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Preface 

I am happy for you to see this Fifth Edition of Introduction to Linear Algebra. 

This is the text for my video lectures on MIT's OpenCourseWare (ocw.mit.edu and 

also YouTube). I hope those lectures will be useful to you (maybe even enjoyable!). 

Hundreds of coll�ges and universities have chosen this textbook for their basic linear 

algebra course. A sabbatical gave me a chance to prepare two new chapters about 

probability and statistics and understanding data. Thousands of other improvements too­

probably only noticed by the author. . . Here is a new addition for students and all readers: 

Every section opens with a brief summary to explain its contents. When you 

read a new section, and when you revisit a section to review and organize 

it in your mind, those lines are a quick guide and an aid to memory. 

Another big change comes on this book's website math.mit.edu/linearalgebra. That site 

now contains solutions to the Problem Sets in the book. With unlimited space, this is 

much more flexible than printing short solutions. There are three key websites : 

ocw.mit.edu Messages come from thousands of students and faculty about linear algebra 

on this OpenCourseWare site. The 18.06 and 18.06 SC courses include video lectures of 

a complete semester of classes. Those lectures offer an independent review of the whole 

subject based on this textbook-the professor's time stays free and the student's time can 

be 2 a.m. (The reader doesn't have to be in a class at all.) Six million viewers around the 

world have seen these videos (amazing). I hope you find them helpful. 

web.mit.edu/18.06 This site has homeworks and exams (with solutions) for the current 

course as it is taught, and as far back as 1996. There are also review questions, Java demos, 

Teaching Codes, and short essays (and the video lectures). My goal is to make this book 

as useful to you as possible, with all the course material we can provide. 

math.mit.edu/linearalgebra This has become an active website. It now has Solutions 

to Exercises-with space to explain ideas. There are also new exercises from many dif­

ferent sources-practice problems, development of textbook examples, codes in MATLAB 

and Julia and Python, plus whole collections of exams (18.06 and others) for review. 

Please visit this linear algebra site. Send suggestions to linearalgebrabook@gmail.com 

V 



vi Preface 

The Fifth Edition 

The cover shows the Four Fundamental Subspaces-the row space and nullspace are 

on the left side, the column space and the nulls pace of AT are on the right. It is not usual 

to put the central ideas of the subject on display like this! When you meet those four spaces 

in Chapter 3, you will understand why that picture is so central to linear algebra. 

Those were named the Four Fundamental Subspaces in my first book, and they start 

from a matrix A. Each row of A is a vector in n-dimensional space. When the matrix 

has m rows, each column is a vector in m-dimensional space. The crucial operation in 

linear algebra is to take linear combinations of column vectors. This is exactly the result 

of a matrix-vector multiplication. Ax is a combination of the columns of A. 

When we take all combinations Ax of the column vectors, we get the column space. 

If this space includes the vector b, we can solve the equation Ax = b. 

May I call special attention to Section 1.3, where these ideas come early-with two 

specific examples. You are not expected to catch every detail of vector spaces in one day! 

But you will see the first matrices in the book, and a picture of their column spaces. 

There is even an inverse matrix and its connection to calculus. You will be learning the 

language of linear algebra in the best and most efficient way: by using it. 

Every section of the basic course ends with a large collection of review problems. They 

ask you to use the ideas in that section--the dimension of the column space, a basis for 

that space, the rank and inverse and determinant and eigenvalues of A. Many problems 

look for computations by hand on a small matrix, and they have been highly praised. The 

Challenge Problems go a step further, and sometimes deeper. Let me give four examples: 

Section 2.1: Which row exchanges of a Sudoku matrix produce another Sudoku matrix? 

Section 2.7: If Pis a permutation matrix, why is some power pk equal to I? 

Section 3.4: If Ax= band Cx = b have the same solutions for every b, does A equal C? 

Section 4.1: What conditions on the four vectors r, n, c, £ allow them to be bases for 

the row space, the nullspace, the column space, and the left nullspace of a 2 by 2 matrix? 

The Start of the Course 

The equation Ax = b uses the language of linear combinations right away. The vector 

Ax is a combination of the columns of A. The equation is asking for a combination that 

produces b. The solution vector x comes at three levels and all are important: 

1. Direct solution to find x by forward elimination and back substitution.

2. Matrix solution using the inverse matrix: x = A-
1
b (if A has an inverse).

3. Particular solution (to Ay = b) plus nullspace solution (to Az = 0).

That vector space solution x = y + z is shown on the cover of the book.
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Direct elimination is the most frequently used algorithm in scientific computing. The 
matrix A becomes triangular-then solutions come quickly. We also see bases for the four 
subspaces. But don't spend forever on practicing elimination . . . good ideas are coming. 

The speed of every new supercomputer is tested on Ax = b : pure linear algebra. But 
even a supercomputer doesn't want the inverse matrix: too slow. Inverses give the simplest 
formula x = A-lb but not the top speed. And everyone must know that determinants are 
even slower-there is no way a linear algebra course should begin with formulas for the 
determinant of an n by n matrix. Those formulas have a place, but not first place. 

Structure of the Textbook 

Already in this preface, you can see the style of the book and its goal. That goal is serious, 
to explain this beautiful and usefulpart of mathematics. You will see how the applications 
of linear algebra reinforce the key ideas. This book moves gradually and steadily from 
numbers to vectors to subspaces-each level comes naturally and everyone can get it. 

Here are 12 points about learning and teaching from this book : 

1. Chapter 1 starts with vectors and dot products. If the class has met them before,
focus quickly on linear combinations. Section 1.3 provides three independent
vectors whose combinations fill all of 3-dimensional space, and three dependent
vectors in a plane. Those two examples are the beginning of linear algebra.

2. Chapter 2 shows the row picture and the column picture of Ax = b. The heart of
linear algebra is in that connection between the rows of A and the columns of A :
the same numbers but very different pictures. Then begins the algebra of matrices:
an elimination matrix E multiplies A to produce a zero. The goal is to capture
the whole process-start with A, multiply by E's, end with U.

Elimination is seen in the beautiful form A = LU. The lower triangular L holds
the forward elimination steps, and U is upper triangular for back substitution.

3. Chapter 3 is linear algebra at the best level: subspaces. The column space contains
all linear combinations of the columns. The crucial question is: How many of those

columns are needed? The answer tells us the dimension of the column space, and
the key information about A. We reach the Fundamental Theorem of Linear Algebra.

4. With more equations than unknowns, it is almost sure that Ax = b has no solution.
We cannot throw out every measurement that is close but not perfectly exact!
When we solve by least squares, the key will be the matrix AT A. This wonderful
matrix appears everywhere in applied mathematics, when A is rectangular.

5. Determinants give formulas for all that has come before-Cramer's Rule,
inverse matrices, volumes inn dimensions. We don't need those formulas to com­
pute. They slow us down. But det A = 0 tells when a matrix is singular : this is
the key to eigenvalues.
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6. Section 6 .1 explains eigenvalues for 2 by 2 matrices. Many courses want to see
eigenvalues early. It is completely reasonable to come here directly from Chapter 3,
because the determinant is easy for a 2 by 2 matrix. The key equation is Ax= >.x.

Eigenvalues and eigenvectors are an astonishing way to understand a square matrix.
They are not for Ax = b, they are for dynamic equations like du/ dt = Au.
The idea is always the same: follow the eigenvectors. In those special directions,
A acts like a single number (the eigenvalue>.) and the problem is one-dimensional.

An essential highlight of Chapter 6 is diagonalizing a symmetric matrix.
When all the eigenvalues are positive, the matrix is "positive definite". This key
idea connects the whole course-positive pivots and determinants and eigenvalues
and energy. I work hard to reach this point in the book and to explain it by examples.

7. Chapter 7 is new. It introduces singular values and singular vectors. They separate
all martices into simple pieces, ranked in order of their importance. You will see
one way to compress an image. Especially you can analyze a matrix full of data.

8. Chapter 8 explains linear transformations. This is geometry without axes, algebra
with no coordinates. When we choose a basis, we reach the best possible matrix.

9. Chapter 9 moves from real numbers and vectors to complex vectors and matrices.
The Fourier matrix F is the most important complex matrix we will ever see. And
the Fast Fourier Transform (multiplying quickly by F and p-1) is revolutionary.

10. Chapter 10 is full of applications, more than any single course could need:

10.1 Graphs and Networks-leading to the edge-node matrix for Kirchhoff's Laws

10.2 Matrices in Engineering-differential equations parallel to matrix equations

10.3 Markov Matrices-as in Google's PageRank algorithm

10.4 Linear Programming-a new requirement x 2'. 0 and minimization of the cost

10.5 Fourier Series-linear algebra for functions and digital signal processing

10.6 Computer Graphics-matrices move and rotate and compress images

10.7 Linear Algebra in Cryptography-this new section was fun to write. The Hill
Cipher is not too secure. It uses modular arithmetic: integers from O to p - 1. 
Multiplication gives 4 x 5 = 1 (mod 19). For decoding this gives 4- 1 

= 5. 

11. How should computing be included in a linear algebra course? It can open a new
understanding of matrices-every class will find a balance. MATLAB and Maple and
Mathematica are powerful in different ways. Julia and Python are free and directly
accessible on the Web. Those newer languages are powerful too !

Basic commands begin in Chapter 2. Then Chapter 11 moves toward professional al­
gorithms.You can upload and download codes for this course on the website.

12. Chapter 12 on Probability and Statistics is new, with truly important applications.
When random variables are not independent we get covariance matrices. Fortunately
they are symmetric positive definite. The linear algebra in Chapter 6 is needed now.
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The Variety of Linear Algebra 

Calculus is mostly about one special operation (the derivative) and its inverse (the integral). 

