comparing the resulting one-species equilibrium values for x provide the answer?
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9. Three species, designated as x, y, and z, inhabit a colony. Species x and y are two
mutually competitive varieties of prey, while z is a predator that depends on x and
y for sustenance. In the absence of the other two species, both x and y are known
to evolve toward a nonzero equilibrium value as time increases. Species z, however,
decreases exponentially toward extinction when both species of prey are absent.
Assume that a mathematical model having the following structure is adopted to
describe the population dynamics:

x′ = ±a1x± b1x
2 ± c1xy± d1xz

y′ = ±a2y± b2y
2 ± c2xy± d2yz

z′ = ±a3z± c3xz± d3yz.

If we want the constants a1, b1, c1, a2, . . . ,d3 to be nonnegative, use the information
given to select the correct (plus or minus) sign in the model.

Exercises 10–11:

Infectious Disease Dynamics Consider a colony in which an infectious disease (such as
the common cold) is present. The population consists of three “species” of individuals.
Let s represent the susceptibles—healthy individuals capable of contracting the illness.
Let i denote the infected individuals, and let r represent those who have recovered from
the illness. Assume that those who have recovered from the illness are not permanently
immunized but can become susceptible again. Also assume that the rate of infection is
proportional to si, the product of the susceptible and infected populations. We obtain
the model

s′ = −αsi+ γ r

i′ = αsi− βi

r ′ = βi− γ r,

(11)

where α, β, and γ are positive constants.

10. (a) Show that the system of equations (11) describes a population whose size re-
mains constant in time. In particular, show that s(t) + i(t) + r(t) = N, a constant.

(b) Modify (11) to model a situation where those who recover from the disease are
permanently immunized. Is s(t) + i(t) + r(t) constant in this case?

(c) Suppose that those who recover from the disease are permanently immunized
but that the disease is a serious one and some of the infected individuals perish.
How does the system of equations you formulated in part (b) have to be further
modified? Is s(t) + i(t) + r(t) constant in this case?

11. (a) Consider system (11). Use the fact that s(t) + i(t) + r(t) = N to obtain a reduced
system of two differential equations for the two dependent variables s(t) and i(t).

(b) For simplicity, set α = β = γ = 1 and N = 9. Determine the equilibrium points
of the reduced two-dimensional system.

(c) Determine the linearized system at each of the equilibrium points found in
part (b). Use Table 6.2 to analyze the stability characteristics of each of these lin-
earized systems.

(d) Show that the nonlinear system is an almost linear system at each of the equilib-
rium points found in part (b). What are the stability characteristics of the nonlinear
system at these points?
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PROJECTS

Project 1: A Bobbing Sphere

Consider Figure 6.21. Assume a sphere of radius R weighs half as much as an
equivalent volume of water. In its equilibrium state, the sphere floats half-submerged,
as shown in Figure 6.21(a). The sphere is disturbed from equilibrium at some instant.
Its position is as shown in Figure 6.21(b), with displacement y(t) measured positive
downward.

R

R + y(t)

FIGURE 6.21

(a) The equilibrium state of a floating sphere whose weight is one half the
weight of an equal volume of water. (b) The perturbed state of the sphere,
with y(t) > 0 as shown.

1. Compute the volume of the submerged portion of the sphere at the instant when
the displacement from equilibrium is y(t). (Archimedes’ law of buoyancy states that
the upward force acting on the sphere is the weight of the water displaced at that
instant.)

2. Apply Newton’s second law of motion to obtain the differential equation governing
the bobbing motion of the sphere. Considering only the weight and buoyant force,
equatemy′′ to the net downward force (sphere weight minus upward buoyant force).
Show that the resulting equation is

y′′ + g
2

(
3y
R

− y3

R3

)
= 0. (1)

In (1), g denotes the acceleration due to gravity. For what range of values of y(t) is
the differential equation (1) physically relevant?

3. Equation (1) defines a conservative system. Derive the corresponding conservation
law, and use it to answer the following questions. AssumeR = 0.5m and g = 9.8m/s2.

(a) If the sphere is raised 10 cm above its equilibrium position and released from
rest, what is the maximum vertical speed attained by the sphere in its bobbing
motion?

(b) If the sphere is set into motion with initial conditions y(0) = 0, y′(0) = 1 m/s, what
is the maximum depth that the sphere center will reach as it bobs?

4. Rewrite (1) as an equivalent two-dimensional system of first order equations, where
z1 = y and z2 = y′. Show that the nonlinear system is an almost linear system at its
only equilibrium point, ze = 0.

5. Perform a stability analysis of the linearized system in part 4 at z = 0. Can we use
this analysis to infer the stability properties of the corresponding nonlinear system?
Explain.
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Project 2: Introduction of an Infectious Disease into a
Predator-Prey Ecosystem

In this chapter, we have discussed a model of a predator-prey ecosystem,

x′ = −ax+ bxy

y′ = cy− dxy.
(2)

In (2), x(t) and y(t) represent the populations of predators and prey, respectively, at time
t. The terms a,b, c, and d are positive constants. The terms bxy and−dxy account for the
beneficial and detrimental impacts of predation on the predator and prey populations.

We also discussed a model for the dynamics of an infectious disease within a pop-
ulation (see Exercise 10 of Section 6.7). In the present discussion, we will assume that
infected individuals, when they have recovered, immediately become susceptible again.
Therefore, we need not consider a “recovered” population as a separate entity. With this
assumption, the infectious disease model considered in Section 6.7 simplifies to

s′ = −αsi+ βi

i′ = αsi− βi.
(3)

In (3), s(t) and i(t) are the populations of susceptible and infected individuals at time t,
while α and β are positive constants. In the model (3), the total population, s(t) + i(t),
remains constant in time.

We will combine the ideas embodied in these two problems to model a situation
where an infectious disease has been introduced into a predator-prey colony. The goal
is to determine the behavior of the colony.

Assume the following additional facts.

(i) The disease is benign to the prey; that is, the prey are “carriers.” The relative birth
rate for infected prey remains the same as that for healthy, susceptible prey.

(ii) The disease is debilitating and ultimately fatal for predators. Once a predator is in-
fected, it can basically be assumed to be deceased. Therefore, we need only consider
one population of predators—those that are susceptible.

(iii) The disease is spread among the prey by contact. We assume the rate of infection
to be proportional to the product of susceptible and infected populations.

(iv) The predators make no distinction between susceptible and infected individuals in
their consumption of prey.

(v) The predators contract the disease only by consumption of prey. The rate of preda-
tor infection is proportional to the product of infected prey and susceptible preda-
tors.

We obtain a model by dividing the prey population into two subgroups: healthy,
susceptible prey and infected prey. Let s(t) and i(t) represent the populations of suscep-
tible and infected prey, respectively, at time t. Let x(t) denote the population of healthy,
susceptible predators. The autonomous system that will model the ecosystem is

x′ = −ax+ bxs− δxi

s′ = cs− dsx− αsi+ βi

i′ = ci− dxi+ αsi− βi,

(4)

where the constants a,b, c,d, α, β, and δ are all positive.

1. Explain the modeling role played by each term in the three differential equations.
(For example, the term −ax accounts for the fact that, in the absence of prey, the
predator population would decrease and exponentially approach extinction.)

2. As usual, we assume that the variables x, s, and i have been scaled so that one unit of
population corresponds to a large number of actual individuals. Assume the following
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values for the constants in equation (4):

a = 1, b = 1, c = 1, d = 1, α = 1
2 , β = 1, δ = 1.

With this, equation (4) becomes

x′ = −x+ xs− xi

s′ = s− sx− 1
2 si+ i

i′ = i− xi+ 1
2 si− i = −xi+ 1

2 si.

(5)

Show that autonomous system (5) has just one equilibrium point in the first octant of
xsi-space, where all three components are strictly positive. What is this equilibrium
point?

3. Linearize system (5) about the equilibrium point found in part 2. Let A denote the
(3× 3) constant coefficient matrix of the linearized system. Without performing any
further calculations, answer the following questions:

(a)Must the matrix A have at least one real eigenvalue?

(b) Is it possible for A to have exactly two real eigenvalues?

(c) Is thematrixA real and symmetric?Does it possess any special structure to suggest
that it must have three real eigenvalues?

Now use computer software to determine the three eigenvalues of A.
It can be shown (see Coddington and Levinson5) that the (isolated) equilibrium

point (xe, se, ie) = (1,2,1) of nonlinear system (5) is

(i) asymptotically stable if all three eigenvalues have negative real parts.

(ii) unstable if at least one eigenvalue has a positive real part.

Can either of these results be applied in this case to determine the stability properties
of the equilibrium point? If so, describe the stability properties of this equilibrium
point.

Project 3: Chaos and the Lorenz Equations

In the early 1960s, Edward N. Lorenz,6 an MIT meteorologist, formulated and stud-
ied a system of three nonlinear differential equations that today bear his name. These
equations, arising from a model of fluid convection, were analyzed by Lorenz to gain
insight into the feasibility of long-range weather forecasting. His findings, published in
a classic 1963 paper,7 illustrate what is now called deterministic chaos, a phenomenon
wherein even a small number of nonlinear differential equations can exhibit behavior
that is highly complicated and extremely sensitive to perturbations in the initial condi-
tions. This sensitivity is sometimes called the “butterfly effect,” an allusion to the notion
that the flapping of a butterfly’s wings on one continent can, after a time, influence
the weather on another continent. This project uses a Runge-Kutta method to solve
the Lorenz equations numerically and illustrate solution complexity and the “butterfly
effect.”

5Earl A. Coddington and Norman Levinson, Theory of Ordinary Differential Equations (Malabar,
FL: R. E. Krieger, 1984).
6Edward N. Lorenz, professor emeritus, Department of Earth, Atmospheric and Planetary Sci-
ences, MIT, received the 1983 Crafoord Prize “for fundamental contributions to the field of geo-
physical hydrodynamics, which in a unique way have contributed to a deeper understanding of
the large-scale motions of the atmosphere and the sea.”
7Edward N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the Atmospheric Sciences, Vol.
20, March 1963, pp. 130–141. An interesting account of the research activity culminating in these
results appears in the book Chaos by James Gleick (Viking Press, 1987).
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The Lorenz equations are

X ′ = −σX + σY

Y ′ = −XZ + rX − Y

Z′ = XY − bZ,

where σ, r, and b are positive constants. We will refer to the three dependent variables
X(t),Y (t), and Z(t) as “coordinates.” In reality, however, they are variables that charac-
terize the intensity and temperature variations of the fluid convective motion.

1. Write a computer program to solve an initial value problem for the Lorenz equations
using the fourth order Runge-Kutta method given in equations (11)–(13) of Section
4.9. (Section 4.9 also provides an example of a MATLAB code for the algorithm.)

2. Use your program to solve the Lorenz equations numerically on the time interval
0 ≤ t ≤ 50. Use a step size of h = 0.01, and use the following parameter values and
initial conditions:

σ = 10, b = 8
3 , r = 28

X(0) = 0, Y (0) = 1, Z(0) = 0.

3. We now introduce a very small perturbation of the initial conditions. Repeat the
computations of step 2 using the same parameter values and step size, but with the
following (different) initial conditions:

X(0) = 0.0005, Y (0) = 0.9999, Z(0) = 0.0001.

Let the “unperturbed” numerical solution obtained in step 2 be denoted by X(t), Y (t),
Z(t) and the “perturbed” solution of step 3 by Xp(t),Yp(t),Zp(t).

4. Since there are three dependent variables, parametric solution curves are three-
dimensional space curves. Such curves are said to exist in phase space (in contrast
to the two-dimensional phase plane). Instead of plotting such space curves, we will
display solution curve complexity by plotting their projections onto each of the three
coordinate planes.Wewill use computer software to create three separate parametric
plots,

X(t) vs. Y (t), X(t) vs. Z(t), Y (t) vs. Z(t), 0 ≤ t ≤ 50.

Illustrate the “butterfly effect” as follows:

(a) Create three separate graphs, displaying each of the “unperturbed” and corre-
sponding “perturbed” pairs of coordinates on the same graph as a function of
time. What happens as time progresses? Is there a time beyond which the corre-
sponding coordinate curves bear virtually no resemblance to each other?

(b)To see this chaotic behavior from a different point of view, select one pair of
“unperturbed” and “perturbed” coordinates, say X(t) and Xp(t). Now create the
parametric plot

X(t) vs. Xp(t), 0 ≤ t ≤ 50.

IfX(t) andXp(t)were to remain close in value to each other for all time,whatwould
this parametric plot look like? Does the plot actually obtained look anything like
this?
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7C H A P T E R

Numerical Methods

C H A P T E R O V E R V I E W

7.1 Introduction

7.2 Euler’s Method, Heun’s Method, and the Modified
Euler’s Method

7.3 Taylor Series Methods

7.4 Runge-Kutta Methods

7.1 Introduction
A simple numericalmethod, Euler’s method, was introduced in Section 2.10. In
Section 4.9, we extended Euler’s method to linear systems. We also described
a fourth order Runge-Kutta method that served as the basis for an improved,
more accurate algorithm. In this chapter, we discuss the ideas underlying a
systematic development of more accurate algorithms.

We begin with the first order scalar initial value problem

y′ = f (t, y), y(t0) = y0, t0 ≤ t ≤ t0 + T.

We assume that this problem has a unique solution on the given t-interval.
Our goal is to develop algorithms that generate accurate approximations to the
solution y(t).

A numerical method frequently begins by imposing a partition of the form
t0 < t1 < t2 < · · · < tN−1 < tN = t0 + T on the t-interval [t0, t0 + T]. Often this
partition is uniformly spaced—that is, the partition points are defined by

tn = t0 + nh, n = 0,1,2, . . . ,N, where h = T
N

.

The partition spacing, h = T/N, is called the step length or the step size. At
each partition point, tn, the numerical algorithm generates an approximation,
yn, to the exact solution value, y(tn). A numerical solution of the differential
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equation consists of the points {(t0, y0), (t1, y1), . . . , (tN, yN)}, where
yn ≈ y(tn), n = 0,1, . . . ,N.

Note that the initial condition provides us with an exact starting point (t0, y0). A
“good” numerical algorithm is one that generates points (tn, yn) that lie “close”
to their exact solution counterparts, (tn, y(tn)) for n = 1,2, . . . ,N. The terms
“good” and “close,” while intuitively clear, will be made precise later.

Figure 7.1 displays the exact solution of the initial value problem
y′ = y2, y(0) = 1 on the interval 0 ≤ t ≤ 0.95 and a pair of numerical approxi-
mations corresponding to different step lengths h. [The exact solution,
y(t) = (1− t)−1, does not exist for t ≥ 1.]

0.2 0.4 0.6 0.8 1
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FIGURE 7.1

The initial value problem y′ = y2, y(0) = 1 has solution
y(t) = (1− t)−1, t < 1. The solid curve is the graph of y(t) for 0 ≤ t ≤ 0.95.
The points marked by an ◦ represent a numerical solution with step length
h = 0.05, and the points marked by an × represent a numerical solution
with h = 0.1. The numerical solutions were generated by Euler’s method.
As is usually the case, the smaller step length generates approximations
that are more accurate.

Numerical Solutions for Systems of Differential Equations
Focusing our attention on scalar first order initial value problems may seem to
be overly restrictive, but that is not the case. The algorithms we develop for first
order scalar problems extend directly to first order systems. And, as you have
seen, first order systems basically encompass all the differential equations we
have considered so far.

We concentrate on first order scalar problems because they possess the
virtues of relative simplicity and ease of visualization. In particular, we can
graph and compare the exact solution and the numerical solution. To further
simplify the development, we restrict our discussions to uniformly spaced par-
titions of step size h.

The computational aspects of Euler’s method were treated earlier. The al-
gorithm was introduced and applied to first order scalar problems in Section
2.10 and extended to first order linear systems in Section 4.9. Euler’s method
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serves as our starting point in the next section, where we briefly review the
method and explore ways of improving it.

7.2 Euler’s Method, Heun’s Method, and the Modified
Euler’s Method

Euler’s Method
As we saw in Section 2.10, Euler’s method develops a numerical solution of the
initial value problem

y′ = f (t, y), y(t0) = y0 (1)

using the algorithm

yn+1 = yn + hf (tn, yn), n = 0,1,2, . . . ,N − 1. (2)

There are several different ways to derive Euler’s method. In Section 2.10, we
used a geometric approach based on direction fields. We now discuss two other
ways of looking at Euler’smethod.While they are variations on the basic theme,
they provide useful insights as we look for ways to improve Euler’s method.

Approximating the Integral Equation
Let y(t) denote the exact solution of initial value problem (1). For now, we re-
strict our attention to the interval tn ≤ t ≤ tn+1. Assume that we do not know
the exact solution, y(t), but that we have already calculated approximations, yk,
of y(tk) for k = 0,1, . . . ,n (see Figure 7.2). Our goal is to find the next approxi-
mation, yn+1, of y(tn+1).

t

y

t0

y0

yn

yn – 1

yn – 2

y1
y2

t1 t2 tn – 1 tn + 1tn

FIGURE 7.2

Let y(t) denote the exact solution of initial value problem (1). While we do
not know y(t), we assume we have calculated approximations, yk, to y(tk)
for k = 0,1, . . . ,n. Our goal is to find the next approximation, yn+1, to
y(tn+1).

Consider differential equation (1) and its exact solution, y(t). Integrating
both sides of equation (1) over the interval [tn, tn+1], we obtain∫ tn+1

tn
y′(s) ds =

∫ tn+1

tn
f (s, y(s)) ds.
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By the fundamental theorem of calculus, the left-hand integral is y(tn+1) − y(tn).
Therefore, we obtain an equation for y(tn+1):

y(tn+1) = y(tn) +
∫ tn+1

tn
f (s, y(s)) ds. (3)

We cannot use equation (3) computationally because we do not know y(s),
tn ≤ s ≤ tn+1. Suppose, however, that the step length h is small enough that
f (s, y(s)) is nearly constant over the interval tn ≤ s ≤ tn+1. In this case, we can
approximate the integral by the left Riemann sum,∫ tn+1

tn
f (s, y(s)) ds ≈ hf (tn, y(tn)). (4)

Using approximation (4) in equation (3), we obtain

y(tn+1) ≈ y(tn) + hf (tn, y(tn)).

Replacing y(tn) by the previously calculated estimate yn, we are led to Euler’s
method,

y(tn+1) ≈ yn + hf (tn, yn) = yn+1.

In other words, we can view Euler’s method as a left Riemann sum approxima-
tion of integral equation (3).

Heun’s Method
Looked at in this light, Euler’s method might be improved by asking “Are there
better numerical integration schemes than approximation (4)?” The trape-
zoidal rule is one such numerical integration scheme. Using the trapezoidal
rule, we can approximate the integral in (3) by∫ tn+1

tn
f (s, y(s)) ds ≈ h

2

[
f (tn, y(tn)) + f (tn+1, y(tn+1))

]
.

Using this integral approximation in (3), we obtain

y(tn+1) ≈ y(tn) + h
2

[
f (tn, y(tn)) + f (tn+1, y(tn+1))

]
.

Replacing y(tn) by its estimate yn leads to

y(tn+1) ≈ yn + h
2

[
f (tn, yn) + f (tn+1, y(tn+1))

]
. (5)

At first glance, it appears we have made matters worse since the unknown
y(tn+1) appears on the right-hand side of (5), in the term f (tn+1, y(tn+1)). Approx-
imation (5), if used as it stands, leads to an implicit algorithm with a nonlinear
equation that has to be solved for y(tn+1). Suppose, however, that we use Euler’s
method to approximate the unknown value y(tn+1) on the right-hand side of (5):

y(tn+1) ≈ yn + h
2

[
f (tn, yn) + f (tn+1, yn + hf (tn, yn))

]
.
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This yields the explicit iteration

yn+1 = yn + h
2

[
f (tn, yn) + f (tn+1, yn + hf (tn, yn))

]
, n = 0,1, . . . ,N − 1. (6)

Algorithm (6) is often calledHeun’smethod or the improved Euler’smethod.

The Modified Euler’s Method
Another simple numerical integration scheme is the modified Euler’s
method, in which the integrand is approximated over the interval tn ≤ t ≤ tn+1
by its midpoint value. If we use the midpoint rule to approximate the integral
in (3) and again use Euler’s method to approximate the unknown value y(t) at
the midpoint t = tn + h/2, we obtain the algorithm

yn+1 = yn + hf
(
tn + h

2
, yn + h

2
f (tn, yn)

)
, n = 0,1, . . . ,N − 1. (7)

Algorithm (7) is known as themodified Euler’s method. [There is no universal
agreement on the names of algorithms (6) and (7).1]

Although algorithms (6) and (7) appear somewhat complicated, they are
relatively easy to implement, since computers can readily evaluate composi-
tions of functions. However, you may rightly ask whether algorithm (6) is, as
one of its names implies, an improvement on Euler’s method. If so, how do we
quantitatively describe this improvement? The same question applies to (7),
and we address it in Section 7.3. For now, we content ourselves with an exam-
ple that compares Euler’s method with algorithms (6) and (7) for a particular
initial value problem.

E X A M P L E

1 Consider the initial value problem

y′ = y2, y(0) = 1, 0 ≤ t ≤ 0.95.

Using a step length of h = 0.05, compare the results of Euler’s method (2),
Heun’s method (6), and the modified Euler’s method (7). [The exact solution is
y(t) = 1/(1− t), t < 1.]

Solution: For this example, t0 = 0, T = 0.95, N = T/h = 19, and f (t, y) = y2.
Table 7.1 on the next page lists the results. Note that algorithms (6) and (7) do,
in fact, represent an improvement over Euler’s method. ❖

The relationship between numerical methods for solving differential equa-
tions and numerical integration schemes is a reciprocal one. Every numerical
integration technique suggests an algorithm for the initial value problem—this
is the approach we used in obtaining algorithms (6) and (7) from equation (3).
Conversely, an algorithm for the initial value problem gives rise to a corre-
sponding numerical integration scheme. To see why, consider the initial value
problem y′ = f (t), y(t0) = 0. The solution is simply y(t) = ∫ tt0 f (s)ds. Therefore,
any numerical method used to solve this initial value problem gives rise to an

1We are using names found in Peter Henrici, Discrete Variable Methods in Ordinary Differential
Equations (New York: Wiley, 1962).
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TA B L E 7 . 1

The Results of Example 1
As is usually the case, algorithms (6) and (7) give better approximations to
y(tn) than does Euler’s method. As is also typical, algorithms (6) and (7) have
comparable accuracy. [Note: For this particular initial value problem, Heun’s
method (6) yields slightly better approximations than the modified Euler’s
method (7). For other examples, (7) may give slightly better approximations
than (6).]

Euler’s Heun’s Modified Exact
tn Method Method Euler’s Method Solution

0.0000 1.0000 1.0000 1.0000 1.0000
0.0500 1.0500 1.0526 1.0525 1.0526
0.1000 1.1051 1.1109 1.1109 1.1111
0.1500 1.1662 1.1762 1.1761 1.1765
0.2000 1.2342 1.2495 1.2493 1.2500
0.2500 1.3104 1.3326 1.3323 1.3333
0.3000 1.3962 1.4275 1.4271 1.4286
0.3500 1.4937 1.5370 1.5363 1.5385
0.4000 1.6052 1.6645 1.6636 1.6667
0.4500 1.7341 1.8151 1.8137 1.8182
0.5000 1.8844 1.9954 1.9934 2.0000
0.5500 2.0620 2.2153 2.2124 2.2222
0.6000 2.2745 2.4894 2.4850 2.5000
0.6500 2.5332 2.8402 2.8333 2.8571
0.7000 2.8541 3.3049 3.2935 3.3333
0.7500 3.2614 3.9488 3.9289 4.0000
0.8000 3.7932 4.8975 4.8597 5.0000
0.8500 4.5126 6.4264 6.3449 6.6667
0.9000 5.5308 9.2615 9.0471 10.0000
0.9500 7.0603 15.9962 15.2001 20.0000

approximation of the integral. In particular, Euler’s method, Heun’s method,
and the modified Euler’s method, when applied to the initial value problem
y′ = f (t), y(t0) = 0, reduce to a left Riemann sum, the trapezoidal rule, and the
midpoint rule, respectively.

Approximating the Taylor Series Expansion
This subsection presents another derivation of Euler’s method. Since y(t) is the
solution of initial value problem (1) and is assumed to exist on the interval t0 ≤
t ≤ t0 + T, we know y(t) is differentiable on that interval. Assume for now not
only that the solution is differentiable, but that it can be expanded in a Taylor
series at t = tn, where the Taylor series converges in an interval containing
[tn, tn + h]. Therefore, we can express y(tn+1) as

y(tn+1) = y(tn + h) = y(tn) + y′(tn)h+ y′′(tn)
2! h2 + y′′′(tn)

3! h3 + · · · . (8)
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Truncating the series (8) after two terms, we obtain the approximation

y(tn+1) ≈ y(tn) + y′(tn)h. (9)

Since y′(tn) = f (tn, y(tn)), we can rewrite approximation (9) as

y(tn+1) ≈ y(tn) + f (tn, y(tn))h.

Replacing y(tn) in this approximation by its estimate yn, we are once more led
to Euler’s method:

y(tn+1) ≈ yn + f (tn, yn)h = yn+1.

Thus, we obtain Euler’s method by truncating the Taylor series (8) after two
terms. Viewed in this light, Euler’s method might be improved by retaining
more terms of the Taylor series—truncating after three, four, or more terms.
We investigate this possibility in Section 7.3.

E X E R C I S E S

Most exercises in this chapter require a computer or programmable calculator.

Exercises 1–5:

In each exercise,

(a) Solve the initial value problemanalytically, using an appropriate solution technique.

(b) For the given initial value problem, write the Heun’s method algorithm,

yn+1 = yn + h
2

[ f (tn, yn) + f (tn+1, yn + hf (tn, yn))].

(c) For the given initial value problem, write the modified Euler’s method algorithm,

yn+1 = yn + hf
(
tn + h

2
, yn + h

2
f (tn, yn)

)
.

(d) Use a step size h = 0.1. Compute the first three approximations, y1, y2, y3, using the
method in part (b).

(e) Use a step size h = 0.1. Compute the first three approximations, y1, y2, y3, using the
method in part (c).

(f ) For comparison, calculate and list the exact solution values, y(t1), y(t2), y(t3).

1. y′ = 2t− 1, y(1) = 0 2. y′ = −y, y(0) = 1 3. y′ = −ty, y(0) = 1

4. y′ = −y+ t, y(0) = 0 5. y2y′ + t = 0, y(0) = 1

Exercises 6–9:

In each exercise,

(a) Find the exact solution of the given initial value problem.

(b) As in Example 1, use a step size of h = 0.05 for the given initial value problem. Com-
pute 20 steps of Euler’s method, Heun’s method, and the modified Euler’s method.
Compare the numerical values obtained at t = 1 by calculating the error |y(1) − y20|.

6. y′ = 1+ y2, y(0) = −1 7. y′ = − t
y
, y(0) = 3

8. y′ + 2y = 4, y(0) = 3 9. y′ + 2ty = 0, y(0) = 2
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Exercises 10–14:

In each exercise, the given iteration is the result of applying Euler’s method, Heun’s
method, or the modified Euler’s method to an initial value problem of the form

y′ = f (t, y), y(t0) = y0, t0 ≤ t ≤ t0 + T.

Identify the numerical method, and determine t0,T, and f (t, y).

10. yn+1 = yn + h(yn + t2n y
3
n), y0 = 1

tn = 2+ nh, h = 0.02, n = 0,1,2, . . . ,49

11. yn+1 = yn + h
2

[tn y2n + 2+ (tn + h)( yn + h(tn y
2
n + 1))2], y0 = 2

tn = 1+ nh, h = 0.05, n = 0,1,2, . . . ,99

12. yn+1 = yn + h
(
tn + h

2

)
sin2
(
yn + h

2
tn sin

2(yn)
)

, y0 = 1

tn = nh, h = 0.01, n = 0,1,2, . . . ,199

13. yn+1 = yn

(
1+ h

t2n + y2n

)
, y0 = −1

tn = 2+ nh, h = 0.01, n = 0,1,2, . . . ,99

14. yn+1 = yn + h
[
sin
(
tn + h

2
+ yn + h

2
sin(tn + yn)

)]
, y0 = 1

tn = −1+ nh, h = 0.05, n = 0,1,2, . . . ,199

15. Let h be a fixed positive step size, and let λ be a nonzero constant. Suppose we
apply Heun’s method or the modified Euler’s method to the initial value problem
y′ = λy, y(t0) = y0, using this step size h. Show, in either case, that

yk =
(
1+ hλ + (hλ)2

2!

)
yk−1 and hence yk =

(
1+ hλ + (hλ)2

2!

)k

y0, k = 1,2, . . . .

Exercises 16–17:

Assume a tank having a capacity of 200 gal initially contains 90 gal of fresh water. At
time t = 0, a salt solution begins to flow into the tank at a rate of 6 gal/min and the well-
stirred mixture flows out at a rate of 1 gal/min. Assume that the inflow concentration
fluctuates in time, with the inflow concentration given by c(t) = 2− cos(π t) lb/gal, where
t is in minutes. Formulate the appropriate initial value problem for Q(t), the amount of
salt (in pounds) in the tank at time t. Our objective is to approximately determine the
amount of salt in the tank when the tank contains 100 gal of liquid.

16. (a) Formulate the initial value problem.

(b) Obtain a numerical solution, using Heun’s method with a step size h = 0.05.

(c) What is your estimate of Q(t) when the tank contains 100 gal?

17. (a) Formulate the initial value problem.

(b) Obtain a numerical solution, using the modified Euler’s method with a step size
h = 0.05.

(c) What is your estimate of Q(t) when the tank contains 100 gal?

Exercises 18–19:

Let P(t) denote the population of a certain colony, measured in millions of members.
Assume that P(t) is the solution of the initial value problem

P ′ = 0.1
(
1− P

3

)
P+M(t), P(0) = P0,
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where time t is measured in years. Let M(t) = e−t. Therefore, the colony experiences a
migration influx that is initially strong but soon tapers off. Let P0 = 1

2 ; that is, the colony
had 500,000 members at time t = 0. Our objective is to estimate the colony size after
two years.

18. Obtain a numerical solution of this problem, using Heun’s method with a step size
h = 0.05. What is your estimate of colony size at the end of two years?

19. Obtain a numerical solution of this problem, using the modified Euler’s method
with a step size h = 0.05. What is your estimate of colony size at the end of two
years?

20. Error Estimation In most applications of numerical methods, as in Exercises 16–
19, an exact solution is unavailable to use as a benchmark. Therefore, it is natural
to ask, “How accurate is our numerical solution?” For example, how accurate are
the solutions obtained in Exercises 16–19 using the step size h = 0.05? This exercise
provides some insight.

Suppose we apply Heun’s method or the modified Euler’s method to the initial
value problem y′ = f (t, y), y(t0) = y0 and we use a step size h. It can be shown, for
most initial value problems and for h sufficiently small, that the error at a fixed point
t = t∗ is proportional to h2. That is, let n be a positive integer, let h = (t∗ − t0)/n, and
let yn denote the method’s approximation to y(t

∗) using step size h. Then

lim
h→0
t∗ fixed

y(t∗) − yn
h2

= C, C 	= 0.

As a consequence of this limit, reducing a sufficiently small step size by 1
2 will reduce

the error by approximately 1
4 . In particular, let ŷ2n denote the method’s approxima-

tion to y(t∗) using step size h/2. Then, for most initial value problems, we expect
that y(t∗) − ŷ2n ≈ [ y(t∗) − yn]/4. Rework Example 1, using Heun’s method and step
sizes of h = 0.05, h = 0.025, and h = 0.0125.

(a) Compare the three numerical solutions at t = 0.05,0.10,0.15, . . . ,0.95. Are the
errors reduced by about 1

4 when the step size is reduced by
1
2? (Since the solution

becomes unbounded as t approaches 1 from the left, the expected error reduction
may not materialize near t = 1.)

(b) Suppose the exact solution is not available. How can the Heun’s method so-
lutions obtained using different step sizes be used to estimate the error? [Hint:
Assuming that

y(t∗) − ŷ2n ≈ [ y(t∗) − yn]
4

,

derive an expression for y(t∗) − ŷ2n that involves only ŷ2n and yn.]

(c) Test the error monitor derived in part (b) on the initial value problem in
Example 1.

7.3 Taylor Series Methods
In Section 7.2, we saw that we could obtain Euler’s method by truncating the
Taylor series for the solution y(t) after the first two terms of the expansion. We
therefore anticipate that Euler’s method can be improved by retaining more
terms of the Taylor series.

In this section, we describe how such an improvement of Euler’s method
is carried out. In addition, we use the Taylor series expansion as a basis for
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quantifying the accuracy of numerical algorithms. We begin with some pre-
liminaries:

• First, we state Theorem 7.1. This theorem gives conditions guaranteeing
that the solution of an initial value problem has a convergent Taylor series
expansion.

• We then present Theorem 7.2, Taylor’s theorem. This theorem from calcu-
lus enables us to measure the error that arises when we truncate a Taylor
series.

Once these preliminary results are in place, we can use Taylor series as a basis
for systematically developing algorithms of increasing accuracy. These Taylor
series algorithms can, in principle, be made as accurate as we wish. They are
not, however, computationally friendly. We combine accuracy with ease of im-
plementation in Section 7.4, when we discuss Runge-Kutta methods.

Preliminaries
We begin with two definitions and then present a theorem guaranteeing that
the solution of initial value problem (1),

y′ = f (t, y), y(t0) = y0, (1)

can be expanded in a Taylor series that converges in a neighborhood of the
point t0.

A function y(t), defined on an open interval containing the point t, is said
to be analytic at t = t if it has a Taylor series expansion

y(t) =
∞∑
n=0

an(t− t )n (2a)

that converges in an interval t− δ < t < t+ δ, where δ > 0. It is shown in cal-
culus that if y(t) is analytic at t = t, then y(t) has derivatives of all orders in the
interval (t− δ, t+ δ). Moreover, the coefficients of the Taylor series are given by

an = y(n)(t )
n! , n = 0,1,2, . . . . (2b)

In general, a function y(t) is said to be analytic in the interval a < t < b if it is
analytic at every point t in this interval.

Consider the function f (t, y) appearing on the right-hand side of differential
equation (1). In the context of differential equation (1), f (t, y) is understood
to represent f (t, y(t)), where y(t) is the unknown solution of interest. In the
next definition, however, we view f as a function of two independent variables,
t and y.

Let f (t, y) be a function defined in an open region R of the ty-plane contain-
ing the point (t, y ). The function f (t, y) is said to be analytic at (t, y ) if it has a
two-variable Taylor series expansion

f (t, y) =
∞∑
m=0

∞∑
n=0

bmn(t− t )m(y− y )n (3a)
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that converges in a neighborhood Nρ of (t, y ),

Nρ =
{

(t, y) :
√

(t− t )2 + (y− y )2 < ρ
}

.

We say that f (t, y) is analytic in a region R if it is analytic at every point (t, y )

in R. The coefficients bmn can be evaluated in terms of the function f and its
partial derivatives, evaluated at (t, y ); the two-variable Taylor series expansion
has the form

f (t, y) = f (t, y ) + ft(t, y )(t− t ) + fy(t, y )(y− y )

+ 1
2

[
ftt(t, y )(t− t )2 + 2fty(t, y )(t− t )(y− y ) + fyy(t, y )(y− y )2

]
+ · · · .

(3b)

The Existence of Analytic Solutions
It is natural to ask whether analyticity of f (t, y) guarantees analyticity of the
solution of initial value problem (1). An affirmative answer is contained in
Theorem 7.1, which can be regarded as a refinement of Theorem 2.2. A proof
of Theorem 7.1 can be found in Birkhoff and Rota.2

Theorem 7.1
Let R denote the rectangle defined by a < t < b, α < y < β. Let f (t, y) be
a function defined and analytic in R, and suppose that (t0, y0) is a point
in R. Then there is a t-interval (c,d) containing t0 in which there exists a
unique analytic solution of the initial value problem

y′ = f (t, y), y(t0) = y0.

E X A M P L E

1 Consider the initial value problem

y′ = y2 + t2, y(t0) = y0.

Here, the function f (t, y) = y2 + t2 is a polynomial in the variables t and y and is
therefore analytic in the entire ty-plane. Hence, the region R can be assumed to
be the entire ty-plane. Theorem7.1 guarantees the existence of a unique analytic
solution y(t) in an interval of the form t0 − δ < t < t0 + δ for some δ > 0. Note
that the theorem does not tell us the value of δ, only that such a positive δ exists.

Since the solution is analytic in t0 − δ < t < t0 + δ, we know y(t) has the
form

y(t) =
∞∑
n=0

y(n)(t0)
n! (t− t0)

n, t0 − δ < t < t0 + δ. ❖

We assume throughout this chapter that the hypotheses of Theorem 7.1
are satisfied. This theorem assures us that an analytic solution y(t) exists on
some interval of the form t0 − δ < t < t0 + δ. As noted in Example 1, however,

2Garrett Birkhoff and Gian-Carlo Rota, Ordinary Differential Equations, 4th ed. (New York: Wiley,
1989).



482 CHAPTER 7 Numerical Methods

Theorem 7.1 does not tell us the size of δ. Since we are interested in generating
a numerical solution on an interval of the form t0 ≤ t ≤ t0 + T, we shall also as-
sume that the interval of interest, [t0, t0 + T], lies within the existence interval,
(t0 − δ, t0 + δ). Given this assumption, we can expand solution y(t) in a Taylor
series about any point t lying in the interval of interest. It is important to re-
alize, however, that in practical computations involving nonlinear differential
equations there is no a priori guarantee that the solution exists on a designated
interval of interest, [t0, t0 + T].

Using the Differential Equation to Compute the Taylor
Series Coefficients
When Euler’s method was discussed in Section 2.10, we based the development
on the fact that the differential equation determines the direction field. In par-
ticular, if we evaluate f at a point (t, y ) in the ty-plane, then the value f (t, y ) tells
us the slope of the solution curve passing through (t, y ).

We now show that the differential equation determines much more. In
particular, suppose that a solution curve y(t) passes through the point (t, y ). We
will see that f (t, y) and its partial derivatives, evaluated at (t, y ), can be used to
calculate all the derivatives of y(t). In turn [see equations (2a) and (2b)], these
derivative evaluations completely determine the Taylor series expansion of the
solution y(t).

In particular, we know the identity y′(t) = f (t, y(t)) holds for t in a neigh-
borhood of t. Therefore,

y′(t ) = f (t, y(t ))

= f (t, y ).

We find higher derivatives by differentiating the identity y′(t) = f (t, y(t)). For
example,

y′′(t) = d
dt

y′(t) = d
dt

f (t, y(t)). (4a)

We use the chain rule to calculate the derivative in equation (4a),

df
dt

= ∂f
∂t

+ ∂f
∂y

dy
dt

= ∂f
∂t

+ ∂f
∂y

f = ft + fy f . (4b)

Once the partial derivatives in equation (4b) are computed, we substitute the
function y(t) for the second independent variable y, obtaining

y′′(t) = ft(t, y(t)) + fy(t, y(t))f (t, y(t)).

Using the fact that y(t ) = y, we have

y′′(t ) = ft(t, y ) + fy(t, y )f (t, y ). (5)

Equation (5) determines the concavity of the solution curve at the point (t, y ),
just as y′(t ) = f (t, y ) determines the slope of the solution curve at (t, y ).

This differentiation process can be continued to compute higher derivatives
of the solution at (t, y ). To simplify the notation, we continue to use subscripts
to denote partial derivatives and do not explicitly indicate their ultimate eval-
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uation at (t, y ). Thus,

y′′ = ft + fy f

y′′′ = d
dt

[
ft + fy f

]
=
[
ftt + fty f + ( fyt + fyy f )f + fy( ft + fy f )

]
.

(6)

It is possible, in principle, to continue this differentiation process and compute
as many derivatives of y(t) at t = t as desired. It is clear from (6), however, that
the computations can quickly become cumbersome.

The next example illustrates, however, that when the differential equation
has a simple structure, it may be relatively easy to calculate higher derivatives.

E X A M P L E

2 Consider the initial value problem

y′ = y2, y(0) = 1.

Evaluate the derivatives y′(0), y′′(0), y′′′(0), and y(4)(0).

Solution: In this case, f (t, y) = y2 is a polynomial in y. Therefore, Theorem 7.1
applies, and we know the solution y(t) is an analytic function of t in the open
interval (−δ, δ) for some δ > 0. Since y′(t) = y2(t), the chain rule yields

y′′(t) = [ y2(t)]′ = 2y(t)y′(t) = 2y3(t)

y′′′(t) = [2y3(t)]′ = 6y2(t)y′(t) = 6y4(t)

y(4)(t) = [6y4(t)]′ = 24y3(t)y′(t) = 24y5(t).

Therefore, y(0) = 1, y′(0) = 1, y′′(0) = 2, y′′′(0) = 6 = 3!, and y(4)(0) = 24 = 4!.
Given these derivative values, the first few terms in the Taylor series expansion
of y(t) are

y(t) = y(0) + y′(0)t+ y′′(0)
2! t2 + y′′′(0)

3! t3 + y(4)(0)
4! t4 + · · ·

= 1+ t+ t2 + t3 + t4 + · · · .
We recognize this expansion as a geometric series that converges to the exact
solution,

y(t) = 1
1− t

, −1 < t < 1.

For this initial value problem, we find (after the fact) that δ = 1. ❖

Taylor Series Methods
The preceding discussion shows how to calculate higher derivatives of the so-
lution y(t) of the initial value problem

y′ = f (t, y), y(t0) = y0.

We can use these ideas to improve Euler’s method. Let yn be an approximation
to y(tn), where tn and tn+1 = tn + h are in the interval t0 ≤ t ≤ tN. As in equa-
tion (8) of Section 7.2, we have

y(tn+1) = y(tn) + y′(tn)h+ y′′(tn)
2! h2 + y′′′(tn)

3! h3 + · · · .
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Truncating this expansion after p terms, we obtain the approximation

y(tn+1) ≈ y(tn) + y′(tn)h+ y′′(tn)
2! h2 + y′′′(tn)

3! h3 + · · · + y( p)(tn)
p! hp. (7)

As we saw in equation (6), the Taylor series coefficients, y′(tn), y
′′(tn), y

′′′(tn), . . . ,
can be expressed in terms of f and its partial derivatives evaluated at (tn, y(tn)).
For instance, with p = 1, (7) becomes

y(tn+1) ≈ y(tn) + f (tn, y(tn))h.

Similarly, for p = 2, we obtain from (7)

y(tn+1) ≈ y(tn) + f (tn, y(tn))h+
[
ft(tn, y(tn)) + fy(tn, y(tn))f (tn, y(tn))

] h2
2! .

We find similar approximations when p ≥ 3. In order to use these approxima-
tions for computations, we replace y(tn) by its estimate, yn. The algorithms we
obtain in this manner are collectively referred to as Taylor series methods.
We use the term Taylor series method of order p to identify the Taylor series
method obtained from approximation (7). The Taylor series methods of orders
1, 2, and 3 are as follows:

Taylor Series Method of Order 1 (Euler’s Method)

yn+1 = yn + hf (tn, yn), n = 0,1, . . . ,N − 1 (8a)

Taylor Series Method of Order 2

yn+1 = yn + hf (tn, yn) + h2

2!
[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

]
, n = 0,1, . . . ,N− 1

(8b)

Taylor Series Method of Order 3

yn+1 = yn + hf (tn, yn) + h2

2!
[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

]

+ h3

3!
[
ftt(tn, yn) + 2fty(tn, yn)f (tn, yn) + fyy(tn, yn)f

2(tn, yn)

+ fy(tn, yn)ft(tn, yn) + f 2y (tn, yn)f (tn, yn)
]
, n = 0,1, . . . ,N − 1.

(8c)
It is cumbersome to write out all the terms of the general pth order Taylor

series method. In order to simplify the notation when discussing Taylor series
methods, it is common to denote a pth order Taylor series method as

yn+1 = yn + hy′
n + h2

2! y
′′
n + h3

3! y
′′′
n + · · · + hp

p! y
( p)
n , n = 0,1, . . . ,N − 1. (9)

We are using the name “pth order Taylor series method” to denote method (9).
The term order has a precise meaning that is given later in this section. Once
we state the formal definition of order, however, we will see that method (9) is
properly named.
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E X A M P L E

3 Consider the initial value problem

y′ = y2, y(0) = 1.

Using h = 0.05, execute 19 steps of the Taylor series method of order p for
p = 1,2,3, and 4. Do the results improve as p increases?

Solution: As we saw in Example 2, y′′ = 2y3, y′′′ = 6y4, and y(4) = 24y5. The Tay-
lor series methods of orders 1, 2, 3, and 4 are, respectively,

yn+1 = yn + hy2n,

yn+1 = yn + hy2n + h2y3n
yn+1 = yn + hy2n + h2y3n + h3y4n
yn+1 = yn + hy2n + h2y3n + h3y4n + h4y5n.

Table 7.2 illustrates how the Taylor series method estimates improve as the
order increases.

TA B L E 7 . 2

In this table, we designate the results of the pth order Taylor series method as “order
p” for p = 1, 2, 3, 4 and the value of the exact solution at t = tn as y(tn). As
anticipated, the results improve when we retain more terms in the Taylor series
expansion—that is, as the order p increases.

Taylor Series Methods

tn Order 1 Order 2 Order 3 Order 4 y(tn)

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0500 1.0500 1.0525 1.0526 1.0526 1.0526
0.1000 1.1051 1.1108 1.1111 1.1111 1.1111
0.1500 1.1662 1.1759 1.1764 1.1765 1.1765
0.2000 1.2342 1.2491 1.2500 1.2500 1.2500
0.2500 1.3104 1.3320 1.3333 1.3333 1.3333
0.3000 1.3962 1.4266 1.4285 1.4286 1.4286
0.3500 1.4937 1.5357 1.5383 1.5385 1.5385
0.4000 1.6052 1.6626 1.6664 1.6666 1.6667
0.4500 1.7341 1.8123 1.8178 1.8182 1.8182
0.5000 1.8844 1.9914 1.9994 2.0000 2.0000
0.5500 2.0620 2.2095 2.2212 2.2221 2.2222
0.6000 2.2745 2.4805 2.4984 2.4999 2.5000
0.6500 2.5332 2.8264 2.8543 2.8569 2.8571
0.7000 2.8541 3.2822 3.3281 3.3328 3.3333
0.7500 3.2614 3.9093 3.9894 3.9987 4.0000
0.8000 3.7932 4.8227 4.9756 4.9963 5.0000
0.8500 4.5126 6.2661 6.5980 6.6536 6.6667
0.9000 5.5308 8.8443 9.7297 9.9301 10.0000
0.9500 7.0603 14.4850 17.8859 19.1273 20.0000

❖
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Example 3 illustrates (for the special case of the differential equation
y′ = y2) how the Taylor series method of order p becomes more accurate as
p increases. We are now ready to make the concept of order precise and to
discuss why we expect that higher order methods are usually more accurate
than lower order methods.

Taylor’s Theorem
We consider the error made when we truncate a Taylor series. Theorem 7.2,
known as Taylor’s theorem, gives a convenient way of estimating the resulting
truncation error. A proof of Taylor’s theorem can be found in most calculus
books.

Theorem 7.2
Let y(t) be analytic at t = t, where the Taylor series expansion (2) con-
verges in the interval t− δ < t < t+ δ. Let m be a positive integer, and let
t be in the interval (t− δ, t+ δ). Then

y(t) = y(t ) + y′(t )(t− t ) + y′′(t )
2! (t− t )2 + · · ·

+ y(m)(t )
m! (t− t )m + y(m+1)(ξ)

(m+ 1)! (t− t )m+1,

(10)

where ξ is some point lying between t and t.

In Theorem 7.2, the polynomial

Pm(t) = y(t ) + y′(t )(t− t ) + y′′(t )
2! (t− t )2 + · · · + y(m)(t )

m! (t− t )m

is referred to as the Taylor polynomial of degree m. The term

Rm(t) = y(m+1)(ξ)

(m+ 1)! (t− t )m+1

is the remainder, and it measures the error made in approximating y(t) by the
Taylor polynomial, Pm(t). When we consider the errors of a numerical method,
the role of t is typically played by tn and the generic point t lies in the interval
tn ≤ t ≤ tn+1.

One-Step Methods and the Local Truncation Error
The methods we have considered thus far (Euler’s method, Heun’s method, the
modified Euler’s method, and Taylor series methods) are classified as one-step
methods. In general, a one-step method has the form

yn+1 = yn + hφ(tn, yn;h), n = 0, 1,2, . . . ,N − 1. (11)
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Thesemethods are called one step because they use only themost recently com-
puted point, (tn, yn), to compute the next point, (tn+1, yn+1). [By contrast, a mul-
tistep method uses multiple back values, (tn, yn), (tn−1, yn−1), (tn−2, yn−2), . . . ,
(tn−k, yn−k), to compute (tn+1, yn+1).

3 We restrict our consideration to one-step
methods.]

In equation (11), the term φ(tn, yn;h) is called an increment function. Dif-
ferent increment functions define different one-step methods. For instance,
Euler’s method, yn+1 = yn + hf (tn, yn), is a one-step method with increment
function

φ(tn, yn;h) = f (tn, yn).

Heun’s method is a one-step method with increment function

φ(tn, yn;h) = 1
2

[
f (tn, yn) + f (tn + h, yn + hf (tn, yn))

]
.

E X A M P L E

4 Write the second order Taylor series method in the form of a one-step method,
and identify the increment function φ(tn, yn;h).

Solution: From equation (8b), the second order Taylor series method has the
form

yn+1 = yn + h
(
f (tn, yn) + h

2!
[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

])
.

Thus,

φ(tn, yn;h) = f (tn, yn) + h
2!
[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

]
. ❖

A quantity known as the local truncation error is one of the keys to un-
derstanding and assessing the accuracy of one-step methods. Let y(t) denote
the solution of the initial value problem y′ = f (t, y), y(t0) = y0, and assume y(t)
exists on the interval of interest, [t0, t0 + T]. Let tn and tn+1 = tn + h lie in the
interval [t0, t0 + T]. For a given one-step method (11), we define the quantity
Tn+1 by

y(tn+1) = y(tn) + hφ(tn, y(tn);h) + Tn+1. (12)

The quantities Tn+1,n = 0,1, . . . ,N − 1 are called local truncation errors. A
local truncation error4 measures how much a single step of the numerical
methodmisses the true solution value, y(tn+1), given that the numerical method
starts on the solution curve at the point (tn, y(tn)).

3JohnD. Lambert,NumericalMethods forOrdinaryDifferential Systems (Chichester, England:Wiley,
1991).
4There is no universal agreement about the definition of local truncation errors. Some texts express
the quantity Tn+1 in equation (12) as hτn+1 = Tn+1 and refer to τn+1 as a local truncation error.
However, no matter how local truncation errors are defined, there is universal agreement on the
definition of the “order” of a one-step method, as given in the next subsection in equation (15).
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E X A M P L E

5 Derive an expression for the local truncation errors of Euler’s method.

Solution: Since Euler’smethod is given by yn+1 = yn + hf (tn, yn), the local trun-
cation errors are defined by

y(tn+1) = y(tn) + hf (tn, y(tn)) + Tn+1, (13)

where y(t) is the unique solution of the initial value problem y′ = f (t, y), y(t0) =
y0. However, f (tn, y(tn)) = y′(tn), and so equation (13) can be expressed as

y(tn+1) = y(tn) + y′(tn)h+ Tn+1. (14a)

By Taylor’s theorem, we can also write

y(tn+1) = y(tn) + y′(tn)h+ y′′(ξ)

2! h2, (14b)

where tn < ξ < tn+1. Comparing (14a) and (14b), we see that

Tn+1 = y′′(ξ)

2! h2, (14c)

where ξ is some point in the t-interval tn < t < tn+1.
For later use, we note from (14c) that

max
0≤n≤N−1

∣∣Tn+1
∣∣ ≤ Kh2, (14d)

where K = maxt0≤t≤t0+T |y′′(t)|/2!. ❖

The Order of a Numerical Method
We now define the order of a numerical method and show that the terminology
“Taylor series method of order p” is appropriate. We say that a one-stepmethod
has order p if there are positive constants K and h0 such that

For any point tn in the interval [t0, t0 + T − h0] and any step size h sat-
isfying 0 < h ≤ h0, we have

|Tn+1| ≤ Khp+1. (15)

Note that, in inequality (15), the constant K does not depend on the index
n. From inequality (14d) of Example 5, we see that Euler’s method has order
p = 1. Similar arguments show that the Taylor series methods (8b) and (8c)
have orders 2 and 3, respectively. In general, the Taylor series method

yn+1 = yn + hy′
n + h2

2! y
′′
n + h3

3! y
′′′
n + · · · + hp

p! y
( p)
n

has order p; this is consistent with our prior use of the term.
The order of a numerical method is a measure of how well the method

replicates the Taylor expansion of the solution. A numerical method of order p
has local truncation errors that satisfy |Tn+1| ≤ Khp+1. From Taylor’s theorem,
therefore, it follows that a pth order one-step method correctly replicates the
Taylor series up to and including the term of order hp.
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The Global Error
The size of the local truncation error for a numerical method tells us how far
we would deviate from y(tn+1) if we were to take a single step of the method
starting on the solution curve at the point (tn, y(tn)). However, except for the first
step of the method [when we start at the initial point (t0, y(t0)) = (t0, y0)], we do
not expect to take steps that begin on the solution curve. In this sense, the local
truncation error is not a quantity that we can calculate without knowing the
true solution of the initial value problem. We are using the concept of the local
truncation error to define the order of a numerical method and to establish the
convergence of numerical methods.

In practical computations, we are primarily interested in the global errors,

y(tn) − yn for n = 0,1, . . . ,N, (16)

where y(t) is the true solution of the initial value problemand yn is the numerical
method’s estimate to y(tn).

In discussing local truncation errors and global errors, it is convenient
to use the “Big O” order symbol (also known as the Landau symbol). This
symbol is frequently used to characterize inequalities such as (15). We use the
notation

q(h) = O(hr), h → 0 or simply q(h) = O(hr)

to mean there exists some positive constant K such that |q(h)| ≤ Khr for all
positive, sufficiently small h. Thus, inequality (15) can be written as

Tn+1 = O(hp+1).

Note that the order of a numerical method, p, is one integer less than the or-
der of the local truncation error. For example, from equation (14d), the local
truncation error of Euler’s method is O(h2), and therefore we say that Euler’s
method is a first order method.

In an appendix to Section 7.4, we state a theorem that shows how (for the
types of problems and numerical methods we are considering) the order of the
numerical method and the size of the global errors are related. In particular,
there is a positive constantM such that the global errors for a pth order method
satisfy the inequality

max
0≤n≤N

|y(tn) − yn| ≤ Mhp. (17)

Inequality (17) tells us how the global errors are reduced when h is reduced. If
we are using a pth order method and if we reduce the step size h by 1

2 , then we
anticipate that the global errors will be reduced by about

(
1
2

)p
.

E X A M P L E

6 We again consider the example

y′ = y2, y(0) = 1, 0 ≤ t ≤ 0.95.

Use Euler’s method to generate numerical solutions, first using step size
h1 = 0.05 and then using step size h2 = 0.025. From (17) with p = 1, we ex-
pect the global errors to be reduced by approximately 1

2 when h is reduced
by 1

2 . Compare the global errors at t = 0.05,0.10,0.15, . . . ,0.95. Does it appear

(continued)
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(continued)

that the errors resulting from the smaller step size are about half the size of the
errors of the larger step?

Solution: The results are listed in Table 7.3. The column headed E1 gives the
global errors y(tk) − yk, made using h1 = 0.05. Similarly, the column headed
E2 lists the global errors, at the same values of t, made using h2 = 0.025. As
predicted by (17), the ratios of E2 to E1 (given in the column headed E2/E1) are
close to 0.5 for smaller values of t. The ratios tend to deviate from 0.5 as the
values tk approach t = 1, where the exact solution has a vertical asymptote.

TA B L E 7 . 3

The Results of Example 6
Note, as predicted by (17), that E2 ≈ E1 /2.

tk E1 E2 E2/ E1
(h = 0.05) (h = 0.025)

0.0500 0.0026 0.0014 0.5191
0.1000 0.0060 0.0031 0.5206
0.1500 0.0103 0.0054 0.5223
0.2000 0.0158 0.0083 0.5242
0.2500 0.0230 0.0121 0.5264
0.3000 0.0324 0.0171 0.5290
0.3500 0.0448 0.0238 0.5320
0.4000 0.0614 0.0329 0.5355
0.4500 0.0841 0.0454 0.5396
0.5000 0.1156 0.0630 0.5446
0.5500 0.1603 0.0883 0.5507
0.6000 0.2255 0.1259 0.5583
0.6500 0.3239 0.1840 0.5680
0.7000 0.4793 0.2782 0.5805
0.7500 0.7386 0.4412 0.5973
0.8000 1.2068 0.7491 0.6207
0.8500 2.1541 1.4111 0.6551
0.9000 4.4692 3.1700 0.7093
0.9500 12.9397 10.4052 0.8041

❖

The Need for Computationally Friendly Algorithms
Taylor series expansions provide a clear blueprint for how to improve the ac-
curacy of a numerical algorithm. The Exercises develop such algorithms for a
variety of problems. In specific cases, as in Examples 1 and 2, the computations
are not overly difficult. In other cases, as the order of the algorithm increases,
the computations rapidly become unwieldy and the possibility of mistakes in
programming the numerical method grows as well. Moreover, Taylor series
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methods are problem specific; the various partial derivatives of f (t, y) must be
recomputed every time we are given a new differential equation.

For these reasons, a Taylor series method is not very attractive as an all-
purpose method for solving initial value problems. The challenge is to develop
algorithms that replicate the desired number of terms in the Taylor series ex-
pansion (thereby achieving the desired accuracy) but do not require calculation
of partial derivatives. In particular, we want algorithms that require only eval-
uations of the function f .

Heun’s method and the modified Euler’s method, developed in Section 7.2,
provide insight into how these goals might be achieved using compositions of
functions. Computers can evaluate functions with relative ease, and composi-
tions of functions, while they might look formidable to us, are also evaluated
with relative ease on a computer. Nested compositions of functions, such as
those used in Heun’s method and the modified Euler’s method, form the basis
of Runge-Kutta methods that are discussed in Section 7.4. Runge-Kutta meth-
ods achieve the accuracy of Taylor series methods, but in a computationally
friendly way.

E X E R C I S E S

Exercises 1–10:

Assume, for the given differential equation, that y(0) = 1.

(a) Use the differential equation itself to determine the values y′(0), y′′(0), y′′′(0), y(4)(0)
and form the Taylor polynomial

P4(t) = y(0) + y′(0)t+ y′′(0)
2! t2 + y′′′(0)

3! t3 + y(4)(0)
4! t4.

(b) Verify that the given function is the solution of the initial value problem consisting
of the differential equation and initial condition y(0) = 1.

(c) Evaluate both the exact solution y(t) and P4(t) at t = 0.1. What is the error
E(0.1) = y(0.1) − P4(0.1)? [Note that E(0.1) is the local truncation error incurred
in using a Taylor series method of order 4 to step from t0 = 0 to t1 = 0.1 using step
size h = 0.1.]

1. y′ = −y+ 2; y(t) = 2− e−t 2. y′ = 2ty; y(t) = et
2

3. y′ = ty2; y(t) =
(
1− t2

2

)−1
4. y′ = t2 + y; y(t) = 3et − (t2 + 2t+ 2)

5. y′ = y1/2; y(t) =
(
1+ t

2

)2
6. y′ = ty−1; y(t) =

√
1+ t2

7. y′ = y+ sin t; y(t) = 3et − cos t− sin t
2

8. y′ = y3/4; y(t) =
(
1+ t

4

)4
9. y′ = 1+ y2; y(t) = tan

(
t+ π

4

)

10. y′ = −4t3y; y(t) = e−t 4

Results analogous to Theorem 7.1 guaranteeing the existence of analytic solutions can
be established for higher order scalar problems andfirst order systems. The development
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of higher order numerical methods for such problems will be addressed in Section 7.4.
Exercises 11–14 illustrate how a series expansion of the solution of a higher order scalar
problem can be obtained from the differential equation itself. For example, consider the
initial value problem y′′ = f (t, y, y′), y(t0) = y0, y

′(t0) = y′
0. From the equation, we have

y′′(t0) = f (t0, y0, y
′
0). Differentiating the identity y

′′(t) = f (t, y(t), y′(t)) allows us to obtain
y′′′(t0) and then y

(4)(t0) and so forth.

Exercises 11–14:

In each exercise, for the given t0,

(a) Obtain the fifth degree Taylor polynomial approximation of the solution,

P5(t) = y(t0) + y′(t0)(t− t0) + y′′(t0)
2! (t− t0)

2 + · · · + y(5)(t0)
5! (t− t0)

5.

(b) If the exact solution is given, calculate the error at t = t0 + 0.1.

11. y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = 0; t0 = 0.
The exact solution is y(t) = 2et − e2t.

12. y′′ − y′ = 0, y(1) = 1, y′(1) = 2; t0 = 1.
The exact solution is y(t) = −1+ 2e(t−1).

13. y′′′ − y′ = 0, y(0) = 1, y′(0) = 2, y′′(0) = 0; t0 = 0.
The exact solution is y(t) = 1+ et − e−t.

14. y′′ + y+ y3 = 0, y(0) = 1, y′(0) = 0; t0 = 0

Exercises 15–18:

In each exercise, determine the largest positive integer r such that q(h) = O(hr). [Hint:
Determine the first nonvanishing term in the Maclaurin expansion of q.]

15. q(h) = sin 2h 16. q(h) = 2h+ h3

17. q(h) = 1− cosh 18. q(h) = eh − (1+ h)

19. Give an example of functions f and g such that f (h) = O(h), g(h) = O(h) but
( f + g)(h) = O(h2).

Exercises 20–23:

For the given initial value problem,

(a) Execute 20 steps of the Taylor series method of order p for p = 1,2,3. Use step size
h = 0.05.

(b) In each exercise, the exact solution is given. List the errors of the Taylor series
method calculations at t = 1.

20. y′ = t
y+ 1

, y(0) = 1. The exact solution is y(t) = −1+
√
t2 + 4.

21. y′ = 2ty2, y(0) = −1. The exact solution is y(t) = −1
1+ t2

.

22. y′ = 1
2y

, y(0) = 1. The exact solution is y(t) = √
1+ t.

23. y′ = 1+ y2

1+ t
, y(0) = 0. The exact solution is y(t) = tan [ln(1+ t)].

Exercises 24–27:

Assume that a pth order Taylor series method is used to solve an initial value problem.
When the step size h is reduced by 1

2 , we expect the global error to be reduced by about(
1
2

)p
. Exercises 24–27 investigate this assertion using a third order Taylor series method

for the initial value problems of Exercises 20–23.
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Use the third order Taylor series method to numerically solve the given initial value
problem for 0 ≤ t ≤ 1. Let E1 denote the global error at t = 1 with step size h = 0.05 and
E2 the error at t = 1 when h = 0.025. Calculate the error ratio E2/E1. Is the ratio close
to 1/8?

24. y′ = t
y+ 1

, y(0) = 1 25. y′ = 2ty2, y(0) = −1

26. y′ = 1
2y

, y(0) = 1 27. y′ = 1+ y2

1+ t
, y(0) = 0

7.4 Runge-Kutta Methods
In this section, we discuss Runge-Kutta methods as a way of numerically solv-
ing the initial value problem

y′ = f (t, y), y(t0) = y0. (1)

Runge-Kutta methods are based on Taylor series methods, but they use nested
compositions of function evaluations instead of the partial derivatives of f (t, y)
required by a Taylor series method. In theory, one can achieve any desired level
of accuracy using the Runge-Kutta approach.

Heun’s method and the modified Euler’s method are two familiar algo-
rithms that use the Runge-Kutta philosophy of evaluating compositions of
functions. For instance, Heun’s method has the form

yn+1 = yn + h
2

[
f (tn, yn) + f (tn + h, yn + hf (tn, yn))

]
, n = 0,1,2, . . . ,N − 1.

Heun’s method is easy to implement—in order to take a step, we need only
evaluate the function f (t, y) at the current estimate (tn, yn) and at the point
(tn + h, yn + hf (tn, yn)). Moreover, as is shown in Example 1, Heun’s method
is a second order method. In contrast, a second order Taylor series method
requires the calculation of two partial derivatives, ft(tn, yn) and fy(tn, yn), in
order to make a step with comparable second order accuracy.

E X A M P L E

1 Calculate the order of Heun’s method,

yn+1 = yn + h
2

[
f (tn, yn) + f (tn + h, yn + hf (tn, yn))

]
. (2)

Solution: Let y(t) denote the unique solution of the initial value problem (1). To
determine the order of the one-step method (2), we need to find an expression
for the local truncation errors, Tn+1 [recall equation (12) in Section 7.3].

Assume that we apply Heun’smethod starting on the exact solution curve at
tn—that is, with yn = y(tn). To determine the local truncation error, wemust first
unravel the composition f (tn + h, yn + hf ) [where functions without arguments
will be assumed to be evaluated at (tn, yn)]. Expanding f (tn + h, yn + hf ) in a
Taylor series about (tn, yn), we obtain

f (tn + h, yn + hf ) = f + ( ft + fy f )h+ 1
2 ( ftt + 2fty f + fyy f

2)h2 +O(h3). (3)

(continued)
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(continued)

Using this expansion in (2) yields

yn+1 = yn + h
2

[
f + f + ( ft + fy f )h+ 1

2
( ftt + 2fty f + fyy f

2)h2 +O(h3)
]

= yn + f h+ ( ft + fy f )
h2

2
+ ( ftt + 2fty f + fyy f

2)
h3

4
+O(h4).

(4)

We compare this expansion with the Taylor series of the exact solution, y(tn+1).
Using the fact that y(tn) = yn and using the expressions for y′(tn), y

′′(tn),
y′′′(tn) derived in Section 7.3, we have

y(tn+1) = yn + f h+ ( ft + fy f )
h2

2
+ ( ftt + 2fty f + fyy f

2 + fy ft + f 2yf )
h3

6
+O(h4).

(5)

Comparing expansions (4) and (5), we see that they agree up to and including
the O(h2) terms but that the O(h3) term in the Heun method expansion does
not correctly replicate the O(h3) term in the Taylor series of the exact solution.
Therefore, the local truncation error of Heun’s method is Tn+1 = O(h3), and
Heun’s method is second order. ❖

Second Order Runge-Kutta Methods
To generalize the approach suggested by Heun’s method, we choose a set of
points (θi, γi), i = 1,2, . . . , k that lie in the ty-plane, in the vertical strip bounded
by the lines t = tn and t = tn+1. As Figure 7.3 suggests, these points sample
the direction field in the vicinity of the point (tn, yn). To formalize this idea of
sampling the direction field, consider a one-step method

yn+1 = yn + hφ(tn, yn;h), (6)

where the increment function is defined by

φ(tn, yn;h) = A1f (θ1, γ1) + A2f (θ2, γ2) + · · · + Ak f (θk, γk). (7)

The constants A1,A2, . . . ,Ak are theweights of the method (6). Thus, the incre-
ment function is a weighted sum of direction field slopes. For a fixed integer k,

tn tn + 1

y

t

(tn, yn)

FIGURE 7.3

A portion of the direction field for y′ = f (t, y) near our latest estimate
(tn, yn). We use a weighted sum of direction field evaluations at the points
marked “×” to evolve the numerical solution from tn to tn+1.
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the local truncation error is reduced by selecting weights, {Ai}ki=1, and direction
field sampling points, {(θi, γi)}ki=1, so that the method (6) replicates as many
terms in the Taylor series expansion of the local solution as possible.

When k = 2, method (6) has the form

yn+1 = yn + h[A1f (θ1, γ1) + A2f (θ2, γ2)]. (8)

We need to choose the sampling points (θ1, γ1) and (θ2, γ2) and weights A1 and
A2. Since we are viewing the term A1f (θ1, γ1) + A2f (θ2, γ2) as an average slope,
we want the sampling points to be near (tn, yn) and to be representative of the
direction field between t = tn and t = tn+1. A reasonable choice for one of the
sampling points is (θ1, γ1) = (tn, yn). For a second point, our previous study
suggests that we might sample somewhere along the “Euler line”—the line of
slope f (tn, yn) that passes through the point (tn, yn). Thus, as a second sampling
point, we choose

(θ2, γ2) = (tn + αh, yn + αhf (tn, yn)),

where α is a constant, 0 < α ≤ 1. See Figure 7.4.

tn tn + �h tn + 1

t

FIGURE 7.4

Given the two-sample method (8), we generally choose one sample at
(tn, yn) and the second somewhere along the “Euler line,” at
(tn + αh, yn + αhf (tn, yn)), where α is a constant, 0 < α ≤ 1.

With the choices shown in Figure 7.4, method (8) has the form

yn+1 = yn + h
[
A1f (tn, yn) + A2f (tn + αh, yn + αhf (tn, yn))

]
. (9)

We now need to select constants A1, A2, and α. Since the right-hand side of
equation (9) is a function of h, it makes sense to expand the right-hand side in
powers of h, with the objective of choosing the constants so that yn+1 matches
a Taylor series method through as many powers of h as possible.

Expanding the right-hand side of (9) gives

yn+1 = yn + h[A1f (tn, yn) + A2f (tn + αh, yn + αhf (tn, yn))]
= yn + h[A1f (tn, yn) + A2{f (tn, yn) + ft(tn, yn)αh

+ fy(tn, yn)αhf (tn, yn) +O(h2)}]
= yn + h(A1 + A2)f (tn, yn) + h2αA2

[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

]
+O(h3).
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We now attempt to match this expansion with the Taylor series method of
order 2,

yn+1 = yn + hf (tn, yn) + h2

2

[
ft(tn, yn) + fy(tn, yn)f (tn, yn)

]
.

Our objective is to select the parameters at our disposal, A1,A2, and α, so as to
maximize the agreement between the expansions. Comparing the two expan-
sions, we see that we can obtain agreement through terms of order h2 if A1,A2,
and α satisfy the equations

A1 + A2 = 1

αA2 = 1
2 .

(10)

Once we satisfy these constraints, the method (9) matches the second order
Taylor seriesmethodup through terms of orderh2 and therefore, like the second
order Taylor series method, has anO(h3) local truncation error. [This is the best
we can do with method (9). It is impossible to select A1,A2, and α to match the
terms of the third order Taylor series method.]

In (10), we have a system of two (nonlinear) equations in three unknowns.
This system has infinitely many solutions,

A2 = 1
2α

and A1 = 1− 1
2α

, (11)

with 0 < α ≤ 1. Since α represents the fraction of the step we move along the
Euler line to the second sampling point,

(θ2, γ2) = (tn + αh, yn + αhf (tn, yn)),

there are two “natural” choices for α, namely α = 1
2 and α = 1. If α = 1 in equa-

tion (11), then A1 = 1
2 and A2 = 1

2 . With this choice, method (9) reduces to
Heun’s method,

yn+1 = yn + h
2

[
f (tn, yn) + f (tn + h, yn + hf (tn, yn))

]
.

If α = 1
2 in equation (11), then A1 = 0 and A2 = 1. With this choice, method (9)

reduces to the modified Euler’s method,

yn+1 = yn + hf
(
tn + h

2
, yn + hf (tn, yn)

2

)
.

R-stage Runge-Kutta Methods
In general, a Runge-Kutta method has the form

yn+1 = yn + hφ(tn, yn;h), (12a)

where the increment function, φ(tn, yn;h), is given by

φ(tn, yn;h) =
R∑
j=1

AjKj(tn, yn). (12b)

In (12b), the terms Aj are constants (the weights) and the termsKj(tn, yn) are di-
rection field samples, usually called stages. The stages are defined sequentially
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as follows:

K1(tn, yn) = f (tn, yn)

Kj(tn, yn) = f (tn + αjh, yn + h
j−1∑
i=1

βjiKi(tn, yn)), j = 2,3, . . . ,R,
(12c)

where 0 < αj ≤ 1 and where βj,1 + βj,2 + · · · + βj, j−1 = αj.
Method (12) is called an R-stage Runge-Kutta method. A Runge-Kutta

method can be viewed as a “staged” sampling process. That is, for each j, we
choose a value αj that determines the t-coordinate of the jth sampling point.
Then [see (12c)] the y-coordinate of the jth sampling point is determined using
the prior stages. In this sense, the sampling process is recursive. In (12c), the
constraint 0 < αj ≤ 1 means that all sampling points lie between t = tn and
t = tn+1. While this description of an R-stage Runge-Kutta method may seem
complicated, the format of equation (12) makes programming a Runge-Kutta
method very simple (see Figures 7.7 and 7.8 on pages 501 and 502).

An example of a three-stage Runge-Kutta method is

yn+1 = yn + h
6

(K1 + 4K2 + K3)

K1 = f (tn, yn)

K2 = f
(
tn + h

2
, yn + h

2
K1

)

K3 = f (tn + h, yn − hK1 + 2hK2).

(13)

It is not difficult to show thatmethod (13) has order 3; itmatches the third order
Taylor series method up through terms of order h3 but not the order h4 term.

Aswe saw in equations (9) and (11), there are infinitelymany two-stage, sec-
ond order Runge-Kutta methods. Similarly, there is an infinite two-parameter
family of three-stage, third order Runge-Kutta methods (see Exercises 31–34).
Likewise, when the parameters in (12) are chosen properly, there are four-
stage, fourth order Runge-Kuttamethods. One of themost popular fourth order
Runge-Kutta methods (recall Sections 2.10 and 4.9) is

yn+1 = yn + h
6

(K1 + 2K2 + 2K3 + K4)

K1 = f (tn, yn)

K2 = f
(
tn + h

2
, yn + h

2
K1

)

K3 = f
(
tn + h

2
, yn + h

2
K2

)

K4 = f (tn + h, yn + hK3).

(14)

Viewing algorithm (14) geometrically, we can envision it as being formed in the
following way. First, we calculate K1, the slope of the tangent line at starting
point (tn, yn). We proceed a half-step along this tangent line to locate the di-
rection field point at which slope K2 is evaluated. We use this new slope K2 to
define another line through (tn, yn). Proceeding, in turn, a half step along this
new line locates the point that determines slope K3. Finally, we proceed a full
step from (tn, yn) along the line having slope K3 to determine the point at which
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slope K4 is evaluated. The appropriately weighted average of these four slopes
defines the algorithm.

Runge-Kutta Methods for Systems
The discussion in this chapter has focused on the scalar initial value problem

y′ = f (t, y), y(t0) = y0.

As mentioned earlier, the ideas developed and the ensuing methods extend
naturally to first order systems. Consider the initial value problem

y ′ = f(t, y), y(t0) = y0, (15)

where

y(t) =

⎡
⎢⎢⎢⎢⎣
y1(t)

y2(t)
...

ym(t)

⎤
⎥⎥⎥⎥⎦, y0 =

⎡
⎢⎢⎢⎢⎢⎣
y(1)
0

y(2)
0
...

y(m)
0

⎤
⎥⎥⎥⎥⎥⎦

and

f(t, y) =

⎡
⎢⎢⎢⎢⎣
f1(t, y)

f2(t, y)
...

fm(t, y)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f1(t, y1, y2, . . . , ym)

f2(t, y1, y2, . . . , ym)

...

fm(t, y1, y2, . . . , ym)

⎤
⎥⎥⎥⎥⎥⎦ .

The concept of an analytic function developed in Section 7.3 can be extended
to the vector-valued functions y(t) and f(t, y). Theorem 7.1 can be extended to
give analogous conditions sufficient for the existence of an analytic solution of
(15) on an interval of the form t0 − δ < t < t0 + δ for some δ > 0.

We saw in Section 4.9 how Euler’s method and higher order Runge-Kutta
methods extend naturally to initial value problems such as (15). For example,
the system counterpart of algorithm (14) is

yn+1 = yn + h
6

(
K1 + 2K2 + 2K3 +K4

)
K1 = f(tn, yn)

K2 = f
(
tn + h

2
, yn + h

2
K1

)

K3 = f
(
tn + h

2
, yn + h

2
K2

)

K4 = f(tn + h, yn + hK3).

(16)

The Damped Pendulum
The next example illustrates how we can apply a Runge-Kutta method to a first
order system of the form

y ′ = f(t, y), y(t0) = y0.
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E X A M P L E

2 Consider a pendulumwhosemotion is influenced not only by its weight but also
by a resistive or damping force. The mathematical formulation of this prob-
lem leads to an initial value problem involving a scalar second order nonlinear
differential equation. We rewrite this scalar second order problem as an equiv-
alent problem for a first order (nonlinear) system and then use the fourth order
Runge-Kutta method (16), with a step size of h = 0.05, to obtain a numerical
solution.

Problem Formulation: The pendulum is formed by a mass m attached to a
rod of length l (see Figure 7.5). We neglect the mass of the rod. As the pendu-
lum moves, it is acted on by the force of gravity and also by a damping force,
which acts to retard the pendulum motion. We assume this damping force is
proportional to the angular velocity of the pendulum and acts in the tangential
direction to retard the motion. We obtain

ml2θ ′′ = −mgl sin θ − κlθ ′, or θ ′′ + κ

ml
θ ′ + g

l
sin θ = 0,

where κ is a positive damping constant. We complete the formulation by speci-
fying both θ and θ ′ at the initial time of interest, say t = 0. These two constants
give the initial position and initial angular velocity of the pendulum. We adopt
the numerical values

κ

ml
= 0.2 s−1,

g
l

= 1 s−2, θ(0) = 0 rad, θ ′(0) = 3 rad/s,

and the initial value problem of interest becomes

θ ′′ + 0.2θ ′ + sin θ = 0, θ(0) = 0, θ ′(0) = 3.

The differential equation is recast as a first order system by defining

y1(t) = θ(t), y2(t) = θ ′(t), and y(t) =
[
y1(t)

y2(t)

]
.

The initial value problem becomes

y ′ =
[

y2
− sin y1 − 0.2y2

]
, y(0) =

[
0

3

]
. (17)

We will solve initial value problem (17) numerically using algorithm (16).

�

Pivot O

l

mgsin� Mass
m

Weight
mg

FIGURE 7.5

The damped pendulum described in Example 2.

(continued)
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(continued)

What Should We Expect? Before embarking on a numerical solution, it’s usu-
ally worthwhile to bring to bear any available physical insights that will help
determine what to expect. We know that, generally, solutions of nonlinear ini-
tial value problems do not exist on arbitrarily large time intervals. However,
because of the nature of the pendulummotion it describes, we expect the exact
solution of (17) to exist on an arbitrarily large time interval.

We saw in Chapter 6 that, in the absence of damping, a pendulum starting
at θ(0) = 0 with θ ′(0) = 2 has just enough energy to reach the inverted position
(in the limit as t → ∞). In our case, the initial angular velocity is greater, since
θ ′(0) = 3. Damping, however, retards the motion and causes the pendulum to
lose energy. If damping is not too large, we expect the pendulum to go past
the inverted position at least once. If damping is large enough, however, the
accompanying loss of energy will more than offset the increase in initial en-
ergy and the pendulum will not reach the inverted position. It’s not clear at the
outset which possibility will occur. In any event, the pendulum eventually will
have insufficient energy to reach the inverted position, and it will simply swing
back and forth with decreasing amplitude as time increases. Based on these
observations, what do you expect the graphs of θ(t) and θ ′(t) to look like?

Interpreting the Results Figure 7.6 shows the results of the numerical compu-
tation. Note that the graph of y1(t) = θ(t) increases from zero to a maximum of
about 8.29 rad. Since 2π ≈ 6.28, the graph tells us that the pendulummakes one
complete counterclockwise revolution, rotating an additional 2 rad ≈ 115◦ be-
yond the vertically downward position before falling back, beginning to swing
back and forth with decreasing amplitude as time progresses. The graph has
a horizontal asymptote of 2π , since the pendulum approaches the vertically
downward rest position as t → ∞.
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FIGURE 7.6

(a) The graph of y1(t) = θ(t). (b) The graph of y2(t) = θ ′(t).

Is the graph of y2(t) = θ ′(t) consistent with this physical interpretation?
What do the initial minimum and maximum (for t > 0) of this graph corre-
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spond to? Should they occur while the dependent variable (angular velocity)
is positive? Should the zero crossings of this graph occur at the critical points
of y1(t) = θ(t)? Should the maxima of y2(t) = θ ′(t) occur when the pendulum
is in the vertically downward position? Should the graph of y2(t) = θ ′(t) have
a horizontal asymptote of zero? Subjecting your numerical solution to simple
common-sense checks such as these is an important final step. ❖

Coding a Runge-Kutta Method
We conclude this section with a short discussion about the practical aspects of
writing a program to implement a Runge-Kutta method. Figures 7.7 and 7.8
list the program used to generate the numerical solution of Example 2. This
particular code was written in MATLAB, but the principles are the same for
any programming language.

%
% Set the initial conditions for the
% initial value problem of Example 2
%
t=0;
y=[0,3]’;
h=0.05;
output=[t,y(1),y(2)];
%
%
% Execute the fourth order Runge-Kutta method
% on the interval [0, 30]
%
for i=1:600

ttemp=t;
ytemp=y;
k1=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k1;
k2=f(ttemp,ytemp);
ttemp=t+h/2;
ytemp=y+(h/2)*k2;
k3=f(ttemp,ytemp);
ttemp=t+h;
ytemp=y+h*k3;
k4=f(ttemp,ytemp);
y=y+(h/6)*(k1+2*k2+2*k3+k4);
t=t+h;
output=[output;t,y(1),y(2)];

end

FIGURE 7.7

A Runge-Kutta code for the initial value problem in Example 2.
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function yp=f(t,y)
yp=zeros(2,1);
yp(1)=y(2);
yp(2)=-sin(y(1))-0.2*y(2);

FIGURE 7.8

A function subprogram that evaluates f(t, y) for the differential
equation of Example 2.

Note first that no matter what numerical method we decide to use for the
initial value problem

y ′ = f(t, y), y(t0) = y0,

weneed towrite a subprogram (ormodule) that evaluates f(t, y). Such amodule
is listed in Figure 7.8 for the initial value problem of Example 2. Figure 7.7 lists
a MATLAB program that executes 600 steps of the fourth order Runge-Kutta
method (16) for the initial value problem of Example 2.

The code listed in Figure 7.7 stays as close as possible to the notation and
format of the fourth order Runge-Kutta method (16). It is always a good idea to
use variable names (such as k1 and k2) that match the names in the algorithm.
Beyond the choice of variable names, the code in Figure 7.8 also mimics the
steps of algorithm (16) as closely as possible. Adhering to such conventions
makes programs easier to read and debug.

E X E R C I S E S

Exercises 1–10:

We reconsider the initial value problems studied in the Exercises of Section 7.3. The
solution of the differential equation satisfying initial condition y(0) = 1 is given.

(a) Carry out one step of the third order Runge-Kutta method (13) using a step size
h = 0.1, obtaining a numerical approximation of the exact solution at t = 0.1.

(b) Carry out one step of the fourth order Runge-Kutta method (14) using a step size
h = 0.1, obtaining a numerical approximation of the exact solution at t = 0.1.

(c) Examine the exact solution. Should either or both of the Runge-Kutta methods,
in principle, yield an exact answer for the particular problem being considered?
Explain.

(d) Compare the numerical values obtained in parts (a) and (b) with the exact solution
evaluated at t = 0.1. Are the results consistent with your answer in part (c)? Is the
error incurred using the four-stage algorithm less than the error for the three-stage
calculation?

1. y′ = −y+ 2; y(t) = 2− e−t 2. y′ = 2ty; y(t) = et
2

3. y′ = ty2; y(t) = 2

2− t2
4. y′ = t2 + y; y(t) = 3et − (t2 + 2t+ 2)

5. y′ = √
y; y(t) =

(
1+ t

2

)2
6. y′ = t

y
; y(t) =

√
1+ t2

7. y′ = y+ sin t; y(t) = 3et − cos t− sin t
2
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8. y′ = y3/4; y(t) =
(
1+ t

4

)4
9. y′ = 1+ y2; y(t) = tan

(
t+ π

4

)

10. y′ = −4t3y; y(t) = e−t 4

Exercises 11–16:

For the given initial value problem, an exact solution in terms of familiar functions is not
available for comparison. If necessary, rewrite the problem as an initial value problem
for a first order system. Implement one step of the fourth order Runge-Kutta method
(14), using a step size h = 0.1, to obtain a numerical approximation of the exact solution
at t = 0.1.

11. y′′ + ty′ + y = 0, y(0) = 1, y′(0) = −1

12.
d
dt

(
et
dy
dt

)
+ ty = 1, y(0) = 1, y′(0) = 2

13. y ′ =
[
0 t

et 0

]
y+
[
1

t

]
, y(0) =

[
2

1

]
14. y ′ =

[−1 t

2 0

]
y, y(0) =

[−1
1

]

15. y′′′ − ty = 0, y(0) = 1, y′(0) = 0, y′′(0) = −1
16. y′′ + z+ ty = 0

z′ − y = t, y(0) = 1, y′(0) = 2, z(0) = 0

Exercises 17–18:

One differential equation for which we can explicitly demonstrate the order of the
Runge-Kutta algorithm is the linear homogeneous equation y′ = λy, where λ is a con-
stant.

17. (a) Verify that the exact solution of y′ = λy, y(t0) = y0 is y(t) = y0e
λ(t−t0).

(b) Show, for the three-stage Runge-Kutta method (13), that

y(tn) + hφ(tn, y(tn);h) = y(tn)

[
1+ λh+ (λh)2

2! + (λh)3

3!

]
.

(c) Show that y(tn+1) = y(tn)e
λh.

(d) What is the order of the local truncation error?

18. Repeat the calculations of Exercise 17 using the four-stage Runge-Kutta method
(14). In this case, show that the local truncation error is O(h5).

Exercises 19–22:

In these exercises, we ask you to use the fourth order Runge-Kutta method (14) to solve
the problems in Exercises 20–23 of Section 7.3.

(a) For the given initial value problem, execute 20 steps of the method (14); use step
size h = 0.05.

(b) The exact solution is given. Compare the numerical approximation y20 and the exact
solution y(t20) = y(1).

19. y′ = t
y+ 1

, y(0) = 1. The exact solution is y(t) = −1+
√
t2 + 4.

20. y′ = 2ty2, y(0) = −1. The exact solution is y(t) = −1
1+ t2

.

21. y′ = 1
2y

, y(0) = 1. The exact solution is y(t) = √
1+ t.
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22. y′ = 1+ y2

1+ t
, y(0) = 0. The exact solution is y(t) = tan[ln(1+ t)].

Exercises 23–25:

In each exercise,

(a) Verify that the given function is the solution of the initial value problem posed. If the
initial value problem involves a higher order scalar differential equation, rewrite it
as an equivalent initial value problem for a first order system.

(b) Execute the fourth order Runge-Kutta method (16) over the specified t-interval, us-
ing step size h = 0.1, to obtain a numerical approximation of the exact solution.
Tabulate the components of the numerical solution with their exact solution coun-
terparts at the endpoint of the specified interval.

23. y′′ + 2y′ + 2y = −2, y(0) = 0, y′(0) = 1; y(t) = e−t(cos t+ 2 sin t) − 1; 0 ≤ t ≤ 2

24. y ′ =
⎡
⎣−1 1

2

1
2 −1

⎤
⎦ y, y(0) =

[
2

0

]
; y(t) =

⎡
⎣e−t/2 + e−3t/2

e−t/2 − e−3t/2

⎤
⎦ ; 0 ≤ t ≤ 1

25. t2y′′ − ty′ + y = t2, y(1) = 2, y′(1) = 2; y(t) = t(t+ 1− ln t); 1 ≤ t ≤ 2

Exercises 26–30:

These exercises ask you to use numerical methods to study the behavior of some scalar
second order initial value problems. In each exercise, use the fourth order Runge-Kutta
method (16) and step size h = 0.05 to solve the problem over the given interval.

26. y′′ + 4(1+ 3 tanh t)y = 0, y(0) = 1, y′(0) = 0; 0 ≤ t ≤ 10.

This problem might model the motion of a spring-mass system in which the
mass is released from rest with a unit initial displacement at t = 0 and with the
spring stiffening as the motion progresses in time. Plot the numerical solutions for
y(t) and y′(t). Since tanh t approaches 1 for large values of t, we might expect the
solution to approximate a solution of y′′ + 16y = 0 for time t sufficiently large. Do
your graphs support this conjecture?

27. y′′ + y+ y3 = 0, y(0) = 0, y′(0) = 1; 0 ≤ t ≤ 10.

A nonlinear differential equation having this structure arose in modeling the
motion of a nonlinear spring. We are interested in assessing the impact of the non-
linear y3 term on the motion. Plot the numerical solution for y(t). If the nonlinear
termwere not present, the initial value problemwould have solution y(t) = sin t. On
the same graph, plot the function sin t. Does the nonlinearity increase or decrease
the period of the motion? How do the amplitudes of the motion differ?

28. θ ′′ + sin θ = 0.2 sin t, θ(0) = 0, θ ′(0) = 0; 0 ≤ t ≤ 50.

This nonlinear differential equation is used to model the forced motion of a
pendulum initially at rest in the vertically downward position. For small angu-
lar displacements, the approximation sin θ ≈ θ is often used in the differential
equation. Note, however, that the solution of the resulting initial value problem
θ ′′ + θ = 0.2 sin t, θ(0) = 0, θ ′(0) = 0 is given by θ(t) = −0.1(sin t− t cos t), leading to
pendulum oscillations that continue to grow in amplitude as time increases. Our
goal is to determine how the nonlinear sin θ term affects the motion. Plot the nu-
merical solutions for θ(t) and θ ′(t). Describe in simple terms what the pendulum is
doing on the time interval considered.