Of course I admit that calculus could be important .... But so many applications of math­

ematics are discrete rather than continuous, digital rather than analog. The century of data 

has begun! You will find a light-hearted essay called "Too Much Calculus" on my website. 

The truth is that vectors and matrices have become the language to know. 

Part of that language is the wonderful variety of matrices. Let me give three examples: 

Symmetric matrix Orthogonal matrix Triangular matrix 

-1
2

-1
0

0
-1

2
-1 ol l

1 

0 1 1
-� 2 �

1
-1

1
-1

1
1

-1
-1 -�1 l� � � �1-1 0 0 1 1 

1 0 0 0 1 

A key goal is learning to "read" a matrix. You need to see the meaning in the numbers. 

This is really the essence of mathematics-patterns and their meaning. 

I have used italics and boldface to pick out the key words on each page. I know there 

are times when you want to read quickly, looking for the important lines. 

May I end with this thought for professors. You might feel that the direction is right, 

and wonder if your students are ready. Just give them a chance! Literally thousands of 

students have written to me, frequently with suggestions and surprisingly often with thanks. 

They know this course has a purpose, because the professor and the book are on their side. 

Linear algebra is a fantastic subject, enjoy it. 

Help With This Book 

The greatest encouragement of all is the feeling that you are doing something worthwhile 

with your life. Hundreds of generous readers have sent ideas and examples and corrections 

(and favorite matrices) that appear in this book. Thank you all. 

One person has helped with every word in this book. He is Ashley C. Fernandes, who 

prepared the Jb.T]3X files. It is now six books that he has allowed me to write and rewrite, 

aiming for accuracy and also for life. Working with friends is a happy way to live. 

Friends inside and outside the MIT math department have been wonderful. Alan 

Edelman for Julia and much more, Alex Townsend for the flag examples in 7.1, and 

Peter Kempthorne for the finance example in 7.3: those stand out. Don Spickler's website 

on cryptography is simply excellent. I thank Jon Bloom, Jack Dongarra, Hilary Finucane, 

Pavel Grinfeld, Randy LeVeque, David Vogan, Liang Wang, and Karen Willcox. 

The "eigenfaces" in 7.3 came from Matthew Turk and Jeff Jauregui. And the big step 

to singular values was accelerated by Raj Rao's great course at Michigan. 

This book owes so much to my happy sabbatical in Oxford. Thank you, Nick Trefethen 

and everyone. Especially you the reader! Best wishes in your work. 
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Background of the Author 

This is my 9th textbook on linear algebra, and I hesitate to write about myself. It is the 
mathematics that is important, and the reader. The next paragraphs add something brief 
and personal, as a way to say that textbooks are written by people. 

I was born in Chicago and went to school in Washington and Cincinnati and St. Louis. 
My college was MIT (and my linear algebra course was extremely abstract). After that 
came Oxford and UCLA, then back to MIT for a very long time. I don't know how many 
thousands of students have taken 18.06 (more than 6 million when you include the videos 
on ocw.mit.edu). The time for a fresh approach was right, because this fantastic subject 
was only revealed to math majors-we needed to open linear algebra to the world. 

I am so grateful for a life of teaching mathematics, more than I could possibly tell you. 

Gilbert Strang 

PS I hope the next book (2018 ?) will include Learning from Data. This subject is grow­
ing quickly, especially "deep learning". By knowing a function on a training set of old data, 
we approximate the function on new data. The approximation only uses one simple non­
linear function f(x) = max(0, x). It is n matrix multiplications that we optimize to make 
the learning deep: X1 = f(A1x + b1), X2 = f(A2x1 + b2), ... , Xn = f(AnXn-1 + bn )­
Those are n -1 hidden layers between the input x and the output Xn-which approximates 
F ( x) on the training set. 

THE MATRIX ALPHABET 

A Any Matrix p Permutation Matrix 

B Basis Matrix p Projection Matrix 

C Cofactor Matrix Q Orthogonal Matrix 

D Diagonal Matrix R Upper Triangular Matrix 

E Elimination Matrix R Reduced Echelon Matrix 

F Fourier Matrix s Symmetric Matrix 

H Hadamard Matrix T Linear Transformation 

I Identity Matrix u Upper Triangular Matrix

J Jordan Matrix u Left Singular Vectors

K Stiffness Matrix V Right Singular Vectors

L Lower Triangular Matrix X Eigenvector Matrix

M Markov Matrix A Eigenvalue Matrix

N Nullspace Matrix :E Singular Value Matrix



Chapter 1 

Introduction to Vectors 

The heart of linear algebra is in two operations-both with vectors. We add vectors to get
v + w. We multiply them by numbers c and d to get cv and dw. Combining those two
operations (adding cv to dw) gives the linear combination cv + dw. 

Linear combination 

Example v + w = [ � ] + [ � ] [ ! ] is the combination with c = d = l

Linear combinations are all-important in this subject! Sometimes we want one partic­
ular combination, the specific choice c = 2 and d = l that produces cv + dw = ( 4, 5).
Other times we want all the combinations of v and w (coming from all c and d). 

The vectors cv lie along a line. When w is not on that line, the combinations cv + dw

fill the whole two-dimensional plane. Starting from four vectors u, v, w, z in four­
dimensional space, their combinations cu + dv + ew + f z are likely to fill the space­
but not always. The vectors and their combinations could lie in a plane or on a line.

Chapter 1 explains these central ideas, on which everything builds. We start with two­
dimensional vectors and three-dimensional vectors, which are reasonable to draw. Then
we move into higher dimensions. The really impressive feature of linear algebra is how
smoothly it takes that step into n-dimensional space. Your mental picture stays completely
correct, even if drawing a ten-dimensional vector is impossible. 

This is where the book is going (into n-dimensional space). The first steps are the
operations in Sections 1.1 and 1.2. Then Section 1.3 outlines three fundamental ideas. 

1.1 Vector addition v + w and linear combinations cv + dw.

1.2 The dot product v · w of two vectors and the length 11 v 11 = �-

1.3 Matrices A, linear equations Ax = b, solutions x = A - I b. 

1 
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1.1 Vectors and Linear Combinations 

1 3v + 5w is a typical linear combination cv + dw of the vectors v and w. 

2 For v = [ � ] and w = [ � ] that combination is 3 [ � ] + 5 [ � ] = [ � ! �� ] = [ �� 
] .

3 The vector [ � ] = [ � ] + [ � ] goes across to x = 2 and up to y = 3 in the xy plane.

4 The combinations c [ � ] + d [ � ] fill the whole xy plane. They produce every [ : ] .

5 The comb;nations c [ t ] +d [ ! ] fill a plane ill xyz space. Same plan doc [ t l · [ ! ] · 
C + 2d = 1

6 But c+ 3d = 0 
c+4d = 0 

has no solut;on because ;,s rights;de [ � ] ;, not on that plane. 

"You can't add apples and oranges." In a strange way, this is the reason for vectors. 
We have two separate numbers v1 and v2. That pair produces a two-dimensional vector v: 

Column vector v v1 = first component of v 
v2 = second component of v 

We write v as a column, not as a row. The main point so far is to have a single letter v 
(in boldface italic) for this pair of numbers v1 and v2 (in lightface italic).

Even if we don't add v1 to v2, we do add vectors. The first components of v and w 
stay separate from the second components: 

VECTOR 
ADDITION v = [ �� ] and w = [ :� ] [ 

V1 + W1 ] add to v + w = +V2 W2 

Subtraction follows the same idea: The components of v -ware v1 - w1 and v2 - w2. 
The other basic operation is scalar multiplication. Vectors can be multiplied by 2 or by 

-1 or by any number c. To find 2v, multiply each component of v by 2:

SCALAR 
MULTIPLICATION 2v = = V + V -V = [ 

2v1 ] [ -vi ]2v2 -v2 

The components of cv are cv1 and cv2. The number c is called a "scalar". 
Notice that the sum of -v and v is the zero vector. This is 0, which is not the same as 

the number zero! The vector O has components O and 0. Forgive me for hammering away 
at the difference between a vector and its components. Linear algebra is built on these 
operations v + w and cv and dw-adding vectors and multiplying by scalars.
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Linear Combinations 

Now we combine addition with scalar multiplication to produce a "linear combination"

of v and w. Multiply v by c and multiply w by d. Then add cv + dw. 

The sum of cv and dw is a linear combination cv + dw. 

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv:

lv + lw
lv- lw
0v+0w 

cv+0w 

sum of vectors in Figure 1.1 a 
difference of vectors in Figure 1.1 b
zero vector 

vector cv in the direction of v

The zero vector is always a possible combination (its coefficients are zero). Every time we
see a "space" of vectors, that zero vector will be included. This big view, taking all the
combinations of v and w, is linear algebra at work. 

The figures show how you can visualize vectors. For algebra, we just need the com­
ponents (like 4 and 2). That vector v is represented by an arrow. The arrow goes v1 = 4
units to the right and v2 = 2 units up. It ends at the point whose x, y coordinates are 4, 2.
This point is another representation of the vector-so we have three ways to describe v: 

Represent vector v Two numbers Arrow from (0, 0) Point in the plane

We add using the numbers. We visualize v + w using arrows:
Vector addition (head to tail) At the end of v,place the start of w.

V = [ �]

4

� = [ �] 

��[�] 

Figure 1.1: Vector addition v + w = (3, 4) produces the diagonal of a parallelogram.
The reverse of w is -w. The linear combination on the right is v - w = (5, 0). 

We travel along v and then along w. Or we take the diagonal shortcut along v + w.

We could also go along w and then v. In other words, w + v gives the same answer as

v + w. These are different ways along the parallelogram (in this example it is a rectangle).
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Vectors in Three Dimensions 

A vector with two components corresponds to a point in the xy plane. The components of v are the coordinates of the point: x = v1 and y = v2. The arrow ends at this point ( v1, v2), when it starts from (0,0). Now we allow vectors to have three components (v1,v2,v3). The xy plane is replaced by three-dimensional xyz space. Here are typical vectors (still column vectors but with three components): 

·� Ul and w� m and v+w� m .
The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the "origin", where the xyz axes meet and the coordinates are (0, 0, 0). The arrow ends at the point with coordinates v1, v2, v3• There is a perfect match between the column vector and the 
arrow from the origin and the point where the arrow ends. The vector ( x, y) in the plane is different from ( x, y, 0) in 3-space ! 

z 
y 

2 (3,2) HJ 
X 

3 
X rn 

Figu,e 1.2, Vectorn [;] and [;] correspond to points ( x, y) and ( x, y, z). 

From now on v � [ j] is also written a, v � (1, 1, -1).

The reason for the row form (in parentheses) is to save space. But v = (l, 1, -1) is not a row vector! It is in actuality a column vector, just temporarily lying down. The row vector [ 1 1 -1] is absolutely different, even though it has the same three components. That 1 by 3 row vector is the "transpose" of the 3 by 1 column vector v.
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In three dimensions, v + w is still found a component at a time. The sum has
components V1 + w1 and v2 + w2 and V3 + W3. You see how to add vectors in 4 or 5 
or n dimensions. When w starts at the end of v, the third side is v + w. The other way 
around the parallelogram is w + v. Question: Do the four sides all lie in the same plane? 
Yes. And the sum v + w - v - w goes completely around to produce the __ vector. 

A typical linear combination of three vectors in three dimensions is u + 4v - 2w: 

Linear combination 

Multiply by 1, 4, ---:2 

Then add 

The Important Questions 

For one vector u, the only linear combinations are the multiples cu. For two vectors, 
the combinations are cu+ dv. For three vectors, the combinations are cu + dv + ew. 

Will you take the big step from one combination to all combinations? Every c and d and 
e are allowed. Suppose the vectors u, v, w are in three-dimensional space: 

1. What is the picture of all combinations cu?

2. What is the picture of all combinations cu + dv?

3. What is the picture of all combinations cu+ dv + ew?

The answers ·depend on the particular vectors u, v, and w. If they were zero vectors ( a very 
extreme case), then every combination would be zero. If they are typical nonzero vectors 
(components chosen at random), here are the three answers. This is the key to our subject: 

1. The combinations cu fill a line through (0, 0, 0).

2. The combinations cu+ dv fill a plane through (0, 0, 0).

3. The combinations cu+ dv + ew fill three-dimensional space.

The zero vector (0, 0, 0) is on the line because c can be zero. It is on the plane because c 
and d could both be zero. The line of vectors cu is infinitely long (forward and backward). 
It is the plane of all cu + dv (combining two vectors in three-dimensional space) that 
I especially ask you to think about. 

Adding all cu on one line to all dv on the other line fills in the plane in Figure 1.3. 

When we include a third vector w, the multiples ew give a third line. Suppose that 

third line is not in the plane of u and v. Then combining all ew with all cu+ dv fills up 
the whole three-dimensional space. 

This is the typical situation! Line, then plane, then space. But other possibilities exist. 
When w happens to be cu + dv, that third vector w is in the plane of the first two. 
The combinations of u, v, w will not go outside that uv plane. We do not get the full 
three-dimensional space. Please think about the special cases in Problem 1. 
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Line containing all cu 

(a) (b) 

Plane from 
allcu+dv 

Figure 1.3: (a) Line through u. (b) The plane containing the lines through u and v. 

• REVIEW OF THE KEY IDEAS •

1. A vector v in two-dimensional space has two components v1 and v2. 

2. v + w = ( v1 + w1, v2 + w2) and cv = ( cv1, cv2) are found a component at a time.

3. A linear combination of three vectors u and v and w is cu+ dv + ew.

4. Take all linear combinations of u, or u and v, or u, v, w. In three dimensions,
those combinations typically fill a line, then a plane, then the whole space R3

. 

• WORKED EXAMPLES • 

1.1 A The linear combinations of v = (l, 1, 0) and w = (0, 1, 1) fill a plane in R3
. 

Describe that plane. Find a vector that is not a combination of v and w-not on the plane. 

Solution The plane of v and w contains all combinations cv + dw. The vectors in that 
plane allow any c and d. The plane of Figure 1.3 fills in between the two lines. 

Combffiations cv + dw - e [ i ] + d [ : ] - [ + ] fill a pfane. 

Four vectors in that plane are (0,0,0) and (2,3,1) and (5,7,2) and (7r,27r,7r). 
The second component c + d is always the sum of the first and third components. 
Like most vectors, (1, 2, 3) is not in the plane, because 2 =/- 1 + 3. 

Another description of this plane through ( 0, 0, 0) is to know that n = ( 1, -1, 1) is 
perpendicular to the plane. Section 1.2 will confirm that 90° angle by testing dot products: 
v · n = 0 and w · n = 0. Perpendicular vectors have zero dot products. 
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1.1 B For v = (l, 0) and w = (0, 1), describe all points cv with (1) whole numbers c 
(2) nonnegative numbers c 2: 0. Then add all vectors dw and describe all cv + dw.

Solution 

(1) The vectors cv = (c, 0) with whole numbers c are equally spaced points along the
x axis (the direction of v). They include ( -2, 0), ( -1, 0), (0, 0), (1, 0), (2, 0).

(2) The vectors cv with c 2: 0 fill a half-line. It is the positive x axis. This half-line
starts at (0, 0) where c = 0. It includes (100, 0) and (1r, 0) but not (-100, 0).

(1') Adding all vectors dw = (0, d) puts a vertical line through those equally spaced cv. 

We have infinitely many parallel lines from (whole number c, any number d). 

(2') Adding all vectors dw puts a vertical line through every cv on the half-line. Now we 
have a half-plane. The right half of the xy plane has any x 2'. 0 and any y. 

1.1 C Find two equations for c and d so that the linear combination cv + dw equals b: 

b=[�]-
Solution In applying mathematics, many problems have two parts: 

1 Modeling part Express the problem by a set of equations. 

2 Computational part Solve those equations by a fast and accurate algorithm. 

Here we are only asked for the first part (the equations). Chapter 2 is devoted to the second 
part (the solution). Our example fits into a fundamental model for linear algebra: 

Find n numbers C1, ... , Cn so that C1 V1 + · · · + Cn Vn = b. 

For n = 2 we will find a formula for the e's. The "elimination method" in Chapter 2 
succeeds far beyond n = 1000. For n greater than 1 billion, see Chapter 11. Here n = 2: 

Vector equation 
CV +dw = b

The required equations for c and d just come from the two components separately: 

Two ordinary equations 
2c - d = l 

-c+ 2d = 0

2 1 
Each equation produces a line. The two lines cross at the solution c = 3, d = 3. Why not

see this also as a matrix equation, since that is where we are going : 

2 by 2 matrix 
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Problem Set 1.1 

Problems 1-9 are about addition of vectors and linear combinations. 

1 Describe geometrically (line, plane, or all of R 
3) all linear combinations of

2 Draw v = [ 1] and w = [ -�] and v+w and v-w in a single xy plane.

3 If v + w = [ �] and v - w = [!],compute and draw the vectors v and w.

4 From v = [ � ]  and w = [;], find the components of 3v +wand cv + dw.

5 Compute u + v +wand 2u + 2v + w. How do you know u, v, w lie in a plane?

These lie in a plane because 

w = cu + dv. Find c and d 

6 Every combination of v = ( 1 , -2, 1) and w = ( 0, 1 , -1) has components that add
to __ . Find c and d so that cv + dw = (3, 3, -6). Why is (3, 3, 6) impossible? 

7 In the xy plane mark all nine of these linear combinations:

c[�]+d[�] with c=0, 1 , 2 and d=0, 1 , 2.

8 The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum. 

9 If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them. 

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4. 

10 Which point of the cube is i + j? Which point is the vector sum of i = (1, 0, 0) and
j = (0, 1 , 0) and k = (0, 0, 1)? Describe all points (x, y, z) in the cube. 

11 Four corners of this unit cube are (0, 0, 0), (1 , 0, 0), (0, 1, 0), (0, 0, 1). What are the
other four corners? Find the coordinates of the center point of the cube. The center
points of the six faces are __ . The cube has how many edges? 

12 Review Question. In xyz space, where is the plane of all linear combinations of
i = (1 , 0, 0) and i + j = (1 , 1 , 0)? 
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k = (0, 0, 1) j + k - - - � 
/ I 

� - - - .. 

---po,}j = (0, 1, 0) 

I/ 

i = (1,0,0) 

Notice the illusion 

Is (0, 0, 0) a top or 
a bottom comer? 

Figure 1.4: Unit cube from i,j, k and twelve clock vectors. 

9 

13 (a) What is the sum V of the twelve vectors that go from the center of a clock to
the hours 1 :00, 2:00, ... , 12:00?

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00?

( c) What are the x, y components of that 2:00 vector v = ( cos 0, sin 0)?

14 Suppose the twelve vectors start from 6:00 at the bottom instead of (0, 0) at the 
center. The vector to 12:00 is doubled to (0, 2). The new twelve vectors add to __ . 

Problems 15-19 go further with linear combinations of v and w (Figure 1.Sa). 

15 Figure I.Sa shows½ v + ½ w. Mark the points¾ v +¼wand ¼ v +¼wand v + w.

16 Mark the point �v + 2w and any other combination cv + dw with c + d = l. 
Draw the line of all combinations that have c + d = l. 