7.4 Runge-Kutta Methods 505

29. θ ′′ + sin θ = 0, θ(0) = 0, θ ′(0) = 2; 0 ≤ t ≤ 20.

This problem models pendulum motion when the pendulum is initially in the
vertically downward position with an initial angular velocity of 2 rad/s. For this
conservative system, it was shown in Chapter 6 that (θ ′)2 − 2 cos θ = 2. Therefore,
the initial conditions have been chosen so that the pendulum will rotate upward
in the positive (counterclockwise) direction, slowing down and approaching the
vertically upward position as t → ∞. The phase-plane solution point is moving on
the separatrix; thus, loosely speaking, the exact solution is “moving on a knife’s
edge.” If the initial velocity is slightly less, the pendulum will not reach the upright
position but will reach a maximum value less than π and then proceed to swing
back and forth. If the initial velocity is slightly greater, the pendulum will pass
through the vertically upright position and continue to rotate counterclockwise.
What happens if we solve this problem numerically? Plot the numerical solutions
for θ(t) and θ ′(t). Interpret in simple terms what the numerical solution is saying
about the pendulum motion on the time interval considered. Does the numerical
solution conserve energy?

30. mx′′ + 2kδ
π

tan
(πx
2δ

)
= F(t), x(0) = 0, x′(0) = 0; 0 ≤ t ≤ 15.

This problem was used to model a nonlinear spring-mass system (see Exercise
18 in Section 6.1). The motion is assumed to occur on a frictionless horizontal
surface. In this equation, m is the mass of the object attached to the spring, x(t) is
the horizontal displacement of themass from the unstretched equilibrium position,
and δ is the length that the spring can contract or elongate. The spring restoring
force has vertical asymptotes at x = ±δ. Time t is in seconds.

Let m = 100 kg, δ = 0.15 m, and k = 100 N/m. Assume that the spring-mass
system is initially at rest with the spring at its unstretched length. At time t = 0, a
force of large amplitude but short duration is applied:

F(t) =
{
F0 sinπ t, 0 ≤ t ≤ 1

0, 1 < t < 15
newtons.

Solve the problem numerically for the two cases F0 = 4 N and F0 = 40 N. Plot the
corresponding displacements on the same graph. How do they differ?

Exercises 31–34:

Third Order Runge-Kutta Methods As given in equation (12), the form of a three-stage
Runge-Kutta method is

yn+1 = yn + h[A1K1(tn, yn) + A2K2(tn, yn) + A3K3(tn, yn)], (18a)

where

K1(tn, yn) = f (tn, yn)

K2(tn, yn) = f (tn + α2h, yn + hβ2,1K1(tn, yn))

K3(tn, yn) = f (tn + α3h, yn + h[β3,1K1(tn, yn) + β3,2K2(tn, yn)])
(18b)

and where [see equation (12c)] 0 < α2 ≤ 1, 0 < α3 ≤ 1, β2,1 = α2, and β3,1 + β3,2 = α3. It
can be shown (see Lambert5) that this three-stage Runge-Kutta method has order 3 if

5JohnD. Lambert,NumericalMethods forOrdinaryDifferential Systems (Chichester, England:Wiley,
1991).
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the following four equations are satisfied:

A1 + A2 + A3 = 1

α2A2 + α3A3 = 1
2

α22A2 + α23A3 = 1
3

α2β3,2A3 = 1
6 .

(19)

One way to find a solution of this system of four nonlinear equations is first to select
values for α2 and α3. [Note that α2 and α3 determine the t-coordinate of the sampling
points defining K2(tn, yn) and K3(tn, yn), respectively.] Once α2 and α3 are chosen, the
first three equations in (19) can be solved for A1,A2, and A3. The parameters α2 and α3
are nonzero; if they are distinct, then there are unique values A1,A2, and A3 that satisfy
the first three equations. Having A1,A2, and A3, you can determine β3,2 from the fourth
equation and β3,1 from the condition β3,1 + β3,2 = α3.

31. Consider a three-stage Runge-Kutta method. Show that if the first equation in sys-
tem (19) holds, then the method has order at least 1.

32. Consider a three-stage Runge-Kutta method. Show that if the first and second equa-
tions in system (19) hold, then the method has order at least 2. [Note: In order to
obtain order 3, the last two equations in (19) must hold as well.]

33. Determine the values of α2 and α3 that give rise to the three-stage third order Runge-
Kutta method (13). Then solve equations (19), and verify that Runge-Kutta method
(13) results.

34. (a) Verify that the choice of α2 = 7
10 and α3 = 2

10 leads to another solution of (19)
having the same weights A1, A2, and A3 as (13).

(b) Use the values from part (a) to form another three-stage, third order Runge-
Kutta method. Test this method on y′ = t/(y+ 1), y(0) = 1, using step size h = 0.05.
Compute the error at t = 1 [the exact solution is y(t) = −1+

√
t2 + 4 ].

Appendix 1 Convergence of One-Step Methods

In this appendix, we state a theorem that guarantees convergence of the one-
step method,

yn+1 = yn + hφ(tn, yn;h), n = 0,1,2, . . . ,N − 1. (1)

The convergence theorem, Theorem 7.3, applies to an initial value problem

y′ = f (t, y), y(t0) = y0.

Let f (t, y) be a function defined on the rectangle R given by a < t < b,
α < y < β. The function f is said to satisfy a Lipschitz condition in y if there
is a positive constant K such that

Whenever (t, y1) and (t, y2) are two points in R, then

|f (t, y1) − f (t, y2)| ≤ K|y1 − y2|. (2)

The constant K in (2) is called a Lipschitz constant. Note that Lipschitz con-
stants are not unique; if a particular constant K can be used in inequality (2),



7.4 Runge-Kutta Methods 507

then so can K +M for any positive constantM. A Lipschitz condition is not an
overly restrictive assumption; if the partial derivative fy(t, y) exists on R, then
(by the mean value theorem)

f (t, y1) − f (t, y2) = fy(t, y
∗)(y1 − y2),

where y∗ is some value between y1 and y2. Thus, if we know that |fy(t, y)| ≤ K
for all (t, y) in R, then the Lipschitz condition (2) holds where the bound on
|fy(t, y)| serves as a Lipschitz constant K.

Theorem 7.3
Consider the initial value problem

y′ = f (t, y), y(t0) = y0, (3)

where f (t, y) is analytic and Lipschitz continuous in the vertical infinite
strip defined by a < t < b, −∞ < y < ∞. Assume that a < t0 < t0 + T < b.

Let yn+1 = yn + hφ(tn, yn;h) be a pth order one-step method, and let
h = T/N. Assume that for all step sizes less than some h0 the increment
function φ, when applied to the initial value problem (3), satisfies a Lip-
schitz condition in y with Lipschitz constant L. Then

max
0≤n≤N

|y(tn) − yn| = O(hp). (4)

In words, conclusion (4) says that the global error can be bounded by some
constant multiple of hp as long as 0 < h ≤ h0. Also note that we are asking for
a Lipschitz condition to hold on a vertical infinite strip. This rather restrictive
condition simplifies the theorem, since it ensures that initial value problem (3)
has a unique solution on [t0, t0 + T] and that φ(tn, yn;h) is defined for all points
tn in t0 ≤ t ≤ t0 + T.

Although Theorem 7.3 was stated for the scalar problem, a similar result
can be established for a system of differential equations.

Appendix 2 Stability of One-Step Methods

Theorem 7.3 shows that we can, in principle, achieve arbitrarily good accu-
racy by using a one-step method with a sufficiently small step size h. We now
consider the opposite situation and show that results sometimes become dis-
astrously bad if we inadvertently use a step size that is just a little too large.

In particular, numerical methods for initial value problems are subject to
difficulties of “stability.” When a numerical method is applied to a given dif-
ferential equation, it can happen that there is a sharp division between a step
size h that is too large and that produces terrible results and a step size h that
is small enough to produce acceptable results. Such a stability boundary is il-
lustrated in Figures 7.9 and 7.10. In each case, we used Euler’s method to solve
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h = 1/120

the initial value problem

y′′ + 251y′ + 250y = 500 cos 5t, y(0) = 10, y′(0) = 0. (1)

This differential equation might model the forced vibrations of a spring-mass-
dashpot system. (For the coefficients chosen, the spring constant and the damp-
ing coefficient per unitmass are relatively large.) Aswe know fromSection 3.10,
once the initial transients die out, the solution, y(t), should tend toward a pe-
riodic steady-state solution. This expected behavior is exhibited by the results
in Figure 7.9, but not by those in Figure 7.10. The only difference between the
two computations is that the results in Figure 7.9 were obtained using a step
size of h = 1

130 , whereas the results in Figure 7.10 were obtained using a slightly
larger step size of h = 1

120 .

The sharp division between the accurate results of Figure 7.9 and the ter-
rible results of Figure 7.10 can be explained by examining the behavior of
Euler’s method when it is applied to the homogeneous initial value problem
y ′ = Ay, y(0) = y0. Assume that A is a (2× 2) constant matrix, with distinct
eigenvalues λ1 and λ2 and corresponding eigenvectors u1 and u2. Since the
eigenvalues are distinct, the eigenvectors are linearly independent. Therefore,
the initial condition can be represented as

y0 = α1u1 + α2u2 (2)

for some constants α1 and α2. When applied to the initial value problem y ′ =
Ay, y(0) = y0, Euler’s method takes the form yn = yn−1 + hAyn−1, or

yn = (I + hA)yn−1, n = 1,2, . . . . (3)

It follows from (3) that yn = (I + hA)ny0,n = 1,2, . . . . From (2), it follows that

yn = (I + hA)ny0 = (I + hA)n(α1u1 + α2u2)

= α1(I + hA)nu1 + α2(I + hA)nu2.

By Exercises 31 and 32 in Section 4.4, (I + hA)nu j = (1+ hλj)
nu j, j = 1,2. Thus,

yn = (I + hA)ny0 = α1(1+ hλ1)
nu1 + α2(1+ hλ2)

nu2. (4)
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If the eigenvalues λ1 and λ2 are both negative, then the exact solution y(t) tends
to 0 as t increases. Thus, the output from Euler’s method [the sequence yn in
equation (4)] should also tend to 0 as t increases.

Assume that λ1 and λ2 are bothnegative and that λ1 < λ2 < 0. Ifα1 andα2 are
both nonzero, having yn → 0 as n → ∞ requires |1+ hλ1| < 1 and |1+ hλ2| < 1.
These two inequalities reduce to

−2 < hλ1 < 0 and −2 < hλ2 < 0.

Therefore, to obtain yn → 0 as n → ∞, we need to use a step size h that satisfies
the inequality h < −2/λ1.

When we write the homogeneous second order equation y′′ + 251y′ +
250y = 0 as a first order system y ′ = Ay, y(0) = y0, we find

A =
[

0 1

−250 −251

]
and λ1 = −250, λ2 = −1.

Therefore, for this problem, the critical step size is h = −2/(−250) = 1/125. If
we apply Euler’s method to the homogeneous problem y′′ + 251y′ + 250y = 0,
we expect to see results qualitatively similar to those shown in Figure 7.10when
we use a step size h, where h > h = 1/125.

We now return to initial value problem (1), which we represent as
y ′ = Ay+ g(t):

y ′ =
[

0 1

−250 −251

]
y+ (500 cos 5t)

[
0

1

]
, y(0) =

[
10

0

]
.

Applying Euler’s method to this problem, we obtain

yn+1 = yn + h[Ayn + g(tn)]
= [I + hA]n+1y0 + h

n∑
j=0

[I + hA]jg(tn−j).

If we represent the vectors y0 and g(tn−j) in terms of the eigenvectors of A,

y0 = α1u1 + α2u2 and g(tn−j) = (500 cos 5tn−j)[β1u1 + β2u2],

Euler’s method produces

yn+1 = α1(1+ hλ1)
n+1u1 + α2(1+ hλ2)

n+1u2

+ 500hβ1

n∑
j=0

cos(tn−j)(1+ hλ1)
ju1 + 500hβ2

n∑
j=0

cos(tn−j)(1+ hλ2)
ju2.

Thus, as we sawwith the homogeneous problem y ′ = Ay, y(0) = y0, if we do not
choose a step size h such that |1+ hλ1| < 1 and |1+ hλ2| < 1, Euler’s method
will produce results qualitatively similar to those in Figure 7.10.

The ideas regarding stability that we have discussed in relation to Euler’s
method apply to one-step methods in general.
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PROJECTS

Project 1: Projectile Motion

At some initial time, a projectile (such as a meteorite) is traveling above Earth; assume
that its position and velocity at that instant are known. We consider a model in which
the only force acting on the projectile is the gravitational force exerted by Earth. Given
this assumption, the projectile’s trajectory lies in the plane determined by the projectile’s
initial position vector and initial velocity vector. For simplicity, we assume this plane is
the xy-plane. In our model, the projectile eventually strikes the surface of Earth. Our
goal is to determine where and when the impact occurs.

The dynamics of the projectile can be described by the equations

x′′(t) = −Gmex(t)[
x2(t) + y2(t)

]3/2 , y′′(t) = −Gmey(t)[
x2(t) + y2(t)

]3/2 , (1)

where G is the universal gravitational constant andme is the mass of Earth. The center
of Earth is at the origin, and we let Re denote the radius of Earth. The values of these
constants are taken to be

G = 6.673× 10−11 m3

kg · s2 , me = 5.976× 1024 kg, Re = 6.371× 106 m.

According to equation (1), the projectile dynamics are governed by a pair of coupled
nonlinear second order differential equations. We will solve the problem numerically.

1. The problem geometry and the nature of the force acting on the projectile suggest
the use of polar coordinates. Let

x(t) = r(t) cos[θ(t)], y(t) = r(t) sin[θ(t)]. (2)

Show that equation (1) transforms into the following pair of equations for the polar
variables:

r′′ − (θ ′)2r = −Gme

r2
, θ ′′ + 2

r′

r
θ ′ = 0. (3)

2. Assume that the projectile is launched at time t = 0 at a point above Earth’s surface,
as shown in Figure 7.11. Thus, r(0) = R0 > Re, θ(0) = 0. Show that

r′(0) = v0 cosα and θ ′(0) = v0
R0

sinα, (4)

where initial speed v0 and angle α are as shown in the figure.

3. When performing the numerical calculations, we want to deal with variables whose
magnitudes are comparable to unity. To achieve this, we will adopt Earth’s radius,
Re, as the unit of length and the hour as the unit of time. For bookkeeping purposes,
let

T = 3600 s/hr.

Define the scaled variables

ρ(t) = r(t)
Re

and τ = t
T

.
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FIGURE 7.11

The initial conditions for the projectile whose trajectory is described by
equation (3).

Thus, points on Earth’s surface correspond to ρ = 1, while 3600 seconds corresponds
to one unit of time on the τ -scale. Note, from the chain rule, that

d
dt

= dτ
dt

d
dτ

= 1
T

d
dτ

.

Show that the initial value problem posed by (3) and (4) transforms into the following
problem:

d2ρ

dτ 2
−
(
dθ
dτ

)2
ρ = −19.985 1

ρ2
, ρ(0) = R0

Re

,
dρ(0)
dτ

= v0T
R0

cosα

d2θ

dτ 2
+ 2

(
dρ
dτ

ρ

)
dθ
dτ

= 0, θ(0) = 0,
dθ(0)
dτ

= v0T
R0

sinα.

(5)

The constant GmeT
2/R3e = 19.985 has units of hr−2.

4. Assume that the projectile is initially 9000 km above the surface of Earth with a
speed v0 = 2000m/s and angle α = 10◦. Translate the assumed information into initial
conditions for problem (5).

5. Recast initial value problem (5) as an initial value problem for a first order system,
where

y1(τ ) = ρ, y2(τ ) = dρ
dτ

, y3(τ ) = θ, y4(τ ) = dθ
dτ

.

6. Solve this problem using a fourth order Runge-Kutta method and a step size h =
0.005. The projectilewill strikeEarthwhen ρ = 1. Execute the programona τ -interval
sufficiently large to achieve this condition. [Hint: Gradually build up the size of the
τ -interval. If too large an interval is used at the outset, the numerical solution will
“blow up.”]

7. Determine the polar coordinates of the impact point and the time of impact.

8. Suppose that the point ρ = 1, θ = 0 corresponds to the point where the equator in-
tersects the prime meridian, while the point ρ = 1, θ = π/2 corresponds to the North
Pole. Use a globe and determine the approximate location of impact.
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Project 2: The Double Pendulum

The double pendulum shown in Figure 7.12 consists of one pendulum attached to an-
other. Two bobs, having massesm1 andm2, are connected to frictionless pivots by rigid
rods of lengths l1 and l2.

�1

�2

l1

l2

m1

m2

FIGURE 7.12

A double pendulum.

Assume that both pendulums can rotate freely about their pivots and that themasses
of the two rigid rods are negligibly small. With respect to the coordinate system shown,
the positions of the two bobs are

x1 = l1 sin θ1, y1 = −l1 cos θ1

x2 = l1 sin θ1 + l2 sin θ2, y2 = −l1 cos θ1 − l2 cos θ2.
(6)

Using g to denote gravitational acceleration, we can show that the angles θ1 and θ2 satisfy
the following system of coupled nonlinear second order differential equations:

(m1 +m2)l
2
1

d2θ1
dt2

+m2l1l2
d2θ2
dt2

cos(θ1 − θ2) +m2l1l2

(
dθ2
dt

)2
sin(θ1 − θ2) + l1g(m1 +m2) sin θ1 = 0

m2l
2
2

d2θ2
dt2

+m2l1l2
d2θ1
dt2

cos(θ1 − θ2) −m2l1l2

(
dθ1
dt

)2
sin(θ1 − θ2) + l2m2g sin θ2 = 0.

Prescribing the initial angular position and velocity of each pendulumwill complete the
specification of the initial value problem.

1. As a check on the differential equations, determine what happens to these equations
when

(a) m2 = 0 (b) l2 = 0 (c) l1 = 0

In each of these cases, are the equations consistent with what you would expect on
purely physical grounds? Note that, in the case of interest, l1 and l2 are both positive.
Therefore, we can remove an l1 factor from the first equation and an l2 factor from
the second.

2. Transform the differential equations into an equivalent pair of equations of the form

θ ′′
1 = f1(θ1, θ2, θ

′
1, θ

′
2)

θ ′′
2 = f2(θ1, θ2, θ

′
1, θ

′
2).

(7)
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Hint: The original differential equations can be written as[
(m1 +m2)l1 m2l2 cos(θ1 − θ2)

m2l1 cos(θ1 − θ2) m2l2

][
θ ′′
1

θ ′′
2

]

= −
[
m2l2(θ

′
2)
2 sin(θ1 − θ2) + g(m1 +m2) sin θ1

−m2l1(θ
′
1)
2 sin(θ1 − θ2) +m2g sin θ2

]
.

Is the determinant of the (2× 2) matrix ever zero?

3. Rewrite system (7) as an equivalent four-dimensional first order system by defining

y1 = θ1, y2 = θ ′
1, y3 = θ2, y4 = θ ′

2.

4. Let m1 = m2 = 2 kg, l1 = l2 = 0.5 m, and let g = 9.8 m/s2. Assume initial conditions

θ1(0) = π

2
, θ ′

1(0) = 0, θ2(0) = 5π
6

, θ ′
2(0) = 0.

Solve the initial value problem for y on the time interval 0 ≤ t ≤ 10 using the fourth
order Runge-Kutta method. Plot θ1(t) and θ2(t) versus t on separate graphs.

5. To obtain a better insight into how the double pendulum actually moves, use the
numerical solutions obtained in part 4 and equations (6) to determine the bob coor-
dinates (xi(t), yi(t)), i = 1,2. Create parametric plots of the two bob trajectories on the
same graph over the ten-second interval. On this graph, sketch the double pendulum
configurations at initial and final times, t = 0 and t = 10.
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8C H A P T E R

Series Solutions of Linear
Differential Equations

C H A P T E R O V E R V I E W

8.1 Introduction

8.2 Series Solutions Near an Ordinary Point

8.3 The Euler Equation

8.4 Solutions Near a Regular Singular Point
and the Method of Frobenius

8.5 The Method of Frobenius Continued:
Special Cases and a Summary

8.1 Introduction
In this chapter, attention is focusedmainly on problems involving second order
linear differential equations with variable coefficients,

y′′ + p(t)y′ + q(t)y = 0, a < t < b

y(t0) = y0, y′(t0) = y′
0,

where a < t0 < b. In most of the cases considered, the coefficient functions p(t)
and q(t) are rational functions (that is, ratios of polynomials). For the moment,
however, we make no assumptions about p(t) and q(t).

Chapter 7 discussed techniques for generating numerical approximations
to the solution of initial value problems. In this chapter, we look for solutions
that have the form of a power series,

y(t) =
∞∑
n=0

an(t− t0)
n = a0 + a1(t− t0) + a2(t− t0)

2 + a3(t− t0)
3 + · · · .
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To find such a power series solution of an initial value problem, we must
answer several questions:

1. What properties must the coefficient functions p(t) and q(t) possess to
guarantee that a power series solution does, in fact, exist?

2. If a power series solution of the initial value problem exists, how do we
compute the coefficients {an}∞n=0?

3. For what values of t does the resulting power series converge?

To answer these questions, we begin with a review of power series and the
properties of functions defined by a power series.

For any fixed value of t, the power series
∞∑
n=0

an(t− t0)
n (1)

is an infinite series of constants. If, for a fixed value of t, the sequence of partial
sums

SN(t) =
N∑
n=0

an(t− t0)
n (2)

approaches a limit as N → ∞, we say that the series converges. If the series
does not converge, we say it diverges. Note that the power series (1) always
converges for t = t0, since SN(t0) = a0 for all N. In general, we want to know
those values of t for which the power series converges and those values for
which it diverges.

Convergence Possibilities
There are three distinct possibilities for power series (1):

(a) The series
∑∞

n=0 an(t− t0)
n might converge only at t = t0 and diverge for all

t �= t0.

(b) The series might converge for all t in an interval of the form |t− t0| < R for
some 0 < R < ∞ and diverge for all t satisfying |t− t0| > R. The number R
is called the radius of convergence.

(c) The series might converge for all t, −∞ < t < ∞.

It can be shown that every power series of the form (1) falls into exactly one of
these three categories. [It is customary to say that the radius of convergence is
R = 0 in case (a) and R = ∞ in case (c).]

The power series (1) is said to be absolutely convergent at a value t if the
infinite series

∞∑
n=0

|an||t− t0|n

converges. As the terminology suggests, absolute convergence implies conver-
gence. The converse is not true, however; convergence need not imply ab-
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solute convergence. In case (b), it can be shown that the power series is ab-
solutely convergent in the interval |t− t0| < R. In case (c), the power series
is absolutely convergent for −∞ < t < ∞.

The ratio test is frequently used to test for absolute convergence of an
infinite series. By way of review, consider the infinite series

∞∑
n=0

cn (3)

and suppose that

lim
n→∞

∣∣∣∣cn+1
cn

∣∣∣∣ = L, (4)

where L is either a nonnegative finite constant or +∞. If L < 1, the infinite
series (3) is absolutely convergent. If L > 1, the infinite series (3) is divergent.
If L = 1, the ratio rest is inconclusive.

The ratio test can be used to determine the radius of convergence of a power
series, as we see in Example 1.

E X A M P L E

1 Use the ratio test to determine the radius of convergence of the power series

∞∑
n=1

ntn = t+ 2t2 + 3t3 + · · · .

Solution: The power series clearly converges at t = 0. Applying the ratio test
at an arbitrary value t, t �= 0, we find

lim
n→∞

∣∣∣∣∣ (n+ 1)tn+1

ntn

∣∣∣∣∣ = lim
n→∞

(
1+ 1

n

)
|t| = |t|.

Therefore, by the ratio test, the power series converges if |t| < 1 and diverges if
|t| > 1. The radius of convergence is R = 1. ❖

Suppose a power series has a finite and positive radius of convergence R.
The preceding discussion says nothing about whether or not the power series
converges at the points t = t0 ± R. In fact, no general statements can be made
about convergence or divergence at these points, which separate the open in-
terval of absolute convergence from the semi-infinite intervals of divergence.
For instance, the power series

∞∑
n=0

ntn

considered in Example 1 diverges at t = ±1. In general, a power series might
converge absolutely, converge conditionally (that is, converge but not converge
absolutely), or diverge at the point t = t0 + R. The same statement can be made
with regard to the point t = t0 − R.
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Operations with Power Series
Every power series defines a function f (t). The domain of f (t) is the set of
t-values for which the series converges. Consider the function f (t) defined by

f (t) =
∞∑
n=0

an(t− t0)
n

= a0 + a1(t− t0) + a2(t− t0)
2 + a3(t− t0)

3 + · · · .
Assume that the power series defining f (t) has radius of convergence R, where
R > 0. The following results are established in calculus and say, roughly, that
power series can be treated like polynomials with respect to the operations of
addition, subtraction, multiplication, and division.

Power Series Can Be Added and Subtracted

If f (t) and g(t) are given by

f (t) =
∞∑
n=0

an(t− t0)
n and g(t) =

∞∑
n=0

bn(t− t0)
n,

with both series converging in |t− t0| < R, then the sum and difference func-
tions are given by

( f ± g)(t) =
∞∑
n=0

(an ± bn)(t− t0)
n,

where the sum and difference both converge absolutely in |t− t0| < R.

Power Series Can Be Multiplied

If f (t) and g(t) are given by

f (t) =
∞∑
n=0

an(t− t0)
n and g(t) =

∞∑
n=0

bn(t− t0)
n,

with both series converging in |t− t0| < R, then the product function, ( fg)(t),
has a power series representation

( fg)(t) =
∞∑
n=0

cn(t− t0)
n,

which likewise converges in |t− t0| < R. Moreover, the coefficients cn can be
obtained by formally multiplying the power series for f (t) and g(t) as if they
were polynomials and grouping terms. In other words,

c0 + c1(t− t0) + c2(t− t0)
2 + · · ·

= [a0 + a1(t− t0) + a2(t− t0)
2 + · · ·][b0 + b1(t− t0) + b2(t− t0)

2 + · · ·]
= a0b0 + (a0b1 + a1b0)(t− t0) + (a0b2 + a1b1 + a2b0)(t− t0)

2 + · · · .
Therefore,

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,
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and, in general,

cn =
n∑
i=0

aibn−i, n = 0,1,2, . . . .

The product power series ( fg)(t) is called the Cauchy1 product.

In Some Cases Power Series Can Be Divided

If f (t) and g(t) are given by

f (t) =
∞∑
n=0

an(t− t0)
n and g(t) =

∞∑
n=0

bn(t− t0)
n,

with both converging in |t− t0| < R, and if g(t0) = b0 �= 0, then the quotient
function ( f /g)(t) has a power series representation

( f /g)(t) =
∞∑
n=0

dn(t− t0)
n,

which converges in some neighborhood of t0. Again, we can determine the
coefficients dn by formally manipulating the power series as if they were poly-
nomials. We have

a0 + a1(t− t0) + a2(t− t0)
2 + · · ·

b0 + b1(t− t0) + b2(t− t0)
2 + · · · = d0 + d1(t− t0) + d2(t− t0)

2 + · · ·

or, after multiplying by the denominator series,

a0 + a1(t− t0) + a2(t− t0)
2 + · · ·

= [b0 + b1(t− t0) + b2(t− t0)
2 + · · ·][d0 + d1(t− t0) + d2(t− t0)

2 + · · ·].
The coefficients dn can be recursively determined by forming the Cauchy prod-
uct of the two series on the right and solving the resulting hierarchy of linear
equations. We obtain

a0 = b0d0 and hence d0 = a0
b0

,

a1 = b0d1 + b1d0 and hence d1 = a1 − b1d0
b0

,

a2 = b0d2 + b1d1 + b2d0 and hence d2 = a2 − b1d1 − b2d0
b0

,

...

Notice how the statement made in the case of division differs from that made
in the previous cases. In particular, even though the series for f (t) and g(t)

1Augustin Louis Cauchy (1789–1857) was a scientific giant whose life was enmeshed in the political
turmoil of early nineteenth-century France. He contributed to many areas of mathematics and
science and is considered to be the founder of the theory of functions of a complex variable.
Numerous terms in mathematics bear his name, such as the Cauchy integral theorem, the Cauchy-
Riemann equations, andCauchy sequences.His collectedworks, when published, filled 27 volumes.
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converge in |t− t0| < R, it does not necessarily follow that the quotient series
also converges in |t− t0| < R. All we can say in general is that the quotient series
converges in some neighborhood of t0.

A Function Defined by a Power Series Can Be Differentiated Termwise

Let f (t) be given by the power series

f (t) =
∞∑
n=0

an(t− t0)
n, (5)

which converges in |t− t0| < R. The function f (t) has derivatives of all orders
on the interval t0 − R < t < t0 + R. We can obtain these derivatives by termwise
differentiation of the original power series. That is,

f ′(t) =
∞∑
n=1

nan(t− t0)
n−1 = a1 + 2a2(t− t0) + 3a3(t− t0)

2 + · · · ,

f ′′(t) =
∞∑
n=2

n(n− 1)an(t− t0)
n−2 = 2a2 + 6a3(t− t0) + · · · ,

and so forth. Each of these derived series also converges absolutely in the inter-
val t0 − R < t < t0 + R. The derived series can be used to express the coefficient
an in terms of the nth derivative of f (t) evaluated at t = t0. In particular, by
evaluating the derived series at t = t0, we see that

f (t0) = a0, f ′(t0) = a1, f ′′(t0) = (2 · 1)a2, f ′′′(t0) = (3 · 2 · 1)a3, . . . .

In general, for f (t) given by (5),

f (n)(t0) = n!an, n = 0,1,2, . . . .

Some Functions Are Defined by a Taylor Series

If f (t) is a function defined by the power series (5), then f (n)(t0) = n!an,
n = 0,1,2, . . . . Conversely, if we are given a function f (t) that is defined and
infinitely differentiable on an interval t0 − R < t < t0 + R, then we can associate
f (t) with its formal Taylor series

∞∑
n=0

f (n)(t0)
n! (t− t0)

n. (6)

Recall from calculus that the Taylor series for f (t) need not necessarily converge
to f (t). However, for most of the functions considered in this chapter, the Taylor
series converges to f (t), so

f (t) =
∞∑
n=0

f (n)(t0)
n! (t− t0)

n, t0 − R < t < t0 + R.

If t0 = 0, the Taylor series is usually referred to as a Maclaurin series. For later
reference, we list the Maclaurin series for several functions. We also give the
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interval of absolute convergence for the series.

et =
∞∑
n=0

tn

n! = 1+ t+ t2

2! + t3

3! + t4

4! + · · · , −∞ < t < ∞ (7a)

sin t =
∞∑
n=0

(−1)n t2n+1

(2n+ 1)! = t− t3

3! + t5

5! − t7

7! + · · · , −∞ < t < ∞ (7b)

cos t =
∞∑
n=0

(−1)n t2n

(2n)! = 1− t2

2! + t4

4! − t6

6! + · · · , −∞ < t < ∞ (7c)

1
1− t

=
∞∑
n=0

tn = 1+ t+ t2 + t3 + t4 + · · · , −1 < t < 1 (7d)

ln(1+ t) =
∞∑
n=1

(−1)n−1 t
n

n
= t− t2

2
+ t3

3
− t4

4
+ · · · , −1 < t < 1 (7e)

tan−1t =
∞∑
n=0

(−1)n t2n+1

2n+ 1
= t− t3

3
+ t5

5
− t7

7
+ · · · , −1 < t < 1 (7f )

Note that these basic series can be used to find the Taylor series of certain
simple compositions. For example, by (7d),

1
3− t

= 1
1− (t− 2)

=
∞∑
n=0

(t− 2)n, |t− 2| < 1

and

1

1+ 4t2
=

∞∑
n=0

(−1)n4nt2n, |t| <
1
2

.

A Function Defined by a Power Series Can Be Integrated Termwise

Let f (t) be given by the power series

f (t) =
∞∑
n=0

an(t− t0)
n,

which converges in |t− t0| < R. The function f (t) has antiderivatives defined on
the interval t0 − R < t < t0 + R.We can obtain these antiderivatives by termwise
integration of the original power series. For example,

∫ t

t0

f (s)ds =
∫ t

t0

∞∑
n=0

an(s− t0)
n ds =

∞∑
n=0

an

∫ t

t0

(s− t0)
n ds =

∞∑
n=0

an
(t− t0)

n+1

n+ 1
.

The integrated series can be shown to also converge absolutely on the interval
t0 − R < t < t0 + R.
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Uniqueness of the Power Series Representation of a Function
A power series representation of a function is unique. Let

∞∑
n=0

an(t− t0)
n and

∞∑
n=0

bn(t− t0)
n

be two power series having the same radius of convergence R. If
∞∑
n=0

an(t− t0)
n =

∞∑
n=0

bn(t− t0)
n for all t such that |t− t0| < R,

then it follows that the coefficients must be equal; that is,

an = bn, n = 0,1,2, . . . .

As an important special case, if
∞∑
n=0

an(t− t0)
n = 0 for all t such that |t− t0| < R,

then an = 0,n = 0,1,2, . . . .

Power Series Solutions of Linear Differential Equations
The next example introduces the ideas associated with finding a power series
solution of a linear differential equation. In the sections that follow, we will
elaborate on the theoretical foundations of the method and point out some of
the potential difficulties.

E X A M P L E

2 Consider the equation

y′′ + ω2y = 0,

where ω is a positive constant. Assuming this equation has a solution of the
form

y(t) =
∞∑
n=0

ant
n,

determine the coefficients, a0, a1, a2, . . . . Can you also determine the general
solution?

Solution: We look for a solution of the form y(t) = ∑∞
n=0 ant

n, assuming that
the power series has a positive radius of convergence. The actual radius of
convergence will be determined once we find the coefficients, a0, a1, a2, . . . .

Differentiating termwise, we obtain

y′ =
∞∑
n=1

annt
n−1 and y′′ =

∞∑
n=2

ann(n− 1)tn−2.

In these series, we have adjusted the lower limit in the summation to corre-
spond to the first nonzero term in the series.
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Substituting these expressions into the differential equation y′′ + ω2y = 0,
we find

∞∑
n=2

ann(n− 1)tn−2 + ω2
∞∑
n=0

ant
n = 0. (8)

We want to combine the two summations in (8) and eventually use the con-
sequences of uniqueness. In order to combine the two series, we adjust the
summation index of the first series so that powers of t are in agreement.

In particular, to match the powers of t, we can make a change of index,
k = n− 2, in the first series. Doing so, we see from (8) that the lower limit of
n = 2 transforms to a new lower limit of k = 0 (the upper limits remain at ∞).
Thus, the first series in (8) can be rewritten as

∞∑
n=2

ann(n− 1)tn−2 =
∞∑
k=0

ak+2(k+ 2)(k+ 1)tk =
∞∑
n=0

an+2(n+ 2)(n+ 1)tn. (9)

In the last step, we have used the fact that the summation index is a dummy
index and can be called n instead of k. Using (9) in (8) leads to

∞∑
n=0

an+2(n+ 2)(n+ 1)tn + ω2
∞∑
n=0

ant
n = 0,

or
∞∑
n=0

[an+2(n+ 2)(n+ 1) + ω2an] tn = 0. (10)

Since equality (10) is assumed to hold in some interval containing the origin,
each coefficient of the seriesmust vanish.We obtain the infinite set of equalities

(n+ 1)(n+ 2)an+2 + ω2an = 0, n = 0,1,2, . . . ,

or

an+2 = − ω2

(n+ 1)(n+ 2)
an, n = 0,1,2,3, . . . (11)

The set of equations (11) is referred to as a recurrence relation. Solving for
the unknown coefficients recursively allows us to find all the coefficients {an}∞n=0
in terms of the coefficients a0 and a1. In particular, from (11) we find

n = 0: a2 = − ω2

2 · 1a0 n = 1: a3 = − ω2

3 · 2a1

n = 2: a4 = − ω2

4 · 3a2 = ω4

4! a0 n = 3: a5 = − ω2

5 · 4a3 = ω4

5! a1

n = 4: a6 = − ω2

6 · 5a4 = −ω6

6! a0 n = 5: a7 = − ω2

7 · 6a5 = −ω6

7! a1
...

...

(continued)
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(continued)

The emerging pattern is clear. For the even index n = 2k, we have

a2k = (−1)k ω2k

(2k)!a0.

For the odd index n = 2k+ 1, we have

a2k+1 = (−1)k ω2k

(2k+ 1)!a1 = (−1)k ω2k+1

(2k+ 1)!
(a1

ω

)
.

Therefore, we can write the solution of the differential equation y′′ + ω2y = 0
as

y(t) = a0

[
1− (ωt)2

2! + (ωt)4

4! − (ωt)6

6! + · · ·
]

+
(a1

ω

) [
ωt− (ωt)3

3! + (ωt)5

5! − (ωt)7

7! + · · ·
]

.

(12)

The first series is the Maclaurin series expansion of cosωt [see equation (7c)].
The second series is that of sinωt [see equation (7b)]. Therefore, identifying
arbitrary constants c1 with a0 and c2 with a1/ω, we obtain the general solution
familiar from Chapter 3,

y(t) = c1 cosωt+ c2 sinωt.

Applying the ratio test, you can verify that the radius of convergence is R = ∞
for both of these power series. ❖

In the sections that follow, the same basic manipulations will be used to
obtain series solutions of differential equations having variable coefficients.

Shifting the Index of Summation
We frequently find it convenient, as in Example 2, to shift the index of sum-
mation so that the general term in a series is a constant multiple of tn. For
example, consider the function f (t) = t3(et − 1). Using equation (7a), we see the
series for f (t) = t3(et − 1) has the form

f (t) = t3(et − 1) = t3
∞∑
n=1

tn

n! =
∞∑
n=1

tn+3

n! .

In order to rewrite the Maclaurin series so that the general term involves tn,
we make the change of index k = n+ 3. With this shift of index, n = k− 3.
Therefore, the terms in the summation are all of the form tk/(k− 3)!. We also
must transform the limits of the summation. At the lower limit, n = 1 implies
that k = 4. At the upper limit, n = ∞ implies that k = ∞ also. Thus, we can
rewrite the series for f (t) = t3(et − 1) as

f (t) =
∞∑
n=1

tn+3

n! =
∞∑
k=4

tk

(k− 3)! =
∞∑
n=4

tn

(n− 3)! . (13)

The summation index is a dummy index. In the last step of (13), therefore, we
can replace k by n.
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E X E R C I S E S

Exercises 1–12:

As in Example 1, use the ratio test to find the radius of convergence R for the given
power series.

1.
∞∑
n=0

tn

2n
2.

∞∑
n=1

tn

n2
3.

∞∑
n=0

(t− 2)n

4.
∞∑
n=0

(3t− 1)n 5.
∞∑
n=0

(t− 1)n

n! 6.
∞∑
n=0

n!(t− 1)n

7.
∞∑
n=1

(−1)ntn
n

8.
∞∑
n=0

(−1)n(t− 3)n

4n
9.

∞∑
n=1

(lnn)(t+ 2)n

10.
∞∑
n=0

n3(t− 1)n 11.
∞∑
n=0

√
n
2n

(t− 4)n 12.
∞∑
n=1

(t− 2)n

arctann

Exercises 13–16:

In each exercise, functions f (t) and g(t) are given. The functions f (t) and g(t) are defined
by a power series that converges in −R < t− t0 < R, where R is a positive constant. In
each exercise, determine the largest value R such that f (t) and g(t) both converge in
−R < t− t0 < R. In addition,

(a) Write out the first four terms of the power series for f (t) and g(t).

(b) Write out the first four terms of the power series for f (t) + g(t).

(c) Write out the first four terms of the power series for f (t) − g(t).

(d) Write out the first four terms of the power series for f ′(t).

(e) Write out the first four terms of the power series for f ′′(t).

13. f (t) =
∞∑
n=0

tn, g(t) =
∞∑
n=0

n2tn 14. f (t) =
∞∑
n=0

ntn, g(t) =
∞∑
n=0

(−1)nntn

15. f (t) =
∞∑
n=0

(−1)n2n(t− 1)n, g(t) =
∞∑
n=0

(t− 1)n

16. f (t) =
∞∑
n=0

2n(t+ 1)n, g(t) =
∞∑
n=0

n(t+ 1)n

Exercises 17–23:

By shifting the index of summation as in equation (9) or (13), rewrite the given power
series so that the general term involves tn.

17.
∞∑
n=0

2ntn+2 18.
∞∑
n=0

(n+ 1)(n+ 2)tn+3 19.
∞∑
n=0

ant
n+2

20.
∞∑
n=1

nant
n−1 21.

∞∑
n=2

n(n− 1)ant
n−2 22.

∞∑
n=0

(−1)nantn+3

23.
∞∑
n=0

(−1)n+1(n+ 1)ant
n+2

Exercises 24–27:

Using the information given in (7), write a Maclaurin series for the given function f (t).
Determine the radius of convergence of the series.
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24. f (t) = t2(t− sin t) 25. f (t) = 1− cos(3t)

26. f (t) = 1
1+ 2t

27. f (t) = 1

1− t2

28. Use series (7a) to determine the first four nonvanishing terms of the Maclaurin
series for

(a) sinh t = et − e−t

2
(b) cosh t = et + e−t

2

29. Consider the differential equation y′′ − ω2y = 0, where ω is a positive constant.
As in Example 2, assume this differential equation has a solution of the form
y(t) = ∑∞

n=0 ant
n.

(a) Determine a recurrence relation for the coefficients a0, a1, a2, . . . .

(b) As in equation (12), express the general solution in the form

y(t) = a0 y1(t) +
(a1

ω

)
y2(t).

What are the functions y1(t) and y2(t)? [Hint: Recall the series in Exercise 28.]

Exercises 30–35:

In each exercise,

(a) Use the given information to determine a power series representation of the function
y(t).

(b) Determine the radius of convergence of the series found in part (a).

(c) Where possible, use (7) to identify the function y(t).

30. y′(t) =
∞∑
n=1

ntn−1 = 1+ 2t+ 3t2 + · · · , y(0) = 1

31. y′(t) =
∞∑
n=0

(t− 1)n

n! = 1+ (t− 1) + (t− 1)2

2! + · · · , y(1) = 1

32. y′′(t) =
∞∑
n=0

(−1)n t
n

n! = 1− t+ t2

2! − t3

3! + · · · , y(0) = 1, y′(0) = −1

33. y′(t) =
∞∑
n=2

(−1)n (t− 1)n

n! = (t− 1)2

2! − (t− 1)3

3! + (t− 1)4

4! − (t− 1)5

5! + · · · , y(1) = 0

34. y(t) =
∫ t

0
f (s)ds, where f (s) =

∞∑
n=0

(−1)ns2n = 1− s2 + s4 − s6 + · · ·

35.
∫ t

0
y(s)ds =

∞∑
n=1

tn

n
= t+ t2

2
+ t3

3
+ · · ·

Exercises 36–41:

In each exercise, an initial value problem is given. Assume that the initial value problem
has a solution of the form y(t) = ∑∞

n=0 ant
n, where the series has a positive radius of

convergence. Determine the first six coefficients, a0, a1, a2, a3, a4, a5. Note that y(0) = a0
and that y′(0) = a1. Thus, the initial conditions determine the arbitrary constants. In
Exercises 40 and 41, the exact solution is given in terms of exponential functions. Check
your answer by comparing it with the Maclaurin series expansion of the exact solution.

36. y′′ − ty′ − y = 0, y(0) = 1, y′(0) = −1
37. y′′ + ty′ − 2y = 0, y(0) = 0, y′(0) = 1
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38. y′′ + ty = 0, y(0) = 1, y′(0) = 2

39. y′′ + (1+ t)y′ + y = 0, y(0) = −1, y′(0) = 1

40. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = 2, y(t) = e2t

41. y′′ − 2y′ + y = 0, y(0) = 0, y′(0) = 2, y(t) = 2tet

8.2 Series Solutions Near an Ordinary Point
Consider the linear differential equation

y′′ + p(t)y′ + q(t)y = 0 (1)

in an open interval containing the point t0. Frequently, t0 is the point where the
initial conditions are imposed. For our present discussion, however, t0 is an
arbitrary but fixed point. We are interested in answering the question “When
is it possible to represent the general solution of (1) in terms of power series
that converge in some neighborhood of the point t0?”

Ordinary Points and Singular Points
Recall (see Section 7.3) that a function f (t) is called analytic at t0 if f (t) has a
Taylor series expansion

f (t) =
∞∑
n=0

f (n)(t0)
n! (t− t0)

n,

with radius of convergence R, where R > 0. For later use, we also recall that

If f (t) and g(t) are analytic at t0, then the functions f (t) ± g(t) and f (t)g(t)
are also analytic at t0. Furthermore, the quotient f (t)/g(t) is analytic at
t0 if g(t0) �= 0. Polynomial functions are analytic at all points. Rational
functions are analytic at all points where the denominator polynomial
is nonzero. (When discussing rational functions, we assume the denom-
inator and numerator have no factors in common.) If the denominator
is nonzero at t0, the radius of convergence is equal to the distance from
t0 to the nearest zero (either real or complex) of the denominator.

As we will show, the general solution of y′′ + p(t)y′ + q(t)y = 0 can be ex-
pressed in terms of power series that converge in a neighborhood of t0 whenever
both p(t) and q(t) are analytic at t0. The point t0 is called an ordinary point
when both p(t) and q(t) are analytic at t0. If p(t) and/or q(t) is not analytic at t0,
t0 is called a singular point.

As noted in Section 8.1, if a function f (t) is defined by a power series,
f (t) = ∑∞

n=0 an(t− t0)
n, and if this power series has radius of convergenceR > 0,

then f (t) has derivatives of all orders at t = t0. Therefore, if some derivative
of f (t) fails to exist at a point t0, then f (t) cannot be analytic at t0. To help
identify ordinary points, we can use some facts noted earlier: Sums, differences,
and products of functions analytic at t0 are again analytic at t0. Quotients of
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functions analytic at t0 are also analytic at t0 if the denominator function is
nonzero at t0.

E X A M P L E

1 Consider the differential equation

(1− t2)y′′ + (tan t)y′ + t5/3y = 0

in the open interval −2 < t < 2. Classify each point in this interval as an ordi-
nary point or a singular point.

Solution: We first rewrite the equation in the form (1),

y′′ + tan t

1− t2
y′ + t5/3

1− t2
y = 0.

Therefore, the coefficient functions p(t) and q(t) are

p(t) = tan t

1− t2
and q(t) = t5/3

1− t2
.

The function p(t) fails to be analytic at the points t = ±1 (where the denomi-
nator vanishes) and t = ±π/2 (where the graph of y = tan t has vertical asymp-
totes). The function q(t) is not analytic at t = ±1 or at t = 0. (The numerator
function t5/3 is not analytic at t = 0; it is continuous and has a continuous first
derivative at t = 0, but its second derivative does not exist at t = 0.) Thus, in
the interval −2 < t < 2, the five points t = 0, ±1, ±π/2 are singular points and
all other points are ordinary points. ❖

Series Solutions Near an Ordinary Point
Theorem 8.1 shows that, in a neighborhood of an ordinary point, we can rep-
resent the general solution of equation (1) in terms of convergent power series.
The proof of Theorem 8.1 is given in more advanced texts, such as Birkhoff and
Rota.2

Theorem 8.1
Let p(t) and q(t) be analytic at t0, and let R denote the smaller of the
two radii of convergence of their respective Taylor series representations.
Then the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′
0 (2)

has a unique solution that is analytic in the interval |t− t0| < R.

According to Theorem 8.1, if t0 is an ordinary point, then initial value prob-
lem (2) has a power series solution of the form

y(t) =
∞∑
n=0

an(t− t0)
n = a0 + a1(t− t0) + a2(t− t0)

2 + · · · .

2Garrett Birkhoff and Gian-Carlo Rota, Ordinary Differential Equations, 4th ed. (New York: Wiley,
1989).
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Note that the first two coefficients, a0 and a1, are determined by the initial
conditions in (2), since y(t0) = a0 and y

′(t0) = a1. Theorem 8.1 assures us that
the power series we obtain by solving the recurrence relation for the remain-
ing coefficients a2, a3, . . . converges in the interval |t− t0| < R, where R is the
smaller of the radii of convergence of the coefficient functions p(t) and q(t).
Note that Theorem 8.1 does not rule out the possibility that the power series
for y(t) may converge on a larger interval. This happens in some cases. The
following corollary is a consequence of Theorem 8.1.

Corollary
Let p(t) and q(t) be analytic at t0, and let R denote the smaller of the two
radii of convergence of their respective Taylor series representations. The
general solution of the differential equation

y′′ + p(t)y′ + q(t)y = 0 (3)

can be expressed as

y(t) =
∞∑
n=0

an(t− t0)
n = a0 y1(t) + a1y2(t),

where the constants a0 and a1 are arbitrary. The functions y1(t) and y2(t)
form a fundamental set of solutions, analytic in the interval |t− t0| < R.

The solutions y1(t) and y2(t) forming the fundamental set can be obtained
by adopting the particular initial conditions y1(t0) = 1, y′

1(t0) = 0 and y2(t0) = 0,
y′
2(t0) = 1.

E X A M P L E

2 Consider the initial value problem

y′′ + t+ 1

t3 + t
y′ + 1

t2 − 4t+ 5
y = 0, y(2) = y0, y′(2) = y′

0.

If y(t) = ∑∞
n=0 an(t− 2)n is the solution, determine a lower bound for the radius

of convergence R of this series.

Solution: Since t3 + t = t(t2 + 1), the coefficient function p(t) has denomina-
tor zeros at t = 0, t = −i, and t = i. Likewise, the coefficient function q(t) has
denominator zeros at t = 2± i. The radius of convergence Rp of the Taylor
series expansion for p(t) is equal to the distance from t0 = 2 to the nearest de-
nominator zero; that is, Rp is the smaller of |2± 0| = 2 and |2− i| = √

5. Thus,
Rp = 2. (See Figure 8.1.) Similarly, the radius of convergence of the Taylor
series for q(t) is Rq = |2− (2± i)| = 1. Thus, by Theorem 8.1, the radius of
convergence of the Taylor series for y(t) is guaranteed to be no smaller than
R = 1.

(continued)
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(continued)
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FIGURE 8.1

The radius of convergence of the expansion of p(t) is equal to the distance
from t0 = 2 to the nearest of the denominator zeros, 0, i, and −i. For q(t),
the two nearest denominator zeros, 2+ i and 2− i, are equidistant from
t0 = 2. The radius of convergence for the series in Example 2 is R = 1. ❖

When the coefficient functions of y′′ + p(t)y′ + q(t)y = 0 possess certain
symmetries, some useful observations can be made; see Theorem 8.2.

Theorem 8.2
Consider the differential equation y′′ + p(t)y′ + q(t)y = 0.

(a) Let p(t) be a continuous odd function defined on the domain
(−b, −a) ∪ (a,b), where a ≥ 0. Let q(t) be a continuous even function
defined on the same domain. If f (t) is a solution of the differential
equation on the interval a < t < b, then f (−t) is a solution on the in-
terval (−b, −a).

(b) Let the coefficient functions p(t) and q(t) be analytic at t = 0 with a
common radius of convergenceR > 0. Let p(t) be an odd function and
q(t) an even function. Then the differential equation has even and odd
solutions that are analytic at t = 0 with radius of convergence R.

Recall the definitions of even and odd functions. We are assuming that
p(−t) = −p(t) and q(−t) = q(t) for all t in (−b, −a) ∪ (a,b). The proof of Theorem
8.2 is outlined in Exercises 31–32.

In Example 2 of Section 8.1, we obtained a power series solution of
y′′ + ω2y = 0 and observed that the ratio test could be used to show that each
of the two series forming the general solution has an infinite radius of conver-
gence. This fact is also an easy consequence of Theorem 8.1, since the differen-
tial equation y′′ + ω2y = 0 has coefficient functions p(t) = 0 and q(t) = ω2 that
are analytic on −∞ < t < ∞. Moreover, since p(t) is an odd function and q(t) is
an even function, it follows from Theorem 8.2 that even and odd solutions of
this differential equation exist; they are cosωt and sinωt, respectively.
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Polynomial Solutions
Some of the second order linear differential equations that arise in mathemat-
ical and scientific applications (such as the Legendre equation, the Hermite
equation, and the Chebyshev equation) have polynomial solutions. The next
example treats the Chebyshev equation. Other equations are considered in the
Exercises.

E X A M P L E

3 The Chebyshev3 differential equation is

(1− t2)y′′ − ty′ + μ2y = 0, (4)

where μ is a constant. Find a Maclaurin series solution of (4). Show that if μ is
an integer, the Chebyshev differential equation (4) has a polynomial solution.

Solution: Rewriting the equation as

y′′ − t

1− t2
y′ + μ2

1− t2
y = 0,

we see that t = ±1 are singular points. All other points are ordinary points. In
addition, we deduce from the structure of the differential equation itself that it
possesses solutions with even symmetry and solutions with odd symmetry (see
Theorem 8.2).

By Theorem 8.1, the general solution of the Chebyshev equation can be rep-
resented in terms ofMaclaurin series that we knowwill converge in (−1,1). Let
y(t) = ∑∞

n=0 ant
n. Substitution into differential equation (4) leads to

(1− t2)
∞∑
n=2

ann(n− 1)tn−2 − t
∞∑
n=1

annt
n−1 + μ2

∞∑
n=0

ant
n = 0. (5)

Equation (5) can be rewritten as

∞∑
n=2

ann(n− 1)tn−2 −
∞∑
n=0

[ann(n− 1) + nan − μ2an] tn = 0,

or, after adjusting the index in the first summation and collecting terms,

∞∑
n=0

[an+2(n+ 2)(n+ 1) − an(n
2 − μ2)] tn = 0.

The recurrence relation is therefore

an+2 = n2 − μ2

(n+ 1)(n+ 2)
an, n = 0,1,2, . . . . (6)

The recurrence relation determines all the even-indexed coefficients to be

(continued)

3Pafnuty Lvovich Chebyshev (1821–1894)was appointed to theUniversity of St. Petersburg in 1847.
He contributed to many areas of mathematics and science, including number theory, mechanics,
probability theory, special functions, and the calculation of geometric volumes.
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(continued)

multiples of a0 and all the odd-indexed coefficients to be multiples of a1. The
general solution is

y(t) = a0

(
1+ −μ2

2
t2 + −(4− μ2)μ2

24
t4 + · · ·

)

+ a1

(
t+ 1− μ2

6
t3 + (1− μ2) (9− μ2)

120
t5 + · · ·

)
.

(7)

The ratio test, in conjunction with recurrence relation (6), can be used to show
that the power series in (7) have radius of convergence R = 1 (except in the
case when they terminate after a finite number of terms).

If μ is an even integer, we see from (6) that all the even coefficients having
index greater than μ will vanish. For example, if μ = 4, then a6 = 0, a8 = 0, . . . .
Thus, when μ = 4, recurrence relation (6) leads to

a2 = −8a0, a4 = −a2 = 8a0, a6 = a8 = a10 = · · · = 0.

From this, we see that the fourth degree polynomial P(t) = a0(1− 8t2 + 8t4) is
a solution of the Chebyshev equation. Similarly, if μ is an odd positive inte-
ger, then we obtain an odd polynomial solution of degree μ. These polynomial
solutions, generated as μ ranges over the nonnegative integers, are known as
Chebyshev polynomials of the first kind. The Nth degree Chebyshev polyno-
mial of the first kind is usually denoted TN(t). The first few Chebyshev polyno-
mials are

T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1, T3(t) = 4t3 − 3t,

T4(t) = 8t4 − 8t2 + 1.

The Chebyshev polynomials are normalized; that is, the arbitrary constant is
selected so that TN(1) = 1. ❖

REMARKS:

1. Even though the differential equation has singular points at t = ±1, the
Chebyshev polynomial solutions are well behaved at these points. The
polynomial solutions are analytic with infinite radius of convergence.
It is important to remember that solutions need not necessarily behave
badly at singular points.

2. Chebyshev polynomials find important application in the design of an-
tenna arrays and electrical filters. Consider, for example, the low-pass
filtering problem illustrated in Figure 8.2. We want to build an electri-
cal network having the power transfer function shown in Figure 8.2(a).
Energy at all frequencies less than the cutoff frequency fc should pass
through the network unscathed, while the passage of energy at all fre-
quencies above fc should be completely blocked. The problem, however,
is that the network elements we have available to build the network only
allow us to realize power transfer functions that are rational functions of
frequency. The design problem is to find a rational function that closely
approximates the ideal behavior in Figure 8.2(a).
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FIGURE 8.2

(a) The graph of an ideal power transfer function. (b) The graph of an
approximation of the form (8) to the function graphed in (a).

Chebyshev polynomials are particularly suited for such problems
because they possess an “equal ripple” property (see Exercise 27). The
polynomial TN(t) oscillates between ±1 for t in the range −1 ≤ t ≤ 1
and growsmonotonically in magnitude when |t| ≥ 1. Therefore, a power
transfer function of the form

1

1+ ε T2N

(
f
fc

) , (8)

with positive constant ε sufficiently small and integerN sufficiently large,
can serve as a good rational approximation to the ideal power transfer
function. Figure 8.2(b) illustrates the particular choice ε = 0.02,N = 12.

E X E R C I S E S

Exercises 1–6:

Identify all the singular points of y′′ + p(t)y′ + q(t)y = 0 in the interval −10 < t < 10.

1. y′′ + (sec t)y′ + t

t2 − 4
y = 0 2. y′′ + t2/3y′ + (sin t)y = 0

3. (1− t2)y′′ + ty′ + (csc t)y = 0 4. (sin 2t)y′′ + ety′ + t

25− t2
y = 0

5. (1+ ln|t|)y′′ + y′ + (1+ t2)y = 0 6. y′′ + t
1+ |t|y

′ + (tan t)y = 0

Exercises 7–12:

In each exercise, t = t0 is an ordinary point of y
′′ + p(t)y′ + q(t)y = 0. Apply Theorem 8.1

to determine a value R > 0 such that an initial value problem, with the initial conditions
prescribed at t0, is guaranteed to have a unique solution that is analytic in the interval
t0 − R < t < t0 + R.

7. y′′ + 1
1+ 2t

y′ + t

1− t2
y = 0, t0 = 0

8. (1− 9t2)y′′ + 4y′ + ty = 0, t0 = 1

9. y′′ + 1
4− 3t

y′ + 3t
5+ 30t

y = 0, t0 = −1

10. y′′ + 1

1+ 4t2
y′ + t

4+ t
y = 0, t0 = 0
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11. y′′ + 1
1+ 3(t− 2)

y′ + (sin t)y = 0, t0 = 2

12. y′′ + t+ 3

1+ t2
y′ + t2y = 0, t0 = 1

Exercises 13–21:

In each exercise, t = 0 is an ordinary point of y′′ + p(t)y′ + q(t)y = 0.

(a) Find the recurrence relation that defines the coefficients of the power series solution
y(t) = ∑∞

n=0 ant
n.

(b) As in equation (7), find the first three nonzero terms in each of two linearly inde-
pendent solutions.

(c) State the interval −R < t < R on which Theorem 8.1 guarantees convergence.

(d) Does Theorem 8.2 indicate that the differential equation has solutions that are even
and odd?

13. y′′ + ty′ + y = 0 14. y′′ + 2ty′ + 3y = 0 15. (1+ t2)y′′ + ty′ + 2y = 0

16. y′′ − 5y′ + 6y = 0 17. y′′ − 4y′ + 4y = 0 18. (1+ t)y′′ + y = 0

19. (3+ t)y′′ + 3ty′ + y = 0 20. (2+ t2)y′′ + 4y = 0 21. y′′ + t2y = 0

Exercises 22–25:

In each exercise, t = 1 is an ordinary point of y′′ + p(t)y′ + q(t)y = 0.

(a) Find the recurrence relation that defines the coefficients of the power series solution
y(t) = ∑∞

n=0 an(t− 1)n.

(b) Find the first three nonzero terms in each of two linearly independent solutions.

(c) State the interval −R < t− 1 < R on which Theorem 8.1 guarantees convergence.

22. y′′ + (t− 1)y′ + y = 0 23. y′′ + y = 0

24. (t− 2)y′′ + y′ + y = 0 25. y′′ + y′ + (t− 2)y = 0

26. Recall Chebyshev’s equation from Example 3, (1− t2)y′′ − ty′ + μ2y = 0. As you saw
in Example 3, this equation has a polynomial solution, TN(t), when μ = N is a non-
negative integer. Using recurrence relation (6), find T5(t) and T6(t).

27. The Equal Ripple Property of Chebyshev Polynomials Consider the Chebyshev dif-
ferential equation (1− t2)y′′ − ty′ +N2y = 0, where N is a nonnegative integer.

(a) Show by substitution that the function y(t) = cos(N arccos t) is a solution for
−1 < t < 1.

(b) Show, for N = 0,1,2, that the function cos(N arccos t) is a polynomial in t and
that TN(t) = cos(N arccos t). This result holds, in fact, for all nonnegative integers
N. It can be shown that

TN(t) =
{
cos(N arccos t), −1 ≤ t ≤ 1

cosh(N arccosh t), 1 < |t|.
(c) Use a computer graphics package to plot TN(t) for N = 2,5, and 8 and for
−1.2 ≤ t ≤ 1.2.

(d) What serves as a bound for |TN(t)| when −1 ≤ t ≤ 1? What is the behavior of
|TN(t)| when 1 < |t|?

28. Legendre’s Equation Legendre’s equation is (1− t2)y′′ − 2ty′ + μ(μ + 1)y = 0. By
Theorem 8.1, this equation has a power series solution of the form y(t) = ∑∞

n=0 ant
n

that is guaranteed to be absolutely convergent in the interval −1 < t < 1. As in Ex-
ample 3,
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(a) Find the recurrence relation for the coefficients of the power series.

(b) Argue, when μ = N is a nonnegative integer, that Legendre’s equation has a
polynomial solution, PN(t).

(c) Show, by direct substitution, that the Legendre polynomials P0(t) = 1 and
P1(t) = t satisfy Legendre’s equation for μ = 0 and μ = 1, respectively.

(d) Use the recurrence relation and the requirement that Pn(1) = 1 to determine
the next four Legendre polynomials, P2(t),P3(t),P4(t),P5(t).

29. Hermite’s Equation Hermite’s equation is y′′ − 2ty′ + 2μy = 0. By Theorem 8.1, this
equation has a power series solution of the form y(t) = ∑∞

n=0 ant
n that is guaranteed

to be absolutely convergent in the interval −∞ < t < ∞. As in Example 3,

(a) Find the recurrence relation for the coefficients of the power series.

(b) Argue that, when μ = N is a nonnegative integer, Hermite’s equation has a poly-
nomial solution, HN(t).

(c) Show, by direct substitution, that the Hermite polynomials H0(t) = 1 and
H1(t) = 2t satisfy Hermite’s equation for μ = 0 and μ = 1, respectively.

(d) Use the recurrence relation and the requirement that Hn(t) = 2ntn + · · · to de-
termine the next four Hermite polynomials, H2(t),H3(t),H4(t),H5(t).

30. Consider the differential equation y′′ + p(t)y′ + q(t)y = 0. In some cases, we may be
able to find a power series solution of the form y(t) = ∑∞

n=0 an(t− t0)
n even when t0

is not an ordinary point. In other cases, there is no power series solution.

(a) The point t = 0 is a singular point of ty′′ + y′ − y = 0. Nevertheless, find a non-
trivial power series solution, y(t) = ∑∞

n=0 ant
n, of this equation.

(b) The point t = 0 is a singular point of t2y′′ + y = 0. Show that the only solution
of this equation having the form y(t) = ∑∞

n=0 ant
n is the trivial solution.

Exercises 31 and 32 outline the proof of parts (a) and (b) of Theorem 8.2, respectively.
In each exercise, consider the differential equation y′′ + p(t)y′ + q(t)y = 0, where p and
q are continuous on the domain (−b, −a) ∪ (a,b), a ≥ 0.

31. Let f (t) be a solution on the interval (a,b).

(a) Let t lie in the interval (−b, −a) and set τ = −t, so that a < τ < b. Show that if

d2f (τ )

dτ 2
+ p(τ )

df (τ )

dτ
+ q(τ )f (τ ) = 0, a < τ < b,

then

d2f (−t)
dt2

− p(−t) df (−t)
dt

+ q(−t)f (−t) = 0, −b < t < −a.

(b) Use the fact that p and q are odd and even functions, respectively, to show that
f (−t) is a solution of the given differential equation on the interval −b < t < −a.

32. Now let p and q be analytic at t = 0 with a common radius of convergence R > 0,
where p is an odd function and q is an even function.

(a) Let f1(t) and f2(t) be solutions of the given differential equation, satisfying initial
conditions f1(0) = 1, f ′

1(0) = 0, f2(0) = 0, f ′
2(0) = 1.What does Theorem8.1 say about

the solutions f1(t) and f2(t)?

(b) Use the results of Exercise 31 to show that f1(−t) and f2(−t) are also solutions
on the interval −R < t < R.

(c) Form the functions fe(t) = [ f1(t) + f1(−t)]/2 and fo(t) = [ f2(t) − f2(−t)]/2. Show
that fe(t) and fo(t) are even and odd analytic solutions, respectively, on the interval
−R < t < R.
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(d) Show that fe(t) and fo(t) are nontrivial solutions by showing that fe(t) = f1(t) and
fo(t) = f2(t). [Hint: Use the fact that solutions of initial value problems are unique.]

(e) Show that the solutions fe(t) and fo(t) form a fundamental set of solutions.

Exercises 33–38:

Suppose a linear differential equation y′′ + p(t)y′ + q(t)y = 0 satisfies the hypotheses of
Theorem 8.2(b), on the interval −∞ < t < ∞. Then, by Exercise 32, we can assume the
general solution of y′′ + p(t)y′ + q(t)y = 0 has the form

y(t) = c1ye(t) + c2 yo(t), (9)

where ye(t) is an even solution of y
′′ + p(t)y′ + q(t)y = 0 and yo(t) is an odd solution. In

each of the following exercises, determine whether Theorem 8.2(b) can be used to guar-
antee that the given differential equation has a general solution of the form (9). If your
answer is no, explain why the equation fails to satisfy the hypotheses of Theorem 8.2(b).

33. y′′ + (sin t)y′ + t2y = 0 34. y′′ + (cos t)y′ + ty = 0 35. y′′ + t2y = 0

36. y′′ + y′ + t2y = 0 37. y′′ + ty = 0 38. y′′ + ety′ + y = 0

39. Consider the differential equation y′′ + ay′ + by = 0, where a and b are constants.
For what values of a and b will the differential equation have nontrivial solutions
that are odd and even?

40. Consider the initial value problem (1+ t2)y′′ + y = 0, y(0) = 1, y′(0) = 0.

(a) Show, by Theorem 8.1, that this initial value problem is guaranteed to have a
unique solution of the form y(t) = ∑∞

n=0 ant
n, where the series converges absolutely

in −1 < t < 1.

(b) The recurrence relation has the form r(n)an+2 = s(n)an, where r(n) and s(n) are
quadratic polynomials. Therefore,∣∣∣∣an+2

an

∣∣∣∣ =
∣∣∣∣ s(n)

r(n)

∣∣∣∣ .

Show that this ratio tends to 1 as n tends to ∞, and conclude, therefore, that the
series solution of the initial value problem diverges for 1 < |t|.
(c) Note, however, that the coefficient functions p(t) = 0 and q(t) = (1+ t2)−1 are
continuous for −∞ < t < ∞, and hence, by Theorem 3.1, a unique solution exists
for all values t. Do the conclusions of Theorem 8.1 and Theorem 3.1 contradict each
other? Explain.

8.3 The Euler Equation
The second order linear homogeneous equation

t2y′′ + αty′ + βy = 0, t �= 0 (1)

is known as the Euler equation (it is also known as the Cauchy-Euler equa-
tion or the equidimensional equation). In equation (1), α and β are real con-
stants. Note the special structure of the differential equation; the power of each
monomial coefficient matches the order of the derivative that it multiplies—for
example, t2 multiplies y′′. This special structure enables us to obtain an explicit
representation for the general solution. In this section, we present two related
approaches to deriving the general solution.
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If we rewrite the Euler equation in the form y′′ + p(t)y′ + q(t)y = 0, then

p(t) = α

t
and q(t) = β

t2
.

The coefficients p(t) and q(t) are analytic at every point except t = 0. Ignoring
the trivial case where α and β are both zero, we see that t = 0 is a singular point
and all other values of t are ordinary points. Note as well that p(t) and q(t)
are not continuous at t = 0. Therefore, the basic existence-uniqueness result,
Theorem 3.1, alerts us to possible problems—solutions may or may not exist
at t = 0.

The Euler equation arises in a variety of applications. An example is the
problem of determining the time-independent (or steady-state) temperature
distribution within a circular geometry (such as the interior of a circular pipe)
from a knowledge of the temperature on the boundary; see the Projects at the
end of this chapter. The Euler equation is also of interest because it serves as
a prototype or model equation. In Section 8.4, we will define a special type of
singular point, called a regular singular point; our understanding of the Euler
equation will serve as the basis for studying regular singular points.

The General Solution of the Euler Equation
If f (t) is a solution of the Euler equation (1), then so is f (−t) (see Theorem 8.2
in Section 8.2). Therefore, we assume our interval of interest is t > 0. Once the
general solution is obtained for the interval t > 0, we can obtain the general
solution in t < 0 by replacing t with −t.

We present two approaches to deriving the general solution of (1). In ret-
rospect, you will see that the two approaches are closely related. Nevertheless,
both points of view are worthy of consideration.

Solutions of the Form y(t) = tλ

The special structure of the Euler equation makes it possible to find solutions
of the form y(t) = tλ, where λ is a constant to be determined and where t > 0 is
assumed. Substitution of this trial form into equation (1) leads to

t2λ(λ − 1)tλ−2 + αtλtλ−1 + βtλ = [λ(λ − 1) + αλ + β]tλ = 0, t > 0. (2)

Since tλ is not identically zero on 0 < t < ∞ for any real or complex value λ,
we must have

λ2 + (α − 1)λ + β = 0, (3)

or

λ1,2 = −(α − 1) ±
√

(α − 1)2 − 4β

2
. (4)

In other words, y(t) = tλ is a solution of the Euler equation whenever λ is a root
of equation (3). We refer to equation (3) as the characteristic equation or the
indicial equation. There are three possibilities for the roots of the character-
istic equation:
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1. There are two real distinct roots if the discriminant, (α − 1)2 − 4β, is
positive. In this case, the Wronskian of the solution set is

W(t) =
∣∣∣∣∣ tλ1 tλ2

λ1t
λ1−1 λ2t

λ2−1

∣∣∣∣∣ = (λ2 − λ1)t
λ1+λ2−1.

Since W(t) is nonzero for t > 0, the functions y1(t) = tλ1 and y2(t) = tλ2

form a fundamental set. The general solution of equation (1) is
y(t) = c1t

λ1 + c2t
λ2 , t > 0, where c1 and c2 are arbitrary constants. As pre-

viously mentioned, we can obtain the general solution for t < 0 by re-
placing t by−t; the general solution for t < 0 is y(t) = c1(−t)λ1 + c2(−t)λ2 ,
where c1 and c2 again denote arbitrary constants. Since −t > 0 when
t < 0, the general solution can be expressed in the form

y(t) = c1|t|λ1 + c2|t|λ2 , t �= 0. (5)

2. There is one real repeated root if (α − 1)2 − 4β = 0. In this case, one
solution is y1(t) = tλ, t > 0, where λ = −(α − 1)/2. We can use reduction
of order (see Section 3.4) to find a second linearly independent solution,
y2(t) = tλ ln t, t > 0 (see Exercise 1 of this section). The general solution
in the repeated root case is therefore

y(t) = c1|t|λ + c2|t|λ ln|t|, t �= 0. (6)

3. There are complex conjugate roots if (α − 1)2 − 4β < 0. For brevity, let

λ1,2 = −(α − 1) ± i
√
4β − (α − 1)2

2
= γ ± iδ.

In this case,

tγ+iδ = e(γ+iδ) ln t = eγ ln teiδ ln t = tγ eiδ ln t, t > 0.

Hence, by Euler’s formula (see Section 3.5),

tγ+iδ = tγ [cos(δ ln t) + i sin(δ ln t)], t > 0. (7)

From equation (7), we obtain the two real-valued solutions y1(t)=
tγ cos(δ ln t) and y2(t) = tγ sin(δ ln t), which can be shown to form a fun-
damental set on 0 < t < ∞ (see Exercise 2). Therefore, the general solu-
tion is

y(t) = c1|t|γ cos(δ ln|t|) + c2|t|γ sin(δ ln|t|), t �= 0. (8)

E X A M P L E

1 Find the general solution of each of the Euler equations

(a) t2y′′ − 2ty′ + 2y = 0 (b) t2y′′ + 5ty′ + 4y = 0 (c) t2y′′ + 3ty′ + 5y = 0

Solution:

(a) For this equation, α = −2 and β = 2. Looking for solutions of the form
tλ, t > 0 leads to λ2 − 3λ + 2 = (λ − 1)(λ − 2) = 0. The general solution is
therefore

y(t) = c1t+ c2t
2, −∞ < t < ∞. (9)

Since the general solution involves integer powers of t, we can dispense
with the absolute value signs. Note further that solution (9) is defined for
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all values of t, including the singular point t = 0. For this equation, every
solution is well behaved at t = 0.

(b) For this differential equation, α = 5 and β = 4. The characteristic equation
λ2 + 4λ + 4 = 0 has real repeated roots λ1 = λ2 = −2. The general solution
is

y(t) = c1t
−2 + c2t

−2 ln|t|, t �= 0.

(c) For this equation, α = 3 and β = 5. The characteristic equation
λ2 + 2λ + 5 = 0 has complex conjugate roots λ1,2 = −1± 2i. The general
solution is

y(t) = c1t
−1 cos(2 ln|t|) + c2t

−1 sin(2 ln|t|), t �= 0.

Neither (b) nor (c) has solutions that exist at t = 0. ❖

Change of Independent Variable

After a change of independent variable, the Euler equation can be transformed
into a new homogeneous constant coefficient equation. We begin with the Eu-
ler equation t2y′′ + αty′ + βy = 0 for t > 0 and introduce a new independent
variable z = ln t, or (equivalently) t = ez. The t-interval 0 < t < ∞ transforms
into the z-interval −∞ < z < ∞.

Let y(t) = y(ez) = Y (z). Then, using the chain rule, we have

dy(t)
dt

= dy(ez)
dz

dz
dt

= dY (z)
dz

(
dt
dz

)−1
= e−z

dY (z)
dz

.

Therefore, t (dy(t)/dt) transforms into

eze−z
dY (z)
dz

= dY (z)
dz

, (10)

while t2 (d2y(t)/dt2) transforms into

d2Y (z)

dz2
− dY (z)

dz
. (11)

Under this change of independent variable, the Euler equation (1) transforms
into the constant coefficient equation

Y ′′ + (α − 1)Y ′ + βY = 0. (12)

Therefore, we can solve the Euler equation (1) for t > 0 by

1. making the change of independent variable t = ez,

2. solving the constant coefficient equation (12) using solution procedures
developed in Chapter 3, and then

3. using the inverse map to obtain the desired solution, y(t) = Y (ln t).

Looking for solutions of t2y′′ + αty′ + βy = 0 having the form y(t) = tλ is equiv-
alent to looking for solutions of Y ′′ + (α − 1)Y ′ + βY = 0 having the form
Y (z) = eλz. The characteristic equation (3) results in either case.

Each of the two solution approaches has its utility. The first approach,
looking for solutions of the form |t|λ, serves as a guide in the next section when
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we study the behavior of solutions of differential equations in aneighborhoodof
certain types of singular points. The change of independent variable approach
is useful because it permits us to use the techniques developed in Chapter 3.

As the next example shows, the change of variables approach can be applied
to nonhomogeneous Euler equations.

E X A M P L E

2 Obtain the general solution of

4t2y′′ + 8ty′ + y = t+ ln t, t > 0

by making the change of independent variable t = ez.

Solution: Under the change of variable t = ez, the nonhomogeneous term trans-
forms into ez + z. Thus, using (10) and (11) yields for the given differential
equation 4(Y ′′ − Y ′) + 8Y ′ + Y = ez + z, or

4Y ′′ + 4Y ′ + Y = ez + z, (13)

whereY ′ = dY/dz. As seen in Chapter 3, the solution of (13) is the sumof a com-
plementary solution YC(z) and a particular solution YP(z). The complementary
solution is

YC(z) = c1e
−z/2 + c2ze

−z/2. (14)

A particular solution YP(z) can be obtained using the method of undetermined
coefficients. We find

YP(z) = 1
9e

z + z− 4.

The general solution is therefore

Y (z) = c1e
−z/2 + c2ze

−z/2 + 1
9e

z + z− 4.

Using z = ln t to convert to the original independent variable t, we have

y(t) = c1t
−1/2 + c2t

−1/2 ln t+ 1
9 t+ ln t− 4, t > 0. ❖

Generalizations of the Euler Equation
There are two natural ways to generalize the Euler equation. One such gener-
alization is given by

(t− t0)
2y′′ + (t− t0)αy

′ + βy = 0. (15)

In equation (15), t0 is a point in the interval −∞ < t < ∞. To solve equation
(15) for t > t0, we assume a solution of the form y(t) = (t− t0)

λ. (We could also
adopt the change of independent variable t− t0 = ez.)

Another natural generalization is a higher order version of the Euler equa-
tion, such as

t3y′′′ + αt2y′′ + βty′ + γ y = 0. (16)

Examples of each are given in the exercises.
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E X E R C I S E S

1. Consider the Euler equation t2y′′ − (2α − 1)ty′ + α2y = 0.

(a) Show that the characteristic equation has a repeated root λ1 = λ2 = α. One so-
lution is therefore y(t) = tα, t > 0.

(b) Use the method of reduction of order (Section 3.4) to obtain a second linearly
independent solution for the interval 0 < t < ∞.

(c) Compute the Wronskian of the set of solutions {tα, tα ln t}, and show that it is a
fundamental set of solutions on 0 < t < ∞.

2. Let y1(t) = tγ cos(δ ln t) and y2(t) = tγ sin(δ ln t), t > 0, where δ and γ are real con-
stants with δ �= 0. Solutions of this form arise when the characteristic equation has
complex roots. Compute theWronskian of this pair of solutions, and show that they
form a fundamental set of solutions on 0 < t < ∞.

Exercises 3–18:

Identify the singular point. Find the general solution that is valid for values of t on either
side of the singular point.

3. t2y′′ − 4ty′ + 6y = 0 4. t2y′′ − 6y = 0 5. t2y′′ − 3ty′ + 4y = 0

6. t2y′′ − ty′ + 5y = 0 7. t2y′′ − 3ty′ + 29y = 0 8. t2y′′ − 5ty′ + 9y = 0

9. t2y′′ + ty′ + 9y = 0 10. t2y′′ + 3ty′ + y = 0 11. t2y′′ + 3ty′ + 17y = 0

12. y′′ + 11
t
y′ + 25

t2
y = 0 13. y′′ + 5

t
y′ + 40

t2
y = 0 14. t2y′′ − 2ty′ = 0

15. (t− 1)2y′′ − (t− 1)y′ − 3y = 0 16. (t− 1)2y′′ + 3(t− 1)y′ + 17y = 0

17. (t+ 2)2y′′ + 6(t+ 2)y′ + 6y = 0 18. (t− 2)2y′′ + (t− 2)y′ + 4y = 0

Exercises 19–21:

A Euler equation (t− t0)
2y′′ + α(t− t0)y

′ + βy = 0 is known to have the given general
solution. What are the constants t0, α, and β?

19. y(t) = c1(t+ 2) + c2
1

(t+ 2)2
, t �= −2

20. y(t) = c1 + c2 ln|t− 1|, t �= 1

21. y(t) = c1t
2 cos( ln|t|) + c2t

2 sin( ln|t|), t �= 0

Exercises 22–23:

A nonhomogeneous Euler equation t2y′′ + αty′ + βy = g(t) is known to have the given
general solution. Determine the constants α and β and the function g(t).

22. y(t) = c1t
2 + c2t

−1 + 2t+ 1, t > 0 23. y(t) = c1t
2 + c2t

3 + ln t, t > 0

Exercises 24–29:

Find the general solution of the given equation for 0 < t < ∞. [Hint: You can, as in
Example 2, use the change of variable t = ez.]

24. t2y′′ − 2y = 2 25. t2y′′ − ty′ + y = t−1

26. t2y′′ + ty′ + 9y = 10t 27. t2y′′ − 6y = 10t−2 − 6

28. t2y′′ − 4ty′ + 6y = 3ln t 29. t2y′′ + 8ty′ + 10y = 36(t+ t−1)

Exercises 30–33:

Solve the given initial value problem. What is the interval of existence of the solution?

30. t2y′′ − ty′ − 3y = 8t+ 6, y(1) = 1, y′(1) = 3
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31. t2y′′ − 5ty′ + 5y = 10, y(1) = 4, y′(1) = 6

32. t2y′′ + 3ty′ + y = 8t+ 9, y(−1) = 1, y′(−1) = 0

33. t2y′′ + 3ty′ + y = 2t−1, y(1) = −2, y′(1) = 1

34. Consider the third order equation t3y′′′ + αt2y′′ + βty′ + γ y = 0, t > 0. Make the
change of independent variable t = ez and let Y (z) = y(ez). Derive the third order
constant coefficient equation satisfied by Y .

Exercises 35–38:

Obtain the general solution of the given differential equation for 0 < t < ∞.

35. t3y′′′ + 3t2y′′ − 3ty′ = 0 36. t3y′′′ + ty′ − y = 0

37. t3y′′′ + 3t2y′′ + ty′ = 8t2 + 12 38. t3y′′′ + 6t2y′′ + 7ty′ + y = 2+ ln t

8.4 Solutions Near a Regular Singular Point
and the Method of Frobenius

We introduced the term singular point in Section 8.2 to denote a point t where
at least one of the coefficient functions of y′′ + p(t)y′ + q(t)y = 0 fails to be ana-
lytic. Near a singular point, the possible types of solution behavior are diverse
and complicated.

In this section, we restrict our attention to a particular type of singular
point, one known as a regular singular point. Definitive statements can be made
about the behavior of solutions near regular singular points. Many of the im-
portant equations ofmathematical physics, such as the Euler equation, Bessel’s
equation, and Legendre’s equation, possess regular singular points.

Regular Singular Points
We begin with the Euler equation

t2y′′ + αty′ + βy = 0,

where α and β are constants, not both zero. Since the coefficient functions are

p(t) = α

t
and q(t) = β

t2
,

t = 0 is a singular point and all other points are ordinary points. The Euler
equation serves as a model for a differential equation having a regular singular
point.

In general, let t0 be a singular point of the differential equation

y′′ + p(t)y′ + q(t)y = 0.

The point t0 is a regular singular point if both of the functions

(t− t0)p(t) and (t− t0)
2q(t)

are analytic at t0. A singular point that is not a regular singular point is called
an irregular singular point.

If (t− t0)p(t) and/or (t− t0)
2q(t) is indeterminate at t = t0 but the limits

lim t→t0
(t− t0)p(t) and lim t→t0

(t− t0)
2q(t) exist, then we are tacitly assuming

that the functions being considered are defined to equal these limits at t = t0.
Inmany important cases, the functions p(t) and q(t) are rational functions (that
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is, ratios of polynomials). As previously noted, a rational function is analytic
at every point where the denominator polynomial is nonzero. In this case, to
show that a singular point t0 is a regular singular point, it suffices to show that
the limits lim t→t0

(t− t0)p(t) and lim t→t0
(t− t0)

2q(t) both exist.

E X A M P L E

1 For each differential equation, identify the singular points and classify them as
regular or irregular singular points. In these equations, ν and μ are constants.

(a) Bessel’s equation4: t2y′′ + ty′ + (t2 − ν2)y = 0

(b) Legendre’s equation5: (1− t2)y′′ − 2ty′ + [ν(ν + 1) − μ2(1− t2)−1]y = 0

(c) (t− 1)y′′ +
(
tan

π

2
t
)
y′ + t5/3y = 0, −2 < t < 2

Solution:

(a) For Bessel’s equation,

p(t) = 1
t

and q(t) = t2 − ν2

t2
.

Therefore, t = 0 is a singular point. All other points are ordinary points. Be-
cause p(t) and q(t) are rational functions, we need only determine whether
lim t→0 tp(t) and lim t→0 t

2q(t) exist in order to establish analyticity. Since

lim
t→0

tp(t) = 1 and lim
t→0

t2q(t) = −ν2,

it follows that t = 0 is a regular singular point.

(b) For Legendre’s equation,

p(t) = −2t
(1− t2)

and q(t) = ν(ν + 1)

(1− t2)
− μ2

(1− t2)2
.

Therefore, the points t = ±1 are singular points. All other points are ordi-
nary points. We first consider the singular point t = 1. Since p(t) and q(t)
are rational functions, we check the two limits

lim
t→1

(t− 1)p(t) = lim
t→1

2t
1+ t

= 1

and

lim
t→1

(t− 1)2q(t) = lim
t→1

ν(ν + 1)(1− t2) − μ2

(1+ t)2
= −μ2

4
.

(continued)

4Friedrich Wilhelm Bessel (1784–1846) was a German scientist noted for important contributions
to the fields of astronomy, celestial mechanics, and mathematics. His mathematical analysis of
what is now known as the Bessel function arose during his studies of planetary motion. Bessel’s
achievements seem even more remarkable when one realizes that his formal education ended at
age 14.
5Adrien-Marie Legendre (1752–1833) was a French scientist whose research interests included
projectile dynamics, celestial mechanics, number theory, and analysis. What are today called Le-
gendre polynomials appeared in a 1784 paper on celestialmechanics. Legendre authored influential
textbooks on Euclidean geometry and number theory.
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(continued)

Since both limits exist, t = 1 is a regular singular point. The analysis of the
other singular point, t = −1, is very similar, and we find that t = −1 is also
a regular singular point.

(c) We have

p(t) =
tan

π

2
t

t− 1
=

sin
π

2
t

(t− 1) cos
π

2
t

and q(t) = t5/3

t− 1
.

Note that p(t), viewed as p(t) = sin(π t/2)/[(t− 1) cos(π t/2)], is a quotient
of functions analytic in −2 < t < 2. Therefore, p(t) is analytic at all points
in the interval −2 < t < 2 except t = 1 (where the denominator is zero).
The function q(t) fails to be analytic at t = 0 (where t5/3 is not analytic)
and t = 1 (where the denominator is zero). Consider first the singular point
t = 0; t2q(t) = (t− 1)−1t11/3 is not analytic at t = 0, and therefore t = 0 is an
irregular singular point.

Next, consider the singular point t = 1. In this case, p(t) and q(t) are
both quotients of functions analytic at t = 1. Therefore, t = 1 is a regular
singular point if both of the limits exist:

lim
t→1

(t− 1)p(t) and lim
t→1

(t− 1)2q(t).

The first limit,

lim
t→1

(t− 1)p(t) = lim
t→1

tan
π

2
t,

does not exist. Therefore, t = 1 is also an irregular singular point. ❖

The Method of Frobenius
Just as theEuler equation served as amodel for defining regular singular points,
the general solution of the Euler equation will serve to introduce the method
of Frobenius.6 This method prescribes the type of solution to look for near a
regular singular point.

For simplicity, consider solution behavior near t = 0. Suppose we know
that the differential equation

y′′ + p(t)y′ + q(t)y = 0 (1a)

has a regular singular point at t = 0. Then tp(t) and t2q(t) are analytic at t = 0.
Let the Maclaurin series for tp(t) and t2q(t) be

tp(t) = α0 + α1t+ α2t
2 + · · · =

∞∑
n=0

αnt
n

and

t2q(t) = β0 + β1t+ β2t
2 + · · · =

∞∑
n=0

βnt
n,

6Ferdinand Georg Frobenius (1849–1917), a Germanmathematician, served on the faculties at the
University of Zurich and the University of Berlin. He is remembered for his contributions to group
theory and differential equations.
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where both series converge in some interval −R < t < R. Multiply differential
equation (1a) by t2 to obtain

t2y′′ + t[tp(t)]y′ + [t2q(t)]y = 0. (1b)

Inserting the Maclaurin series for tp(t) and t2q(t), we arrive at

t2y′′ + t[α0 + α1t+ α2t
2 + · · ·]y′ + [β0 + β1t+ β2t

2 + · · ·]y = 0. (2)

The method of Frobenius can be motivated by a heuristic argument. Very close
to the singular point t = 0, we expect that

α0 + α1t+ α2t
2 + · · · ≈ α0 and β0 + β1t+ β2t

2 + · · · ≈ β0. (3)

If we use approximations (3) in equation (1b), we recover the Euler equation.
Thus, we reason: If the two differential equations are nearly the same near
t = 0, shouldn’t the solutions themselves have similar behavior near t = 0?

Recall that solutions of the Euler equation were obtained by looking for
solutions of the form y(t) = |t|λ, t �= 0. For definiteness, we consider t > 0. The
method of Frobenius consists in looking for solutions in which the factor tλ is
multiplied by an infinite series. In other words, near the regular singular point
t = 0, we look for solutions of y′′ + p(t)y′ + q(t)y = 0 that have the form

y(t) = tλ[a0 + a1t+ a2t
2 + · · ·] =

∞∑
n=0

ant
λ+n. (4)

In representation (4), λ is a constant (possibly complex-valued) that is to be
determined, along with the constants a0, a1, . . . . Also, since λ has not been spec-
ified, we can assume without any loss of generality that a0 �= 0. [That is, there
must be a “first nonzero term” in series (4), and we simply take that term to be
a0t

λ.]