17 Locate½ v +½wand� v + � w. The combinations cv + cw fill out what line? 

18 Restricted by O s cs 1 and O S d s 1, shade in all combinations cv + dw.

19 Restricted only by c :::0: 0 and d 2 0 draw the "cone" of all combinations cv + dw.

w w u 

V V 

(a) (b) 

Figure 1.5: Problems 15-19 in a plane Problems 20-25 in 3-dimensional space 
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Problems 20-25 deal with u, v, win three-dimensional space {see Figure L5b). 

20 Locate ½ u + ½ v + ½ w and ½ u + ½ w in Figure 1.5b. Challenge problem: Under
what restrictions on c, d, e, will the combinations cu + dv + ew fill in the dashed
triangle? To stay in the triangle, one requirement is c :2: 0, d :2'. 0, e :2: 0. 

21 The three sides of the dashed triangle are v - u and w - v and u - w. Their sum is
__ . Draw the head-to-tail addition around a plane triangle of (3, 1) plus ( -1, 1)
plus (-2, -2). 

22 Shade in the pyramid of combinations cu + dv + ew with c :2: 0, d :2'. 0, e :2: 0 and
c + d + e :::; 1. Mark the vector ½ ( u + v + w) as inside or outside this pyramid. 

23 If you look at all combinations of those u, v, and w, is there any vector that can't be
produced from cu+ dv + ew? Different answer if u, v, ware all in __ . 

24 Which vectors are combinations of u and v, and also combinations of v and w?

25 Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line.
Find vectors u, v, w so that their combinations cu+ dv + ew fill only a plane. 

26 What combination c [ �] + d [ ! ] produces [ 1:] ? Express this question as two

equations for the coefficients c and d in the linear combination.

Challenge Problems 

27 How many corners does a cube have in 4 dimensions? How many 3D faces?
How many edges? A typical corner is (0, 0, 1, 0). A typical edge goes to (0, 1, 0, 0).

28 Find vectors v and w so that v + w = (4, 5, 6) and v - w = (2, 5, 8). This is a
question with __ unknown numbers, and an equal number of equations to find
those numbers. 

29 Find two different combinations of the three vectors u = (1, 3) and v = (2, 7) and
w = (1, 5) that produce b = (0, 1). Slightly delicate question: If I take any three
vectors u, v, w in the plane, will there always be two different combinations that
produce b = (0, 1)? 

30 The linear combinations of v = ( a, b) and w = ( c, d) fill the plane unless __ .
Find four vectors u, v, w, z with four components each so that their combinations
cu+ dv + ew + f z produce all vectors (b1, b2, b3, b4) in four-dimensional space. 

31 Write down three equations for c, d, e so that cu+ dv + ew = b. Can you somehow
find c, d, e for this b ?

w [-n 



1.2. Lengths and Dot Products 

1.2 Lengths and Dot Products 

11 

1 The"dot product"ofv= [ �] andw= [:] isv·w=(1)(4) +(2)(5)= 4+ 10=14.
2 v = [ ! ] and w = [ -! ] are perpendicular because v · w is zero:2 4 (1)(4) + (3)(-4) + (2)(4) = 0. 
3 The length squa,-ed of v � [ ! ] is v, v � 1 + 9 + 4 � 14. The length is 11•11 � v'u.

V V 1 1 9 4 

[ 1 l 4 Then u = � = vl4 = v14 � has length I Jul I = 1. Check 14 + 14 + 14 = 1. 
V •W 

5 The angle0 betweenv andw hascos0= llvll llwll .
6 The angle between [ � ] and [ � ] has cos 0 = ( 1) tv'2) 

. That angle is 0 = 45 °.
7 All angles have I cos 0I :::; 1. So all vectors have I Iv· wl :::; I Iv! I I Jwl 1-I

The first section backed off from multiplying vectors. Now we go forward to define the "dot product" of v and w. This multiplication involves the separate products vt w1 and 
v2w2, but it doesn't stop there. Those two numbers are added to produce one number v · w.

This is the geometry section (lengths of vectors and cosines of angles between them). 

Thedotproductorinnerproductofv = (v1,v2) andw = (w1,w2) is the numberv-w : 

Example 1 The vectors v = ( 4, 2) and w = ( -1, 2) have a zero dot product: 
Dot product is zero 

Perpendicular vectors 

(1) 

In mathematics, zero is always a special number. For dot products, it means that these

two vectors are perpendicular. The angle between them is 90° . When we drew them in Figure 1. 1, we saw a rectangle (not just any parallelogram). The clearest example of perpendicular vectors is i = (1, 0) along the x axis and j = (0, 1) up they axis. Again the dot product is i · j = 0 + 0 = 0. Those vectors i and j form a right angle. 
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The dot product of v = (1, 2) and w = (3, 1) is 5. Soon v · w will reveal the angle 
between v and w (not go0 ). Please check that w ·vis also 5. 

The dot product w · v equals v · w. The order of v and w makes no difference. 

Example 2 Put a weight of 4 at the point x = -1 (left of zero) and a weight of 2 at the 
point x = 2 (right of zero). The x axis will balance on the center point (like a see-saw). 
The weights balance because the dot product is ( 4) ( -1) + ( 2) ( 2) = 0. 

This example is typical of engineering and science. The vector of weights is ( w1, w2) = 
( 4, 2). The vector of distances from the center is ( v1, v2) = (-1, 2). The weights times the 
distances, w1 v1 and w2v2, give the "moments". The equation for the see-saw to balance is
W1V1 + W2V2 = 0.

Example 3 Dot products enter in economics and business. We have three goods to buy 
and sell. Their prices are (p1, P2, p3) for each unit-this is the "price vector" p. The 
quantities we buy or sell are (q1,q2,q3)-positive when we sell, negative when we buy. 
Selling q1 units at the price p1 brings in q1p1. The total income (quantities q times prices
p) is the dot product q ·pin three dimensions:

Income = (qi, q2, q3) · (p1, P2, p3) = q1p1 + q2p2 + q3p3 = dot product.

A zero dot product means that "the books balance". Total sales equal total purchases if 
q · p = 0. Then p is perpendicular to q (in three-dimensional space). A supermarket with 
thousands of goods goes quickly into high dimensions. 

Small note: Spreadsheets have become essential in management. They compute linear 
combinations and dot products. What you see on the screen is a matrix. 

Main point For v · w, multiply each Vi times Wi. Then v · w = v1w1 + · · · + VnWn. 

Lengths and Unit Vectors 

An important case is the dot product of a vector with itself. In this case v equals w. 
When the vector is v = (1, 2, 3), the dot product with itself is v · v = llvll 2 = 14: 

Dot product v · v 
Length squared 

Instead of a goo angle between vectors we have 0° . The answer is not zero because v is not
perpendicular to itself. The dot product v · v gives the length of v squared. 

DEFINITION The length llvll of a vector vis the square root of v · v: 

length = llvll = � = (vf + v� + ... + v;)
1 12

.
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In two dimensions the length is v'vf + V§. In three dimensions it is v'vf + V§ + v�.
By the calculation above, the length of v = (1, 2, 3) is llvll = /14. 

Here llvll = � is just the ordinary length of the arrow that represents the vector.
If the components are 1 and 2, the arrow is the third side of a right triangle (Figure 1.6 ).
The Pythagoras formula a2 + b2 

= c2 connects the three sides: 12 + 22 
= llvll2.

For the length of v = (1, 2, 3) , we used the right triangle formula twice. The vector
(1, 2, 0) in the base has length v'5. This base vector is perpendicular to (0, 0, 3) that goes
straight up. So the diagonal of the box has length llvll = v5+9 = /14. 

The length of a four-dimensional vector would be v'vf + V§ + v� + v�. Thus the vec­
tor (1, 1, 1, 1) has length )12 + 12 + 12 + 12 = 2. This is the diagonal through a unit
cube in four-dimensional space. That diagonal in n dimensions has length fa. 

(0, 0, 3) - - - - - ""1 

I "
/ I 

(0, 2) (1, 2) (- - (1, 2, 3) has
V•V vf +vi+ v� length .JT4

12 + 22 
I I 

I I 

2 I I 

14 12 + 22 + 32 
I I 

(1, 0)
(0, 2, 0)

:('1,2,0)has
(1, 0, 0) length ,Js

Figure 1.6: The length VV-:V of two-dimensional and three-dimensional vectors.

The word "unit" is always indicating that some measurement equals "one". The unit
price is the price for one item. A unit cube has sides of length one. A unit circle is a circle
with radius one. Now we see the meaning of a "unit vector". 

DEFINITION A unit vector u is a vector whose length equals one. Then u · u = 1.

An example in four dimensions is u = ( ½, ½, ½, ½) . Then u · u is ¾ + ¾ + ¾ + ¾ = 1.
We divided v = (1, 1, 1, 1) by its length llvll = 2 to get this unit vector. 

Example 4 The standard unit vectors along the x and y axes are written i and j. In the
xy plane, the unit vector that makes an angle "theta" with the x axis is ( cos 0, sin 0): 

Unit vectors i = [�] and j = [�] and u = [ ��:!] . 
When 0 = 0, the horizontal vector u is i. When 0 = 90° (or � radians), the vertical
vector is j. At any angle, the components cos 0 and sin 0 produce u · u = 1 because
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cos2 0 + sin 2 0 = 1. These vectors reach out to the unit circle in Figure 1. 7. Thus cos 0 and
sin 0 are simply the coordinates of that point at angle 0 on the unit circle. 

Since (2, 2, 1) has length 3, the vector ( l, i, ½) has length l. Check that u · u 

½ + ½ + ½ = l. For a unit vector, divide any nonzero vector v by its length llvll-

Unit vector u = v I 11 v 11 is a unit vector in the same direction as v.

j = (0, 1) v=(l,1) j u = [ c�s0 ]
sm 0 

( 1 1 ) V 
-i

-j

u = 
../2 

, 
../2 

= 
M

i = (l,O)
Unit vectors 

cos 0
i 

Unit 
circle 

Figure 1.7: The coordinate vectors i and j. The unit vector u at angle 45° (left) divides
v = (1, 1) by its length llvll = \/'2. The unit vector u = ( cos 0, sin 0) is at angle 0. 

The Angle Between Two Vectors 

We stated that perpendicular vectors have v · w = 0. The dot product is zero when the
angle is go0

• To explain this, we have to connect angles to dot products. Then we show
how v · w finds the angle between any two nonzero vectors v and w. 

Right angles The dot product is v · w = 0 when v is perpendicular to w.

Proof When v and w are perpendicular, they form two sides of a right triangle.
The third side is v - w (the hypotenuse going across in Figure 1.8). The Pythagoras Law
for the sides of a right triangle is a2 

+ b2 = c2
: 

Perpendicular vectors llvll2 
+ llwll2 = llv - wll2 

Writing out the formulas for those lengths in two dimensions, this equation is

Pythagoras 

(2)

(3) 

The right side begins with vf - 2v1 w1 + wf. Then vf and wf are on both sides of the equa­
tion and they cancel, leaving -2v1 w1. Also v� and w� cancel, leaving -2v2w2.

(In three dimensions there would be -2v3w3.) Now divide by -2 to see v - w = 0: 

0 = -2v1w1 - 2v2w2 which leads to V1W1 + V2W2 = 0. (4)
Conclusion Right angles produce v · w = 0. The dot product is zero when the angle is
0 = go0

• Then cos 0 = 0. The zero vector v = 0 is perpendicular to every vector w
because O · w is always zero. 
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Now suppose v · w is not zero. It may be positive, it may be negative. The sign of
v · w immediately tells whether we are below or above a right angle. The angle is less than
go0 when v · w is positive. The angle is above go0 when v · w is negative. The right side
of Figure 1. 8 shows a typical vector v = ( 3, 1). The angle with w = ( 1, 3) is less than goo 

because v · w = 6 is positive. 

V •W = 0

.... - - -
angle with v
greater than 90 °
in this half-plane 

�v · w > 0
V 

in this half-plane

Figure 1.8: Perpendicular vectors have v · w = 0. Then llvll 2 
+ llwll 2 = llv - wll 2

. 

The borderline is where vectors are perpendicular to v. On that dividing line between
plus and minus, (1, -3) is perpendicular to (3, 1 ). The dot product is zero. 

The dot product reveals the exact angle 0. For unit vectors u and U, the sign of u · U
tells whether 0 < go0 or 0 > go0

• More than that, the dot product u · U is the cosine of
0. This remains true in n dimensions. 

Unit vectors u and U at angle 0 have u · U = cos 0. Certainly lu · UI ::::; 1.

Remember that cos 0 is never greater than 1. It is never less than -1. The dot product of
unit vectors is between -1 and 1. The cosine of 0 is revealed by u · U. 

Figure 1.9 shows this clearly when the vectors are u = (cos0,sin0) and i = (1,0).
The dot product is u · i = cos 0. That is the cosine of the angle between them. 

After rotation through any angle a, these are still unit vectors. The vector i = (1, 0)
rotates to ( cos a, sin a). The vector u rotates to ( cos /3, sin /3) with /3 = a + 0. Their
dot product is cos a cos /3 + sin a sin /3. From trigonometry this is cos(/3 - a) = cos 0. 

u = [c�s 0]
sm0 

[c�s /3] = usmf3 

[COSCJ,] _ U(.�/ sina -
�l�CI, 

0={3-a 
Figure 1.9: Unit vectors: u · U is the cosine of 0 (the angle between).
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What if v and ware not unit vectors? Divide by their lengths to get u = v/llvll and
U = w/llwll- Then the dot product of those unit vectors u and U gives cos 0. 

COSINE FORMULA If v and w are nonzero vectors then
V •W 

--- =cos0. 
llvll llwll 

(5)

Whatever the angle, this dot product of v/llvll with w/llwll never exceeds one. That
is the "Schwarz inequality" Iv· wl ::::; llvll llwll for dot products-or more correctly the
Cauchy-Schwarz-Buniakowsky inequality. It was found in France and Germany and
Russia (and maybe elsewhere-it is the most important inequality in mathematics). 

Since I cos BJ never exceeds 1, the cosine formula gives two great inequalities: 

SCHWARZ INEQUALITY 

TRIANGLE INEQUALITY 

lv·wl s:; llvll llwll

llv + wll ::::; llvll + llwll

Example 5 Find cos 0 for v = [ � ] and w = [ � ] and check both inequalities.

Solution The dot product is v · w = 4. Both v and w have length )5. The cosine is 4/5.
V •W 

cosB = 
Jjvjj Jjwjj

4 4
)5)5 5

By the Schwarz inequality, v · w = 4 is less than jjvjj llwll = 5. By the triangle inequality,
side 3 = jjv + wjj is less than side 1 + side 2. For v + w = (3, 3) the three sides are
yl8 < v5 + )5. Square this triangle inequality to get 18 < 20. 

Example 6 The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are
v' a2 + b2

. The Schwarz inequality v · w s:; I !vi 11 lwl I says that 2ab s:; a2 + b2
. 

This is more famous if we write x = a2 and y = b2
. The "geometric mean" vxfi

is not larger than the "arithmetic mean" = average ½ ( x + y).

Geometric ::::; Arithmetic a2 + b2 x + y 
ab s:; --

2
- becomes FY s:; -

2
-. 

mean mean 

Example 5 had a = 2 and b = 1. So x = 4 and y = 1. The geometric mean ,.jxfj = 2
is below the arithmetic mean ½ (1 + 4) = 2.5. 

Notes on Computing 

MATLAB, Python and Julia work directly with whole vectors, not their components.
When v and w have been defined, v + w is immediately understood. Input v and w
as rows-the prime ' transposes them to columns. 2v + 3w becomes 2 * v + 3 * w.
The result will be printed unless the line ends in a semicolon. 
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MATLAB v = [2 3 4]' ; w = [1 1 1]' ; u = 2 * v + 3 * w
The dot product v · w is a row vector times a column vector (use * instead of·) :

Instead of [;] · [ �] we more often see [ 1 2 ] [ �] or v 1 * w

17 

The length of v is known to MATLAB as norm ( v). This is sqrt ( v' * v). Then find the
cosine from the dot product v 1 * w and the angle (in radians) that has that cosine: 

Cosine formula 

The arc cosine 

cosine= v' * w/(norm (v) * norm (w))
angle = acos (cosine) 

An M-file would create a new function cosine ( v, w ). Python and Julia are open source.

• REVIEW OF THE KEY IDEAS •

1. The dot product v • w multiplies each component Vi by wi and adds all viwi. 

2. The length 11 v 11 is the square root of v · v. Then u = v / 11 v 11 is a unit vector : length 1.

3. The dot product is v · w = 0 when vectors v and w are perpendicular.

4. The cosine of 0 ( the angle between any nonzero v and w) never exceeds I:

Cosine 
V •W 

cosB = 
llvll llwll

Schwarz inequality 

• WORKED EXAMPLES • 

Iv· wl::; llvll llwll-

1.2 A For the vectors v = ( 3, 4) and w = ( 4, 3) test the Schwarz inequality on v · w
and the triangle inequality on llv + wll- Find cos0 for the angle between v and w.
Which v and w give equality Iv· wl=llvll llwll and llv + wll=llvll + llwll?

Solution The dot product is v · w = (3)(4) + (4)(3) = 24. The length of v is
llvll = v9 + 16 = 5 and also llwll = 5. The sum v + w = (7, 7) has length 7v12 < 10.

Schwarz inequality Iv· wl ::; llvll llwll is 24 < 25.

Triangle inequality llv + wll ::; llvll + llwll is 7v12 < 5 + 5.
Cosine of angle cos 0 = �: Thin angle from v = (3, 4) tow = ( 4, 3)

Equality: One vector is a multiple of the other as in w = cv. Then the angle is 0° or 180° .
In this case I cos01 = 1 and Iv· wl equals llvll llwll- If the angle is 0° , as in w = 2v, then
llv + wll=llvll + llwll (both sides give 3llvl l). This v, 2v, 3v triangle is flat! 
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1.2 B Find a unit vector u in the direction of v = (3, 4). Find a unit vector U that is 
perpendicular to u. How many possibilities for U? 

Solution For a unit vector u, divide v by its length llvll = 5. For a perpendicular vector 
V we can choose (-4, 3) since the dot product v ·Vis (3)(-4) + (4)(3) = 0. For a unit 
vector perpendicular to u, divide V by its length IIV II:

V (3 4) u = 
M 

= 
5'5 

u-U=O

The only other perpendicular unit vector would be -U = ( t, -¾). 

1.2 C Find a vector x = ( c, d) that has dot products x · r = 1 and x · s = 0 with 
two given vectors r = (2, -1) ands = (-1, 2). 

Solution Those two dot products give linear equations for c and d. Then x = ( c, d). 

X • T = l
X • S = 0

is 2c - d = l 
is - c+ 2d = 0 

The same equations as 

in Worked Example 1.1 C 

Comment on n equations for x = (x1, ... , Xn) inn-dimensional space 

Section 1.1 would start with columns v j · The goal is to produce x 1 v1 + · · · + Xn Vn = b.