Implementing the Method of Frobenius
Substituting (4) into differential equation (1b) creates the following three terms:

t2y′′ = t2
∞∑
n=0

an(λ + n)(λ + n− 1)tλ+n−2 =
∞∑
n=0

an(λ + n)(λ + n− 1)tλ+n (5a)

t[tp(t)]y′ =
[ ∞∑
m=0

αmt
m

] [ ∞∑
n=0

an(λ + n)tλ+n
]

(5b)

[t2q(t)]y =
[ ∞∑
m=0

βmt
m

] [ ∞∑
n=0

ant
λ+n

]
. (5c)

The three terms in (5) must be added, and the sum equated to zero. The series
products are computed using the Cauchy product defined in Section 8.1, and,
as before, coefficients of like powers of t are grouped together. We obtain

t2y′′ + t[tp(t)]y′ + [t2q(t)]y = [λ(λ − 1) + α0λ + β0]a0tλ + [λ(λ + 1)a1
+ α0a1(λ + 1) + α1a0λ + β0a1 + β1a0]tλ+1

+[(λ + 2)(λ + 1)a2 + α0a2(λ + 2) + α1a1(λ + 1)

+ α2a0λ + β0a2 + β1a1 + β2a0]tλ+2 +· · · , t > 0.
(6)
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When we equate the right-hand side of (6) to zero and invoke the uniqueness
property of power series representations, it follows that the coefficient of each
power of t must vanish. Setting the first coefficient equal to zero leads to

[λ2 + (α0 − 1)λ + β0]a0 = 0. (7)

Since a0 �= 0, it follows that representation (4) is a solution of the differential
equation only if the exponent λ is a root of the equation F(λ) = 0, where

F(λ) = λ2 + (α0 − 1)λ + β0. (8)

The equation F(λ) = 0 is called the characteristic equation or the indicial
equation. (The latter term is used more frequently in this context, and we will
use it as well.) Note that this equation (8) is consistent with the heuristic ar-
gument used to motivate representation (4). The equation F(λ) = 0 is precisely
the indicial equation for the Euler equation that results from using the two
approximations tp(t) ≈ α0 and t

2q(t) ≈ β0.
Once we choose a root λ of the indicial equation, we set the coefficients of

the higher powers of t equal to zero in (6). This gives us a recurrence relation
for finding the coefficients a1, a2, a3, . . . in terms of a0. For instance, setting the
coefficient of tλ+1 equal to zero, we have

[(λ + 1)2 + (α0 − 1)(λ + 1) + β0]a1 + [α1λ + β1]a0 = 0,

or

a1 = −[α1λ + β1]a0
F(λ + 1)

. (9a)

Similarly, knowing a1, we determine a2 from

[(λ + 2)2 + (α0 − 1)(λ + 2) + β0]a2 + [α1(λ + 1) + β1]a1 + [α2λ + β2]a0 = 0,

obtaining

a2 = −[α1(λ + 1) + β1]a1 + [α2λ + β2]a0
F(λ + 2)

. (9b)

Note the difference between the procedure for constructing the general
solution near an ordinary point and the method of Frobenius for constructing
the general solution near a regular singular point. For example, if t = 0 is an
ordinary point, then we look for a solution of the form

y(t) =
∞∑
n=0

ant
n.

The recurrence relation obtained determines the coefficients an in terms of two
of these coefficients, typically a0 and a1. Since a0 and a1 are arbitrary, both
members of a fundamental set of solutions are obtained concurrently.

If t = 0 is a regular singular point, however, the method of Frobenius leads
to the indicial equation, F(λ) = 0. Let the roots of this equation be denoted by λ1
and λ2. The recurrence relation found using (6) is used twice, first with λ = λ1
and then with λ = λ2. In this way, we seek two linearly independent solutions,

y1(t) =
∞∑
n=0

a(1)
n tλ1+n and y2(t) =

∞∑
n=0

a(2)
n tλ2+n,
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where the coefficients a(1)
1 , a(1)

2 , a(1)
3 , . . . and a(2)

1 , a(2)
2 , a(2)

3 , . . . are generated, re-
spectively, in terms of arbitrary constants a(1)

0 and a(2)
0 .

There are caseswhere themethod of Frobenius, as outlined in the foregoing
text, does not produce the general solution. An obvious case occurs when the
two roots of the indicial equation are equal. In this repeated-root case, the
foregoing procedure yields only one member of the fundamental set. A second
(less obvious) case occurs when the indicial equation possesses two (real) roots
that differ by an integer. These special cases will be discussed (and the entire
method summarized) in the next section. We conclude with an example in
which the procedure previously outlined can be used to obtain the general
solution.

E X A M P L E

2 Use the method of Frobenius to obtain the general solution of

2t2y′′ − ty′ + (1+ t2)y = 0 for t > 0.

Solution: The point t = 0 is a singular point. Since p(t) and q(t) are rational
functions and since lim t→0 tp(t) = − 1

2 and lim t→0 t
2q(t) = 1

2 , it follows that t = 0
is a regular singular point.

Using the method of Frobenius, we look for solutions of the form

y(t) =
∞∑
n=0

ant
λ+n, t > 0.

Substituting this series into the differential equation leads to

∞∑
n=0

an(λ + n)(λ + n− 1)tλ+n − 1
2

∞∑
n=0

an(λ + n)tλ+n + 1
2

∞∑
n=0

ant
λ+n

+ 1
2

∞∑
n=0

ant
λ+n+2 = 0.

Rewriting the last series as
∑∞

n=0 ant
λ+n+2 = ∑∞

n=2 an−2t
λ+n and combining terms

where possible, we obtain

∞∑
n=0

[
(λ + n)(λ + n− 1) − 1

2
(λ + n) + 1

2

]
ant

λ+n +
∞∑
n=2

1
2
an−2t

λ+n = 0, (10)

or[
λ2 − 3

2
λ + 1

2

]
a0t

λ +
[
(λ + 1)2 − 3

2
(λ + 1) + 1

2

]
a1t

λ+1

+
∞∑
n=2

[{
(λ + n)2 − 3

2
(λ + n) + 1

2

}
an + 1

2
an−2

]
tλ+n = 0.

The indicial equation, F(λ) = λ2 − 3
2λ + 1

2 = 0, has roots λ1 = 1
2 and λ2 = 1. We

now examine the recurrence relations associated with each of these roots.

(continued)
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(continued)

Case 1 Let λ = 1
2 in (10). We set the coefficient of t

λ+n = t(1/2)+n equal to zero
for each value of n and use a(1)

n to denote the coefficients associated with this
value of λ. The coefficient a(1)

0 is arbitrary. The coefficient multiplying t3/2 must
be zero, and thus[(

1
2 + 1

)2 − 3
2

(
1
2 + 1

) + 1
2

]
a(1)
1 = F

(
3
2

)
a(1)
1 = 0.

Since F
(
3
2

) �= 0, it follows that a(1)
1 = 0. As for the remaining coefficients, we

have [(
1
2 + n

)2 − 3
2

(
1
2 + n

) + 1
2

]
a(1)
n + 1

2a
(1)
n−2 = 0, n = 2,3,4, . . . ,

and so

a(1)
n = − a(1)

n−2
2F

(
1
2 + n

) , n = 2,3,4, . . . . (11)

Since F( 12 + n) �= 0 for all n ≥ 2, recurrence relation (11) is well defined. The
coefficients a(1)

n for n even can ultimately be expressed in terms of a(1)
0 . The

coefficients a(1)
n for n odd are all zero because a(1)

1 = 0. Thus, we find a solution
y1(t):

y1(t) = a(1)
0

[
t1/2 − 1

6 t
5/2 + 1

168 t
9/2 − · · ·

]
, t > 0.

Case 2 Let λ = 1 in (10). We repeat the sequence of computations just com-
pleted with this new value of λ and with the coefficients now denoted by a(2)

n .
As in case 1, it follows that a(2)

1 = 0 since F(2) �= 0. In general,[
(1+ n)2 − 3

2 (1+ n) + 1
2

]
a(2)
n + 1

2a
(2)
n−2 = 0, n = 2,3,4, . . . ,

and thus

a(2)
n = − a(2)

n−2
2F(1+ n)

, n = 2,3,4, . . . . (12)

The solution obtained is

y2(t) = a(2)
0

[
t− 1

10 t
3 + 1

360 t
5 − · · ·

]
. (13)

It is clear that the two solutions obtained are linearly independent on t > 0
since one solution is not a constant multiple of the other. Therefore, the two
solutions form a fundamental set, and the general solution is

y(t) = a(1)
0

[
t1/2 − 1

6 t
5/2 + 1

168 t
9/2 − · · ·

]

+ a(2)
0

[
t− 1

10 t
3 + 1

360 t
5 − · · ·

]
, t > 0.

(14)

Note that the differential equation possesses the symmetries discussed in The-
orem 8.2; that is, p(t) = −2/t is an odd function, and q(t) = (1+ t2)/t2 is an
even function. Therefore, to find a solution for t < 0, we need only replace t by
−t in (14). As a final observation, note that recurrence relations (11) and (12),
together with the ratio test, can be used to show that the two series in general
solution (14) converge absolutely in 0 < t < ∞. ❖
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E X E R C I S E S

Exercises 1–10:

In each exercise, find the singular points (if any) and classify themas regular or irregular.

1. ty′′ + (cos t)y′ + y = 0 2. t2y′′ + (sin t)y′ + y = 0

3. (t2 − 1)y′′ + (t− 1)y′ + y = 0 4. (t2 − 1)2y′′ + (t+ 1)y′ + y = 0

5. t2y′′ + (1− cos t)y′ + y = 0 6. |t|y′′ + y′ + y = 0

7. (1− et)y′′ + y′ + y = 0 8. (4− t2)y′′ + (t+ 2)y′ + (4− t2)−1y = 0

9. (1− t2)1/3y′′ + y′ + ty = 0 10. y′′ + y′ + t1/3y = 0

Exercises 11–13:

In each exercise, determine the polynomial P(t) of smallest degree that causes the given
differential equation to have the stated properties.

11. y′′ + sin 2t
P(t)

y′ + y = 0
There is a regular singular point at t = 0 and irregular
singular points at t = ±1. All other points are
ordinary points.

12. y′′ + 1
t
y′ + 1

P(t)
y = 0

There is a regular singular point at t = 0. All other
points are ordinary points.

13. y′′ + 1
tP(t)

y′ + 1

t3
y = 0

There are irregular singular points at t = 0 and t = ±1.
All other points are ordinary points.

Exercises 14–15:

In each exercise, the exponent n in the given differential equation is a nonnegative
integer. Determine the possible values of n (if any) for which

(a) t = 0 is a regular singular point.

(b) t = 0 is an irregular singular point.

14. y′′ + 1
tn
y′ + 1

1+ t2
y = 0 15. y′′ + 1

sin t
y′ + 1

tn
y = 0

Exercises 16–23:

In each exercise,

(a) Verify that t = 0 is a regular singular point.

(b) Find the indicial equation.

(c) Find the recurrence relation.

(d) Find the first three nonzero terms of the series solution, for t > 0, corresponding to
the larger root of the indicial equation. If there are fewer than three nonzero terms,
give the corresponding exact solution.

16. 2t2y′′ − ty′ + (t+ 1)y = 0 17. 4t2y′′ + 4ty′ + (t− 1)y = 0

18. 16t2y′′ + t2y′ + 3y = 0 19. t2y′′ + ty′ + (t− 9)y = 0

20. ty′′ + (t+ 2)y′ − y = 0 21. t2y′′ + 3ty′ + (2t+ 1)y = 0

22. t2y′′ + t(t− 1)y′ − 3y = 0 23. ty′′ + (t− 2)y′ + y = 0

Exercises 24–27:

In each exercise,

(a) Verify that t = 0 is a regular singular point.

(b) Find the indicial equation.
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(c) Find the first three terms of the series solution, for t > 0, corresponding to the larger
root of the indicial equation.

24. t2y′′ − (2 sin t)y′ + (2+ t)y = 0 25. ty′′ − 4y′ + ety = 0

26. (sin t)y′′ − y′ + y = 0 27. (1− et)y′′ + 1
2y

′ + y = 0

8.5 The Method of Frobenius Continued:
Special Cases and a Summary

There are two important special cases where the method of Frobenius (as de-
scribed in the previous section) may not yield the general solution of
y′′ + p(t)y′ + q(t)y = 0 near a regular singular point. These special cases arise
when the indicial equation has two real roots that are equal or that differ by an
integer. We will use Bessel’s equation as a vehicle to illustrate these cases. We
then conclude this section by summarizing, for all cases, the structure of the
general solution near a regular singular point.

The General Solution of Bessel’s Equation
Consider Bessel’s equation,

t2y′′ + ty′ + (t2 − ν2)y = 0, t > 0,

where ν is a real nonnegative constant. As we saw in Section 8.4, t = 0 is a
regular singular point. In addition, note that the coefficient functions

p(t) = 1
t

and q(t) = t2 − ν2

t2

are odd and even functions, respectively. Therefore, by Theorem 8.2, we can
obtain solutions for t < 0 by finding solutions for t > 0 and replacing t with −t.

We apply the method of Frobenius to Bessel’s equation. Substituting
y(t) = ∑∞

n=0 ant
λ+n leads to

[λ2 − ν2]a0tλ + [(λ + 1)2 − ν2]a1tλ+1

+
∞∑
n=2

[{(λ + n)2 − ν2}an + an−2]tλ+n = 0, t > 0.
(1)

Without loss of generality, we assume a0 �= 0. The indicial equation,

F(λ) = λ2 − ν2 = 0, (2)

has roots λ1 = ν and λ2 = −ν. From (1), we also obtain the equations

F(λ + 1)a1 = 0 (3a)

and

F(λ + n)an + an−2 = 0. (3b)

Equation (3b) leads to the recurrence relation

an = −an−2
F(λ + n)

, n = 2,3,4, . . . . (3c)

The special cases that arise can be illustrated by selecting particular values for
the constant ν.
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Equal Roots (λ1 = λ2)

Consider Bessel’s equationwith ν = 0. In this case, λ1 = λ2 = 0. Since the root is
repeated, the method of Frobenius gives us only one member of the fundamen-
tal set of solutions; the second linearly independent solution has a structure
different from

∑∞
n=0 ant

λ+n.
Since ν = 0, the indicial polynomial reduces to F(λ) = λ2. Therefore, F(1)

is nonzero, and we see from (3a) that a1 = 0. From (3c), we have

an = −an−2
n2

, n = 2,3,4, . . . . (4)

Since a1 = 0, it follows from (4) that all odd-indexed coefficients are zero. The
even-indexed coefficients can be expressed as multiples of a0:

a2 = −1
22

a0, a4 = −1
42

a2 = (−1)2
24(2!)2 a0, a6 = −1

62
a4 = (−1)3

26(3!)2 a0,

and, in general,

a2n = (−1)n
22n(n!)2 a0, n = 0,1,2, . . . .

The solution we thus obtain is

y1(t) = a0

[
1− t2

4
+ t4

64
− t6

2304
+ · · ·

]
= a0

[
1+

∞∑
n=1

(−1)nt2n
22n(n!)2

]
= a0 J0(t), (5a)

where

J0(t) = 1+
∞∑
n=1

(−1)nt2n
22n(n!)2 . (5b)

The function J0(t) is called theBessel function of the first kind of order zero.
Having one solution, we could, in principle, use the method of reduction of

order (see Section 3.4) to construct a second solution.We shall, however, simply
state a form of the second solution that is commonly used in applications—
the Bessel function of the second kind of order zero (also called Weber’s
function). The Bessel function of the second kind of order zero is given by

Y0(t) = 2
π

[
γ + ln

t
2

]
J0(t) + 2

π

∞∑
n=1

(−1)n+1kn

(
t2

4

)n

(n!)2 , t > 0. (6)

In (6), k1 = 1 and, in general,

kn = 1+ 1
2

+ 1
3

+ 1
4

+ · · · + 1
n

, n = 2,3, . . . .

The constant γ in equation (6) is known as the Euler-Mascheroni constant7

and is defined by the limit

γ = lim
n→∞

⎡
⎣ n∑
j=1

1
j

− lnn

⎤
⎦ ≈ 0.5772 . . . .

7Lorenzo Mascheroni (1750–1800) was an ordained priest, poet, and teacher of mathematics and
physics. He became professor of algebra and geometry at the University of Pavia in 1786 and later
became its rector. In 1790, Mascheroni correctly calculated the first 19 decimal places of Euler’s
constant. This accomplishment has caused his name to be linked with the constant.
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Note that Y0(t) can ultimately be expressed as a constant multiple of
J0(t)ln t= y1(t)ln t added to a series of the form

∑∞
n=0 bnt

n. Since J0(0) = 1, Y0(t)
has a logarithmic singularity at t = 0. If we recall the heuristic argument used
to motivate the method of Frobenius, the presence of the function ln t in (6)
and the corresponding logarithmic singularity at t = 0 is not surprising since
the general solution of the Euler equation having repeated roots λ1 = λ2 = 0 is
y(t) = c1 + c2 ln t, t > 0. Figure 8.3 shows graphs of J0(t) and Y0(t).
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FIGURE 8.3

(a) The graph of J0(t), the Bessel function of the first kind of order zero.
(b) The graph of Y0(t), the Bessel function of the second kind of order zero.
Note that J0(t) is defined for all t, whereas Y0(t) has a logarithmic
singularity at the regular singular point t = 0.

Roots Differing by Unity (λ1 − λ2 = 1)

As an illustration of the case where roots differ by unity, let ν = 1
2 in Bessel’s

equation. The indicial equation,

F(λ) = λ2 − 1
4 ,

has roots λ1 = 1
2 and λ2 = − 1

2 , and therefore λ1 − λ2 = 1. Consider first the
larger root, λ1 = 1

2 , which corresponds to a solution of the form

y1(t) =
∞∑
n=0

a(1)
n t(1/2)+n, t > 0.

We can assume a(1)
0 �= 0. Since F(λ1 + 1) = F

(
3
2

) �= 0, it follows from (3a) that
a(1)
1 = 0. From (3c), the recurrence relation is

a(1)
n = −a(1)

n−2(
n+ 1

2

)2 − 1
4

= −a(1)
n−2

n(n+ 1)
, n = 2,3,4, . . . . (7)

Equation (7) allows us to determine all the even-indexed coefficients as multi-
ples of a(1)

0 and implies that all the odd-indexed coefficients are zero. Solving
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recurrence relation (7) leads to the solution

y1(t) = a(1)
0

[
t1/2 − t5/2

3! + t9/2

5! − t13/2

7! + · · ·
]

= a(1)
0 t−1/2

[
t− t3

3! + t5

5! − t7

7! + · · ·
]

= a(1)
0 t−1/2 sin t, t > 0.

(8)

Consider now the smaller root, λ2 = − 1
2 , where we look for a solution of the

form

y2(t) =
∞∑
n=0

a(2)
n t−(1/2)+n, t > 0.

As before, F(λ) = λ2 − 1
4 . This time, however,

F(λ2 + n) = (
n− 1

2

)2 − 1
4 = n(n− 1),

and we see that F(λ2 + 1) = F(λ1) = F
(
1
2

) = 0. Therefore [see equation (3a)],
a(2)
1 need not be zero. From (3c), the recurrence relation

a(2)
n = −a(2)

n−2(
n− 1

2

)2 − 1
4

= −a(2)
n−2

n(n− 1)
, n = 2,3,4, . . . (9)

allows us to determine all even-indexed coefficients as multiples of a(2)
0 and all

odd-indexed coefficients as multiples of a(2)
1 . We find

a(2)
2k = (−1)k

(2k)! a
(2)
0 and a(2)

2k+1 = (−1)k
(2k+ 1)!a

(2)
1 , k = 1,2,3, . . . . (10)

The resulting solution y2(t) has the form

y2(t) = a(2)
0 t−1/2

[
1− t2

2! + t4

4! − t6

6! + · · ·
]

+ a(2)
1 t−1/2

[
t− t3

3! + t5

5! − t7

7! + · · ·
]

= a(2)
0 t−1/2 cos t+ a(2)

1 t−1/2 sin t, t > 0.

(11)

We therefore obtain a second linearly independent solution, t−1/2 cos t, added
to a multiple of the solution previously obtained, t−1/2 sin t. In this example,
the method of Frobenius has produced both members of a fundamental set of
solutions.

The Bessel functions of order one-half are defined to be

J1/2(t) =
√
2
π t
sin t and J−1/2(t) =

√
2
π t
cos t, t > 0.

The general solution of Bessel’s equation in this case is usually expressed as

y(t) = c1J1/2(t) + c2 J−1/2(t). (12)
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Note that J1/2(t) is well behaved near t = 0 since

lim
t→0

+

sin t√
t

= 0.

By contrast, lim t→0
+ J−1/2(t) = +∞. Figure 8.4 shows the behavior of these two

functions.
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FIGURE 8.4

(a) The graph of the Bessel function J1/2(t).
(b) The graph of the Bessel function J−1/2(t).

Roots Differing by an Integer Greater than 1 (λ1 − λ2 = N ≥ 2)

Let ν = M ≥ 1 in Bessel’s equation. The two roots of the indicial equation,
λ2 −M2 = 0, are λ1 = M and λ2 = −M. The roots differ by an integer greater
than 1, since λ1 − λ2 = 2M ≥ 2. In this case, the method of Frobenius provides
us with a solution corresponding to the larger root, λ1 = M. It will fail, however,
when we try to apply the method to the smaller root, λ2 = −M.

Consider first the larger root, λ1 = M. We look for a solution of the form

y1(t) =
∞∑
n=0

a(1)
n tM+n, t > 0.

We assume a(1)
0 �= 0. Since F(λ1 + 1) = F(M+ 1) �= 0, we know from equation

(3a) that a(1)
1 = 0. Using equation (3c), we obtain the recurrence relation

a(1)
n = −a(1)

n−2
[(n+M)2 −M2] = −a(1)

n−2
[n(n+ 2M)] , n = 2,3,4, . . . . (13)

Equation (13) allows us to determine all the even-indexed coefficients as mul-
tiples of a(1)

0 and tells us that the odd-indexed coefficients are zero. Therefore,



8.5 The Method of Frobenius Continued: Special Cases and a Summary 555

we obtain the solution

y1(t) = a(1)
0 tM

{
1− t2

22(M+ 1)
+ t4

242!(M+ 2)(M+ 1)

− t6

263!(M+ 3)(M+ 2)(M+ 1)
+ · · · + (−t2)kM!

22kk!(M+ k)! + · · ·
}

.

(14)

Choosing a(1)
0 = (1/2M)M! in (14) leads to the Bessel function of the first kind

of order M:

JM(t) =
(
t
2

)M ∞∑
k=0

(−t2
4

)k

k!(M+ k)! . (15)

Note that JM(t) is analytic at t = 0 and the series (15) has an infinite radius of
convergence. The function JM(t) vanishes at t = 0 whenM ≥ 1; JM(t) is an even
function when M is an even integer and an odd function when M is an odd
integer.

Supposewe now consider the smaller root, λ2 = −M, and look for a solution
of the form

y2(t) =
∞∑
n=0

a(2)
n t−M+n.

Assume, without loss of generality, that a(2)
0 �= 0. Since M ≥ 1,F(λ2 + 1) =

F(−M+ 1) �= 0 and a(2)
1 = 0. The difficulty arises when we try to use equa-

tion (3c) to evaluate a(2)
2 , a(2)

4 , a(2)
6 , . . . in terms of a(2)

0 . Using λ = −M and setting
n = 2k, we have for the recurrence relation (3c)

a(2)
2k = −a(2)

2k−2
4k(k−M)

, k = 1,2,3, . . . . (16)

The trouble occurs when we try to evaluate (16) for k = M. The breakdown of
recurrence relation (16) at k = M tells us that the assumed form of the solution
is incorrect and that the second linearly independent solution does not have
the structure assumed by the method of Frobenius.

The second linearly independent solution of Bessel’s equation customarily
used is called the Bessel function of the second kind of order M and is
denoted by YM(t). It is defined as

YM(t) = 2
π

[
γ + ln

t
2

]
JM(t) −

(
t
2

)−M

π

M−1∑
k=0

(M− k− 1)!
k!

(
t2

4

)k

−

(
t
2

)M

π

∞∑
n=0

(−1)n (
kM+n + kn

)
(

− t2

4

)n

n!(M+ n)! , t > 0,

(17)
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where the constants kn are defined as k0 = 0, kn = 1+ 2−1 + 3−1 + · · · + n−1,
n ≥ 1 and where γ is the Euler-Mascheroni constant.

Figure 8.5 displays graphs of J1(t) and Y1(t).
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FIGURE 8.5

(a) The graph of J1(t).
(b) The graph of Y1(t).

REMARK: For reasonably large values of t (say t > 5), all of the Bessel func-
tions plotted in Figures 8.3–8.5 seem to behave like damped sinusoids—that
is, sine or cosine waves having amplitudes that decrease with increasing t (see
Exercises 25 and 26).

Summary of the General Solution Near a Regular Singular Point
Our study of Bessel’s equation for different values of ν provided some exam-
ples of the behavior of solutions near a regular singular point. Although these
examples are representative, they are neither exhaustive nor completely gen-
eral since Bessel’s equation possesses a specific structure that is not necessarily
present in the general case. The following summary, which we present without
proof, describes the general behavior of solutions of y′′ + p(t)y′ + q(t)y = 0.

Consider the differential equation y′′ + p(t)y′ + q(t)y = 0,where we assume
t = 0 is a regular singular point. Let tp(t) and t2q(t) be real-valued analytic
functions with Maclaurin series

tp(t) =
∞∑
n=0

αnt
n and t2q(t) =

∞∑
n=0

βnt
n

that converge in −R < t < R. The corresponding indicial equation is

λ2 + (α0 − 1)λ + β0 = (λ − λ1)(λ − λ2) = 0.

The roots λ1 and λ2 either are real or form a complex conjugate pair. In the
event that λ1 and λ2 are real, we assume λ1 ≥ λ2.
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Then, in either of the intervals (−R,0) or (0,R),

(a) There exists a solution having the form

y1(t) = |t|λ1
∞∑
n=0

ant
n, a0 �= 0, (18)

where the series converges at least in |t| < R.

(b) The form of the second linearly independent solution, y2(t), depends on the
difference λ1 − λ2.

(i) If λ1 − λ2 is not an integer, then

y2(t) = |t|λ2
∞∑
n=0

bnt
n, b0 �= 0, (19)

where the series converges at least in |t| < R.

(ii) If λ1 = λ2, then

y2(t) = y1(t)ln|t| + |t|λ2
∞∑
n=0

cnt
n, (20)

where the series converges at least in |t| < R.

(iii) If λ1 − λ2 equals a positive integer, then

y2(t) = Cy1(t)ln|t| + |t|λ2
∞∑
n=0

dnt
n, d0 �= 0, (21)

where C is a constant, possibly zero (if C = 0, there is no logarithmic
term). Moreover, the series converges at least in |t| < R.

REMARKS:

1. We have assumed, for convenience, that t = 0 is a regular singular point.
In general, if t = t0 is a regular singular point, then the results in the
summary are valid when t− t0 replaces t in the formulas.

2. When the roots λ1 and λ2 form a complex conjugate pair—for instance,
λ1 = γ + iδ, λ2 = γ − iδ—the difference λ1 − λ2 = 2δi is purely imaginary
and thus not equal to zero or a positive integer. In that case, the two
complex-valued solutions

y1(t) = |t|γ+iδ
∞∑
n=0

ant
n and y2(t) = |t|γ−iδ

∞∑
n=0

bnt
n,

obtained using the recurrence relations, can be used to create an equiv-
alent real-valued fundamental set. Using Euler’s formula, we have

|t|γ+iδ = |t|γ [cos(δ ln|t|) + i sin(δ ln|t|)].

As mentioned in Section 8.1, linear differential equations with variable co-
efficients play an important role in applications. Because of their importance,
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the functions that emerge as solutions of these equations, usually collectively re-
ferred to as special functions, have been studied exhaustively. There are books
devoted to a particular special function,8 as well as general handbooks for
special functions.9 Modern software packages have many of these functions
available as built-in functions—as accessible as the familiar exponential, log-
arithmic, and trigonometric functions. In that sense, these so-called special
functions are fortunately becoming less and less special.

Linear differential equations with variable coefficients, such as Bessel’s
equation and Legendre’s equation, arise when the technique called separation
of variables is applied to the partial differential equations that model certain
physical problems. The Projects at the end of this chapter study steady-state
heat conduction between concentric cylinders and provide a brief introduction
to this circle of ideas.

E X E R C I S E S

Exercises 1–12:

In each exercise,

(a) Verify that the given differential equation has a regular singular point at t = 0.

(b) Determine the indicial equation and its two roots. (These roots are often called the
exponents at the singularity.)

(c) Determine the recurrence relation for the series coefficients.

(d) Consider the interval t > 0. If the two exponents obtained in (c) are unequal and do
not differ by an integer, determine the first two nonzero terms in the series for each
of the two linearly independent solutions. If the exponents are equal or differ by an
integer, obtain the first two nonzero terms in the series for the solution having the
larger exponent.

(e) When the given differential equation is put in the form y′′ + p(t)y′ + q(t)y = 0, note
that tp(t) and t2q(t) are polynomials. Do the series, whose initial terms were found
in part (d), converge for all t, 0 < t < ∞? Explain.

1. 2ty′′ − (1+ t)y′ + 2y = 0 2. 2ty′′ + 5y′ + 3ty = 0

3. 3t2y′′ − ty′ + (1+ t)y = 0 4. 6t2y′′ + ty′ + (1− t)y = 0

5. t2y′′ − 5ty′ + (9+ t2)y = 0 6. 4t2y′′ + 8ty′ + (1+ 2t)y = 0

7. t2y′′ − 2ty′ + (2+ t)y = 0 8. ty′′ + 4y′ − 2ty = 0

9. t2y′′ + ty′ − (1+ t2)y = 0 10. t2y′′ + 5ty′ + (4− t2)y = 0

11. t2y′′ + ty′ − (16+ t)y = 0 12. 8t2y′′ + 6ty′ − (1− t)y = 0

Exercises 13–16:

In each exercise,

(a) Determine all singular points of the given differential equation and classify them as
regular or irregular singular points.

8See, for example, George N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cam-
bridge: Cambridge University Press, 1966).
9Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables (New York: Dover Publications, 1970) and Wilhelm Mag-
nus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and Theorems for the Special Functions of
Mathematical Physics (Berlin and New York: Springer-Verlag, 1966).
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(b) At each regular singular point, determine the indicial equation and the exponents
at the singularity.

13. (t3 + t)y′′ − (1+ t)y′ + y = 0 14. t2y′′ + (sin 3t)y′ + (cos t)y = 0

15. (t2 − 4)2y′′ − y′ + y = 0 16. t2(1− t)1/3y′′ + ty′ − y = 0

17. The Legendre differential equation (1− t2)y′′ − 2ty′ + α(α + 1)y = 0 has regular sin-
gular points at t = ±1; all other points are ordinary points.
(a) Determine the indicial equation and the exponent at the singularity t = 1.

(b) Assume that α �= 0,1. Find the first three nonzero terms of the series solution
in powers of t− 1 for t− 1 > 0. [Hint: Rewrite the coefficient functions in powers
of t− 1. For example, 1− t2 = −(t− 1)(t+ 1) = −(t− 1)((t− 1) + 2).]

(c) What is an exact solution of the differential equation when α = 1?

18. The Chebyshev differential equation (1− t2)y′′ − ty′ + α2y = 0 has regular singular
points at t = ±1; all other points are ordinary points.
(a) Determine the indicial equation and the exponent at the singularity t = 1.

(b) Assume α is nonzero and not an integer multiple of 1
2 . Find two linearly inde-

pendent solutions for t− 1 > 0. (Use the hint in Exercise 17.)

(c) On what interval of the form 0 < t− 1 < R do the solutions found in part (b)
converge?

(d) What is an exact solution of the differential equation when α = 1
2 ?

19. The Laguerre10 differential equation ty′′ + (1− t)y′ + αy = 0 has a regular singular
point at t = 0.

(a) Determine the indicial equation and show that the roots are λ1 = λ2 = 0.

(b) Find the recurrence relation. Show that if α = N, where N is a nonnegative
integer, then the series solution reduces to a polynomial. Obtain the polynomial
solution when N = 5. The polynomial solutions of this differential equation, when
properly normalized, are called Laguerre polynomials.

(c) Is the polynomial obtained in part (b) for α = N = 5 an even function, an odd
function, or neither? Would you expect even and odd solutions of the differential
equation based on its structure and the conclusions of Theorem 8.2? Explain.

Exercises 20–23:

In each exercise, use the stated information to determine the unspecified coefficients in
the given differential equation.

20. t2y′′ + t(α + 2t)y′ + (β + t2)y = 0. t = 0 is a regular singular point. The
roots of the indicial equation at t = 0
are λ1 = 1 and λ2 = 2.

21. t2y′′ + αty′ + (β + t− t3)y = 0. t = 0 is a regular singular point. The
roots of the indicial equation at t = 0
are λ1 = 1+ 2i and λ2 = 1− 2i.

22. t2y′′ + αty′ + (2+ βt)y = 0. t = 0 is a regular singular point. One root
of the indicial equation at t = 0 is λ = 2.
The recurrence relation for the series
solution corresponding to this root is

(n2 + n)an − 4an−1 = 0, n = 1,2, . . . .

10Edmond Laguerre (1834–1886) attended the Ecole Polytechnique in Paris and returned there
after ten years of service as a French artillery officer. He worked in the areas of analysis and
geometry and is best remembered for his study of the polynomials that bear his name.
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23. ty′′ + (1+ αt)y′ + βty = 0. The recurrence relation for a series
solution is

n2an − (n− 1)an−1 + 3an−2 = 0, n = 2,3, . . . .

24. Modified Bessel Equation The differential equation t2y′′ + ty′ − (t2 + ν2)y = 0 is
known as the modified Bessel equation. Its solutions, usually denoted by Iν(t) and
Kν(t), are calledmodified Bessel functions. This equation arises in solving certain
partial differential equations involving cylindrical coordinates.

(a) Do you anticipate that the modified Bessel equation will possess solutions that
are even and odd functions of t? Explain.

(b) The point t = 0 is a regular singular point of the modified Bessel equation; all
other points are ordinary points. Determine the indicial equation for the singularity
at t = 0 and find the exponents at the singularity.

(c) Obtain the recurrence relation for the modified Bessel equation. How do the ex-
ponents and recurrence relation for this equation compare with their counterparts
for Bessel’s equation?

25. Consider Bessel’s equation, t2y′′ + ty′ + (t2 − ν2)y = 0 for t > 0.

(a) Define a new dependent variable u(t) by the relation y(t) = t−1/2u(t). Show that
u(t) satisfies the differential equation

u′′ +
[
1−

(
ν2 − 1

4

)
t2

]
u = 0.

(b) Solve the differential equation in part (a) when ν2 = 1
4 . What is the correspond-

ing solution of Bessel’s equation in this case?

(c) Suppose that t is large enough to justify neglecting the term (ν2 − 1
4 )/t

2 in the
differential equation obtained in part (a). Show that neglecting (ν2 − 1

4 )/t
2 leads to

the approximation y(t) ≈ t1/2R cos(t− δ) when t is large.

26. This exercise asks you to use computational software to show that Bessel functions
behave like R cos(t− δ)/

√
t for appropriate choices of constants R and δ and for t

large enough. We restrict our attention to J0(t).

(a) Locate the abscissa of the firstmaximumof J0(t) in t > 0; call this point tm. Since
J ′
0(t) = −J1(t), this point can be found by applying a root-finding routine to J1(t).
(b) Evaluate the constants R and δ by setting tm − δ = 2π and R = √

tm J0(tm).

(c) Plot the two functions J0(t) and R cos(t− δ)/
√
t on the same graph for

tm ≤ t ≤ 50. How do the two graphs compare?

27. For the special case ν = 1
2 , consider the modified Bessel equation for t > 0,

t2y′′ + ty′ − (t2 + 1
4 )y = 0.

(a) Define a new dependent variable u(t) by the relation y(t) = t−1/2u(t). Show that
u(t) satisfies the differential equation u′′ − u = 0.

(b) Show that the differential equation has a fundamental set of solutions

sinh t√
t

,
cosh t√

t
, t > 0.
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PROJECTS

Project 1: The Simple Centrifuge Revisited

We revisit a problem that was studied numerically in Project 2 of Chapter 3. At time
t = 0, a horizontally mounted tube of length l begins to rotate with a constant (positive)
angular acceleration α. At that time, a particle of mass m is located a radial distance r0
from the pivot and moving with a radial velocity r′0. The radial distance of the particle
from the pivot, r(t), is a solution of the following initial value problem:

r′′ − α2t2r = 0, r(0) = r0, r′(0) = r′0. (1)

We now develop a series solution of this problem. The point t = 0 is an ordinary point.
Assume a solution of the form

r(t) =
∞∑
n=0

ant
n.

1. Develop the recurrence relation for the coefficients {an}∞
n=0. What is the radius of

convergence of the series obtained?

2. The series solution will have the form r(t) = a0r1(t) + a1r2(t), with a0 = r0 and a1 = r′0.
Determine the first four nonvanishing terms for each of the series r1(t) and r2(t).

3. Do the functions defined by series r1(t) and r2(t) possess even or odd symmetry?
Could Theorem 8.2 have been used to predict the existence of even and odd solutions
of differential equation (1)? Explain.

4. Assume the following numerical values:

α = π rad/s2, l = 2 m, r0 = 10 cm, r′0 = 20 cm/s.

Use computer software and the polynomial approximation developed in part 2 to
estimate the time at which the particle will exit the tube and the exit velocity.

Since we are using a truncated series for these computations, the exit time and
exit velocity computed will be approximate values. Is it possible to use this computed
information to get a rough estimate of the exit time error? Explain.

5. The results of parts 1 and 2 show that the solution r(t) is actually a function of
α1/2t. Show that this could have been anticipated by studying the structure of the
differential equation itself. Specifically, make the change of independent variable
τ = αpt (or t = α−pτ ). Show that with this change of variable, the choice p = 1

2 trans-
forms the differential equation into the equation

d2r

dτ 2
− τ 2r = 0.

What does the initial condition r′(0) = r′0 transform into?

Project 2: Steady-State Heat Flow between Concentric Cylinders

This exercise gives you a brief glimpse into an application involving variable coefficient
linear differential equations.

Consider the two concentric cylinders shown in Figure 8.6. The inner cylinder has
radius a > 0, while the outer cylinder has radius b > a. Assume that these cylinders
represent the inner and outer surfaces of a pipe and that the pipe itself is designed to
function as part of a simple cooling system. Heat, or thermal energy, is drawn from the
region exterior to the pipe by the presence of coolant flowingwithin the pipe.We assume
that the coolant is “well-stirred” and that the inner surface of the pipe is maintained at
the coolant temperature. Suppose we know the temperature of the region outside the
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pipe as well as the temperature of the coolant. For fixed values of the radii a and b, we
would like to know the rate at which heat is drawn from the exterior region. For a fixed
coolant temperature, we also want to know how the heat transfer varies as a function
of the two pipe radii.

y

z
x

a

b

FIGURE 8.6

The concentric cylinders represent the inner and outer surfaces of a pipe.
Heat is drawn from the exterior region by the presence of a coolant flowing
through the pipe.

In general, a temperature reading depends on where and when the reading is taken.
Thus, if T represents temperature (measured, perhaps, in degrees Centigrade), then
T = T(x, y, z, t).

We shall assume, however, that our cooling system is operating in a steady-state
mode; that is, system operation has “settled down” to the point where the temperature
everywhere remains constant in time. We further assume that temperature does not
change in the axial or z-direction. With these assumptions, T = T(x, y).

Because of the cylindrical geometry, we introduce polar coordinates. We set
x = r cos θ and y = r sin θ , as in Figure 8.7. We view temperature as a function of the
polar variables, T = T(r, θ). The domain of interest is the annular region between
the cylinders, described in polar coordinates by a ≤ r ≤ b, 0 ≤ θ < 2π . We assume that
the temperature at the outer radius of the pipe is known; that is,

T(b, θ) = Tb(θ), 0 ≤ θ < 2π,

where Tb is a known function of the angle θ . We also assume that the temperature at
the inner pipe radius is a known constant; that is,

T(a, θ) = Ta, 0 ≤ θ < 2π.

Since the coolant is to draw heat from the exterior region, we assume that Tb(θ) > Ta,
0 ≤ θ < 2π .

The problem is to determine the rate at which the coolant draws heat through
the pipe from the exterior region. We first determine the temperature T(r, θ) within the
annular cross-section of the pipe and then use this information to compute the required
heat flow.

Within the annular region of the pipe, the steady-state temperature must be a solu-
tion of a partial differential equation known as Laplace’s equation. In polar coordinates,
Laplace’s equation is

∂2T

∂r2
+ 1
r

∂T
∂r

+ 1

r2
∂2T

∂θ2
= 0. (2)

To determine the steady-state temperature within the annular pipe region, we need to
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x

FIGURE 8.7

A cross-section of the pipe shown in Figure 8.6. We introduce polar
coordinates into the problem because of the cylindrical geometry.

solve partial differential equation (2) subject to the boundary conditions

T(a, θ) = Ta, T(b, θ) = Tb(θ), 0 ≤ θ < 2π. (3)

It should be emphasized that the problems we ultimately solve in this exercise are not
initial value problems since constraints are imposed at two different values of the inde-
pendent variable.

Once we find the temperature distribution within the annular region,

T(r, θ), a ≤ r ≤ b, 0 ≤ θ < 2π,

we will compute the heat transfer rate into the coolant at the inner radius a. Heat flows
“downhill,” from hotter to cooler regions. Moreover, the rate of heat flow is proportional
to the temperature gradient—the steeper the gradient, the greater the rate of heat trans-
fer. At a point on the inner pipe radius, the rate of heat transfer per unit surface area is
given by

κ
∂T(a, θ)

∂r
, (4)

where κ is a positive constant (known as the thermal conductivity) that depends on the
nature of the pipe material. It follows that the rate of heat transfer per unit axial length
of the pipe can be found by integrating (4) around the inner pipe radius, obtaining∫ 2π

0
κ

∂T(a, θ)

∂r
a dθ = κa

∫ 2π

0

∂T(a, θ)

∂r
dθ. (5)

1. The Case of Constant Exterior Temperature Assume that the temperature at the outer
pipe radius is constant; that is,

Tb(θ) = Tb, 0 ≤ θ < 2π.

Since neither boundary condition varies with angle, we expect the temperature in the
annular pipe region to likewise be independent of θ . Assume a solution of the form
T = T(r), a ≤ r ≤ b.

(a) Substitute T = T(r) into Laplace’s equation (2), obtaining

d2T(r)

dr2
+ 1
r
dT(r)
dr

= 0, a < r < b. (6)
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Obtain the general solution of this Euler equation, and impose the boundary
constraints

T(a) = Ta, T(b) = Tb. (7)

The constraints (7) will determine the two arbitrary constants in the general
solution.

(b) Compute dT/dr, and evaluate the integral (5).

(c) Let Ta = 40◦F, Tb = 120◦F, a = 1 in., and b = 1.5 in. For these parameter values,
plot T(r) versus r for a ≤ r ≤ b. Do the maximum and minimum temperatures
occur where you expect them to occur?

2. The Case of Varying Exterior Temperature Assume now that the temperature distri-
bution at the outer pipe radius is not constant. As a specific case, assume that

T(b, θ) = (1+ α sin θ)Tb, 0 ≤ θ < 2π,

where Tb = 120◦F and where 0 ≤ α < 1.

(a) Do you think the heat transfer rate will differ from that obtained in part (a) of
the constant exterior temperature case?

(b) Assume a solution of Laplace’s equation of the form

T(r, θ) = T0(r) + T1(r) sin θ (8)

within the annular pipe region. The unknown functions T0(r) and T1(r) must be
determined. Substitute (8) into (2), obtaining[
d2T0(r)

dr2
+ 1
r
dT0(r)
dr

]
+

[
d2T1(r)

dr2
+ 1
r
dT1(r)
dr

− 1

r2
T1(r)

]
sin θ = 0,

a < r < b, 0 ≤ θ < 2π.

Assume for the moment that the radial variable has an arbitrary but fixed value.
The set of functions {1, sin θ} is linearly independent in 0 ≤ θ < 2π , and so this
equation implies, for the particular fixed value of r, that

d2T0(r)

dr2
+ 1
r
dT0(r)
dr

= 0 (9a)

and

d2T1(r)

dr2
+ 1
r
dT1(r)
dr

− 1

r2
T1(r) = 0. (9b)

Since r is assumed to be arbitrary, these equations must hold for a < r < b. Find
the general solution for each of the two Euler equations (9a) and (9b).

(c) Apply the boundary constraints (3). In particular, we have

T(a, θ) = T0(a) + T1(a) sin θ = Ta
T(b, θ) = T0(b) + T1(b) sin θ = Tb + Tbα sin θ, 0 ≤ θ < 2π.

Use the same linear independence argument employed in (b) to obtain boundary
conditions for the functions T0 and T1. Impose these boundary conditions on the
general solutions of the Euler equations obtained in (b), and determine T(r, θ).

(d) Determine the heat transfer rate at the inner pipe radius. Is the heat transfer rate
the same as that obtained for the constant exterior temperature case?
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9C H A P T E R

Second Order Partial
Differential Equations

and Fourier Series

C H A P T E R O V E R V I E W

9.1 Introduction

9.2 Heat Flow in a Thin Bar; Separation of Variables

9.3 Series Solutions

9.4 Calculating the Solution

9.5 Fourier Series

9.6 The Wave Equation

9.7 Laplace’s Equation

9.8 Higher-Dimensional Problems; Nonhomogeneous Equations

9.1 Introduction
In this chapter, we begin a discussion of partial differential equations. Such
equations involve a dependent variable (often denoted by u) that is a function
of two or more independent variables. Frequently, the independent variables
are time t and one ormore of the spatial variables x, y, z. For example,u(x, y, z, t)
might represent the temperature of a three-dimensional solid at spatial point
(x, y, z) and time t.

A partial differential equation is an equation involving a dependent vari-
able and its partial derivatives. Partial differential equations often arise when
we model phenomena that change in both space and time. Although the prob-
lems we consider in this chapter may seem complicated, the techniques we use
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to solve them are familiar. The method of separation of variables, discussed
in this chapter, and the method of characteristics, discussed in Chapter 10,
ultimately reduce to problems involving ordinary differential equations.

The present chapter focuses on second order partial differential equations
and the technique of separation of variables. Chapter 10 is concerned with first
order partial differential equations. To provide maximum flexibility, we have
written Chapters 9 and 10 so that they can be read in any order. In Section
9.2, we introduce partial differential equations with a discussion of the heat
equation. Section 9.2 also features a qualitative discussion of what to expect
of solutions of the heat equation and a brief introduction to the main solution
technique in this chapter, separation of variables. In Section 9.3, we examine
the eigenvalue problems that arise from separation of variables and determine
the building-block solutions that will ultimately form the basis for an infinite
series representation of solutions of the heat equation. Sections 9.4 and 9.5
complete the discussion of the heat equation, describing the theory of Fourier
series, the Fourier convergence theorem, and the Gibbs phenomenon.

Having used the heat equation to introduce themajor ideas of Fourier series
and separation of variables, we then consider other boundary value problems:
the wave equation in Section 9.6 and Laplace’s equation in Section 9.7. Finally,
in Section 9.8 and its Exercises, we look at higher-dimensional problems and
problems involving nonhomogeneous partial differential equations.

Second Order Partial Differential Equations
The order of a partial differential equation is the order of the highest partial
derivative appearing in the equation. For example,

∂u(x, t)
∂x

− ∂u(x, t)
∂t

= t sin x

is a first order partial differential equation, while

∂u(x, t)
∂t

− ∂u2(x, t)

∂x2
= 0

is a second order partial differential equation.
Consider the special case where the dependent variable u is a function of

two independent variables, a spatial variable x and a temporal variable t. In
this case, the general second order linear partial differential equation has
the form

a11(x, t)
∂2u(x, t)

∂x2
+ a12(x, t)

∂2u(x, t)
∂x∂t

+ a22(x, t)
∂2u(x, t)

∂t2

+ b1(x, t)
∂u(x, t)

∂x
+ b2(x, t)

∂u(x, t)
∂t

+ c(x, t)u(x, t) = f (x, t).

(1a)

In equation (1a), a11(x, t), a12(x, t), a22(x, t),b1(x, t),b2(x, t), c(x, t),and f (x, t) are
known functions of the independent variables x and t.

In order to simplify notation, it is common to use subscripts to denote
partial derivatives. Thus, we may write equation (1a) as

a11(x, t)uxx(x, t) + a12(x, t)uxt(x, t) + a22(x, t)utt(x, t)

+ b1(x, t)ux(x, t) + b2(x, t)ut(x, t) + c(x, t)u(x, t) = f (x, t).
(1b)
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Note the special structure of the partial differential equation (1b) that makes
it a linear partial differential equation. The coefficient functions as well as
the right-hand side, f (x, t), are functions only of the independent variables.
Moreover, the dependent variable u and its partial derivatives occur only to
the first power. If f (x, t) = 0 in (1b), the equation is called a homogeneous
equation. If f (x, t) �= 0 in (1b), the equation is nonhomogeneous. In many of
the applications we consider, the coefficient functions are constant.

Superposition
Linear homogeneous partial differential equations satisfy the same principle of
superposition as linear homogeneous ordinary differential equations. In par-
ticular, whenever we form a linear combination of solutions, the resulting func-
tion is again a solution. For example, suppose u1(x, t),u2(x, t), . . . ,uN(x, t) are
N solutions of the linear homogeneous equation

a11(x, t)uxx(x, t) + a12(x, t)uxt(x, t) + a22(x, t)utt(x, t)

+ b1(x, t)ux(x, t) + b2(x, t)ut(x, t) + c(x, t)u(x, t) = 0.
(2)

If k1, k2, . . . , kN are N arbitrary constants, then the function

u(x, t) = k1u1(x, t) + k2u2(x, t) + · · · + kNuN(x, t)

is likewise a solution of the linear homogeneous equation (2).

Examples of Linear Partial Differential Equations
The class of second order linear partial differential equations contains some
of the most important equations of mathematical physics. Three such equa-
tions discussed in this chapter are the heat equation, the wave equation, and
Laplace’s equation.

The Heat Equation κuxx(x, t) − ut(x, t) = 0 or ut(x, t) = κuxx(x, t) (3)

In (3), the dependent variable u(x, t) represents the temperature at position x
and time t in a structure (such as a thin, laterally insulated bar) in which heat is
constrained to flow in only one dimension (along the x-axis). The positive con-
stant κ, called the diffusivity, depends on the thermal properties of thematerial.
The appendix of Section 9.2 outlines a derivation of the heat equation.

The Wave Equation uxx(x, t) − 1

c2
utt(x, t) = 0 or utt(x, t) = c2uxx(x, t) (4)

Thewave equation arises inmodeling phenomena, such as the small-amplitude
vibrations of a taut string. In contrast to the heat equation, the wave equation
involves a second order partial derivative with respect to time, utt(x, t). In this
model, the dependent variable u(x, t) represents the displacement of the string
at position x and time t. As we shall see, the positive constant c is the speed of
the wave.

Laplace’s Equation uxx(x, y) + uyy(x, y) = 0 (5)

In equation (5), the dependent variable u(x, y) is not a function of time; in-
stead, it is a function of two spatial variables. In applications, solutions of
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Laplace’s equation often represent potentials, such as electrostatic or gravita-
tional potentials. Laplace’s equation also arises in modeling steady-state (that
is, time-independent) heat flow in two or more dimensions. (Recall Project 2
in Chapter 8, which studied steady-state heat flow in a cylindrical pipe.)

The heat equation, the wave equation, and Laplace’s equation each have
straightforward generalizations to higher spatial dimensions. For example, let
u(x, y, z, t) represent the temperature within a solid object at location (x, y, z)
and time t. The three-dimensional heat equation modeling temperature within
the object is

ut(x, y, z, t) = κ[uxx(x, y, z, t) + uyy(x, y, z, t) + uzz(x, y, z, t)].
Similarly, three-dimensional versions of the wave equation and Laplace’s equa-
tion are, respectively,

utt(x, y, z, t) = c2[uxx(x, y, z, t) + uyy(x, y, z, t) + uzz(x, y, z, t)]
and

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) = 0.

[When a steady-state temperature exists—that is, when ut(x, y, z, t) = 0—the
heat equation reduces to Laplace’s equation.]

Separation of Variables
We begin by describing separation of variables, a technique for solving partial
differential equations. The discussion of Fourier series in Section 9.5 addresses
some of themathematical questions arising from using separation of variables.

Our discussion of the relevant mathematical theory is not complete, how-
ever. We do not present a detailed discussion of two important issues that are
typically addressed in more advanced studies; in particular, we do not ad-
dress the question of existence and uniqueness of solutions. The existence-
uniqueness theory for the range of problems we will study is too extensive to
permit a meaningful and succinct summary. Instead, we tacitly assume the
problem under consideration has a unique solution and simply concentrate on
the task of computing it.

In addition, we sidestepmost of themathematical questions that arise from
forming an infinite series of functions. For example, the solutions we construct
in this chapter typically have the form

u(x, t) =
∞∑
n=0

anun(x, t). (6)

Separation of variables will tell us how to form the functions un(x, t), and the
theory of Fourier series will tell us how to determine the values of the coeffi-
cients an. Some questions then arise: What kind of function is actually defined
by the infinite series (6)? Does the series converge for all points (x, t) in the
region of interest? If so, is the function defined by the infinite series a solution
of the partial differential equation?

When we apply themethod of separation of variables, each of the functions
un(x, t) in equation (6) will be a solution of the given homogeneous partial dif-
ferential equation. With respect to series (6), however, recall that the superpo-
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sition result cited earlier applies to a finite sum of solutions. Demonstrating
that the infinite sum of solutions (6) is also a solution requires that we justify
interchanging partial differentiation and infinite summation operations. The
validity of such interchanges is typically addressed in multivariable advanced
calculus. In this chapter, we will simply assume that interchanging operations
is permissible and that the series solution we construct is, in fact, the solution
of the problem of interest.

E X E R C I S E S

Exercises 1–10:

Determine the values of the constant α, if any, for which the specified function is a
solution of the given partial differential equation.

1. u(x, t) = 4t− αx2, ut − uxx = 0 2. u(x, t) = e−αt sin 2x, ut − uxx = 0

3. u(x, t) = e−2αt cosαx, ut − uxx = 0 4. u(x, t) = sin(x+ αt), utt − 4uxx = 0

5. u(x, t) = 2 cos(x+ αt), utt − uxx + 2u = 0

6. u(x, y) = ex sinαy, uxx + uyy = 0

7. u(x, y, z) = ex+αy sin z, uxx + uyy + uzz = 0

8. u(x, y, t) = eαt sin(x) cos(2y), uxx + uyy − ut = 0

9. u(x, t) = sin(αx) cos(2t), uxx − utt − 4αu = 0

10. u(x, y) = α + e−x cos y, uxx + uyy − 2u = 4

Exercises 11–15:

In each exercise,

(a) Show by direct substitution that the linear combination of functions is a solution
of the given homogeneous linear partial differential equation.

(b) Determine values of the constants so that the linear combination satisfies the given
supplementary condition.

11. u(x, t) = c1e
−t sin x+ c2e

−4t sin 2x, uxx − ut = 0;
u(x,0) = 3 sin 2x− sin x

12. u(x, t) = c1 + c2e
−t cos x+ c3e

−4t cos 2x, uxx − ut = 0;
u(x,0) = 2− cos 2x

13. u(x, t) = c1 sin x sin 2t+ c2 sin x cos 2t, 4uxx − utt = 0;
u(x,0) = −2 sin x, ut(x,0) = 6 sin x

14. u(x, t) = c1e
−3t sin x+ c2e

−6t sin 2x, uxx − ut − 2u = 0;
u(x,0) = sin x− 4 sin 2x

15. u(x, t) = c1 + c2(x− t) + c3(x+ t), uxx − utt = 0;
u(x,0) = 1+ 2x, ut(x,0) = 0

16. Let u1(x, t) and u2(x, t) be solutions of the linear homogeneous partial differential
equation (2). Show that the linear combination u(x, t) = c1u1(x, t) + c2u2(x, t) is also
a solution of equation (2).

17. Let u1(x, t) be a solution of the linear homogeneous partial differential equation (2),
and let u2(x, t) be a solution of the linear nonhomogeneous partial differential equa-
tion (1b). Show, for any constant c1, that u(x, t) = c1u1(x, t) + u2(x, t) is also a solu-
tion of the nonhomogeneous equation.
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Exercises 18–21:

In each exercise, the function u is known to be a solution of the given nonhomogeneous
partial differential equation. Determine the function f .

18. u(x, t) = 2 sin(πx) cos(2π t) − x2t, 4uxx − utt = f (x, t)

19. u(x, y) = xy+ 2x2y3 + 2 sinh x sin y, uxx + uyy = f (x, y)

20. u(x, y, t) = ex+2y + e−5t sin x sin 2y, uxx + uyy − ut = f (x, y, t)

21. u(x, y) = 3+ x− y+ 2xy− x2y3, uxx + uyy = f (x, y)

9.2 Heat Flow in a Thin Bar; Separation of Variables
In this section, we consider two different problems involving heat flow. Besides
being of intrinsic interest, these problems serve to introduce a useful solution
technique known as separation of variables. Once it is clear how this technique
is used to solve the heat equation, wewill apply variations of the same basic idea
to other partial differential equations, such as the wave equation and Laplace’s
equation. This section and Section 9.3 concentrate on the one-dimensional heat
equation,

ut(x, t) = κuxx(x, t). (1)

The remaining sections of this chapter focus on other partial differential equa-
tions, using separation of variables to solve them.

Problem Formulation
Consider a bar having constant cross-sectional area A and length l, as shown
in Figure 9.1. We assume that the bar is

(a) thin (its length l is much larger than its cross-sectional area A),

(b) homogeneous (it has uniform heat-conducting properties characterized by
its thermal diffusivity constant κ), and

(c) laterally insulated (so that no heat can flow through its sides).

Bar Insulation

Cross-sectional
area A

x

x = 0 x = l

l

FIGURE 9.1

A thin bar having cross-sectional area A and length l.

For such a thin bar, it is reasonable to assume, at a given point x on the longi-
tudinal axis, that temperature is constant throughout the corresponding cross-
sectional area A. Given this assumption, the temperature in the bar depends
only on a single spatial variable x and on time t. Since no heat can enter or leave
through the lateral surface, heat is constrained to flow along the bar’s axis. Let
u(x, t) represent the temperature of the bar at axial location x and time t. We
assume that at an initial time, say t = 0, the temperature distribution along the
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bar is known. That is, u(x,0),0 ≤ x ≤ l, is a known function of x. Our goal is to
determine how the initial temperature distribution evolves in time.

The appendix to this section gives a derivation of the one-dimensional heat
equation. In addition to partial differential equation (1), two supplementary
conditions are needed to completely specify the problem. The first condition is
the initial temperature distribution in the bar, u(x,0),0 ≤ x ≤ l. The second is a
description of how temperature behaves at the bar ends. That is, what happens
at x = 0 and x = l?

We consider two different endpoint constraints. In Problem 1, we assume
that the temperature at both ends is maintained at the value zero for all t ≥ 0.
In Problem 2, we assume that the ends of the bar are insulated so that no heat
can enter or leave. The mathematical statements of these two problems follow.

Problem 1 (Zero Temperature Ends) Solve the heat equation

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
subject to the boundary conditions

u(0, t) = u( l, t) = 0, 0 ≤ t < ∞ (2a)

and the initial condition

u(x,0) = f (x), 0 ≤ x ≤ l. (2b)

This type of problem is often referred to as an initial-boundary value problem.
The problem domain is the shaded xt-plane strip shown in Figure 9.2. Bound-
ary conditions are specified on the semi-infinite vertical lines x = 0 and x = l,
while the initial condition is specified on the horizontal line segment 0 ≤ x ≤ l.
Geometrically, the graph of the solution is a surface z = u(x, t), where the func-
tion u(x, t) satisfies the heat equation (1) as well as the initial and boundary
conditions specified by (2a) and (2b).

x
l0

t

u(l, t) = 0

u(x, 0) = f (x)

u(0, t) = 0

FIGURE 9.2

The domain for Problem 1 is the shaded strip bounded on its sides by the
semi-infinite lines x = 0 and x = l and below by the line segment 0 ≤ x ≤ l.

Note that the boundary and initial conditions impose a compatibility con-
straint on the function f (x). This constraint occurs at the two corners of the
domain shown in Figure 9.2. On the one hand, the boundary conditions at time
t = 0 require that u(0,0) = u( l,0) = 0. On the other hand, the initial condition
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reduces to u(0,0) = f (0) and u( l,0) = f ( l ) at the domain corners. For compat-
ibility, therefore, we require that the function f (x) satisfy f (0) = f ( l ) = 0.1

Problem 2 (Insulated Ends) Solve the heat equation

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
subject to the boundary conditions

ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞ (3a)

and the initial condition

u(x,0) = f (x), 0 ≤ x ≤ l. (3b)

Problem2 is also an initial-boundary value problem. Aswas the case in Problem
1, an initial temperature distribution u(x,0) = f (x),0 ≤ x ≤ l is specified.

The boundary conditions in (3a) arise because we assume that the rate at
which heat flows across a bar’s cross-section is proportional to the temperature
gradient. That is, at a given point x = α, the rate of heat flow is proportional
to ux(α, t). (See the appendix of this section.) Since the ends of the bar are
insulated, there is no heat flow across the bar endfaces and therefore ux is zero
at the bar endpoints. Imposing compatibility between (3a) and (3b) requires
that f ′(0) = f ′( l ) = 0.

What Should We Expect of a Solution?
We all have a qualitative, intuitive understanding of heat flow. Can we use our
familiarity to develop some simple checks for the problem solutions we obtain?

Experience dictates that heat flows “downhill” from regions of higher tem-
perature to neighboring regions of lower temperature. Supposewe “take a snap-
shot” at some instant of time, t = t∗, and record a temperature profile u(x, t∗),
such as the one shown in Figure 9.3. Consider the two points x1 and x2. We
expect the temperature at x = x1 to increase at the instant t = t∗. Similarly, we
expect the temperature at x = x2 to decrease at that instant. Mathematically,
we expect that ut(x1, t

∗) > 0 and ut(x2, t
∗) < 0. Exercise 1 shows that the heat

equation does indeed impose this type of behavior on a solution. It seems rea-
sonable, therefore, to expect that any initial undulations in the temperature
profile will tend to flatten out as time increases.

Can we use this qualitative observation about temperature variations being
flattened to infer anything about the long-time behavior of solutions? In Prob-
lem 1 (the case where both ends of the bar are maintained at zero degrees),
thermal energy can flow through the bar ends. If the temperature distribution
flattens out as time passes, it seems reasonable to expect the temperature to
approach zero degrees at all points within the bar. Thus, we should expect that

lim
t→∞ u(x, t) = 0, 0 ≤ x ≤ l. (4)

1Compatibility constraints such as these are usually present in physical problems. Sometimes,
however, it is desirable to impose boundary conditions for 0 < t < ∞ that are not consistent with
the endpoint behavior of the specified initial condition.
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u(x, t*)

x
x1 x2 l

FIGURE 9.3

At time t = t∗, the temperature distribution in the bar is given by u(x, t∗),
0 ≤ x ≤ l. As illustrated, the value u(x1, t

∗) is a local minimum in the
x-direction, while u(x2, t

∗) is a local maximum in the x-direction. Since
heat flows “downhill,” we expect that u(x1, t) will be an instantaneously
increasing function of t at t = t∗ while u(x2, t) will be an instantaneously
decreasing function of t at t = t∗. Thus, as time passes, temperature
undulations in the bar tend to flatten out.

In physical terms, we expect that any heat initially present will eventually leak
out through the bar ends and therefore the temperature throughout the bar
will approach zero degrees (the temperature of the bar ends).

For Problem 2 (the case where both ends are insulated), heat can neither
enter nor leave the bar. In this case, all the thermal energy initially present is
“trapped” in the bar. Assuming the initial temperature is nonzero, we expect
that the temperature will tend toward a constant nonzero value throughout the
bar. Stating the assumption mathematically, we should expect that

lim
t→∞ u(x, t) = u∞, 0 ≤ x ≤ l, (5)

where u∞ denotes the (constant) limiting value of temperature.
We can infer more about solutions of Problem 2; we can actually anticipate

the limiting temperature value u∞. As noted in the appendix of this section, the
total thermal energy initially present within the bar is proportional to the area
under the initial temperature curve:∫ l

0
u(x,0)dx =

∫ l

0
f (x)dx.

Since the thermal energy is trapped within the bar, this area remains constant
in time (see Exercise 5). In particular, we expect that∫ l

0
f (x)dx = u∞l. (6)

Combining (5) and (6), therefore, we anticipate that

u∞ = lim
t→∞u(x, t) = 1

l

∫ l

0
f (x)dx.

The limit observationsmade in equations (4) and (5), as well as some additional
observations made in the Exercises, provide simple useful checks on both the
problem formulation and any solutions we obtain. If we obtain a solution con-
sistent with these checks, that fact alone does not guarantee that the solution
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we found is correct. However, if we find a solution that is not consistent with
these checks, then it is probably wrong.

Separation of Variables
Consider the one-dimensional heat equation,

ut(x, t) = κuxx(x, t).

Our initial aim is to construct solutions of this equation that can be used as
building blocks. Ultimately, we will construct a solution of the initial-boundary
value problem of interest by forming an appropriate linear combination of
these building blocks. Recall that the solution of Problem 1 or Problem 2 must
also satisfy the corresponding homogeneous boundary conditions [(2a) or (3a),
respectively] and initial condition [(2b) or (3b), respectively].

We begin by looking for solutions of the heat equation having the special
structure

u(x, t) = X(x)T(t). (7)

In (7), the function u(x, t) is the product of X(x), a function only of spatial
variable x, and T(t), a function only of time t. (In this sense, the independent
variables are “separated.”) Substituting expression (7) into the heat equation
leads to

X(x)T ′(t) = κX ′′(x)T(t),

or

T ′(t)
κT(t)

= X ′′(x)
X(x)

, 0 < x < l, 0 < t < ∞. (8)

In equation (8), we use a prime to denote differentiation. Since each of the
functions X and T is a function of only one independent variable, there should
be no confusion or ambiguity.

We now ask “How can the equality

T ′(t)
κT(t)

= X ′′(x)
X(x)

remain valid for 0 < x < l,0 < t < ∞?” If the left-hand side were actually to
vary with time, we could destroy the equality by varying t and leaving x fixed.
Likewise, if the right-hand side actually varied with x, the equality would be
destroyed by varying x while leaving t fixed. Therefore, the only way equality
(8) can be valid is for both sides to equal a common constant, call it σ . Looking
for solutions of the heat equation having the structure (7) therefore leads us to
consider the following two ordinary differential equations for the constituent
functions X(x) and T(t):

T ′(t)
κT(t)

= X ′′(x)
X(x)

= σ,

or

X ′′(x) − σX(x) = 0, 0 < x < l (9a)

T ′(t) − σκT(t) = 0, 0 < t < ∞. (9b)
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The ordinary differential equations in (9) are constant coefficient linear equa-
tions that can be solved using the methods of Chapters 2 and 3. Each different
value of σ leads to a different solution. The constant σ appearing in equa-
tions (9) is often called a separation constant. We will refer to the two dif-
ferential equations in (9) as separation equations. The heat equation itself
imposes no constraints on the separation constant; for now, σ can assume any
value, and it can be real or complex. However, as we shall see in Section 9.3,
imposing the boundary constraints and requiring nonzero solutions will limit
the possible values of σ .

Imposing Homogeneous Boundary Conditions
As noted in the preceding subsection, a solution u(x, t) = X(x)T(t) will also
be required to satisfy homogeneous boundary conditions—conditions (2a) in
the zero temperature ends problem and conditions (3a) in the insulated ends
problem.

To illustrate the ideas, we consider the zero temperature ends problem; we
leave the insulated ends problem to the Exercises. Holding the ends at zero
temperature imposes the boundary conditions u(0, t) = 0 and u( l, t) = 0 and
leads to two requirements on u(x, t) = X(x)T(t):

X(0)T(t) = 0 and X( l )T(t) = 0, 0 ≤ t < ∞.

In each case, one or both of the factors in the product must vanish. If the
constant factor X(0) and/or X( l ) is nonzero, then T(t) = 0,0 ≤ t < ∞. In that
event, the separation of variables solution u(x, t) vanishes identically. Since we
are interested in nontrivial solutions, we require instead that

X(0) = 0 and X( l ) = 0.

These two constraints are homogeneous boundary conditions that must be
imposed on differential equation (9a). Thus, the problem for X(x) gives rise
to a two-point boundary value problem involving a homogeneous differential
equation and homogeneous boundary conditions:

X ′′(x) − σX(x) = 0, X(0) = 0, X( l ) = 0. (10)

Observe that the zero function X(x) = 0,0 ≤ x ≤ l is a solution of equation (10).
We are interested, however, in finding nontrivial solutions. Thus, our first task
is to determine those values of the separation constant σ for which nontrivial
solutions of problem (10) exist. For each value of the separation constant that
leads to a nontrivial solution of (10), we then need to solve separation equation
(9b) for T(t).

Boundary value problem (10), consisting of a homogeneous differential
equation and homogeneous boundary conditions, is actually an eigenvalue
problem (see Section 4.4). Instead of seeking nontrivial solutions of the ma-
trix equation Ax = λx , we now look for nontrivial solutions of the differential
equation X ′′(x) = σX(x). Put informally, the role of the square matrix A is now
played by the differential operator d2/dx2. In looking for nontrivial solutions of
X ′′(x) = σX(x), we must restrict our search to functions that vanish at both in-
terval endpoints, x = 0 and x = l. A value of the separation constant σ for which
a nontrivial solution of problem (10) exists is also called an eigenvalue. A cor-
responding solution X(x) is called an eigenfunction [as before, eigenfunctions
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are not unique, since any scalar multiple of a solution of equation (10) is also
a solution]. For brevity, we again refer to the pair (σ,X(x)) as an eigenpair.

E X E R C I S E S

Exercises 1–7:

These exercises examine some basic properties of the heat equation and accompanying
homogeneous boundary conditions.

1. Suppose we record the temperature profile along a thin, laterally insulated bar
at some instant of time, say t = t0, and the smooth curve shown in Figure 9.3 is
obtained. Use the concavity of the curve and the heat equation to show that

∂u(x1, t0)
∂t

> 0 and
∂u(x2, t0)

∂t
< 0.

2. Suppose that the temperature profile of a segment of a thin, laterally insulated bar
at time t = t0 is given by u(x, t0) = x2(2− x),0 < x < 2. Determine those values of x
on the interval 0 < x < 2 for which

(a)
∂u(x, t0)

∂t
< 0 (b)

∂u(x, t0)
∂t

= 0 (c)
∂u(x, t0)

∂t
> 0

3. Consider the heat equation ut(x, t) = κuxx(x, t), where κ is a positive constant.

(a) Suppose we make the change of time variable τ = κt. Show that the heat equa-
tion transforms into ∂u/∂τ = ∂2u/∂x2. Therefore, if we know a solution of
∂u/∂t = ∂2u/∂x2, we can obtain a solution of ut = κuxx by replacing t with κt.

(b) Show that u(x, t) = e−π2 t sinπx is a solution of the initial-boundary value prob-
lem

ut(x, t) = uxx(x, t), 0 < x < 1, 0 < t < ∞
u(0, t) = u(1, t) = 0, 0 ≤ t < ∞
u(x,0) = sinπx, 0 ≤ x ≤ 1.

(c) Use the information in (b) to solve the initial-boundary value problem

ut(x, t) = 3uxx(x, t), 0 < x < 1, 0 < t < ∞
u(0, t) = u(1, t) = 0, 0 ≤ t < ∞
u(x,0) = 5 sinπx, 0 ≤ x ≤ 1.

4. (a) Show, for any choice of constants c1 and c2, that u(x, t) = c1 + c2e
−π2 t cosπx is

a solution of the problem

ut(x, t) = uxx(x, t), 0 < x < 1, 0 < t < ∞
ux(0, t) = ux(1, t) = 0, 0 ≤ t < ∞.

(b) Use the information in part (a), along with Exercise 3(a), to obtain a solution
of the initial-boundary value problem

ut(x, t) = 2uxx(x, t), 0 < x < 1, 0 < t < ∞
ux(0, t) = ux(1, t) = 0, 0 ≤ t < ∞
u(x,0) = 3− cosπx, 0 ≤ x ≤ 1.

5. The thermal energy contained within a thin, laterally insulated bar of length l is

E(t) = c0A
∫ l

0
u(x, t) dx,
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where c0 is the heat capacity per unit volume of the bar material and A is the cross-
sectional area. If both ends are insulated, one would expect E(t) to be a constant,
since heat can neither enter nor escape. Use the heat equation to show that this is,
in fact, the case.

6. If the temperature within the bar remains constant in time, then u = u(x) and the
heat equation reduces to

∂u(x)
∂t

= 0 = κ
∂2u(x)

∂x2
, or u′′(x) = 0.

Such a temperature distribution is called a steady-state temperature distribution.

(a) Determine the possible steady-state temperature distributions in a bar of length
l when

(i) the bar ends are both kept at zero degrees

(ii) the bar ends are both insulated

(b) For the two initial-boundary value problems considered in this section, a physi-
cal argument was given for the existence of the limits in equations (4) and (5). How
do the conjectured limiting distributions compare with the steady-state distribu-
tions computed in part (a)?

7. Consider the partial differential equation ut(x, t) = κuxx(x, t) + αu(x, t), where α is a
constant.

(a) Suppose we introduce a new dependent variable w(x, t) by defining u(x, t) =
eδtw(x, t), where δ is a constant. Show that if δ is chosen properly, then w(x, t) is a
solution of wt(x, t) = κwxx(x, t). What is the value δ?

(b) Show that w(x, t) = e−4π2 t cos 2πx is a solution of the initial-boundary value
problem

wt(x, t) = wxx(x, t), 0 < x < 1, 0 < t < ∞
wx(0, t) = wx(1, t) = 0, 0 ≤ t < ∞
w(x,0) = cos 2πx, 0 ≤ x ≤ 1.

(c) Use parts (a) and (b) to solve

ut(x, t) = uxx(x, t) + 4u(x, t), 0 < x < 1, 0 < t < ∞
ux(0, t) = ux(1, t) = 0, 0 ≤ t < ∞
u(x,0) = cos 2πx, 0 ≤ x ≤ 1.

8. Apply separation of variables to the insulated ends problem. Look for nontrivial
solutions of the form u(x, t) = X(x)T(t). Require this solution to satisfy boundary
conditions (3a). Derive the separation equations for X(x) and T(t). What are the
boundary conditions that X(x) must satisfy?

9. Consider a bar of length lwhose left end (at x = 0) is kept at zero degrees and whose
right end (at x = l) is insulated.

(a) State the initial-boundary value problem appropriate for this situation.

(b) Suppose we apply separation of variables and look for solutions of the form
u(x, t) = X(x)T(t) satisfying the heat equation and homogeneous boundary condi-
tions. What are the separation equations for X(x) and T(t)? What are the boundary
conditions that X(x) must satisfy?
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Exercises 10–20:

Assume a solution of the linear homogeneous partial differential equation having the
“separation of variables” form given. Either demonstrate that solutions having this form
exist, by deriving appropriate separation equations, or explain why the technique fails.

10. ut(x, t) = uxx(x, t) + ux(x, t), u(x, t) = X(x)T(t)

11. ut(x, t) = uxx(x, t) + x2u(x, t), u(x, t) = X(x)T(t)

12. ut(x, t) = (1+ t2)(1+ x2)uxx(x, t), u(x, t) = X(x)T(t)

13. utt(x, t) = c2uxx(x, t), u(x, t) = X(x)T(t), c a positive constant

14. utt(x, t) − ut(x, t) = uxx(x, t), u(x, t) = X(x)T(t)

15. utt(x, t) = uxx(x, t) + xux(x, t), u(x, t) = X(x)T(t)

16. uxx(x, y) + uyy(x, y) = 0, u(x, y) = X(x)Y (y)

17. uxx(x, y) + ex+yuyy(x, y) = 0, u(x, y) = X(x)Y (y)

18. uxx(x, y) + exyuyy(x, y) = 0, u(x, y) = X(x)Y (y)

19.
∂u(r, t)

∂t
= 1

r
∂

∂r

(
r
∂u(r, t)

∂r

)
, u(r, t) = R(r)T(t)

20.
∂

∂r

(
r
∂u(r, θ)

∂r

)
+ 1
r

∂2u(r, θ)

∂θ2
= 0, u(r, θ) = R(r)�(θ)

Exercises 21–22:

Separation of Variables in Higher Dimensions The following two exercises show how the
separation of variables technique can be used to construct solutions of linear homoge-
neous partial differential equations involving three independent variables.

21. Consider the two-dimensional heat equation ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t).

(a) Assume a solution of the form u(x, y, t) = X(x)Y (y)T(t) and show that

T ′(t)
T(t)

= X ′′(x)
X(x)

+ Y ′′(y)
Y (y)

= σ,

where σ is a separation constant. What is the separation equation for T(t)?

(b) Now consider the equation

X ′′(x)
X(x)

+ Y ′′(y)
Y (y)

= σ.

Perform algebraic manipulation so that the separation of variables argument can
be applied again. This leads to the introduction of a second separation constant,
call it η. What are the resulting separation equations for X(x) and Y (y)?

22. Laplace’s equation in three dimensions is uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) = 0.
Assume a solution of the form u(x, y, z) = X(x)Y (y)Z(z). Repeat the separation of
variables approach outlined in Exercise 21 to derive separation equations for
X(x),Y (y), and Z(z). These equations will again involve two separation constants.

Exercise 23 establishes a result that is often useful in obtaining differential equations
from conservation law arguments (as in the following appendix, which derives the heat
equation).

23. Assume that f (x) is a continuous function defined on the interval a ≤ x ≤ b. Suppose
it is known that ∫ x2

x1

f (x)dx = 0
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for all choices of x1 and x2 satisfying a ≤ x1 ≤ x2 ≤ b. Prove that f (x) = 0, a ≤ x ≤ b.
[Hint: You can use a contradiction argument; that is, you can assume that the
hypotheses hold but that the conclusion is false. For example, assume that f (c) > 0
at some point c, a < c < b. The continuity of f guarantees there is a value δ > 0 such
that (c− δ, c+ δ) lies within (a,b) while at the same time f (x) > 1

2 f (c) for all x in
(c− δ, c+ δ). Show that this fact leads to a contradiction.]

Appendix Derivation of the One-Dimensional Heat Equation

In this appendix, we derive an equation governing the behavior of temperature in the
thin, homogeneous bar shown in Figure 9.1. The lateral surface of the bar is insulated,
and its temperature, u(x, t), is assumed to depend only on axial position x and time t.
The basic principle underlying the derivation is conservation of thermal energy.

Select an arbitrary segment of the bar, say 0 ≤ x1 ≤ x ≤ x2 ≤ l. To this segment, we
apply the conservation law

Rate of change
of thermal energy

within a bar segment
=

Rate at which
energy enters
the bar segment

−
Rate at which
energy leaves

the bar segment.
(11)

Let c0 denote the heat capacity per unit volume of the material forming the bar.
This positive constant is the amount of heat required to raise the temperature of a unit
volume of the material by one unit of temperature.

The rate of change of thermal energy within the bar segment can be expressed as

d
dt

∫ x2

x1

c0u(x, t)Adx = c0A
∫ x2

x1

∂u(x, t)
∂t

dx. (12)

Since the lateral surface is insulated, heat can enter and leave the bar segments only
through the segment ends at x = x1 and x = x2. The flow of heat across these interfaces
is described in terms of a second positive constant, the thermal conductivity k, which
characterizes the material. We assume that the rate at which heat flows in the positive
x-direction across the bar’s cross-section at position x and time t is given by

−kA∂u(x, t)
∂x

. (13)

As expression (13) indicates, we are assuming the flow of heat is proportional to the
temperature gradient. The minus sign reflects the fact that heat flows “downhill,” from
a region of higher temperature to a neighboring region of lower temperature. Thermal
conductivity k describes the effectiveness of the material as a conductor of heat. In
terms of expressions (12) and (13), conservation law (11) becomes

c0A
∫ x2

x1

∂u(x, t)
∂t

dx = −kA∂u(x1, t)
∂x

+ kA
∂u(x2, t)

∂x
. (14)

Note that heat flowing in the positive x-direction at x2 is leaving the bar segment. The
right-hand side of (14) can be rewritten as kA

∫ x2
x1

[∂2u(x, t)/∂x2]dx. Therefore, defining
κ = k/c0, we can rewrite (14) as

c0A
∫ x2

x1

[
∂u(x, t)

∂t
− κ

∂
2u(x, t)

∂x2

]
dx = 0. (15)

Equation (15) holds for all t in the time interval of interest, say 0 < t < ∞. Since we are
assuming the integrand in (15) is a continuous function of (x, t), it follows, for each fixed
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t, that the integrand is a continuous function of x for all x along the bar. In general, if x1
and x2 were two fixed points for which (15) were true, we could not conclude that the
integrand itself must be zero (for example,

∫ 2π
0 sin x dx = 0, but sin x is not identically

zero).However, x1 and x2 are arbitrary points, and therefore (15) is true for every possible
choice of x1 and x2, 0 ≤ x1 < x2 ≤ l. In this case (see Exercise 23), we can conclude that
the integrand is identically zero:

∂u(x, t)
∂t

− κ
∂
2u(x, t)

∂x2
= 0. (16)

9.3 Series Solutions
In Section 9.2, we modeled heat flow in a thin rod using the one-dimensional
heat equation. As noted, the heat equation is generally supplemented with
boundary conditions and an initial condition, giving rise to an initial-boundary
value problem. We considered two different sets of supplementary conditions
and obtained the following two problems:

Zero Temperature Ends ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

(1a)

Insulated Ends ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

(1b)

The separation of variables idea introduced in Section 9.2 led us to look for
solutions of the form u(x, t) = X(x)T(t). Substituting u(x, t) = X(x)T(t) into the
heat equation leads to the pair of ordinary differential equations

X ′′(x) − σX(x) = 0, 0 < x < l (2)

T ′(t) − σκT(t) = 0, 0 < t < ∞, (3)

where the same separation constant σ is common to both equations. Imposing
the boundary conditions leads to the following two boundary value problems
for X(x):

Zero Temperature Ends X ′′(x) − σX(x) = 0, X(0) = 0, X( l ) = 0 (4)

Insulated Ends X ′′(x) − σX(x) = 0, X ′(0) = 0, X ′( l ) = 0. (5)

An Overview of the Solution Process
The solution process for the two initial-boundary value problems, (1a) and (1b),
consists of three steps.

Step 1 Solve the appropriate boundary value problem—either (4) or (5)—for
X(x). In each case, we are seeking nontrivial solutions X(x). Therefore, as noted
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in Section 9.2, each of these boundary value problems constitutes an eigen-
value problem. If X(x) is a nonzero function, then a pair (σ,X(x)) satisfying the
equation is called an eigenpair. As we shall see, each of these boundary value
problems has infinitely many eigenpairs, (σn,Xn(x)),n = 1,2,3, . . . .

Step 2 For a given eigenvalue, σn, solve the first order linear equation (3), find-
ing a solution Tn(t). For n = 1,2,3, . . . , form the functions un(x, t) = Xn(x)Tn(t),
obtaining an infinite set of solutions of the heat equation. Each solution un(x, t)
satisfies the appropriate homogeneous boundary conditions—those in equa-
tion (1a) for the zero temperature ends problem or those in (1b) for the insu-
lated ends problem.

Step 3 Form an infinite series of these functions,

u(x, t) =
∞∑
n=1

anun(x, t). (6)

The coefficients anmust be chosen to satisfy the initial condition. If we can find
coefficients an,n = 1,2, . . . such that

u(x,0) =
∞∑
n=1

anun(x,0) = f (x),

then the function u(x, t) defined by the infinite series (6) is the solution of the
initial-boundary value problem.

In the remainder of this section, we deal with relatively simple cases where
the coefficients an can be determined by inspection. In Section 9.4, we develop
the computational techniques needed to solve the general problem. The theory
of Fourier series, which provides the justification and theoretical underpin-
nings for these computations, is outlined in Section 9.5.

Solving the Eigenvalue Problems

Zero Temperature Ends Consider the eigenvalue problem (4). We need to find
values of the separation constant σ such that nontrivial solutions exist for the
boundary value problem

X ′′(x) − σX(x) = 0, X(0) = 0, X( l ) = 0.

The general solution of the differential equation X ′′(x) − σX(x) = 0 is

X(x) =
{
c1 + c2x, σ = 0

c1e
√

σx + c2e
−√

σx, σ �= 0,
(7)

where c1 and c2 are arbitrary constants. We now impose the two boundary
conditions.

Consider first the case where σ = 0. From (7), we obtain

X(0) = c1 = 0 and X( l ) = c1 + c2l = 0.
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The unique solution of this system of equations is c1 = c2 = 0, which in turn
implies that X(x) = 0. Since we are seeking nontrivial solutions, it follows that
σ = 0 is not an eigenvalue.

When σ �= 0, the general solution is

X(x) = c1e
√

σx + c2e
−√

σx.

At this point, σ can be any nonzero real or complex constant. Imposing the
boundary conditions in (4) leads to the following system of homogeneous equa-
tions:

c1 + c2 = 0

c1e
√

σ l + c2e
−√

σ l = 0.

In matrix terms, the system has the form[
1 1

e
√

σ l e−
√

σ l

] [
c1
c2

]
=

[
0

0

]
.

This homogeneous system of equations has a nontrivial solution (and therefore
σ is an eigenvalue) if and only if the determinant of the coefficient matrix
vanishes. Thus, we are led to the following condition on the value σ :

det

[
1 1

e
√

σ l e−
√

σ l

]
= e−

√
σ l − e

√
σ l = 0,

or

e2
√

σ l = 1. (8a)

FromEuler’s formula (see Section 3.5), we know that eα+iβ = eα(cosβ + i sinβ).
Therefore,

ez = 1 if and only if z = i2nπ, n = 0, ±1, ±2, . . . .
Consequently, σ is an eigenvalue if and only if

√
σ l = inπ,n = ±1, ±2, ±3, . . . .

(Here, the choice n = 0 has been eliminated since we are considering only
nonzero values of σ .)

Solving for σ , we find σn = (inπ/l)2 = −(nπ/l)2, n = ±1, ±2, ±3, . . . . Since
the values of σn for negative n equal those for positive n, it follows that the
eigenvalues of boundary value problem (4) are

σn = −
(nπ

l

)2
, n = 1,2,3, . . . . (8b)

Having found the eigenvalues, we determine the corresponding eigenfunc-
tions, Xn(x), by computing nontrivial solutions of the boundary value problem

X ′′(x) +
(nπ

l

)2
X(x) = 0, X(0) = 0, X( l ) = 0. (9)

The general solution of the differential equation in (9) is

Xn(x) = An cos
(nπx

l

)
+ Bn sin

(nπx
l

)
.
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Imposing the boundary conditions leads us to

An = 0.

The boundary conditions impose no constraint on the coefficient Bn. Without
loss of generality, we can take Bn = 1, obtaining

Xn(x) = sin
(nπx

l

)
, n = 1,2,3, . . . . (10)

Thus, the eigenpairs of boundary value problem (4) are

σn = −
(nπ

l

)2
, Xn(x) = sin

(nπx
l

)
, n = 1,2,3, . . . .

Insulated Ends Consider boundary value problem (5).We need to find values of
the separation constant σ such that nontrivial solutions exist for the boundary
value problem

X ′′(x) − σX(x) = 0, X ′(0) = 0, X ′( l ) = 0.

The general solution of the differential equation is again given by (7). Consider
the case where σ = 0. Imposing the boundary conditions, we obtain

X ′(0) = X ′( l ) = c2 = 0.

Note that the constant c1 is unconstrained. Therefore, unlike in the zero tem-
perature ends case, σ0 = 0 is an eigenvalue. We take the corresponding eigen-
function to be the constant function X0(x) = 1.

Next, consider the case where σ �= 0. From (7), the general solution is

X(x) = c1e
√

σx + c2e
−√

σx.

Imposing the boundary conditions leads to the homogeneous system of equa-
tions

X ′(0) = √
σ [c1 − c2] = 0

X ′( l ) = √
σ

[
c1e

√
σ l − c2e

−√
σ l

]
= 0,

or, in matrix terms,

√
σ

[
1 −1
e
√

σ l −e−
√

σ l

] [
c1
c2

]
=

[
0

0

]
.

Requiring the determinant to vanish leads to

σ
[
−e−

√
σ l + e

√
σ l

]
= 0. (11)

Since σ �= 0 by assumption, (11) again leads to the eigenvalue equation
e2

√
σ l = 1. Thus, as in the problem of zero temperature ends, we obtain eigen-

values

σn = −
(nπ

l

)2
, n = 1,2,3, . . . .
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To find the corresponding eigenfunctions, we impose the boundary condi-
tions on the general solution of

X ′′(x) +
(nπ

l

)2
X(x) = 0.

As before, the general solution is

Xn(x) = An cos
(nπx

l

)
+ Bn sin

(nπx
l

)
.

Imposing the boundary conditions yields

X ′
n(0) =

(nπ

l

)
Bn = 0, X ′

n( l ) = (−1)n
(nπ

l

)
Bn = 0.

Therefore, Bn = 0 but An is unconstrained. Choosing An = 1 leads to eigenfunc-
tions

Xn(x) = cos
(nπx

l

)
, n = 1,2,3, . . . . (12)

Thus, the eigenpairs of problem (5) are

σ0 = 0, X0(x) = 1

σn = −
(nπ

l

)2
, Xn(x) = cos

(nπx
l

)
, n = 1,2,3, . . . .

Forming the Basic Solutions
We are now ready to carry out step 2, solving equation (3) and then forming
the building-block solutions un(x, t) = Xn(x)Tn(t). Equation (3) has the form

T ′
n(t) − σnκTn(t) = 0,

where σn is an eigenvalue of equation (4) in the zero temperature ends problem
or equation (5) in the insulated ends problem.

Zero Temperature Ends Equation (3) reduces to

T ′
n(t) +

(nπ

l

)2
κTn(t) = 0, n = 1,2,3, . . . .

The general solution of this linear homogeneous first order differential equation
is

Tn(t) = Cne
−(nπ/l)2κt, n = 1,2,3, . . . .

Choosing Cn = 1 for n = 1,2, . . . , we obtain nontrivial solutions

un(x, t) = e−(nπ/l)2κt sin
nπ

l
x, n = 1,2,3, . . . . (13)

Adirect calculation shows thatun(x, t) is a solution of the heat equation and that
it also satisfies the homogeneous boundary conditions un(0, t) = un( l, t) = 0,
0 ≤ t < ∞.
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Insulated Ends Equation (3) reduces to

T ′
0 = 0,

T ′
n(t) +

(nπ

l

)2
κTn(t) = 0, n = 1,2, . . . .

The general solutions are

T0(t) = C0,

Tn(t) = Cne
−(nπ/l)2κt, n = 1,2,3, . . . .

Choosing Cn = 1 for n = 0,1,2, . . . , we obtain nontrivial solutions

un(x, t) = e−(nπ/l)2κt cos
nπ

l
x, n = 0,1,2, . . . . (14)

As with the solutions in equation (13), direct substitution shows that each func-
tion in equation (14) is a solution of the heat equation and that it also satisfies
the homogeneous boundary conditions

∂un(0, t)
∂x

= ∂un( l, t)
∂x

= 0, 0 ≤ t < ∞.

Satisfying the Initial Condition
For each of these problems, in addition to satisfying the heat equation and the
homogeneous boundary conditions, the solution u(x, t) must also satisfy the
associated initial condition u(x,0) = f (x),0 ≤ x ≤ l, where f (x) is the prescribed
initial temperature distribution. In an attempt to satisfy the initial condition,
we construct an infinite series having the form2

u(x, t) =
∞∑
n=0

anun(x, t). (15a)

Imposing the initial condition, we obtain the following requirement on the
coefficients an:

u(x,0) =
∞∑
n=0

anun(x,0) = f (x), 0 ≤ x ≤ l. (15b)

Two obvious questions arise:

1. What functions f (x) have an infinite series representation such as that
given by (15b)? If our overall solution approach of separation of vari-
ables is to be useful, we need to be able to represent a wide class of initial
temperature functions by such an infinite series.

2. Suppose, for a particular function f (x), that we are somehow assured
that the representation (15b) is possible. Howdowe go about computing
the coefficients an, n = 0,1,2, . . .?

2In order to have a uniform notation for the infinite series (15a), we include an n = 0 term. For
the case of zero temperature ends, we have not defined a function u0(x, t) and therefore we are
implicitly assuming that a0 = 0.
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We conclude this section with two simple examples where the coefficients
a0, a1, a2, . . . in (15b) can be determined by inspection. In Section 9.4, we ad-
dress the general case.

E X A M P L E

1 Solve the initial-boundary value problem

ut(x, t) = 3uxx(x, t), 0 < x < 2, 0 < t < ∞
u(0, t) = u(2, t) = 0, 0 ≤ t < ∞
u(x,0) = − sinπx+ 3 sin 3πx, 0 ≤ x ≤ 2.

Solution: In this example of zero temperature ends, we have κ = 3, l = 2, and
f (x) = − sinπx+ 3 sin 3πx. Thus [see equation (13)], the eigenfunctions are

un(x, t) = e−(nπ/2)23t sin
nπ

2
x, n = 1,2,3, . . . ,

and we seek a solution of the form

u(x, t) =
∞∑
n=1

ane
−(nπ/2)23t sin

nπ

2
x.

Imposing the initial condition leads to

u(x,0) =
∞∑
n=1

an sin
nπ

2
x = − sinπx+ 3 sin 3πx, 0 ≤ x ≤ 2.

We can satisfy this constraint by inspection; simply choose a2 = −1, a6 = 3, and
set the remaining coefficients an equal to zero. The solution is therefore

u(x, t) = −e−3π2 t sinπx+ 3e−27π2 t sin 3πx. ❖

E X A M P L E

2 Solve the initial-boundary value problem

ut(x, t) = uxx(x, t), 0 < x < 4, 0 < t < ∞
ux(0, t) = ux(4, t) = 0, 0 ≤ t < ∞
u(x,0) = 5− cosπx− 3 sin2 2πx, 0 ≤ x ≤ 4.

Solution: In this example of insulated ends, we have κ = 1, l = 4, and f (x) =
5− cosπx− 3 sin2 2πx,0 ≤ x ≤ 4. Thus [see equation (14)], the eigenfunctions
are

un(x, t) = e−(nπ/4)2 t cos
nπ

4
x, n = 0,1,2,3, . . . ,

and we seek a solution of the form

u(x, t) =
∞∑
n=0

ane
−(nπ/4)2 t cos

nπ

4
x.

Imposing the initial condition leads to

u(x,0) =
∞∑
n=0

an cos
nπ

4
x = 5− cosπx− 3 sin2 2πx, 0 ≤ x ≤ 4.
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At first glance, the term −3 sin2 2πx appears troublesome. However, we can
use the trigonometric identity sin2 θ = (1− cos 2θ)/2 to express the initial con-
dition as

u(x,0) = 7
2 − cosπx+ 3

2 cos 4πx.

Therefore, we can satisfy the initial condition by choosing

a0 = 7
2 , a4 = −1, a16 = 3

2 , and an = 0, n �= 0,4,16.

The solution is

u(x, t) = 7
2 − e−π2 t cosπx+ 3

2e
−16π2 t cos 4πx. ❖

Useful Trigonometric Identities
Much of this chapter deals with trigonometric functions, so we list some iden-
tities that will prove useful.

Sum and Difference of Angles

sin(A± B) = sinA cosB± cosA sinB

cos(A± B) = cosA cosB∓ sinA sinB.
(16)

When A = B = θ , (16) reduces to the following double-angle formulas.

Double-Angle Formulas sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ.
(17a)

Since cos2 θ + sin2 θ = 1, the second equation in (17a) yields the additional
formulas

cos2 θ = 1+ cos 2θ
2

sin2 θ = 1− cos 2θ
2

.

(17b)

The Exercises pose a number of initial-boundary value problems for which
these trigonometric identities can be used to obtain the solution. Recall from
Section 9.2 that some checks were formulated as to how solutions should be-
have, particularly as t → ∞. In the Exercises, we apply these checks to many
of the problems considered.

E X E R C I S E S

Exercises 1–8:

(a) As in Example 1, use (13) and (15) to solve the initial value problem

ut(x, t) = uxx(x, t), 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

The series coefficients can be evaluated by inspection. In some exercises, trigono-
metric manipulation may be required.

(b) Evaluate the solution at (x, t) = ( l/2,1).
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1. f (x) = sin
(
2πx
l

)
2. f (x) = 3 sin

(
3πx
l

)

3. f (x) = sin
(πx
l

)
− 2 sin

(
2πx
l

)
4. f (x) = sin x+ 4 sin 2x, l = π

5. f (x) = 4 sin
(πx
l

)
cos

(πx
l

)
6. f (x) = 2 sin(3πx) cos(πx), l = 1

7. f (x) =
3∑

n=1
n−1 sin(nπx), l = 1 8. f (x) = sin3 πx, l = 1

Exercises 9–16:

(a) As in Example 2, use (14) and (15) to solve the initial value problem

ut(x, t) = uxx(x, t), 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

The series coefficients can be evaluated by inspection. In some exercises, trigono-
metric manipulation may be required.

(b) Evaluate the solution at (x, t) = ( l/2,1).

(c) For the solution u(x, t) found in part (a), show that lim t→∞u(x, t) exists and is equal
to l−1

∫ l
0 f (x)dx.

9. f (x) = 3+ 2 cos
(πx
l

)
10. f (x) = 4− cos

(πx
l

)
+ 2 cos

(
2πx
l

)

11. f (x) = cos
(πx
2

)
+ 2 cos(πx), l = 2 12. f (x) = 3 cos x, l = π

13. f (x) = cosπx+ cos2 πx, l = 1 14. f (x) = 2− sin2 πx, l = 2

15. f (x) = 1
2

+
3∑

n=1
cos

(nπx
l

)
16. f (x) = 2 cos3

(πx
l

)

17. The ends of a thin, laterally insulated bar of length 2 aremaintained at a temperature
of zero degrees. At time t = 0, the temperature profile is

u(x,0) = 100 sin
(πx
2

)
.

At time t = 1, the temperature at the center of the bar has decreased to a value of
70; that is, u(1,1) = 70.

(a) What is the thermal diffusivity κ of the bar?

(b) What is ux(2,1)?

18. The ends of a thin, laterally insulated bar of length 4 are insulated. At time t = 0,
the temperature profile is

u(x,0) = 10+ 100 cos
(πx
4

)
.

At time t = 1, the temperature at x = 1 has decreased to a value of 60; that is,
u(1,1) = 60.

(a) What is the thermal diffusivity κ of the bar?

(b) What is u(0,1)?

(c) At what time t is u(0, t) = 40?

19. For the case where the left end of the bar is kept at zero degrees and the right end
is insulated, we saw in Exercise 9 of Section 9.2 that the boundary value problem
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for X(x) is

X ′′ − σX = 0, 0 < x < l, X(0) = 0, X ′( l ) = 0.

(a) Show that σ = 0 is not an eigenvalue.

(b) Show that eigenvalues are solutions of the equation exp(2
√

σ l) = −1.
(c) Use Euler’s formula to show that 2

√
σn l = (2n− 1)π i,n = 1,2, . . . .

(d) Given σn from part (c), determine a corresponding eigenfunction Xn(x).

(e) Solve T ′
n(t) − κσnTn(t) = 0, and form the building-block solution un(x, t) =

Xn(x)Tn(t).

20. Use the results of Exercise 19 to solve the problem

ut = 0.5uxx, 0 < x < 3, 0 < t < ∞
u(0, t) = 0, ux(3, t) = 0, 0 ≤ t < ∞
u(x,0) = 2 sin

(πx
2

)
, 0 ≤ x ≤ 3.

9.4 Calculating the Solution
In Sections 9.2–9.3, we saw how to use separation of variables to find functions
un(x, t) that solve the heat equation and that also satisfy the homogeneous
boundary conditions associated with the zero temperature ends problem or
the insulated ends problem. Then, in order to obtain a solution u(x, t) that also
satisfies the initial condition, we considered using an infinite series of the form

u(x, t) =
∞∑
n=0

anun(x, t). (1)

Assume that the initial condition is given by u(x,0) = f (x). Imposing the initial
condition on series (1) requires that the coefficients an be chosen so that

u(x,0) =
∞∑
n=0

anun(x,0) = f (x). (2)

We illustrated these calculations in Section 9.3, using examples and exercises
where the coefficients of infinite series (2) could be determined by inspection
and a judicious use of trigonometric identities.

In this section, we examine the general case, where inspection and simple
trigonometricmanipulations are not sufficient to obtain the solution u(x, t). We
emphasize again that we are using the heat equation to introduce the general
concept of separation of variables. Once the special case of the heat equation
is understood, it will be easy to generalize the ideas to other problems, such as
Laplace’s equation and the wave equation.

In Section 9.5, we present results from the theory of Fourier3 series that will
justify the calculations performed below. The zero temperature ends problem
and the insulated ends problemwill be shown to involve special types of Fourier

3Jean Baptiste Joseph Fourier (1768–1830) conducted much of his mathematical work while en-
meshed in the political turmoil of the FrenchRevolution and theNapoleonic era. Fourier is remem-
bered today for his work on the mathematical theory of heat propagation and on the trigonometric
series that bears his name.
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series, known as the Fourier sine series and the Fourier cosine series, respec-
tively. Anticipating this fact, we use this terminology in the present section.

The Fourier Sine Series
Consider the zero temperature ends problem,

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

For this problem, the functions un(x, t) are

un(x, t) = e−(nπ/l)2κt sin
nπ

l
x, n = 1,2, . . . ,

and infinite series (1) becomes

u(x, t) =
∞∑
n=1

ane
−(nπ/l)2κt sin

(nπx
l

)
. (3)

Imposing the initial condition u(x,0) = f (x) in (3) leads to the following re-
quirement on the coefficients an:

f (x) =
∞∑
n=1

an sin
(nπx

l

)
, 0 ≤ x ≤ l. (4)

The theory of Fourier series given in Section 9.5 describes the sense in which
(4) is valid. The theory also assures us that the following simple process can be
used to find the coefficients:

Step 1 Multiply both sides of (4) by sin(kπx/l), obtaining

f (x) sin
(
kπx
l

)
=

∞∑
n=1

an sin
(nπx

l

)
sin

(
kπx
l

)
. (5)

Step 2 Integrate both sides from x = 0 to x = l, obtaining∫ l

0
f (x) sin

(
kπx
l

)
dx =

∫ l

0

∞∑
n=1

an sin
(nπx

l

)
sin

(
kπx
l

)
dx.

Interchange the order of integration and summation on the right-hand side:∫ l

0
f (x) sin

(
kπx
l

)
dx =

∞∑
n=1

an

∫ l

0
sin

(nπx
l

)
sin

(
kπx
l

)
dx. (6)

The integrals appearing within the sum can be evaluated using trigonometric
identities (see Section 9.3). In particular,

sin
(nπx

l

)
sin

(
kπx
l

)
= 1
2

[
cos

(
(n− k)πx

l

)
− cos

(
(n+ k)πx

l

)]
.
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Therefore,

∫ l

0
sin

(nπx
l

)
sin

(
kπx
l

)
dx =

⎧⎨
⎩
0, n �= k
l
2

, n = k.

All terms of the summation in equation (6) are therefore zero except for the case
where the summation index, n, is equal to k. Thus, infinite series (6) collapses
to a single term, and we obtain∫ l

0
f (x) sin

(
kπx
l

)
dx = ak

l
2

.

Solving for the coefficient ak yields

ak = 2
l

∫ l

0
f (x) sin

(
kπx
l

)
dx, k = 1,2, . . . . (7)

E X A M P L E

1 Solve the initial-boundary value problem

ut(x, t) = 1
10uxx(x, t), 0 < x < 2, 0 < t < ∞

u(0, t) = u(2, t) = 0, 0 ≤ t < ∞

u(x,0) =
{
x, 0 ≤ x ≤ 1

2− x, 1 < x ≤ 2.

Show graphically how the partial sums of series (2) converge to the triangle-
shaped initial temperature profile. Also, show graphically how the solution
u(x, t) behaves on the time interval 0 ≤ t ≤ 2.

Solution: The initial temperature distribution,u(x,0), is givenby the piecewise-
linear function f (x) whose triangle-shaped graph is shown in Figure 9.4.

u

x
1

1

2

f(x)

FIGURE 9.4

The initial temperature distribution for the initial-boundary value
problem in Example 1 is given by u(x,0) = f (x),0 ≤ x ≤ 2, where
f (x) is the piecewise-linear function whose graph is shown.

Since this is a zero temperature ends problem, the solution is represented
by the series (3), with l = 2 and κ = 1

10 . Therefore, we can express the solution
as

u(x, t) =
∞∑
n=1

ane
−(nπ/2)2 (1/10)t sin

(nπx
2

)
.

(continued)
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(continued)

The coefficients of this series are found by evaluating integral (7),

an = 2
l

∫ l

0
f (x) sin

(nπx
l

)
dx

=
∫ 1

0
x sin

(nπx
2

)
dx+

∫ 2

1
(2− x) sin

(nπx
2

)
dx

=
8 sin

(nπ

2

)
n2π2

=
⎧⎨
⎩
8(−1)(n−1)/2

n2π2 , n odd

0, n even.

Simply inserting this final expression for an into solution (3) leads to an
inefficient representation of the solution, since half the terms being summed
are zero:

u(x, t) =
∞∑

n=1
n odd

8(−1)(n−1)/2

n2π2 e−(nπ/2)2 (1/10)t sin
(nπx
2

)
.

We can improve computational efficiency by changing the summation index.
Let n = 2m− 1,m = 1,2,3, . . . . As the index m takes on all positive integer
values, n takes on only odd positive integer values. With this change of index,
the solution can be expressed as

u(x, t) = 8

π2

∞∑
m=1

(−1)m−1e−((2m−1)π/2)2 (1/10)t

(2m− 1)2
sin

(
(2m− 1)πx

2

)
. (8)

Modern computational software lets us conveniently evaluate and display
the partial sums of expressions such as (8) and thereby gain quantitative and
visual insight into the behavior of the solution. In particular, let uM(x, t) denote
theMth partial sum of series (8). Figure 9.5 depicts, forM = 5,10, and 50, the
behavior of

uM(x,0) = 8

π2

M∑
m=1

(−1)m−1

(2m− 1)2
sin

(
(2m− 1)πx

2

)
. (9)

Notice how the graph of the partial sums “sharpens” at the triangle vertex asM
increases. ForM = 50, the partial sum approximates the initial condition quite
well.

Figure 9.6 displays the graph of z = u50(x, t) for 0 ≤ x ≤ 2,0 ≤ t ≤ 2. This
graph is a good approximation to the graph of the solution surface, z = u(x, t).

Figure 9.7 on page 594 shows the graph of u50(x, t) at times t = 0.0,0.5,1.0,
2.0; these graphs are snapshots of the solution at the indicated times. Geomet-
rically, the graphs in Figure 9.7 are obtained by slicing the solution surface with
planes perpendicular to the t-axis.
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FIGURE 9.5

Three of the partial sums, uM(x,0), of series (9). As M increases, the partial
sums approach the initial temperature distribution shown in Figure 9.4.

0

1

2

1

2

0

0.5

1

u50

t

x

FIGURE 9.6

The graph of the function z = u50(x, t), where uM(x, t) is the Mth partial
sum of the series (9). The partial sum u50(x, t) is a good approximation of
the solution, u(x, t), of the initial-boundary value problem in Example 1.

One striking characteristic of Figures 9.6–9.7 is the smoothing effect of
the heat equation on the initial temperature profile. In particular, the triangu-
lar vertex of the initial temperature profile is rapidly smoothed over as time
passes. It can be shownmathematically that this type of smoothing behavior is
characteristic of solutions of the heat equation. The behavior illustrated in the
figures is also consistent with everyday experience. For the thin bar treated in
this example, we expect (as heat diffuses) that any sharp edges in the tempera-
ture profile will be smoothed over. Moreover, as time increases, we expect the
heat initially present to leak out of the bar ends and the temperature u(x, t) to
approach the zero temperature steady-state solution.

(continued)
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(continued)
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FIGURE 9.7

The graph of u50(x, t) at times t = 0.0,0.5,1.0, 2.0. Geometrically, these
graphs can be viewed as snapshots of the solution at these times. The
graphs are obtained by slicing the surface in Figure 9.6 with a plane
perpendicular to the t-axis at the indicated times. ❖

The Fourier Cosine Series
Consider the problem of insulated ends,

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

For this problem, we know from equation (14) in Section 9.3 that the following
functions satisfy the heat equation and the homogeneous boundary conditions:

un(x, t) = e−(nπ/l)2κt cos
nπ

l
x, n = 0,1,2, . . . .

Infinite series (1) becomes

u(x, t) =
∞∑
n=0

ane
−(nπ/l)2κt cos

(nπx
l

)
. (10)
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Imposing the initial condition u(x,0) = f (x) leads to

f (x) =
∞∑
n=0

an cos
(nπx

l

)
, 0 ≤ x ≤ l. (11)

If we can find coefficients an that satisfy (11), we obtain a solution of the
form

u(x, t) =
∞∑
n=0

ane
−(nπ/l)2κt cos

(nπx
l

)
. (12)

As in equations (5)–(7), we can determine the values an in equation (11)
if we multiply both sides by cos(nπx/l) and integrate from x = 0 to x = l. The
result is

a0 = 1
l

∫ l

0
f (x)dx

an = 2
l

∫ l

0
f (x) cos

(nπx
l

)
dx, n = 1,2, . . . .

(13)

Example 2 illustrates the calculations. In this example, the initial temperature
distribution has a jump discontinuity.

E X A M P L E

2 Solve the initial-boundary value problem

ut(x, t) = (0.1)uxx(x, t), 0 < x < 2, 0 < t < ∞
ux(0, t) = ux(2, t) = 0, 0 ≤ t < ∞

u(x,0) =
{
2, 0 ≤ x ≤ 1

4, 1 < x ≤ 2.

The initial temperature distribution, u(x,0), is the piecewise-constant function
whose graph is shown in Figure 9.8.

0.5 1 1.5 2
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5

x

u(x, 0)

1

FIGURE 9.8

The graph shows the initial temperature profile for the initial-boundary
value problem treated in Example 2. The initial temperature distribution,
u(x,0), is a piecewise-constant function.

(continued)
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(continued)

Solution: The coefficients are

a0 = 1
2

∫ 2

0
f (x)dx =1

2

[∫ 1

0
2dx+

∫ 2

1
4dx

]
= 3

an = 2
2

[∫ 2

0
f (x) cos

(nπx
2

)
dx

]

=
∫ 1

0
2 cos

(nπx
2

)
dx+

∫ 2

1
4 cos

(nπx
2

)
dx

=

⎧⎪⎨
⎪⎩
4(−1)(n+1)/2

nπ
, n odd,

0, n even,

n = 1,2, . . . .

Using the change of index n = 2m− 1, we obtain the solution

u(x, t) = 3+ 4
π

∞∑
m=1

(−1)me−((2m−1)π/2)2 (1/10)t

2m− 1
cos

(
(2m− 1)πx

2

)
. (14)

Let uM(x, t) denote the Mth partial sum of the series (14). Figure 9.9 shows
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FIGURE 9.9

Four of the partial sums, uM(x,0), of series (15).
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graphs of the partial sums, uM(x,0), for M = 5,10,50, and 100, where

uM(x,0) = 3+ 4
π

M∑
m=1

(−1)m
2m− 1

cos
(

(2m− 1)πx
2

)
. ❖ (15)

Observe that the partial sums (15) appear to be converging to the initial
temperature profile. In particular, partial sum u100(x,0) closely approximates
the initial temperature profile except in the immediate vicinity of the disconti-
nuity. As can be seen in Figure 9.9, the partial sum tends to undershoot and then
overshoot the correct values in the immediate neighborhood of the jump. This
phenomenon, known as the Gibbs4 phenomenon, is characteristic of Fourier
series behavior at jump discontinuities; it will be discussed further in the next
section.

Figure 9.10 displays snapshots of u100(x, t) at times t = 0.5,1.0,2.0, and
10.0. We expect that the partial sum u100(x, t) closely approximates the solution
u(x, t) for all t > 0. The graphs suggest that the solution becomes flatter and that
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FIGURE 9.10

These graphs show snapshots of u100(x, t) at the times indicated. The
partial sum u100(x, t) closely approximates the solution u(x, t). The solution
approaches a constant value of 3 as t increases.

4Josiah Willard Gibbs (1839–1903) graduated from Yale in 1863, earning the first doctorate in
engineering conferred in the United States. In 1871, he was appointed professor of mathemati-
cal physics at Yale, a position he held for his entire career. Gibbs is remembered for important
contributions to thermodynamics, chemistry, vector analysis, and statistical mechanics.
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the temperature across the bar approaches a constant value of 3 as t increases.
That is, we expect

lim
t→∞u(x, t) = 3, 0 ≤ x ≤ 2.

In the limit as t approaches ∞, the exponential terms in series solution (14)
decrease in magnitude and cause the entire series to grow smaller; all that
remains in the limit is the constant term. This limiting behavior is consistent
with the conjecture made in Section 9.2, based on physical grounds.

The Constant Temperature Ends Problem
We now consider a problem where the ends of the bar, instead of being kept
at zero degrees, are maintained at two constant temperatures. The initial-
boundary value problem we consider is

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞
u(0, t) = T0, u( l, t) = Tl, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

(16)

We assume that f (x) satisfies the compatibility conditions f (0) = T0 and
f ( l ) = Tl. It is important to note that the boundary conditions in (16) are non-
homogeneous. Therefore, we cannot blindly follow the separation of variables
technique used in Sections 9.2–9.3 for solving the zero temperature ends prob-
lem and the insulated ends problem.

In particular, suppose we were to find functions un(x, t),n = 1,2,3, . . . that
solved the heat equation and that also satisfied the nonhomogeneous boundary
conditions in (16). If we formed a linear combination

ϕ(x, t) =
∑

anun(x, t),

then the function ϕ(x, t) would also be a solution of the heat equation, since
the heat equation is linear and homogeneous. However, the linear combina-
tion ϕ(x, t) will not, in general, satisfy the boundary conditions of (16) (see
Exercise 13).

In order to solve initial-boundary value problem (16), we use the simple
device of introducing a change of dependent variable that transforms problem
(16) into a problem with homogeneous boundary conditions—a problem we
already know how to solve.

Consider the linear function defined by

v(x) = l−1[l T0 + x(Tl − T0)]. (17)

Note that v(0) = T0 and v( l ) = Tl. Note further that v(x) is a solution of the heat
equation; it is the time-independent steady-state solution of the heat equation
that satisfies the given nonhomogeneous boundary conditions. We now define
a new dependent variable w(x, t) by setting u(x, t) = v(x) +w(x, t), or, equiva-
lently,

w(x, t) = u(x, t) − v(x). (18)

It follows (see Exercise 16 in Section 9.1) that w(x, t) is a solution of the heat
equation that vanishes at x = 0 and x = l. In fact, w(x, t) is a solution of the
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following initial-boundary value problem:

wt(x, t) = κwxx(x, t), 0 < x < l, 0 < t < ∞
w(0, t) = 0, w( l, t) = 0, 0 ≤ t < ∞
w(x,0) = f (x) − v(x), 0 ≤ x ≤ l.

(19)

We have already solved the zero temperature ends problem formulated in (19).
Using the known solution of (19), we can express the desired solution of prob-
lem (16), u(x, t), as u(x, t) = v(x) +w(x, t). In particular, we have

u(x, t) = v(x) +
∞∑
n=1

ane
−(nπ/l)2κt sin

(nπx
l

)
,

where [see equation (7)]

an = 2
l

∫ l

0
[f (x) − v(x)] sin

(nπx
l

)
dx, n = 1,2,3, . . . . (20)

E X E R C I S E S

Exercises 1–6:

In each exercise,

(a) Sketch the graph of the given initial condition f (x) and determine its Fourier sine
series.

(b) For the given initial condition f (x), solve the initial-boundary value problem
ut = κuxx, 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

1. f (x) = sin2
(πx
l

)
2. f (x) =

⎧⎪⎨
⎪⎩
0, 0 ≤ x < l/4

1, l/4 ≤ x ≤ 3l/4

0, 3l/4 < x ≤ l

3. f (x) = x cos
(πx
2l

)
4. f (x) = x( l − x)

5. f (x) =
{
2x, 0 ≤ x ≤ l/2

0, l/2 < x ≤ l
6. f (x) =

⎧⎪⎨
⎪⎩
2 sin

(
2πx
l

)
, 0 ≤ x ≤ l/2

0, l/2 < x ≤ l

Exercises 7–12:

In each exercise,

(a) Sketch the graph of the given initial condition f (x) and determine its Fourier cosine
series.

(b) For the given initial condition f (x), solve the initial-boundary value problem

ut = κuxx, 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

7. f (x) =
{
1, 0 ≤ x ≤ l/2

0, l/2 < x ≤ l
8. f (x) =

{
1, 0 ≤ x ≤ 2l/3

3, 2l/3 < x ≤ l
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9. f (x) =

⎧⎪⎨
⎪⎩
0, 0 ≤ x < l/3

3, l/3 ≤ x ≤ 2l/3

0, 2l/3 < x ≤ l

10. f (x) =

⎧⎪⎨
⎪⎩
cos

(
2πx
l

)
, 0 ≤ x ≤ l/2

0, l/2 < x ≤ l

11. f (x) =
∣∣∣cos(πx

l

)∣∣∣ 12. f (x) =

⎧⎪⎨
⎪⎩
0, 0 ≤ x ≤ l/2

cos2
(
2πx
l

)
, l/2 < x ≤ l

13. Let u1(x, t) and u2(x, t) be solutions of ut = κuxx. Assume that both solutions satisfy
the same nonhomogeneous boundary conditions at x = 0 and x = l. In particular,
suppose that u1(0, t) = u2(0, t) = T0 and u1( l, t) = u2( l, t) = T1,0 ≤ t < ∞. Let φ(x, t)
denote the linear combination φ(x, t) = a1u1(x, t) + a2u2(x, t). For what values of the
constants a1 and a2 (if any) will φ(x, t) be a solution of the heat equation that also
satisfies both boundary conditions?

Exercises 14–17:

In each exercise, solve the initial-boundary value problem

ut = κuxx, 0 < x < l, 0 < t < ∞
u(0, t) = T0, u( l, t) = T1, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l

for the given parameter values and initial condition. Note that, as in equation (16),
the boundary conditions are nonhomogeneous. Use the ideas outlined in equations
(17)–(20) to solve these initial-boundary value problems.

14. κ = 0.5, l = 4, T0 = 0, T1 = 100, f (x) = 25x+ 80 sinπx cosπx

15. κ = 1, l = 1, T0 = 50, T1 = 50, f (x) = 50− 25 sin2 πx

16. κ = 0.1, l = 2, T0 = 200, T1 = 100, f (x) = 200− 50x+ 40 sinπx

17. κ = 1, l = 2, T0 = 0, T1 = 100, f (x) = 50x

18. Assume a thin, laterally insulated bar of unit length has its two ends maintained at
constant temperatures T0 = 20◦F and T1. At time t = 0, the initial temperature in the
bar is known to be u(x,0) = 20+ (T1 − 20)x+ 50 sinπx. A probe inserted into the
bar center measures the temperature and finds it to be 135◦F and 95◦F at times t = 0
and t = 2, respectively. Determine the unknown endpoint temperature T1. What is
the thermal diffusivity κ?

19. Select one of the initial-boundary value problems from Exercises 1–12. Assume
that κ = 0.1 and l = 2. Let u(x, t) denote the solution of the initial-boundary value
problem. Use computer software to plot u(x,0) = f (x),u(x,1), and u(x,5). Make
a change of summation index, if necessary, to avoid summing terms that are zero.
Determine, by trial and error, a partial sum large enough to adequately approximate
f (x), and use this same partial sum to plot the solution at times t = 1 and t = 5.

9.5 Fourier Series
To set the stage for a discussion of Fourier series, we beginwith a brief review of
the solution process for the zero temperature ends problem and the insulated
ends problem, as presented in Sections 9.2–9.4. In each case, the problem of
interest starts with the heat equation

ut(x, t) = κuxx(x, t), 0 < x < l, 0 < t < ∞. (1)
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For the zero temperature ends case, boundary values are prescribed by

u(0, t) = u( l, t) = 0, 0 ≤ t < ∞. (2a)

For the insulated ends case, boundary values are prescribed by

ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞. (2b)

In both cases, an initial temperature distribution is also prescribed:

u(x,0) = f (x), 0 ≤ t < ∞. (3)

As described in Sections 9.2–9.3, the method of separation of variables can be
used to determine functions un(x, t) that satisfy the heat equation (1) and that
also satisfy the homogeneous boundary conditions.

For boundary condition (2a), the functions un(x, t) are given by

un(x, t) = e−(nπ/l)2κt sin
nπ

l
x. (4a)

For boundary condition (2b), the functions un(x, t) are

un(x, t) = e−(nπ/l)2κt cos
nπ

l
x (4b)

[see equations (13) and (14) in Section 9.3].
Although the functions un(x, t) satisfy the heat equation and an associated

boundary condition [(2a) or (2b)], they do not (in general) satisfy the initial
condition u(x,0) = f (x). However, by the principle of superposition, we know
that linear combinations of un(x, t) satisfy the heat equation and the homoge-
neous boundary condition. Thus, it seems reasonable to attempt to satisfy the
initial condition by using a linear combination of the functions un(x, t),

u(x, t) =
∞∑
n=0

anun(x, t). (5)

When we impose the initial condition u(x,0) = f (x), equation (5) leads us to

u(x,0) = f (x) =
∞∑
n=0

anun(x,0). (6)

When un(x, t) is given by (4a), equation (6) reduces to

f (x) =
∞∑
n=0

an sin
nπ

l
x. (7a)

When un(x, t) is given by (4b), equation (6) reduces to

f (x) =
∞∑
n=0

an cos
nπ

l
x. (7b)

In Section 9.4, formulas were given for the coefficients an in equations (7a)–
(7b). In the next subsection, we present Theorem 9.1, which gives a theoretical
foundation for the solution process outlined by equations (1)–(7). Theorem
9.1 assures us, for “reasonable” functions f (x), that we can represent f (x) in a
Fourier sine series such as (7a), a Fourier cosine series such as (7b), or even a
Fourier series containing both sine and cosine terms.
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In later sections, when we study Laplace’s equation and the wave equation,
we will encounter initial-boundary value problems similar to those associated
with the heat equation. Theorem 9.1 applies to these problems as well.

The Definition of Fourier Series and a Fourier
Convergence Theorem
An infinite series of the form

a0
2

+
∞∑
n=1

an cosnθ +
∞∑
n=1

bn sinnθ (8a)

is called a Fourier series. Expression (8a) uses notation that is often encoun-
tered in references. However, since we are interested in the case where the
variable θ is given by θ = πx/l, we rewrite series (8a) as

a0
2

+
∞∑
n=1

an cos
nπ

l
x+

∞∑
n=1

bn sin
nπ

l
x. (8b)

We represent the constant term in (8b) as a0/2 rather than a0 for convenience,
since it leads to a single concise formula for all the cosine coefficients
a0, a1, . . . , an, . . . . Note that series (4) and (11) in Section 9.4 are special cases
of series (8b). In particular, series (4) has only sine terms while series (11) has
only cosine terms. We see later how these two special cases arise.

Below we state Theorem 9.1, which discusses convergence of the Fourier
series for f (x). The hypotheses of Theorem 9.1 ask that f (x) and f ′(x) be periodic
and piecewise continuous on (−∞, ∞). Therefore, before stating Theorem 9.1,
we comment on these hypotheses.

Observe that every partial sum of Fourier series (8b) is a periodic function
having period 2l (periodic functions are discussed in Sections 3.6 and 5.4).
Thus, if Fourier series (8b) converges to a function F(x), then F(x) also has
period 2l; that is, F(x+ 2l) = F(x) for all x in the interval −∞ < x < ∞.

The definition of a piecewise continuous function is given in Section 5.1.We
repeat that definition here. A function f (x) is a piecewise continuous function
on [a,b] if

(a) The function f (x) is continuous at each point x in the interval a ≤ x ≤ b
except possibly for a finite set of points, say a ≤ x1 < x2 < · · · < xn ≤ b.

(b) The only discontinuities are jump discontinuities. That is, at a point of
discontinuity xj, both of the following one-sided limits exist:

f (x−
j ) = lim

x→x−
j

f (x) and f (x+
j ) = lim

x→x+
j

f (x).

If a discontinuity occurs at an endpoint, a or b, we require only the interior
one-sided limits to exist. In the definition of piecewise continuity, we also allow
for the possibility that f (x) is not defined at a point of discontinuity, xj. Figure
9.11 shows the graph of a function that is piecewise continuous on the interval
[−1,1].

A function f (x) is said to be piecewise continuous on (−∞, ∞) if it is piece-
wise continuous on every finite subinterval [a,b] of (−∞, ∞).
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x

f (x)

1–1

FIGURE 9.11

The graph of a piecewise continuous function, f (x), defined
on the interval [−1,1].

Theorem 9.1 gives conditions on a function f (x) that are sufficient to guar-
antee that f (x) can be represented as a Fourier series. A proof can be found in
an advanced text such as Rudin’s Principles of Mathematical Analysis.5

Theorem 9.1
Let f (x) and f ′(x) be periodic functions having period 2l, where f (x) and
f ′(x) are piecewise continuous on −∞ < x < ∞. Let the Fourier coeffi-
cients be defined by

an = 1
l

∫ l

−l
f (x) cos

nπ

l
x dx, n = 0,1, . . . (9a)

bn = 1
l

∫ l

−l
f (x) sin

nπ

l
x dx, n = 1,2, . . . . (9b)

Then the Fourier series

a0
2

+
∞∑
n=1

an cos
nπ

l
x+

∞∑
n=1

bn sin
nπ

l
x (10)

converges at each x in (−∞, ∞). Series (10) converges to the value f (x)
at each point x in (−∞, ∞) where f (x) is continuous. If xj is a point of
discontinuity, however, series (10) converges to the value

1
2 [f (x−

j ) + f (x+
j )]. (11)

Discussion of the Fourier Convergence Theorem
As we saw in Section 9.4, integral expressions (9a) and (9b) for the series co-
efficients an and bn are what we would “naturally expect.” Theorem 9.1 states
that Fourier series (10) converges to the value f (x) at each point in (−∞, ∞)

where f (x) is continuous. At a point of discontinuity, the Fourier series need not
converge to the value f (x) (assuming that the function is even defined at this
point). For example, the periodic function f (x)whose graph is shown in Figure
9.12 is not continuous at x = 0, ±1, ±2, . . . . Theorem 9.1 states that, at a point
of discontinuity xj, the Fourier series converges to the average of the one-sided

5Walter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill, 1976).
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limits f (x−
j ) and f (x+

j ). For example, at x = 0, the Fourier series converges to
the value

1
2 [f (0−) + f (0+)] = 1

2 [1+ (−1)] = 0. (12)

Note that f (x) is defined at x = 0 but f (0) = −1. The fact that a Fourier series
does not converge to f (xj) at a point of discontinuity xj is not surprising, how-
ever; Fourier series (10) is completely determined by the coefficients, an and
bn, which in turn are prescribed by (9) as integrals over a period. Since chang-
ing the value of an integrand at a single point has no effect on the value of
an integral, it makes sense that the value of the Fourier series is insensitive to
the particular value of f (x) at a point of discontinuity. Further illustrations are
given in the examples that follow.

321–1–2–3

1

–1

x

f (x)

FIGURE 9.12

A periodic piecewise continuous function f (x) with discontinuities at
x = 0, ±1, ±2, . . . . This function, often referred to as a square wave,
is sometimes used to model periodic switching of a device between
two states.

At this point, you are probably wondering how our discussion of Fourier
series relates to the initial-boundary value problems considered in Sections
9.2–9.4. For these two problems, the domain of interest was the extent of the
bar, 0 ≤ x ≤ l. However, Theorem 9.1 is phrased in terms of functions that are
piecewise continuous on (−∞, ∞). We will address this issue shortly, following
some examples.

Examples of Fourier Series
In this subsection, we present three simple examples of Fourier series. Recall
that a function f (x) defined on (−∞, ∞) is an even function if f (−x) = f (x) for
all x. A function f (x) defined on (−∞, ∞) is an odd function if f (−x) = −f (x)
for all x. As in Section 9.4, we refer to a Fourier series of the form

∞∑
n=1

bn sin
nπ

l
x

as a Fourier sine series and a Fourier series of the form

a0
2

+
∞∑
n=1

an cos
nπ

l
x

as a Fourier cosine series.
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Note that sin(nπx/l) is an odd function, while cos(nπx/l) is an even func-
tion. As you may recall from calculus,∫ c

−c
g(x)dx = 0 when g(x) is an odd function. (13a)

∫ c

−c
g(x)dx = 2

∫ c

0
g(x)dx when g(x) is an even function. (13b)

Moreover,

The product of two odd functions is even.
The product of an odd function and an even function is odd.
The product of two even functions is even.

These observations enable us to conclude that

(a) The Fourier series of an odd function is a sine series; all an coefficients are
zero.

(b) The Fourier series of an even function is a cosine series; all bn coefficients
are zero.

(c) The Fourier series of a function that is neither even nor odd contains both
sine and cosine terms.

The first example involves the function whose graph is shown in Figure
9.12. As defined in Example 1, the function f (x) is not an odd function. How-
ever, it can be transformed into an odd function by redefining its values at
x = 0, ±1, ±2, . . . to be zero. Since such a redefinition at isolated points does
not affect the value of the Fourier coefficients, we can (for purposes of compu-
tation) consider f (x) to be an odd function. We anticipate, therefore, that the
Fourier series of f (x) is a sine series.

E X A M P L E

1 Consider the periodic function f (x), where

f (x) =
{
1, −1 ≤ x < 0,

−1, 0 ≤ x < 1,
f (x+ 2) = f (x), −∞ < x < ∞.

(a) Determine the period 2l and find the Fourier series.

(b) For each point x in the interval −l ≤ x < l, determine the value to which
the Fourier series converges.

Solution:

(a) For this example, 2l = 2 and so l = 1. The Fourier coefficients are

an = 1
l

∫ l

−l
f (x) cos

nπ

l
x dx

=
∫ 1

−1
f (x) cosnπx dx, n = 0,1, . . .

(continued)
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(continued)

and

bn = 1
l

∫ l

−l
f (x) sin

nπ

l
x dx

=
∫ 1

−1
f (x) sinnπx dx, n = 1,2, . . . .

As noted above, the function f (x) is essentially odd, and hence the prod-
uct of f (x) and the even cosine function is (essentially) odd. Therefore, by
equation (13a), we expect that an = 0 for all n; a direct calculation verifies
this. Similarly,

bn =
∫ 1

−1
f (x) sinnπx dx = 2

∫ 1

0
[−1] sinnπx dx

=
⎧⎨
⎩
0, n = 2,4, . . .

− 4
nπ

, n = 1,3, . . . .

Therefore, the Fourier series for f (x) is given by

− 4
π

∞∑
n=1,3,5,...

sinnπx
n

= − 4
π

∞∑
m=1

sin[(2m− 1)πx]
2m− 1

.

(b) The function f (x) is discontinuous at x = 0, ±1, ±2, . . . and continuous at
all other points. The Fourier series will converge to f (x) at every point of
continuity. To describe how the Fourier series behaves at points of discon-
tinuity in −1 ≤ x < 1, we need only consider the points x = −1 and x = 0.
At these points (see Figure 9.12),

f (−1−) = −1, f (−1+) = 1, f (0−) = 1, f (0+) = −1.
Thus, by (11), the Fourier series converges to the value 0 at x = −1 and
x = 0. (This fact is also obvious from the series itself, since all the sine
terms are zero at x = −1 and x = 0.) ❖

E X A M P L E

2 Consider the function f (x) = | sin x|. Note that f (x) is an even periodic function.
(See Figure 9.13.) We anticipate the Fourier series will be a cosine series.

(a) Determine the period 2l and find the Fourier series.

(b) For each value x in the interval−l ≤ x < l, determine the value to which the
Fourier series converges.

Solution:

(a) For this example, 2l = π . (See Figure 9.13.) Thus, l = π/2. The Fourier co-
efficients are given by

an = 2
π

∫ π/2

−π/2
f (x) cos 2nxdx, n = 0,1, . . .
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–2� 2�–�–3�

0.5

1

� 3�
x

⏐sin x⏐

FIGURE 9.13

The graph of the function f (x) = | sin x|. This function, often called a fully
rectified sine wave, is an even periodic function with period π . The
function f (x) arises in describing signals present in electric circuits that
convert alternating current to direct current.

and

bn = 2
π

∫ π/2

−π/2
f (x) sin 2nxdx, n = 1,2, . . . .

As noted earlier, the product of the even function f (x) and the odd sine
function is odd. Therefore, by equation (13a), we know bn = 0 for all n.
(This fact also follows by direct computation.)

The product of the even function f (x) and the even cosine function is
even. Therefore, by equation (13b), we have

an = 2
π

∫ π/2

−π/2
| sin x| cos 2nxdx = 4

π

∫ π/2

0
sin x cos 2nxdx

= 2
π

∫ π/2

0
[sin(2n+ 1)x− sin(2n− 1)x]dx

= − 4

(4n2 − 1)π
, n = 0,1, . . . .

Therefore, the Fourier series for f (x) is

2
π

− 4
π

∞∑
n=1

1

4n2 − 1
cos 2nx.

(b) The function f (x) is continuous for all x in (−∞, ∞). Therefore, the Fourier
series converges to f (x) at every point in [−π/2, π/2). ❖

E X A M P L E

3 Consider the function f (x), where

f (x) =
{
1, −1 ≤ x < 0,

x, 0 ≤ x < 1,
f (x+ 2) = f (x), −∞ < x < ∞.

The graph of f (x) is shown in Figure 9.14. Note that f (x) is neither even nor
odd.

(a) Determine the period 2l and find the Fourier series.

(b) For each point x in the interval−l ≤ x < l, determine the value to which the
Fourier series converges.

(continued)
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(continued)

x

f (x)

1

1–1–2–3–4 2 3 4

FIGURE 9.14

The graph of the function f (x) treated in Example 3. This function is
piecewise continuous and periodic with period 2. It is neither an even nor
an odd function. The function has discontinuities at x = 0, ±2, ±4, . . . .

Solution:

(a) For this example, l = 1. The Fourier coefficients are given by

an =
∫ 1

−1
f (x) cosnπx dx, n = 0,1, . . .

and

bn =
∫ 1

−1
f (x) sinnπx dx, n = 1,2, . . . .

Therefore,

an =
∫ 0

−1
cosnπx dx+

∫ 1

0
x cosnπx dx

=

⎧⎪⎪⎨
⎪⎪⎩
3
2

, n = 0

−1+ (−1)n
n2π2 , n = 1,2, . . .

bn =
∫ 0

−1
sinnπx dx+

∫ 1

0
x sinnπx dx

= −1
nπ

, n = 1,2, . . . .

The Fourier series for f (x) is

3
4

+
∞∑
n=1

−1+ (−1)n
n2π2 cosnπx−

∞∑
n=1

1
nπ

sinnπx.

(This form is not computationally efficient, since an = 0 for even n. In Exer-
cise 25, you are asked to rewrite the summation involving the cosine terms.)

(b) The function f (x) is discontinuous at x = 0, ±2, ±4, . . . and continuous at
all other points. To describe how the Fourier series behaves at points of
discontinuity in −1 ≤ x < 1, we need only consider the point x = 0. At this
point (see Figure 9.14),

f (0−) = 1, f (0+) = 0.

Thus, by (11), the Fourier series converges to the value 1
2 at x = 0. ❖
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Let SM(x) denote the Mth partial sum of the Fourier series (10),

SM(x) = a0
2

+
M∑
n=1

an cos
nπ

l
x+

M∑
n=1

bn sin
nπ

l
x.

Figure 9.15 shows graphs for some of the partial sums of the Fourier series in
Examples 1–3. The figures show that the partial sums for Example 1 and Exam-
ple 3 exhibit the Gibbs phenomenon, the tendency to overshoot and undershoot
the function values in the immediate vicinity of a point of discontinuity. (See
the appendix at the end of this section.)
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FIGURE 9.15

Parts (a), (b), and (c) show the graphs of SM(x) over four periods. (a) The
partial sums for the Fourier series found in Example 1, withM = 3,9, and
99. The Fourier series is converging to the square wave shown in Figure
9.12. (b) The partial sums for the Fourier series found in Example 2, with
M = 2,10, and 100. The Fourier series is converging to the fully rectified
sine wave shown in Figure 9.13. (c) The partial sums for the Fourier series
found in Example 3, with M = 2,10, and 100.
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Applying the Theory
What relevance does the Fourier convergence theorem have to the heat con-
duction problems formally solved in Section 9.4? The Fourier series considered
in this section deal with 2l-periodic functions defined on the infinite interval
−∞ < x < ∞. By contrast, the initial temperature distributions for the heat
conduction problems treated in Section 9.4 were defined on a finite interval,
0 ≤ x ≤ l. We now show that the calculations performed in Section 9.4 can be
justified within the Fourier series framework. Our approach is based on the
idea of a periodic extension of a function.

The fact that a periodic function is completely determined by its behavior
over a single period leads to the closely related idea of a periodic extension of a
function. Consider a function g(x) initially defined on an interval 0 ≤ x < 2l. We
can create a 2l-periodic function on −∞ < x < ∞ by extending the definition
of g(x) using the formula

g(x+ 2l) = g(x), −∞ < x < ∞. (14)

This newly defined function is called the periodic extension of the original
function. From a graphical perspective, creating a periodic extension amounts
to replicating the graph of the function g(x) over 0 ≤ x < 2l on all adjacent inter-
vals of length 2l. Figure 9.16 shows a function g(x) and its periodic extension.

x

g(x)

l 2l
x

g(x)

–3l –2l –l l 2l 3l 4l

(a) (b)

FIGURE 9.16

(a) The graph of a function g(x) defined on 0 ≤ x < 2l. (b) The graph of the
periodic extension of g(x).

We now consider an example that illustrates how to apply the Fourier
convergence theorem to justify the calculations made in the heat conduction
problems of Section 9.4. Consider the triangular function describing the ini-
tial temperature distribution for the zero temperature ends example in Section
9.4. (See Example 1 and Figure 9.4 in Section 9.4.) Suppose we first extend
the domain of the function from 0 ≤ x ≤ l to −l ≤ x ≤ l by requiring that the
function be an odd function on −l ≤ x ≤ l. We next take this odd function,
defined on −l ≤ x ≤ l, and extend it to an odd periodic function of period 2l
on −∞ < x < ∞. The original function and the two extensions are shown in
Figure 9.17.

The periodic function shown in Figure 9.17(c) is one to which the Fourier
convergence theorem applies. Note that since the function is an odd function,
its Fourier series is a sine series. In addition, since the function is continu-
ous everywhere, Theorem 9.1 assures us that the Fourier series converges to
the function everywhere on −∞ < x < ∞. In particular, therefore, the theorem
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x
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l

l/2
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(a) (b) (c)

FIGURE 9.17

(a) The graph of a triangular function f (x) describing an initial
temperature distribution in a bar, 0 ≤ x ≤ l. (b) The graph of the odd
extension of f (x), defined on −l ≤ x ≤ l. (c) The periodic extension of the
odd function shown in (b). Since the extension is odd, its Fourier series
consists only of sine terms.

tells us that the Fourier series converges everywhere on 0 ≤ x ≤ l to the initial
temperature distribution shown in Figure 9.17(a).

Note that the two extensions, first to an odd function on −l ≤ x ≤ l and
then to an odd 2l-periodic function on −∞ < x < ∞, are conceptual. We do
not perform the actual calculations. Rather, the extensions provide us a way of
seeing how to use the Fourier convergence theorem to justify the calculations
of Section 9.4.

Finally, note that we made the choice of moving from the original function
f (x) in Figure 9.17(a) to the odd extension in Figure 9.17(b) because we wanted
to use a Fourier sine series to represent f (x) [recall equation (7a)]. If we had
wanted a Fourier cosine series representation for f (x), as in equation (7b),
we would have used an even extension of f (x) to the interval −l ≤ x ≤ l. This
possibility is illustrated in Figure 9.18. (Note that, for this particular example,
the periodic extension actually has fundamental period l rather than 2l.)

(a) (b) (c)

x

f (x)

l

l/2
x

f (x)

–l l

l/2

x

f (x)

–3l –2l –l 3l2ll

l/2

FIGURE 9.18

(a) The graph of a triangular function f (x) describing an initial
temperature distribution in a bar, 0 ≤ x ≤ l. (b) The graph of the even
extension of f (x), defined on −l ≤ x ≤ l. (c) The periodic extension of the
even function shown in (b). Since the extension is even, its Fourier series
consists only of cosine terms.

An even extension of an initial temperature distribution f (x) can be used
to justify the calculations made in the insulated ends problem (see Example 2
of Section 9.4 and Figure 9.8).
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E X E R C I S E S

Exercises 1–10:

In each exercise,

(a) Sketch the graph of f (x) over four periods. Find the Fourier series representation
for the given function f (x). Use whatever symmetries or other obvious properties
the function possesses in order to simplify your calculations.

(b) Determine the points at which the Fourier series converges to f (x). At each point
x of discontinuity, state the value of f (x) and state the value to which the Fourier
series converges.

1. f (x) =
{
2, 0 ≤ x ≤ 1,

0, 1 < x < 2,
f (x+ 2) = f (x)

2. f (x) = | cosπx|, 0 ≤ x < 1, f (x+ 1) = f (x)

3. f (x) = x, −1 ≤ x < 1, f (x+ 2) = f (x)

4. f (x) = x, 0 ≤ x < 1, f (x+ 1) = f (x)

5. f (x) = 1− |x|, −1 ≤ x < 1, f (x+ 2) = f (x)

6. f (x) =
{
sin x, 0 ≤ x ≤ π,

0, π < x < 2π,
f (x+ 2π) = f (x)

7. f (x) =
{
2, − 1

2 ≤ x ≤ 1
2 ,

0, 1
2 < x < 3

2 ,
f (x+ 2) = f (x)

8. f (x) = e−x, 0 ≤ x < 1, f (x+ 1) = f (x)

9. f (x) = cos(πx/2), 0 ≤ x < 1, f (x+ 1) = f (x)

10. f (x) = 2− x, −1 ≤ x < 1, f (x+ 2) = f (x)

Exercises 11–20:

In each exercise,

(a) The given function is defined on an interval of the form 0 ≤ x ≤ l. Sketch the graph
of the specified periodic extension.

(b) At what point(s) in the interval 0 ≤ x ≤ l, if any, does the Fourier series fail to con-
verge to the value of the function?

11. f (x) =
{
0, 0 ≤ x < 1

x− 1, 1 ≤ x ≤ 2
. Graph the even periodic extension for −6 ≤ x ≤ 6.

12. f (x) =
{
0, x = 0

1− x, 0 < x ≤ 1
. Graph the odd periodic extension for −4 ≤ x ≤ 4.

13. f (x) =
{
x2, 0 ≤ x < 1

0, x = 1
. Graph the even periodic extension for −4 ≤ x ≤ 4.

14. f (x) = | sin(2πx)|, 0 ≤ x ≤ 1. Graph the odd periodic extension for −4 ≤ x ≤ 4.

15. f (x) =
{
2 sin 2πx, 0 ≤ x ≤ 1

0, 1 < x ≤ 2
. Graph the odd periodic extension for −6 ≤ x ≤ 6.
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16. Consider the function f (x) defined in Exercise 15. Graph the even periodic extension
for −6 ≤ x ≤ 6.

17. f (x) =
{
0, x = 0

cos x, 0 < x ≤ π/2
. Graph the even periodic extension for −2π ≤ x ≤ 2π .

18. Consider the function f (x) defined in Exercise 17. Graph the odd periodic extension
for −2π ≤ x ≤ 2π .

19. f (x) =
{
x, 0 ≤ x ≤ 1

4− 2x, 1 < x ≤ 2
. Graph the odd periodic extension for −6 ≤ x ≤ 6.

20. Consider the function f (x) defined in Exercise 19. Graph the even periodic extension
for −6 ≤ x ≤ 6.

Exercises 21–24:

Let f (x) be a periodic function having Fourier series

a0
2

+
∞∑
n=1

an cos
(nπx

l

)
+

∞∑
n=1

bn sin
(nπx

l

)
.

Use the given information to deduce as much as you can about the values of the Fourier
coefficients.

21. f (x) − 2 is an even function. 22. f (x) + 2 is an odd function.

23. f (x) − 3 sin(2πx/l) is an even function, and
∫ l

−l f (x)dx = 0.

24. f (x) is an even function, and f (x) + 2− cos(πx/l) is an odd function.

Exercises 25–29:

For each of the given series, make a change of summation index so that the new sum
contains only nonzero terms. Replace constants expressed in terms of trigonometric
functions by equivalent numerical values [for example, cosnπ = (−1)n].

25.
∞∑
n=1

−1+ (−1)n
n2π2 cos(nπx) 26.

∞∑
m=1

1+ (−1)m
m2 + 4

sin(2mπx)

27.
∞∑
k=1

2 sin2(kπ/2)

k2π2 sin(kπx/3) 28.
∞∑
n=1

4 cos(nπ/2)

n2π2 + 1
cos(nπx)

29.
∞∑
m=1

1+ (−1)m+1

m2 + 1
cos(mπ) sin[(2m+ 1)πx]

Appendix Gibbs Phenomenon

At a jump discontinuity, the partial sums of a Fourier series overshoot the function
values at the upper side of the discontinuity and undershoot the function values at
the lower side (see Examples 1 and 3). This behavior is not restricted to Examples 1
and 3; it is generic behavior and has been named the Gibbs phenomenon. The Gibbs
phenomenon has been extensively studied using the tools of basic calculus.6

6See the article by Edwin Hewitt and Robert E. Hewitt, “The Gibbs-Wilbraham Phenomenon: An
Episode in Fourier Analysis,” Archive for History of Exact Sciences, Vol. 21, 1979, pp. 129–160.
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Consider the square wave analyzed in Example 1:

f (x) =
{

1, −1 ≤ x < 0,

−1, 0 ≤ x < 1,
f (x+ 2) = f (x), −∞ < x < ∞.

Figure 9.19 shows a portion of the graph of the squarewave f (x). Aswe saw inExample 1,
f (x) has a Fourier series with partial sums

f2M−1(x) = − 4
π

M∑
m=1

sin[(2m− 1)πx]
2m− 1

.

x

f (x)

321–1

–1

1

Magnified
region

FIGURE 9.19

The graph of the square wave f (x). Figure 9.20 gives enlarged views of the
graphs of f2M−1(x) in the circled region, near the upper side of the
discontinuity at x = 2.

In Figure 9.19, a portion of the graph of the square wave f (x) is circled. Figure
9.20 (a)–(c) shows enlarged views of the graphs of f2M−1(x) in this circled region for
M = 50,100, and 200, respectively. AsM increases, more terms are added to the partial
sum and the ripples to the left of the highest final peak are seen to increase in frequency
and decrease in amplitude. This is to be expected, since we know the Fourier series must
converge to f (x) = 1 for 1 < x < 2. Correspondingly, the highest peak (the overshoot)
both narrows and moves closer to x = 2. What is somewhat surprising, perhaps, is the
fact that the amplitude of this overshoot does not simultaneously increase as its width
decreases. Rather, the amplitude seems to approach a height of about 1.18. Although
not shown in Figure 9.20, the behavior of the partial sums near the undershoot (to the
right of the discontinuity at x = 2) is essentially the mirror image of that shown at the
overshoot.

In 1906, Bocher (who introduced the term Gibbs phenomenon) proved that the
behavior displayed in Figure 9.20 is generic. If a function f (x) has a jump discontinuity
at x = xj, then the graphs of the partial sums approach a configuration similar to the one
shown in Figure 9.21. [Figure 9.21 illustrates the casewhere f (x−

j ) > f (x+
j ).] In particular,

the vertical span extending from the top of the overshoot to the bottomof the undershoot
approaches the value

2
π
Si(π)[f (x−

j ) − f (x+
j )] ≈ 1.17898 [f (x−

j ) − f (x+
j )],

where Si(x) denotes the sine integral function,

Si(x) =
∫ x

0

sin t
t

dt.
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(a) (b)
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FIGURE 9.20

(a) The graph of the partial sum f99(x). (b) The graph of the partial sum
f199(x). (c) The graph of the partial sum f399(x). Note how the overshoots
increase in frequency but decrease in amplitude as x approaches 2 from
the left.

The vertical segment shown in Figure 9.21 is centered at [f (x−
j ) + f (x+

j )]/2; this is the
value to which the Fourier series converges at x = xj. Therefore, the size of both over-
shoot and undershoot is approximately equal to

0.09
∣∣∣f (x−

j ) − f (x+
j )

∣∣∣ . (15)

For the square wave example illustrated in Figure 9.20, we see that f (2−) − f (2+) = 2.
Therefore, (15) predicts (in the limit) an overshoot having approximate height 0.18. This
prediction is confirmed in Figure 9.20, where the graphs show that f2M−1(x) has a peak
value of about 1.18 for x near x = 2.
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Vertical
span

Overshoot

Undershoot
x

xj

y

f (x–
j )

f (x+
j )

FIGURE 9.21

Gibbs phenomenon for a function with a jump discontinuity at x = xj.
This graph shows a case where f (x−

j ) > f (x+
j ). The vertical span extending

from the top of the overshoot to the bottom of the undershoot is
centered at the value y = [f (x−

j ) + f (x+
j )]/2. The vertical span has length

2Si(π)[f (x−
j ) − f (x+

j )]/π ≈ 1.17898[f (x−
j ) − f (x+

j )].

9.6 The Wave Equation
The term wave conjures up the image of a ripplelike disturbance moving along
some path. We use the term to describe the water surface at a beach, the prop-
agation of sound and light, and even the antics of a crowd at a sporting event.
In this section, we study the one-dimensional wave equation,

utt(x, t) = c2uxx(x, t). (1)

In equation (1), c is a positive constant that we will see represents the speed of
the wave. In contrast to the heat equation, the wave equation involves a second
partial derivative with respect to time, utt(x, t).

The wave equation arises inmodeling certain acoustic and electromagnetic
signals. It also is used to describe the small vibrations of a taut string. A vibrat-
ing string is perhaps the most familiar and intuitive application and is the one
we focus on in this section. We will consider the problem of a taut vibrating
string that is pinned down at both ends. The solution, u(x, t), represents the
displacement of the string from its unstretched equilibrium state at position x
and time t. The appendix to this section presents a brief derivation of the wave
equation in the context of this application.

What Should We Expect of a Solution?
Our experiencewithwaves suggests that they travel along their path, preserving
their basic shape as long as no obstructions are encountered. Such waves are
referred to as traveling waves. When waves encounter an obstruction, they are
reflected. (Think of an echo in the case of soundwaves.) Consider what happens
when a taut string, pinneddownat both ends, is plucked. The initial disturbance
will travel outward in both directions. When the disturbances reach the pins,
they are reflected and begin to travel in the opposite direction. In this way, a
sequence of multiple reflections from both ends is generated. As the result of
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this endless bouncing back and forth, a pattern known as a standing wave is
created; the solution u(x, t) appears to be “standing still.” In other words, the
solution has a fixed spatial profile that simply vibrates up and down in time.
(Think of a plucked guitar string.)

Problem Formulation and Solution by Separation of Variables
In this subsection, we formulate the initial-boundary value problem for the
vibrations of a pinned string and solve it using the technique of separation of
variables. Consider a taut string of length l, pinned at its ends x = 0 and x = l.
At time t = 0, the string is set into vibratory motion. The displacement of the
string from its undisturbed rest position, at location x and time t, is denoted
by u(x, t). (See Figure 9.22.) The function u(x, t) is assumed to satisfy the wave
equation.

u(x, t)

u(x1, t) > 0 u(x2, t) < 0

x
x = 0 x = lx1

x2

FIGURE 9.22

A taut string of length l, pinned at its ends x = 0 and x = l. At time t, the
displacement of the string from its undisturbed rest position is given by
u(x, t).

The pinned-ends condition requires u(0, t) = u( l, t) = 0 for 0 ≤ t < ∞. In
order to obtain a unique solution, we must also specify displacement u(x, t)
and velocity ut(x, t) at each point along the string at the initial time t = 0. The
initial-boundary value problem we consider follows.

Problem Solve the wave equation

utt(x, t) = c2uxx(x, t), 0 < x < l, 0 < t < ∞
subject to the boundary conditions

u(0, t) = u( l, t) = 0, 0 ≤ t < ∞ (2a)

and the initial conditions

u(x,0) = f (x), ut(x,0) = g(x), 0 ≤ x ≤ l. (2b)

For compatibility in (2), we require that the initial displacement and velocity
functions be such that f (0) = g(0) = 0 and f ( l ) = g( l ) = 0

The wave equation involves the second partial derivative with respect to
time. Therefore, in contrast to the case for the heat equation, two initial con-
ditions (initial position and initial velocity) must be specified.

Our goal is to construct nontrivial solutions of the wave equation that also
satisfy the homogeneous boundary conditions (2a). Then, aswith the heat equa-
tion, an infinite series of these building-block solutions can be formed that will
satisfy the initial conditions. Applying the technique of separation of variables,
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we look for solutions of the form u(x, t) = X(x)T(t). Substituting this expression
into the wave equation, we obtain

X(x)T ′′(t) = c2X ′′(x)T(t),

or

T ′′(t)
c2T(t)

= X ′′(x)
X(x)

, 0 < x < l, 0 < t < ∞. (3)

In (3), the prime denotes differentiationwith respect to argument. The onlyway
that equation (3) can hold is if both expressions equal a common constant, σ .
Therefore, we obtain the separation equations

X ′′(x) − σX(x) = 0, 0 < x < l (4a)

T ′′(t) − c2σT(t) = 0, 0 < t < ∞, (4b)

where σ denotes the separation constant. Imposing the homogeneous boundary
conditions on u(x, t) = X(x)T(t) leads to the constraintsX(0) = X( l ) = 0. There-
fore, the function X(x) must be a nonzero solution of the two-point boundary
value problem

X ′′(x) − σX(x) = 0, 0 < x < l

X(0) = X( l ) = 0.
(5)

As we saw in Section 9.2, problem (5) is an eigenvalue problem. We must
find those values of σ (the eigenvalues) for which there exist corresponding
nonzero solutions X(x) (the eigenfunctions). Problem (5), however, is precisely
the same as the eigenvalue problem arising in the zero temperature ends heat
conduction problem [see equation (9a) in Section 9.2]. The eigenpairs are

σn = −
(nπ

l

)2
, Xn(x) = sin

(nπx
l

)
, n = 1,2,3, . . . . (6)

With σ = σn = −(nπ/l)2, equation (4b) becomes

T ′′
n(t) +

(nπc
l

)2
Tn(t) = 0, 0 < t < ∞. (7)

The general solution of (7) is

Tn(t) = an cos
nπct
l

+ bn sin
nπct
l

, n = 1,2,3, . . . . (8)

In (8), an and bn are arbitrary constants that we will ultimately specify. From
(6) and (8), we obtain an infinite set of building-block solutions, un(x, t) =
Tn(t)Xn(x):

un(x, t) =
[
an cos

nπct
l

+ bn sin
nπct
l

]
sin

nπx
l

, n = 1,2,3, . . . . (9)

We now look for a solution of the initial-boundary value problem in the form
of the infinite series

u(x, t) =
∞∑
n=1

[
an cos

nπct
l

+ bn sin
nπct
l

]
sin

nπx
l

. (10)
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When we use series (10) to represent string displacement, string velocity is
given by

ut(x, t) =
∞∑
n=1

[
−

(nπc
l

)
an sin

nπct
l

+
(nπc

l

)
bn cos

nπct
l

]
sin

nπx
l

. (11)

In (11), we have assumed that the operations of partial differentiation and
infinite summation can be interchanged.

Requiring series (10) to satisfy the two initial conditions in equation (2b)
leads to

u(x,0) = f (x) =
∞∑
n=1

an sin
nπx
l

, 0 ≤ x ≤ l (12a)

ut(x,0) = g(x) =
∞∑
n=1

(nπc
l

)
bn sin

nπx
l

, 0 ≤ x ≤ l. (12b)

Equations (12a) and (12b) are Fourier sine series expansions. Since f (x) and
g(x) model string displacement and string velocity, they are continuous func-
tions defined on the interval 0 ≤ x ≤ l. Theorem 9.1 assures us that the series
(12a) and (12b) will converge to their respective left-hand-side values when the
coefficients are given by the formulas

an = 2
l

∫ l

0
f (x) sin

nπx
l

dx

bn = 2
nπc

∫ l

0
g(x) sin

nπx
l

dx, n = 1,2,3, . . . .

(13)

Series (10), with the coefficients evaluated by (13), is the solution of the initial-
boundary value problem.

Examples
We consider two examples. The first example illustrates a case where the series
coefficients can be determined by inspection. The second example requires the
use of equation (13). The second example also shows that the wave equation,
in contrast to the heat equation, does not tend to smooth out initial conditions
as time increases.

E X A M P L E

1 Solve the initial-boundary value problem

utt(x, t) = 9uxx(x, t), 0 < x < 4, 0 < t < ∞
u(0, t) = u(4, t) = 0, 0 ≤ t < ∞

u(x,0) = 1
2
sin

πx
4

, ut(x,0) = − sin
πx
2

, 0 ≤ x ≤ 4.

Solution: For this problem, c = 3 and l = 4. Therefore, series solution (10)
assumes the form

u(x, t) =
∞∑
n=1

[
an cos

3nπt
4

+ bn sin
3nπ t
4

]
sin

nπx
4

.

(continued)
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(continued)

Imposing the initial conditions leads to the equations

1
2
sin

πx
4

=
∞∑
n=1

an sin
nπx
4

− sin
πx
2

=
∞∑
n=1

(
3nπ

4

)
bn sin

nπx
4

, 0 ≤ x ≤ 4.

While we could use (13) to evaluate the coefficients, it is simpler in this special
case to observe that equality is obtained by setting

a1 = 1
2 , an = 0, n �= 1

(
6π
4

)
b2 = −1, bn = 0, n �= 2.

With the coefficients so specified, the solution is given by the finite sum

u(x, t) = 1
2

(
cos

3π t
4

) (
sin

πx
4

)
− 2
3π

(
sin

3π t
2

) (
sin

πx
2

)
.

Having u(x, t), we see that the velocity is

ut(x, t) = −3π
8

(
sin

3π t
4

) (
sin

πx
4

)
−

(
cos

3π t
2

) (
sin

πx
2

)
.

Figure 9.23 shows a sequence of three snapshots of position u(x, t) and veloc-
ity ut(x, t) for t = 0, t = 1

6 , and t = 1
3 . Note that, for any fixed value of x, these
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0.2

0.3

0.4

0.5

0.6

x

u(x, 0)

(a) (d)

0.5 1 1.5 2 2.5 3 3.5 4

–1.2

–0.8

–0.4

0.4

0.8

x

ut(x, 0)

FIGURE 9.23

The position u(x, t) and velocity ut(x, t) of the string in Example 1 at
selected times. In each case, 0 ≤ x ≤ 4.



9.6 The Wave Equation 621

0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

x

u(x, 1/6)

(b)

(c)
0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

x

u(x, 1/3)

(e)

0.5 1 1.5 2 2.5 3 3.5 4

–1.2

–0.8

–0.4

0.4

0.8

x

ut(x, 1/6)

(f)

0.5 1 1.5 2 2.5 3 3.5

–1.2

–0.8

–0.4

0.4

0.8

x

ut(x, 1/3)

4

FIGURE 9.23

Continued.

functions are periodic in t; that is, u(x, t+ τ) = u(x, t) and ut(x, t+ τ) = ut(x, t),
where τ = 8

3 . The initial conditions correspond to the string initially being dis-
placed upward. At the initial time, the left and right halves of the string are
moving downward and upward, respectively. A short time later, at t = 1

6 , the
string has assumed a configuration where the displacement on the left side has
decreased while that on the right side has increased. At the last time shown,
t = 1

3 , the velocity at every interior point of the string is downward. ❖
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E X A M P L E

2 Suppose we pluck a string by pulling it upward and releasing it from rest.
We model the initial displacement in an idealized manner, using a triangular
function defined on 0 ≤ x ≤ l. Since the string is released from rest, its initial
velocity is zero. Therefore, the problem to be solved is

utt(x, t) = c2uxx(x, t), 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞

u(x,0) = f (x) =

⎧⎪⎪⎨
⎪⎪⎩
2u0x
l

, 0 ≤ x ≤ l
2

2u0
l

(l − x),
l
2

< x ≤ l

ut(x,0) = g(x) = 0, 0 ≤ x ≤ l.

The positive constant u0 is the maximum initial string displacement (occurring
at the midpoint of the string).

Solution: The general separation of variables solution is given by (10). Since
the initial velocity is zero, we see from (13) that bn = 0 for all n. Therefore, the
solution is

u(x, t) =
∞∑
n=1

[
an cos

nπct
l

]
sin

nπx
l

. (14)

The coefficients an in (14) are given by

an = 2
l

∫ l

0
f (x) sin

nπx
l

dx

= 4u0
l2

∫ l/2

0
x sin

nπx
l

dx+ 4u0
l2

∫ l

l/2
( l − x) sin

nπx
l

dx

=
8u0 sin

nπ
2

(nπ)2

=

⎧⎪⎨
⎪⎩
8u0(−1)(n−1)/2

(nπ)2
, n odd

0, n even.

These calculations are basically the same as those in the zero temperature ends
example considered in Section 9.4. Changing the index of summation to include
only the odd-indexed terms, we obtain a Fourier sine series solution

u(x, t) = 8u0
π2

∞∑
m=1

[
(−1)m−1

(2m− 1)2
cos

(2m− 1)πct
l

]
sin

(2m− 1)πx
l

. (15)

The solution (15) is shown at a sampling of different times in Figure 9.24 for
the case where l = 1,u0 = 1

4 , and c = 1. To obtain the graphs in Figure 9.24, we
approximated solution (15) using a partial sum over the first 100 terms.

Comparing Figure 9.24 with analogous snapshots obtained in Figure 9.7
in Section 9.4 reveals an important difference in the behavior of solutions of
the heat equation and the wave equation. In contrast to the heat equation, the
wave equation does not tend to smooth initial data. Note in Figure 9.24 that
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the “corners” persist. In fact, at time t = 1, the string profile has completely
flipped from its initial triangular profile to a negative mirror image. This ex-
ample also illustrates some of the shortcomings of equation (1) as a model of
a string. Admittedly, the initial condition we have used is a somewhat artificial
idealization. Our everyday experience suggests that real strings do not behave
as Figure 9.24 suggests. However, incorporating more realism into modeling a
string leads to a fairly complicated nonlinear model (see Antman7).
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FIGURE 9.24

The position u(x, t) of the string in Example 2. In each case, 0 ≤ x ≤ l.
(a) At time t = 0. (b) At time t = 0.25. (c) At time t = 0.45. (d) At time
t = 0.75. (e) At time t = 1.0. ❖

7S. A. Antman, “The Equations for Large Vibrations of Strings,” American Mathematical Monthly,
Vol. 87, 1980, pp. 359–370.
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Traveling Waves and D’Alembert’s Solution
of the Wave Equation
So far, we have considered wave motion in a bounded region, between the two
pinned ends of a string having finite length. To obtain waves that travel along
without disruption, we need to consider an infinite domain.

Consider the wave equation in an infinite one-dimensional medium,

utt(x, t) = c2uxx(x, t), −∞ < x < ∞, 0 < t < ∞. (16a)

We assume initial conditions of the form

u(x,0) = f (x), −∞ < x < ∞
ut(x,0) = g(x), −∞ < x < ∞.

(16b)

In problem (16), unlike the problem of a taut string pinned at both ends, an
initial disturbance continues on forever and is not reflected, since there are no
obstructions. As noted earlier, such solutions are called traveling waves.

It can be shown (see Exercise 11) that the general solution of the wave
equation (16a) is

u(x, t) = p(x− ct) + q(x+ ct), (17)

where p and q are arbitrary (twice continuously differentiable) functions. Solu-
tion (17) was first found by D’Alembert.8 The fact that each of the compositions
in (17) is a solution can be verified by direct substitution.

We can use the solution (17) to solve the initial value problem (16a)–(16b).
By equation (17), u(x,0) = p(x) + q(x) and ut(x,0) = −cp′(x) + cq′(x). Imposing
initial conditions (16b), we have p(x) + q(x) = f (x) and −cp′(x) + cq′(x) = g(x).
Solving these two equations for the functions p and q, we find (see Exercise 11)

u(x, t) = 1
2

[f (x− ct) + f (x+ ct)] + 1
2c

∫ x+ct

x−ct
g(s)ds. (18)

In (17), the solution u(x, t) = p(x− ct) represents a wave traveling to the
right with constant speed c, while the solution u(x, t) = q(x+ ct) is a wave trav-
eling to the left with the same speed. Figure 9.25 illustrates this behavior for
the particular case where c = 1, f (x) = e−x

2
, and g(x) = 0. Here, the initial dis-

turbance splits into two equal parts that travel in opposite directions with unit
speed. The solution is shown at times t = 0, t = 2, and t = 5. The solution sur-
face, z = u(x, t), is also shown, where −10 ≤ x ≤ 10,0 ≤ t ≤ 5.

When we used separation of variables to find the solution of the taut string
with pinned ends, we found building-block solutions of the form

un(x, t) =
[
an cos

nπct
l

+ bn sin
nπct
l

]
sin

nπx
l

= an

[
cos

nπct
l

]
sin

nπx
l

+ bn

[
sin

nπct
l

]
sin

nπx
l

(19)

[recall equation (9)]. Each of these solutions can be represented in the form

8Jean Le Rond D’Alembert (1717–1783) had a scientific career characterized by notable achieve-
ments and constant squabbling with his contemporaries. He made significant contributions to
mechanics and to the application of partial differential equations to physics and mathematical
analysis.
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FIGURE 9.25

The wave equation utt(x, t) = uxx(x, t) with initial conditions u(x,0) = e−x2

and ut(x,0) = 0 has solution u(x, t) = (e−(x−t)2 + e−(x+t)2 )/2.

(17). For example, using trigonometric identities, we can express the second
term as

bn

[
sin

nπct
l

]
sin

nπx
l

= bn
2

[
cos

nπ(x− ct)
l

− cos
nπ(x+ ct)

l

]
.

Therefore, a standing wave solution such as (19) can be viewed as a superposi-
tion of two traveling waves, moving in the opposite direction with speed c. They
combine to form a wave that has a stationary spatial profile, one that moves
up and down as time evolves.

E X E R C I S E S

Exercises 1–10:

Consider the initial-boundary value problem

utt − c2uxx = 0, 0 < x < l, 0 < t < ∞
u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), ut(x,0) = g(x) 0 ≤ x ≤ l.
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(a) Solve this problem for the given parameter values and the given initial condition.

(b) Assume the solution u(x, t) represents the displacement at time t and position x.
Determine the velocity, ut(x, t). (In Exercises 7–10, assume the series can be differ-
entiated termwise.)

1. c = 2, l = 4, u(x,0) = 0, ut(x,0) = 2 sin(πx/4)

2. c = 2, l = 4, u(x,0) = sin(πx/2), ut(x,0) = 0

3. c = 3, l = 1, u(x,0) = sin(πx), ut(x,0) = −2 sin(πx)

4. c = 1, l = 1, u(x,0) = 2 sin(3πx), ut(x,0) = sin(πx)

5. c = 2, l = 1, u(x,0) = sin(πx) − sin(2πx), ut(x,0) = 0

6. c = 2, l = π, u(x,0) = − sin x, ut(x,0) = sin 2x+ sin 3x

7. c = 1, l = π, u(x,0) = 2 sin2 x, ut(x,0) = 0

8. c = 1, l = π, u(x,0) = 0, ut(x,0) = −4 sin2 x
9. c = 1, l = 1, u(x,0) = sin(πx), ut(x,0) = sin2 (πx)

10. c = 1, l = 1, u(x,0) = sin2 (πx), ut(x,0) = − sin(2πx)

11. D’Alembert’s Solution of the Wave Equation Given the partial differential equation
utt(x, t) − c2uxx(x, t) = 0, define new independent variables ξ = x− ct, η = x+ ct.

(a) Find constants a1, a2,b1, and b2 such that x = a1η + a2ξ and t = b1η + b2ξ. Show
that the determinant of this transformation, a1b2 − a2b1, is nonzero [establishing
that there is a unique correspondence between points in the xt-plane and points in
the ξη-plane].

(b) In terms of the new variables, show that the wave equation transforms into
uξη = 0. You will need to use the chain rule—for example,

∂u
∂x

= ∂u
∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x
,

∂u
∂t

= ∂u
∂ξ

∂ξ

∂t
+ ∂u

∂η

∂η

∂t
.

(c) Show that the general solution of uξη = 0 is u = p(ξ) + q(η), where p and q are
arbitrary, twice continuously differentiable functions. Since ξ = x− ct, η = x+ ct,
equation (17) follows.

(d) Establish the formula in equation (18) for the solution u(x, t).

Exercises 12–14:

Consider the initial value problem

utt(x, t) − 4uxx(x, t) = 0, −∞ < x < ∞, 0 < t < ∞
u(x,0) = f (x), ut(x,0) = g(x), −∞ < x < ∞.

(a) Solve this initial-boundary value problem for the given initial conditions.

(b) Graph the solution, u(x,1), at time t = 1 for −5 ≤ x ≤ 5.

12. f (x) = 10xe−x2 , g(x) = 0 13. f (x) = 0, g(x) = 8xe−x2

14. f (x) =
⎧⎨
⎩
cos2 πx, − 1

2 ≤ x ≤ 1
2 ,

0, |x| > 1
2 ,

g(x) = 0
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Appendix Derivation of the Wave Equation

In this appendix, we derive the wave equation as an approximate description of the
dynamics of a taut vibrating string. The equation is derived by applyingNewton’s second
law of motion to a differential segment of string, such as the one shown in Figure 9.26.
The string has a constant linear mass density ρ. The tension in the string is denoted
by T. We assume the differential string segment executes plane motion, moving up and
down in the vertical direction.

ds

dx

dx
2

u(x, t)

T(x +     , t)

x

dx
2

T(x –     , t)

dx
2

�(x +     , t)

dx
2

�(x –     , t)

FIGURE 9.26

A differential segment of a string. The tension in the string is denoted T.

ApplyingNewton’s second law to the differential segment, we see that the sumof the
forces acting on the segment in the x-directionmust vanish, while the sum of the vertical
forces must equal the product of the mass of the segment and the vertical acceleration.
Summing the forces in the x-direction yields

T
(
x+ dx

2
, t

)
cos

[
θ

(
x+ dx

2
, t

)]
− T

(
x− dx

2
, t

)
cos

[
θ

(
x− dx

2
, t

)]
= 0.

This equation implies that

∂

∂x
[T(x, t) cos(θ(x, t))] = 0. (20)

Summing the forces in the vertical direction yields

T
(
x+ dx

2
, t

)
sin

[
θ

(
x+ dx

2
, t

)]
− T

(
x− dx

2
, t

)
sin

[
θ

(
x− dx

2
, t

)]
= ρ dsutt(x, t).

This equation implies that

∂

∂x
[T(x, t) sin(θ(x, t))] = ρ

∂s
∂x
utt(x, t).

Rewriting the above equation, we obtain

∂

∂x
[T(x, t) cos(θ(x, t)) tan(θ(x, t))] = ρ

∂s
∂x
utt(x, t). (21)

It follows from equation (20) that T cos θ is independent of x. In addition,

∂s
∂x

= sec θ and
∂u
∂x

= tan θ,

and therefore we can rewrite equation (21) as

T cos θ uxx(x, t) = ρ sec θ utt(x, t),

or

T cos2 θ

ρ
uxx(x, t) = utt(x, t). (22)
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If we assume the vibrations have small amplitude, then cos θ ≈ 1. Therefore, equa-
tion (22) reduces to the wave equation with

T cos2 θ

ρ
≈ T

ρ
= c2.

Since c = √
T/ρ, it follows that the speed of the wave (equivalently, the frequency of

string vibrations) increases if the tension increases and decreases if the string is made
heavier. Do these observations agree with what you would expect?

9.7 Laplace’s Equation
Laplace’s equation in two spatial dimensions is

uxx(x, y) + uyy(x, y) = 0. (1)

In contrast to the case for the partial differential equations studied thus far,
time t is not one of the independent variables. Note that Laplace’s equation
involves a sum of second partial derivatives, while the wave equation involves
a difference. Not surprisingly, this structural difference leads to solutions of
Laplace’s equation that have properties markedly different from those of the
wave equation. In fact, the types of problems appropriate to Laplace’s equa-
tion are different from those associated with the wave equation and the heat
equation; we will study Laplace’s equation in the context of a boundary value
problem where the solution u(x, y) is prescribed on the boundary of a region D
in the xy-plane. Our task is to find the solution within the interior of D.

Laplace’s equation often arises in the study of phenomena that can be de-
scribed in terms of a potential function. Examples include problems in elec-
trostatics, gravitational attraction, and fluids. Solutions of equation (1), called
harmonic functions, also have an important role in the theory of complex vari-
ables. A familiar application of Laplace’s equation, the one that we use as the
basis of our discussion, is modeling steady-state heat flow. Project 2 in Chapter
8 also discussed an application of this type.

The Dirichlet Problem
Consider a two-dimensional regionD inwhich heat flows. The two-dimensional
heat equation associated with D is

ut(x, y, t) = κ[uxx(x, y, t) + uyy(x, y, t)], (2)

where u(x, y, t) is the temperature at point (x, y) at time t. In (2), the positive
constant κ denotes the thermal diffusivity of the material.

The problemwe consider is one in which we are given a temperature distri-
bution f (x, y) on the boundary of regionD. The temperature distribution f (x, y)
is allowed to vary as we move along the boundary, but it remains constant in
time. Under these circumstances, as time increases, the solution u(x, y, t) ap-
proaches a steady-state (time-independent) temperature distribution. For such
steady-state equilibrium solutions, ut(x, y, t) = 0 and therefore the heat equa-
tion (2) reduces to Laplace’s equation (1).

Problem Solve Laplace’s equation

uxx(x, y) + uyy(x, y) = 0 for (x, y) in the interior of D
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subject to the boundary condition

u(x, y) = f (x, y) for (x, y) on ∂D. (3)

In (3), we use the notation ∂D to denote the boundary of D.

The boundary value problem consisting of Laplace’s equation and the
boundary condition (3) is called a Dirichlet problem.9 Figure 9.27 illustrates
the Dirichlet problem. We will employ separation of variables to construct so-
lutions of the Dirichlet problem for two special cases—where the boundary of
D is a rectangle and where the boundary of D is a circle.

x

y

D

uxx + uyy = 0

u = f
prescribed on �D

FIGURE 9.27

The Dirichlet problem.

What Should We Expect of a Solution?
The fact that solutions of aDirichlet problemcan represent steady-state temper-
ature distributions in a heated region allows us to predict some of the properties
possessed by these solutions. For example, the simple physical observation that
heat flows “downhill,” from hotter to cooler regions, enables us to anticipate
one important feature of solutions of the Dirichlet problem. Consider the func-
tion z = u(x, y) whose graph is shown in Figure 9.28. Such a function cannot

0
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2
3

1

0.5

0

–0.5

y

x

FIGURE 9.28

The function z = u(x, y) whose graph is shown here cannot be the
solution of a Dirichlet problem on the rectangle D defined by
−1 < x < 3, −1 < y < 1.

9Johann Peter Gustav Lejeune Dirichlet (1805–1859) is remembered for his contributions to num-
ber theory, trigonometric series, and potential theory. In his first paper, he proved a special case of
Fermat’s last theorem, an accomplishment that gained him immediate andwidespread recognition.
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represent a steady-state temperature distribution, since heat would flow from
the local maximum into its surrounding neighborhood. Likewise, heat would
flow into the local minimum from its surrounding region. Thus, a tempera-
ture configuration u(x, y) such as the one shown in Figure 9.28 cannot remain
constant in time and hence cannot be the solution of a Dirichlet problem.

The example illustrated in Figure 9.28 points to an important property
possessed by solutions of Laplace’s equation. Unless the solution is a constant,
maximum and minimum solution values cannot occur in the interior of a re-
gion; they must be assumed at points on the boundary of the region. As a
consequence, the range of values that a solution u(x, y) can attain within D is
bounded by the maximum and minimum values of f (x, y) on ∂D.

The Dirichlet Problem for a Rectangle
Consider the case where the region D is the rectangle shown in Figure 9.29,

D = {(x, y)|0 < x < a,0 < y < b}. (4)

Wemust obtain a solution of Laplace’s equation that reduces to the prescribed
boundary values shown. The boundary values are specified in terms of four
functions, each defining the value of the solution on one side of the rectangle:

f (a, y) = f1(y), f (x,b) = f2(x), f (0, y) = f3(y), f (x,0) = f4(x).

We assume that the four functions fi are continuous and that they match up
continuously at the vertices; that is, f1(b) = f2(a), f2(0) = f3(b), f3(0) = f4(0), and
f4(a) = f1(0).

y

x

b

a

uxx + uyy = 0

u(x, b) = f2(x)

u(a, y) = f1(y)u(0, y) = f3(y)

u(x, 0) = f4(x)

FIGURE 9.29

The rectangle D defined in (4). On the jth side, the boundary values are
prescribed by the function fj.

The Dirichlet problem for Dwill be solved in two steps. In the first step, the
boundary value problem is transformed into an equivalent problem in which
the solution assumes zero values at the four boundary corners. In the second
step, we solve this new problem using the separation of variables technique.
At the heart of the overall solution approach is the superposition principle: If
u1(x, y),u2(x, y), . . . ,uN(x, y) are each solutions of Laplace’s equation, then the
sum

u(x, y) =
N∑
i=1

ui(x, y)

is likewise a solution. The following example illustrates the solution process.
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E X A M P L E

1 Solve

uxx(x, y) + uyy(x, y) = 0, 0 < x < 2, 0 < y < 1

subject to the boundary conditions

u(2, y) = cos 2πy, 0 ≤ y ≤ 1

u(x,1) = 2− 0.5x, 0 ≤ x ≤ 2

u(0, y) = 1+ y, 0 ≤ y ≤ 1

u(x,0) = 1+ sin 2πx, 0 ≤ x ≤ 2.