This section would start from rows ri . Now the goal is to find x with x · Ti = bi . 
Soon the v's will be the columns of a matrix A, and the r's will be the rows of A.

Then the (one and only) problem will be to solve Ax = b.

Problem Set 1.2 

1 Calculate the dot products u · v and u · w and u · ( v + w) and w · v: 

V = [ !] w = [;].

2 Compute the lengths llull and llvll and llwll of those vectors. Check the Schwarz 
inequalities lu ·vi::::; llull llvll and Iv· wl ::::; llvll llwll. 

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the 
angle 0. Choose vectors a, b, c that make 0° , 90° , and 180° angles with w. 

4 For any unit vectors v and w, find the dot products (actual numbers) of 

(a) v and -v (b) v + w and v - w (c) v - 2w and v + 2w

5 Find unit vectors u1 and u2 in the directions of v = (l, 3) and w = (2, 1, 2). 
Find unit vectors U 1 and U 2 that are perpendicular to u1 and u2. 
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6 ( a ) Describe every vector w = ( w1, w2) that is perpendicular to v = ( 2, -1). 
(b) All vectors perpendicular to V = (1, 1, 1) lie on a __ in 3 dimensions.
(c) The vectors perpendicular to both (1, 1, 1) and (1, 2, 3) lie on a _ _ .

7 Find the angle 0 (from its cosine) between these pairs of vectors: 
(a) V = [�] and w = [�] (b) V [j] and w

� Hl 
(c) V = [ �] and w = [ �] (d) V = [�] and w = [=� l 

8 True or false (give a reason if true or find a counterexample if false): 
(a) If u = (1, 1, 1) is perpendicular to v and w, then vis parallel tow.
(b) If u is perpendicular to v and w, then u is perpendicular to v + 2w.
(c) If u and v are perpendicular unit vectors then llu - v/1 = ,v2. Yes!

19 

9 The slopes of the arrows from (0, 0) to (v1, v2
) 

and (w1, w2
) 

are v2/v1 and w2/w1. Suppose the product v2w2 / v1 w1 of those slopes is -1. Show that v · w = 0 andthe vectors are perpendicular. (The line y = 4x is perpendicular to y = -¼ x.) 
10 Draw arrows from (0, 0) to the points v = (1, 2) and w = (-2, 1). Multiply their slopes. That answer is a signal that v · w = 0 and the arrows are __ . 
11 If v · w is negative, what does this say about the angle between v and w? Draw a 3-dimensional vector v (an arrow), and show where to find all w's with v · w < 0.
12 With v = (1, 1) and w = (1, 5) choose a number c so that w - cv is perpendicular to v. Then find the formula for c starting from any nonzero v and w. 
13 Find nonzero vectors v and w that are perpendicular to (1, 0, 1) and to each other. 
14 Find nonzero vectors u, v, w that are perpendicular to (1, 1, 1, 1) and to each other. 
15 The geometric mean of x = 2 and y = 8 is vX'fJ = 4. The arithmetic mean is larger: ½ ( x + y) = __ . This would come in Example 6 from the Schwarz inequality for v = ( J2, VS) and w = ( VS, J2). Find cos0 for this v and w. 
16 How long is the vector v = (1, 1, ... , 1) in 9 dimensions? Find a unit vector u in the same direction as v and a unit vector w that is perpendicular to v. 
17 What are the cosines of the angles a, f3, 0 between the vector ( 1, 0, -1) and the unit vectors i, j, k along the axes? Check the formula cos2 a + cos2 f3 + cos2 0 = 1. 
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Problems 18-28 lead to the main facts about lengths and angles in triangles. 

18 The parallelogram with sides v = ( 4, 2) and w = ( -1, 2) is a rectangle. Check the 
Pythagoras formula a2 + b2 = c2 which is for right triangles only:

(length of v )2 + (length of w ) 2 
= (length of v + w ) 2

. 

19 (Rules for dot products) These equations are simple but useful: 

(1) V • W = W • V (2) U • ( V + W) = U • V + U • W (3) (CV) • W = c( V • W) 

Use (2) with u = v + w to prove llv + wll 2 = v · v + 2v · w + w · w.

20 The "Law of Cosines" comes from (v - w) · (v - w) = v · v - 2v · w + w · w:

Cosine Law llv -wll 2 = llvll 2 - 2llvll llwll cos0 + llwll 2-

Draw a triangle with sides v and w and v - w. Which of the angles is 0 ? 

21 The triangle inequality says: (length of v + w) :::; (length of v) + (length of w ). 
Problem 19 found llv + wll 2 = llvll 2 + 2v · w + llwll 2. Increase that v · w to
llvll llwll to show that II side 311 can not exceed II side 111 + II side 211: 

Triangle 

inequality llv + wll 2 :::; (llvll + llwll) 2 or llv + wll :::; llvll + llwll-

w = (w1, w2) 

v = (v1, Vz) 

22 The Schwarz inequality Iv · wl :::; llvll llwll by algebra instead of trigonometry: 

(a) Multiply out both sides of ( V1 W1 + V2 W2) 2 :::; (Vi+ V§) ( Wi + W§).

(b) Show that the difference between those two sides equals (v1w2 - v2w1) 2 .
This cannot be negative since it is a square-so the inequality is true.

23 The figure shows that cosa = vi/llvll and sina = v2/llvll- Similarly cos/3 is 
__ and sin /3 is __ . The angle 0 is /3 - a. Substitute into the trigonometry 
formula cos /3 cos a+ sin /3 sin a for cos(/3 -a) to find cos 0 = v · w /llvll llwll-
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24 One-line proofofthe inequality lu · UI $ 1 for unit vectors (u1, u2) and ( U1, U2) : 

u2 + u2 u2 + u2
lu·Ul $lu1IIU1l+lu2IIU2I$ 1

2 
1 + 2

2 
2 =l. 

Put ( u1, u2) = ( .6, .8) and (U1, U2) = ( .8, .6) in that whole line and find cos 0 .  

25 Why is I cos 01 never greater than 1 in the first place? 

26 (Recommended) Draw a parallelogram 

27 Parallelogram with two sides v and w. Show that the squared diagonal lengths llv + 
wll 2 + //v w/1 2 add to the sum of four squared 
side lengths 2llvl/ 2 + 2//wll 2

. 

28 If v = (1, 2) draw all vectors w = (x, y) in the xy plane with v · w = x + 2y = 5. 
Why do those w's lie along a line? Which is the shortest w? 

29 (Recommended) If //v/ I = 5 and I lw/ I = 3 ,  what are the smallest and largest possible 
values of I /v - w//? What are the smallest and largest possible values of v · w? 

Challenge Problems 

30 Can three vectors in the xy plane have u · v < 0 and v · w < 0 and u · w < O? 
I don't know how many vectors in xyz space can have all negative dot products. 
(Four of those vectors in the plane would certainly be impossible . .. ). 

31 Pick any numbers that add to x + y + z = 0. Find the angle between your vec­
tor v = (x, y, z) and the vector w = (z, x, y). Challenge question: Explain why 
v · w///v// 1/wll is always-½-

32 How could you prove {/xfii $ ½ ( x + y + z) ( geometric mean $ arithmetic mean) ? 

33 Find 4 perpendicular unit vectors of the form ( ± ½, ± ½, ± ½, ± ½): Choose + or -. 

34 Using v = randn(3, 1) in MATLAB, create a random unit vector u = v///vll- Using 
V = randn ( 3, 30) create 30 more random unit vectors UJ. What is the average size 
of the dot products I u · Uj I? In calculus, the average is f0,r I cos 0 I d0 / 1r = 2 / 7f. 
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1.3 Matrices 

[:

l 

4
2

6
] 1 A = is a 3 by 2 matrix: m = 3 rows and n = 2 columns. 

2 Ax -_ [ :

1 

:
2 

] [ :� ] is a combination of the columns Ax = x1 

3 The 3 components of Ax are dot products of the 3 rows of A with the vector x : 

Row at a time 

4 Equations in matrix form Ax = b : 

[ � � l [ ; ] [ � : ; ! � : : l [ �� l · 5 6 5 · 7 + 6 · 8 83 

[ � � ] [ :� ] [ b1 ] 2x1 + 5x2 = b1 
b2 

replaces 3 7 _ b X1 + X2 - 2 

5 The solution to Ax = b can be written as x = A -1 
b. But some matrices don't allow A -1

. 

This section starts with three vectors u, v, w. I will combine them using matrices. 

Three vectors 

Their linear combinations in three-dimensional space are x1 u + x2v + x3w: 

Combination 

of the vectors 

Now something important: Rewrite that combination using a matrix. The vectors u, v, w 
go into the columns of the matrix A. That matrix "multiplies" the vector ( x1, x2, x3) : 

Matrix times vector 

Combination of columns 

0 
1 

-1
(2) 

The numbers x1, x2, x3 are the components of a vector x. The matrix A times the vector x 
is the same as the combination x1 u + x2v + x3w of the three columns in equation (1). 

This is more than a definition of Ax, because the rewriting brings a crucial change 
in viewpoint. At first, the numbers x1, x2, x3 were multiplying the vectors. Now the 
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matrix is multiplying those numbers. The matrix A acts on the vector x. The output
Ax is a combination b of the columns of A. 

To see that action, I will write b1, b2, b3 for the components of Ax :

Ax = [- � � � l [ :� l [ : - X1 l [ �� l = b. (3) 
0 -1 1 X3 X3 - :1'2 b3 

The input is x and the output is b = Ax. This A is a "difference matrix" because b
contains differences of the input vector x. The top difference is x1 - x0 = x1 - 0. 