(5)

Solution: We break the solution process into two steps.

Step 1 The first step is to transform this Dirichlet problem into an equivalent
problem having boundary values that are zero at the four corners. To accom-
plish this, we first take note of the boundary condition values at the four corners
and then find a simple solution of Laplace’s equation, call it v(x, y), which takes
on these four corner values. Once we have v(x, y), the difference function

U(x, y) = u(x, y) − v(x, y)

is likewise a solution of Laplace’s equation, since it is the difference of two
solutions. Moreover, U(x, y) is zero at the four corners, since u(x, y) and v(x, y)
have the same values there.

You can verify by direct substitution that each of the four functions 1, x, y,
and xy is a solution of Laplace’s equation. Define

v(x, y) = α1 + α2x+ α3y+ α4xy. (6)

We will choose the constants α1, α2, α3, and α4 so that u(x, y) and v(x, y) have
the same values at the corners. By (5), we see that v(x, y) needs to satisfy the
conditions

v(0,0) = 1, v(2,0) = 1, v(2,1) = 1, v(0,1) = 2.

Imposing these constraints on expression (6) leads to a systemof four equations
for the four unknown constants:

v(0,0) = α1 = 1

v(2,0) = α1 + 2α2 = 1

v(2,1) = α1 + 2α2 + α3 + 2α4 = 1

v(0,1) = α1 + α3 = 2.

In Exercise 1, you are asked to show that this system has a unique solution for
the αj’s. You are also asked to show, for any rectangle D and for any prescribed
boundary condition f (x, y), that there is a unique set of values αj such that the
function v(x, y) in (6) takes on the prescribed values at the four corners. There-
fore, we can always construct the desired function v(x, y). For the particular
boundary conditions posed in this example, we obtain

v(x, y) = 1+ y− 1
2xy.

(continued)
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(continued)

Step 2 Having formed v(x, y), we now define U(x, y) = u(x, y) − v(x, y). Once
we determine U(x, y), the solution of interest is given by u(x, y) = U(x, y) +
v(x, y).

The boundary value problem for U is

Uxx(x, y) +Uyy(x, y) = 0, 0 < x < 2, 0 < y < 1 (7a)

subject to the boundary conditions

U(2, y) = u(2, y) − v(2, y) = cos(2πy) − 1, 0 ≤ y ≤ 1

U(x,1) = u(x,1) − v(x,1) = 0, 0 ≤ x ≤ 2

U(0, y) = u(0, y) − v(0, y) = 0, 0 ≤ y ≤ 1

U(x,0) = u(x,0) − v(x,0) = sin(2πx), 0 ≤ x ≤ 2.

(7b)

Notice that each of the four functions in (7b) vanishes at the endpoints of its
domain interval; these endpoints correspond to the corners of the rectangle.

To solve problem (7) by separation of variables, we again use superposi-
tion and view U as being decomposed into the sum of four functions Ui(x, y),
i = 1,2,3,4. We require each functionUi to be a solution of Laplace’s equation.
On the rectangle boundary, Ui is required to satisfy the ith boundary condition
in (7b) on the ith rectangle side and to be zero on the other three sides (see
Figure 9.30 for the case i = 1). In terms of these functions,

U = U1 +U2 +U3 +U4

will be the solution of problem (7).

Separation of Variables Solutions Consider the boundary value problem for
U1 shown in Figure 9.30. In particular, U1(2, y) = cos(2πy) − 1,0 ≤ y ≤ 1 and
U1 = 0 on the other three rectangle sides (the top, bottom, and left sides of the
rectangle D).

y

x

DU1 = 0

U1 = 0

U1 = 0

U1 = cos(2�y) – 1

(2, 1)

FIGURE 9.30

The domain D of the boundary value problem for U1 is the rectangle
defined by 0 < x < 2,0 < y < 1.

We use the separation of variables technique to generate building-block
solutions of Laplace’s equation. Assuming a solution of the form

U1(x, y) = X(x)Y (y),
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we obtain

∂2U1

∂x2
+ ∂2U1

∂y2
= X ′′(x)Y (y) + X(x)Y ′′(y) = 0,

or

−X ′′(x)
X(x)

= Y ′′(y)
Y (y)

= σ. (8)

In equation (8), σ denotes the separation constant. In addition to requiring
that these building blocks satisfy Laplace’s equation, we also require that they
satisfy the three homogeneous boundary conditions associated with U1 = 0
along the top, bottom, and left sides of rectangle D. These three homogeneous
conditions lead to

X(0)Y (y) = 0, 0 ≤ y ≤ 1, X(x)Y (0) = X(x)Y (1) = 0, 0 ≤ x ≤ 2. (9)

It follows that X(0) = 0,Y (0) = 0, and Y (1) = 0. Therefore, our objective is to
obtain nontrivial solutions, X(x) and Y (y), of the following two problems:

X ′′(x) + σX(x) = 0, 0 < x < 2

X(0) = 0
(10a)

Y ′′(y) − σY (y) = 0, 0 < y < 1

Y (0) = Y (1) = 0.
(10b)

Eigenvalue problem (10b), in particular, is identical to the problem we saw in
the zero temperature ends heat conduction problem and in the pinned string
wave equation problem. (The variable y and constant 1 replace x and l, respec-
tively.) The eigenvalues and corresponding eigenfunctions are

σn = −n2π2, Yn(y) = sinnπy, n = 1,2,3, . . . . (11)

With σ determined in equation (11), problem (10a) becomes

X ′′
n(x) − n2π2Xn(x) = 0, 0 < x < 2

Xn(0) = 0, n = 1,2,3, . . . .
(12)

The solutions of (12), conveniently expressed in terms of hyperbolic functions,
are

Xn(x) = enπx − e−nπx

2
= sinh(nπx), n = 1,2,3, . . . . (13)

Therefore, the building-block solutions are

un(x, y) = Xn(x)Yn(y) = sinh(nπx) sin(nπy), n = 1,2,3, . . . . (14)

Using superpositions of Xn(x)Yn(y), we look for a solution of the form

U1(x, y) =
∞∑
n=1

anun(x, y) =
∞∑
n=1

ansinh(nπx) sin(nπy). (15)

(continued)
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(continued)

The coefficients an in (15) will be determined by imposing the remaining (non-
homogeneous) boundary condition at x = 2. In particular, we require

U1(2, y) = cos(2πy) − 1 =
∞∑
n=1

an sinh(2nπ) sin(nπy), 0 ≤ y ≤ 1. (16)

Equation (16) is a Fourier sine series. Since the coefficient of sin(nπy) is
an sinh(2nπ), it follows from equation (7) in Section 9.4 that

an = 2
sinh(2nπ)

∫ 1

0
[cos(2πy) − 1] sin(nπy)dy, n = 1,2,3, . . . . (17)

Note that sinh(2nπ) > 0 for all positive integers n, and so no problems arise in
determining these coefficients.

Similarly, separation of variables can be used to solve the boundary value
problems for U2,U3, and U4. In Exercise 2, you are asked to show that

U2(x, y) = 0

U3(x, y) = 0

U4(x, y) =
∞∑
n=1

dn sin
(nπx
2

)
sinh

(
nπ(1− y)

2

)
,

dn = 1
sinh(nπ/2)

∫ 2

0
sin(2πx) sin

(nπx
2

)
dx.

(18)

Therefore, the solution of the boundary value problem is

u(x, y) = U(x, y) + v(x, y) = U1(x, y) +U4(x, y) + v(x, y). (19a)

Evaluating the coefficients an and dn in equations (17) and (18), we find

an =
⎧⎨
⎩
0, n even

16

nπ(n2 − 4) sinh(2nπ)

,
n odd

d4 = 1
sinh(2π)

, dn = 0, n �= 4.

Using these results in equation (19a) gives for the solution of the boundary
value problem

u(x, y) = 1+ y− 0.5xy

+ sin(2πx) sinh(2π(1− y))
sinh(2π)

+
∞∑

n=1,3,5,...

16 sinh(nπx) sin(nπy)

nπ(n2 − 4) sinh(2nπ)
.

(19b)

Figure 9.31 shows the solution surface defined by (19b). The infinite series
in (19b) converges rapidly, and the solution obtained by summing the first 10
nonvanishing terms is virtually indistinguishable from that obtained by sum-
ming the first 100 terms. Notice, in Figure 9.31, that the maximum and mini-
mum values of the solution occur on the boundary of the rectangle, in accord
with our previous observations.
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FIGURE 9.31

The graph of the solution of Example 1. Note that the maximum and
minimum values of the solution are achieved along the boundary of the
rectangle D. ❖

In Example 1, we solved a Dirichlet problem on the rectangle D defined by
0 < x < 2,0 < y < 1. This same solution process is also valid for a rectangle of
arbitrary dimensions, 0 < x < a,0 < y < b.

The Dirichlet Problem for a Circular Region
Consider the case where the region D is a circular disk of radius ρ. For this ge-
ometry, it is convenient to use polar coordinates, (r, θ), rather than rectangular
xy-coordinates. In terms of polar coordinates, the region D is defined by

D = {(r, θ)|0 ≤ r < ρ,0 ≤ θ < 2π}.
Laplace’s equation must likewise be expressed in terms of polar coordinates.
It can be shown (see Exercise 11) that Laplace’s equation in polar coordinates
has the form

1
r

∂

∂r

(
r
∂u(r, θ)

∂r

)
+ 1

r2
∂2u(r, θ)

∂θ2
= 0. (20)

The Dirichlet problem amounts to finding the solution u(r, θ) of equation (20)
that satisfies the given boundary condition

u(ρ, θ) = f (θ), 0 ≤ θ ≤ 2π. (21)

In (21), we assume that f (0) = f (2π) so that the function f defining the bound-
ary condition is single-valued and has a 2π -periodic extension. We require the
solution u(r, θ) to be bounded within region D and to have a 2π -periodic ex-
tension when it is viewed as a function of θ .

Separation of Variables
We look for solutions of Laplace’s equation having the form u(r, θ) = R(r)�(θ).
Substituting this expression into (20), we have

1
r
(rR′(r))′�(θ) + 1

r2
R(r)�′′(θ) = 0.
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Rearranging yields

− r(rR′(r))′

R(r)
= �′′(θ)

�(θ)
= σ, (22)

where σ denotes the separation constant.
From (22), we obtain the separation equations

r(rR′(r))′ + σR(r) = 0 (23)

�′′(θ) − σ�(θ) = 0. (24)

In contrast to the situation in problems previously considered, there are no ho-
mogeneous boundary conditions to impose. We do, however, require u(r, θ) to
be a single-valued function. In particular, we must have u(r, θ + 2π) = u(r, θ).
Therefore, we require solutions of the � equation to be periodic with period
2π . Such solutions will exist only for certain values of σ . We examine the pos-
sibilities.

(a) If σ = 0 in equation (24), then the general solution of the � equation is
�(θ) = c1 + c2θ . This function is not 2π-periodic unless c2 = 0.We therefore
obtain the eigenpair σ0 = 0, �0(θ) = 1.

(b) If σ �= 0, the general solution is�(θ) = c1e
−√

σθ + c2e
√

σθ , where c1 and c2 are
arbitrary constants. The constraint of 2π -periodicity requires that e±

√
σ2π =

1. This equation, in turn, implies that
√

σ must be imaginary. From Euler’s
formula, it follows that

√
σn = ±in, and thus

σn = −n2, n = 1,2,3, . . . . (25)

Since σn = −n2, the� equation is�′′
n(θ) + n2�n(θ) = 0. A fundamental set of

solutions is sinnθ and cosnθ . Therefore, for each eigenvalue
σn = −n2, we obtain two corresponding eigenfunctions sinnθ and
cosnθ .

Given (a) and (b), the set of eigenvalues for equation (24) can be succinctly
represented as σn = −n2, n = 0,1,2, . . . . We now examine equation (23) when
σ = −n2. In this case, (23) becomes

r(rR′
n(r))

′ − n2Rn(r) = 0. (26)

Note that (26) can be written as r2R′′
n(r) + rR′

n(r) − n2Rn(r) = 0. Therefore, (26)
is an Euler differential equation (see Section 8.3). We require that solutions of
this Euler equation be bounded on the interval 0 ≤ r ≤ ρ. The possibilities for
solutions of (26) are as follows:

(a) If n = 0, the general solution of r(rR′
0)

′ = 0,0 < r < a is R0(r) =
c1 + c2ln (r). Since ln(r) is unbounded as r approaches 0, wemust set c2 = 0.
Thus, we take R0(r) = 1 as the radial solution corresponding to the eigen-
value 0.

(b) If n = 1,2,3, . . . , the general solution of (26) is Rn(r) = c1r
−n + c2r

n. Since
r−n is unbounded as r approaches 0, we must set c1 = 0. Thus, we take
Rn(r) = rn as the radial solution corresponding to eigenvalue σn = −n2,n =
1,2,3, . . . .
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In summary, the building-block solutions Rn(r)�n(θ) obtained by separa-
tion of variables are the constant function 1 and the functions

rn cosnθ, rn sinnθ, n = 1,2,3, . . . .

We therefore look for a series solution of the boundary value problem having
the form

u(r, θ) = a0
2

+
∞∑
n=1

rn(an cosnθ + bn sinnθ), (27)

where the coefficient of the constant function is written as a0/2 in anticipation
of the connection between (27) and Fourier series. Imposing the boundary
condition gives

u(ρ, θ) = f (θ) = a0
2

+
∞∑
n=1

ρn(an cosnθ + bn sinnθ), 0 ≤ θ ≤ 2π. (28)

Equation (28) is the Fourier series expansion of the 2π -periodic function f .
From Section 9.5, equations (9a) and (9b), we obtain the following formulas
for the coefficients:

an = 1
πρn

∫ 2π

0
f (θ) cosnθ dθ, n = 0,1,2, . . . (29a)

bn = 1
πρn

∫ 2π

0
f (θ) sinnθ dθ, n = 1,2,3, . . . . (29b)

Series (28), with coefficients given by (29), is the solution of the Dirichlet prob-
lem. We now illustrate this solution approach with an example. In Exercises
19–24, we show how these ideas also can be used to solve the Dirichlet problem
for an annulus.

E X A M P L E

2 Solve the boundary value problem

1
r

∂

∂r

(
r
∂u(r, θ)

∂r

)
+ 1

r2
∂2u(r, θ)

∂θ2
= 0, 0 < r < 2, 0 ≤ θ ≤ 2π

u(2, θ) = sin2 θ + sin 4θ, 0 ≤ θ ≤ 2π.

Solution: The solution of Laplace’s equation is given by (27). For this problem,
the boundary is a circle of radius ρ = 2. Therefore, the boundary constraint is

u(2, θ) = sin2 θ + sin 4θ

= a0
2

+
∞∑
n=1

2n(an cosnθ + bn sinnθ), 0 ≤ θ ≤ 2π.

We can use formula (29) to evaluate the coefficients. However, we can also use
the fact that

sin2 θ + sin 4θ = 1
2 − 1

2 cos 2θ + sin 4θ

(continued)
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(continued)

to conclude

a0 = 1, 22a2 = − 1
2 , an = 0, n �= 0,2

24b4 = 1, bn = 0, n �= 4.

The solution is therefore

u(r, θ) = 1
2

− 1
2

( r
2

)2
cos 2θ +

( r
2

)4
sin 4θ, 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

Figure 9.32 shows the resulting solution surface for this problem. Note again
that the maximum and minimum values of the solution surface occur on the
boundary.

–2
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1
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2
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y

x

FIGURE 9.32

The solution of the Dirichlet problem solved in Example 2. ❖

E X E R C I S E S

1. As in Figure 9.29, consider the rectangular region D defined in the xy-plane by 0 <

x < a and 0 < y < b. Let v(x, y) = α1 + α2x+ α3y+ α4xy, and choose the coefficients
α1, α2, α3, and α4 so that v(x, y) takes on prescribed boundary values at the corners;
recall Example 1. These requirements lead to the system of linear equations

α1 + α2a = u1
α1 + α2a + α3b + α4ab = u2
α1 + α3b = u3
α1 = u4,

where the uj represent the boundary corner values. By explicitly solving the system,
show that this system has a unique solution for any positive values of a and b and
for any choice of u1,u2,u3, and u4.

2. Use separation of variables to show that U2(x, y) = U3(x, y) = 0 and to derive the
expression for U4(x, y) in equation (18).
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Exercises 3–10:

In each exercise, a rectangle is given. Consider the Dirichlet problem

uxx(x, y) + uyy(x, y) = 0, 0 < x < a, 0 < y < b

u(x, y) specified on the boundary of the given rectangle.

(a) Determine the function v(x, y) that has the prescribed boundary values at the four
vertices.

(b) FormU(x, y) = u(x, y) − v(x, y). Then formulate and solve the corresponding bound-
ary value problem for U(x, y).

(c) Form the solution u(x, y) = U(x, y) + v(x, y) and use computer software to display a
partial sum approximation of the solution surface.

3. The rectangle is defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The boundary values are

u(1, y) = 1, 0 ≤ y < 1

u(x,1) = 1, 0 < x ≤ 1

u(0, y) = y, 0 < y ≤ 1

u(x,0) = x, 0 ≤ x < 1.

4. The rectangle is defined by

0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

The boundary values are

u(2, y) = y, 0 ≤ y < 2

u(x,2) = 4− x, 0 < x ≤ 2

u(0, y) = 2+ y, 0 < y ≤ 2

u(x,0) = 2− x, 0 ≤ x < 2.

5. The rectangle is defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

The boundary values are

u(1, y) = 4y, 0 ≤ y < 2

u(x,2) = 8x, 0 < x ≤ 1

u(0, y) = 0, 0 < y ≤ 2

u(x,0) = 0, 0 ≤ x < 1.

6. The rectangle is defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The boundary values are

u(1, y) = 0, 0 ≤ y < 1

u(x,1) = 4 sin 2πx, 0 < x ≤ 1

u(0, y) = 0, 0 < y ≤ 1

u(x,0) = 0, 0 ≤ x < 1.

7. The rectangle is defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The boundary values are

u(1, y) = 0, 0 ≤ y < 1

u(x,1) = 0, 0 < x ≤ 1

u(0, y) = 2 sinπy, 0 < y ≤ 1

u(x,0) = 0, 0 ≤ x < 1.

8. The rectangle is defined by

0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

The boundary values are

u(2, y) = 1, 0 ≤ y < 1

u(x,1) = 1, 0 < x ≤ 2

u(0, y) = 1, 0 < y ≤ 1

u(x,0) = cos 2πx, 0 ≤ x < 2.

9. The rectangle is defined by

0 ≤ x ≤ 3, 0 ≤ y ≤ 2.

The boundary values are

u(3, y) = 1+ sinπy, 0 ≤ y < 2

u(x,2) = 1− 2 sin(πx/3), 0 < x ≤ 3

u(0, y) = 1, 0 < y ≤ 2

u(x,0) = 1, 0 ≤ x < 3.

10. The rectangle is defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The boundary values are

u(1, y) = sin 2πy, 0 ≤ y < 1

u(x,1) = sin 3πx, 0 < x ≤ 1

u(0, y) = sin 2πy, 0 < y ≤ 1

u(x,0) = sin 3πx, 0 ≤ x < 1.
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11. Laplace’s Equation in Polar Coordinates Use the chain rule to transform Laplace’s
equation from Cartesian coordinates to polar coordinates; recall equation (20).

(a) Show that

uxx + uyy = urr(r
2
x + r2y ) + 2urθ (rxθx + ryθy) + uθθ (θ

2
x + θ2y ) + ur(rxx + ryy) + uθ (θxx + θyy).

(b) Show that r2x + r2y = 1, rxθx + ryθy = 0, θ2x + θ2y = r−2, rxx + ryy = r−1, θxx + θyy = 0
to obtain

uxx + uyy = urr + r−1ur + r−2uθθ = r−1(rur)r + r−2uθθ .

Exercises 12–18:

In each exercise, a circular disk of radius ρ is given, as well as a function f (θ) defined
on the boundary of the disk. Solve the corresponding Dirichlet problem,

r−1(rur(r, θ))r + r−2uθθ (r, θ) = 0, 0 < r < ρ, 0 ≤ θ ≤ 2π

u(ρ, θ) = f (θ), 0 ≤ θ < 2π.

12. ρ = 3, f (θ) = 4 cos 2θ 13. ρ = 3, f (θ) = 2− sin θ

14. ρ = 1, f (θ) = 1+ sin2 θ + sin2 2θ 15. ρ = 2, f (θ) =
{
1, 0 ≤ θ ≤ π

0, π < θ < 2π

16. ρ = 1, f (θ) =
{
sin θ, 0 ≤ θ ≤ π

0, π < θ < 2π
17. ρ = 1, f (θ) = |sin θ |

18. ρ = 2, f (θ) =

⎧⎪⎨
⎪⎩
0, −π ≤ θ < −π/2

θ, −π/2 ≤ θ ≤ π/2

0, π/2 < θ < π

The Dirichlet Problem for an Annulus Consider the annulus shown in the figure.

�u = 0

u = f (�)

u = g(�)

a

b

Figure for Exercises 19–24

The boundary value problem to be solved is

r−1(rur(r, θ))r + r−2uθ θ (r, θ) = 0, 0 < b < r < a, 0 ≤ θ ≤ 2π

u(b, θ) = g(θ), u(a, θ) = f (θ), 0 ≤ θ ≤ 2π.
(30)

There are two boundary conditions to be satisfied in this Dirichlet problem. This time,
since the origin is not in the problemdomain, there is no reason to discard the separation
of variables solutions ln r and r−n as we did in the analysis following equation (26).

19. Show that the separation of variables solution for the Dirichlet problem (30) is

u(r, θ) = a0
2

+ A0
2
ln r +

∞∑
n=1

rn(an cosnθ + bn sinnθ) +
∞∑
n=1

r−n(An cosnθ + Bn sinnθ).

(31)
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20. (a) Evaluate the separation of variables solution found in Exercise 19 at r = b and
r = a, and set u(b, θ) and u(a, θ) equal to g(θ) and f (θ), respectively. Derive the
following systems of equations for the coefficients in (31):

(i) a0 + A0 lnb = 1
π

∫ 2π

0
g(θ)dθ

a0 + A0 ln a = 1
π

∫ 2π

0
f (θ)dθ

(ii) anb
n + Anb

−n = 1
π

∫ 2π

0
g(θ) cosnθ dθ

ana
n + Ana

−n = 1
π

∫ 2π

0
f (θ) cosnθ dθ, n = 1,2,3, . . .

(iii) bnb
n + Bnb

−n = 1
π

∫ 2π

0
g(θ) sinnθ dθ

bna
n + Bna

−n = 1
π

∫ 2π

0
f (θ) sinnθ dθ, n = 1,2,3, . . . .

(b) The system (i) in part (a) is a system of two linear equations in two unknowns.
Similarly, for each fixed integer n, system (ii) and system (iii) consist of two linear
equations in two unknowns. Prove that the coefficient matrix for each of these
systems has a nonzero determinant. Hence, the coefficients in (31) are uniquely
defined by the equations in part (a). (Assume that 0 < b < a.)

Exercises 21–24:

In each exercise, solve the Dirichlet problem for the annulus having a given inner radius
b, given outer radius a, and given boundary values u(b, θ) = g(θ) and u(a, θ) = f (θ).

21. b = 1, a = 3,u(1, θ) = 1, u(3, θ) = 3, 0 ≤ θ ≤ 2π

22. b = 1, a = 2, u(1, θ) = 0, u(2, θ) = 1+ cos θ, 0 ≤ θ ≤ 2π

23. b = 1, a = 2, u(1, θ) = 2+ sin 2θ, u(2, θ) = 1+ cos θ, 0 ≤ θ ≤ 2π

24. b = 2, a = 6, u(2, θ) = 2 sin2 θ, u(6, θ) = 0, 0 ≤ θ ≤ 2π

9.8 Higher-Dimensional Problems;
Nonhomogeneous Equations

Up to now, our study has centered on homogeneous partial differential equa-
tions having two independent variables. In this section, we present examples
that illustrate how the separation of variables technique can be applied to prob-
lems having three or more independent variables and to problems involving
nonhomogeneous partial differential equations. The Exercises provide further
illustrations of the underlying ideas.

Time-Dependent Two-Dimensional Heat Flow
Consider heat flow within the rectangle 0 ≤ x ≤ a,0 ≤ y ≤ b. The temperature
u(x, y, t) is a function of three independent variables, the two spatial coordinates
and time t. At time t = 0, an initial temperature distribution, u(x, y,0) = f (x, y),
is present within the rectangle. We constrain the temperature to be zero on
the boundary of the rectangle. The goal is to determine how the temperature
within the rectangle evolves in time.
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Problem Solve the two-dimensional heat equation

ut(x, y, t) = κ[uxx(x, y, t) + uyy(x, y, t)], 0 < x < a, 0 < y < b, 0 < t < ∞
subject to the boundary conditions

u(x,0, t) = u(x,b, t) = 0, 0 ≤ x ≤ a, 0 ≤ t < ∞
u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, 0 ≤ t < ∞ (1a)

and the initial condition

u(x, y,0) = f (x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b. (1b)

We assume that the initial temperature distribution f (x, y) satisfies the bound-
ary conditions given in (1a).

Separation of Variables
We look for building-block solutions of the two-dimensional heat equation
having the form u(x, y, t) = X(x)Y (y)T(t). We also require that each solution
satisfy the homogeneous boundary conditions (1a). Substituting u(x, y, t) =
X(x)Y (y)T(t) into the heat equation leads to

X(x)Y (y)T ′(t) = κ[X ′′(x)Y (y)T(t) + X(x)Y ′′(y)T(t)]. (2)

Dividing both sides by X(x)Y (y)T(t) and rearranging terms, we arrive at

X ′′(x)
X(x)

= T ′(t)
κT(t)

− Y ′′(y)
Y (y)

= σ. (3a)

Both terms are set equal to the separation constant σ , since one is a function
of independent variable x while the other depends on t and y. Rearranging the
second equation, we obtain

Y ′′(y)
Y (y)

= T ′(t)
κT(t)

− σ = η. (3b)

In (3b), η is a second separation constant, arising because the left-hand side of
(3b) is a function of ywhile the right-hand side is a function of t. We ultimately
obtain three separation equations. Imposing the homogeneous boundary con-
ditions leads us to the following three problems:

X ′′(x) − σX(x) = 0, 0 < x < a

X(0) = X(a) = 0
(4a)

Y ′′(y) − ηY (y) = 0, 0 < y < b

Y (0) = Y (b) = 0
(4b)

T ′(t) = κ[σ + η]T(t), 0 < t < ∞. (4c)

Problems (4a) and (4b) are eigenvalue problems that we have encountered
before; see equation (9a) in Section 9.2. Solutions consist of the eigenpairs

σm = −
(mπ

a

)2
, Xm(x) = sin

(mπx
a

)
, m = 1,2,3, . . . (5a)

ηn = −
(nπ

b

)2
, Yn(y) = sin

(nπy
b

)
, n = 1,2,3, . . . . (5b)
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With σm and ηn from (5a) and (5b), equation (4c) becomes

T ′
mn(t) = −κ

[(mπ

a

)2 +
(nπ

b

)2]
Tmn(t).

A nontrivial solution is

Tmn(t) = e−[(mπ/a)2+(nπ/b)2 ] κt. (6)

The separation of variables approach has therefore generated a doubly infinite
collection of functions

umn(x, y, t) = e−[(mπ/a)2+(nπ/b)2 ] κt sin
(mπx

a

)
sin

(nπy
b

)
, m,n = 1,2,3, . . . .

(7)

Each of these functions is a solution of the heat equation that vanishes on
the boundary of the rectangular domain. However, the solution of the initial-
boundary value problem must also satisfy the initial condition. Toward this
end, we look for a series solution of the form

u(x, y, t) =
∞∑

m=1

∞∑
n=1

cmnumn(x, y, t)

=
∞∑

m=1

∞∑
n=1

cmne
−[(mπ/a)2+(nπ/b)2 ] κt sin

(mπx
a

)
sin

(nπy
b

)
.

(8)

To satisfy the initial condition, we must determine constants cmn such that

f (x, y) = u(x, y,0)

=
∞∑

m=1

∞∑
n=1

cmn sin
(mπx

a

)
sin

(nπy
b

)
, 0 ≤ x ≤ a, 0 ≤ y ≤ b.

(9)

The right-hand side of (9) is a doubly infinite Fourier sine series. We assume
that such a representation of f (x, y) is valid and focus on how to calculate the
coefficients cmn.

Consider (9), viewed as a function of x, with y held fixed. We multiply both
sides of (9) by the function sin(pπx/a), where p is some positive integer, and
then integrate both sides from x = 0 to x = a:∫ a

0
f (x, y) sin

(pπx
a

)
dx =

∞∑
m=1

∞∑
n=1

cmn

[∫ a

0
sin

(mπx
a

)
sin

(pπx
a

)
dx

]
sin

(nπy
b

)

= a
2

∞∑
n=1

cpn sin
(nπy

b

)
. (10)

In evaluating the right-hand side of (10), we have assumed that the operations
of infinite summation and integration can be interchanged. We have also used
the fact that ∫ a

0
sin

(mπx
a

)
sin

(pπx
a

)
dx =

{
a/2, m = p

0, m �= p.

Multiply both sides of (10) by sin(qπy/b), where q is some positive integer,
and integrate both sides from y = 0 to y = b:∫ b

0

∫ a

0
f (x, y) sin

(pπx
a

)
sin

(qπy
b

)
dx dy = ab

4
cpq.
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From this calculation,

cmn = 4
ab

∫ b

0

∫ a

0
f (x, y) sin

(mπx
a

)
sin

(nπy
b

)
dx dy, m,n = 1,2,3, . . . .

(11)
Note that the integral in (11) can be viewed as a double integral over the rectan-
gular domain. The separation of variables formalism has thus led us to series
solution (8), with the coefficients determined by (11). We now apply this for-
malism to a specific example.

E X A M P L E

1 Consider the heat flow problem on the rectangle 0 ≤ x ≤ 1,0 ≤ y ≤ 2. Obtain
and plot the solution when the initial temperature distribution is given by

f (x, y) =
{
10, 1

4 ≤ x ≤ 3
4 ,

1
2 ≤ y ≤ 3

2

0, otherwise.

Solution: The initial temperature surface is shown in Figure 9.33. The initial
temperature has a constant value of 10 units in the central rectangular region
and is zero elsewhere. Since the boundary temperature ismaintained at zero for
0 ≤ t < ∞, we expect the thermal energy initially confined to the central “hot”
region to diffuse and leak out through the rectangle boundary as time increases.
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y

f (x, y)

x

0.25
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0.75

0.5

1
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FIGURE 9.33

In Example 1, the initial temperature u(x, y,0) = f (x, y) has a constant
value of 10 in the inner rectangle, 14 ≤ x ≤ 3

4 ,
1
2 ≤ y ≤ 3

2 .

For the initial distribution shown, the coefficients cmn become

cmn = 20
∫ 3/4

1/4

∫ 3/2

1/2
sin(mπx) sin(nπy/2)dy dx

=

⎧⎪⎨
⎪⎩
0, m and/or n even

160

mnπ2 cos
(mπ

4

)
cos

(nπ

4

)
, m and n odd.

To obtain graphical information about the series (8) corresponding to the so-
lution of this example, we define the partial sum uK,L(x, y, t) by

uK,L(x, y, t) =
K∑
k=1

L∑
l=1

cklukl(x, y, t). (12)
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Figure 9.34 shows how well the partial sum u100,100(x, y,0) approximates the
initial data. In addition to a surface plot, we exhibit two one-dimensional cuts
through the center that show the Gibbs phenomenon.10

(a)
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y

u100,100(0.5, y, 0)

(b) (c)
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FIGURE 9.34

(a) The graph of the partial sum u100,100(x, y,0). The graph approximates
reasonably well the initial condition u(x, y,0) = f (x, y) shown in Figure
9.33. (b) The graph of u100,100(0.5, y,0), a cut through the center of the
graph in (a) along the line x = 0.5. (c) The graph of u100,100(x,1,0), a cut
through the center of the graph in (a) along the line y = 1. The graphs in
(b) and (c) show the Gibbs phenomenon, which is discussed in Section 9.5;
see Figure 9.15. ❖

Figure 9.35 shows the solution surface defined by u100,100(x, y, t) at κt = 0.1.
As the figure indicates, the initial temperature surface has been smoothed and
decreased considerably in maximum value (from a value of 10 to a value of
about 2). Thermal energy is diffusing outward from the initial hot core and
leaking out through the boundaries. The seeming rapidity with which this oc-
curs should not be surprising. For any positive value of κt, the term uk,l(x, y, t)
in (12) having the largest exponential term is u1,1(x, y, t), and this exponential
term is

e−(5π2 /4)κt ≈ e−12.3κt.

10The manifestation of the Gibbs phenomenon in multidimensional Fourier series is a fascinating
subject. For an indication of some recent research findings, consult Pinsky and the references
therein: M. A. Pinsky, “Pointwise Fourier Inversion in Several Variables,” Notices of the AMS, Vol.
42, 1995, pp. 330–334.
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FIGURE 9.35

The graph of u100,100(x, y, t) in the case where κt = 0.1. Note how the initial
temperature surface, as shown in Figure 9.33, has been smoothed out. As
well, the maximum temperature has decreased from 10 units to about
2 units.

One of the drawbacks of using the separation of variables approach to
analyze multidimensional problems is the number of functions that must be
evaluated and summed to get an accurate approximation of the solution. The
partial sum u100,100(x, y, t) used to create Figure 9.35 involved 2500 functions.
Even with today’s software and fast computers, the running time required for
sums of this size is substantial. However, for heat flow problems such as the
one considered in Example 1, the number of functions needed for an adequate
partial sum approximation decreases rapidly as κt increases, since the expo-
nential functions in (8) quickly make the contributions from the higher index
terms insignificant. Figure 9.36 illustrates this point. It shows the graph of the
partial sum u4,4(x, y, t) for κt = 0.1. Compare the surface plot in Figure 9.36
with the graph of u100,100(x, y, t) shown in Figure 9.35.

As is illustrated in Figures 9.35 and 9.36, in heat flow problems we can re-
duce the size of the partial sums needed as time increases. However, such a re-
duction is generally not possible inmultidimensional wave equation problems.
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FIGURE 9.36

The graph of u4,4(x, y, t) for the case where κt = 0.1. Comparing this graph
with the one in Figure 9.35, we see little difference. The graphs are so
similar because the series (12) converges rapidly as a result of the presence
of the decaying exponential terms in (8).
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Nonhomogeneous Partial Differential Equations
We now consider an application of separation of variables to the following
nonhomogeneous insulated ends heat flow problem:

ut(x, t) = κuxx(x, t) + g(x, t), 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l.

The principal difference between this problem and those considered in Sec-
tion 9.2 is the nonhomogeneous term, g(x, t), in the heat equation. Such non-
homogeneous terms usually model an embedded mechanism that somehow
introduces or drains heat.

We assume the nonhomogeneous term can be expanded in a Fourier cosine
series

g(x, t) =
∞∑
n=0

gn(t) cos
(nπx

l

)
, (13a)

where

gn(t) = 2
l

∫ l

0
g(x, t) cos

(nπx
l

)
dx. (13b)

(Since g is a function of both x and t, the coefficients in expansion (13a) are
functions of t rather than constants.) Accordingly, we look for a solution of the
form

u(x, t) =
∞∑
n=0

Tn(t) cos
(nπx

l

)
. (14)

Our building blocks are therefore the functions cos(nπx/l) multiplied by
functions of time, Tn(t), which must be determined. There are several reasons
for this choice. First of all, each of the functions Tn(t) cos(nπx/l) satisfies the
insulated ends boundary conditions. In addition, at time t = 0, (14) reduces to

f (x) = u(x,0) =
∞∑
n=0

Tn(0) cos
(nπx

l

)
.

The above series is a Fourier cosine series, and we know how to determine the
constants Tn(0). Lastly, observe that

κ
∂2

∂x2

[
Tn(t) cos

(nπx
l

)]
= −κ

(nπ

l

)2
Tn(t) cos

(nπx
l

)
.

Therefore, when substituted into the nonhomogeneous heat equation, the sec-
ond partial derivative with respect to xwill simply produce a constant multiple
of the original function. This fact ultimately leads to a relatively simple set of
ordinary differential equations for the functions Tn(t).

The next example illustrates a specific application of these ideas. The ex-
ample features a simple form of g(x, t).
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E X A M P L E

2 Solve the initial-boundary value problem

ut(x, t) = κuxx(x, t) + e−t sin2 (πx/l), 0 < x < l, 0 < t < ∞
ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = 2− cos(πx/l), 0 ≤ x ≤ l.

Solution: As mentioned, we assume a solution of the form

u(x, t) =
∞∑
n=0

Tn(t) cos
(nπx

l

)
. (15)

Note that

g(x, t) = e−t sin 2
(πx
l

)
= e−t

2

[
1− cos

(
2πx
l

)]
.

Therefore [see (13a)],

g0(t) = e−t

2
, g2(t) = −e−t

2
, and gn(t) = 0, n �= 0,2.

Expression (15) is a Fourier cosine series in the spatial variable x with coef-
ficients that are unknown functions of time t. Each of the spatial functions
cos(nπx/l) satisfies the homogeneous boundary conditions. Substituting (15)
into the nonhomogeneous heat equation ut(x, t) − κuxx(x, t) = e−t sin2 (πx/l),
we obtain

∞∑
n=0

T ′
n(t) cos

(nπx
l

)
− κ

∞∑
n=0

Tn(t)
[
−

(nπ

l

)2
cos

(nπx
l

)]
= e−t sin2

(πx
l

)
.

Collecting terms and using the trigonometric identity for sin2 (πx/l), we have

∞∑
n=0

[
T ′
n(t) + κ

(nπ

l

)2
Tn(t)

]
cos

(nπx
l

)
= e−t

2

[
1− cos

(
2πx
l

)]
. (16)

Multiply both sides of (16) by cos(pπx/l), where p is a nonnegative integer, and
then integrate from x = 0 to x = l while keeping t fixed. The fact that

∫ l

0
cos

(nπx
l

)
cos

(pπx
l

)
dx =

⎧⎪⎨
⎪⎩
l, n = p = 0

l/2, n = p ≥ 1

0, n �= p,

means that the sum on the left produces a single nonzero term when n = p.
Therefore, we obtain a set of ordinary differential equations for the unknown
functions Tn(t):

T ′
0(t) = e−t

2

T ′
2(t) + κ

(
2π
l

)2

T2(t) = −e−t

2

T ′
n(t) + κ

(nπ

l

)2
Tn(t) = 0, n �= 0,2.
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From the initial condition,

u(x,0) =
∞∑
n=0

Tn(0) cos
(nπx

l

)
= 2− cos

(πx
l

)
,

we conclude that

T0(0) = 2

T1(0) = −1
Tn(0) = 0, n ≥ 2.

These equations lead to a set of first order linear initial value problems:

T ′
0(t) = e−t

2
, T0(0) = 2

T ′
1(t) + κ

(π

l

)2
T1(t) = 0, T1(0) = −1

T ′
2(t) + κ

(
2π
l

)2

T2(t) = −e−t

2
, T2(0) = 0

T ′
n(t) + κ

(nπ

l

)2
Tn(t) = 0, Tn(0) = 0, n ≥ 3.

(17)

The solutions of (17) are

T0(t) = 2.5− 0.5e−t

T1(t) = −e−(π/l)2κt

T2(t) = e−t − e−(2π/l )2κt

2
[
1− κ(2π/l)2

]
Tn(t) = 0, n ≥ 3.

In solving the initial value problems in (17), we have assumed that κ(2π/l)2 �= 1.
The solution (15) of the initial-boundary value problem therefore reduces to a
finite sum

u(x, t) = T0(t) + T1(t) cos(πx/l) + T2(t) cos(2πx/l)

= 2.5− 0.5e−t − e−(π/l)2κt cos(πx/l) + e−t − e−(2π/l)2κt

2[1− κ(2π/l)2] cos(2πx/l).
(18)

It follows from (18) that the temperature approaches the limiting value 2.5 at
all points of the bar as κt → ∞. Figure 9.37(a) shows a plot of the solution
surface for the case l = 2. Figure 9.37(b) displays the temperature variation in
the bar at three fixed points, x = 0.5,1,1.5. These graphs more clearly portray
how the temperature approaches its limiting value.

Note that the limiting behavior of the temperature is completely determined
by the asymptotic behavior of the function T0(t). In the Exercises, we observe
that this fact could have been deduced directly from the structure of the prob-
lem itself.

(continued)
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(continued)
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FIGURE 9.37

(a) A graph of the solution u(x, t) of the initial-boundary value problem in
Example 2 for the case l = 2. (b) Graphs showing the time variation of
temperature, u(x, t), at the points x = 0.5, x = 1.0, and x = 1.5. At each fixed
point x in the bar, the temperature approaches a value of 2.5 as t → ∞. ❖

E X E R C I S E S

Exercises 1–4:

In each exercise, use representation (8) to obtain the solution of the two-dimensional
heat equation ut(x, y, t) = κ[uxx(x, y, t) + uyy(x, y, t)], 0 < x < a, 0 < y < b, 0 < t < ∞,
where u vanishes on the boundary of the rectangle 0 ≤ x ≤ a,0 ≤ y ≤ b and satisfies
the given initial condition u(x, y,0) = f (x, y),0 ≤ x ≤ a,0 ≤ y ≤ b.

1. f (x, y) = 4 sin
(πx
a

)
sin

(πy
b

)

2. f (x, y) = 8 sin
(πx
a

)
sin

(πy
b

)
− sin

(
2πx
a

)
sin

(
3πy
b

)

3. f (x, y) = 2 sin2
(πx
a

)
sin

(πy
b

)
4. f (x, y) = 8 sin2

(πx
a

)
sin2

(πy
b

)
5. Insulated Boundary Consider the following problem, which models heat flow in a
rectangle with insulated boundary:

ut(x, y, t) = κ[uxx(x, y, t) + uyy(x, y, t)], 0 < x < a, 0 < y < b, 0 < t < ∞
ux(0, y, t) = ux(a, y, t) = 0, 0 ≤ y ≤ b, 0 ≤ t < ∞
uy(x,0, t) = uy(x,b, t) = 0, 0 ≤ x ≤ a, 0 ≤ t < ∞
u(x, y,0) = f (x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b.
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(a) Apply separation of variables, looking for solutions of the form u(x, y, t) =
X(x)Y (y)T(t) that satisfy the homogeneous boundary conditions as well as the heat
equation. Show that the separation equations are given by (3), the eigenpairs are

σm = −
(mπ

a

)2
, Xm(x) = cos

(mπx
a

)
,

ηn = −
(nπ

b

)2
, Yn(y) = cos

(nπy
b

)
, m,n = 0,1,2, . . . ,

and

Tmn(t) = e−[(mπ/a)2+(nπ/b)2 ]κt.

(b) Form umn(x, y, t) = Xm(x)Yn(y)Tmn(t) and the series representation of the solu-
tion,

u(x, y, t) =
∞∑
m=0

∞∑
n=0

cmnumn(x, y, t).

Impose the initial condition on this series, and obtain formulas for the coefficients.
(Since both sumsbegin at 0, it is probablymore convenient to give separate formulas
for c00, cm0, c0n, and cmn, m,n = 1,2,3, . . .).

Exercises 6–10:

In each exercise, use the separation of variables representation developed in Exercise 5
to solve the insulated boundary problem for the given initial temperature distribution.
(In Exercises 6–8, the coefficients can be determined without evaluating any integrals.)
Compute lim t→∞u(x, y, t), and compare your answer to

∫ a
0

∫ b
0 f (x, y)dy dx. Can you relate

your comparison to the principle of conservation of energy? How should the answer to
Exercise 10 relate to the answer in Exercise 9?

6. f (x, y) = 2+ cos
(πx
a

)
+ 3 cos

(πx
a

)
cos

(πy
b

)
7. f (x, y) = cos

(πx
a

)
cos2

(πy
b

)
8. f (x, y) = 2+ sin2

(πx
a

)

9. f (x, y) =
{
1, 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2

0, otherwise

10. f (x, y) =
{
0, 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2

1, otherwise

11. Mixed Zero Temperature and Insulated Boundaries We consider heat flow in a rect-
angle having a pair of opposite boundary sides maintained at zero degrees while
the other pair of sides is insulated:

ut(x, y, t) = κ[uxx(x, y, t) + uyy(x, y, t)], 0 < x < a, 0 < y < b, 0 < t < ∞
ux(0, y, t) = ux(a, y, t) = 0, 0 ≤ y ≤ b, 0 ≤ t < ∞
u(x,0, t) = u(x,b, t) = 0, 0 ≤ x ≤ a, 0 ≤ t < ∞
u(x, y,0) = f (x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b.

(a) Use separation of variables. Show (for m = 0,1,2, . . . and n = 1,2, . . .) that the
separation equations are given by (3), the eigenpairs are

σm = −
(mπ

a

)2
, Xm(x) = cos

(mπx
a

)
, ηn = −

(nπ

b

)2
, Yn(y) = sin

(nπy
b

)
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and

Tmn(t) = e−[(mπ/a)2+(nπ/b)2 ] κ t.

(b) Form umn(x, y, t) = Xm(x)Yn(y)Tmn(t) and

u(x, y, t) =
∞∑
m=0

∞∑
n=1

cmnumn(x, y, t).

Impose the initial condition and determine appropriate formulas for the series co-
efficients.

(c) For these boundary conditions, does lim t→∞u(x, y, t) exist or not? If so, what is
the limit?

Exercises 12–15:

Use the separation of variables representation developed in Exercise 11 to solve the
mixed boundary condition problem for the specified initial temperature distribution.

12. f (x, y) = cos
(πx
a

)
sin

(
3πy
b

)
13. f (x, y) = 2 cos2

(πx
a

)
sin

(
2πy
b

)

14. f (x, y) =
{
1, 0 ≤ x ≤ a, b/3 ≤ y ≤ 2b/3

0, otherwise

15. f (x, y) =
{
1, a/3 ≤ x ≤ 2a/3, b/3 ≤ y ≤ 2b/3

0, otherwise

16. Small Amplitude Vibrations of a Rectangular Membrane Assume a thinmembrane is
stretched over a rectangular domain 0 ≤ x ≤ a,0 ≤ y ≤ b and pinned down along the
boundary perimeter. Let u(x, y, t) represent the displacement of themembrane from
its equilibrium rest position at location (x, y) and time t. We model the vibrations
of this membrane with an initial-boundary value problem for the two-dimensional
wave equation:

utt(x, y, t) = c2[uxx(x, y, t) + uyy(x, y, t)], 0 < x < a, 0 < y < b, 0 < t < ∞
u = 0 on the rectangle boundary, 0 ≤ t < ∞
u(x, y,0) = f (x, y), ut(x, y,0) = g(x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b.

The initial conditions f (x, y) and g(x, y) specify the initial displacement and velocity,
respectively, at every point on the membrane.

(a) Show that separation of variables leads to eigenpairs

σm = −
(mπ

a

)2
, Xm(x) = sin

(mπx
a

)
,

ηn = −
(nπ

b

)2
, Yn(y) = sin

(nπy
b

)
, m,n = 1,2,3, . . .

and that

Tmn(t) = Amn cos

(√(mπ

a

)2 +
(nπ

b

)2
ct

)
+ Bmn sin

(√(mπ

a

)2 +
(nπ

b

)2
ct

)
.

(b) Form a series representation of the solution, impose the initial conditions, and
determine formulas for the coefficients Amn and Bmn.

Exercises 17–20:

In each exercise, use the separation of variables representation developed in Exercise 16
to determine the membrane displacement u(x, y, t) for the specified initial displacement
and velocity.
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17. f (x, y) = sin
(πx
a

)
sin

(πy
b

)
, g(x, y) = 0

18. f (x, y) = 0, g(x, y) = − sin
(πx
a

)
sin

(
2πy
b

)

19. f (x, y) = sin
(πx
a

)
sin

(πy
b

)
, g(x, y) = −2 sin

(πx
a

)
sin

(πy
b

)
20. f (x, y) = 2 sin2

(πx
a

)
sin

(πy
b

)
, g(x, y) = 0

Exercises 21–23:

These exercises deal with nonhomogeneous equations.

21. Consider the heat flow problem

ut(x, t) − κuxx(x, t) = Ush(τ − t) sin2
(πx
l

)
, 0 < x < l, 0 < t < ∞

ux(0, t) = ux( l, t) = 0, 0 ≤ t < ∞
u(x,0) = 0, 0 ≤ x ≤ l,

where Us and τ are positive constants and h is the Heaviside step function (see
Section 5.2). Recall, in particular, that

h(τ − t) =
{
1, 0 ≤ t ≤ τ

0, τ < t < ∞.

Therefore, the insulated bar is heated internally in the manner indicated for the
time interval 0 ≤ t ≤ τ , and then the heating source is turned off.

(a) Assume a solution of the form

u(x, t) =
∞∑
n=0

Tn(t) cos
(nπx

l

)
,

and determine the functions Tn(t),n = 0,1,2, . . . .

(b) Let κ = 0.1 m2/hr, l = 0.5 m, and Us = 150◦C. How long must the bar be heated
in order for its center to reach a maximum temperature of 75◦C? (Note that time is
being measured in hours.)

22. Consider the zero temperature ends heat flow problem

ut(x, t) − κuxx(x, t) = Us sin
(πx
l

)
, 0 < x < l, 0 < t < ∞

u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = U0 sin

(πx
l

)
, 0 ≤ x ≤ l,

where Us and U0 are positive constants. The nonhomogeneous source term intro-
duces heat into the bar; at the same time, heat can leave through the two ends.
We examine the question of whether a balance between these two effects can be
achieved so that the temperature remains constant in time.

(a) Look for a solution of the form

u(x, t) =
∞∑
n=1

Tn(t) sin
(nπx

l

)
,

and determine the functions Tn(t),n = 1,2,3, . . . . Is it possible to choose the con-
stant Us so that the temperature will remain constant in time—that is, so that
u(x, t) = U0 sin(πx/l),0 ≤ t < ∞?

(b) As an alternative approach, look for an equilibrium solution. In other words,
assume a solution of the form u(x, t) = u(x,0) = U0 sin(πx/l). Substitute this as-
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sumed form into the left side of the nonhomogeneous heat equation, and determine
whether a value of Us exists to achieve equality.

23. Forced Vibrations of a String Suppose a taut string, initially at rest and pinned at
its ends, is put into motion by an applied force. Consider the simple model

utt(x, t) − c2uxx(x, t) = sin
(πx
l

)
cos(ωt), 0 < x < l, 0 < t < ∞

u(0, t) = u( l, t) = 0, 0 ≤ t < ∞
u(x,0) = 0, ut(x,0) = 0, 0 ≤ x ≤ l,

where u(x, t) is the displacement of the string from its equilibrium position and the
positive constant ω is the radian frequency of the applied force (see Section 3.6).
Assume a solution of the form

u(x, t) =
∞∑
n=1

Tn(t) sin
(nπx

l

)
,

and show that

T ′′
1 (t) +

(πc
l

)2
T1(t) = cos(ωt), T1(0) = 0, T ′

1(0) = 0

T ′′
n(t) +

(nπc
l

)2
Tn(t) = 0, Tn(0) = 0, T ′

n(0) = 0, n = 2,3,4, . . . .

(The solution of the initial value problem for T1 will depend on whether or not
ω = πc/l. These two cases are referred to as the resonant and nonresonant cases,
respectively.)

Exercises 24–25:

In each exercise, use the procedure outline in Exercise 23 to determine the solution
u(x, t). Plot displacement at the string center, u( l/2, t), as a function of time. Use the
given values of ω and πc/l. Select a time interval sufficiently large to display the basic
features of the motion.

24. ω = 2, πc/l = 2π 25. ω = π, πc/l = π

26. Poisson’s Equation The nonhomogeneous Laplace’s equation is often called Pois-
son’s11 equation. We consider a simple boundary value problem involving this
equation:

uxx(x, y) + uyy(x, y) = x sin
(
2πy
b

)
, 0 < x < a, 0 < y < b

u = 0 on the rectangle boundary.

(a) Look for a solution of the form

u(x, y) =
∞∑
n=1

Xn(x) sin
(nπy

b

)
.

Show that the functions Xn(x) are solutions of the following two-point boundary

11Simeon Denis Poisson (1781–1840) conducted his mathematical studies in France during and
after the Napoleonic era. A lack of coordination and manual dexterity thwarted Poisson’s early at-
tempts to become a surgeon and prompted him instead to studymathematics, where his enormous
talent quickly became evident. Poisson studied problems relating to ordinary and partial differen-
tial equations. He is remembered for his contributions to mathematical physics and probability
theory.
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value problems:

X ′′
2 (x) −

(
2π
b

)2

X2(x) = x, X2(0) = X2(a) = 0

X ′′
n(x) −

(nπ

b

)2
Xn(x) = 0, Xn(0) = Xn(a) = 0, n �= 2.

[Note that the supplementary conditions are imposed at two distinct points, the
endpoints of the interval.]

(b) The theory of two-point boundary value problems is discussed in Chapter 11.
Nevertheless, the problems developed in part (a) can be solved by obtaining the gen-
eral solution and then imposing the two boundary conditions. Determine Xn(x),n =
1,2,3, . . . and the solution u(x, y).

27. Use the ideas developed in Exercise 26 to solve the boundary value problem

uxx(x, y) + uyy(x, y) = ey sinπx, 0 < x < 1, 0 < y < 1

u = 0 on the boundary of the unit square.

In this case, assume a solution of the form

u(x, y) =
∞∑
n=1

sin(nπx)Yn(y).

PROJECT

Cooking Meatballs

Consider a solid homogeneous sphere immersed in a liquid. At initial time t = 0, both
the sphere and the surrounding liquid are at the same constant temperature. As time
passes, we assume the temperature of the liquid rises. Our goal is to determine the
temperature within the sphere, as a function of position and time.

The problem we consider is suggested by the familiar experience of taking a pot of
meatballs, immersed in sauce, from the refrigerator andplacing it on the stove to simmer
and cook. We shall pose a mathematical problem and solve it using the techniques
developed in this chapter. This problem, while a significant simplification of the cooking
problem, is of interest in its own right.

Assume that a homogeneous sphere of radius R and thermal diffusivity κ is initially
at constant temperature T0. Because of the problem geometry, we adopt spherical coor-
dinates. At each point on the spherical boundary, the increase in temperature with time
will be specified as a known function of time t. The problem is to determine how the
temperature changes within the sphere.

Since both the initial condition and the boundary condition are independent of the
two spherical coordinate angles, we will assume a solution that likewise is independent
of these two angle coordinates. Let u(ρ, t) denote the temperature within the sphere at
radial coordinate ρ and time t.

Problem Obtain the solution of the heat equation

∂u(ρ, t)
∂t

= κ

(
∂2u(ρ, t)

∂ρ2
+ 2

ρ

∂u(ρ, t)
∂ρ

)
, 0 < ρ < R, 0 < t < ∞ (1)
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that satisfies the boundary condition

u(R, t) = T1 − (T1 − T0)e
−αt, 0 ≤ t < ∞ (2)

and the initial condition

u(ρ,0) = T0, 0 ≤ ρ ≤ R. (3)

The sphere is initially at constant temperature T0. At every point on the boundary of
the sphere, the temperature increases according to boundary condition (2). As time in-
creases, the boundary temperature approaches an asymptotic value of T1 where
T1 > T0. The positive constant α in (2) governs the rate of increase in boundary tem-
perature. (For a cooking example, T0 would represent the refrigerator temperature and
T1 the temperature at which the sauce simmers and the meatballs cook.)

Mathematically, this problemdiffers from the other heat conduction problems stud-
ied in this chapter; only one boundary condition is prescribed, and this boundary con-
dition is both nonhomogeneous and time varying.

It is clear that the solution we seek must be a well-behaved function within the
sphere, most notably at the origin ρ = 0. This observation plays a key role in the solution
process.

1. The first step in solving this problem is to transform the partial differential equation.
Introduce a change of dependent variable by defining

v(ρ, t) = ρu(ρ, t).

Use equations (1)–(3) to develop an equivalent initial-boundary value problem for v.
In particular,

(a) Show that the equation satisfied by v is vt = κvρρ (the heat equation we have
studied in this chapter).

(b)Show that the variable v satisfies a homogeneous boundary condition at ρ = 0 in
addition to a nonhomogeneous time-varying boundary condition at ρ = R.

(c) Determine the initial condition appropriate for v.

Except for the time-dependent boundary condition at ρ = R, the new problem for v
is similar to other problems considered in this chapter.

The problem for v, involving a homogeneous heat equation with a nonhomoge-
neous time-dependent boundary condition, can be transformed into an equivalent
problem, involving a nonhomogeneous heat equation with homogeneous boundary
conditions, by another change of dependent variable. The virtue of this additional
transformation lies in the fact that we can use superposition and separation of vari-
ables to solve the transformed problem.

2. Define

w(ρ, t) = v(ρ, t) − ρ

R
v(R, t) = v(ρ, t) − ρ[T1 − (T1 − T0)e

−αt].

Show that w is a solution of the problem

wt(ρ, t) = κwρρ(ρ, t) − αρ(T1 − T0)e
−αt, 0 < ρ < R, 0 < t < ∞

w(0, t) = w(R, t) = 0, 0 ≤ t < ∞
w(ρ,0) = 0, 0 ≤ ρ ≤ R.

(4)
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3. Solve problem (4) as follows:

(a) Expand the function ρ in a Fourier sine series on the interval of interest, 0 ≤ ρ ≤ R.
In other words, assume a representation

ρ =
∞∑
n=1

cn sin
(nπρ

R

)
,

and determine the coefficients cn. Do you anticipate the presence of the Gibbs
phenomenon anywhere on the interval 0 ≤ ρ ≤ R? If so, why? [Hint: Consider the
odd periodic extension of this function.]

(b)Check your coefficients cn in (a) by assuming R = 1 and using computational
software to plot the partial sum

100∑
n=1

cn sinnπρ

on the interval 0 ≤ ρ ≤ 1.

(c) Assume a solution w(ρ, t) having the form

w(ρ, t) =
∞∑
n=1

ωn(t) sin
(nπρ

R

)
. (5)

Note that representation (5) satisfies the homogeneous boundary conditions.
Show that the unknown functions ωn(t) are solutions of the initial value prob-
lems

ω′
n(t) + κ

(nπ

R

)2
ωn(t) = −αcn(T1 − T0)e

−αt

ωn(0) = 0, n = 1,2,3, . . . .

(6)

(d)Assume that α �= κn2π2/R2 for any value of the integer n. Solve the initial value
problems in (6), and form w(ρ, t).

(e) Form the desired solution u(ρ, t).

(f) Recall the limit

lim
x→0

sin x
x

= 1.

Use this fact to show that the solution obtained in (e) remains bounded as ρ → 0.
(Assume that the operations of infinite summation and limit can be interchanged.)

4. Assume the following parameter values:

T0 = 34◦F, T1 = 212◦F, κ = 0.01 cm2/s, α = 0.01 s−1, R = 2 cm.

We would like to use computer software to plot u(1, t) and u(0, t) (in ◦F) versus time t
for 0 ≤ t ≤ 500 s. To do so, we typically use a partial sum approximation of the form

uN(ρ, t) =
N∑
n=1

ωn(t)
sin

(
nπρ
R

)
ρ

+ T1 − (T1 − T0)e
−αt

for the actual calculations.

(a) Determine a suitable value of N for the desired computations. What criterion did
you use to decide on this value of N?

(b)Use uN(ρ, t) as an approximation to evaluate and plot u(1, t) and u(0, t) for 0 ≤
t ≤ 500 s.

(c) How long does it take before the center of the sphere reaches a temperature of
200◦F?
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10C H A P T E R

First Order Partial
Differential Equations

and the Method
of Characteristics

C H A P T E R O V E R V I E W

10.1 Introduction

10.2 The Cauchy Problem

10.3 Existence and Uniqueness

10.4 The Method of Characteristics

10.1 Introduction

First Order Partial Differential Equations
A partial differential equation involves the partial derivatives of a dependent
variable (often denoted by u) that is a function of two or more independent
variables. Frequently, the independent variables are time t and one or more of
the spatial variables x, y, z. The order of a partial differential equation is the
order of the highest partial derivative appearing in the equation. In this chapter,
we focus on first order partial differential equations of the form

a(x, t)
∂u(x, t)

∂x
+ b(x, t)

∂u(x, t)
∂t

= c(x, t,u(x, t)). (1)

In equation (1), a(x, t) and b(x, t) are known functions of the independent vari-
ables x and t, and c(x, t,u) is a known function, possibly involving the dependent
variable u.
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An example concerning pollutant flow in a stream will serve as an intro-
duction. This application also suggests what the appropriate supplementary
conditions should be. Equation (1), together with appropriate supplementary
conditions, will form the problem of interest, called the Cauchy problem.

An Example: Pollutant Flow in a Stream
Suppose we want to monitor the flow of a pollutant, such as agricultural fertil-
izer, in a narrow stream. For simplicity, assume that the stream bed is oriented
along the x-axis, that the stream has constant cross-sectional area A, and that
water flows in the positive x-direction with constant speed v. (See Figure 10.1.)
Assume the stream is sufficiently narrow that a “well-stirred” approximation is
reasonable in the two directions perpendicular to the flow. In other words, we
assume that pollutant concentration within the stream is a function of time t
and the spatial variable x. Let the concentration be denoted u(x, t). The goal
is to determine how the pollutant concentration, u(x, t), evolves in space and
time.

Arbitrarily chosen
stream segment

Constant
cross-sectional
area A

x

x = x1

x = x2

FIGURE 10.1

The conservation law stated in equation (4) holds for the arbitrary stream
segment x1 ≤ x ≤ x2.

We obtain the governing partial differential equation by applying a “conser-
vation of pollutant” principle to an arbitrary segment of the stream. As shown
in Figure 10.1, we arbitrarily select two points x1 and x2, where x2 > x1. To the
corresponding stream segment x1 ≤ x ≤ x2, we apply the principle

Rate of change
of pollutant in

the stream segment
=

Rate at which
pollutant enters

the stream segment
−

Rate at which
pollutant leaves

the stream segment.

At any time t, the amount of pollutant in the stream segment is∫ x2

x1
u(x, t)Adx = A

∫ x2

x1
u(x, t)dx,

and the rate of change of this quantity is

d
dt

[
A

∫ x2

x1
u(x, t)dx

]
= A

∫ x2

x1

∂u(x, t)
∂t

dx. (2)

The right-hand side of equation (2) is now set equal to the rate at which the
pollutant enters the stream segment minus the rate at which it leaves. Since the
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stream is flowing in the positive x-direction, the pollutant enters the segment
x1 ≤ x ≤ x2 at the upstream position x = x1 and leaves the segment at the down-
stream position x = x2. We also allow for the possibility that the pollutant may
enter or be removed along the banks of the stream. Let c(x, t) represent the
net rate of this input per unit length of stream at location x and time t. Thus,
c(x, t) > 0 if the pollutant is actually entering the stream and c(x, t) < 0 if the
pollutant is being removed. Under these assumptions,

Rate at which
pollutant enters the
stream segment

−
Rate at which

pollutant leaves the
stream segment

= u(x1, t)Av+
∫ x2

x1
c(x, t)dx− u(x2, t)Av.

Therefore,

A
∫ x2

x1

∂u(x, t)
∂t

dx = u(x1, t)Av+
∫ x2

x1
c(x, t)dx− u(x2, t)Av. (3)

Applying the fundamental theorem of calculus, we can express the term
Av[u(x1, t) − u(x2, t)] as

Av[u(x1, t) − u(x2, t)] = −Av
∫ x2

x1

∂u(x, t)
∂x

dx.

Thus, conservation law (3) can be written as∫ x2

x1

[
∂u(x, t)

∂t
+ v

∂u(x, t)
∂x

− 1
A
c(x, t)

]
dx = 0. (4)

Equation (4) holds for all t in the time interval of interest, say 0 < t < ∞. Since
we are assuming the integrand in (4) is a continuous function of (x, t), it follows,
for each fixed t, that the integrand is a continuous function of x for all x along
the stream; for simplicity, we assume−∞ < x < ∞. Since x1 and x2 are arbitrary
points and since (4) is true for every possible choice of x1 and x2, it follows that
the integrand must be identically zero:

v
∂u(x, t)

∂x
+ ∂u(x, t)

∂t
= 1
A
c(x, t), −∞ < x < ∞, 0 < t < ∞. (5)

Partial differential equation (5) must be augmented by supplementary con-
ditions. These conditions arise from different scenarios that we might want to
model. For example, suppose we know pollutant concentration along the entire
length of the stream at time t = 0. In this case, equation (5) would be supple-
mented by a condition of the form

u(x,0) = u0(x), −∞ < x < ∞. (6a)

In (6a), u0(x) is the known initial concentration.
Another application might be one where the stream is initially pollutant

free and a pollutant spill begins at a certain location, say x = 0, at time t = 0.
If we assume we know the time history of the spill, our goal is to determine
pollutant concentration at downstream locations as time evolves. In such a
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case, we supplement equation (5) with the conditions

u(0, t) = us(t), 0 ≤ t < ∞, u(x,0) = 0, 0 ≤ x < ∞, (6b)

where us(t) is the known spill history function.
These two problems are shown schematically in Figure 10.2. For the prob-

lem consisting of equation (5) with supplementary condition (6a), the solution
is specified along the x-axis, andwewant to solve for u(x, t) in a domain consist-
ing of the upper half of the xt-plane. For the problem consisting of (5) and (6b),
the solution is specified along the first quadrant boundaries of the xt-plane, and
we want to solve for u(x, t) in the first quadrant of the xt-plane.

Domain
of

interest
u(x, 0) = u0(x)

u

t
x

Domain
of

interest

u(0, t) = us(t)

u

x t

(a) (b)

FIGURE 10.2

(a) The supplementary condition u(x,0) = u0(x) is specified for
−∞ < x < ∞. (b) The supplementary conditions u(0, t) = us(t),
0 ≤ t < ∞ and u(x,0) = 0, 0 ≤ x < ∞ are specified.

10.2 The Cauchy Problem
The pollutant-flow example serves as a guide for formulating the mathemati-
cal problem of interest, the Cauchy problem. We then consider the geometric
aspects of this problem.

For simplicity, we focus on the special case of two independent variables, x
and t, so that the solution surface can be sketched and visualized. Understand-
ing the problemgeometry enables us to appreciate the hypotheses guaranteeing
the existence of a unique solution. This understanding also allows us to develop
an approach for solving the Cauchy problem. The solution technique, known
as the method of characteristics, is developed in Section 10.4.

The problem we consider is the first order partial differential equation

a(x, t)
∂u(x, t)

∂x
+ b(x, t)

∂u(x, t)
∂t

= c(x, t,u(x, t)). (1)

The domain of the solution u(x, t) is a portion of the xt-plane. For equation (1),
supplementary conditions are specified along some curve lying in the xt-plane;
this curve is denoted by γ in Figure 10.3. Plotting the points (x, t,u(x, t)) for
(x, t) on γ generates the space curve denoted by � in the figure.

The problem illustrated by Figure 10.3 consists of equation (1), together
with a prescribed space curve �. This problem is known as a Cauchy problem.
The graphof the solution is a surface determinedbypartial differential equation
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u(x, t)

�

�

u

x t

FIGURE 10.3

The solution, u(x, t), of partial differential equation (1) is a smooth surface
in xtu-space. Initial conditions are specified on a curve γ lying in the
xt-plane. The space curve � consists of the points (x, t,u(x, t)) for (x, t) on γ .

(1) that also contains the specified space curve �. To see a snapshot of the
solution at some time t = t1, we can envision cutting the solution surface with
a plane perpendicular to the t-axis at t = t1, obtaining u(x, t1). To see a time
history of the solution at some point x = x1, we cut the solution surface with a
plane perpendicular to the x-axis at x = x1, obtaining u(x1, t). These ideas are
illustrated in Figure 10.4.

(x1, t, u(x1, t))
(x, t1, u(x, t1))

u

x
t

(x1, t1, 0)

FIGURE 10.4

The curve consisting of points (x, t1,u(x, t1)) gives a snapshot of the
solution at time t = t1. The curve consisting of points (x1, t,u(x1, t))
gives a time history of the solution at the point x = x1.

Parametric Curves and the Cauchy Problem
Space curves such as � in Figure 10.3 are often described by parametric equa-
tions. Let τ denote the parametric variable, and assume, for the sake of the
present discussion, that τ takes on values in the interval α ≤ τ ≤ β. A paramet-
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ric description of the space curve � = (x, t,u(x, t)) has the form

x = φ(τ), t = ψ(τ), u(φ(τ), ψ(τ)) = ω(τ), α ≤ τ ≤ β, (2)

where φ, ψ , and ω are known functions. The two parametric equations
x = φ(τ) and t = ψ(τ), α ≤ τ ≤ β define a curve γ in the xt-plane. The third
equation, u(φ(τ), ψ(τ)) = ω(τ), describes how the dependent variable u varies
along the curve γ . (In general, the parameter interval can be finite or infinite and
need not include its endpoints. The interval might be, for example, α < τ < β,

−∞ < τ ≤ β, or −∞ < τ < ∞.)
To simplify the notation, we denote partial derivatives by subscripts. In ad-

dition, we begin with the homogeneous differential equation a(x, t)ux +
b(x, t)ut = 0. Once we understand the homogeneous problem, we can general-
ize to the nonhomogeneous problem, a(x, t)ux + b(x, t)ut = c(x, t,u). Consider

a(x, t)ux + b(x, t)ut = 0

u(φ(τ), ψ(τ)) = ω(τ).
(3)

Geometrically, we want to find the surface determined by differential equa-
tion (3) that contains the space curve � defined in (2).

E X A M P L E

1 An example of a Cauchy problem is

ux(x, t) + ut(x, t) = 0

subject to the supplementary condition

u(τ,1− τ) = 1− sin 2πτ, 0 ≤ τ ≤ 1. ❖

Later, in Section 10.4, we solve the Cauchy problem posed in Example 1.
The geometry of the problem is illustrated in Figure 10.5. Note that initial data
are specified for the points (x, t) lying on the curve γ , where γ is described
parametrically by

x = τ, t = 1− τ, 0 ≤ τ ≤ 1.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.5

1

1.5

2

x
t

�

�

FIGURE 10.5

The supplementary condition for the Cauchy problem in Example 1
is specified on the line segment γ . The space curve � defines the
supplementary condition for the problem.
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Thus, the curve γ is a line segment connecting the points (x, t) = (0,1) and
(x, t) = (1,0). For all points (x, t) = (τ,1− τ) lying on γ , we require the solution
u(x, t) to satisfy

u(τ,1− τ) = 1− sin 2πτ, 0 ≤ τ ≤ 1.

The supplementary condition is the space curve � shown in Figure 10.5.

An Euler-like Process for Approximating the Level Curves
of the Solution Surface
When we discussed the initial value problem y′ = f (t, y), y(t0) = y0, Euler’s
method provided a simple, heuristic way to understand how the differential
equation developed the initial condition point into the solution curve (see Sec-
tion 2.10). It is instructive to have a similar heuristic understanding of how a
first order partial differential equation develops the given space curve � into
the solution surface.

Consider the first order partial differential equation

a(x, t)ux(x, t) + b(x, t)ut(x, t) = 0. (4)

The key observation is the fact that the left-hand side of equation (4) can be
viewed as the dot product of two vectors. Suppose, at an arbitrary point in
the xt-domain of u, we form the vector a(x, t)i+ b(x, t)j, where i and j are unit
vectors in the x and t directions, respectively. Suppose we likewise form the
gradient of u, ∇u(x, t) = ux(x, t)i+ ut(x, t)j. Using these expressions, we can
rewrite equation (4) as

a(x, t)ux(x, t) + b(x, t)ut(x, t) = [a(x, t)i+ b(x, t)j] · ∇u(x, t) = 0. (5)

The geometric interpretation of equation (5) is that, at (x, t), the projection of
the gradient is equal to zero in the direction determined by a(x, t)i+ b(x, t)j.
Therefore, the directional derivative of u evaluated at (x, t) vanishes in the
direction a(x, t)i+ b(x, t)j. This means that the solution u has a zero rate of
change at (x, t) in the direction defined by this vector; geometrically, the vector
a(x, t)i+ b(x, t)j is tangent to a level curve of the solution surface (recall that
level curves are contour lines—that is, curves of constant elevation). Therefore,
we can imagine creating the solution surface by generating a family of polygo-
nal approximations of level curves. Euler constructions can be used to develop
an approximate contour map of the surface.

The constructions proceed as follows. Select any point (x0, t0) on γ , the
curve in the domain onwhich solution u is specified; the value u(x0, t0) specifies
the elevation. Evaluating a(x, t)i+ b(x, t)j at the point (x0, t0) defines a direction.
March out in the domain a short distance in this direction to a point (x1, t1),
and evaluate a(x, t)i+ b(x, t)j at (x1, t1). This evaluation defines a new direction
in which u has the same constant value. The process can be iterated.

In a similar fashion, the idea of direction fields (see Section 6.2) can also
be used to visualize the level curves of the solution surface. At each point (x, t)
on a suitable grid in the xt-domain, we place a small filament having slope
b(x, t)/a(x, t). The level curve passing through the point (x, t) is tangent to the
filament at the point (x, t). The elevation of the solution surface associated with
the level curve is dictated by the value of the solution u at the point where the
level curve intersects the curve γ . The following example illustrates these ideas.



666 CHAPTER 10 First Order Partial Differential Equations and the Method of Characteristics

E X A M P L E

2 Consider the Cauchy problem

xux − (t+ 1)ut = 0, 0 < t < ∞, −∞ < x < ∞
u(x,0) = e−x

2
, −∞ < x < ∞.

Construct the direction field for this problem.

Solution: The direction field is shown in Figure 10.6. At each grid point, a
filament is placed having slope

b(x, t)
a(x, t)

= −(t+ 1)
x

.

For example, the filament drawn at the point (x, t) = (2,2) has slope − 3
2 . The

direction field can be used to visualize the level curves of the solution surface.
As t increases, the direction field indicates that the level curves move toward
the t-axis. Correspondingly, the solution surface should “pinch together” as t
increases.

–3 –2 –1 1 2 3

2

4

6

x

t

FIGURE 10.6

The direction field for the Cauchy problem in Example 2:
xux − (t+ 1)ut = 0, u(x,0) = e−x2 , −∞ < x < ∞. The direction field
suggests that the solution surface pinches together as t increases. ❖

We show, in Section 10.4, that the solution of the Cauchy problem in Ex-
ample 2 is u(x, t) = e−(t+1)2x2 . (You can check by direct substitution that this
function satisfies both the partial differential equation and the initial condi-
tion.) The graph of the solution, shown in Figure 10.7, exhibits the features
suggested by the direction field in Figure 10.6.

Although the geometric arguments in this section are heuristic, they do
provide an intuitive insight into how the solution surface is generated. The
arguments also highlight the importance of the curves in the domain, called
characteristic curves, that are determined by the direction field. In Section
10.3, we survey the conditions needed to have a well-posed Cauchy problem.
In Section 10.4, we develop the method of characteristics, a computational
procedure for obtaining an explicit solution of the problem.
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FIGURE 10.7

The graph of the solution of the Cauchy problem in Example 2. As the
associated direction field shown in Figure 10.6 suggests, the solution
surface pinches together as t increases.

E X E R C I S E S

Exercises 1–6:

A Cauchy problem is given in each exercise.

(a) Determine the unspecified constant α.

(b) The values of u are prescribed along a curve γ in the xt-plane. Sketch the curve γ .

(c) Determine the function ω(τ) .

1. ux + ut = 0

u(2τ,0) = ω(τ), −1 ≤ τ ≤ 1. The solution is u(x, t) = (x+ αt)3.

2. −2ux + ut = 0

u(τ, τ ) = ω(τ), 0 ≤ τ ≤ 2. The solution is u(x, t) = sin(x+ αt).

3. ux + αut = 0

u(τ,2τ) = ω(τ), 0 ≤ τ < ∞. The solution is u(x, t) = (2x+ t)3.

4. ux + αut = 0

u(τ,2τ) = ω(τ), −1 ≤ τ ≤ 1. The solution is u(x, t) = e2t.

5. xux + ut = 0

u(τ, τ ) = ω(τ), 2 ≤ τ ≤ 4. The solution is u(x, t) = (xeαt)3.

6. ux + αtut = 0

u(τ,1) = ω(τ), 0 ≤ τ < ∞. The solution is u(x, t) = x− 2 ln t, 0 < t.

Exercises 7–9:

In each exercise, the solution of a partial differential equation is given. Determine the
unspecified coefficient function.

7. a(x, t)ux + xt2ut = 0; u(x, t) = x2t3

8. xux + b(x, t)ut = 0; u(x, t) = xe−t

9. ux + b(x, t)ut = 0; u(x, t) = f (x3 − t), where f (z) is continuously differentiable

Exercises 10–14:

Direction fields can be used to approximate the level curves of the partial differential
equation a(x, t)ux + b(x, t)ut = 0.



668 CHAPTER 10 First Order Partial Differential Equations and the Method of Characteristics

(a) Consider the rectangular region in the xt-plane described by −2 ≤ x ≤ 2,
0 ≤ t ≤ 2. In this region, sketch the direction field for the given partial differen-
tial equation, and use the direction field to sketch estimates of the level curves of
the differential equation.

(b) Suppose we require that u(x,0) = x, −2 ≤ x ≤ 2. This constraint sets the actual ele-
vations of the level curves constructed in part (a). In particular, note that u(0,0) = 0.
Consider the point (x, t) = (0,1) in the domain and the corresponding value of the
solution, u(0,1). Based on the construction made in part (a), do you anticipate that
u(0,1) will be greater than, equal to, or less than zero?

10. ux − 1
2ut = 0 11. ut = 0 12. ux + 2ut = 0

13. xux + ut = 0 14. (t+ 1)ux + ut = 0

10.3 Existence and Uniqueness
In this section, we state a theorem that guarantees the existence of a unique
solution of the Cauchy problem. The hypotheses take into account the geometry
of the initial data space curve� and guarantee the existence of a unique solution
surface containing �. An extensive discussion of existence and uniqueness can
be found in Dou1 or John.2

Theorem 10.1
Let a(x, t) and b(x, t) be continuously differentiable on the entire xt-plane
and consider the Cauchy problem

a(x, t)ux + b(x, t)ut = 0

u(φ(τ), ψ(τ)) = ω(τ), α ≤ τ ≤ β.
(1)

Suppose that

(a) |a(x, t)| + |b(x, t)| > 0 for all (x, t),

(b) φ(τ), ψ(τ), and ω(τ) are continuously differentiable functions for α ≤
τ ≤ β,

(c) |φ′(τ )| + |ψ ′(τ )| > 0, α ≤ τ ≤ β,

(d) the curve γ defined by (x, t) = (φ(τ),ψ(τ)), α ≤ τ ≤ β is a simple curve,
and

(e) the curve γ satisfies the transversality condition

det

[
φ′(τ ) ψ ′(τ )

a(φ(τ), ψ(τ)) b(φ(τ), ψ(τ))

]
�= 0, α ≤ τ ≤ β.

Then there is a unique solution of the Cauchy problem (1).

1Alberto Dou, Lectures on Partial Differential Equations of First Order (Notre Dame, IN: University
of Notre Dame Press, 1972).
2Fritz John, Partial Differential Equations, 4th ed. (New York: Springer, 1995).
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Althoughwe do not present a proof, the hypotheses of Theorem 10.1 should
seem reasonable. We would expect that a certain degree of continuous differ-
entiability would be required of the functions defining the differential equation
and the initial data. Several of the hypotheses of Theorem 10.1 have geometric
interpretations. For example, condition (a) guarantees that the direction field
is defined at each point (x, t). Requirements (c)–(e) relate to the curve γ . A curve
γ having a parametric description that satisfies requirement (c) is a smooth
curve, a curve for which arc-length is a strictly increasing function of the pa-
rameter τ . Requirement (d), that γ is a simple curve, ensures that γ does not
intersect itself.

Transversality condition (e) also has a geometric interpretation. At each
point (x, t) in the domain, the vector a(x, t)i+ b(x, t)j defines the direction field
filament orientation, which is tangent to the level curve of the solution surface
at that point. However, we are permitted to specify the supplementary data as
part of the problem formulation. We can specify the curve γ in the xt-domain
and the way in which the solution u varies along γ . The transversality condi-
tion ensures that no incompatibility arises from these two separate demands on
the solution. (Consider Figure 10.8.) The vector φ′(τ )i+ ψ ′(τ )j is tangent to the
curve γ at the point (x, t) = (φ(τ), ψ(τ)). At that point, the specified initial data
u(φ(τ), ψ(τ)) = ω(τ) determine the directional derivative of u in the tangential
direction. The vector a(φ(τ), ψ(τ))i+ b(φ(τ), ψ(τ))j determines the level curve
orientation at this point. Therefore, the solution has a vanishing directional
derivative at the point (x, t) = (φ(τ), ψ(τ)) in the direction a(φ(τ), ψ(τ))i +
b(φ(τ), ψ(τ))j. The transversality condition simply ensures that the two direc-
tions, φ′(τ )i+ ψ ′(τ )j and a(φ(τ), ψ(τ))i+ b(φ(τ), ψ(τ))j, are not parallel.

a(x, t)i + b(x, t)j

Tangential direction

x

t

(x, t)
�

FIGURE 10.8

At the point (x, t) = (φ(τ), ψ(τ)), the directional derivative of u in the
tangential direction, φ′(τ )i+ ψ ′(τ )j, is determined by the supplementary
data, ω(τ). At the point (x, t), the directional derivative of u in the direction
a(φ(τ), ψ(τ))i+ b(φ(τ), ψ(τ))j, is zero. The transversality condition (e) of
Theorem 10.1 ensures that these two directions are not parallel and thus
eliminates the possibility of a contradiction.

It is important to understand what Theorem 10.1 states, but it is equally
important to appreciate what it does not say. Theorem 10.1 does not say that a
unique solution cannot exist if the hypotheses are not met. Moreover, the theo-
rem does not guarantee that the solution exists over any specific portion of the
xt-domain. The theorem assures us of the existence of a solution surface con-
taining the supplementary data space curve. However, as the following example
shows, we may not be able to predict the extent of the solution surface.
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E X A M P L E

1 Consider the Cauchy problem

ux(x, t) − (1− t)2ut(x, t) = 0

u(τ,0) = τ, −∞ < τ < ∞.

(a) Show that this problem satisfies the hypotheses of Theorem 10.1.

(b) Verify that u(x, t) = x+ t(1− t)−1 is the solution.

Solution:

(a) For this problem, a(x, t) = 1 and b(x, t) = −(1− t)2. These two functions are
continuously differentiable on the entire xt-plane. A parameterization for
the curve � is given by

x = φ(τ) = τ, t = ψ(τ) = 0

u(φ(τ), ψ(τ)) = ω(τ) = τ, −∞ < τ < ∞.

Clearly, hypotheses (a) and (b) of Theorem 10.1 hold. Note that φ′(τ ) = 1
and ψ ′(τ ) = 0. Therefore, hypothesis (c) of Theorem 10.1 holds. To verify
hypothesis (d), observe that the curve γ is the entire x-axis, and hence γ is
a simple curve. Turning to the transversality condition, we have∣∣∣∣∣ φ′(τ ) ψ ′(τ )

a(φ(τ), ψ(τ)) b(φ(τ), ψ(τ))

∣∣∣∣∣ =
∣∣∣∣∣ 1 0

a(τ,0) b(τ,0)

∣∣∣∣∣ =
∣∣∣∣∣1 0

1 −1

∣∣∣∣∣ = −1.

Thus, hypothesis (e) of Theorem 10.1 holds, and we are guaranteed the
existence of a unique solution of the given Cauchy problem.

(b) For u(x, t) = x+ t(1− t)−1, we obtain ux(x, t) = 1 and ut(x, t) = (1− t)−2.
Therefore,

ux(x, t) − (1− t)2ut(x, t) = 0.

The function u(x, t) = x+ t(1− t)−1 also satisfies the initial condition
u(τ,0) = τ and therefore is the unique solution. The graph of the solu-
tion surface is shown in Figure 10.9. The solution exists in the positive
t-direction only for t < 1; it does not exist for t ≥ 1.
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FIGURE 10.9

The unique solution of the Cauchy problem in Example 1 is
u(x, t) = x+ t(1− t)−1. The solution is undefined for t ≥ 1. ❖
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E X E R C I S E S

Exercises 1–8:

In each exercise, a Cauchy problem is given, with initial data specified on a curve γ .

(a) Sketch the curve γ .

(b) Determine the values of the parameter τ , if any, where the transversality condition
fails to hold.

(c) Assume that ω(τ) is continuously differentiable on the given interval α ≤ τ ≤ β. Are
all the hypotheses of Theorem 10.1 satisfied? If not, which hypotheses do not hold?

1. ux + ut = 0, u(τ, τ 2) = ω(τ), 0 ≤ τ ≤ 4

2. ux − ut = 0, u(cos τ, sin τ) = ω(τ), 0 ≤ τ ≤ π/2

3. 2ux + ut = 0, u(τ, τ/2) = ω(τ), 0 ≤ τ ≤ 10

4. ux + 2ut = 0, u(τ, τ ) = ω(τ), 0 ≤ τ ≤ 10

5. tux + ut = 0, u(τ,2τ) = ω(τ), −2 ≤ τ ≤ 4

6. x2ux + tut = 0, u(τ,1) = ω(τ), −10 ≤ τ ≤ 10

7. tux − xut = 0, u(cos τ, sin τ) = ω(τ), −π/2 ≤ τ ≤ π/2

8. ux + e−xut = 0, u(τ, τ/2) = ω(τ), 0 ≤ τ ≤ 2

9. Consider the Cauchy problem

ux + ut = 0

u(τ, τ ) = 0, −∞ < τ < ∞.

(a) Verify that the transversality condition is not satisfied for any value of τ .

(b) Let f be any continuously differentiable function satisfying f (0) = 0. Show that
the composition f (x− t) is a solution of the Cauchy problem.

(c) Are the observations made in parts (a) and (b) consistent with the conclusions
of Theorem 10.1? Explain.

10. Consider the Cauchy problem

ux + ut = 0

u(τ,2τ 2) = τ − 2τ 2, −∞ < τ < ∞.

(a) Show that the transversality condition is satisfied for all values of τ except
τ = 1

4 .

(b) Show that u(x, t) = x− t is a solution of the Cauchy problem.

(c) Are the observations made in parts (a) and (b) consistent with the conclusions
of Theorem 10.1? Explain.

10.4 The Method of Characteristics
In this section, we first develop a solution procedure for the Cauchy problem

a(x, t)ux + b(x, t)ut = 0 (1a)

u(φ(τ), ψ(τ)) = ω(τ), α ≤ τ ≤ β. (1b)

The basic idea is to introduce a new coordinate system in the xt-plane and
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interpret the differential equation in terms of the new coordinates. We then
build on this approach to solve the nonhomogeneous equation.

Characteristic Coordinates
We will use (s, τ ) as new coordinates for the region of interest in the xt-plane.
The variable τ is the parametric variable used in (1b) to describe the curve γ

where the supplementary data are specified. The variable s is introduced by
considering the following initial value problem:

∂x(s, τ )

∂s
= a(x(s, τ ), t(s, τ )), x(0, τ ) = φ(τ)

∂t(s, τ )

∂s
= b(x(s, τ ), t(s, τ )), t(0, τ ) = ψ(τ), α ≤ τ ≤ β.

(2)

In (2), the parameter τ is fixed. For each value of τ , (2) is essentially an initial
value problem involving a system of two ordinary differential equations. We
assume, for each value of τ in [α, β], that problem (2) has a unique solution
over some s-interval. Therefore, the family of solutions of (2), when graphed in
the xt-plane, will consist of a nonintersecting family of curves covering some
portion of the plane. This family of curves is referred to as the family of char-
acteristic curves. When s = 0, the solution point lies on the curve γ since
(x(0, τ ), t(0, τ )) = (φ(τ), ψ(τ)). In the next subsection, we show, as s varies with
τ fixed, that the (x, t) solution point moves along a contour curve of the partial
differential equation.

E X A M P L E

1 Determine and graph the family of characteristic curves for theCauchyproblem

ux(x, t) + ut(x, t) = 0

u(τ,1− τ) = 1− sin 2πτ, 0 ≤ τ ≤ 1.

Solution: For this problem, the initial data are specified on the curve γ defined
by x = φ(τ) = τ and t = ψ(τ) = 1− τ,0 ≤ τ ≤ 1. The characteristic curves are
found by solving the system

∂x(s, τ )

∂s
= 1, x(0, τ ) = τ

∂t(s, τ )

∂s
= 1, t(0, τ ) = 1− τ, 0 ≤ τ ≤ 1.

The solution is

x(s, τ ) = s+ τ, t(s, τ ) = s+ 1− τ, 0 ≤ τ ≤ 1.

Geometrically, the family of characteristic curves is a family of parallel lines.
Eliminating the variable s, we see that these lines have the form t = x+ (1− 2τ).
Figure 10.10 illustrates some of these characteristic curves.
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(1, 0)

(0, 1)

t

x

s < 0

s > 0

FIGURE 10.10

The characteristic curves for the Cauchy problem in Example 1 form a
family of parallel lines having the form (x, t) = (s+ τ, s+ 1− τ),0 ≤ τ ≤ 1. ❖

E X A M P L E

2 Determine and graph the family of characteristic curves for theCauchyproblem

xux(x, t) − (t+ 1)ut(x, t) = 0

u(τ,0) = e−τ 2 , −∞ < τ < ∞.

Solution: For this problem, the initial data are specified on the curve γ defined
by x = φ(τ) = τ and t = ψ(τ) = 0, −∞ < τ < ∞. The characteristic curves are
found by solving the system

∂x(s, τ )

∂s
= x(s, τ ), x(0, τ ) = τ

∂t(s, τ )

∂s
= −(t(s, τ ) + 1), t(0, τ ) = 0, −∞ < τ < ∞.

The solution is

x(s, τ ) = τes, t(s, τ ) = e−s − 1, −∞ < τ < ∞.

Geometrically, the family of characteristic curves is a family of hyperbolas.
When the variable s is eliminated, the curves have the form t = −1+ τ/x. Figure
10.11 illustrates some of these characteristic curves.
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FIGURE 10.11

The characteristic curves for the Cauchy problem in Example 2 form a
family of hyperbolas, t = −1+ τ/x. (Note that −∞ < x < ∞ and
−1 < t < ∞.) ❖
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Characteristic Curves Are Level Curves for a Solution
The characteristic curves are level curves of the solution surface of a(x, t)ux +
b(x, t)ut = 0. To establish this fact, we show that u(x(s, τ ), t(s, τ )) remains con-
stant when τ is held fixed and s is allowed to vary. Using the chain rule and
equation (2), we obtain

∂

∂s
u(x(s, τ ), t(s, τ )) = ux(x(s, τ ), t(s, τ ))

∂x(s, τ )

∂s
+ ut(x(s, τ ), t(s, τ ))

∂t(s, τ )

∂s

= ux(x(s, τ ), t(s, τ ))a(x(s, τ ), t(s, τ ))

+ut(x(s, τ ), t(s, τ ))b(x(s, τ ), t(s, τ ))

= 0.

The last equality follows because u is a solution of a(x, t)ux + b(x, t)ut = 0.
Therefore, when τ is held fixed and s is allowed to vary, the solution u re-
mains constant. This shows that the characteristic curves are level curves of a
solution u.

Obtaining the Solution of a Cauchy Problem
The solution of a Cauchy problem has a simple representation in terms of
characteristic coordinates; in fact, the solution is simply u = ω(τ). To see why
this is so, let u(x(s, τ ), t(s, τ )) denote the solution of (1). For a fixed value of τ ,
we saw in the previous subsection that u(x(s, τ ), t(s, τ )) remains constant as s
varies. Therefore,

u(x(s, τ ), t(s, τ )) = u(x(0, τ ), t(0, τ ))

= u(φ(τ), ψ(τ))

= ω(τ).

(3)

Representation (3) is unsatisfactory, however, since we want the solution ex-
pressed in terms of the original variables x and t. To obtain the desired solution
u(x, t) we must solve for s and τ as functions of x and t. If we can explicitly
perform this calculation, obtaining s = α(x, t) and τ = β(x, t), then the desired
solution is u(x, t) = ω(β(x, t)).

Summary

The procedure for solving the Cauchy problem (1) consists of three steps:

1. Formulate and solve initial value problem (2), finding solutions x(s, τ )

and t(s, τ ).

2. Solve for s and τ as functions of x and t, obtaining s = α(x, t) and
τ = β(x, t).

3. Form the solution, u(x, t) = ω(β(x, t)).

E X A M P L E

3 Solve the Cauchy problem

ux(x, t) + ut(x, t) = 0

u(τ,1− τ) = 1− sin 2πτ, 0 ≤ τ ≤ 1.



10.4 The Method of Characteristics 675

Solution: In Example 1, we carried out step (1) of the solution procedure,
finding x(s, τ ) = s+ τ and t(s, τ ) = s+ 1− τ , where 0 ≤ τ ≤ 1. Carrying out step
(2), we solve for s and τ , obtaining

s = α(x, t) = x+ t− 1
2

and τ = β(x, t) = x− t+ 1
2

.

Since ω(τ) = 1− sin 2πτ , the desired solution is u(x, t) = ω(β(x, t)) =
1− sin[π(x− t+ 1)]. A portion of the solution surface is shown in Figure 10.12.
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FIGURE 10.12

A portion of the graph of the solution of the Cauchy problem considered in
Example 3. ❖

E X A M P L E

4 Solve the Cauchy problem

xux(x, t) − (t+ 1)ut(x, t) = 0

u(τ,0) = e−τ 2 , −∞ < τ < ∞.

Solution: In Example 2, we found the characteristic curves x(s, τ ) = τes and
t(s, τ ) = e−s − 1, −∞ < τ < ∞. Solving for s and τ , we obtain

s = α(x, t) = −ln (t+ 1) and τ = β(x, t) = (t+ 1)x.

Since ω(τ) = e−τ 2 , the desired solution is u(x, t) = ω(β(x, t)) = e−((t+1)x)2 . This
solution was illustrated in Section 10.2, Figure 10.7. ❖

The Nonhomogeneous Equation
We now consider the nonhomogeneous partial differential equation

α(x, t)ux + β(x, t)ut = c(x, t,u)

u(φ(τ), ψ(τ)) = ω(τ), α ≤ τ ≤ β.
(4)

With appropriate hypotheses on the function c(x, t,u), the existence-uniqueness
theorem given in Section 10.3 can be extended to cover the nonhomogeneous
problem (4). Characteristic curves also play an important role in determining
the solution of the nonhomogeneous problem. In the nonhomogeneous case,
however, the characteristic curves are not contour curves. To understand why,
assume initial value problem (2) has been prescribed and solved. Suppose that
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τ is held fixed and s is allowed to vary. In this case, using the chain rule and
equations (2) and (4), we obtain

∂

∂s
u = ux

∂x(s, τ )

∂s
+ ut

∂t(s, τ )

∂s

= uxa(x(s, τ ), t(s, τ )) + utb(x(s, τ ), t(s, τ ))

= c(x(s, τ ), t(s, τ ),u).

Along a characteristic curve, u is a solution of the initial value problem

∂

∂s
u = c(x(s, τ ), t(s, τ ),u), u(x(0, τ ), t(0, τ )) = ω(τ). (5)

Therefore a solution procedure for solving Cauchy problem (4) can be sum-
marized as follows:

1. Formulate and solve initial value problem (2), obtaining solutions x(s, τ )

and t(s, τ ).

2. Solve initial value problem (5) for u, and let u = U(s, τ ) represent the
solution expressed as a function of s and τ .

3. Solve for s and τ as functions of x and t, obtaining s = α(x, t) and
τ = β(x, t).

4. Form the desired solution, u(x, t) = U(α(x, t), β(x, t)).

Example 5 provides an illustration of the procedure.

E X A M P L E

5 Solve the Cauchy problem

ux(x, t) − ut(x, t) = xt

u(τ,0) = τ 2, −∞ < τ < ∞.

Solution: The characteristic curves are found by solving the system

∂x(s, τ )

∂s
= 1, x(0, τ ) = τ

∂t(s, τ )

∂s
= −1, t(0, τ ) = 0, −∞ < τ < ∞.

(6)

The solution is x(s, τ ) = s+ τ and t(s, τ ) = −s.
The nonhomogeneous term is c(x, t,u) = xt. Therefore, initial value prob-

lem (5) becomes

∂u
∂s

= x(s, τ )t(s, τ ) = (s+ τ)(−s) = −s2 − τs

u(x(0, τ ), t(0, τ )) = τ 2, −∞ < τ < ∞.

The general solution of this differential equation is

u = −s3

3
− τ

s2

2
+ C.
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Imposing the initial condition u(x(0, τ ), t(0, τ )) = τ 2, we obtain

u = −s3

3
− τ

s2

2
+ τ 2. (7)

From the solution of (6), we have x(s, τ ) = s+ τ and t(s, τ ) = −s. Solving for s
and τ in terms of x and t, we find s = −t and τ = x+ t. Thus, by (7), the solution
is

u(x, t) = − (−t)3
3

− (x+ t)
(−t)2
2

+ (x+ t)2 = − t3

6
− xt2

2
+ x2 + 2xt+ t2.

As a check, verify directly that this expression satisfies both the partial differ-
ential equation and the initial condition. ❖

E X E R C I S E S

Exercises 1–8:

Obtain the solution of the Cauchy problem. [In Exercise 6, what happens to the solution
u(x, t) as t increases toward 0? In Exercise 8, for what values of t does the solution u(x, t)
exist?]

1. ux − 2ut = 0

u(τ,0) = sin τ, −∞ < τ < ∞
2. 2ux + 3ut = 0

u(0, τ ) = e−τ , −∞ < τ < ∞
3. xux + ut = 0

u(τ,1) = τ 2, −∞ < τ < ∞
4. ux − 2ut = 0

u(τ, τ ) = τ 3, −∞ < τ < ∞
5. ux − ut = 0

u(τ,2τ) = τ 2, −∞ < τ < ∞
6. xux + tut = 0

u(τ, −1) = cosπτ, −∞ < τ < ∞
7. (1− x)ux + ut = 0

u(τ,0) = τ, −∞ < τ < ∞
8. ux + t2ut = 0

u(τ,1) = τ, −∞ < τ < ∞
Exercises 9–15:

In each exercise,

(a) Solve the Cauchy problem consisting of the given nonhomogeneous equation
together with the supplementary condition u(τ,0) = e−τ2 , −∞ < τ < ∞.

(b) Consider the upper half of the xt-plane, R = {(x, t) : −∞ < x < ∞,0 ≤ t < ∞}.
On what portion of R does the solution u(x, t) exist?

9. ux + ut = 1 10. ux + ut = xt 11. ux + 2ut = −u
12. ux + 2ut = tu 13. ux + 2ut = u+ 2t 14. tux − ut = x

15. ux + (2t− 1)2ut = 1

Exercises 16–18:

Consider themathematicalmodel of streamflowdeveloped in Section 10.1, whereu(x, t)
represents the concentration of pollutant at position x and time t. Flow occurs in the
direction of increasing x with constant speed v.

16. Assume the stream is long enough that we can idealize its length as −∞ < x <

∞. At time t = 0, the concentration of pollutant is u(x,0) = e−x2 , −∞ < x < ∞. As
the flow occurs, pollutant concentration is reduced at a rate proportional to the
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concentration (because of natural processes or human intervention). We assume
pollutant flow is modeled by the Cauchy problem

vux + ut = −ku
u(x,0) = e−x2 , −∞ < x < ∞, 0 ≤ t < ∞,

where k is a positive constant.

(a) Solve this Cauchy problem.

(b) Suppose the stream flow speed is v = 5 mph. At a monitoring station 20 miles
downstream, the measured peak value of pollutant concentration is 0.05. At what
time is this peak value detected at the monitoring station? What is the value of the
constant k?

17. Assume the stream is initially pollutant-free. At time t = 0, a pollutant spill begins
at x = 0. The time history of the spill is modeled by

u(0, t) =
{
16t2(1− t)2, 0 ≤ t ≤ 1

0, 1 < t < ∞.
(8)

The mathematical problem modeling the pollutant flow is

vux + ut = 0, 0 ≤ x < ∞, 0 ≤ t < ∞,

with u(0, t) prescribed by (8) for 0 ≤ t < ∞ and u(x,0) = 0,0 ≤ x < ∞.

(a) Show that the characteristic curves are straight lines of the form x− vt = a,
where a is a constant.

(b) Solve the following Cauchy problem for pollutant concentration in the region
t ≥ x/v:

vux + ut = 0

u(0, τ ) = 16τ 2(1− τ)2, 0 ≤ τ ≤ 1

u(0, τ ) = 0, 1 < τ < ∞.

(c) Solve the following Cauchy problem for pollutant concentration in the region
t < x/v:

vux + ut = 0,

u(0, τ ) = 0, 0 < τ < ∞.

(d) Sketch what a pollution monitor, located at downstream position x0 > 0, would
record [that is, sketch the graph of u(x0, t)].

18. Reconsider Exercise 16. Now assume that pollutant concentration is reduced at a
rate proportional to the square of the concentration. Thus, the partial differential
equation becomes

vux + ut = −ku2.
Answer the questions posed in Exercise 16 for the same initial condition and this
new differential equation. How does the value of rate constant k compare to that
obtained in Exercise 16?
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PROJECTS: EXTENDING THE METHOD OF CHARACTERISTICS

We solve two problems that extend the method of characteristics developed in this
chapter.

Project 1: Higher Dimensions

Solve the Cauchy problem

ut(x, y, t) + yux(x, y, t) − xuy(x, y, t) = −2tu(x, y, t)

u(x, y,0) = xy

1+ x2 + y2
, −∞ < x, y < ∞.

(1)

The dependent variable in (1) is a function of three independent variables: the spatial
variables x, y and time t. The domain itself is three-dimensional; we would need a fourth
dimension to plot the solution.

Initial data are specified on the plane t = 0.We can envision a two-parameter family
of characteristic curves emanating from this plane and filling the three-dimensional
domain. These characteristic curves can be determined by solving a three-dimensional
system of characteristic equations.

1. Describe the initial data in terms of two parametric variables, say τ and η, as follows:

x = τ

y = η, −∞ < τ, η < ∞
t = 0

u(τ, η,0) = τη

1+ τ 2 + η2
.

(2)

Although this parameterization is a trivial one, it will prove useful for bookkeeping
purposes.

2. Introduce the characteristic variable s and solve the initial value problem

∂x(τ, η, s)
∂s

= y(τ, η, s), x(τ, η,0) = τ

∂y(τ, η, s)
∂s

= −x(τ, η, s), y(τ, η,0) = η

∂t(τ, η, s)
∂s

= 1, t(τ, η,0) = 0.

(3)

The set of equations comprising (3) is a linear first order system that can be solved
using the theory developed in Chapter 4.

3. Use the chain rule to show thatu(x(τ, η, s), y(τ, η, s), t(τ, η, s)) is a solution of the initial
value problem

∂u
∂s

= −2t(τ, η, s)u, u|s=0 = τη

1+ τ 2 + η2
.

Solve this initial value problem, obtaining u as a function of the variables (τ, η, s).
Let u = U(τ, η, s) represent this solution.

4. To obtain the solution in terms of the desired variables (x, y, t), invert themap defined
by (3), solving for (τ, η, s) as functions of (x, y, t). For the particular system defined
by (3), this can be done explicitly. For the sake of discussion, let

τ = α(x, y, t), η = β(x, y, t), s = χ(x, y, t).
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In terms of these functions, the solution is given by

u(x, y, t) = U(α(x, y, t), β(x, y, t), χ(x, y, t)).

Determine this solution explicitly.

Project 2: Equations with Solution-Dependent Coefficients

We now consider a first order partial differential equation of the form

a(x, t,u)ux + b(x, t,u)ut = c(x, t,u).

In this case, the coefficient functions a and b are allowed to be functions of the dependent
variable u. As before, initial data are prescribed by specifying a space curve in xtu-space.

Guided by the chain rule, we define a system of characteristic equations

∂x
∂s

= a(x, t,u)

∂t
∂s

= b(x, t,u)

∂u
∂s

= c(x, t,u).

(4)

In this case, the family of characteristic curves depends on the solution u. We cannot
first solve for (x, t) as functions of (τ, s) (where the parameter τ is again assumed to
parameterize the space curve). Rather, we must solve three-dimensional system (4) for
(x, t,u) as functions of (τ, s). Suppose we represent these solutions as

x = X(τ, s), t = T(τ, s), u = U(τ, s). (5)

If we can invert the relations x = X(τ, s), t = T(τ, s) and solve for (τ, s) as functions of
(x, t), say τ = α(x, t), s = β(x, t), the solutionwe seekwill be givenbyu = U(α(x, t), β(x, t)).

Generally, this procedure is quite difficult to implement explicitly. In certain
cases, such as in the problem below, we can obtain an explicit solution.

1. Solve the Cauchy problem

ut + uux = −2
u(x,0) = x, −∞ < x < ∞.

2. On what positive t-interval does the solution exist?
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11C H A P T E R

Linear Two-Point
Boundary Value Problems

C H A P T E R O V E R V I E W

11.1 Introduction

11.2 Existence and Uniqueness

11.3 Two-Point Boundary Value Problems for Linear Systems

11.4 Sturm-Liouville Boundary Value Problems

11.1 Introduction
We again consider linear ordinary differential equations, both nth order scalar
equations and first order systems. We studied linear differential equations in
prior chapters in the context of initial value problems, where all the supple-
mentary constraints were imposed at the same value of the independent vari-
able. We now consider linear differential equations in the context of two-point
boundary value problems, where the supplementary constraints are imposed
at two separate values of the independent variable. In many cases, these two
points are the endpoints of the domain of interest.

The Centrifuge Problem Revisited
Consider again the simple mechanical system shown in Figure 11.1. We now
pose a different question about its operation. At time t = 0, a frictionless tube
of length l begins to rotate in the horizontal plane about a fixed pivot point with
a constant angular acceleration of α rad/s2. A particle of massm is injected into
the tube at the pivot point at time t = 0with a certain radial velocity.Whatmust
this initial radial velocity be if we want this particle to exit the tube at some
prescribed later time, t = T?
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FIGURE 11.1

At time t = 0, a frictionless tube having length l begins to rotate about the
pivot point with a constant angular acceleration of α rad/s2. A particle of
mass m is inserted into the tube at the pivot point at time t = 0 with a
certain radial velocity. How do we choose the initial radial velocity if we
want the particle to exit the tube at a prescribed later time, t = T?

Let r(t) denote the radial position of the particle at time t. The domain of
interest for this problem is the time interval 0 ≤ t ≤ T. Newton’s second law
leads to the differential equation

r ′′ − (αt)2r = 0, 0 < t < T. (1)

Since the particle is injected into the tube at the pivot point at time t = 0, we
require that the initial radial position be r(0) = 0. We also require that the
particle exit the tube of length l at the prescribed time t = T. Therefore, we
must also have r(T) = l. The mathematical problem of interest is

r ′′ − (αt)2r = 0, 0 < t < T

r(0) = 0, r(T) = l.
(2)

To answer the question posed, wemust solve problem (2) for r(t) and then com-
pute r ′(0). Notice how this problem differs from those considered in Chapters 3
and 4. Here, supplementary constraints, called boundary conditions, are im-
posed at two different values of t. In this case, the two points are the endpoints
of the interval of interest, and thus problem (2) is called a two-point boundary
value problem.

11.2 Existence and Uniqueness
Two-point boundary value problems are intrinsically interesting from a math-
ematical point of view; the underlying existence-uniqueness theory is different
from that for initial value problems. Consider the two-point boundary value
problem

y′′ + p(t)y′ + q(t)y = g(t), a < t < b

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β.

(1)
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In (1), the functions p(t), q(t), and g(t) are assumed to be continuous on the
closed interval a ≤ t ≤ b, and the constants a0, a1,b0,b1, α, and β are known. In
order for the two boundary conditions to be meaningful, we assume that

|a0| + |a1| > 0, |b0| + |b1| > 0.

(These inequalities are a shorthand way of saying “a0 and a1 are not both zero
and also b0 and b1 are not both zero.” If the preceding inequalities are not
satisfied, then the boundary conditions are either contradictory or vacuous.)

The two boundary conditions in (1) are called separated boundary con-
ditions since each of the constraints involves the dependent variable and its
derivative at a single point t. The centrifuge problem discussed in Section 11.1
fits the structure defined by (1); see equation (2) in Section 11.1.

Solution Possibilities
Chapter 3 showed that the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0

has a unique solution existing on the entire interval [a,b] whenever p(t), q(t),
and g(t) are continuous on a ≤ t ≤ b and the initial conditions are imposed at
some point t0 within the interval.

The following example illustrates that the situation is more complicated
for two-point boundary value problems. It is possible for problem (1) to have
a unique solution, no solution, or infinitely many solutions.

E X A M P L E

1 Solve the two-point boundary value problems.

(a) y′′ + y = 1, 0 < t < π/2

y(0) = 0, y(π/2) = 1

(b) y′′ + y = 1, 0 < t < π

y(0) = 0, y(π) = 1

(c) y′′ + y = 1, 0 < t < π

y(0) = 0, y(π) = 2

Solution: In each case, the general solution of the given differential equation
is

y(t) = c1 cos t+ c2 sin t+ 1,

where the first two terms form the complementary solution and the constant
function 1 is a particular solution.

(a) Imposing the boundary conditions on the general solution leads to

y(0) = c1 + 1 = 0

y(π/2) = c2 + 1 = 1.

(continued)
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(continued)

The unique solution of this system of equations is c1 = −1 and c2 = 0.
Therefore, the boundary value problem has a unique solution,
y(t) = 1− cos t,0 ≤ t ≤ π/2.

(b) Imposing the boundary conditions on the general solution leads to

y(0) = c1 + 1 = 0

y(π) = −c1 + 1 = 1.

This system of equations has no solution. Therefore, the boundary value
problem has no solution.

(c) Imposing the boundary conditions on the general solution leads to

y(0) = c1 + 1 = 0

y(π) = −c1 + 1 = 2.

This system of equations has infinitely many solutions, c1 = −1 and c2 arbi-
trary. Therefore, the boundary value problem has infinitely many solutions,

y(t) = 1− cos t+ c2 sin t, 0 ≤ t ≤ π,

where c2 is an arbitrary constant. ❖

Given the relatively complicated situation illustrated byExample 1, it is nat-
ural to ask “What conditions on the coefficient functions and/or the constants
in problem (1) will guarantee existence of a unique solution to the boundary
value problem?” We first present an important dichotomy theorem, known as
the Fredholm alternative theorem. We then conclude this section with two the-
orems providing sufficient conditions for the existence of a unique solution.

Fredholm Alternative Theorem
We now state and prove Theorem 11.1, the Fredholm1 alternative theorem.
As its name suggests, Theorem 11.1 presents an either/or dichotomy charac-
terizing the existence of a unique solution to the two-point boundary value
problem (1). This important theorem also involves the homogeneous two-point
boundary value problem

z′′ + p(t)z′ + q(t)z = 0, a < t < b

a0z(a) + a1z
′(a) = 0

b0z(b) + b1z
′(b) = 0.

(2)

Note that problem (2) is simply problem (1) with the function g(t) and the
constants α and β set equal to zero.

1Erik Ivar Fredholm (1866–1927) was a Swedish mathematician best remembered for his work on
integral equations and spectral theory. Hewas appointed to a chair inmechanics andmathematical
physics at the University of Stockholm in 1906.
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Theorem 11.1
Let p(t), q(t), and g(t) be functions continuous on a ≤ t ≤ b, and let
a0, a1,b0,b1 be constants, where |a0| + |a1| > 0 and |b0| + |b1| > 0. Either

y′′ + p(t)y′ + q(t)y = g(t), a < t < b

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β

(3a)

has a unique solution for any values of α and β or the associated homo-
geneous boundary value problem,

z′′ + p(t)z′ + q(t)z = 0, a < t < b

a0z(a) + a1z
′(a) = 0

b0z(b) + b1z
′(b) = 0,

(3b)

has a nonzero solution.

● PROOF: Let y1(t), y2(t), and Y (t) be the solutions of the following three
initial value problems:

y′′
1 + p(t)y′

1 + q(t)y1 = 0, y1(a) = a1, y′
1(a) = −a0

y′′
2 + p(t)y′

2 + q(t)y2 = 0, y2(b) = −b1, y′
2(b) = b0

Y ′′ + p(t)Y ′ + q(t)Y = g(t), Y (a) = 0, Y ′(a) = 0.

(4)

As noted previously, each of these initial value problems has a unique solution
that exists on the entire interval a ≤ t ≤ b. Note that the initial conditions in (4)
are such that

a0 y1(a) + a1y
′
1(a) = 0 and b0 y2(b) + b1y

′
2(b) = 0.

Let W(t) denote the Wronskian of the solution set {y1, y2}. The either/or di-
chotomy in Theorem 11.1 arises because the Wronskian is either always zero
in [a,b] or never zero in [a,b] (see Theorem 3.6). To prove Theorem 11.1, we
examine each of these cases—showing that problem (3a) has a unique solution
when the Wronskian is nonzero and showing that problem (3b) has nonzero
solutions when the Wronskian vanishes throughout the interval [a,b].

Case 1: The Wronskian is never zero in [a, b]. To show that problem (3a) has a
unique solution, we first note [see equation (4) in Section 3.7] that the super-
position

y(t) = c1y1(t) + c2y2(t) + Y (t) (5)

is the general solution of the differential equation y′′ + p(t)y′ + q(t)y = g(t). We
now show that there are unique constants c1 and c2 such that y(t) in (5) satisfies
the boundary conditions

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β.
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Calculating the left-hand sides of the boundary conditions, we obtain

a0 y(a) + a1y
′(a) = a0[c1y1(a) + c2y2(a) + Y (a)] + a1[c1y′

1(a) + c2y
′
2(a) + Y ′(a)]

= c1[a0 y1(a) + a1y
′
1(a)] + c2[a0y2(a) + a1y

′
2(a)]

+ [a0Y (a) + a1Y
′(a)]

and

b0 y(b) + b1y
′(b) = b0[c1y1(b) + c2y2(b) + Y (b)] + b1[c1y′

1(b) + c2y
′
2(b) + Y ′(b)]

= c1[b0 y1(b) + b1y
′
1(b)] + c2[b0 y2(b) + b1y

′
2(b)]

+ [b0 Y (b) + b1Y
′(b)].

Substituting the initial condition values from (4) into these expressions, we find

a0 y(a) + a1y
′(a) = c1[0] + c2[a0 y2(a) + a1y

′
2(a)] + [0]

= c2[−y′
1(a)y2(a) + y1(a)y

′
2(a)]

and

b0 y(b) + b1y
′(b) = c1[b0 y1(b) + b1y

′
1(b)] + c2[0] + [b0Y (b) + b1Y

′(b)]
= c1[y′

2(b)y1(b) − y2(b)y
′
1(b)] + [b0Y (b) + b1Y

′(b)].
Imposing the boundary conditions, we obtain the following equations for c1
and c2:

c2[y1(a)y′
2(a) − y′

1(a)y2(a)] = α

c1 [y1(b)y′
2(b) − y′

1(b)y2(b)] = β − [b0Y (b) + b1Y
′(b)]. (6)

In (6), the coefficient multiplying c2 and the coefficient multiplying c1 consti-
tute the Wronskian of the solution set {y1, y2}, evaluated at t = a and t = b,
respectively. Thus, the equations in (6) are

c2W(a) = α

c1W(b) = β − [b0Y (b) + b1Y
′(b)]. (7)

Since the Wronskian is never zero in the case under consideration, we obtain
unique solutions for c1 and c2 from (7). These values determine the unique solu-
tion of the boundary value problem (3a). Note that, in this case, homogeneous
problem (3b) has only the trivial solution.

Case 2: The Wronskian is zero throughout [a, b]. In the case where the Wron-
skian is zero everywhere in [a,b], let

z(t) = c1y1(t) + c2y2(t).

Since z(t) is a superposition of solutions of the homogeneous differential equa-
tion in problem (3b), z(t) also solves that differential equation. We now show
that z(t) satisfies the homogeneous boundary conditions

a0z(a) + a1z
′(a) = 0

b0z(b) + b1z
′(b) = 0,

no matter what values we choose for c1 and c2. In particular, just as in case 1,
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we obtain

a0z(a) + a1z
′(a) = c1[0] + c2[a0 y2(a) + a1y

′
2(a)]

= c2[−y′
1(a)y2(a) + y1(a)y

′
2(a)]

= c2W(a)

= 0

and

b0z(b) + b1z
′(b) = c1[b0 y1(b) + b1y

′
1(b)] + c2[0]

= c1[y′
2(b)y1(b) − y2(b)y

′
1(b)]

= c1W(b)

= 0.

Therefore, the boundary conditions impose no constraint on c1 and c2. Be-
cause of (4) and the conditions |a0| + |a1| > 0 and |b0| + |b1| > 0, both y1(t) and
y2(t) are nontrivial solutions of the differential equation y

′′ + p(t)y′ + q(t)y = 0.
Hence, we know there are nontrivial solutions of problem (3b); for instance,
choosing c1 = 1 and c2 = 0 leads us to the nontrivial solution z(t) = y1(t). ●

If problem (3b) has one nontrivial solution, then it has infinitely many
nontrivial solutions (see Exercise 12). The Fredholm alternative theorem can
be rephrased to say “Problem (3a) has a unique solution if and only if problem
(3b) has only the trivial solution.”

The utility of the Fredholm alternative theorem rests on the fact that if one
of the two possible alternatives can be ruled out, then we know the other must
hold. For example, we can establish the existence of a unique solution of the
two-point boundary value problem (1) by showing that the only solution of
homogeneous boundary value problem (2) is the trivial solution, z(t) = 0.

Consider Example 1. In part (a), the homogeneous boundary value problem

y′′ + y = 0, 0 < t <
π

2
y(0) = 0, y

(π

2

)
= 0

has only the trivial solution, y(t) = 0. Hence, if g(t) is continuous on 0 ≤ t ≤ π/2,
every boundary value problem

y′′ + y = g(t), 0 < t <
π

2
y(0) = α, y

(π

2

)
= β

has a unique solution.
However, the homogeneous boundary value problem

y′′ + y = 0, 0 < t < π

y(0) = 0, y(π) = 0

has nontrivial solutions of the form y(t) = c sin t, where c is an arbitrary con-
stant. Therefore, given any boundary value problem of the form

y′′ + y = g(t), 0 < t < π

y(0) = α, y(π) = β,
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we know that either the problem has no solution or it has infinitely many so-
lutions.

REMARK: The solution possibilities exhibited in Example 1 (one solution, no
solution, or infinitely many solutions) should have a familiar ring to those who
have studied systems of linear equations. Fredholm alternatives have exact
analogs in linear algebra. In particular, a linear system of n equations in n
unknowns, written in matrix form as Ax = b, has precisely the same solution
possibilities (one, none, or infinitely many solutions). Likewise, the same al-
ternatives hold; either the system of equations has a unique solution for every
right-hand side b (if A is invertible) or the homogeneous system Ax = 0 has
nontrivial solutions (if A is not invertible). One of the beauties of mathematics
is the presence of such common structures underlying topics that appear to be
different.

Existence and Uniqueness Theorems
We would like to be able to identify classes of two-point boundary value prob-
lems that have unique solutions. As Example 1 suggests, however, boundary
value problems are difficult to characterize in any great generality. The follow-
ing theorems, presented without proof, give some partial results.

Theorem 11.2
Let p(t), q(t), and g(t) be functions continuous on a ≤ t ≤ b, where q(t) <

0 on a ≤ t ≤ b. Let a0, a1,b0,b1 be constants, where |a0| + |a1| > 0 and
|b0| + |b1| > 0. In addition, suppose that

a0a1 ≤ 0, b0b1 ≥ 0, and |a0| + |b0| > 0.

Then, for any values α and β, the boundary value problem

y′′ + p(t)y′ + q(t)y = g(t), a < t < b

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β

has a unique solution.

A companion result is given in the following theorem.

Theorem 11.3
Let q(t) and g(t) be functions continuous on a ≤ t ≤ b, where q(t) ≤ 0 on
a ≤ t ≤ b. Then, for any values α and β, the boundary value problem

y′′ + q(t)y = g(t), a < t < b

y(a) = α, y(b) = β

has a unique solution.
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Note that the hypotheses of Theorem 11.2 require the function q(t) to be
strictly negative on a ≤ t ≤ b, while those of Theorem 11.3 require only that q(t)
be nonpositive. The centrifuge problem, given as an example in Section 11.1,
fits the structure of the boundary value problem in Theorem 11.3.

Two-point boundary value problems do not lend themselves to existence-
uniqueness statements of sweeping generality. Theorems 11.2 and 11.3 are pre-
sented to give you a sense of what can be said.2

In Section 11.3, we will consider two-point boundary value problems for
first order linear systems. Recall from Chapter 4 that an nth order scalar linear
differential equation can be recast as a first order linear system. We shall see
that boundary value problems of the type considered in this section can thus be
reformulated as corresponding boundary value problems for linear first order
systems. The question of existence-uniqueness will be revisited in that context.

It is important to realize that when we know the boundary value problem
has a unique solution, the ideas of Chapter 3 already provide us with all we
need to solve the problem—we need only form the general solution of the dif-
ferential equation (as the sum of complementary and particular solutions) and
then impose the boundary conditions to evaluate the arbitrary constants. The
following example illustrates this point.

E X A M P L E

2 Solve the two-point boundary value problem

y′′ − 2y′ + y = 2t, 0 < t < 1

y(0) = 2

y′(1) = −4.
(8)

Solution: This problempossesses the structure of boundary value problem (1),
where a0 = 1, a1 = 0, α = 2,b0 = 0,b1 = 1, β = −4. Although Theorems 11.2
and 11.3 do not apply to this problem [since q(t) = 1 > 0], we can use the Fred-
holm alternative theorem to show that the problem has a unique solution. We
do so by showing that the associated homogeneous boundary value problem,

z′′ − 2z′ + z = 0, 0 < t < 1

z(0) = 0

z′(1) = 0,

(9)

has only the trivial solution. The general solution of the differential equation
in (9) is

z(t) = c1e
t + c2te

t.

Imposing the homogeneous boundary conditions leads to

z(0) = c1 = 0,

z′(1) = c1e+ 2ec2 = 0,

and hence c1 = c2 = 0. We conclude that z(t) = 0,0 ≤ t ≤ 1. By the Fredholm
alternative theorem, boundary value problem (8) has a unique solution.

(continued)

2Herbert B. Keller, Numerical Methods for Two-Point Boundary Value Problems (Waltham: Blais-
dell Publishing Co., 1968) and Peter Henrici, Discrete Variable Methods in Ordinary Differential
Equations (New York: Wiley, 1962).
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(continued)

In order to construct this unique solution, we first determine the general solu-
tion of the nonhomogeneous differential equation in (8), finding

y(t) = c1e
t + c2te

t + 2t+ 4. (10)

Imposing the boundary conditions on the general solution, we have

y(0) = c1 + 4 = 2

y′(1) = c1e+ 2ec2 + 2 = −4.
Solving for c1 and c2, we obtain the unique solution of boundary value prob-
lem (8),

y(t) = (t− 2) et − 3te(t−1) + 2t+ 4, 0 ≤ t ≤ 1.

Figure 11.2 presents a graph of this solution.
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FIGURE 11.2

The graph of the solution of boundary value problem (8) in Example 2. ❖

E X E R C I S E S

Exercises 1–7:

In these exercises, the boundary value problems involve the same differential equation
with different boundary conditions.

(a) Obtain the general solution of the differential equation.

(b) Apply the boundary conditions, and determine whether the problem has a unique
solution, infinitely many solutions, or no solution. If the problem has a solution or
solutions, specify them.

1. y′′ + 1
4y = 1

y(0) = 0, y(π) = 2

2. y′′ + 1
4y = 1

y′(0) = 0, y′(π) = 0

3. y′′ + 1
4y = 1

y′(0) = −2, y(π) = 0

4. y′′ + 1
4y = 1

y(0) = 0, y′(π) = 1

5. y′′ + 1
4y = 1

y(0) + 2y′(0) = 0, y(π) + 2y′(π) = 0

6. y′′ + 1
4y = 1

y(0) + 2y′(0) = 0, y(π) − 2y′(π) = 0

7. y′′ + 1
4y = 1

y(0) + 2y′(0) = 4, y(π) − 2y′(π) = 0
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Exercises 8–10:

In each exercise, the unique solution of the boundary value problem is given. Determine
the constants α, β, and γ .

8. y′′ + γ y = 0, y(0) = α, y(2) = β. The solution is y(t) = sinh 2t
sinh 4

.

9. y′′ + γ y = 0, y′(0) = α, y(1) = β. The solution is y(t) = 2t− 1.

10. y′′ + γ y = 2et, y(0) = α, y
(π

2

)
= β. The solution is y(t) = et + sin t.

11. The unique solution of the boundary value problem

y′′ + y = 1

y(0) + a1y
′(0) = 5, y(π/2) + y′(π/2) = β

is shown in the figure. Find the integer constants a1 and β.

0.4 0.8 1.2

1.2

1.6

2

2.4

2.8

t

y

Figure for Exercise 11

12. Suppose it is known that the homogeneous two-point boundary value problem (3b),

z′′ + p(t)z′ + q(t)z = 0, a < t < b

a0z(a) + a1z
′(a) = 0

b0z(b) + b1z
′(b) = 0,

has a nontrivial solution z(t). Prove that cz(t) is also a solution, where c is any
constant.

13. Show that the general solution of the Euler equation t2y′′ − 2ty′ + 2y = 0 is
y(t) = c1t+ c2t

2, t > 0.

Exercises 14–19:

Each exercise gives a two-point boundary value problem for which the general solution
of the differential equation was found in Exercise 13.

(a) Formulate the associated homogeneous boundary value problem (3b).

(b) Find all the nonzero solutions of the associated homogeneous boundary value prob-
lem, or state that there are none.

(c) Using the Fredholm alternative theorem and the results of part (b), determine
whether the given two-point boundary value problem has a unique solution.
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(d) If the Fredholm alternative theorem indicates there is a unique solution of the given
boundary value problem, find that solution.

(e) If the Fredholm alternative theorem indicates the given boundary value problem
has either infinitely many solutions or no solution, find all the solutions or state
that there are none.

14. t2y′′ − 2ty′ + 2y = 0

y(1) + y′(1) = 9

y(2) − y′(2) = 3

15. t2y′′ − 2ty′ + 2y = 0

2y(1) − y′(1) = 1

y(2) − y′(2) = 1

16. t2y′′ − 2ty′ + 2y = 0

3y(1) − 2y′(1) = 2

5y(2) − 6y′(2) = 3

17. t2y′′ − 2ty′ + 2y = 0

y(1) − 2y′(1) = −5
2y(2) − y′(2) = 7

18. t2y′′ − 2ty′ + 2y = 0

y(1) − y′(1) = 1

y(2) − 2y′(2) = 4

19. t2y′′ − 2ty′ + 2y = 0

4y(1) − 3y′(1) = 1

3y(2) − 4y′(2) = 3

Exercises 20–28:

In each exercise,

(a) Can you use Theorem 11.2 or Theorem 11.3 to decide whether the given boundary
value problem has a unique solution?

(b) If your answer to part (a) is yes, find the unique solution.

(c) If your answer to part (a) is no, use the Fredholm alternative theorem to decide
whether the given boundary value problem has a unique solution.

(d) If the Fredholm alternative theorem indicates there is a unique solution of the given
boundary value problem, find that solution.

(e) If the Fredholm alternative theorem indicates the given boundary value problem
has either infinitely many solutions or no solution, find all the solutions or state
that there are none.

20. y′′ − y = −4
y(0) = 7

y(ln 2) = 7

21. y′′ − y = −4
y(0) + y′(0) = 5

y(ln 2) + y′(ln 2) = 8

22. y′′ − y = −4
y(0) − y′(0) = 0

y(ln 2) + y′(ln 2) = 12

23. y′′ − y = −4
y(0) = 11

y′(ln 2) = 4

24. y′′ + y = 2

y(0) + y′(0) = 7

y(π) + y′(π) = −3

25. y′′ + y = 2

y(0) + y′(0) = 7

y(π) + y′(π) = 3

26. y′′ + y = 2

y(0) = 7

y(π) = 3

27. y′′ + y = 2

y(0) = 8

y(π) + y′(π) = 5

28. y′′ + y = 2

y(0) = 8

y(π) = −4
Exercises 29–30:

These exercises outline an approach to solving linear two-point boundary value prob-
lems known as the shootingmethod. Exercises 31–34 apply this method to solve specific
problems.

We assume that the linear two-point boundary value problem,

y′′ + p(t)y′ + q(t)y = g(t), a < t < b

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β,

has a unique solution. As earlier, we assume that |a0| + |a1| > 0 and |b0| + |b1| > 0.
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29. Let y1(t) and y2(t) denote solutions of the following two initial value problems:

y′′
1 + p(t)y′

1 + q(t)y1 = g(t)

y1(a) = αc1, y′
1(a) = −αc0

and
y′′
2 + p(t)y′

2 + q(t)y2 = 0

y2(a) = a1, y′
2(a) = −a0,

where c0 and c1 are any two constants satisfying a0c1 − a1c0 = 1.

(a) Under what circumstances is solution y1(t) a nonzero solution? Explain why
y2(t) is a nontrivial solution.

(b) Form the function ys(t) = y1(t) + sy2(t). Here, s is a constant known as the shoot-
ing parameter. Show, for any value of the constant s, that

y′′
s + p(t)y′

s + q(t)ys = g(t), a < t < b

a0 ys(a) + a1y
′
s(a) = α.

30. Consider the function ys(t) formed in Exercise 29. If we can select a value of the
constant s so that

b0 ys(b) + b1y
′
s(b) = β,

then the function ys(t) will be the unique solution of our problem.

(a) Use the Fredholm alternative theorem (and the fact that our problem has a
unique solution) to show that

b0 y2(b) + b1y
′
2(b) �= 0.

(b) Use the result of part (a) to show we can always find a value of the shooting
parameter s so that b0 ys(b) + b1y

′
s(b) = β. For that value of s, the function ys(t) is

the unique solution of our problem.

Exercises 31–34:

In each exercise,

(a) Prove that the given boundary value problem has a unique solution.

(b) Use the shooting method to obtain this solution. In Exercises 33–34, you will need
to use a numerical method to solve the initial value problems for y1(t) and y2(t).

(c) Use computer software to graph the solution of the boundary value problem.

31. t2y′′ − ty′ + y = 2, 1 < t < 2

y(1) = 3, y′(2) = 0

32. y′′ + 4y = 3 sin t, 0 < t <
π

4

y(0) + y′(0) = 3, y
(π

4

)
+ y′

(π

4

)
= 8

33. r ′′ − t2r = 0, 0 < t < 1

r(0) = 0, r(1) = 1

34. y′′ + ty′ − y = 0, 0 < t < 1

y(0) = 0, y(1) = 1

11.3 Two-Point Boundary Value Problems
for Linear Systems

In Chapter 4, we saw that the theory of initial value problems for first order
systems forms a conceptual framework that includes the theory for nth order
scalar initial value problems. In particular, scalar problems can be recast as
problems for first order systems. A similar result is true for two-point boundary
value problems. In this section, we will formulate a two-point boundary value
problem for first order linear systems and show how the scalar boundary value
problems we have considered thus far can be recast in that framework.
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The Problem of Interest
Let A(t) be an (n× n) matrix whose components aij(t), i, j = 1, . . . ,n are con-
tinuous on the interval a ≤ t ≤ b. Let g(t) be an (n× 1) vector function whose
component functions gi(t), i = 1, . . . ,n are continuous on a ≤ t ≤ b. We are in-
terested in the linear nonhomogeneous first order system

y ′ = A(t)y+ g(t), a ≤ t ≤ b, (1a)

where y(t) is an (n× 1) vector of dependent variables.
Let P[a] and P[b] be given constant (n× n) matrices, and let α be a given

constant (n× 1) vector. We require that the solution y(t) of equation (1a) satisfy
the boundary condition

P[a]y(a) + P[b]y(b) = α. (1b)

Equations (1a) and (1b) form the two-point boundary value problemof interest.

Reformulating a Scalar Two-Point Boundary Value Problem
as a System
We give three examples showing how to write two-point boundary value prob-
lems in the form of problem (1).

E X A M P L E

1 Rewrite the scalar two-point boundary value problem so that it fits the frame-
work of problem (1):

y′′ + p(t)y′ + q(t)y = g(t), a < t < b

a0 y(a) + a1y
′(a) = α

b0 y(b) + b1y
′(b) = β.

Solution: Let y(t) =
[
y1(t)
y2(t)

]
, with y1(t) = y(t), y2(t) = y′(t). Then

y′
1 = y′ = y2, y′

2 = y′′ = −p(t)y′ − q(t)y+ g(t) = −p(t)y2 − q(t)y1 + g(t).

These equations can be rewritten in matrix form as

y ′ =
[

0 1

−q(t) −p(t)

]
y+

[
0

g(t)

]
, a < t < b. (2a)

Since p(t), q(t), and g(t) are continuous on a ≤ t ≤ b, A(t) and g(t) are continu-
ous matrix functions on the same interval. The two separated scalar boundary
conditions can be rewritten as the single matrix equation[

a0 a1
0 0

]
y(a) +

[
0 0

b0 b1

]
y(b) =

[
α

β

]
. (2b)

Thus, problem (2) has the form of problem (1). ❖
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E X A M P L E

2 Our study of a time-periodic loading of an Euler-Bernoulli beam, cantilever-
connected at x = 0 and x = l (see Project 4 in Chapter 3), led to the following
two-point boundary value problem for the beam deflection envelope y(x):

d4y

dx4
− μy = f (x), 0 < x < l

y(0) = 0, y′(0) = 0

y( l ) = 0, y′( l ) = 0.

In this equation, μ is a positive constant depending on the radian frequency
of the periodic loading and the physical properties of the beam, while f (x)
represents the strength of the loading at point x along the beam. Rewrite this
scalar two-point boundary value problem so that it fits the framework of prob-
lem (1).

Solution: Let

y(x) =

⎡
⎢⎢⎢⎢⎢⎣

y1(x)

y2(x)

y3(x)

y4(x)

⎤
⎥⎥⎥⎥⎥⎦ , with

y1(x) = y(x),

y2(x) = y′(x),

y3(x) = y′′(x),

y4(x) = y′′′(x).

Then we have

y′
1 = y′ = y2, y′

2 = y′′ = y3, y′
3 = y′′′ = y4,

y′
4 = d4y

dx4
= μy+ f (x) = μy1 + f (x).

These equations can be rewritten in matrix form as

y ′ =

⎡
⎢⎢⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

μ 0 0 0

⎤
⎥⎥⎥⎥⎦ y+

⎡
⎢⎢⎢⎢⎣
0

0

0

f (x)

⎤
⎥⎥⎥⎥⎦ , 0 < x < l. (3a)

The boundary constraints arising from the cantilever connections can be ex-
pressed as the single matrix equation⎡

⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ y(0) +

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦ y( l ) =

⎡
⎢⎢⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎥⎥⎦ . (3b)

Thus, problem (3) has the same form as problem (1). ❖
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E X A M P L E

3 The following two-point boundary value problemhas beenproposed as a simple
model of how radiation (such as light) travels through a slab of scattering
medium (such as fog):3

d
dx

[
I(+)(x)

I(−)(x)

]
= β

[−1 1

−1 1

] [
I(+)(x)

I(−)(x)

]
, 0 < x < l

I(+)(0) = Iinc, I(−)( l ) = 0.

(4)

The slab thickness is l, and I(+)(x) and I(−)(x) represent forward- and backward-
propagating radiation intensities, respectively, at location xwithin the slab. The
positive constants β and Iinc represent, respectively, the scattering coefficient
and the radiation intensity incident on the left face of the slab.

For this example, differential equation (4) is already in the form of (1a),
with [

I(+)(x)

I(−)(x)

]
= y(x).

It remains only to point out that the boundary conditions can be expressed as[
1 0

0 0

] [
I(+)(0)

I(−)(0)

]
+

[
0 0

0 1

] [
I(+)( l )

I(−)( l )

]
=

[
Iinc

0

]
.

Thus, this problem has the same form as problem (1). ❖

Problem Solution
We take as our starting point the variation of parameters formula derived in
Section 4.8 for the general solution of the linear nonhomogeneous system (1a).
Once we have this, the problem becomes simply a matter of analyzing the
implications of boundary condition (1b).

Recall from Section 4.8 that a fundamental matrix �(t) is an invertible
(n× n) matrix solution of the homogeneous differential equation

� ′ = A(t)�.

Given that A(t) is continuous on a ≤ t ≤ b, we can, in principle, construct such
a fundamental matrix. In terms of this fundamental matrix, we found that the
general solution of y ′ = A(t)y+ g(t) is

y(t) = �(t)c+ �(t)
∫ t

a
�−1(s)g(s)ds, a ≤ t ≤ b, (5)

where c is an (n× 1) vector of arbitrary constants. For our problem, we must
now impose boundary condition (1b); this will lead to a linear system of equa-
tions with c serving as the column vector of unknowns. We have

y(a) = �(a)c and y(b) = �(b)c+ �(b)
∫ b

a
�−1(s)g(s)ds.

3Arthur Schuster, “Radiation Through a Foggy Atmosphere,” The Astrophysical Journal, Vol. 21,
No. 1, January 1905, pp. 1–22.
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Thus, boundary condition (1b) becomes[
P[a]�(a) + P[b]�(b)

]
c = −P[b]�(b)

∫ b

a
�−1(s)g(s)ds+ α. (6)

We now simplify the notation to help us focus on the important issues. Define

D =
[
P[a]�(a) + P[b]�(b)

]
and f = −P[b]�(b)

∫ b

a
�−1(s)g(s)ds+ α. (7)

With this, equation (6) becomes

Dc = f. (8)

Note that D is an (n× n) constant matrix determined by the matrices P[a] and
P[b] along with the fundamental matrix �; D does not depend on either the
nonhomogeneous vector function g or the nonhomogeneous constant vector α.
However, (n× 1) constant vector f depends on both g and α (as well as�). Note,
in particular, that f = 0 if both g and α vanish.

The Fredholm Alternative Principle
Equation (8) presents us with a simple system formulation of the Fredholm
alternative principle:

(a) If the matrix D is invertible, then equation (8) has the unique solution
c = D−1f and boundary value problem (1) has the unique solution

y(t) = �(t)D−1f+ �(t)
∫ b

a
�−1(s)g(s)ds, a ≤ t ≤ b. (9)

In this case, note that the corresponding homogeneous boundary value
problem

z ′ = A(t)z, a < t < b

P[a]z(a) + P[b]z(b) = 0
(10)

has only the trivial solution, z(t) = 0, a ≤ t ≤ b.

(b) If the matrix D is not invertible, then equation (8) has either no solution
or infinitely many solutions. In that case, boundary value problem (1) will
correspondingly have either no solution or infinitely many solutions. If the
matrixD is not invertible, the homogeneous systemof equationsDc = 0 has
infinitelymany nonzero solutions. In that case, the homogeneous boundary
value problem (10) has nontrivial solutions of the form z(t) = �(t)c, where
c �= 0.

REMARKS: In formulating the solution of boundary value problem (1), we as-
sumed that �(t) is a fundamental matrix. However, we know from Chapter 4
that fundamental matrices are not unique. Therefore, it seems reasonable to
ask two questions:

1. Does the invertibility of matrix D depend on the particular choice of
fundamental matrix? Suppose �1(t) and �2(t) represent any two funda-
mental matrices satisfying � ′ = A(t)�. Let D1 ≡ [P[a]�1(a) + P[b]�1(b)]
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and D2 ≡ [P[a]�2(a) + P[b]�2(b)]. Is it possible for D1 to be invertible but
D2 to be noninvertible?

The answer to this question is no. The reason stems from the fact
(see Theorem 4.9) that if �1(t) and �2(t) are any two fundamental ma-
trices, then there exists a constant invertible (n× n) matrix C such that
�2(t) = �1(t)C. It follows therefore that D2 = D1C. Since C is invertible,
the matrices D1 and D2 will either both be invertible or both be nonin-
vertible.

2. Expression (9), which purports to be the unique solution of boundary
value problem (1), should not depend on the particular choice of funda-
mental matrix. Is that, in fact, the case?

The Exercises outline an argument showing that expression (9) is
independent of the choice of fundamental matrix. The argument uses
the relation �2(t) = �1(t)C [where �1(t) and �2(t) are any two funda-
mental matrices and C is invertible] and the fact that if A and B are two
invertible (n× n)matrices, then the matrix product AB is invertible and
(AB)−1 = B−1A−1.

As examples, we now solve the two boundary value problems posed earlier.

E X A M P L E

4 One-Dimensional Radiative Transport Theory

Solve the boundary value problem formulated in system form in Example 3:

d
dx

[
I(+)(x)

I(−)(x)

]
= β

[−1 1
−1 1

] [
I(+)(x)
I(−)(x)

]
, 0 < x < l

[
1 0

0 0

] [
I(+)(0)

I(−)(0)

]
+

[
0 0

0 1

] [
I(+)( l )

I(−)( l )

]
=

[
Iinc

0

]
.

Solution: For this problem,

A =
[−β β

−β β

]
.

As a first step, we find a (2× 2) fundamental matrix � satisfying � ′ = A�.
Matrix A has λ = 0 as a repeated eigenvalue but only one linearly independent

eigenvector,
[
1
1

]
. Using the ideas of Section 4.7, we find

� =
[
1 x

1 x+ β−1

]

is a solution matrix. Since det(�) = β−1 �= 0, we know that � is a fundamen-
tal matrix. The general solution of the homogeneous differential equation is
therefore [

I(+)(x)

I(−)(x)

]
=

[
1 x

1 x+ β−1

] [
c1
c2

]
.
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We determine c =
[
c1
c2

]
by imposing the boundary condition. In this case,

D =
[
1 0

0 0

]
�(0) +

[
0 0

0 1

]
�( l ) =

[
1 0
1 l + β−1

]
.

Since D is invertible, the boundary value problem has a unique solution. We
obtain

c = D−1
[
Iinc

0

]
= Iinc

⎡
⎣ 1

− 1

l + β−1

⎤
⎦ ,

and thus

[
I(+)(x)

I(−)(x)

]
= �(x)c = Iinc

⎡
⎢⎢⎣

( l − x) + β−1

l + β−1

l − x
l + β−1

⎤
⎥⎥⎦ = Iinc

⎡
⎢⎢⎣

β( l − x) + 1
βl + 1

β( l − x)
βl + 1

⎤
⎥⎥⎦ , 0 ≤ x ≤ l.

(11) ❖

Note that solution (11) is a function of βx and that the constants β and
l appear only as the product βl. Also, the difference I(+)(x) − I(−)(x) is a con-
stant, independent of x. These features of the solution can be deduced from the
structure of the differential equation and boundary condition itself (see Exer-
cise 15). The fact that our solution possesses these necessary features serves
as a check on its validity. These solution features also make physical sense.
Recall that the positive constant β is a measure of the scattering that occurs
per unit length. The fact that the solution depends on the products βx and βl
reflects the fact that what matters in determining the radiation intensities at
any particular point in the slab is not physical distance per se but rather the
scattering that occurs over that span. Likewise, the difference I(+)(x) − I(−)(x)
represents a radiation flux, the net forward-propagating radiation at the point
x within the slab. The fact that this flux remains constant within a slab of fixed
length reflects the fact that no absorption of energy occurs within the slab.

Solution (11) tells us further that the constant radiation flux is actually

I(+)(x) − I(−)(x) = Iinc
1

βl + 1
.

Therefore, for fixed Iinc, the flux tends to zero as βl → ∞. Likewise,
I(+)( l ) = Iinc/(βl + 1) tends to zero and I(−)(0) = Iincβl/(βl + 1) tends to Iinc as
βl → ∞. Therefore, as slab scattering thickness βl increases, the radiation that
is transmitted through the slab tends to zero. In this limit, the slab becomes
totally reflecting.

E X A M P L E

5 A Centrifuge Problem

We discussed a model for a simple centrifuge in Section 11.1 [see equations (1)
and (2) in Section 11.1]. For simplicity, assume that the angular acceleration of
the rotating tube is 1 rad/s2 and that the tube in Figure 11.1 has length l = 1. The

(continued)
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(continued)

boundary value problem of interest is then

r ′′(t) − t2r(t) = 0, 0 < t < 1

r(0) = 0, r(1) = 1.
(12a)

Our goal is to determine the initial radial velocity r ′(0). We know fromTheorem
11.3 that this two-point boundary value problem has a unique solution.

Written in system form, with y1(t) = r(t), y2(t) = r ′(t), and y(t) =
[
y1(t)
y2(t)

]
, the

problem is

y ′ =
[
0 1

t2 0

]
y, 0 < t < 1

[
1 0

0 0

]
y(0) +

[
0 0

1 0

]
y(1) =

[
0

1

]
.

(12b)

We know the general solution of the homogeneous linear system (12b) has the
form y(t) = �(t)c, where �(t) is any (2× 2) fundamental matrix solution of
� ′ = A(t)� and c is an arbitrary constant vector. However, since A(t) is time-
variable, none of the constructive techniques developed in Chapter 4 for finding
fundamental matrix solutions of constant coefficient problems apply.

We can, however, construct a fundamental matrix numerically, using the
techniques developed in Chapter 7. In particular, let �(t) denote the funda-
mental matrix that reduces to the (2× 2) identity matrix I at t = 0. We now
numerically solve the initial value problem

�′ = A(t)�, �(0) = I. (13)

We proceed by separately solving the two initial value problems

φ′
1 = A(t)φ1, φ1(0) =

[
1

0

]
and φ′

2 = A(t)φ2, φ2(0) =
[
0

1

]
. (14)

We then form the corresponding fundamental matrix

�(t) = [φ1(t), φ2(t)] =
[
φ11(t) φ12(t)

φ21(t) φ22(t)

]
.

Assume for the present that this numerical computation has been carried out.
Then imposing the boundary condition (12b) on the solution y(t) = �(t)c leads
to ([

1 0

0 0

]
�(0) +

[
0 0

1 0

]
�(1)

)
c =

[
φ11(0) φ12(0)

φ11(1) φ12(1)

]
c

=
[

1 0

φ11(1) φ12(1)

]
c =

[
0

1

]
.
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Anticipating the fact that φ12(1) �= 0, we obtain

c =
[

0

φ−1
12 (1)

]
(15)

and the solution

y(t) = �(t)c =

⎡
⎢⎢⎢⎣

φ12(t)
φ12(1)

φ22(t)
φ12(1)

⎤
⎥⎥⎥⎦ . (16)

Note that solution (16) involves only the fundamental matrix components φ12
and φ22, the two components of column φ2. Therefore, we need only solve the
second of initial value problems (14) numerically to obtain solution (16). Re-
calling that y1(t) = r(t) and y2(t) = r ′(t), we see that the initial radial velocity of
interest is obtained as

r ′(0) = φ22(0)
φ12(1)

.

Figure 11.3 displays the results of our numerical computations. A fourth order
Runge-Kutta algorithm, with a uniform step size of h = 0.01, was used for
the calculations. Figure 11.3 displays graphs of φ12(t) and φ22(t) over the time
interval 0 ≤ t ≤ 1. We found that φ12(1) = 1.0507, and so, as anticipated, φ12(1)
is nonzero. The required initial radial velocity, r ′(0) = φ22(0)/φ12(1), is given by
r ′(0) = 0.9517.

0.5 1

0.5

1

t

�12(t)

(a)

0.5 1

1.1

1

1.2

t

�22(t)

(b)

FIGURE 11.3

The graphs of φ12(t) and φ22(t) in Example 5. ❖
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E X E R C I S E S

Exercises 1–5:

Rewrite the given boundary value problem as an equivalent boundary value problem
for a first order system. Your rewritten boundary value problem should have the form
of equation (1):

y ′ = A(t)y+ g(t), a < t < b

P[a]y(a) + P[b]y(b) = α,

where A(t), P[a], and P[b] are square matrices and g(t) and α are vectors.

1. y′′ − 2y′ + y = cos 2t, 0 < t < 1

2y(0) − y′(0) = −1, y(1) + y′(1) = 2

2. 2y′′ + y′ = t2 + 1, 0 < t < 2

y(0) = 2, y(2) − y′(2) = 0

3. (ty′)′ + ety = 2, 1 < t < 2

y′(1) = −3, y(2) = 1

4. y′′′ − 3y′′ + 3y′ + y = e−t + sin t, 0 < t < 2

y(0) − y′′(0) = 2, 2y(0) + y′(0) = −1, y′(2) − 3y′′(2) = 3

5. t3y′′′ − 2ty′ + 2y = 3 sin t, −2 < t < −1
y(−2) + y′(−2) + y′′(−2) = 1, −y(−1) + 2y′(−1) − y′′(−1) = 4, y′(−1) + 3y′′(−1) = 2

Exercises 6–9:

In each exercise, you are given boundary conditions for the two-point boundary value
problem

y ′ = Ay+ g(t), 0 < t < 1

P[0]y(0) + P[1]y(1) = α,

where

A =
[
2 1

1 2

]
, y(t) =

[
y1(t)

y2(t)

]
, and α =

[
α1

α2

]
.

Note that

�(t) =
[

et e3t

−et e3t

]

is a fundamental matrix for y ′ = Ay. Form the matrix D = P[0]�(0) + P[1]�(1), and de-
termine whether the boundary value problem has a unique solution for every g(t) and α.

6. y1(0) = α1, y2(1) = α2 7. y1(0) − y2(0) = α1, y1(1) − y2(1) = α2

8. y1(0) − y2(0) = α1, y1(1) + y2(1) = α2 9. y1(0) = α1, y1(1) = α2

Exercises 10–12:

In each exercise,

(a) Show that the given two-point boundary value problem has a unique solution.

(b) Solve the problem. Note that a fundamental matrix for y ′ =
[
1 −2

−2 1

]
y is

�(t) =
[
e−t e3t

e−t −e3t
]

.
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10. y ′ =
[
1 −2

−2 1

]
y, y1(0) + 2y2(0) = 1, y1(1) − y2(1) = −1

11. y ′ =
[
1 −2

−2 1

]
y, y1(0) = 1, y2(1) = 0

12. y ′ =
[
1 −2

−2 1

]
y+

[
1

0

]
, y1(0) = 0, y2(1) = 0

13. Show that the two-point boundary value problem has a unique solution, and find
it:

y ′ =
⎡
⎢⎣

−2 0 0

0 2 1

0 1 2

⎤
⎥⎦ y, y1(0) = 1, y2(0) = 0, y3(1) = 1.

14. The objective of this exercise is to show that solution (9),

y(t) = �(t)D−1f+ �(t)
∫ b

a
�−1(s)g(s)ds, a ≤ t ≤ b,

does not depend on the particular choice of the fundamental matrix �(t). Let �1(t)
and �2(t) denote any two fundamental matrices. Use the following two facts:

(i) There exists a constant nonsingular matrix, call it C, such that
�2(t) = �1(t)C.

(ii) If A and B are any two (n× n) nonsingular matrices, then the matrix product
AB is nonsingular and (AB)−1 = B−1A−1.

(a) Show that−P[b]�1(b)
∫ b
a �−1

1 (s)g(s)ds+ α = −P[b]�2(b)
∫ b
a �−1

2 (s)g(s)ds+ α.This
shows that the (n× 1) vector f does not depend on the choice of fundamentalmatrix.

(b) Let D1 = P[a]�1(a) + P[b]�1(b) and D2 = P[a]�2(a) + P[b]�2(b). Show that D−1
2 =

C−1D−1
1 , and use this fact to show that the matrix product �(t)D−1 does not depend

on the choice of fundamental matrix.

(c) Finally, show that �1(t)
∫ b
a �−1

1 (s)g(s)ds = �2(t)
∫ b
a �−1

2 (s)g(s)ds. [The argument
is basically the same as that of part (a).]

Exercises 15–17:

These exercises explore some additional aspects of the radiative transport model pre-
sented in Section 11.1.

15. Consider the two-point boundary value problem

d
dx

[
I(+)

I(−)

]
= β

[−1 1

−1 1

] [
I(+)

I(−)

]
, 0 < x < l

I(+)(0) = Iinc, I(−)( l ) = 0.

(a) Show directly from the structure of the differential equation that I(+)(x) − I(−)(x)
is constant.

(b) Suppose that the positive scattering coefficient β is not necessarily constant
but can vary with position within the slab; then β = β(x),0 ≤ x ≤ l. Introduce the
change of independent variable

ξ =
∫ x

0
β(λ)dλ,
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and let ξl = ∫ l
0 β(λ)dλ. Show that the boundary value problem transforms into

d
dξ

[
I(+)

I(−)

]
=

[−1 1

−1 1

] [
I(+)

I(−)

]
, 0 < ξ < ξl

I(+)
∣∣
ξ=0 = Iinc, I(−)

∣∣
ξ=ξl

= 0.

When the solution is written in this form, it is clear that it depends only on ξ and
ξl. In the case where β is a constant, ξ = βx and ξl = βl.

16. Suppose wemodify the radiative transport model solved in Example 4 to allow for a
partial reflection of energy at the slab edge at x = l. A portion of the energy arriving
at x = l from within the slab is reflected backwards, while the rest exits the slab. To
model this phenomenon, we adopt the boundary condition

I(−)( l ) = �I(+)( l ),

where �, a positive constant satisfying 0 ≤ � ≤ 1, is often called a reflection coef-
ficient. (Note that � = 0 is the case solved in Example 4, while the other extreme,
� = 1, corresponds to placing a reflecting wall at x = l.) The new boundary value
problem becomes

d
dx

[
I(+)

I(−)

]
= β

[−1 1

−1 1

] [
I(+)

I(−)

]
, 0 < x < l

I(+)(0) = Iinc, I(−)( l ) = �I(+)( l ).

(a) Solve this boundary value problem for
[
I(+)(x)
I(−)(x)

]
. As a check, what does your

solution reduce to in the case where � = 1? From a physical point of view, is your
answer consistent with the presence of a reflecting wall at x = l? Is your answer in
this case an equilibrium solution of the differential equation?

(b) Consider I(−)(0), the amount of reflected radiation at the slab input, x = 0. For
fixed values of Iinc, β, and l, show that I(−)(0) increases as the reflection coefficient,
�, increases from 0 to 1.

17. A Reflection Coefficient Riccati Equation In this exercise, we convert the radiative
transport linear two-point boundary value problem into a scalar nonlinear initial
value problem (more properly, a final value problem) for a reflection coefficient
that we will define. The scalar differential equation is called a Riccati equation (see
Section 2.6). Consider again the boundary value problem solved in Example 4:

d
dx

[
I(+)

I(−)

]
= β

[−1 1

−1 1

] [
I(+)

I(−)

]
, 0 < x < l

I(+)(0) = Iinc, I(−)( l ) = 0.

(a) Define a reflection coefficient R(x) = I(−)(x)/I(+)(x),0 ≤ x ≤ l. At any point x
within the slab, R(x) represents the ratio of reflected radiation to forward-
propagating radiation at that point. Show that R(x) is a solution of the following
problem:

R′ = −β(R− 1)2, 0 < x < l

R( l ) = 0.

(b) Note that the Riccati equation obtained in part (a) is also a separable equation.
Solve this problem for R(x). Check your answer by comparing it with the quotient
I(−)(x)/I(+)(x) formed from the solution obtained in Example 4.

18. A Centrifuge Problem We consider the centrifuge problem of Example 5 with a
different angular acceleration. Suppose the tube begins to rotate from rest at t = 0
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with an angular acceleration α = e−t rad/s2, so the angular velocity becomes � =
(1− e−t) rad/s. Our goal again is to determine the initial radial velocity needed for a
particle, launched from the pivot at t = 0, to exit a tube of unit length at time t = 1.
The boundary value problem becomes

r ′′ − (1− e−t)2r = 0, 0 < t < 1

r(0) = 0, r(1) = 1.

Use computer software to repeat the calculations of Example 5 for this problem.

19. A General Nonuniqueness Result

(a) Consider the linear two-point boundary value problem

y ′ = A(t)y+ g(t), a < t < b

P[a]y(a) + P[b]y(b) = α,

where y(t) is an (n× 1) matrix function. Form the (n× 2n) constant matrix
P = [P[a],P[b]]. The first n columns of P are those of P[a], while the latter n columns
of P are those of P[b]. Suppose we know that the number of linearly independent
columns of P (called the column rank of P) is strictly less than n. Show that the
boundary value problem cannot have a unique solution. [Hint: Determine a (2n× n)

matrix, call it Q, such that the matrix D can be expressed as D = PQ. Use the fact
from linear algebra that the column rank of PQ is less than or equal to the column
rank of P.]

(b) Let n = 4, and suppose the boundary conditions are y1(a) = α1, y2(a) = α2,
y3(b) − 2y4(b) = α3. Use part (a) to show that such a boundary value problem cannot
have a unique solution.

11.4 Sturm-Liouville Boundary Value Problems
The separation of variables approach, when applied to the various problems
studied in Chapter 9, often led to a homogeneous differential equation

X ′′(x) − σX(x) = 0, 0 < x < l,

togetherwith homogeneous boundary conditions, such asX(0) = X( l ) = 0. The
resulting problem is an eigenvalue problem. For this particular example, the
eigenvalues σn and eigenfunctions Xn(x) are

σn = −
(nπ

l

)2
and Xn(x) = sin

(nπx
l

)
.

In Chapter 9, we saw that this problem has infinitely many eigenpairs and the
eigenfunctions can be used to construct Fourier sine series representations.

It is natural to ask whether this eigenvalue problem can be generalized.
Is this problem, in fact, one member of a larger class of eigenvalue problems
whose eigenpairs possess similar properties? The motivation for asking such
questions is at least twofold. Mathematicians and scientists generally seek to
understand phenomena at the most basic, unifying level. Much mathematical
effort is devoted to identifying the commonground that unifies different results.
A second reason for this question is that it naturally arises in the context of
applications.

For instance, recall the problem of one-dimensional heat flow in a thin, lat-
erally insulated bar, discussed in Section 9.2. Suppose that the cross-sectional
area of the bar remains constant along its length, but the thermal properties of
the barmaterial (such as heat capacity and thermal conductivity) vary smoothly
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with position along the bar. In that case, c0 = c0(x), k = k(x), and the derivation
outlined in the appendix of Section 9.2 leads to a heat equation of the form

∂u(x, t)
∂t

= 1
c0(x)

∂

∂x

(
k(x)

∂u(x, t)
∂x

)
. (1a)

In (1a), c0(x) and k(x) are positive functions over the extent of the bar, say
0 ≤ x ≤ l. We typically require c0(x) and k(x) to be continuous and continuously
differentiable functions, respectively. We also impose an initial condition and
boundary conditions. A reasonably general class of homogeneous boundary
conditions to adopt is

a0u(0, t) + a1ux(0, t) = 0, b0u( l, t) + b1ux( l, t) = 0, (1b)

where a0, a1,b0,b1 are real constants. The boundary conditions in (1b) cap-
ture the zero temperature ends (a1 = b1 = 0, a0,b0 �= 0) and insulated ends
(a0 = b0 = 0, a1,b1 �= 0) boundary conditions as special cases.

Suppose we use the separation of variables approach and attempt to find
solutions of problem (1) having the form u(x, t) = X(x)T(t). In this case (see
Exercise 24), we obtain the following eigenvalue problem for X(x):

1
c0(x)

d
dx

(
k(x)

dX(x)
dx

)
= σX(x),

or

d
dx

(
k(x)

dX(x)
dx

)
− σc0(x)X(x) = 0, 0 < x < l

a0X(0) + a1X
′(0) = 0, b0X( l ) + b1X

′( l ) = 0.

(2)

The same questions we addressed with respect to the eigenvalue problems
treated in Chapter 9 also require answers in the context of this new eigen-
value problem (2): Do eigenpairs exist? If so, how many are there? Can the
eigenfunctions be used as building blocks to represent an interesting class of
initial conditions? Do analogs of the Fourier convergence theorem exist?

Sturm-Liouville Systems
The following homogeneous two-point boundary value problem is referred to
as a regular Sturm-Liouville system:4

d
dx

(
p(x)

dy(x)
dx

)
− q(x)y(x) + λr(x)y(x) = 0, a < x < b

a0 y(a) + a1y
′(a) = 0, b0 y(b) + b1y

′(b) = 0.

(3)

4Jacques Charles François Sturm (1803–1855) was born in Geneva, Switzerland, but eventually
traveled to France, where he conducted his most important research. Sturm achieved fame by
providing a simple solution to the problem of determining the number of real roots of an equation
on a given interval. He also made important contributions to geometry and to the problem in dif-
ferential equations that today bears his name, together with that of Liouville.

Joseph Liouville (1809–1882) was very prolific and wide-ranging in his mathematical endeav-
ors. His interests and contributions ranged from physics and and astronomy to pure mathematics.
Liouville was also active in politics. In 1836, he founded a journal, Journal de Mathématiques et
Appliqués, that served as an important forum for nineteenth-century French mathematics.
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In (3), we assume

(a) The functions p, q, and r are real-valued, with p(x) > 0 and r(x) > 0 on the
interval a ≤ x ≤ b.

(b) The functions q and r are continuous, and the function p is continuously
differentiable on a ≤ x ≤ b.

(c) |a0| + |a1| > 0 and |b0| + |b1| > 0.

Equation (3) expresses the problem in customarily used notation. Eigenvalue
problem (2) represents a special case of problem (3). Note, in particular, that
the eigenvalue parameter λ in (3) corresponds to −σ in (2).

The assumptions underlying problem (3) should seem reasonable. They en-
sure that the interval a ≤ x ≤ b contains no singular points (see Chapter 8) and
that the differential equation has a fundamental set of solutions that exist on
the entire interval. Assumption (c) simply ensures that the boundary conditions
are not vacuous. As noted earlier, these boundary conditions are referred to as
separated boundary conditions, since each boundary condition is imposed at
an end of the interval of interest. The only assumption that might seem puz-
zling at this point is the requirement that the coefficient function r(x), often
called the weight function, be positive; the importance of this hypothesis will
become apparent later.

Differential equation (3) is often described as being in self-adjoint form.
Although this may seem to be special, it is shown in the Exercises that a general
second order linear equation can be recast in this form by using an integrating
factor.

Generalizations
Recall the zero temperature ends problem studied in Section 9.2:

y′′ + λy = 0, 0 < x < l

y(0) = 0, y( l ) = 0.
(4a)

The eigenpairs are

λn =
(nπ

l

)2
, yn(x) = sin

(nπx
l

)
, n = 1,2,3, . . . . (4b)

Comparing (4a) with problem (3), we see that p(x) = r(x) = 1, q(x) = 0. Like-
wise, we see that a = 0, b = l, a0 = b0 = 1, a1 = b1 = 0.

For the insulated ends problem, we have

y′′ + λy = 0, 0 < x < l

y′(0) = 0, y′( l ) = 0.
(5a)

The eigenpairs are

λn =
(nπ

l

)2
, yn(x) = cos

(nπx
l

)
, n = 0,1,2,3, . . . . (5b)

Comparing (5a) with problem (3), we see that p(x) = r(x) = 1, q(x) = 0. Like-
wise, we see that a = 0,b = l, a0 = b0 = 0, a1 = b1 = 1.
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The eigenpairs (4b) and (5b) correspond to two special cases of problem (3).
Twoquestions arise:What features, if any, do theyhave in common?Might these
features also characterize the general case represented by (3)? Eigenpairs (4b)
and (5b) possess the following properties:

(a) The eigenvalues λn are real-valued.

(b) There are infinitely many eigenvalues. They can be enumerated according
to size, starting with the smallest one. Moreover, the eigenvalues march off
to infinity. Thus, we have

λ1 < λ2 < λ3 < · · · and limn→∞λn = ∞.

(c) Associated with each eigenvalue is a single eigenfunction, unique to within
a nonzero constant multiple. Such a situation is often described by saying
that the eigenvalues are simple.

(d) As the eigenvalues λn increase, the corresponding eigenfunctions yn(x) be-
come increasingly oscillatory within the interval 0 ≤ x ≤ l.

(e) The eigenfunctions are orthogonal; that is,∫ l

0
yn(x)ym(x)dx = 0 if m �= n. (6)

The Fourier convergence theorem of Section 9.5 shows that sets of eigen-
functions can be used to represent a wide class of functions on the interval
0 ≤ x ≤ l. The eigenfunctions formed a set of building blocks, and integral re-
lation (6) played a key role in enabling us to evaluate the series coefficients.

Do similar properties characterize the eigenpairs of (3)? The development
of affirmative answers to this question has led to a beautiful body of mathe-
matics. We shall restrict our discussion to a brief description of some of the
answers, twomathematical tools used to obtain the answers, and an illustrative
example. The two mathematical tools are the Lagrange identity and the Prufer
substitution.

The Lagrange Identity
The Lagrange identity is a formula derived using integration by parts. To sim-
plify the notation, we use the symbol L to represent the differential operator on
the left-hand side of equation (3). If u(x) is any function defined on a ≤ x ≤ b
possessing two continuous derivatives, we define

L(u) = (p(x)u′)′ − q(x)u, a < x < b. (7)

In terms of this notation, differential equation (3) becomes

L(y) = −λr(x)y. (8)

If u(x) and v(x) are any two functions defined on a ≤ x ≤ b and having two
continuous derivatives, integrating by parts twice leads to the equation∫ b

a
( p(x)u′(x))′v(x)dx =

∫ b

a
(p(x)v′(x))′u(x)dx+ [p(x)(u′(x)v(x) − u(x)v′(x))] ∣∣x=b

x=a.
(9a)
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Subtracting
∫ b
a q(x)u(x)v(x)dx from both sides of (9a), we obtain∫ b

a
L(u)v dx =

∫ b

a
uL(v)dx+ [p(x)(u′(x)v(x) − u(x)v′(x))] ∣∣ x=b

x=a. (9b)

Equation (9b) is often referred to as the Lagrange identity. It is valid for any
two sufficiently differentiable functions. Suppose we now additionally assume
that both u and v satisfy the boundary conditions in (3). In that event, you can
show (see Exercise 1) that

u′(a)v(a) − u(a)v′(a) = 0 and u′(b)v(b) − u(b)v′(b) = 0.

For such functions, the boundary evaluations vanish and (9b) reduces to∫ b

a
L(u) v dx =

∫ b

a
uL(v)dx. (10)

Equation (10) provides a useful tool for deducing properties of the eigenpairs of
(3). We will be able to use (10) to show that the eigenvalues of (3) are real, that
corresponding real eigenfunctions exist, and that eigenfunctions belonging to
different eigenvalues are orthogonal.

The Eigenvalues of a Sturm-Liouville Problem Are Real

The Lagrange identity can be used to prove that the eigenvalues of the Sturm-
Liouville system (3) are real numbers. To show this, we first allow for the possi-
bility that the eigenpairs of (3) may be complex. Suppose u(x) = u1(x) + iu2(x)
and v(x) = v1(x) + iv2(x) are complex-valued functions that satisfy the bound-
ary conditions in (3). It can be shown (see Exercise 2) that∫ b

a
L(u) v̄ dx =

∫ b

a
uL(v̄)dx, (11)

where the bar denotes the complex conjugate. Because of (8), we have∫ b

a
L(y(x)) ȳ(x)dx = −λ

∫ b

a
r(x)y(x)ȳ(x)dx.

This result, when used in (11), leads to

(λ − λ̄)

∫ b

a
r(x)|y(x)|2 dx = 0. (12)

Since r(x) is a positive continuous function, we know that∫ b

a
r(x)|y(x)|2 dx > 0.

Therefore, by (12), we must have λ = λ̄; in other words, the eigenvalue λ is real.

The Eigenfunctions of a Sturm-Liouville Problem Are Real

Suppose that λ, y(x) is an eigenpair of system (3). We know that λ is a real num-
ber and that y(x) satisfies the differential equation L(y) = −λry as well as the
homogeneous boundary conditions. Suppose we assume that y(x) is complex-
valued, say y(x) = y1(x) + iy2(x), where y1(x) and y2(x) are real-valued functions.
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Since the differential equation is linear, it follows that

L(y1 + iy2) = L(y1) + iL(y2) = −λry1 − iλry2. (13)

Since λ and the coefficient functions p, q, r are all real-valued, it follows, from
equating the real and imaginary parts on both sides of (13), that

L(y1) = −λry1 and L(y2) = −λry2. (14)

In other words, both y1(x) and y2(x) are real-valued solutions of the differential
equation. Since the coefficients defining the boundary conditions in (3) are
real constants, it can be verified that y1(x) and y2(x) both satisfy the boundary
conditions as well. Summarizing, we conclude that y1(x) and y2(x) are two
real-valued solutions of the Sturm-Liouville system (3). At least one of the two
solutionsmust be nonzero, sincewe assumed that y = y1 + iy2 was a (nontrivial)
eigenfunction. Therefore, we can take the nonzero real function [y1(x) or y2(x)]
as a real-valued eigenfunction corresponding to eigenvalue λ.

Eigenfunctions Corresponding to Distinct Eigenvalues of (3)
Are Orthogonal

We now use Lagrange identity (10) to derive an analog of (6). Suppose that
λm, ym(x) and λn, yn(x) are eigenpairs of Sturm-Liouville system (3), where λm �=
λn. Since both eigenfunctions are twice-continuously differentiable and satisfy
the homogeneous boundary conditions, the Lagrange identity (10) applies, and
we have ∫ b

a
L(ym) yn dx =

∫ b

a
ymL(yn)dx. (15)

Since both functions are eigenfunctions, we have L(ym) = −λmrym and
L(yn) = −λnryn. Substituting into (15), we find

−
∫ b

a
λmr ymyn dx =

∫ b

a
ym(−λnr yn)dx or (λm − λn)

∫ b

a
rymyn dx = 0.

Since λm − λn �= 0, it follows that∫ b

a
r(x)ym(x)yn(x)dx = 0, m �= n. (16)

Note that equation (6) is a special case of (16). The eigenfunctions are often
described as being orthogonal with respect to the weight function r(x).

REMARK: Note the similarity between the arguments presented here and the
arguments presented in Chapter 4 establishing the facts that the eigenvalues
of a Hermitian (or self-adjoint) matrix are real and that the eigenvectors corre-
sponding to distinct eigenvectors are perpendicular (or orthogonal).

The Prufer Substitution
The Prufer5 substitution is a change of dependent variable that replaces y(x)
and y′(x) in equation (3) with an equivalent pair of variables R(x) and θ(x). The

5Ernst Paul Heinz Prufer (1896–1934) was a German mathematician who made noteworthy con-
tributions in the areas of algebra, Sturm-Liouville theory, and projective geometry.
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new variables are defined by

p(x)y′(x) = R(x) cos[θ(x)], y(x) = R(x) sin[θ(x)]. (17a)

It follows from (17a) that

R2 = (py′)2 + y2, tan θ = y
py′ . (17b)

The variables R and θ are polar coordinates in a (py′, y) phase plane; they are
referred to as the amplitude and phase variables, respectively. In terms of these
variables, equation (3) transforms into a pair of first order differential equations
(see Exercise 18),

dθ
dx

= (λr − q) sin2 θ + 1
p
cos2 θ

dR
dx

=
(
1
p

− λr + q
)
R sin θ cos θ.

(18a)

The boundary constraints in (3) reduce to

R(a)
[
a0 sin θ(a) + a1

p(a)
cos θ(a)

]
= 0

R(b)
[
b0 sin θ(b) + b1

p(b)
cos θ(b)

]
= 0.

(18b)

Note that the first equation in (18a) involves only the dependent variable θ .
Although it is a first order nonlinear equation, it satisfies the hypotheses of
Theorem 2.2 for all values of the parameter λ. We are thus assured that, for any
initial value θ(a), the corresponding initial value problem has a unique solution
on the entire interval a ≤ x ≤ b. In principle, we can solve the equations in (18a)
recursively; once we find θ(x), we can solve the first order linear differential
equation for R(x), obtaining

R(x) = R(a)exp
[∫ x

a

(
1
p(t)

− λr(t) + q(t)
)
sin θ(t) cos θ(t)dt

]
. (19)

The requirement that the eigenfunction y(x) be nonzero implies that R(a)must
benonzero. [IfR(a)were zero, itwould follow that y(a) = y′(a) = 0 andTheorem
2.2 would force us to conclude that y(x) is the zero function.] Therefore, we can
view the first of the boundary conditions in (18b) as fixing the initial value of
θ(a). Equation (19) implies that R(b) �= 0, and the second boundary condition
in (18b) fixes a constraint on θ(b). The solution θ(x) can satisfy the constraint
at x = b only for certain values of the parameter λ. These special values are the
eigenvalues.

As an illustration of these ideas, consider the special case where the bound-
ary conditions are y(a) = y(b) = 0. From equation (17a), we conclude that
sin θ(a) = sin θ(b) = 0. Therefore, if we fix θ(a) = 0, we will obtain an eigen-
value λn for the value of λ such that θ(b) = nπ,n = 1,2,3, . . . . Each such value
yields an eigenvalue and a corresponding eigenfunction y(x) = R(x) sin θ(x).

Note that the parameter λ appears on the right-hand side of (18a)multiplied
by the positive function r(x) sin2 θ(x). It seems plausible that as we continue to
increase λ, the value of θ(b) will likewise continue to increase; every time θ(b)
equals an integral multiple of π , we obtain a new eigenpair.
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In more advanced treatments of this topic (such as Birkhoff and Rota), it
is shown that the properties we previously cited do in fact generalize to Sturm-
Liouville system (3). The eigenvalues are real, infinite in number, and simple.
They can be enumerated, and they march off to infinity. The eigenfunctions
are real-valued, and eigenfunctions corresponding to distinct eigenvalues are
orthogonal with respect to the weight function. The eigenfunctions also form
a collection of building blocks that can be used to represent members of a
wide class of functions. In other words, if y1(x), y2(x), . . . , yn(x), . . . is a set of
eigenfunctions arising from (3), a representation of the form

f (x) =
∞∑
n=1

cnyn(x), a ≤ x ≤ b (20)

is possible, where the coefficients cn are given by

cn =

∫ b

a
f (x)yn(x)r(x)dx∫ b

a
y2n(x)r(x)dx

, n = 1,2,3, . . . .

E X A M P L E

1 Determine the eigenpairs for the problem

x2y′′ + xy′ + λy = 0, 1 < x < 2

y(1) = 0, y(2) = 0.

Rewrite the differential equation in self-adjoint form, and verify that the eigen-
pairs possess the properties attributed to a regular Sturm-Liouville system.

Solution: The differential equation is an Euler equation. Note, however, that
the singular point at x = 0 lies outside of our interval of interest. Applying the
solution procedure developed in Section 8.3, we find the general solution of the
differential equation to be

y(x) = c1 sin(
√

λ ln x) + c2 cos(
√

λ ln x).

Imposing the boundary conditions, we find

y(1) = c2 = 0, y(2) = c1 sin
(√

λ ln 2
)

+ c2 cos(
√

λ ln 2) = 0.

To obtain a nontrivial solution, we require

sin(
√

λ ln 2) = 0.

Therefore,
√

λ ln 2 = nπ , and the eigenvalues are

λn =
( nπ

ln 2

)2
, n = 1,2,3, . . . .

Corresponding eigenfunctions are

yn(x) = sin
(
nπ ln x
ln 2

)
, n = 1,2,3, . . . .

To recast the equation in self-adjoint form, we rewrite it as

y′′ + 1
x
y′ + λ

x2
y = 0
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and then multiply by the integrating factor μ(x) = x to obtain

(xy′)′ + λ

x
y = 0. (21)

We recognize (21), together with the boundary conditions, as defining a regular
Sturm-Liouville system on 1 ≤ x ≤ 2, where

p(x) = x, q(x) = 0, r(x) = 1
x
, a0 = b0 = 1, a1 = b1 = 0.

Note that the coefficient functions possess the requisite properties. In particu-
lar, p(x) = x and r(x) = x−1 are positive on 1 ≤ x ≤ 2. As we saw, the eigenvalues
are real and simple, and theymarch off to infinity as n increases. The eigenfunc-
tions are real-valued and become increasingly oscillatory as n increases. Exer-
cise 4 shows that they are also orthogonalwith respect to theweight function. ❖

E X E R C I S E S

1. Let functions u(x) and v(x) satisfy boundary conditions (3) (with |a0| + |a1| > 0 and
|b0| + |b1| > 0). Show that u′(x)v(x) − v′(x)u(x) is zero at x = a and x = b. [Hint: If
a1 �= 0, for example, then

u(a)v′(a) − u′(a)v(a) =
[
−a0
a1
u(a)

]
v(a) − u(a)

[
−a0
a1
v(a)

]
.

Consider all possibilities at both endpoints.]

2. Let L(u) = (p(x)u′)′ − q(x)u as in (7), and let u(x) and v(x) be twice-continuously
differentiable functions.

(a) Show that∫ b

a
L(u)v̄(x)dx−

∫ b

a
u(x)L(v̄)dx = [p(x)(u′(x)v̄(x) − u(x)v̄′(x))]∣∣x=b

x=a .

(b) Suppose v(x) satisfies boundary conditions (3). Use the fact that a0, a1,b0, and
b1 are real constants to show that v̄(x) satisfies the boundary conditions as well.

(c) Let u(x) and v(x) satisfy boundary conditions (3). Show that∫ b

a
L(u)v̄(x)dx =

∫ b

a
u(x)L(v̄)dx.

(d) Let v(x) = v1(x) + iv2(x). Show that L(v) = L(v1) + i L(v2), where L(v1) and L(v2)
are real-valued. Use this fact to show that L(v̄) = L(v).

3. Let v(x) = v1(x) + iv2(x) be an eigenfunction of system (3), corresponding to (real)
eigenvalue λ.

(a) Use the fact that p(x), q(x), and r(x) are real-valued functions to show that
L(v1) = −λr(x)v1(x) and L(v2) = −λr(x)v2(x).

(b) Use the fact that a0, a1, b0, and b1 are real constants to show that v1(x) and v2(x)
each satisfy the boundary conditions.

4. Show that the eigenfunctions in Example 1 are orthogonal on the interval 1 ≤ x ≤ 2
with respect to the weight function r(x) = 1/x.