Here is an example to show differences of x = (1, 4, 9): squares in x, odd numbers in b.

(4) 

That pattern would continue for a 4 by 4 difference matrix. The next square would be 
x4 = 16. The next difference would be x4 - x3 = 16 - 9 = 7 (the next odd number).
The matrix finds all the differences 1, 3, 5, 7 at once.

Important Note: Multiplication a row at a time. You may already have learned about 
multiplying Ax, a matrix times a vector. Probably it was explained differently, using the
rows instead of the columns. The usual way takes the dot product of each row with x: 

Ax is also

dot products Ax = 

with rows 
(5) 

Those dot products are the same x1 and x2 - x1 and X3 - x2 that we wrote in equation (3).
The new way is to work with Ax a column at a time. Linear combinations are the key to
linear algebra, and the output Ax is a linear combination of the columns of A.

With numbers, you can multiply Ax by rows. With letters, columns are the good way.
Chapter 2 will repeat these rules of matrix multiplication, and explain the ideas. 

Linear Equations 

One more change in viewpoint is crucial. Up to now, the numbers x1, x2, x3 were known.
The right hand side b was not known. We found that vector of differences by multiplying 
A times x. Now we think of bas known and we look for x. 

Old question: Compute the linear combination x1 u + x2v + X3 W to find b.
New question: Which combination of u, v, w produces a particular vector b? 

This is the inverse problem-to find the input x that gives the desired output b = Ax. 
You have seen this before, as a system of linear equations for x1, x2, x3 • The right hand
sides of the equations are b1, b2, b3 . I will now solve that system Ax= b to find x1, x2, x3 : 
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X1 = b1 

Equations 

Ax=b 
Solution 

X = A- 1 b X2 = b1 + b2 (6) 

X3 =bi+ b2 + b3. 

Let me admit right away-most linear systems are not so easy to solve. In this example, 
the first equation decided x1 = b1 . Then the second equation produced x2 = b1 + b2. 
The equations can be solved in order (top to bottom) because A is a triangular matrix. 

Look at two specific choices 0, 0, 0 and 1, 3, 5 of the right sides b1, b2, b3 : 

b = [!] gives x = [i + 3 ] = [!] . 
5 1+3+5 9 

The first solution (all zeros) is more important than it looks. In words: If the output is 
b = 0, then the input must be x = 0. That statement is true for this matrix A. It is not true 
for all matrices. Our second example will show (for a different matrix C) how we can have 
Cx = 0 when C =/- 0 and x =/- 0. 

This matrix A is "invertible". From b we can recover x. We write x as A- 1 
b.

The Inverse Matrix 

Let me repeat the solution x in equation (6). A sum matrix will appear! 

Ax = bis solved by [ :: ] = [ �� + b2 ] = [ i
X3 b1 + b2 + b3 1 

(7) 

If the differences of the x's are the b's, the sums of the b's are the x's. That was true for 
the odd numbers b = (1, 3, 5) and the squares x = (1, 4, 9). It is true for all vectors. 
The sum matrix in equation (7) is the inverse A - 1 of the difference matrix A.

Example: The differences of x = (1, 2, 3) are b = (1, 1, 1). Sob= Ax and x = A- 1b: 

Equation (7) for the solution vector x = ( x1, x2, x3) tells us two important facts: 

1. For every b there is one solution to Ax = b. 2. The matrix A- 1 produces x = A- 1b.

The next chapters ask about other equations Ax = b. Is there a solution? How to find it? 

Note on calculus. Let me connect these special matrices to calculus. The vector x changes 
to a function x(t). The differences Ax become the derivative dx/dt = b(t). In the 
inverse direction, the sums A- 1 

b become the integral of b( t). Sums of differences are like

integrals of derivatives. 
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The Fundamental Theorem of Calculus says : integration is the inverse of differentiation . 

Ax = b and x = A - 1 b 
dx r

t

dt 
=band x(t) = 

Jo 
bdt. (8) 

The differences of squares 0, 1, 4, 9 are odd numbers 1, 3, 5. The derivative of x(t) = t2

is 2t. A perfect analogy would have produced the even numbers b = 2, 4, 6 at times 
t = 1, 2, 3. But differences are not the same as derivatives, and our matrix A produces not 
2t but 2t - 1 :  

Backward x(t) - x(t - 1) = t2 
- (t - 1)2 = t2 

- (t2 
- 2t + 1) = 2t - l. (9) 

The Problem Set will follow up to show that "forward differences" produce 2t + l. 
The best choice (not always seen in calculus courses) is a centered difference that uses 
x(t + 1) - x(t - 1). Divide that .6.x by the distance .6.t from t - 1 to t+ 1, which is 2: 

Centered difference of x ( t) = t2 
(t + 1) 2 

- (t - 1) 2 

------- = 2t exactly. 
2 

(10) 

Difference matrices are great. Centered is the best. Our second example is not invertible.

Cyclic Differences 

This example keeps the same columns u and v but changes w to a new vector w*:

Second example 

Now the linear combinations of u, v, w* lead to a cyclic difference matrix C: 

Cyclic [ 
X1 - X3 l
X2 - X1 = b. 

X3 - X2 

( 11) 

This matrix C is not triangular. It is not so simple to solve for x when we are given b. 

Actually it is impossible to find the solution to Cx = b, because the three equations either 
have infinitely many solutions (sometimes) or else no solution (usually): 

Cx=O 

Infinitely 
manyx 

[ 
X1 - X3 l [ 0 l [ X1 l [ C l 
x2 - x1 = 0 is solved by all vectors x2 c 

�-� 0 � C 

. (12) 

Every constant vector like x = (3, 3, 3) has zero differences when we go cyclically. The 
undetermined constant c is exactly like the + C that we add to integrals. The cyclic dif­
ferences cycle around to x1 - x3 in the first component, instead of starting from x0 = 0. 
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The more likely possibility for Cx = bis no solution x at all: 

Cx=b [ 

X1 -X3 l 
X2 -X1 
X3 -X2 

Left sides add to 0 
Right sides add to 9 
No solution x1, x2, X3 

(13) 

Look at this example geometrically. No combination of u, v, and w* will produce the 
vector b = (1, 3, 5). The combinations don't fill the whole three-dimensional space. 
The right sides must have b1 + b2 + b3 = 0 to allow a solution to Cx = b, because 
the left sides x1 -X3, x2 - x1, and X3 - x2 always add to zero. Put that in different words : 

All linear combinations x1 u + x2v + x3w* lie on the plane given by b1 + b2 + b3 = 0. 

This subject is suddenly connecting algebra with geometry. Linear combinations can fill all 
of space, or only a plane. We need a picture to show the crucial difference between u, v, w

(the first example) and u, v, w* (all in the same plane). 

3 

W= UJ 
w* 

3 

2 

U= [ -i] v= [-!] I 

u 

Figure 1.10: Independent vectors u, v, w. Dependent vectors u, v, w* in a plane. 

Independence and Dependence 

Figure 1.10 shows those column vectors, first of the matrix A and then of C. The first two 
columns u and v are the same in both pictures. If we only look at the combinations of 
those two vectors, we will get a two-dimensional plane. The key question is whether the

third vector is in that plane: 

Independence w is not in the plane of u and v.

Dependence w* is in the plane of u and v.

The important point is that the new vector w* is a linear combination of u and v: 

u+v+w* = 0 W* -_ [-0
1

1 
l = -u-v. (14)
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All three vectors u, v, w* have components adding to zero. Then all their combinations 
will have b1 + b2 + b3 = 0 (as we saw above, by adding the three equations). This is the 
equation for the plane containing all combinations of u and v. By including w* we get 
no new vectors because w* is already on that plane. 

The original w = (0, 0, 1) is not on the plane: 0 + 0 + 1 =/- 0. The combinations of 
u, v, w fill the whole three-dimensional space. We know this already, because the solution 
x = A- 1 b in equation (6) gave the right combination to produce any b. 

The two matrices A and C, with third columns wand w*, allowed me to mention two 
key words of linear algebra: independence and dependence. The first half of the course will 
develop these ideas much further-I am happy if you see them early in the two examples: 

u, v, ware independent. No combination except Ou+ Ov +Ow= 0 gives b = 0. 

u, v, w* are dependent. Other combinations like u + v + w* give b = 0. 

You can picture this in three dimensions. The three vectors lie in a plane or they don't. 
Chapter 2 has n vectors in n-dimensional space. Independence or dependence is the key 
point. The vectors go into the columns of an n by n matrix: 

Independent columns: Ax = 0 has one solution. A is an invertible matrix. 

Dependent columns: Cx = 0 has many solutions. C is a singular matrix. 

Eventually we will have n vectors in m-dimensional space. The matrix A with those n 

columns is now rectangular (m by n). Understanding Ax =bis the problem of Chapter 3. 

• REVIEW OF THE KEY IDEAS •

1. Matrix times vector: Ax = combination of the columns of A.

2. The solution to Ax = b is x = A - lb, when A is an invertible matrix.

3. The cyclic matrix C has no inverse. Its three columns lie in the same plane.
Those dependent columns add to the zero vector. Cx = 0 has many solutions.

4. This section is looking ahead to key ideas, not fully explained yet.

• WORKED EXAMPLES • 

1.3 A Change the southwest entry a31 of A (row 3, column 1) to a31 = 1:

X1 

Ax=b -X1 + X2 

X1 - X2 + X3 

Find the solution x for any b. From x = A -1 b read off the inverse matrix A - i. 
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Solution Solve the (linear triangular) Ax = b frorri top to bottom: 

first x1 = bi 

[ 
0

1
1 

0

1
_1 

0

?
1-

: [ 
b

:;
2
3

1 l
then x2 = b1 + b2 This says that x = A-1b = _ 

::- , then x 3 = b2 + b3 

This is good practice to see the columns of the inverse matrix multiplying bi , b2, and b3. 
The first column of A-1 is the solution for b = (1, 0, 0). The second column is the solution
for b = (0, 1, 0). The third column x of is the solution for Ax= b = (0, 0, 1). 