5. Consider the linear differential equation u′′ + α(x)u′ + β(x)u = −λγ (x)u, where α, β,
and γ are continuous on a ≤ x ≤ b.
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(a) Multiply both sides of the equation by the integrating factor

μ(x) = e
∫ x
a α(s)ds,

and show that the resulting equation can be rewritten as L(u) = −λr(x)u, where

L(u) = (p(x)u′)′ − q(x)u.

Identify the functions p(x), q(x), and r(x).

(b) Suppose γ (x) > 0 on [a,b]. Verify that the functions p(x), q(x), and r(x) identified
in part (a) satisfy the hypotheses assumed in the Sturm-Liouville problem (3).

Exercises 6–17:

In each exercise,

(a) Recast the differential equation in the form L(u) = (p(x)u′)′ − q(x)u = −λr(x)u if it
is not already in that form. Identify the functions p(x), q(x), and r(x).

(b) Determine the eigenpairs. In those cases where an explicit formula for λn cannot
be obtained, use computer graphing software and/or root-finding software to deter-
mine the first three eigenvalues.

(c) Explicitly verify the orthogonality property possessedby eigenfunctions correspond-
ing to distinct eigenvalues.

6. u′′ = −λu, 0 < x < 1

u′(0) = 0, u(1) = 0

7. u′′ = −λu, 0 < x < 1

u(0) = 0, u′(1) = 0

8. u′′ + u = −λu, 0 < x < 1

u′(0) = 0, u′(1) = 0

9. u′′ − u = −λu, 0 < x < 2

u(0) = 0, u(2) = 0

10. u′′ = −λu, 0 < x < 1

u(0) = 0, u(1) + u′(1) = 0

11. u′′ + 4u = −2λu, 0 < x < 3

u(0) = 0, u(3) = 0

12. u′′ + 2u′ + 2u = −λu, 0 < x < 1

u(0) = 0, u(1) = 0

13. u′′ + u′ + u = −λu, 0 < x < 1

u(0) = 0, u(1) + 2u′(1) = 0

14. u′′ − u′ = −λu, 0 < x < 2

u(0) = 0, u(2) = 0

15. u′′ + u′ = −λu, 1 < x < 2

u(1) = 0, u(2) = 0

16. x2u′′ + xu′ = −λu, 1 < x < 4

u(1) = 0, u(4) = 0

17. x2u′′ + xu′ = −λu, 1 < x < 3

u′(1) = 0, u′(3) = 0

18. (a) Derive equations (18a), the pair of nonlinear differential equations satisfied by
the Prufer variables R and θ . [Hint: Differentiate cot θ = (py′)/y.]

(b) Derive boundary conditions (18b).

19. Consider the function f (x, θ), where

f (x, θ) = [λr(x) − q(x)] sin2 θ + 1
p(x)

cos2 θ.

We view the right-hand side of the first differential equation in (18a) as a function
of two variables, x and θ . Show that

∂f (x, θ)

∂θ

is bounded on the infinite strip a ≤ x ≤ b, −∞ < θ < ∞. [Use the fact that r(x) and
q(x) are bounded on a ≤ x ≤ b since they are continuous functions. Moreover, since
p(x) is continuous and positive, 1/p(x) is likewise bounded on the interval.]
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Exercises 20–23:

In each exercise, convert the given problem into a corresponding boundary value prob-
lem for the Prufer variables R and θ ; see equation (18). State both the differential equa-
tions and the boundary conditions. Assume R(a) and R(b) are nonzero.

20. u′′ + u = −λu, 0 < x < 1

u(0) = 0, u(1) = 0

21. u′′ − 2u = −3λu, 0 < x < 1

u′(0) = 0, u(1) = 0

22. u′′ − 2u′ = −λu, 0 < x < 2

u(0) = 0, u(2) = 0

23. u′′ − 2xu′ + u = −λu, 0 < x < 1

u(0) = 0, u′(1) = 0

24. Derive differential equation and boundary conditions (2) from equations (1).

PROJECT

A Two-Mode Radiative Transport Model

Think of a “mode” as a channel through which energy can travel or propagate. The
Schuster model discussed in this chapter involved a single mode; its forward- and
backward-propagating energies were designated by I(+) and I(−), respectively. There are
many important applications, however, involving low-frequency acoustic waves travel-
ing in the deep ocean, seismicwaves travelingwithin the Earth, and very-high-frequency
electromagnetic waves traveling in optical fibers in which the energy can travel in more
than one mode. In a perfect world, the energy in each mode would travel independently
of all other modes. In the real world, however, imperfections or inhomogeneities in the
propagation medium (such as slight imperfections arising in the manufacture of an
optical fiber) scatter the energy from one mode into another. Energy can be scattered
or exchanged between different modes traveling in the same direction (called forward
scattering) or between the same or different modes traveling in opposite directions
(called backscattering). In this problem, we analyze the particular case of two-mode
propagation.

Consider a propagation path (such as a length of optical fiber) extending from
x = 0 to x = l. Subscripts 1 and 2 identify the two modes. At any point x, I(+)

1 (x) and
I(+)
2 (x) represent the energies in the two modes traveling in the positive x-direction,
while I(−)

1 (x) and I(−)
2 (x) represent their backward-propagating counterparts. We neglect

any dissipation of energy. To obtain a mathematical description of the problem, we
introduce scattering coefficients that describe how the energy is exchanged and then
apply a conservation of energy principle.

A differential path segment, extending from x to x+ dx, is shown schematically in
Figure 11.4. Let α, β, and γ be three nonnegative constants representing fractions of
energy scattered per unit length. The constant α characterizes “same mode–opposite
direction” scattering—that is, the conversion of I(+)

j into I(−)
j energy and vice versa, for

j = 1,2. (For simplicity, we assume that the same constant applies to both modes.) The
constant β characterizes “opposite mode–same direction” scattering, while γ character-
izes “opposite mode–opposite direction” scattering.

I1
(+)(x + dx)

I1
(–)(x + dx)

I1
(+)(x)

I1
(–)(x)

I2
(+)(x + dx)

I2
(–)(x + dx)

I2
(+)(x)

I2
(–)(x)

x + dxx

FIGURE 11.4

We first focus on the forward-propagating energy I(+)
1 and equate its energy change

over the dx path segment to the difference of energy gained and energy lost:

I(+)
1 (x+ dx) − I(+)

1 (x) = −(α + β + γ )I(+)
1 (x)dx

+ αI(−)
1 (x)dx+ βI(+)

2 (x)dx+ γ I(−)
2 (x)dx. (1)
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Equation (1) simply states that I(+)
1 loses energy by virtue of scattering into I(−)

1 , I(+)
2 ,

and I(−)
2 , while I(+)

1 gains energy by virtue of scattering from the same three sources.
Therefore,

dI(+)
1

dx
= −(α + β + γ )I(+)

1 + αI(−)
1 + βI(+)

2 + γ I(−)
2 . (2)

Applying the same conservation principle to I(−)
1 leads to

I(−)
1 (x) − I(−)

1 (x+ dx) = αI(+)
1 (x)dx− (α + β + γ )I(−)

1 (x)dx+ γ I(+)
2 (x)dx+ βI(−)

2 (x)dx,

or

dI(−)
1

dx
= −αI(+)

1 + (α + β + γ )I(−)
1 − γ I(+)

2 − βI(−)
2 . (3)

Applying the same conservation principle to I(+)
2 and I(−)

2 leads to the following first order
linear system of differential equations:

d
dx

⎡
⎢⎢⎢⎢⎢⎣

I(+)
1

I(−)
1

I(+)
2

I(−)
2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−(α + β + γ ) α β γ

−α (α + β + γ ) −γ −β

β γ −(α + β + γ ) α

−γ −β −α (α + β + γ )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

I(+)
1

I(−)
1

I(+)
2

I(−)
2

⎤
⎥⎥⎥⎥⎥⎦ . (4a)

To complete the specification of the problem,we impose boundary conditions. Assuming
that energy enters at x = 0 and exits without reflection at x = l, we obtain the boundary
conditions

I(+)
1 (0) = Iinc1 , I(+)

2 (0) = Iinc2 , I(−)
1 ( l ) = 0, I(−)

2 ( l ) = 0. (4b)

Equations (4) constitute the two-point boundary value problem of interest.
Assume, for simplicity, the following numerical values:

α = β = γ = 1, l = 2, Iinc1 = 1, Iinc2 = 0.

Let �(x) represent the fundamental matrix for the first order linear system (4a) (with
α = β = γ = 1) that reduces to the (4× 4) identity matrix at x = 0. Recall that�(x) = exA

is the exponential matrix (see Section 4.10) and that �(x) = �(x)�−1(0), where �(x) is
any fundamental matrix. Let

P[0] =

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ and P[l] =

⎡
⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The solution of the boundary value problem is I(x) = �(x)c, where

I(x) =

⎡
⎢⎢⎢⎢⎢⎣

I(+)
1 (x)

I(−)
1 (x)

I(+)
2 (x)

I(−)
2 (x)

⎤
⎥⎥⎥⎥⎥⎦ and [P[0]�(0) + P[2]�(2)]c = [P[0] + P[2]�(2)]c = Dc =

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦ .

1. Demonstrate that the given boundary value problem has a unique solution by com-
puting the matrix D and showing that it is nonsingular. Subsequently determine the
constant vector c using computational software. [MATLAB has a built-in exponential
matrix function that, given l and coefficient matrix A, will compute �( l ) = elA. Other
software packages can be used to compute the eigenpairs, which can, in turn, be used
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to construct �(2). A third approach is to use numerical methods to solve the initial
value problem �′ = A�, �(0) = I on the interval 0 ≤ x ≤ 2.]

2. Use your knowledge of c to determine I(−)
1 (0) and I(−)

2 (0) (the reflected modal energies
at the input x = 0). Form �(2)c and determine I(+)

1 (2) and I(+)
2 (2) (the transmitted

modal energies at output x = 2).

3. At any point x, the quantity I(+)
1 (x) − I(−)

1 (x) + I(+)
2 (x) − I(−)

2 (x) (known as the energy
flux) represents the net energy flowing to the right at that point. Show from the
differential equation itself that the flux is a constant and does not vary with x. Use this
fact to check your calculations in parts 1 and 2. Does 1− I(−)

1 (0) − I(−)
2 (0) = I(+)

1 (2) +
I(+)
2 (2)?

4. Compute the four components of I(x) at the set of points xn = 0.1n,n = 0,1,
. . . ,20. Note that once the vector c is known, the solution of the boundary value
problem can be obtained by solving the initial value problem consisting of differential
equation (4a) and the initial condition I(0) = c. Moreover, the solutions I(xn) can be
obtained recursively. That is, it follows from Section 4.10 that I(xn+1) = �(0.1)I(xn),
n = 0,1, . . . ,19.

5. Plot the forward-propagating energies, I(+)
1 (x) and I(+)

2 (x), on one graph and the
backward-propagating energies, I(−)

1 (x) and I(−)
2 (x), on a second graph. Interpret the

graphs. Explain how energy is exchanged between the two modes as distance into
the scattering medium increases from x = 0 to x = 2.
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Answers to Odd-Numbered
Exercises

CHAPTER 1

Section 1.2, page 6

1. Order is 2. 3. Order is 1. 5. k = −2
7. k = 1

2 9. (b) C = 2e−1 11. (b) C1 = 3, C2 = 1

13. c = 0 and c = 1 15. r = 1 and r = 2

17. y = e2t + e−2t = 2 cosh 2t 19. y = 3e−2t

21. m = −2, y0 = 1, y(t) = 2− t 23. timpact = √
2y0/g, vimpact = −√2gy0

Section 1.3, page 12

1. (a) Autonomous
(b) y = 1
(c)

–2 –1.5 –1 –0.5 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0.5

1

1.5

2

t

y

3. (a) Autonomous
(b) y = 0, y = ±π, y = ±2π, . . .

(c)

–2 –1.5 –1 –0.5 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0.5

1

1.5

2

t

y

5. (a) Autonomous
(b) There are none.

(c)

–2

–1.5

–1

–0.5

0.5

1

1.5

2

–2 –1.5 –1 –0.5 0.5 1 1.5 2
t

y



A-2 Answers to Odd-Numbered Exercises

7. (a) The requested isoclines are
the lines y = 2, y = 1, and y = 0.

(b)
y

ty = 0

y = 1

y = 2

9. (a) The requested isoclines
are the hyperbolas
y2− t2 = −1, y2 − t2 = 0, and y2− t2 = 1.

(b)

t

y

y2 – t2 = 1

t2 – y2 = 1

11. One possibility is y′ = −(y− 1)2. 13. One possibility is y′ = sin (2πy).

15. Direction Field F 17. Direction Field B 19. Direction Field E

CHAPTER 2

Section 2.1, page 17

1. Linear and nonhomogeneous 3. Nonlinear

5. Nonlinear 7. Nonlinear

9. Linear and nonhomogeneous

11. (a) −∞ < t < ∞ (b) −∞ < t < ∞ (c) −∞ < t < ∞
13. (a) 3 < t < ∞ (b) −2 < t < 2 (c) −2 < t < 2 (d) −∞ < t < −2

(e) −2 < t < 2

15. p(t) = −2t and y0 = 3 17. y(t) = 0, a < t < b

Section 2.2, page 26

1. (a) y = Ce−3t (b) y = −3e−3t
3. (a) y = Cet

2

(b) y = 3e−1et
2 = 3e(t

2−1)

5. (a) y = −2+ Ce3t (b) y = −2+ 3e3t

7. (a) y = 1
5 e

t + Ce−3t/2 (b) y = (et − e−3t/2)/5

9. (a) y = −3+ Ce−0.5 sin t (b) y = −3− e−0.5 sin t

11. y = Ct−4 13. y = Cesin 2t 15. y = Cet
3+3t 17. y = 0.5+ Ce−2t

19. y = te−2t + Ce−2t 21. y = 1
4 t
2 + Ct−2 23. y = t− 1+ Ce−t

25. (a) 2 (b) 3 (c) 1 27. α = 2 and y0 = 1
4

29. (a) B′ = −kB, B(0) = −A∗ (b) A(c) = A∗(1− e−kc). A(c) never exceeds A∗.
(c) c = (1/k) ln 20

31. p(t) = 2, g(t) = 2t+ 3 33. p(t) = t−1, g(t) = t−1

35. g(t) = 2et + sin t+ cos t, y0 = −1 37. lim t→∞ y(t) = −1
39. A finite limit exists whenever λ > 0. In this case, the limit is equal to 1/λ.

41. y =
{
1+ 2e−1+cos t, 0 ≤ t ≤ π

−1+ 2e1+cos t + 2e−1+cos t, π < t ≤ 2π
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43. y =

⎧⎪⎨
⎪⎩
3e−t2+t, 0 ≤ t ≤ 1

3, 1 < t ≤ 3

t, 3 < t ≤ 4

45. y = et
2
[
2+

√
π

2
erf(t)

]

Section 2.3, page 37

1. (a) Q(10) = 20(1− e−0.3) ≈ 5.18 lb

(b) lim t→∞ Q(t) = 20 and the limiting concentration is 0.2 lb/gal.

3. The required inflow rate is r = (14,000/3) ln (100) ≈ 21,491 m3/min.
The fraction vented per minute is r/v = (1/30) ln (100) ≈ 15.4%.

5. (a) Q(t) = 500t2e−t/50 mg

(b) The maximum value occurs at t = 100 min. The maximum concentration is
about 135.3 mg/gal.

(c) Yes, a graph of concentration versus time shows that c(t) > 100 for 60 ≤ t ≤ 160.

7. (a) t = 600 min

(b) c(300) = Q(300)/V(300) = 197.5/400 ≈ 0.494 lb/gal

(c) 0.5− (40/700)(1/49) ≈ 0.4988 lb/gal

9. (a) Q(0) = 0 (b) ci(t) = 0.05 lb/gal

11. (a) Q′ = (15/500)(α − 1)Q (b) α = 1− (1/5.4) ln 100 ≈ 0.1472

13. (a) Q′
A = −1000(QA/500,000), QA(0) = 1000

Q′
B = 1000(QA/500,000) − 1000(QB/200,000), QB(0) = 0

(b) QA(t) = 1000e−t/500 lb, QB(t) = (2000/3)(e−t/500 − e−t/200) lb

(c) The maximum value is attained at t = (1000/3) ln 2.5 ≈ 305.4 hr.

(d) About 4056 hours, or approximately 169 days, is required.

15. (a) No, we do not expect the concentration to stabilize, since the inflow rate is
varying.

(b) Q′ = 0.6(1+ sin t) − (3/200)Q, Q(0) = 10

(c) Q(t) = 40− 30e−(3/200)t + (1/1.000225)[0.6(e−(3/200)t − cos t) + 0.009 sin t] lb
17. An oven temperature of 70− 80/(

√
15/23− 1) ≈ 485◦F

19. (a) θ(0) = 340◦F (b) θ(t) → S0 = 70◦F as t → ∞
21. (a) θ(0) = 40◦F (b) θ(t) → S0 = 80◦F as t → ∞
23. The times are the same.

Section 2.4, page 45

1. P(30) = 10,000,000e6 ln (1.1) = 17,715,610

3. t = (2 ln 3)/ln 1.3 ≈ 8.375 weeks 5. It will take an additional 9.6 days.

7. Q(0) = 20
√
32 = 113.137 . . . g 9. After 45 days

11. (a) For Strategy I, MI = kP0. For Strategy II, MII = (ek − 1)P0.

(b) For Strategy I, the profit will be 500,000(0.3172)(0.75) = $118,950. For Strategy
II, the profit will be 500,000(e0.3172 − 1)(0.6) ≈ $111,983.

13. (a) t = (5730/ln 2) ln (10/3) ≈ 9953 years (b) 9901 ≤ t ≤ 10,005 years
(c) Q(60,000)/Q(0) ≈ 7.04× 10−4

15. Approximately 38.9 micrograms



A-4 Answers to Odd-Numbered Exercises

Section 2.5, page 53

1. (a) f (t, y) = (1− 2t cos y)/3 (b) fy(t, y) = (2t sin y)/3 (c) The entire ty-plane

3. (a) f (t, y) = −2t/(1+ y2) (b) fy(t, y) = 4ty/(1+ y2)2 (c) The entire ty-plane

5. (a) f (t, y) = −ty1/3 + tan t (b) fy(t, y) = − 1
3 ty

−2/3

(c) −π/2 < t < π/2, 0 < y < ∞
7. (a) f (t, y) = (2+ tan t)/ cos y (b) fy(t, y) = (2+ tan t) sec y tan y
(c) −π/2 < t < π/2, −π/2 < y < π/2

9. (a) 0 < t < ∞, −∞ < y < ∞
(b) There is no contradiction. Just because the hypotheses are not satisfied on the
entire t-axis does not mean that “bad things must happen.”

11. y(t) = 2/
√
1− (t− 1). Therefore, y(0) = √

2.

13. (a) Using v = y−1, we obtain v′ + 2v = 1, v(0) = 1. Solving for v and transforming
back yields y = 2/(1+ e−2t).

(b) −∞ < t < ∞
15. (a) Using v = y−1, we obtain v′ − v = −et, v(−1) = −1. Solving for v and trans-

forming back yields y = −1/[(t+ 1)et + et+1].
(b) −(1+ e) < t < ∞

17. (a) Using v = y3, we obtain tv′ + 3v = 3t3, v(1) = 1. Solving for v and transforming
back yields y = [0.5(t3 + t−3)]1/3.
(b) 0 < t < ∞

19. (a) Following the hint, we obtain z′ = −z+ tz−2, z(0) = 2. Using v = z3, we obtain
v′ = −3v+ 3t, v(0) = 8. Solving and transforming back to z and then to y, we have
y = (

25
3 e

−3t + t− 1
3

)1/3 − 1.

(b) −∞ < t < ∞
Section 2.6, page 60

1. (a) y2 = 4− 2 cos t; y = −√
4− 2 cos t (b) −∞ < t < ∞

3. (a) y2 + 2y+ 2(t− 1) = 0; y = −1+ √
3− 2t (b) −∞ < t ≤ 1.5

5. (a) y−2 + t2 = 1
4 ; y = 2/

√
1− 4t2 (b) − 1

2 < t < 1
2

7. (a) tan−1y = t− π/2; y = tan (t− π/2) (b) 0 < t < π

9. (a) |(y+ 1)/(y− 1)| = 3et
2 ; y = (3et

2 − 1)/(3et
2 + 1) (b) −∞ < t < ∞

11. (a) ey = et + e− 1; y = ln (et + e− 1) (b) −∞ < t < ∞
13. (a) tan y = e−t; y = tan−1 (e−t) (b) −∞ < t < ∞
15. (a) yey = 2e2 + [1− (t− 2)2]/2; there is no explicit solution.

(b) Approximately −3.5 < t < 7.5

17. (a) An implicit solution is ln (1+ ey) = t− 2+ ln 2. This can be unraveled to yield
y = ln (2et−2 − 1).

(b) 2− ln 2 < t < ∞
19. α = 2

3 ,n = 3, y0 = 1 21. (1+ y)eyy′ + 2t− cos t = 0, y(0) = 0

23. (a) The equation has the form [f (y)]−1y′ = 1.

(b) y = 2e2t−4/(1+ e2t−4)

25. y = −2+ tan [(t2/2) − π/4], −√
3π/2 < t <

√
3π/2

27. The half life is τ = 3/(2kQ2
0), and it does depend on Q0.
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29. (a) It is nonlinear and separable.
(b) The two curves are the
same and are
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(c) The two curves are
different and are

–2 –1.5 –1 –0.5 0.5 1 1.5 2

–8

–7

–6

–5

–4

–3

–2
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31. S+ K ln S = −αt+ S0 + K ln S0
33. The equation has the form y′ = [(y/t) − 1]/[(y/t) + 1]. Using the change of variables

z = y/t, we obtain z+ tz′ = (z− 1)/(z+ 1), z(2) = 1. Solving for z and transforming
back to y yields the solution tan −1(y/t) + 0.5 ln [1+ (y/t)2] + ln t = (π/4) + 1.5 ln 2.

35. The equation has the form y′ = (y+ t)2 − 1. Using the change of variables z = y+ t,
we obtain z′ − 1 = z2 − 1, z(1) = 3. Solving for z and transforming back to y yields
the solution y = (3− 4t+ 3t2)/(4− 3t).

37. The equation has the form y′ = (2t+ y) + 1/(2t+ y). Using the change of variables
z = y+ 2t, we obtain z′ − 2 = z+ (1/z), z(1) = 3. Solving for z and transforming
back to y yields the solution (1+ 2t+ y)−1 + ln |1+ 2t+ y| = t− 0.75+ ln 4.

Section 2.7, page 68

1. Ht = 2t− y and, therefore, H = t2 − yt+ p(y). Since Hy = −y+ p′(y), it follows that
p(y) = y2. Thus, a family of solutions is given by t2 − yt+ y2 = C. Imposing the ini-
tial condition leads to the implicit solution t2 − yt+ y2 = 1. This solution can be
“unraveled.”

3. Rewrite the equation as (y2 + 1)−1y′ − (3t2 + 1) = 0, y(0) = 1. Ht = −(3t2 + 1) and,
therefore, H = −(t3 + t) + p(y). Since Hy = p′(y), it follows that p(y) = tan −1y. Thus,
a family of solutions is given by −(t3 + t) + tan −1y = C. Imposing the initial con-
dition leads to the implicit solution −(t3 + t) + tan −1y = π/4. This solution can be
“unraveled.”

5. Ht = etey + 3t2 and, therefore, H = etey + t3 + p(y). Since Hy = etey + p′(y), it follows
that p(y) = y2. Thus, a family of solutions is given by etey + t3 + y2 = C. Imposing
the initial condition leads to the implicit solution etey + t3 + y2 = 1. This solution
cannot be “unraveled.”

7. Ht = ty2 + cos t and, therefore, H = 1
2 t
2y2 + sin t+ p(y). Since Hy = t2y+ p′(y), it fol-

lows that p(y) = 1
2 e

2y. Thus, a family of solutions is given by 1
2 (t

2y2 + e2y) + sin t = C.
Imposing the initial condition leads to the implicit solution t2y2 + e2y + 2 sin t = 3.
This solution cannot be “unraveled.”

9. Ht = y2 − 1 and, therefore,H = (y2 − 1)t+ p(y). SinceHy = 2yt+ p′(y), it follows that
p(y) = ln |y|. Thus, a family of solutions is given by (y2 − 1)t+ ln |y| = C. Imposing
the initial condition leads to the implicit solution (y2 − 1)t+ ln |y| = 0. This solution
cannot be “unraveled.”

11. M(t, y) = 2y+ q(t) 13. M(t, y) = ey + y+ q(t)

15. N(t, y) = −2y cos t+ p(y)
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17. y0 = 2 or y0 = −2; M(t, y) = Ht(t, y) = 3t2y+ et, N(t, y) = Hy(t, y) = t3 + 2y

19. y0 = 1; M(t, y) = 2(2t+ y)−1 + 2t+ yeyt, N(t, y) = (2t+ y)−1 + teyt

23. (c) y =
√

1
3 (t+ 2t−1/2)

25. (b) An integrating factor is μ(t, y) = y.

(c) 3y2t+ y3 = 27. In principle, this implicit solution canbe “unraveled.” In practice,
unless we needed to evaluate y(t) at many times t, it would be more efficient to solve
it numerically.

27. (b) An integrating factor is μ(t, y) = t. (c) y = −
√
t−2(4+ 2et − 2tet)

Section 2.8, page 74

1. It will take 55.645 . . . years.

3. The initial population was about 1.791× 106 individuals.

5. (a) The equilibrium populations are P = 1
4 and P = 3

4 . (b) P(t) → 3
4 as t → ∞.

7. (a) The equilibrium population is P = 1
2 . (b) P(t) → 1

2 as t → ∞.

9. (a) The equilibrium population is P = 2. (b) P(t) → 2 as t → ∞.

11. Pe = 3 and M = − 2
3 . 13. Pe = 1 and M = 2.

17. P = 1/
(
1+ 3e−[t+(1−cos 2π t)/(2π)]). P(t) → 1 as t → ∞.

19. The infected individuals will number about 1.3763× 106.

Section 2.9, page 85

1. v = −(mg/k)(1− e−kt/m); therefore, t = (m/k) ln 2.

3. (a) κ = 0.2469 . . . lb-sec2/ft2 (b) 562.4 ft

5. y(tm) =
∫ tm

0
v(t)dt = −(mg/k)tm + (m/k)[v0 + (mg/k)][1− e−(k/m)tm ]

7. The impact velocity is −√2y0 g.
9. The transformed equation is dv/dx = −(k/m)xv. Thus, v(x) = v0e

−(kx
2
)/(2m). Since

v0 > 0, xf = ∞.

11. The transformed equation is dv/dx = −(k/m)(1+ x)−1; v(x) = v0 − (k/m) ln (1+ x),
leading to a stopping position of xf = emv0/k − 1.

13. (a) Let vI denote the impact velocity. Then κv2I = mg
(
1− e−2κy0/m

)
.

(b) 400.11 . . . ft

15. (a) mv
dv
dx

+ κ0xv
2 = 0 (b) κ0 = (2m/d2) ln 100

17. (a) −187.26 . . . ft/sec or approximately 127.7 mph

(b) −128.18 . . . ft/sec or approximately 87.39 mph

19. Assuming the chute opens instantaneously, the dragster will slow to 50 mph after
5.556 . . . sec. In the other model, it requires 6.249 . . . sec.

21. Terminal velocity is −√
mg/κ; therefore, we need κ = 0.929 . . . lb-sec2/ft2.

23. 7.39 radians/sec

Section 2.10, page 98

1. (a) yk+1 = yk + h(2tk − 1), t0 = 1, y0 = 0

(b) y1 = 0.1000, y2 = 0.2200, y3 = 0.3600

(c) y = t2 − t
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3. (a) yk+1 = yk − htk yk, t0 = 0, y0 = 1

(b) y1 = 1.0000, y2 = 0.9900, y3 = 0.9702

(c) y = e−t2/2

5. (a) yk+1 = yk + h y2k, t0 = 0, y0 = 1

(b) y1 = 1.1000, y2 = 1.2210, y3 = 1.3701 . . .

(c) y = 1/(1− t)

13. Q(2) = 23.7556 . . . oz

19. (a) yE1 = 1.0000, yRK1 = 0.9950 (b) y(t) = e−t2/2

21. (a) yE1 = 1.1000, yRK1 = 1.1111 . . . (b) y(t) = 1/(1− t)

23. y(2) ≈ y20 = 0.6399 . . . 25. y(5) ≈ y40 = 4.0000 . . . 27. y(0.9) ≈ y9 = 9.9291 . . .

Chapter 2 Review Exercises, page 100

1. y = Ce−2t + 3 3. y2 = 2t3 + C 5. y = Ce−t2 + 1

7. ty+ y3 + t2 = C 9. y = 4et
3+3t 11.

√
y = 1

3 t
3/2 + C

13. t cos y = C 15. y =
{
e−2t, 0 ≤ t < 1
e−(t+1), 1 ≤ t ≤ 2

17. y = √
1/(1− 2t) 19. y = Ce− sin t + 1

21. y = (t4 + 14t2 + 65)/16 23. y = −8+ Ce
√
t

25. y = 12− 7e−t 27. y2 = 4t− t3 + 1

29. y = 1+ 3e(cos 2t)/2

CHAPTER 3

Section 3.1, page 112

1. −∞ < t < ∞ 3. −∞ < t < −1
5. (a) 0 < t < ∞ (c) No

7. No, since Theorem 3.1 guarantees a solution on −∞ < t < 3.

9. y = −2 cos 2t
11. (a) Note that y′′(0) = 1. Thus, the solution is decreasing and concave up at t = 0.

Graph B is the appropriate one.

(b) Graph D

(c) Graph A

(d) Graph C

13. (a) Drum 1 will bob more rapidly.

(b) Drum 1 will bob more rapidly.

Section 3.2, page 120
1. (b) W(t) = −8. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1e
2t + c2(2e

−2t). The solution of the initial value
problem is y = e−2t.

3. (b) W(t) = 0. Therefore, the two functions do not form a fundamental set.

5. (b) W(t) = e4t. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1e
2t + c2te

2t. The solution of the initial value problem
is y = 2e2t − 4te2t.
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7. (b) W(t) = 2e3t. Therefore, the two functions form a fundamental set.

(c) The solution of the initial value problem is y = 2et+1 − e2(t+1).

9. (b) W(t) = −t−1 ln 3. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1 ln t+ c2 ln 3t. The solution of the initial value prob-
lem is y = 18 ln t− 9 ln 3t or, equivalently, y = 9 ln (t/3).

11. (b) W(t) = 4t. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1t
3 + c2(−t−1). The solution of the initial value prob-

lem is y = −0.5t3 + 0.5t−1.

13. (b) W(t) = −3. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1(t+ 1) + c2(−t+ 2). The solution of the initial value
problem is y = (t+ 1) + 2(−t+ 2), or y = 5− t.

15. (b) W(t) = e−t. Therefore, the two functions form a fundamental set.

(c) The general solution is y = c1e
−t/2 + c2te

−t/2. The solution of the initial value
problem is y = 0.5e−(t−1)/2(1+ t).

17. (b) c1 = 2+ ln 3, c2 = 1 19. α = 0, β = −9
Section 3.3, page 125

1. (a) The general solution is y = c1e
−2t + c2e

t.

(b) The solution of the initial value problem is y = 2e−2t + et.

(c) lim t→−∞ y(t) = ∞ and lim t→∞ y(t) = ∞
3. (a) The general solution is y = c1e

t + c2e
3t.

(b) The solution of the initial value problem is y = −2et + e3t.

(c) lim t→−∞ y(t) = 0 and lim t→∞ y(t) = ∞
5. (a) The general solution is y = c1e

−t + c2e
t.

(b) The solution of the initial value problem is y = e−t.

(c) lim t→−∞ y(t) = ∞ and lim t→∞ y(t) = 0

7. (a) The general solution is y = c1e
−3t + c2e

−2t.

(b) The solution of the initial value problem is y = −e−3t + 2e−2t.

(c) lim t→−∞ y(t) = −∞ and lim t→∞ y(t) = 0

9. (a) The general solution is y = c1e
−2t + c2e

2t.

(b) The solution of the initial value problem is y = 0e−2t + 0e2t, or y(t) ≡ 0.

(c) lim t→−∞ y(t) = 0 and lim t→∞ y(t) = 0

11. (a) The general solution is y = c1 + c2e
1.5t.

(b) The solution of the initial value problem is y = 3+ 0e1.5t, or y(t) ≡ 3.

(c) lim t→−∞ y(t) = 3 and lim t→∞ y(t) = 3

13. (a) The general solution is y = c1e
(−2−√

2 )t + c2e
(−2+√

2 )t.

(b) The solution of the initial value problem is y = −√
2 e(−2−√

2 )t + √
2 e(−2+√

2 )t.

(c) lim t→−∞ y(t) = −∞ and lim t→∞ y(t) = 0

15. (a) The general solution is y = c1e
−t/√2 + c2e

t/
√
2.

(b) The solution of the initial value problem is y = −2e−t/√2.

(c) lim t→−∞ y(t) = −∞ and lim t→∞ y(t) = 0
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17. (a) y2(t) = e3t (b) α = −2, β = −3 (c) y = e−t + 2e3t

19. y = c1e
2t + c2e

3t + c3

Section 3.4, page 131

1. (a) The general solution is y = c1e
−t + c2te

−t.

(b) The solution of the initial value problem is y = te−(t−1).

(c) lim t→−∞ y(t) = −∞ and lim t→∞ y(t) = 0

3. (a) The general solution is y = c1e
−3t + c2te

−3t.

(b) The solution of the initial value problem is y = (2+ 4t)e−3t.

(c) lim t→−∞ y(t) = −∞ and lim t→∞ y(t) = 0

5. (a) The general solution is y = c1e
t/2 + c2te

t/2.

(b) The solution of the initial value problem is y = (−6+ 2t)e(t−1)/2.

(c) lim t→−∞ y(t) = 0 and lim t→∞ y(t) = ∞
7. (a) The general solution is y = c1e

t/4 + c2te
t/4.

(b) The solution of the initial value problem is y = (−4+ 4t)et/4.

(c) lim t→−∞ y(t) = 0 and lim t→∞ y(t) = ∞
9. (a) The general solution is y = c1e

5t/2 + c2te
5t/2.

(b) The solution of the initial value problem is y = (2+ t)e2.5(t+2).

(c) lim t→−∞ y(t) = 0 and lim t→∞ y(t) = ∞
11. α = − 1

2 , y0 = 0, y′
0 = 4, y(t) = 4te−t/2

13. y(t) = (2− t)e−t/2, and therefore y(0) = 2, y′(0) = −2.
15. (a) y2(t) = t ln |t|, t �= 0 (b) W(t) = t, t �= 0

17. (a) y2(t) = (t+ 1)3 (b) W(t) = (t+ 1)4

19. (a) y2(t) = 1/(t− 2)2 (b) W(t) = −4/(t− 2)

Section 3.5, page 139

1. (a) 1+ √
3 i (b)−2+ 2i (c)−1− 2i (d)− (√6+ √

2 i
)
/8 (e)−2+ 2

√
3 i

3. (a) λ = ±2i (b) y = c1 cos 2t+ c2 sin 2t (c) y = −0.5 cos 2t− 2 sin 2t

5. (a) λ = ±i/3 (b) y = c1 cos(t/3) + c2 sin(t/3) (c) y = 2
√
3 cos(t/3) + 2 sin(t/3)

7. (a) λ = (−1± i
√
3
)
/2

(b) y = c1e
−t/2 cos

(√
3 t/2

)+ c2e
−t/2 sin

(√
3 t/2

)
(c) y = −2e−t/2 cos

(√
3 t/2

)− 2
√
3 e−t/2 sin

(√
3 t/2

)
9. (a) λ = (−1± i)/3 (b) y = c1e

−t/3 cos(t/3) + c2e
−t/3 sin(t/3)

(c) y = −e−(t−3π)/3 sin(t/3)

11. (a) λ = √
2± i (b) y = c1e

√
2 t cos t+ c2e

√
2 t sin t

(c) y = −0.5e
√
2 t cos t+ 1.5

√
2 e

√
2 t sin t

13. a = 0, b = 1, y0 = (
√
2− 2)/2, y′

0 = (
√
2+ 2)/2

15. a = 4, b = 5, y0 = 1, y′
0 = −3

17. a = 0, b = π2, y0 = −1, y′
0 = −√

3π

19. a = −2, b = 1+ π2, y0 = 2e, y′
0 = 2e

21. a = 4, b = 5, y0 = 0, y′
0 = 3
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23. y = √
2 cos(π t− 7π/4)

1 2 3 4 5 6 7 8 9 10

–1.5

–1

–0.5

0.5

1

1.5

y

t

25. y = 2e−t cos(t− 2π/3)

1 2 3 4 5 6 7 8 9 10

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

y

t

27. a = 0, b = π2/4, y0 = 2, y′
0 = 0

29. a = 0, b = 4, y0 = 0.5 cos(5π/6), y′
0 = sin(5π/6)

31. y = c1 cos 3t+ c2 sin 3t 33. y = c1e
it + c2e

−5it

Section 3.6, page 151

1.

1

2 4 6 8
t

f (t)

3
2

7
2

11
2

15
2

1

2 4 6 8
t

f (t)

2

4 8 12 162 6 10 14
t

f (t)

1

–1
2 4 6 8

t

f (t)

1

� 2� 3� 4�
t

f (t)

sin t2

2e–1

2e–t

1 2 3 4
t

f (t)

2

2 4 6 81 3 5 7
t

f (t)

2sin�t

(a)

(c)

(e)

(b)

(d)

(f)

(g)

3. (a) y = (cos 10t+ sin 10t)/10 (b) t = π/40 (c)
√
2/10
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5. (a) y0 = − 1
9 ft/sec (b) period = 6π

7. y0 = √
3/8 cm, y′

0 = 1/4 cm/s, k = 16 N/m, T = π s

9. (a) 10y′′ + 7y′ + 100y = 0, y(0) = 0.5, y′(0) = 1

(b) The general solution is y = c1e
αt cosβt+ c2e

αt sinβt, where α = −0.35 and
β =

√
40− 0.49/2 ≈ 3.1428. The solution of the initial value problem requires

c1 = 0.5, c2 ≈ 0.3739. lim t→∞ y(t) = 0; this limit is to be expected since damping
dissipates energy, causing the motion to decrease.

(c) Zooming in on the graph shows that τ is about 5.25 seconds.

1 2 3 4 5 6 7

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

0.2

0.3

0.4

0.5

y

t

11. γ = √
(1600)(0.44)/1.44 kg/s

13. (a) γcrit = 2

(b) As γ increases, the solution tends to approach the constant solution y(t) = 1.
This behavior is consistent with that predicted in Exercise 12.

Section 3.7, page 156

1. (b) yC = c1e
−t + c2e

3t (c) y = 1.5e−t + 0.5e3t + 3t− 1

3. (b) yC = c1e
−t + c2e

2t (c) y = e−t − 3e2t + 2e4t

5. (b) yC = c1e
−t + c2 (c) y = 2e−(t−1) + t2 − 2t

7. (b) yC = c1 cos t+ c2 sin t (c) y = −cos t− 2 sin t+ 2t+ cos 2t

9. (b) yC = c1e
t cos t+ c2e

t sin t (c) y = −5et cos t− 5et sin t+ 5(t+ 1)2

11. (b) yC = c1e
t + c2te

t (c) y = −2et + 4tet + t2et/2

15. yP = 1
2u2 + 1

3u3 17. g(t) = 5e2t + t2 − 2t− 2

19. g(t) = 3et + 6t 21. g(t) = t2 + t+ sin t

23. α = 1, β = 0, g(t) = 2+ 2t 25. α = −2, β = 2, g(t) = et − 2 cos t+ sin t

Section 3.8, page 165

1. (a) yC = c1e
−2t + c2e

2t (b) yP = −t2 − 0.5 (c) y = c1e
−2t + c2e

2t − t2 − 0.5

3. (a) yC = c1 cos t+ c2 sin t (b) yP = 4et (c) y = c1 cos t+ c2 sin t+ 4et

5. (a) yC = c1e
2t + c2te

2t (b) yP = 1
2 t
2e2t

7. (a) yC = c1e
−t cos t+ c2e

−t sin t (b) yP = (t3 − 3t2 + 3t)/2

9. (a) yC = c1e
−t cos t+ c2e

−t sin t (b) yP = e−t + (cos t+ 2 sin t)/5

11. (a) yC = c1e
t/2 + c2e

2t (b) yP = 2tet/2
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13. (a) yC = c1e
t/3 + c2te

t/3 (b) yP = 1
6 t
3et/3

15. (a) yC = c1e
−2t cos t+ c2e

−2t sin t (b) yP = 2e−2t + (cos t+ sin t)/8

17. (a) yC = c1 cos 3t+ c2 sin 3t

(b) yP = t(A2t
2 + A1t+ A0) cos 3t+ t(B2t

2 + B1t+ B0) sin 3t+ C cos t+D sin t

19. (a) yC = c1e
t cos t+ c2e

t sin t

(b) yP = Ae−t cos 2t+ Be−t sin 2t+ C1t+ C0 + e−t(D1t+D0) cos t+ e−t(E1t+ E0) sin t

21. (a) yC = c1 cos 2t+ c2 sin 2t

(b) yP = At cos 2t+ Bt sin 2t+ C+D cos 4t+ E sin 4t

23. α = −1, β = −2, y = c1e
−t + c2e

2t − 2t+ 1

25. α = 4, β = 4, y = c1e
−2t + c2te

−2t − (4 cos t− 3 sin t)/5

27. α = 2, β = 5, y = c1e
−t cos 2t+ c2e

−t sin 2t+ 2e−t

29. α = 0, β = −4 31. y = 1
5 e

−t 33. y = 3
2

35. ω ≥ 1/
√
3

37. (a) Graph C (b) Graph E (c) Graph A (d) Graph B (e) Graph D

39. (a) A = − 1
5 (b) y = − 1

5 (cos 2t+ i sin 2t)

41. (a) yP = 1
3 e

it 43. (a) yP = 1
10 (−2+ i)e−2it

Section 3.9, page 173

1. (a) yC = c1 cos 2t+ c2 sin 2t (b) yP = 1

3. (a) yC = c1e
t + c2t

2et (b) yP = t3et/3

5. (a) yC = c1e
−t + c2e

t (b) yP = −(1/4)et + (t/2)et

7. (a) yC = c1e
t + c2te

t (b) yP = (t2/2)et

9. (a) yC = c1 sin t+ c2t sin t (b) yP = (t3/6) sin t

11. (a) yC = c1t+ c2e
t (b) yP = [(t2/2) − t]et

13. (a) yC = c1(t− 1)2 + c2(t− 1)3 (b) yP = (3t− 2)/6

17. α = 0, β = −1, y0 = 1, y′
0 = −1

Section 3.10, page 184

3. (b) y′′ +100y = 2e−t, y(0) = 0, y′(0) = 0, y = 2
101 (−cos 10t+ 0.1 sin 10t+ e−t)

(c) |y|max ≈ 0.035 m

1 2 3 4

–0.01

–0.02

0.01

0.02

0.03

y

t
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5. (b) y′′ + 100y = 2, y(0) = 0, y′(0) = 0, 0 ≤ t ≤ π

y = 1
50 (1− cos 10t), 0 ≤ t ≤ π

y′′ + 100y = 0, y(π) = 0, y′(π) = 0, π ≤ t
y(t) = 0, π ≤ t

(c) |y|max = 0.04 m

1 2 3

0.01

0.02

0.03

0.04

y

t

7. (a) y = 1
60 e

−2t(9 cos 6t− 13 sin 6t) + 1
20 (−3 cos 8t+ 4 sin 8t)

(b) lim t→∞ y(t) does not exist. For large values of t, y ≈ 1
20 (−3 cos 8t+ 4 sin 8t)

9. (a) y = 1
74 e

−2t(30 cos 6t+ 5 sin 6t) + 1
74 (−30 cos 6t+ 5 sin 6t)

(b) lim t→∞ y(t) does not exist. For large values of t, y ≈ 1
74 (−30 cos 6t+ 5 sin 6t)

13. (b) Approximately 52.42 ft/sec (c) Approximately 85.86 ft

15. I = 12
7 [cos(t/2) − cos 3t] mA 17. V = 2e−t(1− cos t) V

Section 3.11, page 193

1. (a) W(t) = 4. Therefore, the functions form a fundamental set on (−∞, ∞).

(b) y = 4+ 2(t− 1)

3. (a) W(t) = 32. Therefore, the functions form a fundamental set on (−∞, ∞).

(b) y = −1+ t+ cos 2t− sin 2t

5. (a) W(t) = 2t−3. Therefore, the functions form a fundamental set on (0, ∞).

(b) y = 2− t+ t−1

7. W(1) =
∣∣∣∣∣ y1(1) y2(1)

y′
1(1) y′

2(1)

∣∣∣∣∣ =
∣∣∣∣∣ 2 −4
−1 2

∣∣∣∣∣ = 0. No, they do not form a fundamental set.

9. W(0) =

∣∣∣∣∣∣∣
1 0 2

−1 0 −2
0 2 1

∣∣∣∣∣∣∣ = 0. No, they do not form a fundamental set.

11. By Abel’s theorem [see equation (7)],W(t) = e−t2/4. Therefore,W(4) = e−4.

13. By Abel’s theorem,W(t) = e−t. Therefore,W(4) = e−4.

15. By Abel’s theorem,W(t) = t2 + 1. Therefore,W(4) = 17.

17. y1(t) = cos t+ sin t, y2(t) = cos t− sin t

19. y1(t) = −e−2t, y2(t) = e−2t + te−2t
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21. (a) A =
⎡
⎢⎣

1 2 0

−2 1 0

0 0 e−2

⎤
⎥⎦

(b) Since the determinant of A is equal to 5e−2, {y1, y2, y3} is a fundamental set.
23. W(t) = e3(t−1) 25. W(t) = 3t−1

Section 3.12, page 199

1. (a) y = c1 + c2e
2t + c3e

−2t 3. (a) y = c1e
−t + c2 cos 2t+ c3 sin 2t

5. (a) y = c1 cos(t/2) + c2t cos(t/2) + c3 sin(t/2) + c4t sin(t/2)

7. (a) y = c1e
t + c2e

−t + c3e
2t

9. (a) y = c1e
−2t + c2e

t cos
√
3 t+ c3e

t sin
√
3 t

11. (a) y = c1 + c2 cos t+ c3 sin t

13. (a) y = c1e
t + c2e

−t + et/2[c3 cos(
√
3t/2) + c4 sin(

√
3t/2)]

+ e−t/2[c5 cos(
√
3t/2) + c6 sin(

√
3t/2)]

15. (a) y = c1 + c2e
−t + c3te

−t (b) y = 1− e−t − te−t

17. (a) y = c1e
−t + c2te

−t + c3t
2e−t (b) y = te−t + t2e−t

19. (a) y = c1e
αt + c2te

αt + c3t
2eαt (b) W(0) = 2

21. y(4) + 9y′′ = 0 23. y(4) − 2y′′ + y = 0

25. y(4) − 4y′′′ + 6y′′ − 4y′ + y = 0 27. (a) n = 5

29. (a) n = 7 31. a = −1, n = 1

33. a = 0, n = 4 35. a = −1, n = 3

Section 3.13, page 204

1. (a) yC = c1 + c2e
t + c3e

−t (b) yP = 1
6 e

2t

3. (a) yC = c1 + c2e
t + c3e

−t (b) yP = −2t2
5. (a) yC = c1 + c2t+ c3e

−t (b) yP = 6te−t

7. (a) yC = c1 + c2e
t + c3te

t (b) yP = 1
2 t
2 + 2t+ 2t2et

9. (a) yC = c1e
t + e−t/2[c2 cos(

√
3 t/2) + c3 sin(

√
3 t/2)] (b) yP = 1

3 te
t

11. (a) yC = c1e
t + c2e

−t + c3 cos t+ c4 sin t (b) yP = −t− 1

13. (a) yC = c1e
−t + et/2[c2 cos(

√
3 t/2) + c3 sin(

√
3 t/2)] (b) yP = t3 − 6

15. (a) yC = c1 + c2e
2t + c3te

2t (b) yP = t (At3 + Bt2 + Ct+D) + t2(Et2 + Ft+G) e2t

17. (a) yC = c1e
2t + c2e

−2t + c3 cos 2t+ c4 sin 2t

(b) yP = t (At+ B) sin 2t+ t (Ct+D) cos 2t

19. (a) yC = c1e
t + c2e

−t + c3 cos t+ c4 sin t

(b) yP = t (At+ B) e−t + t (Ct+D) cos t+ t (Et+ F) sin t

21. (a) yC = et(c1 cos t+ c2 sin t) + e−t(c3 cos t+ c4 sin t)

(b) yP = tet (A cos t+ B sin t)

23. y′′′ − y′′ + 4y′ − 4y = −2+ 8t− 4t2 25. t3y′′′ − t2y′′ = 12t4

27. (a) Calculating the Wronskian at t = 1, we obtainW(1) = 6.

(b) y = c1t+ c2t
2 + c3t

4 − 16
21 t

1/2

29. y = c1t+ c2t
2 + c3t

4 − 3 t3 31. y = 0.5 (e−t + cos t− sin t)

33. y = e−t(1+ t/3)
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Chapter 3 Review Exercises, page 206

1. y = e−t(c1 cos t+ c2 sin t) 3. y = 3 cos 2t+ sin 2t

5. y = c1e
3t + c2e

2t 7. y = c1e
3t + c2e

−3t + c3 cos 3t+ c4 sin 3t

9. y = c1 cos 3t+ c2 sin 3t 11. y = c1e
t + c2te

t + tet ln t

13. y = 2e−t + 3te−t + 8 15. y = c1 + c2t+ t3 + 2t2

17. y = c1e
t + c2e

−t + c3 cos t+ c4 sin t− 4t

19. y = c1 cos t+ c2 sin t+ ln (cos t)(cos t) + t sin t+ t

21. y = c1e
3t + c2te

3t 23. y = c1e
t + c2e

−t + t2 − 4

25. y = c1e
10t + c2te

10t 27. y = c1 + c2e
4t

29. y = c1 + c2t+ c3e
2t + c4te

t

CHAPTER 4

Section 4.1, page 220

1.

⎡
⎣−3t2 + 2t− 2 2t2 + 3t

4 −3t2 − 2t+ 2

⎤
⎦ 3.

[−1
1

]

5. det[A(t)B(t)] = det[A(t)]det[B(t)] = −t(t+ 1)(t+ 2)

7. A−1(t) = 1
(t− 4)(t+ 1)

[
t− 3 −2
−2 t

]
, t �= 4, t �= −1

9. A(t) cannot be inverted for any value of t.

11.

[
0 0

−2 1

]

13. A(t) is defined for −∞ < t < 0,0 < t ≤ 1. A′(t) =
[

0 1/t

− 1
2 (1− t)−1/2 3e3t

]
,

A′′(t) =
[

0 −1/t2
− 1
4 (1− t)−3/2 9e3t

]
, −∞ < t < 0,0 < t < 1.

15. P(t) =
[
t−1 t2 + 1

4 t−1

]
, g(t) =

[
t

8t ln t

]

17. A(t) = [
t− 1, 12 t

2 + 1, et − 1
]

19. A(t) =
[
2+ ln t 2t2 + 3

5t− 4 t3 − 3

]

21. A(t) =
[
t3/3 t+ 1− sin t

t 0

]

23. A(t) =
[
t2 sin t 2t

5t ln |t+ 1| t3

]

29. (a) For Tank 1, V1(t) = 100+ 5t gal; for Tank 2, V2(t) = 100− 5t gal

(b) 0 ≤ t ≤ 20 min

(c) Q′
1 = 2.5− 10Q1

100+ 5t
+ 10Q2

100− 5t
, Q1(0) = 0

Q′
2 = 10Q1

100+ 5t
− 15Q2

100− 5t
, Q2(0) = 0
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31. (a) For Tank 1, V1(t) = 100+ 5t gal; for Tank 2, V2(t) = 100 gal

(b) 0 ≤ t ≤ 80 min

(c) Q′
1 = 2.5− 5Q1

100+ 5t
+ 5Q2

100
, Q1(0) = 0

Q′
2 = 5Q1

100+ 5t
− 5Q2

100
, Q2(0) = 0

Section 4.2, page 227

1. π/2 < t < 3π/2 3. 0 < t < π/2

7. (a) A =
[
4 1

1 4

]
(b) y = c1

[
e5t

e5t

]
+ c2

[
e3t

−e3t
]

9. c1 = 1, c2 = 2 11. P(t) =
[
0 1

−4 −t2
]

, g(t) =
[
0

sin t

]

13. P(t) =
⎡
⎢⎣

0 1 0

0 0 1

−e−t tan t −t−1e−t −5e−t

⎤
⎥⎦, g(t) =

⎡
⎢⎣
0

0

e−t

⎤
⎥⎦

15. y′′ − 2y′ + 3y = 2 cos 2t, y(−1) = 1, y′(−1) = 4

17. y(4) − (y′′)(y′′ + sin y) − y′ = 0, y(1) = 0, y′(1) = 0, y′′(1) = −1, y′′′(1) = 2

19. P(t) =

⎡
⎢⎢⎢⎢⎣
0 1 0 0

4 t−1 −t sin t

0 0 0 1

1 0 0 −5

⎤
⎥⎥⎥⎥⎦, g(t) =

⎡
⎢⎢⎢⎢⎣
0

e2t

0

0

⎤
⎥⎥⎥⎥⎦

21. P(t) =

⎡
⎢⎢⎢⎢⎣
0 1 0 0

4 −3 −5 −2
0 0 0 1

5 6 −2 1

⎤
⎥⎥⎥⎥⎦, g(t) =

⎡
⎢⎢⎢⎢⎣
0

t2

0

−t

⎤
⎥⎥⎥⎥⎦

Section 4.3, page 235

1. (a) y ′ =
[
9 −4
15 −7

]
y 3. (a) y ′ =

[
1 4

−1 1

]
y 5. (a) y ′ =

⎡
⎢⎣

0 1 1

−6 −3 1

−8 −2 4

⎤
⎥⎦ y

7. Yes, they are solutions, and the Wronskian isW(t) = 2.

9. No, they are solutions, but the Wronskian isW(t) = 0.

11. No, they are not solutions.

13. Yes, they are solutions, and the Wronskian isW(t) = 1.

15. (b) W(t) = 4e2t (c) y(t) =
[
2e3t 2e−t

3e3t 5e−t

][
c1
c2

]

(d) c =
⎡
⎣ 3

4

− 1
4

⎤
⎦ , y(t) = 3

4

[
2e3t

3e3t

]
− 1
4

[
2e−t

5e−t

]
=
[

(3e3t − e−t)/2

(9e3t − 5e−t)/4

]

17. (b) W(t) ≡ 0; therefore, these solutions do not form a fundamental set.
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19. (b) W(t) ≡ 1 (c) y(t) =
[

et e−t

−2et −e−t

][
c1
c2

]

(d) c =
[
2e−1

−e

]
, y(t) = 2e−1

[
et

−2et
]

− e

[
e−t

−e−t

]
=
[
2et−1 − e−(t−1)

−4et−1 + e−(t−1)

]

21. (b) W(t) = −t2 (c) y(t) =
[
t2 − 2t t− 1

2t 1

][
c1
c2

]

(d) c =
[
1

−2

]
, y(t) =

[
t2 − 2t

2t

]
− 2

[
t− 1

1

]
=
[
t2 − 4t+ 2

2t− 2

]

23. (b) W(t) = −11et (c) y(t) =

⎡
⎢⎢⎣
5et et e−t

−11et 0 −e−t

0 11et 5e−t

⎤
⎥⎥⎦
⎡
⎢⎢⎣
c1
c2
c3

⎤
⎥⎥⎦

(d) c =
⎡
⎢⎣

1

−1
−1

⎤
⎥⎦ , y(t) =

⎡
⎢⎢⎣
5et

−11et
0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

et

0

11et

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
e−t

−e−t

5e−t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4et − e−t

−11et + e−t

−11et − 5e−t

⎤
⎥⎥⎦

25. (a) W(t) = 2e6t (b) 6 27. (a) W(t) = −6e4t (b) 4

29. (b) C =
⎡
⎣ 1

2
1
2

− 1
2

1
2

⎤
⎦ (c) �̂(t) is also a fundamental matrix.

31. (b) C =
[
0 0

2 0

]
(c) �̂(t) is not a fundamental matrix.

33. C =
⎡
⎣ 1
2

1
2

1
2 − 1

2

⎤
⎦

Section 4.4, page 245

1. λ1 = −1, λ2 = 2 3. λ1 = 0, λ2 = 3 5. λ1 = −2 i, λ2 = 2 i

7. λ1 = −1, λ2 = 4, λ3 = 5 9. λ1 = 0, λ2 = 2, λ3 = 3

11. x =
[
1

2

]
13. x =

[
1

4

]
15. x =

⎡
⎢⎣

1

−2
1

⎤
⎥⎦ 17. x =

⎡
⎢⎣

−1
−1
1

⎤
⎥⎦

19. (a) λ1 = 1, x1 =
[
1

2

]
; λ2 = −1, x2 =

[
3

8

]

(b) y1(t) = et
[
1

2

]
; y2(t) = e−t

[
3

8

]

(c) Yes

21. (a) λ1 = −1, x1 =
[−1
1

]
; λ2 = 1, x2 =

[
1

1

]

(b) y1(t) = e−t
[−1
1

]
; y2(t) = et

[
1

1

]

(c) Yes
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23. (a) λ1 = −2, x1 =
[−2
1

]
; λ2 = 1, x2 =

[−1
1

]

(b) y1(t) = e−2t
[−2
1

]
; y2(t) = et

[−1
1

]

(c) Yes

25. (a) λ1 = 1, x1 =
⎡
⎢⎣
0

0

1

⎤
⎥⎦

(b) λ2 = 3, λ3 = 5

(c) x2 =
⎡
⎢⎣
1

1

0

⎤
⎥⎦ , x3 =

⎡
⎢⎣
1

2

0

⎤
⎥⎦

(d) Yes

27. (a) λ1 = 2, x1 =
⎡
⎢⎣

−1
1

0

⎤
⎥⎦

(b) λ2 = 1, λ3 = −2

(c) x2 =
⎡
⎢⎣

−1
2

3

⎤
⎥⎦ , x3 =

⎡
⎢⎣

−1
5

6

⎤
⎥⎦

(d) Yes

Section 4.5, page 252

1. The general solution is y(t) =
[−et −e2t
2et 3e2t

][
c1
c2

]
.

The solution of the initial value problem is y(t) =
[−2e2t
6e2t

]
.

3. The general solution is y(t) =
[−e−t −et
2e−t 3et

][
c1
c2

]
.

The solution of the initial value problem is y(t) =
[
3e−(t−1) − 2e(t−1)

−6e−(t−1) + 6e(t−1)

]
.

5. The general solution is y(t) =
[−e−t e3t

e−t e3t

][
c1
c2

]
.

The solution of the initial value problem is y(t) =
[
2e3(t+1)

2e3(t+1)

]
.

7. The general solution is y(t) =
⎡
⎢⎣
e5t −e2t −e2t
e5t e2t 0

e5t 0 e2t

⎤
⎥⎦
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ .

The solution of the initial value problem is y(t) =
⎡
⎢⎣
2e5t − 3e2t

2e5t − e2t

2e5t + 4e2t

⎤
⎥⎦.

9. The general solution is y(t) =
⎡
⎢⎣
0 −2e−3t 2e2t

0 2e−3t −e2t
et e−3t 5e2t

⎤
⎥⎦
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦.

The solution of the initial value problem is y(t) =
⎡
⎢⎣

−2e−3t − 4e2t

2e−3t + 2e2t

et + e−3t − 10e2t

⎤
⎥⎦.
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13. (a)

[
Q′
1

Q′
2

]
= r
V

[−2 1

1 −2

][
Q1

Q2

]

(b) Q(t) =
[−e(−3r/V)t e(−r/V)t

e(−3r/V)t e(−r/V)t

][
c1
c2

]

(c) t ≈ 250.55 sec, or about 4.18 min

15. (b) ŷ(2) =
[
e3 − 2e−3

3e3 + e−3

]

17. (a) Direction Field 4 (b) Direction Field 3 (c) Direction Field 2

(d) Direction Field 1

19. The solution is y(t) =
[
0

−2et
]
. The phase plane solution trajectory is

y2

y1

(0, –2)

21. The solution is y(t) =
[
4− e−t

2+ e−t

]
. The phase plane solution trajectory is

y2

y1

(3, 3)

(4, 2)

Section 4.6, page 263

1. λ1 = 2+ i, x1 =
[−i
1

]
; λ2 = 2− i, x2 =

[
i

1

]

3. λ1 = −1+ i, x1 =
[
1− i

2i

]
; λ2 = −1− i, x2 =

[
1+ i

−2i

]

5. λ1 = −2+ i, x1 =
[−1− 3i

5i

]
; λ2 = −2− i, x2 =

[−1+ 3i

−5i

]
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7. λ1 = 2, x1 =
⎡
⎢⎣
0

0

1

⎤
⎥⎦ ; λ2 = −1+ 0.5i, x2 =

⎡
⎢⎣
i

1

0

⎤
⎥⎦ ; λ3 = −1− 0.5i, x3 =

⎡
⎢⎣

−i
1

0

⎤
⎥⎦

9. λ1 = −1, x1 =
⎡
⎢⎣

−3
0

1

⎤
⎥⎦ ; λ2 = −1+ i, x2 =

⎡
⎢⎣

−5− i

−1− i

2

⎤
⎥⎦ ; λ3 = −1− i, x3 =

⎡
⎢⎣

−5+ i

−1+ i

2

⎤
⎥⎦

11. y1(t) = e4t
[

4 cos 2t

−cos 2t− sin 2t

]
, y2(t) = e4t

[
4 sin 2t

−sin 2t+ cos 2t

]

13. y1(t) =
[−cos 2t+ sin 2t

cos 2t

]
, y2(t) =

[−cos 2t− sin 2t

sin 2t

]

15. y1(t) = e2t

⎡
⎢⎣

1

0

−1

⎤
⎥⎦ , y2(t) = e2t

⎡
⎢⎣

−5 cos 3t− 3 sin 3t

3 cos 3t− 3 sin 3t

2 cos 3t

⎤
⎥⎦ , y3(t) = e2t

⎡
⎢⎣

−5 sin 3t+ 3 cos 3t

3 sin 3t+ 3 cos 3t

2 sin 3t

⎤
⎥⎦

17. y(t) = e2t
[
7 sin t+ 4 cos t

7 cos t− 4 sin t

]
19. y(t) = e−t

[
2 cos t+ 4 sin t

2 cos t− 6 sin t

]

21. y(t) = e−2t
[

4 sin t

−2 cos t− 6 sin t

]
23. y(t) =

⎡
⎢⎣
e−t[−3 sin(t/2) + 2 cos(t/2)]
e−t[3 cos(t/2) + 2 sin(t/2)]

−e2t

⎤
⎥⎦

25. y(t) = e−t

⎡
⎢⎣
54− 42 cos t+ 76 sin t

2 cos t+ 24 sin t

−18+ 22 cos t− 26 sin t

⎤
⎥⎦

29. (a) Real when 1+ 4μ > 0 and complex when 1+ 4μ < 0

(b) For μ < 6

31. (a) Real for all μ (b) For no values of μ

33. It moves around the origin on an elliptical orbit.

35. It moves around the origin on an elliptical orbit.

Section 4.7, page 274

1. (a) λ1 = λ2 = 1, x1 =
[
1

−1

]
(c) y(t) =

[
3et + 2tet

−et − 2tet

]

3. (a) λ1 = λ2 = −2, x1 =
[
1

0

]
(c) y(t) =

[
e−2t − te−2t

−e−2t

]

5. (a) λ1 = λ2 = 6, x1 =
[
0

1

]
(c) y(t) =

[−2e6t
−4te6t

]

7. (a) λ1 = λ2 = −3, x1 =
[
1

1

]
(c) y(t) = e−(3+3t)

[ −t
−t− 1

]

9. (a) λ1 = λ2 = 2, λ3 = 1, x1 =
⎡
⎢⎣
1

0

0

⎤
⎥⎦ , x3 =

⎡
⎢⎣
0

0

1

⎤
⎥⎦ (c) y(t) =

⎡
⎢⎣
e2t(1+ 3t)

3e2t

−2et

⎤
⎥⎦



Answers to Odd-Numbered Exercises A-21

11. (a) λ1 = λ2 = 3, λ3 = 0, x1 =
⎡
⎢⎣
0

1

2

⎤
⎥⎦ , x3 =

⎡
⎢⎣
1

0

0

⎤
⎥⎦(c) y(t) =

⎡
⎢⎣

4

e3t(1+ t)

e3t(1+ 2t)

⎤
⎥⎦

13. (a) λ1 = λ2 = λ3 = 2, x =
⎡
⎢⎣
1

0

0

⎤
⎥⎦, geometric multiplicity is 1.

(b) λ1 = λ2 = λ3 = 2, x1 =
⎡
⎢⎣
1

0

0

⎤
⎥⎦ , x2 =

⎡
⎢⎣
0

0

1

⎤
⎥⎦, geometric multiplicity is 2.

15. (a) y3 = c3e
2t, y2 = c2e

2t, y1 = c1e
2t + c2te

2t

(b) y(t) =

⎡
⎢⎢⎣
e2t te2t 0

0 e2t 0

0 0 e2t

⎤
⎥⎥⎦
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦,W(t) = e6t, and therefore �(t) is a fundamental

matrix.

17. λ1 = λ2 = λ3 = 5, x1 =
⎡
⎢⎣
0

0

1

⎤
⎥⎦. Thus, geometricmultiplicity is 1, and thematrix does

not have a full set of eigenvectors.

19. λ1 = λ2 = λ3 = 5, x1 =
⎡
⎢⎣
1

0

0

⎤
⎥⎦ , x2 =

⎡
⎢⎣
0

1

0

⎤
⎥⎦. Thus, geometric multiplicity is 2, and the

matrix does not have a full set of eigenvectors.

21. The eigenvalues are λ = 2 (algebraic multiplicity 2, geometric multiplicity 1) and
λ = 3 (algebraic multiplicity 2, geometric multiplicity 1). A does not have a full set
of eigenvectors.

23. The eigenvalues are λ = 2 (algebraic multiplicity 3, geometric multiplicity 3) and
λ = 3 (algebraic multiplicity 1, geometric multiplicity 1). A does have a full set of
eigenvectors.

25. A =
[
1 4

−1 −3

]
27. A =

[
2 −1
1 0

]

29. (a) Direction Field 3 (b) Direction Field 4 (c) Direction Field 1

(d) Direction Field 2

31. A =
[
1.5 0

0 1.5

]
33. A =

[
0 0

0 0

]

35. y1(t) =
⎡
⎢⎣
0

0

e4t

⎤
⎥⎦ , y2(t) =

⎡
⎢⎣

0

e4t

3te4t

⎤
⎥⎦ , y3(t) =

⎡
⎢⎣

3e4t

(−1+ 6t)e4t

9t2e4t

⎤
⎥⎦

Section 4.8, page 285

1. (c) y(t) =
[−e−3t e−t

e−3t e−t

][
c1
c2

]
+
[
1

1

]
(d) y(t) =

[
1+ e−t + e−3t

1+ e−t − e−3t

]

3. (c) y(t) =
[
e3t et

e3t −et
][

c1
c2

]
+ e−t

8

[−3
1

]
(d) y(t) = 1

8

[
e3t + 2et − 3e−t

e3t − 2et + e−t

]
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5. (c) y(t) =
[
et −e−t

et e−t

][
c1
c2

]
+
[
0

−t

]
(d) y(t) = 1

2

[
et + 3e−t

et − 3e−t − 2t

]

7. (c) y(t) =
[−et −e−t

2et e−t

][
c1
c2

]
+ 1
2

[
3 sin t− cos t

−4 sin t

]

(d) y(t) = 1
2

[−et + 2e−t + 3 sin t− cos t

2et − 2e−t − 4 sin t

]

9. (c) y(t) =
⎡
⎢⎣
et 0 tet

0 0 et

0 et 0

⎤
⎥⎦
⎡
⎢⎣

c1
c2
c3

⎤
⎥⎦+

⎡
⎢⎣
t+ 1

−t− 1

0

⎤
⎥⎦ (d) y(t) =

⎡
⎢⎣
tet + t+ 1

et − t− 1

2et

⎤
⎥⎦

11. y0 =
[

1

eπ/2 − 1

]
, g(t) =

[−2et
et + 2

]
13. P(t) =

[
1 et

0 −1

]

15. y(t) = 1
4

[
e2t + 2te2t − 1

−e2t + 2te2t + 1

]
17. y(t) = 1

4

[
3e2t + 2t+ 1

−3e2t + 2t− 1

]

19. y(t) =
[
1− cos t+ 3 sin t

−2+ 3 cos t+ sin t

]
21. y(t) = 1

2

[ − sin 2t

1+ cos 2t

]

23. y(t) ≡
[
10

−3

]
25. y(t) ≡

[
0

2

]
+ c

[
1

1

]

27. y(t) ≡
⎡
⎢⎣
2

0

0

⎤
⎥⎦+ c

⎡
⎢⎣

0

−1
1

⎤
⎥⎦ 29. �(t) =

[
sin 2t −cos 2t− sin 2t

cos 2t −cos 2t+ sin 2t

]

31. �(t) =
[−e−t + 2et 2e−t − 2et

−e−t + et 2e−t − et

]

33. (a) Q ′ = 1
100

[−2 1

1 −2

]
Q+

[
5

0

]

(b) Q(t) = 1
3

[−250e−3t/100 − 750e−t/100 + 1000

250e−3t/100 − 750e−t/100 + 500

]
, Q(t) → 1

3

[
1000

500

]

35. (a) Q ′ = 1
100

[−2 1

1 −2

]
Q+ 5e−2t/100

[
1

0

]

(b) Q(t) =
[ −260e−3t/100 + 260e−t/100

260e−3t/100 + 260e−t/100 − 500e−2t/100

]
, Q(t) →

[
0

0

]

37. (a) I′ =
[−6 4

4 −6

]
I+

[
4e−2t

0

]
, I(0) = 0 (b) �(t) =

[
e−2t e−10t

e−2t −e−10t

]

(c) I(t) =
[
2te−2t + (e−2t − e−10t)/4

2te−2t − (e−2t − e−10t)/4

]
mA

Section 4.9, page 297

1. (a) yk+1 = yk + h

{[
1 2

2 3

]
yk +

[
1

1

]}
, y0 =

[−1
1

]

(b) tk = k(0.01); k = 0, . . . ,100

(c) y0 =
[−1
1

]
, y1 =

[−0.98
1.02

]
, y2 =

[−0.9594
1.041

]
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3. (a) yk+1 = yk + h

{[
−t2k tk
2− tk 0

]
yk +

[
1

tk

]}
, y0 =

[
2

0

]

(b) tk = 1+ k(0.01); k = 0,1, . . . ,300

(c) y0 =
[
2

0

]
, y1 =

[
1.99

0.03

]
, y2 =

[
1.9800 . . .

0.0598 . . .

]

5. (a) yk+1 = yk + h

{[
−t−1k sin tk
1− tk 1

]
yk +

[
0

t2k

]}
, y0 =

[
0

0

]

(b) tk = 1+ k(0.01); k = 0,1, . . . ,500

(c) y0 =
[
0

0

]
, y1 =

[
0.00

0.01

]
, y2 =

[
0.00008 . . .

0.02030 . . .

]

7. (a) y ′ =
[
0 1

−t2 −1

]
y+

[
0

2

]
, y(0) =

[
1

1

]

(c) y0 =
[
1

1

]
, y1 =

[
1.01

1.01

]
, y2 =

[
1.0201

1.0199

]

9. (a) y ′ =
[
0 1

−e−t −1

]
y+

[
0

2

]
, y(0) =

[−1
1

]

(c) y0 =
[−1
1

]
, y1 =

[−0.99
1.02

]
, y2 =

[−0.9798
1.0396 . . .

]

19. (c) y(1) − y2n =
[
0.00768 . . .

0.00584 . . .

]
, y2n − yn =

[
0.00762 . . .

0.00577 . . .

]

21. (c) y(1) − y2n =
[−0.1718 . . .

−0.0624 . . .

]
, y2n − yn =

[−0.1693 . . .

−0.0583 . . .

]

23. (a) Q ′ =
[−15/(200− 10t) 5/(500− 20t)

15/(200− 10t) −35/(500− 20t)

]
Q, Q(0) =

[
40

40

]

25. Solid curve is y1(t),
dashed curve is y2(t).

–1.5

–1

–0.5

0.5

1

1.5

y

t
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

27. Solid curve is y1(t),
dashed curve is y2(t).

y

t
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.5
1

1.5
2

2.5
3

3.5
4

4.5

29. y(1) − y100 =
[
0.1399 . . . × 10−8

0.1401 . . . × 10−8

]
, y(1) − y200 =

[
0.8802 . . . × 10−10

0.8812 . . . × 10−10

]
. Dividing

these vectors componentwise, we obtain the vector

[
0.062892 . . .

0.062890 . . .

]
. Note that

(
1
2

)4 = 0.0625 and, therefore, the errors are reduced by a factor of about
(
1
2

)4
when

the step size h is cut in half.
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Section 4.10, page 308

1. (a) T =
[
2 1

1 1

]
, D =

[
2 0

0 −1

]
(b) eAt =

[
2e2t − e−t −2e2t + 2e−t

e2t − e−t −e2t + 2e−t

]

3. (a) T =
[−1 1

1 1

]
, D =

[
0 0

0 2

]
(b) eAt = 1

2

[
1+ e2t −1+ e2t

−1+ e2t 1+ e2t

]

5. (a) T =
[
1 −1
1 1

]
, D =

[
5 0

0 −1

]
(b) eAt = 1

2

[
e5t + e−t e5t − e−t

e5t − e−t e5t + e−t

]

7. (a) T =
[
1 0

1 1

]
, D =

[
2 0

0 1

]
(b) eAt =

[
e2t 0

e2t − et et

]

9. (a) T =
[
1 1

i −i

]
, D =

[
2i 0

0 −2i

]
(b) eAt =

[
cos 2t sin 2t

− sin 2t cos 2t

]

11. (a) T =
[
2 3

1 2

]
. The uncoupled system is z′ =

[
3 0

0 2

]
z, z(0) =

[
11

−7

]
.

(b) y(t) = Tz(t) =
[
22e3t − 21e2t

11e3t − 14e2t

]

13. (a) T =
[−1 −2
1 1

]
. The uncoupled system is z′ =

[
2 0

0 −1

]
z+

[
−e2t
0

]
, z(0) = 0.

(b) y(t) = Tz(t) =
[

te2t

−te2t
]

15. (a) T =
⎡
⎢⎣

−1 −5 0

1 8 0

0 0 1

⎤
⎥⎦, giving z′ =

⎡
⎢⎣

−4 0 0

0 −1 0

0 0 1

⎤
⎥⎦ z+

⎡
⎢⎢⎢⎣

− 5
3

1
3

2

⎤
⎥⎥⎥⎦ , z(0) =

⎡
⎢⎢⎢⎣

− 8
3

1
3

0

⎤
⎥⎥⎥⎦ .

(b) y(t) = Tz(t) = 1
4

⎡
⎢⎣
9e−4t − 5

−9e−4t + 9

8et − 8

⎤
⎥⎦

17. By (8), y(t+ �t) = eA�ty(t). By Example 2, eA�t =
[
e2�t �te2�t

0 e2�t

]
. Therefore, y(4) =[

e6 3e6

0 e6

]
y(1) = e6

[
7

2

]
. Similarly, y(−1) = e−4

[−3
2

]
.

23. (a) AB �= BA

(b) eAteBt �= e(A+B)t

25. (a) T =
[
1 1

1 −1

]
. The uncoupled system is z′′ +

[
3 0

0 1

]
z = 0.

(b) y(t) = Tz(t) =
(
c1 cos

√
3 t+ c2 sin

√
3 t
)[1
1

]
+ (c3 cos t+ c4 sin t

) [ 1

−1

]

27. (a) z′′ +
[
3 0

0 1

]
z = 1

2

[
1

1

]
, z(0) = 1

2

[
1

1

]
, z′(0) = 1

2

[
1

−1

]

(b) y(t) =
⎡
⎣(1/3) cos

√
3 t+ (1/2

√
3) sin

√
3 t− (1/2) sin t+ (2/3)

(1/3) cos
√
3 t+ (1/2

√
3) sin

√
3 t+ (1/2) sin t− (1/3)

⎤
⎦
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29. (a) z′′ +
[
6 0

0 2

]
z′ = 1

2

[
1

−1

]
(b) y(t) =

[
c1 + c2e

−6t + c3 + c4e
−2t − t/6

c1 + c2e
−6t − c3 − c4e

−2t + t/3

]

Chapter 4 Review Exercises, page 310

1. y(t) =
[
2et e−t

et e−t

][
c1
c2

]
3. y(t) =

[
cos 4t − sin 4t

sin 4t cos 4t

][
c1
c2

]

5. y(t) =
[
e2t (t+ 1)e2t

e2t te2t

][
c1
c2

]
7. y(t) =

[
2et e2t

et e2t

][
c1
c2

]
−
[
2

3

]

9. y(t) =
⎡
⎢⎣
e4t −et −et
e4t et 0

e4t 0 et

⎤
⎥⎦
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦

11. The general solution is y(t) =
[
2e−t e2t

e−t e2t

][
c1
c2

]
. The solution of the initial value prob-

lem is y(t) =
[
4e−t + 3e2t

2e−t + 3e2t

]
.

13. The general solution is y(t) =
[

5 cos 2t 5 sin 2t

3 cos 2t− sin 2t cos 2t+ 3 sin 2t

][
c1
c2

]
. The solution

of the initial value problem is y(t) =
[
5 cos 2t+ 10 sin 2t

5 cos 2t+ 5 sin 2t

]
.

15. y(t) =
⎡
⎢⎣
e3t e3t −1

−e3t 0 −1
0 e3t 1

⎤
⎥⎦
⎡
⎢⎣
c1
c2
c3

⎤
⎥⎦ 17. y(t) =

[
2e3t (2t− 1)e3t

e3t te3t

][
c1
c2

]
+
[
1

−2

]

19. y(t) =
[
2e2t (2t− 1)e2t

e2t te2t

][
c1
c2

]
21. y(t) =

[
e−t (t− 1)e−t

e−t te−t

][
c1
c2

]

CHAPTER 5

Section 5.1, page 327

1. L{1} = 1/s, s > 0 3. L{te−t} = 1/(s+ 1)2, s > −1
5. The Laplace transform does not exist.

7. L{|t− 1|} = 2e−ss−2 + s−1 − s−2, s > 0

9. L{ f (t)} = e−ss−1, s > 0

11. L{ f (t)} = e−ss−1 − e−2ss−1, s �= 0; L{ f (t)} = 1, s = 0

15. (b) L{t2} = 2/s3, L{t3} = 6/s4, L{t4} = 24/s5, L{t5} = 120/s6, s > 0

(c) L{tm} = m!/sm+1, s > 0

17. L{sinωt} = ω/(s2 + ω2), s > 0

19. L{sin[ω(t− 2)]} = (ω cos 2ω − s sin 2ω)/(s2 + ω2), s > 0

21. L{e−2t cos 4t} = (s+ 2)/[(s+ 2)2 + 16], s > −2
23. R(s) = 5L{e−7t} + L{t} + 2L{e2t} = 5/(s+ 7) + (1/s2) + 2/(s− 2), s > 2

25. f is continuous and exponentially bounded.M = 1, a = 1

27. f is continuous and exponentially bounded.M = 1, a = 2 (since cosh 2t ≤ e2t)



A-26 Answers to Odd-Numbered Exercises

29. f is piecewise continuous and exponentially bounded.M = 1, a = 2

31. f is neither continuous nor exponentially bounded.

33. The integral diverges. 35. The integral converges to 1
2 .

37. L−1{F(s)} = −2t+ e−t, t ≥ 0 39. L−1{F(s)} = et − e−t, t ≥ 0

Section 5.2, page 341

1. F(s) = (s2 + 2s+ 6)/s3, s > 0 3. F(s) = s−1 + 3/(9+ s2), s > 0

5. F(s) = e−s(2/s3), s > 0 7. F(s) = 2/(s+ 2)2, s > −2
9. F(s) = e−2s(2s−2 + 4s−1), s > 0 11. F(s) = e3−s/(s− 3), s > 3

13. L−1{F(s)} = 3+ 4t3, t ≥ 0 15. L−1{F(s)} = 2e2t cos 3t, t ≥ 0

17. L−1{F(s)} = h(t− 2) sin[3(t− 2)], t ≥ 0

19. L−1{F(s)} = 2
3 e

t[6 cos 3t− sin 3t], t ≥ 0

21. L−1{F(s)} = 2(t− 3)4h(t− 3) + 4(t− 5)4h(t− 5), t ≥ 0

23.

–1

–0.5

0.5

1

2� 3� 4��

f

t

F(s) = e−2πs/(s2 + 1), s > 0

25.

1

1 2 3
t

f

F(s) = (1− e−3s)/s

27.

1

–1

1

3
t

f

F(s) = [e−s(s− 1) + e−3s(s+ 1)]/s2

29.

1

–1

1 2 3
t

f

F(s) = (e−s − 2e−2s + e−3s)/s
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31.

0.5 1 1.5

0.5

1

t

f

F(s) = (1− e−(s+2))/(s+ 2)

33.

1

–1

1 2

3
t

f

F(s) = (e−2s + e−3s − 1)/s, s > 0

35. f (t) = h(t− 1) + h(t− 2) − 2h(t− 3), F(s) = (e−s + e−2s − 2e−3s)/s

37. f (t) = (1− t)[h(t) − h(t− 1)] + (2− t)[h(t− 1) − h(t− 2)], or, after expanding,
f (t) = 1− t+ h(t− 1) + (t− 2)h(t− 2), t ≥ 0,
F(s) = (1/s) − (1/s2) + (e−s/s) + (e−2s/s2)

39. F(s) = (2/s) − [2/(s+ 2)], L−1{F(s)} = 2− 2e−2t, t ≥ 0

41. F(s) = [10e−s/(s− 3)] − [10e−s/(s− 2)],
L−1{F(s)} = 10h(t− 1)[e3(t−1) − e2(t−1)], t ≥ 0

43. Y (s) = [1/(s− 1)] + e12−4s/[(s− 3)(s− 1)],
y(t) = L−1{Y (s)} = et + h(t− 4)[e3t − et+8]/2, t ≥ 0

45. Y (s) = s/[(s− 1)(s2 − 2s− 8)],
y(t) = L−1{Y (s)} = (−e−2t − et + 2e4t)/9, t ≥ 0

47. G(s) = F(s)/s2, s > max{a,0} where |f (t)| ≤ Meat

49. (a) No, they differ at t = 3. (b) F(s) = G(s) = (1− e−3s)/s

Section 5.3, page 349

1. F(s) = A
s− 1

+ B2
(s− 2)2

+ B1
(s− 2)

3. F(s) = A2
s2

+ A1
s

+ Bs+ C

(s+ 1)2 + 9

5. F(s) = A2
(s− 3)2

+ A1
(s− 3)

+ B2
(s+ 3)2

+ B1
(s+ 3)

7. F(s) = Bs+ C

(s+ 4)2 + 1
+ Ds+ E

(s+ 3)2 + 4

9. L−1{F(s)} = 2e3t, t ≥ 0 11. L−1{F(s)} = 4 cos 3t+ 5
3 sin 3t, t≥ 0

13. L−1{F(s)} = e−3t + 2e−t, t ≥ 0

15. L−1{F(s)} = 2+ cos 2t+ 1
2 sin 2t, t ≥ 0

17. L−1{F(s)} = tet + 1
2 t
2et, t ≥ 0

19. y(t) = 4e3t − 3 cos 2t+ 2 sin 2t 21. y(t) = e3t + te3t
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23. y(t) = 2t+ 2 cos 2t+ 2 sin 2t

25. y(t) = cos 2t− 1
4 t cos 2t+ 1

8 sin 2t

27. y(t) = te−t + 1
2 t
2e−t

29. y(t) = t+ cos t− sin t+ h(t− 2)[−t+ 2 cos(t− 2) + sin(t− 2)]
31. α = 0, β = −4, y0 = 0, y′

0 = 3

Section 5.4, page 355

1. F(s) = 3(1− e−2s)2

s(1− e−4s)
= 3(1− e−2s)

s(1+ e−2s)
3. F(s) = −2e−4s + 5e−2s − 3

s(1− e−4s)

5. F(s) = 1− e−s

s2(1+ e−s)

7. F(s) = 1+ (2e−s/s) + (2e−s/s2) − (2/s2)

s(1− e−2s)

9.

1

�/2 � 3�/2
t

f

F(s) = 2(1+ e−πs/2)

(s2 + 4)(1− e−πs/2)

11.

1 2 3

1

t

f

f = e– t

F(s) = 1− e−(s+1)

(s+ 1)(1− e−s)

13.

1

2

3

1 2 43
t

g 15.

3

6

9

12

2 4 6
t

f

L−1{F(s)} = 3t− 3[h(t− 2) + h(t− 4) + h(t− 6) + · · ·]

17. (a) v(t) = e−t +
∞∑
n=0

(−1)n[1− e−(t−n)]h(t− n)

19. (a) v(t) = 1.5e−t − 0.5(1− t) +
∞∑
n=1

(−1)n[e−(t−2n) − 1]h(t− 2n)
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21. (a) q′ + 0.1q = 5ci(t), q(0) = 0, where ci(t) =
{
1, 0 ≤ t < 1

2 ,

0, 1
2 ≤ t < 1,

ci(t+ 1) = ci(t)

(b) Q(s) = 5(1− e−s/2)
s(s+ 0.1)(1− e−s)

(c) q(t) =
{
50[1− e−t/10 + e−(t−1/2)/10 − e−(t−1)/10], 1 ≤ t < 3

2

50[−e−t/10 + e−(t−1/2)/10 − e−(t−1)/10 + e−(t−3/2)/10], 3
2 ≤ t < 2

25. (s) = 1/(s+ 1)2

27. (a) (s) = 1/(s2 + 4) (b) Y (s) = 2/[s3(s2 + 4)]
29. (a) (s) = 1/(s+ 2)2 (b) Y (s) = [1− (s+ 1)e−s]/[s2(1− e−s)(s+ 2)2]
31. (a) (s) = 1/[s(s2 + 4)] (b) Y (s) = 1/(s2 + 4)2

33. b = 0, c = 4, y0 = 1, y′
0 = 0

Section 5.5, page 365

1. Y(s) =

⎡
⎢⎢⎣
s/(s2 + 1)

1/s2

1/(s− 1)2

⎤
⎥⎥⎦ 3. Y(s) =

[
(2− se−2s)/s2

2e−2s/s

]

5. Y(s) =
[

e−s/(1+ s2)

1/[(s− 1)e] − 2/s2

]
7. L−1{Y(s)} = h(t− 1)

[
1− sin(t− 1)

2 sin(t− 1)

]

9. y(t) =
[
4+ et

5+ et

]
11. y(t) =

[
t+ et − e2t

1.5t− 0.25+ et − 0.75e2t

]

13. y(t) = et
[
2 cos 2t

− sin 2t

]
15. y(t) =

[
2e3(t−1) + 3e−2(t−1)

2e3(t−1) + 8e−2(t−1)

]

17. y(t) = 1
120

[
t5 − 5t4 + 20t3

t5 − 5t4 + 60t2

]
19. y(t) =

⎡
⎢⎣
5e−t − 3et

−7e−t + 3et

−e−2t

⎤
⎥⎦

21. (a) λ1 = 6, λ2 = 3 (b) A =
[
7 −1
4 2

]

23. A =
[
6 −3
8 −5

]
25. (b) i(t) = 0.25e−t

[
t2

t2 − 2t

]

Section 5.6, page 375

3. f ∗ g = t4/12 5. f ∗ g = t− sin t

7. f ∗ g = (t2/2) − 0.5h(t− 1)(t− 1)2 9.

[
t3/6

1− cos t

]

11.

1

2 4
t

f * g

f ∗ g = (t− 2)h(t− 2) − 2(t− 3)h(t− 3) + (t− 4)h(t− 4)
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13. t5/120 15. −t+ (et − e−t)/2 17. n = 5,C = 1
24 , α = −1

19. y(t) = 2− 2e−t − 2t2e−t 21. y(t) = 6t or y(t) = −6t
23. y(t) = 2− 2e−t − te−t 25. y(t) = 1

3 e
−t + 2

3 e
t/2 cos(

√
3 t/2)

27. y(t) = 1+ (t4/24)

Section 5.7, page 383

1. (a) 1+ e−2 (b) 0 (c)

[
1

0

]
(d)

⎡
⎢⎣
e−4 − 2

e2 + 1

0

⎤
⎥⎦

3. One possible choice is t0 = 1
6 .

5.

1

1
t

f

f (t) = 1− h(1− t)

7.

1

1 2
t

k

k(t) = h(2− t) − h(1− t)

9. (a) y(t) = −1+ et (b) φ(t) = et

11. (a) y(t) = −t− 1+ et (b) φ(t) = et

13.

1

1
t

y

e–1

–1 + e–1

–1

y(t) = h(t− 1)e−(t−1) − h(t− 2)e−(t−2)

15.

–1

–0.5

0.5

1

1 2 3

y

t
4 5 6

y(t) = h(t− 2) sin[2π(t− 2)]
17.

1 2 3 4 5 6

–0.1

0.1

0.2

0.3

t

y

y(t) = h(t− 1)e−(t−1) sin(t− 1)

19. y(t) = h(t− 1)
2

[
1+ e2(t−1)

−1+ e2(t−1)

]
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CHAPTER 6

Section 6.1, page 397

1. (a) y ′ =
[

y2
−2y1 − ty2

]
, y(0) =

[
1

2

]

(b) ∂f1/∂y1 = 0, ∂f1/∂y2 = 1,

∂f2/∂y1 = −2, ∂f2/∂y2 = −t
(c) The hypotheses of Theorem 6.1 are satisfied everywhere.

3. (a) y ′ =
[

y2
−ty1 + sin y2

]
, y(0) =

[
0

1

]

(b) ∂f1/∂y1 = 0, ∂f1/∂y2 = 1,

∂f2/∂y1 = −t, ∂f2/∂y2 = cos y2
(c) The hypotheses of Theorem 6.1 are satisfied everywhere.

5. (a) y ′ =
[

y2
(e−t/t) − 1/[(1+ y1 + 2y2)t]

]
, y(2) =

[
2

1

]

(b) ∂f1/∂y1 = 0, ∂f1/∂y2 = 1,

∂f2/∂y1 = (1/t)(1+ y1 + 2y2)
−2, ∂f2/∂y2 = (2/t)(1+ y1 + 2y2)

−2

(c) Thehypotheses of Theorem6.1 are satisfied exceptwhen t= 0 or 1+ y1 + 2y2 = 0.

7. (a) y ′ =

⎡
⎢⎢⎣

y2
y3

−y21 − y2

⎤
⎥⎥⎦ , y(−1) =

⎡
⎢⎣
0

1

0

⎤
⎥⎦

(b) ∂f1/∂y1 = 0, ∂f1/∂y2 = 1, ∂f1/∂y3 = 0,

∂f2/∂y1 = 0, ∂f2/∂y2 = 0, ∂f2/∂y3 = 1,

∂f3/∂y1 = −2y1, ∂f3/∂y2 = −1, ∂f3/∂y3 = 0

(c) The hypotheses of Theorem 6.1 are satisfied everywhere.

9. (a) y ′ =

⎡
⎢⎢⎣

y2
y3

−2t1/3/[( y1 − 2)( y3 + 2)]

⎤
⎥⎥⎦ , y(2) =

⎡
⎢⎣
0

2

2

⎤
⎥⎦

(b) ∂f1/∂y1 = 0, ∂f1/∂y2 = 1, ∂f1/∂y3 = 0,

∂f2/∂y1 = 0, ∂f2/∂y2 = 0, ∂f2/∂y3 = 1,

∂f3/∂y1 = 2t1/3/[( y1 − 2)2( y3 + 2)], ∂f3/∂y2 = 0,

∂f3/∂y3 = 2t1/3/[( y1 − 2)( y3 + 2)2]
(c) The hypotheses of Theorem 6.1 are satisfied except when y1 = 2 or y3 = −2.

11. y′′ = ey′ + y′ tan y, y(0) = 0, y′(0) = 1

13. y′′′ = ( y′y′′ + t2)1/2, y(1) = 1, y′(1) = 1
2 , y′′(1) = 3

15. No, because the differential equation is nonlinear.

19. (b) a′ = −k1e0a+ k1ac+ k′
1c

c′ = k1e0a− k1ac− (k′
1 + k2)c
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Section 6.2, page 410

1. (0,0), (1,1) 3. (1, −1), (3, −1) 5. (0,0)

7. (2,2), (2, −2), (−2,2), (−2, −2) 9. (0,1,2), (−1,1,2)
11. x′ = y

y′ = −x− x3

The only equilibrium point is (0,0).

13. x′ = y

y′ = 1− x2 − 2y/(1+ x4)

The only equilibrium points are (1,0) and (−1,0).
15. x′ = y

y′ = z

z′ = y2 + (x2 − 4)/( y2 + 2)

The only equilibrium points are (−2,0,0) and (2,0,0).

17. α = −1, β = −1, γ = 1
2 , δ = 1

2

19. α = 1, β = 1, γ = −2 21. α = 8

23. (b) The velocity vector is a constant multiple of the position vector. Therefore, the
velocity vector is oriented along the line.

25. Direction Field B 27. Direction Field A

29. (a) x′ = y

y′ = −x− x3

(c)

x

y

31. (a) x′ = y

y′ = 1− 2 sin2x
(c)

y

x
– 5�

4
– 3�

4
3�
4

5�
4

– �
4

�
4

33. (a) Equilibrium point (1,1)

(b) y

x

f = 0

g = 0

35. (a) Equilibrium points (0,0) and (2, −2)
(b) y

x

f = 0

g = 0
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Section 6.3, page 421

1. (a) 0.5(x′)2 + 2x2 = C

(b) x′ = y

y′ = −4x
(c) v(1,1) = i− 4j

–2 –1 1 2

–2

–1

1

2

y

x

(d) The graph is an ellipse. The
maximum value of |x(t)| is √

5/2.

3. (a) 0.5(x′)2 + 0.25x4 = C

(b) x′ = y

y′ = −x3
(c) v(1,1) = i− j

–1.5 –1 –0.5 0.5 1 1.5

–1.5

–1

–0.5

0.5

1

1.5

x

y

(d) The maximum value of |x(t)| is (3)1/4.

5. (a) 3(x′)2 + 2x3 = C

(b) x′ = y

y′ = −x2
(c) v(1,1) = i− j

–5 –3 –1 1 3

–3

–1

1

3

y

x

(d) |x(t)| is unbounded.

7. 2x′′ − x2 sin x+ 2x cos x = 0

9. (a)

x

y (c) H(x, y) = 0.5(x2 + y2) + (0.25)x4
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11. 0.5( y′′)2 + F( y′) = C, where F(u) is an antiderivative of f (u)

13. (b) H(x, y) = 2xy 15. (b) H(x, y) = xy− x2y+ y− 2x2

17. (b) H(x, y) = y2 cos x 19. (b) H(x, y) = −x3 − y2

21. H(x, y) = x3y− cos(2x+ 3y) 23. Not a Hamiltonian system

25. H(x, y) = 0.5( y2 − x2) + x3/3 27. H(x, y) = F( y) −G(x)

29. H(x, y) = 3F( y) − xy2 −G(x) − x 31. Yes, K(x, y)

Section 6.4, page 431

1. (a) δ = ε/2 (b) Not asymptotically stable

3. (a) x′ = y

y′ = −x− γ y

(b) Asymptotically stable if γ > 0, stable if γ = 0, unstable if γ < 0

5. Asymptotically stable 7. Unstable

9. Unstable 11. Unstable

13. Stable but not asymptotically stable 15. Asymptotically stable

17. Unstable 19. Unstable

21. Asymptotically stable 23. Asymptotically stable

25. ye =
[−2
0

]
, asymptotically stable 27. ye =

[
2

−2

]
, unstable

29. ye =
⎡
⎢⎣
0

0

0

⎤
⎥⎦, unstable

31. ye =

⎡
⎢⎢⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎥⎥⎦, stable but not asymptotically stable

35. a12 = 1
2 , a22 = 1, a21 = 2

Section 6.5, page 445

1. (a) (4,4), (−4, −4)
(b) Using the order given in (a),

z ′ =
[
8 8

−1 1

]
z, z ′ =

[−8 −8
−1 1

]
z.

(c) (4,4) and (−4, −4) are each unstable equilibrium points.

3. (a) (1,1), (−1,1), (−1, −1), (1, −1)
(b) Using the order given in (a),

z ′ =
[−2 0

2 2

]
z, z ′ =

[
2 0

−2 2

]
z, z ′ =

[
2 0

−2 −2

]
z, z ′ =

[−2 0

2 −2

]
z.

(c) (1,1) is an unstable equilibrium point, (−1,1) is an unstable equilibrium point,
(−1, −1) is an unstable equilibrium point, (1, −1) is an asymptotically stable equi-
librium point.
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5. (a) (2,1), (2, −1), (−6,3)
(b) Using the order given in (a),

z ′ =
[−2 0

0 4

]
z, z ′ =

[−4 0

−2 −4

]
z, z ′ =

[
0 −8
2 4

]
z.

(c) (2,1) is an unstable equilibrium point, (2, −1) is an asymptotically stable equi-
librium point, (−6,3) is an unstable equilibrium point.

7. (a) (0,0), (−2, −4)
(b) Using the order given in (a),

z ′ =
[
4 −8
2 −1

]
z, z ′ =

[
0 6

2 −1

]
z.

(c) (0,0) and (−2, −4) are each unstable equilibrium points.

9. (a) (0,0), (1,1)

(b) Using the order given in (a),

z ′ =
[−1 0

0 −1

]
z, z ′ =

[−1 2

2 −1

]
z.

(c) (0,0) is an asymptotically stable equilibrium point, (1,1) is an unstable equilib-
rium point.

13. (a) A =
[
5 −14
3 −8

]
, g(z) =

[
z1z2

z21 + z22

]

(c) The limit is 0. z ′ = Az+ g(z) is an almost linear system.

(d) z = 0 is an asymptotically stable equilibrium point.

15. (a) A =
[−1 3

−1 −5

]
, g(z) =

⎡
⎣z2 cos

√
z21 + z22

z1 cos
√
z21 + z22

⎤
⎦

(c) The limit is 1. z ′ = Az+ g(z) is not an almost linear system.

17. (a) A =
[
0 2

−2 0

]
, g(z) =

[
z22
z1z2

]

(c) The limit is 0. z ′ = Az+ g(z) is an almost linear system.

(d) No conclusion can be drawn using Theorem 6.4.

19. (a) A =
[
9 5

−7 −3

]
, g(z) =

[
z1z2
z21

]

(c) The limit is 0. z ′ = Az+ g(z) is an almost linear system.

(d) z = 0 is an unstable equilibrium point.

21. (b) z ′ =
[−1 1

1 −2

]
z, asymptotically stable at z =

[
0

0

]
.

(d) The given nonlinear system is asymptotically stable at (0,0).
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23. (a) 0.5y2 − x+ 2
5 (1+ x)5/2 = C

(b) The graphs are consistent with bobbing motion. The origin appears to be a
stable equilibrium point but not an asymptotically stable equilibrium point.

–1 1

–1

1

y

x

27. x = [cos(c1 − t)]/√2(c2 − αt), y = [sin(c1 − t)]/√2(c2 − αt); c1 and c2 are arbitrary
constants.

29. x(1) = exp(e−2) cos(π/4− 1), y(1) = exp(e−2) sin(π/4− 1)

Section 6.6, page 454

1. (a) Saddle point, unstable

(c) y

x

3. (a) Unstable improper node

(c) y

x

5. (a) Saddle point, unstable

(c) y

x

7. (a) λ = 1, λ = 2 (b) Improper node, unstable

9. (a) λ = 3i, λ = −3i (b) Center, stable but not asymptotically stable

11. (a) λ = −2, λ = −3 (b) Improper node, asymptotically stable

13. (a) λ = 4i, λ = −4i (b) Center, stable but not asymptotically stable
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15. (a) λ = 1, λ = 3 (b) Improper node, unstable

17. (a) λ = −2, λ = −2 (b) Improper node, asymptotically stable

19. (a) λ = 1+ 4i, λ = 1− 4i (b) Spiral point, unstable

21. (a) Direction Field 2 (b) Direction Field 4 (c) Direction Field 1
(d) Direction Field 3

23. α > 9
2 25. α < 8

27. ye =
[
6

−8

]
is an unstable saddle point.

29. ye =
[
2

2

]
is an unstable saddle point.

31. (c) The solution point moves clockwise.

33. (a) λ = ±2√2 i (b) Center, stable but not asymptotically stable
(c) H(x, y) = (3x2 + 2xy+ 3y2)/2

Section 6.7, page 462

1. (a) x approaches an equilibrium population of 1 in the absence of y. If y is present,
it is harmful to x. y approaches an equilibrium population of 1

3 in the absence of x.
If x is present, it is harmful to y.

(b) (0,0), (1,0),
(
0, 13

)
,
(
4
5 ,

1
5

)
(c) The origin is an unstable proper node of the linearized system z ′ =

[
1 0
0 1

]
z.

Therefore, the given system is unstable at the origin.

3. (a) x approaches an equilibrium population of 1 in the absence of y. If y is present,
it is harmful to x. y approaches an equilibrium population of 0 in the absence of x.
If x is present, it is beneficial to y.

(b) (0,0), (1,0)

(c) The origin is an unstable saddle point of the linearized system z ′ =
[
1 0
0 −1

]
z.

Therefore, the given system is unstable at the origin.

5. (a) α1 = 0, α2 = 0, r1 = 1
2 , r2 = −1, β1 = − 1

3 , β2 = − 1
2

(b) x is beneficial to y, but y is harmful to x.

7. (a) (0,0), (1/α,0), (0, [r − μ]/[αr]),
([αr − βr + βμ]/[α2r − β2r], [αr − βr − αμ]/[α2r − β2r])
(c) (0,0) is an unstable saddle point, (1/α,0) is an asymptotically stable improper
node.

9. x′ = a1x− b1x2 − c1xy− d1xz

y′ = a2y− b2y2 − c2xy− d2yz

z′ = −a3z+ c3xz+ d3yz

11. (a) s′ = −αsi− γ s− γ i+ γN

i′ = αsi− βi

(b) (s, i) = (9,0) and (s, i) = (1,4)

(c) For (9,0), z ′ =
[−1 −10
0 8

]
z, unstable saddle point

For (1,4), z ′ =
[−5 −2
4 0

]
z, asymptotically stable spiral point
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CHAPTER 7

Section 7.2, page 477

1. (a) y = t2 − t

(b) yn+1 = yn + (h/2)[(2tn − 1) + (2tn+1 − 1)]
(c) yn+1 = yn + h[2(tn + h/2) − 1]
(d) y1 = 0.11, y2 = 0.24, y3 = 0.39

(e) y1 = 0.11, y2 = 0.24, y3 = 0.39

(f ) y(t1) = 0.11, y(t2) = 0.24, y(t3) = 0.39

3. (a) y = e−t2/2

(b) yn+1 = yn + (h/2)[−tnyn − tn+1( yn − htnyn)]
(c) yn+1 = yn − h(tn + 0.5h)( yn − 0.5htnyn)

(d) y1 = 0.9950, y2 = 0.9801 . . . , y3 = 0.9559 . . .

(e) y1 = 0.9950, y2 = 0.9801 . . . , y3 = 0.9558 . . .

(f ) y(t1) = 0.9950 . . . , y(t2) = 0.9801 . . . , y(t3) = 0.9559 . . .

5. (a) y = (1− 1.5t2)1/3

(b) yn+1 = yn + (h/2)
[−tny−2

n − tn+1( yn − htny
−2
n )−2]

(c) yn+1 = yn − h(tn + 0.5h)( yn − 0.5htny
−2
n )−2

(d) y1 = 0.9950, y2 = 0.9796 . . . , y3 = 0.9529 . . .

(e) y1 = 0.9950, y2 = 0.9796 . . . , y3 = 0.9530 . . .

(f ) y(t1) = 0.9949 . . . , y(t2) = 0.9795 . . . , y(t3) = 0.9528 . . .

7. (a) y = √
9− t2

(b)
∣∣∣ y(1) − yEuler20

∣∣∣ = 0.009146 . . . ,

∣∣ y(1) − yHeun20

∣∣ = 6.902× 10−7,
∣∣∣ y(1) − ymodEul20

∣∣∣ = 1.375× 10−5

9. (a) y = 2e−t2

(b)
∣∣∣ y(1) − yEuler20

∣∣∣ = 0.01300 . . . ,

∣∣ y(1) − yHeun20

∣∣ = 6.022× 10−4,
∣∣∣ y(1) − ymodEul20

∣∣∣ = 3.329× 10−4

11. Heun’s method, with t0 = 1, T = 5, f (t, y) = ty2 + 1

13. Euler’s method, with t0 = 2, T = 1, f (t, y) = y/(t2 + y2)

17. (a) The initial value problem is Q′ = 12− 6 cos(π t) −Q/(90+ 5t),Q(0) = 0.

(c) About 23.75 lb

19. About 1.5003 million individuals

Section 7.3, page 491

1. (a) y′(0) = 1, y′′(0) = −1, y′′′(0) = 1, y(4)(0) = −1
P4(t) = 1+ t− 1

2 t
2 + 1

6 t
3 − 1

24 t
4

(c) E(0.1) = 8.196× 10−8

3. (a) y′(0) = 0, y′′(0) = 1, y′′′(0) = 0, y(4)(0) = 6
P4(t) = 1+ 1

2 t
2 + 1

4 t
4

(c) E(0.1) = 1.256× 10−7
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5. (a) y′(0) = 1, y′′(0) = 1
2 , y

′′′(0) = 0, y(4)(0) = 0
P4(t) = 1+ t+ 1

4 t
2

(c) E(0.1) = 0

7. (a) y′(0) = 1, y′′(0) = 2, y′′′(0) = 2, y(4)(0) = 1
P4(t) = 1+ t+ t2 + 1

3 t
3 + 1

24 t
4

(c) E(0.1) = 8.615× 10−8

9. (a) y′(0) = 2, y′′(0) = 4, y′′′(0) = 16, y(4)(0) = 80
P4(t) = 1+ 2t+ 2t2 + 8

3 t
3 + 10

3 t
4

(c) E(0.1) = 4.888× 10−5

11. (a) P5(t) = 1− t2 − t3 − 7
12 t

4 − 1
4 t
5

(b) E(0.1) = −8.867× 10−8

13. (a) P5(t) = 1+ 2t+ 1
3 t
3 + 1

60 t
5

(b) E(0.1) = 3.968× 10−11

15. r = 1 17. r = 2

21. (b) At t = 1, the errors are (order 1) 1.8054 . . . × 10−3, (order 2) −4.0475 . . . × 10−4,
(order 3) 6.8372 . . . × 10−6.

23. (b) At t = 1, the errors are (order 1) −7.2978 . . . × 10−3, (order 2) 8.2708 . . . × 10−4,
(order 3) −3.0262 . . . × 10−5.

25. At t = 1, the error ratio is E2/E1 = 8.4648 . . . × 10−7/6.8372 . . . × 10−6 = 0.1238 . . . .

27. At t = 1, the error ratio isE2/E1 = −3.6501 . . . × 10−6/ −3.0262 . . . × 10−5 = 0.1206 . . . .

Section 7.4, page 502

1. (a) y1 = 1.09516666 . . . (b) y1 = 1.09516250 . . . (c) No
(d) y(t1) = 1.09516258 . . .

3. (a) y1 = 1.00503350 . . . (b) y1 = 1.00502513 . . . (c) No
(d) y(t1) = 1.00502512 . . .

5. (a) y1 = 1.10249901 . . .

(b) y1 = 1.10249998 . . .

(c) Yes, since methods of order p or higher yield exact results if the solution is a
polynomial of degree p or less.

(d) y(t1) = 1.10250000 . . . . Note that the numerical results do not agree with our
answer in part (c). This discrepancy is due to the finite precision of computer arith-
metic.

7. (a) y1 = 1.11032909 . . . (b) y1 = 1.11033743 . . . (c) No
(d) y(t1) = 1.11033758 . . .

9. (a) y1 = 1.22304273 . . . (b) y1 = 1.22304891 . . . (c) No
(d) y(t1) = 1.22304888 . . .

11. y1 =
[
0.89534540 . . .

−1.08953454 . . .

]
13. y1 =

[
2.10571842 . . .

1.22088665 . . .

]

15. y1 =
⎡
⎢⎣

0.99500416 . . .

−0.09983354 . . .

−0.99501250 . . .

⎤
⎥⎦

19. (b) y20 = 1.23606797 . . . , y(1) = 1.23606797 . . .

21. (b) y20 = 1.41421356 . . . , y(1) = 1.41421356 . . .
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23. (b) y20 = −0.81020240 . . . , y(1) = −0.81019930 . . .

y′
20 = −0.42549625 . . . , y′(1) = −0.42549942 . . .

25. (b) y10 = 4.613705448 . . . , y(1) = 4.613705638 . . .

y′
10 = 3.30685272 . . . , y′(1) = 3.30685281 . . .

27.

1 2 3 4 6 7 8 9

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

Solid is numerical solution, dotted is sin(t).

y

t
5

29.

2 4 6 8 10 12 14 16 18

0.5

1

1.5

2

2.5

3

Graph of theta versus time

�

t

2 4 6 8 10 12 14 16 18

–1.5

–1

–0.5

0.5

1

1.5

Graph of angular velocity versus time

t

�′

CHAPTER 8

Section 8.1, page 525

1. R = 2 3. R = 1 5. R = ∞
7. R = 1 9. R = 1 11. R = 2

13. R = 1

(a) f (t) = 1+ t+ t2 + t3 + · · ·
g(t) = t+ 4t2 + 9t3 + 16t4 + · · ·

(b) f (t) + g(t) = 1+ 2t+ 5t2 + 10t3 + · · ·
(c) f (t) − g(t) = 1− 3t2 − 8t3 − 15t4 − · · ·
(d) f ′(t) = 1+ 2t+ 3t2 + 4t3 + · · ·
(e) f ′′(t) = 2+ 6t+ 12t2 + 20t3 + · · ·
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15. R = 1/2

(a) f (t) = 1− 2(t− 1) + 4(t− 1)2 − 8(t− 1)3 + · · ·
g(t) = 1+ (t− 1) + (t− 1)2 + (t− 1)3 + · · ·

(b) f (t) + g(t) = 2− (t− 1) + 5(t− 1)2 − 7(t− 1)3 + · · ·
(c) f (t) − g(t) = −3(t− 1) + 3(t− 1)2 − 9(t− 1)3 + 15(t− 1)4 − · · ·
(d) f ′(t) = −2+ 8(t− 1) − 24(t− 1)2 + 64(t− 1)3 − · · ·
(e) f ′′(t) = 8− 48(t− 1) + 192(t− 1)2 − 640(t− 1)3 + · · ·

17.
∞∑
n=2

2n−2tn 19.
∞∑
n=2

an−2tn

21.
∞∑
n=0

(n+ 2)(n+ 1)an+2tn 23. −
∞∑
n=2

(−1)n(n− 1)an−2tn

25. f (t) =
∞∑
n=1

(−1)n+1(3t)2n/(2n)!, R = ∞

27. f (t) =
∞∑
n=0

t2n, R = 1

29. (a) an+2 = ω2

(n+ 2)(n+ 1)
an (b) y1(t) = coshωt, y2(t) = sinhωt

31. (a) y(t) =
∞∑
n=0

(t− 1)n/n! (b) R = ∞ (c) y(t) = et−1

33. (a) y(t) = −
∞∑
n=3

(−1)n(t− 1)n/n! (b) R = ∞
(c) y(t) = −e−(t−1) + 1− (t− 1) + (t− 1)2/2

35. (a) y(t) =
∞∑
n=0

tn (b) R = 1 (c) y(t) = 1/(1− t)

37. a0 = 0, a1 = 1, a2 = 0, a3 = 1
6 , a4 = 0, a5 = − 1

120

39. a0 = −1, a1 = 1, a2 = 0, a3 = − 1
3 , a4 = 1

12 , a5 = 1
20

41. a0 = 0, a1 = 2, a2 = 2, a3 = 1, a4 = 1
3 , a5 = 1

12

Section 8.2, page 533

1. ±π/2, ±2, ±3π/2, ±5π/2 3. 0, ±1, ±π, ±2π, ±3π
5. 0, ±e−1 7. R = 1

2

9. R = 5
6 11. R = 1

3

13. (a) an+2 = −an/(n+ 2)

(b) y1(t) = a0
[
1− 1

2 t
2 + 1

8 t
4 + · · ·]

y2(t) = a1
[
t− 1

3 t
3 + 1

15 t
5 + · · ·]

(c) R = ∞
(d) Yes

15. (a) an+2 = −(n2 + 2)an/[(n+ 2)(n+ 1)]
(b) y1(t) = a0

[
1− t2 + 1

2 t
4 + · · ·]

y2(t) = a1
[
t− 1

2 t
3 + 11

40 t
5 + · · ·]

(c) R = 1

(d) Yes
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17. (a) (n+ 2)(n+ 1)an+2 = 4(n+ 1)an+1 − 4an

(b) y1(t) = a0
[
1− 2t2 − 8

3 t
3 + · · ·]

y2(t) = a1
[
t+ 2t2 + 2t3 + · · ·]

(c) R = ∞
(d) No

19. (a) 3(n+ 2)(n+ 1)an+2 = −n(n+ 1)an+1 − (3n+ 1)an

(b) y1(t) = a0
[
1− 1

6 t
2 + 1

54 t
3 + · · ·]

y2(t) = a1
[
t− 2

9 t
3 + 1

27 t
4 + · · ·]

(c) R = 3

(d) No

21. (a) (n+ 2)(n+ 1)an+2 = −an−2
(b) y1(t) = a0

[
1− 1

12 t
4 + 1

672 t
8 + · · ·]

y2(t) = a1
[
t− 1

20 t
5 + 1

1440 t
9 + · · ·]

(c) R = ∞
(d) Yes

23. (a) (n+ 2)(n+ 1)an+2 = −an
(b) y1(t) = a0

[
1− 1

2 (t− 1)2 + 1
24 (t− 1)4 + · · ·]

y2(t) = a1
[
(t− 1) − 1

6 (t− 1)3 + 1
120 (t− 1)5 + · · ·]

(c) R = ∞
25. (a) (n+ 2)(n+ 1)an+2 = −(n+ 1)an+1 + an − an−1

(b) y1(t) = a0
[
1+ 1

2 (t− 1)2 − 1
3 (t− 1)3 + · · ·]

y2(t) = a1
[
(t− 1) − 1

2 (t− 1)2 + 1
3 (t− 1)3 + · · ·]

(c) R = ∞
29. (a) (n+ 2)(n+ 1)an+2 = −2(μ − n)an

(d) H2(t) = 4t2 − 2, H3(t) = 8t3 − 12t, H4(t) = 16t4 − 48t2 + 12,

H5(t) = 32t5 − 160t3 + 120t

33. Yes 35. Yes

37. No 39. a = 0, b is arbitrary.

Section 8.3, page 541

3. y = c1t2 + c2t3 5. y = c1t2 + c2t2 ln|t|
7. y = c1t2 cos(5 ln|t|) + c2t2 sin(5 ln|t|) 9. y = c1 cos(3 ln|t|) + c2 sin(3 ln|t|)
11. y = c1t−1 cos(4 ln|t|) + c2t−1 sin(4 ln|t|)
13. y = c1t−2 cos(6 ln|t|) + c2t−2 sin(6 ln|t|)
15. y = c1(t− 1)−1 + c2(t− 1)3 17. y = c1(t+ 2)−2 + c2(t+ 2)−3

19. t0 = −2, α = 2, β = −2 21. t0 = 0, α = −3, β = 5

23. α = −4, β = 6, g(t) = −5+ 6 ln t

25. The transformed equation is Y ′′ − 2Y ′ + Y = e−z.
y = c1t+ c2t ln t+ 1

4 t
−1

27. The transformed equation is Y ′′ − Y ′ − 6Y = 10e−2z − 6.
y = c1t−2 + c2t3 + 1− 2t−2 ln t

29. The transformed equation is Y ′′ + 7Y ′ + 10Y = 36(ez + e−z).
y = c1t−5 + c2t−2 + 2t+ 9t−1
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31. y = t+ t5 + 2, −∞ < t < ∞
33. y = −2t−1 − t−1 ln t+ t−1(ln t)2, 0 < t < ∞
35. y = c1 + c2t−2 + c3t 2, t �= 0

37. y = c1 + c2 ln|t| + c3(ln|t|)2 + t2 + 2(ln|t|)3
Section 8.4, page 549

1. t = 0 is a regular singular point.

3. t = 1 and t = −1 are regular singular points.
5. t = 0 is a regular singular point.

7. t = 0 is a regular singular point.

9. t = 1 and t = −1 are irregular singular points.
11. P(t) = (t2 − 1)2t2 13. P(t) = (t− 1)2(t+ 1)2

15. (a) n = 0, 1, 2 (b) n > 2

17. (b) F(λ) = 4λ2 − 1 = 0

(c) F(λ + n)an = −an−1
(d) y1 = a0

[
t1/2 − 1

8 t
3/2 + 1

192 t
5/2 + · · ·]

19. (b) F(λ) = λ2 − 9 = 0

(c) F(λ + n)an = −an−1
(d) y1 = a0

[
t3 − 1

7 t
4 + 1

112 t
5 + · · ·]

21. (b) F(λ) = λ2 + 2λ + 1 = 0

(c) F(λ + n)an = −2an−1
(d) y1 = a0[t−1 − 2+ t+ · · ·]

23. (b) F(λ) = λ2 − 3λ = 0

(c) F(λ + n)an+1 = −(λ + n+ 1)an

(d) y1 = a0
[
t3 − t4 + 1

2 t
5 + · · ·]

25. (b) λ2 − 5λ = 0

(c) y1 = a0
[
t5 − 1

6 t
6 − 5

84 t
7 + · · ·]

27. (b) λ(λ − 1.5) = 0

(c) y1 = a0
[
t3/2 + 1

2 t
5/2 − 17

96 t
7/2 + · · ·]

Section 8.5, page 558

1. (b) λ(2λ − 3) = 0

(c) [(λ + n)(2λ + 2n− 3)]an = (λ + n− 3)an−1
(d) y1 = a(1)

0 [1+ 2t− t2]
y2 = a(2)

0 t3/2
[
1− 1

10 t− 1
280 t

2 + · · ·]
(e) Yes

3. (b) (λ − 1)(3λ − 1) = 0

(c) [3(λ + n)2 − 4(λ + n) + 1]an = −an−1
(d) y1 = a(1)

0

[
t− 1

5 t
2 + 1

80 t
3 + · · ·]

y2 = a(2)
0 [t1/3 − t4/3 + 1

8 t
7/3 + · · ·]

(e) Yes
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5. (b) (λ − 3)(λ − 3) = 0

(c) [(λ + n)2 − 6(λ + n) + 9]an = −an−2
(d) y1 = a0t3

[
1− 1

4 t
2 + 1

64 t
4 + · · ·]

(e) Yes

7. (b) (λ − 2)(λ − 1) = 0

(c) [(λ + n)2 − 3(λ + n) + 2]an = −an−1
(d) y1 = a0

[
t2 − 1

2 t
3 + 1

12 t
4 + · · ·]

(e) Yes

9. (b) (λ + 1)(λ − 1) = 0

(c) [(λ + n)2 − 1]an = an−2
(d) y1 = a0

[
t+ 1

8 t
3 + 1

192 t
4 + · · ·]

(e) Yes

11. (b) (λ − 4)(λ + 4) = 0

(c) [(λ + n)2 − 16]an = an−1
(d) y1 = a0

[
t4 + 1

9 t
5 + 1

180 t
6 + · · ·]

(e) Yes

13. (a) t = 0 is a regular singular point.

(b) λ(λ − 2) = 0

15. (a) t = 2 and t = −2 are irregular singular points.
17. (a) λ2 = 0

(b) y1 = a0
[
1+ 1

2 (α
2 + α)(t− 1) + · · ·]

(c) y1 = a0t

19. (a) λ2 = 0 (b) y1 = a0
[
1− 5t+ 5t2 − 5

3 t
3 + 5

24 t
4 − 1

120 t
5
]

21. α = −1, β = 5 23. α = −1, β = 3

CHAPTER 9

Section 9.1, page 569

1. α = −2 3. α = 0 or α = 2 5. α = ±√
3

7. α = 0 9. α = −2 or α = 0 11. (b) c1 = −1, c2 = 3

13. (b) c1 = 3, c2 = −2 15. (b) c1 = 1, c2 = 1, c3 = 1

19. f (x, y) = 4y3 + 12x2y 21. f (x, y) = −2y3 − 6x2y

Section 9.2, page 576

1. As a function of x, u(x, t0) has a graph that is concave up at x = x1. Therefore,
uxx(x1, t0) > 0. Since ut(x, t) = κuxx(x, t), it follows that ut(x1, t0) = κuxx(x1, t0) > 0.
Similarly, it follows that ut(x2, t0) < 0.

3. (c) u(x, t) = 5e−3π2t sinπx

5. E′
(t) = c0A[∫ l0 u(x, t)dx]′ = c0A

∫ l
0 ut(x, t)dx = c0Aκ

∫ l
0 uxx(x, t)dx =

c0Aκ [ux(l, t) − ux(0, t)] = 0. Therefore, E(t) is a constant function.

7. (a) δ = α (c) u(x, t) = e4te−4π2t cos 2πx
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9. (a) ut = κuxx, 0 < x < l, 0 < t < ∞
u(0, t) = 0, ux(l, t) = 0, 0 ≤ t < ∞
u(x,0) = f (x), 0 ≤ x ≤ l

(b) X ′′
(x) − σX(x) = 0, 0 < x < l, X(0) = 0, X ′

( l ) = 0
T ′

(t) − σκT(t) = 0, 0 < t

11. T ′ = σT, X ′′ = σX − x2X 13. T ′′ = c2σT, X ′′ = σX

15. T ′′ = σT, X ′′ = σX − xX ′ 17. X ′′ = σexX , Y ′′ = −σe−yY

19. T ′ = σT, R′′ + r−1R′ = σR

21. (a) T ′ = σT (b) X ′′ = ηX , Y ′′ = (σ − η)Y

Section 9.3, page 587

1. (a) u(x, t) = e−(2π/l)2t sin(2πx/l) (b) u(l/2,1) = 0

3. (a) u(x, t) = e−(π/l)2t sin(πx/l) − 2e−(2π/l)2t sin(2πx/l) (b) u(l/2,1) = e−π2/l2

5. (a) u(x, t) = 2e−(2π/l)2t sin(2πx/l) (b) u(l/2,1) = 0

7. (a) u(x, t) = e−π2t sinπx+ 1
2 e

−4π2t sin 2πx+ 1
3 e

−9π2t sin 3πx

(b) u(l/2,1) = e−π2 − 1
3 e

−9π2

9. (a) u(x, t) = 3+ 2e−(π/l)2t cos(πx/l) (b) u(l/2,1) = 3

11. (a) u(x, t) = e−(π/2)2t cos(πx/2) + 2e−π2t cosπx (b) u(l/2,1) = −2e−π2

13. (a) u(x, t) = 0.5+ e−π2t cosπx+ 0.5e−4π2t cos 2πx (b) u(l/2,1) = 0.5(1− e−4π2)

15. (a) u(x, t) = 0.5+ e−(π/l)2t cos(πx/l) + e−(2π/l)2t cos(2πx/l) + e−(3π/l)2t cos(3πx/l)

(b) u(l/2,1) = 0.5(1− 2e−4π2/l2)

17. Solving the given initial-boundary value problem, we obtain the solution
u(x, t) = 100e−(π/2)2κt sin(πx/2).

(a) Since u(1,1) = 70, we see that κ = −(4/π2) ln 0.7 = 0.1445 . . . .

(b) Since ux(x, t) = 50πe−(π/2)2κt cos(πx/2), it follows that
ux(2,1) = 50πe−(π/2)2κ cosπ = −109.9557 . . . .

Section 9.4, page 599

1. (a) f (x) =
∞∑
n=1

an sin
(nπx

l

)
; f (x) = 1

2

[
1− cos

(
2πx
l

)]

an = 2
l

∫ l

0
f (x) sin

(nπx
l

)
dx = 1

l

∫ l

0

[
1− cos

(
2πx
l

)]
sin

(nπx
l

)
dx

So, an = −8
n(n2 − 4)π

when n is odd and an = 0 when n is even.

(b) f (x) =
∞∑
n=1

ane−(nπ/l)2κt sin
(nπx

l

)

3. (a) f (x) =
∞∑
n=1

an sin
(nπx

l

)
; f (x) = x cos

(πx
2l

)

an = 2
l

∫ l

0
f (x) sin

(nπx
l

)
dx = 2

l

∫ l

0
x cos

(πx
2l

)
sin

(nπx
l

)
dx

So, an = (−1)n+12nl
π2(n2 − 0.25)2

.

(b) f (x) =
∞∑
n=1

ane−(nπ/l)2κt sin
(nπx

l

)
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5. (a) f (x) =
∞∑
n=1

an sin
(nπx

l

)
; f (x) = 2x, 0 ≤ x ≤ l

2
, f (x) = 0,

l
2

< x ≤ l

an = 2
l

∫ l

0
f (x) sin

(nπx
l

)
dx = 2

l

∫ l/2

0
2x sin

(nπx
l

)
dx

So, an = (−1)m+1l
mπ

when n = 2m and an = (−1)m+14l
[(2m− 1)π ]2 when n = 2m− 1.

(b) f (x) =
∞∑
n=1

ane−(nπ/l)2κt sin
(nπx

l

)

7. (a) f (x) = a0
2

+
∞∑
n=1

an cos
(nπx

l

)
; f (x) = 1,0 ≤ x ≤ l

2
, f (x) = 0,

l
2

< x ≤ l

an = 2
l

∫ l

0
f (x) cos

(nπx
l

)
dx = 2

l

∫ l/2

0
cos

(nπx
l

)
dx.

Thus, a0 = 1, and, for n ≥ 1,

an = 0 when n = 2m and an = (−1)m+12
(2m− 1)π

when n = 2m− 1.

(b) f (x) = a0
2

+
∞∑
n=1

ane−(nπ/l)2κt cos
(nπx

l

)

9. (a) f (x) = a0
2

+
∞∑
n=1

an cos
(nπx

l

)
; f (x) = 3,

l
3

≤ x ≤ 2l
3
, f (x) = 0 elsewhere

an = 2
l

∫ l

0
f (x) cos

(nπx
l

)
dx = 2

l

∫ 2l/3

l/3
3 cos

(nπx
l

)
dx.

So, a0 = 2, and, for n ≥ 1,

an = 0 when n = 2m− 1 and an = −6
mπ

sin
(
2mπ

3

)
when n = 2m.

(b) f (x) = a0
2

+
∞∑
n=1

ane−(nπ/l)2κt cos
(nπx

l

)

11. (a) f (x) = a0
2

+
∞∑
n=1

an cos
(nπx

l

)
; f (x) =

∣∣∣cos(πx
l

) ∣∣∣
an = 2

l

∫ l

0
f (x) cos

(nπx
l

)
dx

= 2
l

∫ l/2

0
cos

(πx
l

)
cos

(nπx
l

)
dx− 2

l

∫ l

l/2
cos

(πx
l

)
cos

(nπx
l

)
dx

So, an = 0 when n = 2m− 1 and an = 4(−1)m+1

(4m2 − 1)π
when n = 2m.

(b) f (x) = a0
2

+
∞∑
n=1

ane−(nπ/l)2κt cos
(nπx

l

)
13. The function φ(x, t) = a1u1(x, t) + a2u2(x, t) satisfies the heat equation for all choices

of a1 and a2. Observe thatφ(0, t) = a1u1(0, t) + a2u2(0, t) = a1T0 + a2T0 = (a1 + a2)T0.
Similarly, φ(l, t) = (a1 + a2)T1. Therefore, we need to have a1 + a2 = 1.

15. Following equations (17)–(20), we have v(x) = 50 and w(x,0) = −25 sin2 πx. There-
fore, w(x, t) = ∑∞

n=1 ane−n2π2t sinnπx, where an = −2 ∫ 10 25 sin2 πx sinnπx dx. Evalu-
ating the Fourier coefficients, we find a2 = 0 and an = (100[1− (−1)n])/[πn(n2 − 4)]
when n �= 2. The solution of the given initial-boundary value problem is u(x, t) =
v(x) +w(x, t).

17. Following equations (17)–(20), we have v(x) = 50x and w(x,0) = 0. Therefore,
w(x, t) = ∑∞

n=1 ane−(nπ/2)2t sin(nπx/2), where an = ∫ 2
0 w(x,0) sin(nπx/2)dx. Since
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an = 0, n = 1, 2, . . . , it follows that w(x, t) is zero for all x and t. The solution of
the given initial-boundary value problem is u(x, t) = v(x) +w(x, t) = v(x) = 50x.

Section 9.5, page 612

1. (a) The Fourier cosine coefficients are a0 = 2, an = 0, n ≥ 1 [note that f (x) − 1 is
essentially odd]. The Fourier sine coefficients are bn = (2[1− (−1)n])/(nπ),n ≥ 1.

(b) The Fourier series converges to f (x) except at x = 0, ±1, ±2, . . . ; at these points,
the Fourier series converges to the value 1

2 .

3. (a) The Fourier cosine coefficients are an = 0, n ≥ 0 [note that f (x) is essentially
odd]. The Fourier sine coefficients are bn = [2(−1)n+1]/(nπ),n ≥ 1.

(b) The Fourier series converges to f (x) except at x = ±1,±3,±5, . . . ; at these points,
the Fourier series converges to the value 0.

5. (a) The Fourier cosine coefficients are a0 = 1, an = 0 for all even n, n ≥ 2, and
an = 4/[(2m− 1)π ]2 for n = 2m− 1 [note that f (x) is an even function]. The Fourier
sine coefficients are bn = 0, n ≥ 1.

(b) The Fourier series converges to f (x) for all x.

7. (a) The Fourier cosine coefficients are a0 = 2 and an = (4/nπ) sin(nπ/2), n ≥ 1 [note
that f (x) is essentially even]. The Fourier sine coefficients are bn = 0, n ≥ 1.

(b) The Fourier series converges to f (x) except at x = ± 1
2 , ± 3

2 , ± 5
2 , . . . ; at these

points, the Fourier series converges to the value 1.

9. (a) The Fourier cosine coefficients are an = −1/[π(4n2 − 0.25)], n ≥ 0 [note that f (x)
is neither even nor odd]. The Fourier sine coefficients are bn = 4n/[π(4n2 − 0.25)],
n ≥ 1.

(b) The Fourier series converges to f (x) except at x = 0, ±1, ±2, . . . ; at these points,
the Fourier series converges to the value 1

2 .

11. (a) y

x
–6 –4 –2 2 4 6

1

(b) The series converges to f (x) for all points in 0 ≤ x ≤ 2.

13. (a) y

x
–4 –2 2 4

1

(b) The series converges to f (x) in 0 ≤ x ≤ 2 except at x = 1.

15. (a) y

x
–6 –4 –2 2 4 6

2

(b) The series converges to f (x) for all points in 0 ≤ x ≤ 2.
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17. (a) y

x
–�–2� 2��

(b) The series converges to f (x) in 0 ≤ x ≤ π/2 except at x = 0.

19. (a) y

x
–6 –4 –2 2 4 6

2

–2

(b) The series converges to f (x) in 0 ≤ x ≤ 2 except at x = 1.

21. Since f (x) − 2 is an even function, it follows that f (x) is even. Therefore, bn = 0,
n ≥ 1.

23. Since f (x) − 3 sin(2πx/l) is an even function, it follows that b2 = 3 and that bn = 0,
n �= 3. Since

∫ l
−l f (x)dx = 0, we know that a0 = 0.We cannot deduce any information

about the other Fourier cosine coefficients.

25.
∞∑
k=0

−2
(2k+ 1)2π2

cos[(2k+ 1)πx] 27.
∞∑
n=0

2
(2n+ 1)2π2

sin
(

(2n+ 1)πx
3

)

29.
∞∑
k=0

−2
(2k+ 1)2 + 1

sin[(4k+ 3)πx]

Section 9.6, page 625

1. (a) u(x, t) = 4
π
sin

π t
2
sin

πx
4

(b) ut(x, t) = 2 cos
πt
2
sin

πx
4

3. (a) u(x, t) =
(
cos 3π t− 2

3π
sin 3π t

)
sinπx

(b) ut(x, t) = (−3π sin 3π t− 2 cos 3π t) sinπx

5. (a) u(x, t) = cos 2π t sinπx− cos 4πt sin 2πx

(b) ut(x, t) = −2π sin 2πt sinπx+ 4π sin 4π t sin 2πx

7. (a) u(x, t) =
∞∑
n=1

an cosnt sinnx, where an = 2
π

∫ π

0
(2 sin2 x) sinnxdx. In particular,

a2 = 0 and an = −8[1− (−1)n]
nπ(n2 − 4)

, n �= 2.

(b) ut(x, t) = −
∞∑
n=1

nan sinnt sinnx

9. (a) u(x, t) = cosπ t sinπx+
∞∑
n=1

bn sinnπ t sinnπx, where

bn = 2
nπ

∫ 1

0
(sin2 πx) sinnπx dx. In particular, bn = −8

nπ(n2 − 4)
, n odd and

bn = 0, n even.

(b) ut(x, t) = −π sinπ t sinπx+
∞∑
n=1

nbn cosnπt sinnπx
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11. (a) In order to have x = a1η + a2ξ , we need x = a1(x+ ct) + a2(x− ct), or x =
(a1 + a2)x+ (a1 − a2)ct. This requires a1 + a2 = 1 and a1 − a2 = 0, and hence a1 =
a2 = 1/2. A similar calculation shows that b1 = 1/(2c) and b2 = −1/(2c).

13. (a) By (18), u(x, t) = 1
2c

∫ x+ct

x−ct
g(s)ds = e−(x−2t)2 − e−(x+2t)2

(b)

–4 –3 –2 –1 1 2 3 4

–1

–0.6

–0.2

0.2

0.6

1

u(x, 1)

x

Section 9.7, page 638

1. α1 = u4, α2 = (u1 − u4)/a, α3 = (u3 − u4)/b, α4 = (−u1 + u2 − u3 + u4)/(ab)

3. (a) v(x, y) = x+ y− xy. The boundary functions are f̂1(y) = 0,
f̂2(x) = 0, f̂3(y) = y, f̂4(x) = x.

5. (a) v(x, y) = 4xy. The boundary functions are f̂1(y) = 0,
f̂2(x) = 0, f̂3(y) = 0, f̂4(x) = 0.

7. (a) v(x, y) = 0. The boundary functions are f̂1(y) = 0,
f̂2(x) = 0, f̂3(y) = 2 sinπy, f̂4(x) = 0.

9. (a) v(x, y) = 1. The boundary functions are
f̂1(y) = sinπy, f̂2(x) = −2 sin(πx/3), f̂3(y) = 0, f̂4(x) = 0.

13. u(ρ, θ) = 2− (ρ/3) sin θ

15. u(ρ, θ) = 1
2

+ 2
π

∞∑
k=0

ρ2k+1 sin[(2k+ 1)θ ]
(2k+ 1)22k+1

17. u(ρ, θ) = − 2
π

+ 4
π

∞∑
n=1

ρ2n cos 2nθ

4n2 − 1

21. u(r, θ) = 1+ (2/ln 3) ln r

23. u(r, θ) = 2− (1/ln 2) ln r + (r/3) [2 cos θ − sin θ ] + (1/3r) [−2 cos θ + 4 sin θ ]

Section 9.8, page 650

1. u(x, y, t) = 4e−[(π/a)2+(π/b)2] κt sin
πx
a
sin

πy
b

3. u(x, y, t) = −16e−(π/b)2κt

π
sin

πy
b

∞∑
k=0

e−[(2k+1)π/a]2κt

(2k+ 1)[(2k+ 1)2 − 4] sin
(2k+ 1)πx

a

5. (b) Since u(x, y,0) = f (x, y), we need to have
f (x, y) = ∑∞

m=0
∑∞

n=0 cmn cos(mπx/a) cos(nπy/b). To determine the coefficients cmn,
multiply both sides by cos(pπx/a) cos(qπy/b) and integrate over the rectangle, ob-
taining
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[p = q = 0] (ab)c00 =
∫ b

0

∫ a

0
f (x, y)dx dy

[p = 0, q = n] ab
2
c0n =

∫ b

0

∫ a

0
f (x, y) cos

nπy
b

dx dy, n ≥ 1

[p = m, q = 0] ab
2
cm0 =

∫ b

0

∫ a

0
f (x, y) cos

mπx
a

dx dy, m ≥ 1

[p = m, q = n] ab
4
cmn =

∫ b

0

∫ a

0
f (x, y) cos

mπx
a

cos
nπy
b

dx dy, m ≥ 1,n ≥ 1

7. u(x, y, t) = 1
2
e−(π/a)2κt cos

πx
a

+ 1
2
e−[(π/a)2+(2π/b)2] κt cos

πx
a
cos

2πy
b

9. The coefficients cmn are c00 = 1
4 , c0k = ck0 = (kπ)−1 sin(kπ/2), k ≥ 1, and

cmn = 4(mnπ2)−1 sin(mπ/2) sin(nπ/2), m,n ≥ 1.

11. (b) Since u(x, y,0) = f (x, y), we need to have
f (x, y) = ∑∞

m=0
∑∞

n=1 cmn cos(mπx/a) sin(nπy/b). To determine the coefficients cmn,
multiply both sides by cos(pπx/a) sin(qπy/b) and integrate over the rectangle,
obtaining

[p = 0, q = n] ab
2
c0n =

∫ b

0

∫ a

0
f (x, y) sin

nπy
b

dx dy, n ≥ 1

[p = m, q = n] ab
4
cmn =

∫ b

0

∫ a

0
f (x, y) cos

mπx
a

sin
nπy
b

dx dy, m ≥ 1,n ≥ 1

13. u(x, y, t) = e−(2π/b)2κt sin
2πy
a

+ e−[(2π/a)2+(2π/b)2] κt cos
2πx
a

sin
2πy
b

15. The coefficients cmn are c0n = [2/(3nπ)][cos(nπ/3) − cos(2nπ/3)], n ≥ 1;
cmn = −16/(mnπ2) sin(mπ/3) cos(nπ/3) for m = 2,4,6, . . . ,n = 1,3,5, . . . ; and
cmn = 0 for all other integers m and n.

17. u(x, y, t) = sin
πx
a
sin

πy
b
cos

(√
(π/a)2 + (π/b)2 ct

)
19. u(x, y, t) = sin(πx/a) sin(πy/b) cos

(√
(π/a)2 + (π/b)2 ct

)
− 2 sin(πx/a) sin(πy/b)√

(π/a)2 + (π/b)2 c
sin

(√
(π/a)2 + (π/b)2 ct

)

21. (a) T0(t) =
{

(Us/2)t, 0 ≤ t ≤ τ

(Us/2)τ, τ < t < ∞

T2(t) =
{

(−l2Us/8π2κ)(1− e−κ(2π/l)2t), 0 ≤ t ≤ τ

(−l2Us/8π2κ)(1− e−κ(2π/l)2τ )e−κ(2π/l)2(t−τ), τ < t < ∞
Tn(t) = 0,n �= 0,2

(b) τ = 0.9366 . . .hr ≈ 56.2 min

25. u(x, t) = (t/2ω) sinωt sin(πx/l)

27. u(x, t) = sinπx
π2 − 1

[
(e− e−π )eπy − (e− eπ )e−πy

eπ − e−π
− ey

]



Answers to Odd-Numbered Exercises A-51

CHAPTER 10

Section 10.2, page 667

1. (a) α = −1 (c) ω(τ) = 8τ 3 3. (a) α = −2 (c) ω(τ) = 64τ 3

5. (a) α = −1 (c) ω(τ) = τ 3e−3τ 7. a(x, t) = − 3
2x

2t

9. b(x, t) = 3x2

11. (a)

0.5

1

1.5

2

–2 –1 1 2

t

x

(b) We expect u(0,1) = 0.

13. (a)

–2 –1 1 2

1

2

t

x

(b) We expect u(0,1) = 0.

Section 10.3, page 671

1. (a)

x

t

(4, 16)

t = x2

(b) τ = 1
2

(c) No, (e) fails to hold.

3. (a)

x

t

(10, 5)

t =   x1
2

(b) 0 ≤ τ ≤ 10
(c) No, (e) fails to hold.

5. (a)

x

t

(4, 8)

(–2, –4)

t = 2x

(b) τ = 1
4

(c) No, (e) fails to hold.

7. (a)

x

t

(0, 1)

(0, –1)

x2 + t2 = 1

(b) −π/2 ≤ τ ≤ π/2

(c) No, (e) fails to hold.



A-52 Answers to Odd-Numbered Exercises

Section 10.4, page 677

1. u(x, t) = sin(x+ 0.5t) 3. u(x, t) = x2e−2(t−1)

5. u(x, t) = (x+ t)2/9 7. u(x, t) = 1+ (x− 1)et

9. (a) u(x, t) = t+ e−(x−t)2 (b) All of R

11. (a) u(x, t) = e−(x−t/2)2e−t/2 (b) All of R

13. (a) u(x, t) = −4− 2t+ et/2(4+ e−(x−t/2)2) (b) All of R

15. (a) u(x, t) = t/(1− 2t) + e−(x−t/(1−2t))2

(b) −∞ < x < ∞, t < 1
2

17. (b) u(x, t) = (t− x/v)2(1− t+ x/v)2, t ≥ x/v
(c) u(x, t) = 0, t < x/v

CHAPTER 11

Section 11.2, page 690

1. (a) y = c1 cos
(
t
2

)
+ c2 sin

(
t
2

)
+ 4

(b) The unique solution is y = −4 cos(t/2) − 2 sin(t/2) + 4.

3. (a) y = c1 cos
(
t
2

)
+ c2 sin

(
t
2

)
+ 4

(b) There are infinitely many solutions y = c1 cos(t/2) − 4 sin(t/2) + 4.

5. (a) y = c1 cos
(
t
2

)
+ c2 sin

(
t
2

)
+ 4

(b) The unique solution is y = −4 sin(t/2) + 4.

7. (a) y = c1 cos
(
t
2

)
+ c2 sin

(
t
2

)
+ 4 (b) There is no solution.

9. α = 2, β = 1, γ = 0 11. a1 = 2, β = 3

15. (b) y = c2t2 (c) The given problem does not have a unique solution.
(e) y = t+ c2t2

17. (b) The homogeneous problem has only the trivial solution.

(c) The given problem has a unique solution.

(d) y = (t+ 8t2)/5

19. (b) y = c2(2t+ t2)

(c) The given problem has either no solution or infinitely many solutions.

(e) There are no solutions.

21. (a) No (c) It has either no solution or infinitely many solutions.
(e) There are no solutions.

23. (a) There is a unique solution by Theorem 13.2. (b) y = 4+ 3et + 4e−t

25. (a) No (c) It has either no solution or infinitely many solutions.
(e) There are no solutions.

27. (a) No (c) It has a unique solution. (d) y = 2+ 6 cos t− 9 sin t

31. (b) y = 2+ t− (1+ ln 2)−1t ln t



Answers to Odd-Numbered Exercises A-53

Section 11.3, page 702

1. y′ =
[
0 1

−1 2

]
y+

[
0

cos 2t

]
;
[
2 −1
0 0

]
y(0) +

[
0 0

1 1

]
y(1) =

[
−1
2

]

3. y′ =
[

0 1

−et/t −1/t

]
y+

[
0

2/t

]
;

[
0 1

0 0

]
y(1) +

[
0 0

1 0

]
y(2) =

[
−3
1

]

5. y′ =
⎡
⎢⎣

0 1 0

0 0 1

−2t−3 2t−2 0

⎤
⎥⎦ y+

⎡
⎢⎣

0

0

3t−3 cos t

⎤
⎥⎦ ;

⎡
⎢⎣
1 1 1

0 0 0

0 0 0

⎤
⎥⎦ y(−2) +

⎡
⎢⎣

0 0 0

−1 2 −1
0 1 3

⎤
⎥⎦ y(−1) =

⎡
⎢⎣
1

4

2

⎤
⎥⎦

7. The boundary value problem does not always have a unique solution.

9. The boundary value problem always has a unique solution.

11. (b) y = (e3 + e−1)−1
[
e−t+3 + e3t−1

e−t+3 − e3t−1

]
13. y =

⎡
⎢⎣

e−2t

(e3 + e)−1(e3t − et)

(e3 + e)−1(e3t + et)

⎤
⎥⎦

Section 11.4, page 713

1. At the point x = a, we know a0u(a) + a1u′(a) = 0 and a0v(a) + a1v′(a) = 0. If we have
a1 �= 0, then u′(a) = −(a0/a1)u(a) and v′(a) = −(a0/a1)v(a). Therefore, at x = a, the
given expression can be rewritten as

u′(a)v(a) − v′(a)u(a) = [−(a0/a1)u(a)]v(a) − [−(a0/a1)v(a)]u(a).

Clearly, this expression is zero. A similar argument is valid in the case that a0 �= 0.
These arguments are valid as well at the other endpoint, x = b.

7. (a) p(x) = 1, q(x) = 0, r(x) = 1

(b) u(x) = sin
[
(2n− 1)πx/2

]
,n = 1,2, . . .

9. (a) p(x) = 1, q(x) = 1, r(x) = 1

(b) u(x) = sin[nπx/2] ,n = 1,2, . . .

11. (a) p(x) = 1, q(x) = −4, r(x) = 2

(b) u(x) = sin[nπx/3] ,n = 1,2, . . .

13. (a) p(x) = ex, q(x) = −ex, r(x) = ex

(b) u(x) = e−x/2 sin[(2n− 1)πx/2] ,n = 1,2, . . .

15. (a) p(x) = ex, q(x) = 0, r(x) = ex

(b) u(x) = e−(x−1)/2 sin[nπ(x− 1)] ,n = 1,2, . . .

17. (a) p(x) = x, q(x) = 0, r(x) = x−1

(b) u(x) = cos
[
(nπ ln x)/ln 3

]
,n = 0,1,2, . . .

21. θ
′ = (3λ − 2) sin2 θ + cos2 θ

R′ = (3− 3λ)R sin θ cos θ

θ(0) = π/2, θ(1) = 0

23. θ
′ = e−x2(λ + 1) sin2 θ + ex

2
cos 2θ

R′ = [ex2 − e−x2(λ + 1)]R sin θ cos θ

θ(0) = 0, θ(1) = π/2
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Index

Terms are defined on pages with boldfaced numbers.

A

Abel’s theorem, 119, 190–191, 233–234
Absolutely convergent power series, 516–517
Algebraic multiplicity, 271–272
Almost linear system at equilibrium point, 437
Amplitude, 137–139
Analyse des infiniment petits pour l’intelligence des lignes

courbes, 80
Analytic function, 480
in interval, 480
in region, 481
at t0, 527–530

Angular frequency, 148
Antiderivatives, Laplace transform of, 334–337
Antioxidants, 28
Anti-partial-differentiation, 64, 66–68
Archimedes, 108
Asymptotically stable equilibrium point, 429–430
Autonomous differential equation, 10, 11–12, 50–51
Autonomous systems, 392–395
equilibrium solution of, 400–401
higher dimensional, 423
two-dimensional, 401–410, 437

B

Bacterial growth, 102–103, 104–105
Baranyi population model, 104–105
Beam displacement, 210–211
Belt friction, 103–104
Bernoulli, Jacob, 52
Bernoulli differential equation, 52–53
Bessel, Friedrich Wilhelm, 543
Bessel function(s)
of the first kind of order zero, 551–552
modified, 560
of order one-half, 553–554
of the second kind of orderM, 555–556
of the second kind of order zero, 551–552

Bessel’s equation, 543, 550–556
“Big O” order symbol, 489
Birth rate, 42–44, 70–74, 76
Bobbing motion, 108–110, 141
conservation law and, 414
forced vibrations and, 174–175
projects involving, 206–208, 466

Boundary conditions, 209–210, 211, 575–576, 682
separated, 683

Buoyancy, law of, 108. See also Bobbing motion
Butterfly effect, 468–469

C

Carbon-14, 47
Cauchy, Augustin Louis, 519
Cauchy-Euler equation, 536. See also Euler equation
Cauchy problem, 662–667
existence/uniqueness for, 668–670
solution of, 674–675

Cauchy product, 519
Center point, 451, 453–454
Centrifuge, 208–209, 561, 681–682, 699–701
Chain rule, 55–57, 63–64
Chaos, deterministic, 468–469
Characteristic curves, 666, 672–674
Characteristic equation
eigenvalues and, 241–244
Euler method and, 537–539
higher order homogeneous constant coefficient,

195–199
method of Frobenius and, 546
second order homogeneous constant coefficient,

122–125, 127–130, 132–139
Characteristic impedance, 388
Characteristic polynomial
eigenvalues and, 241–244
in higher order homogeneous constant coefficient

differential equations, 195
in second order homogeneous constant coefficient

differential equations, 122
Characteristics, method of, 566, 662, 671–677, 679–680
Charged particle ballistics, 314–315
Chebyshev, Pafnuty Lvovich, 531
Chebyshev equation, 531–533, 534
Chebyshev polynomials of the first kind, 531, 532–533
Chemical reactions, nonlinear systems and, 399
Clamped-end beam, vibrations of, 210–211
Coefficient
damping, 144
of friction, 103

Colony, 42
Column form, 230
for matrix-matrix multiplication, 230–231
for matrix-vector multiplication, 230–231



I-2 Index

Column rank, 705
Compatibility constraint, 571–572
Competing species population model, 393, 463–464
Complementary solution
of first order linear homogeneous system, 278
of higher order linear homogeneous equation, 201
of second order linear homogeneous equation, 154

Complex conjugate roots, 538
Complex exponential function, 132–134
Complex roots, 132–139, 196, 197
Complex-valued solution, 257–261
Conditional convergence, 517
Conservation law, 413, 414–416
for population, 42, 458
for salt, 32–33, 215, 373–374

Conservative systems, 410, 413–420
Conserved quantity, 413
Constant coefficient homogeneous equation
higher order, 195–199
second order, 121–125

Constant coefficient homogeneous system, 238–244
Constant temperature ends problem, 598–599
Continuous at t = a, 218
Convergence
conditional, 517
of improper integral, 320
of one-step methods, 506–507
of power series, 516–517
radius of, 516–517
series, 133

Convolution(s), 368–375
of f (t) and g(t), 368
multiple, 373–375, 376
theorem of, 371–373

Cooling problem, 35–37
Coupled spring-mass systems, 311–315
Critically damped case, 146
Curve
characteristic, 666, 672–674
level, 665–667, 674
parametric, and Cauchy problem, 663–665
simple, 669
smooth, 669
solution, 113, 403–410

Cyclotron frequency, 315

D

D’Alembert, Jean Le Rond, 624–625
Damping, 144, 145–146, 147, 179–181, 498–501
Damping coefficient, 144
Darwin, Charles, 70
Dashpot, 144–150. See also Spring-mass-dashpot

system
De Methodis Serierum et Fluxionum, 31
Decay rate, 42, 44–45

Decoupling transformations, 306–307
Defective matrix, 248, 272
Delta function, 379–383
Dependent variable, 3, 4
polar coordinates as, 440–442
in separable equation, 62

Derivatives, Laplace transform of, 334–337
Derive software, 29
Deterministic chaos, 468–469
Diagonalizable matrix, 304–305
Difference of angles (identity), 587
Differentiable matrix, 218
Differentiable matrix function, 218
Differential equation(s), 1–6. See also specific types
direction field for, 1, 8–9
exact, 63, 64–68
general solution of, 5–6. See also General solution
nth order ordinary, 3–4
numerical solution of, 471–473. See also Numerical

methods
order of, 4
ordinary, 3–4
partial, 4
separable, 55–60, 62
Taylor series methods and, 482–484

Dirac delta function, 379–380, 381–383
Direction field, 1, 8
for autonomous equations, 10–11
for differential equations, 8–9
isoclines and, 9–10
phase plane, 251–252, 404, 405–410

Dirichlet, Johann Peter Gustav Lejeune, 629
Dirichlet problem, 628–629
for circular region, 635
for rectangle, 630–635

Discontinuous coefficient functions, 25–26
Distance, 425
Divergence
of improper integral, 320
of power series, 516

Double-angle formulas, 587
Double pendulum, 512–513
Drag force
bobbing motion and, 141
velocity and, 78–82

E

Echo location, 386
Eigenfunction(s)
orthogonal, 708, 710
separation of variables and, 575–576
of Sturm-Liouville problem, 708, 709–710

Eigenpair(s), 239–244
separation of variables and, 576



Index I-3

Eigenvalue(s), 238, 239–244, 581–584
complex, 256–263
phase plane and, 247, 249–252, 262–263
repeated, 266–273
separation of variables and, 575
simple, 708
of Sturm-Liouville problem, 709

Eigenvalue problem, 238, 239–244, 581–584
Eigenvector(s), 239–244
full set of, 247–249
generalized, of order 2, 269

Electrical filters, 532–533
Equal ripple property, 533, 534
Equations of motion, derivation of, 312
Equidimensional equation, 62, 536. See also Euler

equation
Equilibrium point(s)
almost linear system at, 437
classifying, 449–454
in phase plane, 403–410
stability of, 424, 425–431

Equilibrium population, 71–74
Equilibrium solutions, 11–12
of autonomous system, 400–401

Essay on the Principle of Population, 70
Euler, Leonhard, 89
Euler-Bernoulli beam equation, 210–211
Euler equation, 536–540
characteristic, 537–538
general solution of, 537–540
method of Frobenius and, 544–548
regular singular point and, 542–544

Euler line, 495
Euler-Mascheroni constant, 551
Euler path, 93
Euler’s formula, 134–135
Euler’s method, 89, 90–94, 473–474, 476. See also

Improved Euler’s method
as finite difference method, 289–290
for first order linear systems, 226–227, 290–292, 294,

295, 298
modified, 475–476

Exact differential equation, 63, 64–68
Existence, 58–59
for Cauchy problem, 668–670
for first order linear initial value problems, 16–17, 30
for first order linear system initial value problems,

223–227
for first order nonlinear initial value problems, 48–51
for higher order linear initial value problems, 188
for nonlinear systems, 395–397
for second order linear initial value problems,

111–112
for two-point boundary value problems, 682–690

Exponential functions, Laplace transforms of, 330–331
Exponential matrix, 300, 301–303, 305–306, 312–313,

716
Exponentially bounded function, 322, 323
Exponents at the singularity, 558
Extended chain rule, 63–64

F

Finite difference approximation, 289–290
Finite difference methods, 290. See also Euler’s method
First order constant coefficient homogeneous systems,

238–244
First order homogeneous linear system, 223, 228,

229–235, 238–244
fundamental set of solutions for, 229–230, 234,

247–249
First order linear differential equation(s), 16–26
mathematical models based on, 31–37
versus nonlinear differential equations, 58–60
population models based on, 42–44
radioactive decay models based on, 44–45
system of. See First order linear system

First order linear system, 214–215, 223
eigenvalues and, 238, 239–244, 247–252, 256–263,

266–273
existence/uniqueness for, 223–227
homogeneous, 223, 228, 229–235, 238–244
matrix functions and, 215–220, 300–303, 305–306
nonhomogeneous, 223, 277–284, 360–362
numerical methods for, 288–296, 298, 395, 471–473

First order nonlinear differential equation(s), 16,
48–53. See also Exact differential equation;
Separable differential equation

versus linear differential equations, 58–60
logistic population model based on, 70–74

First order partial differential equation, 659–662
Cauchy problem and, 662–667
nonhomogeneous, 567, 647–650, 675–677

First order system of linear differential equations, 223.
See also First order linear system

First shift theorem, 332–334
Fish, curing sick, 385–386
Forced vibration, 145, 174–175
Fourier, Jean Baptiste Joseph, 589
Fourier convergence theorem, 603–604, 610–611
Fourier series, 600–601, 602–611. See also Gibbs

phenomenon
cosine, 594–598
sine, 590–594

Fredholm, Erik Ivar, 684
Fredholm alternative theorem, 684–688, 697–701
Free vibration, 142–144, 145–150
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Frequency
angular, 148
cyclotron, 315
natural, 176
of oscillations, 148–149
radian, 148, 176
resonant, 176

Friction
belt, 103–104
coefficient of, 103

Frobenius, Ferdinand Georg, 544. See alsoMethod of
Frobenius

Full set of eigenvectors, 247–249
Fully rectified sine wave, 607
Fundamental matrix, 234–235, 280–283
Fundamental period
of function, 146, 148
of motion, 148

Fundamental set of solutions
for first order homogeneous linear system, 229–230,

234, 247–249
for higher order linear homogeneous equation, 188,

189–190, 191–193
for second order linear homogeneous equation,

116–118

G

General solution, 5–6
of Bessel’s equation, 550–556
of Euler equation, 537–540
of first order homogeneous linear system, 229–230
of first order linear differential equation, 20–22
of first order nonhomogeneous system, 277–280
near regular singular point, 550–556
of second order linear differential equation, 115–117,

118–120, 154–156
Generalized eigenvector of order 2, 269
Geometric multiplicity, 271–272
Gibbs, Josiah Willard, 597
Gibbs phenomenon, 597, 609, 613–616, 645
Global error, 489–490
Gravitational attraction, 2–3, 4, 83–85, 510–511
Greatest integer function, 328
Griffith, Clark, 87
Growth rate, 42–44, 70–74, 76

H

Half-life, 45
Hamilton, William Rowan, 417
Hamiltonian, 417–420
Hamiltonian function, 417–420
Hamiltonian systems, 410, 416, 417–420
Handbook of Mathematical Functions, 29

Harmonic functions, 628
Heat equation, 567, 568, 579–580
separation of variables and, 570–576, 642–650
solutions of, 580–587, 589–599

Heaviside, Oliver, 320
Heaviside layer, 320
Heaviside step function, 329–330, 342
Hermite’s equation, 531, 535
Hertz, Heinrich, 148
Heun’s method, 474–475, 476, 487, 493–494
Higher dimensional autonomous systems, 423
Higher order linear differential equation(s), 188–193
homogeneous, 188–193, 195–199
nonhomogeneous, 201–204
rewriting, as first order linear system, 225–227

Homogeneous linear differential equation
first order, 16, 19–22, 238–244
higher order, 188–193, 195–199
partial, 567
second order, 108, 115–120

Homogeneous linear system, 228, 229–235, 238–244
Hooke, Robert, 143
Hooke’s Law, 142–143, 398
Hsian-tsao leaf gum, 28

I

Impact velocity, 79, 83–85
Implicit solution, 57–58, 60
Improper node, 451
Improved Euler’s method, 474–475, 476, 487, 493–494
Impulse response, 377, 378–379, 383
Increment function, 487
Independent variable, 3, 4, 539–540
Index of summation, shifting, 524
Indicial equation, 537, 546. See also Characteristic

equation
Infectious disease
in predator-prey ecosystem, 467–468
spread of, 74

Initial-boundary value problem, 571–572, 580–581. See
also Insulated ends problem; Zero temperature
ends problem

Initial conditions, 4, 585–587
Initial value problem(s), 4–6. See also Differential

equation(s)
autonomous, 392
existence/uniqueness for, 16–17, 30, 48–51, 111–112,

188, 223–227
general solution of, 21–22
implicit solution of, 57–58
Laplace transforms and, 335–337

Insulated ends problem, 572–574, 580, 583–584, 585,
586–587, 594–598, 601, 647–650



Index I-5

Integral equations, 376, 473–474
Integrating factor, 22–25
Integro-differential equation, 376
Inverse Laplace transform, 325–327
Iodine-131, 47
“Iron filings’’ experiment, 8
Irregular singular point, 542
Isocline, 9–11
Isolated point, 430

J

Jacobian matrix, 434, 435–436
Journal de Mathématiques et Appliqués, 706
Jump discontinuities, 321–322

K

Kirchhoff, Gustav Robert, 181
Kirchhoff’s current law, 181, 183, 387–388
Kirchhoff’s voltage law, 181–182, 338–340, 363–364,

367, 387
Kutta, Martin Wilhelm, 95

L

Lagrange identity, 708, 709–710
Laguerre polynomials, 559
Landau symbol, 489
Laplace, Pierre-Simon, 317
Laplace transform pairs, 326–327, 329–341
Laplace transformable matrix function, 359–360
Laplace transforms, 317–319. See also Laplace

transform pairs; Method of partial fractions
of derivatives, 334–337
of exponential functions, 330–331
of f (t), 320
inverse, 325–327
of nonhomogeneous systems, 360–362
of periodic functions, 350–352
of polynomial functions, 330–331, 332
of system transfer functions, 352–355

Laplace’s equation, 562, 567–568. See also Poisson’s
equation

in three dimensions, 578
in two dimensions, 628–638

Legendre, Adrien-Marie, 543
Legendre’s equation, 531, 534, 543
Leibniz, Gottfried, 31
Level curves, 665–667, 674
L’Hôpital, Guillaume de, 80
Linear combination of functions, 115–120
Linear differential equations. See also First order,

Second order, and Higher order linear differential
equation(s)

versus nonlinear differential equations, 58–60

Linear partial differential equation, 567–568
Linear systems. See First order and Second order linear

systems
Linear transformation, 324
Linear two-point boundary value problems, 209–210.

See also Two-point boundary value problems
Linearization of nonlinear systems, 434–445
Linearized system, 434, 435–445, 448–454
Linearly dependent set, 192
Linearly independent set, 192
Liouville, Joseph, 706
Lipschitz condition in y, 506–507
Lipschitz constant, 506–507
Listeria monocytogenes, 104
Local truncation error, 487–489
Logistic equation, 70–74
Lorentz, Hendrik, 315
Lorentz force, 315
Lorentz transformations, 315
Lorenz, Edward N., 468
Lorenz equations, 468–469

M

Maclaurin, Colin, 133
Maclaurin series, 133–134, 520–521, 524
Malthus, Thomas, 70
Malthusian population model, 42–44, 70
Maple software, 29
Mascheroni, Lorenzo, 551
Mathematica software, 29
Mathematical models, 1, 31–37
MATLAB, 29
Euler’s method and, 294, 295
exponential matrix and, 312, 716
Runge-Kutta method and, 96–98, 295, 501–502

Matrices
defective, 248, 272
diagonalizable, 304–305
differentiable, 218
exponential, 300, 301–303, 305–306, 312–313, 716
fundamental, 234–235, 280–283
Jacobian, 434, 435–436
similar, 303
similar to a diagonal, 304–305
solution, 234–235, 280–282
symmetric, 246
system transfer, 362

Matrix functions, 215–220, 234–235, 359–364
differentiable, 218

Matrix-valued functions, 215. See alsoMatrix functions
Meatballs, cooking, 655–657
Method of characteristics, 566, 662, 671–677, 679–680
Method of Frobenius, 544–548
Method of partial fractions, 342–343, 344–349



I-6 Index

Method of separation of variables. See Separation of
variables

Mixing problem, 32–35
Modeling, 1, 31–37
Modified Bessel functions, 560
Modified Euler’s method, 475–476
Motion
bobbing. See Bobbing motion
equations of, 312
Newton’s second law of, 1–2, 77–81, 84–85, 108, 175,

315
pendulum. See Pendulum motion
periodic, 148
projectile, 510–511

Multiple convolutions, 373–375, 376
Multiplicity
algebraic, 271–272
geometric, 271–272

N

Natural frequency, 176
Newton, Isaac, 31
Newton’s law of cooling, 35–36
Newton’s law of gravitation, 83–85
Newton’s second law of motion, 1–2, 77–81, 84–85, 108,

175, 315, 627–628
Node point, 451, 452
Nonhomogeneous linear differential equation
first order, 16, 22–25
higher order, 201–204
partial, 567, 647–650, 675–677
second order, 108, 154–156

Nonhomogeneous linear system, first order, 223,
277–284, 360–362

Nonlinear differential equation(s), 16. See also Exact
differential equation; Separable differential
equation

first order, 16, 48–53
versus linear differential equations, 58–60
logistic population model based on, 70–74

Nonlinear systems, 393–395. See also Autonomous
systems

chemical reactions and, 399
existence/uniqueness for, 395–397
linearization of, 434–445
spring-mass, 398–399
vector form for, 392

Nonresonant case, 654
Norm, 425
nth order linear differential equations. See Higher

order linear differential equation(s)
nth order ordinary differential equation, 3–4
Nullclines, 406–408

Numerical methods, 288–296, 298, 395, 471–473, 488.
See also specific methods

Numerical solution, 471–473. See also Numerical
methods

O

Object, 35–36
One-dimensional wave equation, 567, 568, 616–625,

627–628
One real repeated root, 538
One-step method(s), 486–487
convergence of, 506–507
stability of, 507–509

Open rectangle, 49
Optiks, 31
Order, 4, 566, 659
Order p of one-step method, 488
Ordinary differential equation, 3–4
Ordinary point, 527–533
Orthogonal eigenfunctions, 708, 710
Overdamped case, 145, 147

P

Parameter identification problems, 352–355
Parametric curves, and Cauchy problem, 663–665
Partial differential equation, 4, 565–568. See also First

order and Second order partial differential
equations

order of, 566, 659
Partial fractions, method of, 342–343, 344–349
Particular solution
of higher order linear homogeneous equation,

201–204
of second order linear nonhomogeneous equation,

154, 155–156, 158–163, 168–173
Pendulum motion, 88, 393–395, 396–397, 413, 415–416
conservation law and, 414
project on, 512–513
Runge-Kutta method and, 498–501, 504, 505
stability and, 424, 442–445

Period, 146, 148
Periodic extension, 610–611
Periodic function, 146, 148
Laplace transforms of, 350–352

Periodic motion, 148
Phase, 137–139
Phase angle, 137–139
Phase plane, 401–410
conservation law and, 414–416
real eigenvalues and, 247, 249–252
stability in, 425–428
trajectories of, 262–263, 272–273, 408–409, 414–416
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Phase plane direction field, 251–252, 404, 405–410
Phase shift, 137–139
Philosophiae naturalis principia mathematica

(Principia), 31
Piecewise continuous functions, 321–322, 602–603
Poisson, Simeon Denis, 654
Poisson’s equation, 654–655
Polar coordinates, as dependent variables, 440–442
Pollutant flow, 660–662, 677–678
Polynomials
characteristic, 122, 195, 241–244
Chebyshev, of the first kind, 531, 532–533
Laplace transforms of functions of, 330–331, 332

Population model
Malthusian, 42–44
predator-prey, 393, 458–462
two-species, 392–393, 463–464
Verhulst, 70–74

Position, 2–3
one-dimensional dynamics and, 82–85

Power series, 515
absolutely convergent, 516–517
linear differential equations and, 522–524
operations with, 518–521
near ordinary point, 527–533

Predator-prey population model, 393, 458–462
Principia, 31
Product formula, matrix, 219
Projectile motion, 510–511
Projects
Baranyi population model, 104–105
belt friction, 103–104
bobbing sphere, 466
buoyant motion, 206–208
chaos and the Lorenz equations, 468–469
charged particle ballistics, 314–315
cooking meatballs, 655–657
curing sick fish, 385–386
derivation of equations of motion, 312
double pendulum, 512–513
extending method of characteristics, 679–680
flushing out radioactive spill, 101
infectious disease in predator-prey ecosystem,

467–468
linear two-point boundary value problems, 209–210
locating transmission line fault, 386–389
numerical solution using exponential matrix,

312–313
periodic pinging of spring-mass system, 385
processing seafood, 102–103
projectile motion, 510–511

resonant behavior of coupled spring-mass system,
313–314

simple centrifuge, 208–209, 561
steady-state heat flow between concentric cylinders,

561–564
two-mode radiative transport model, 715–717
vibrations of clamped-end beam, 210–211

Proper node, 451, 452
Prufer, Ernst Paul Heinz, 710
Prufer substitution, 710–713

R

R-stage Runge-Kutta method, 496, 497–498
Radian frequency, 148, 176
Radiative transport, 696, 698–699, 704, 715–717
Radioactive decay, 3, 5, 44–45
Radioactive spill, 101–102
Radiocarbon dating, 47
Radius of convergence, 516–517
Ratio test, 517
Rational function, 344
Real distinct roots, 122–125, 196–197, 538
Real repeated roots, 127–130, 197, 538
Rectangle
Dirichlet problem for, 630–635
open, 49

Recurrence relation, 523–524
Reduction of order, method of, 127, 128–130
Reflection coefficient, 704
Regular singular point(s), 542–544
general solution near, 550–556

Regular Sturm-Liouville system, 706–707
Remainder, Taylor’s theorem, 486
Repeated eigenvalues, 266–273
Resonance, 175, 176–179
of coupled spring-mass system, 313–314
damping and, 179–181

Resonant case, 654
Resonant frequency, 176
Riccati, Jacopo, 61
Riccati equation, 61, 704
RLC networks, 174, 175, 181–183, 338–340
Root(s)
complex, 132–139, 196, 197
complex conjugate, 538
differing by integer greater than 1, 554–556
differing by unity, 552–554
equal, 551–552
of multiplicity r, 197–198
one real repeated, 538
real distinct, 122–125, 196–197, 538
real repeated, 127–130, 197, 538
two real distinct, 538

Runge, Carle David Tolmé, 95
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Runge-Kutta methods, 94–98, 493–502
coding, 501–502
for first order linear system, 292–296, 498–501
R-stage, 496, 497–498
second order, 494–496
to solve Lorenz equations, 468–469

S

Saddle point, 451
Scalar differential equations, 223, 414
Scaled SI Unit System, 187
Seafood processing, 102–103
Second order linear differential equation(s), 108–112
constant coefficient, 121–125
fundamental set of solutions for, 116–118
general solution of, 115–117, 118–120, 154–156
important class of, 414

Second order linear systems, 309
Second order partial differential equation, 566–567.

See also Heat equation; Laplace’s equation; Wave
equation, one-dimensional

Second shift theorem, 332–334
Self-adjoint form, 707
Separable differential equation, 55–60, 62
Separated boundary conditions, 683
Separation constant, 575
Separation equations, 575
Separation of variables, 558, 566, 568–569
Dirichlet problem and, 632–635
heat equation and, 570–576, 642–650
in higher dimensions, 578
Laplace’s equation and, 635–638
wave equation and, 617–623

Separatrices, 416
Series convergence, 133
Shelf life, 102–103
Shift theorems, 332–334
Shooting method, 692–693
Shooting parameter, 693
Shriver, Pop, 87
Similar matrices, 303
Similar to a diagonal matrix, 304–305
Similarity transformation, 303
Simple curve, 669
Simple eigenvalues, 708
Sine wave, fully rectified, 607
Singular point, 527
irregular, 542
regular, 542–544, 550–556

Smooth curve, 669
Solution(s), 3, 4
analytic, 481–482
complementary, 154, 201, 278

complex-valued, 257–261
curves of, 113, 403–410
equilibrium, 11–12, 400–401
fundamental set of. See Fundamental set of solutions
general. See General solution
implicit, 57–58, 60
particular. See Particular solution
well-stirred, 32

Solution curve, 113, 403–410
Solution matrix, 234–235, 280–282
Solution point, phase plane, 403–410
Special functions, 29
Spiral point, 452–453
Spring constant, 143
Spring-mass-dashpot system, 144–150, 319, 352–355
Spring-mass system, 142–150. See also

Spring-mass-dashpot system
conservation law and, 414
coupled, 311–315
nonlinear, 398–399
periodic pinging of, 385

Square wave, 322
Stability
of equilibrium point, 424, 425–431
of one-step methods, 507–509

Stable equilibrium point, 424, 425
Stages in Runge-Kutta methods, 496–498
Standing wave, 617
Steady-state heat flow between concentric cylinders,

561–564
Step length, 471–472
Step size, 92, 471–472
Sturm, Jacques Charles François, 706
Sturm-Liouville boundary value problems, 705–713
Sum of angles (identity), 587
Superposition principle, 115–116, 188–189
for first order homogeneous linear system, 229
for first order nonhomogeneous linear system,

278–280
for linear homogeneous partial differential

equations, 567
Surroundings, 35–36
Symmetric matrix, 246
System transfer function, 352, 353–355, 362–363, 383
System transfer matrix, 362

T

Tangent line method, 90. See also Euler’s method
Taylor polynomial of degree m, 486
Taylor series, 520–521
Taylor series method, 476–477, 479–483, 484–491
of order p, 484–486
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Taylor’s theorem, 480, 486
Temperature ends problems. See Constant, Insulated,

and Zero temperature ends problem
Terminal velocity, 78–79
Time domain problem, 318, 326–327, 329–341
Trace, 233
Transform domain problem, 318, 326–327, 329–341
Transmission line fault, locating, 386–389
Transpose, 246
Traveling waves, 616–617, 624–625
Treatise of Fluxions, 133
Trigonometric functions, Laplace transforms of, 331
Two-point boundary value problems, 209–210, 682
existence/uniqueness for, 682–690
for linear systems, 693–701
Sturm-Liouville, 705–713

Two real distinct roots, 538
Two-species population model, 392–393, 463–464
Two-tank mixing problem, 214–215

U

U-238, 47
Undamped case, 146, 147
Underdamped case, 146, 147
Undetermined coefficients, method of, 158–163, 202
Unforced vibration, 142–144, 145–150
Uniqueness
for Cauchy problem, 668–670
for first order linear initial value problems, 16–17, 30
for first order linear system initial value problems,

223–227
for first order nonlinear initial value problems, 48–51
for higher order linear initial value problems, 188
inverse Laplace transform and, 325–327
for nonlinear systems, 395–397
for power series representation of function, 522
for second order linear initial value problems,

111–112
for two-point boundary value problems, 682–690

Unit step function, 329–330, 342
Unstable equilibrium point, 424, 425

V

Vandermonde, Alexandre-Theophile, 201
Variable(s)
dependent, 3, 4, 62, 440–442
independent, 3, 4, 539–540
separation of, 558

Variation of parameters, method of, 168–173, 202–204
for first order nonhomogeneous linear system,

280–284
for higher order linear equations, 202–204

Vector field, 251–252, 405
Vector function, 215, 217
Vector-valued function, 215, 217
Velocity, 2–3
drag force and, 78–82
impact, 79, 83–85
terminal, 78–79

Verhulst, Pierre, 70
Verhulst population model, 70–74
Vibration
forced, 145, 174–175
free, 142–144, 145–150
unforced, 142–144, 145–150

Volterra, Vito, 458

W

Washington Monument, 87
Wave
standing, 617
traveling, 616–617, 624–625

Wave equation, one-dimensional, 567, 568, 616–625,
627–628

Weber’s function, 551–552
Weight function, 707
Weights in Runge-Kutta method, 494–495
Well-stirred solution, 32
Wren, Christopher, 143
Wronski, Hoene, 119
Wronskian
for first order homogeneous linear systems, 231–234.

See also Abel’s theorem
Fredholm alternative theorem and, 685–687
for higher order linear homogeneous equation,

189–191
for second order linear homogeneous equation, 118,

119–120
Wronskian determinant. SeeWronskian

Y

Young’s modulus, 211

Z

Zeeman, Pieter, 315
Zero temperature ends problem, 571–573, 580,

581–583, 584, 586–587, 590–594, 601
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∫
eu du = eu + C.

∫
ueu du = (u− 1)eu + C.

∫
uneu du = uneu − n

∫
un−1eu du+ C.

∫
sinu du = − cosu+ C.

∫
u sinu du = sinu− u cosu+ C.

∫
un sinu du = −un cosu+ n

∫
un−1 cosudu+ C.

∫
cosu du = sinu+ C.

∫
u cosu du = cosu+ u sinu+ C.

∫
un cosu du = un sinu− n

∫
un−1 sinu du+ C.

∫
sin2u du = 2u− sin 2u

4
+ C.

∫
cos2u du = 2u+ sin 2u

4
+ C.

∫
sin au sinbu du = −sin(a+ b)u

2(a+ b)
+ sin(a− b)u

2(a− b)
+ C, a2 �= b2.

∫
sin au cosbu du = −cos(a+ b)u

2(a+ b)
− cos(a− b)u

2(a− b)
+ C, a2 �= b2.

∫
cos au cosbu du = sin(a+ b)u

2(a+ b)
+ sin(a− b)u

2(a− b)
+ C, a2 �= b2.

∫
eau sinbu du = eau(a sinbu− b cosbu)

a2 + b2
+ C.

∫
eau cosbu du = eau(a cosbu+ b sinbu)

a2 + b2
+ C.

∫
tanu du = ln| secu| + C.

∫
cotu du = ln| sinu| + C.

∫
secu du = ln| secu+ tanu| + C.

∫
csc u du = −ln|csc u+ cotu| + C.

∫
ln u du = u ln u− u+ C.

∫
du

a2 + u2
= 1
a
tan−1 u

a
+ C.

∫
du

a2 − u2
= 1
2a

ln

∣∣∣∣a+ u
a− u

∣∣∣∣ + C.

∫
du√
a2 + u2

= ln
(
u+

√
a2 + u2

)
+ C.

∫
du√
a2 − u2

= sin−1 u
a

+ C.

∫
u dv = uv−

∫
v du+ C.
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(See Chapter 5 for more details.)

f (t) F(s) f (t) F(s)

1. h(t)
1
s

13. f (t− α)h(t− α) e−αsF(s)

2. tn
n!
sn+1 14. h(t− α)

e−αs

s

3. eαt
1

s− α
15. f ′

(t) sF(s) − f (0)

4. sinωt
ω

s2 + ω
2 16.

∫ t

0
f (u) du

F(s)
s

5. cosωt
s

s2 + ω
2 17. sinωt− ωt cosωt

2ω3

(s2 + ω
2
)
2

6. sinh αt
α

s2 − α
2 18. t sinωt

2ωs

(s2 + ω
2
)
2

7. cosh αt
s

s2 − α
2 19. tf (t) −F′

(s)

8. eαtf (t) F(s− α) 20.
1
t
f (t)

∫ ∞

s
F(u) du

9. eαth(t)
1

s− α
21. f (αt)

1
α
F

( s
α

)

10. eαttn
n!

(s− α)
n+1 22. ( f ∗ g)(t) F(s)G(s)

11. eαt sinωt
ω

(s− α)
2 + ω

2 23. f (t+ T) = f (t)

∫ T

0
e−stf (t)dt

1− e−sT

12. eαt cosωt
(s− α)

(s− α)
2 + ω

2 24. δ(t− t0) e−st0
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