The three columns of A are still independent. They don't lie in a plane. The combi-
nations of those three columns, using the any three-
dimensional vector b = (bi , b2, b3). Those come from x = 

1.3 B This E is an elimination matrix. E has a subtraction and E-1 has an addition.

b=Ex 

The first equation is x1 = bi . The second equation is x 2 -
Rb 1 to b 2, because the elimination matrix subtracted

1 

£ 

E = [ 
1 O

J -£ 1 

= b2. The inverse will add

= [ � �] 

1.3 C Change C from a cyclic difference to a centered difference producing x 3 - :i:1: 

Cx=b (15) 

Cx = b can only be solved when b1 + b3 = .T2 - x 2 = 0. That is a plane of vectors b
in three-dimensional space. Each column of C is in the plane, the matrix has no inverse. 
So this plane contains all combinations of those columns (which are all the vectors Cx ). 

I included the zeros so you could see that this C produces "centered differences". 
Row i of Cx is Xi+l (right of center) minus Xi-1 (left of center). Here is 4 by 4:

Cx =b 
Centered 

differences 

(16) 

Surprisingly this matrix is now invertible! The first and last rows tell you :r:2 and :i:3. 
Then the middle rows give x1 and x4. It is possible to write down the inverse matrix c-

1.
But 5 by 5 will be singular (not invertible) again ... 
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Problem Set 1.3 

1 Find the linear combination 3s1 + 4s2 + 5s3 = b. Then write bas a matrix-vector 
multiplication Sx, with 3, 4, 5 in x. Compute the three dot products (row of S) • x: 

s, � rn s, � rn s, � m go into the columns of s.

2 Solve these equations Sy= b with s1, s2, s3 in the columns of S: 

S is a sum matrix. The sum of the first 5 odd numbers is 

3 Solve these three equations for Y1, Y2, y3 in terms of c1, c2, c3: 

Sy=c 

Write the solution y as a matrix A= s-
1 times the vector c. Are the columns of S

independent or dependent? 

4 Find a combination x1 w1 + x2w2 + x3w3 that gives the zero vector with x1 = 1: 

Those vectors are (independent) (dependent). The three vectors lie in a 
The matrix W with those three columns is not invertible.

5 The rows of that matrix W produce three vectors(/ write them as columns):

Linear algebra says that these vectors must also lie in a plane. There must be many 
combinations with y1 r1 + y2r2 + y3r3 = 0. Find two sets of y's.

6 Which numbers c give dependent columns so a combination of columns equals zero ? 

c c
l 

maybe 
1 5 always 
3 6 independent for c =I- 0 ? 
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7 If the columns combine into Ax = 0 then each of the rows has r · x = 0: 

The three rows also lie in a plane. Why is that plane perpendicular to x? 

8 Moving to a 4 by 4 difference equation Ax = 

b
, find the four components x1, x2, 

x3, x4. Then write this solution as x = A -1 b to find the inverse matrix :

Ax= = b. 

9 What is the cyclic 4 by 4 difference matrix C ? It will have 1 and -1 in each row and
each column. Find all solutions x = ( x1, x2 , x3 , x4) to Cx = 0. The four columns 
of C lie in a "three-dimensional hyperplane" inside four-dimensional space.

10 A forward difference matrix 6. is upper triangular: 

6.z 
= 

[

-

� 
-

� � l [ ;� l [ ;: = ;� l [ �� l = 
b
.

0 0 -1 Z3 0 - Z3 b3 

Find z1, z2, z3 from b1, b2 , b3. What is the inverse matrix in z = 6_-l b?

11 Show that the forward differences ( t + l )2 
- t2 are 2 t+ 1 = odd numbers.

As in calculus, the difference ( t + l r - tn will begin with the derivative of tn, 
which is 

12 The last lines of the Worked Example say that the 4 by 4 centered difference matrix 
in (16) is invertible. Solve Cx = (b1, b2 , b3, b4) to find its inverse in x = c-

1 b.

Challenge Problems

13 The very last words say that the 5 by 5 centered difference matrix is not invertible. 
Write down the 5 equations Cx = b. Find a combination of left sides that gives 
zero. What combination of b1, b2 , b3, b4, b5 must be zero? (The 5 columns lie on a 
"4-dimensional hyperplane" in 5-dimensional space. Hard to visualize.) 

14 If ( a, b) is a multiple of ( c, d) with abed -=f. 0, show that ( a, c) is a multiple of (b, d). 
This is surprisingly important; two columns are falling on one line. You could use 
numbers first to see how a, b, c, d are related. The question will lead to: 

If [ : ! ] has dependent rows, then it also has dependent columns.
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Solving Linear Equations 

2.1 Vectors and Linear Equations 

1 The column picture of Ax = b: a combination of n columns of A produces the vector b. 

2 This is a vector equation Ax= x1a1 + · · · + Xn an = b: the columns of A are a1, a2, ... , an. 

3 When b = 0, a combination Ax of the columns is zero: one possibility is x = (0, ... , 0). 

4 The row picture of Ax= b: m equations from m rows give m planes meeting at x. 

5 A dot product gives the equation of each plane : ( row 1) · x = b1 , ... , ( row rn) · x = b
m . 

6 When b = 0, all the planes (row i) · x = 0 go through the center point x = (0, 0, ... , 0). 

The central problem of linear algebra is to solve a system of equations. Those equations 
are linear, which means that the unknowns are only multiplied by numbers-we never see 
x times y. Our first linear system is small. But you will see how far it leads: 

Tuo equations 
Tuo unknowns 

X 2y 
3x + 2y 

1 
11 (1) 

We begin a row at a time. The first equation x - 2y = 1 produces a straight line in the 
xy plane. The point x = l, y = 0 is on the line because it solves that equation. The point 
x = 3, y = l is also on the line because 3 - 2 = 1. If we choose x = 101 we find y = 50. 

The slope of this particular line is ½, because y increases by 1 when x changes by 2. 
But slopes are important in calculus and this is linear algebra! 

Figure 2.1 will show that first line x - 2y = 1. The second line in this "row picture" 
comes from the second equation 3x + 2y = 11. You can't miss the point x = 3, y = l 
where the two lines meet. That point ( 3, 1) lies on both lines and solves both equations. 

31 
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y 
3x+2y=ll 

1 
X - 2y = 1

2 3 

3 
1 

Figure 2.1: Row picture: The point (3, 1) where the lines meet solves both equations. 

ROWS The row picture shows two lines meeting at a single point (the solution). 

Turn now to the column picture. I want to recognize the same linear system as a "vector 
equation". Instead of numbers we need to see vectors. If you separate the original system 
into its columns instead of its rows, you get a vector equation: 

Combination equals b (2) 

This has two column vectors on the left side. The problem is to find the combination of 

those vectors that equals the vector on the right. We are multiplying the first column by 
x and the second column by y, and adding. With the right choices x = 3 and y = 1 (the 
same numbers as before), this produces 3 (column 1) + 1 (column 2) = b. 

Figure 2.2 is the "column picture" of two equations in two unknowns. The first part 
shows the two separate columns, and that first column multiplied by 3. This multiplication 
by a scalar (a number) is one of the two basic operations in linear algebra: 

Scalar multiplication 

If the components of a vector v are v1 and v2, then cv has components cv1 and cv2. 
The other basic operation is vector addition. We add the first components and the 

second components separately. The vector sum is (1, 11), the desired vector b. 

Vector addition 

The right side of Figure 2.2 shows this addition. Two vectors are in black. The sum along 
the diagonal is the vector b = ( 1, 11) on the right side of the linear equations. 
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[!] = 3 (column 1)

3(column 1) + l(column 2) = b 

column2
I 

I 

I 

I 

I ' 

,,,, [f' rn
b 

33 

Figure 2.2: Column picture: A combination of columns produces the right side (1, 11).

To repeat: The left side of the vector equation is a linear combination of the columns.
The problem is to find the right coefficients x = 3 and y = l. We are combining scalar
multiplication and vector addition into one step. That step is crucially important, because
it contains both of the basic operations: Multiply by 3 and 1, then add. 

Linear combination 

Of course the solution x = 3, y = l is the same as in the row picture. I don't know
which picture you prefer! I suspect that the two intersecting lines are more familiar at first.
You may like the row picture better, but only for one day. My own preference is to combine
column vectors. It is a lot easier to see a combination of four vectors in four-dimensional
space, than to visualize how four hyperplanes might possibly meet at a point. (Even one 

hyperplane is hard enough. . . ) 
The coefficient matrix on the left side of the equations is the 2 by 2 matrix A:

Coefficient matrix [ 
1 -2 

] A= 3 2 .

This is very typical of linear algebra, to look at a matrix by rows and by columns. Its rows
give the row picture and its columns give the column picture. Same numbers, different
pictures, same equations. We combine those equations into a matrix problem Ax = b:

Matrix equation

Ax=b
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The row picture deals with the two rows of A. The column picture combines the columns. 
The numbers x = 3 and y = l go into x. Here is matrix-vector multiplication: 

Dot products with rows 

Combination of columns 
Ax=b is 

Looking ahead This chapter is going to solve n equations in n unknowns (for any n). 
I am not going at top speed, because smaller systems allow examples and pictures and a 
complete understanding. You are free to go faster, as long as matrix multiplication and 

inversion become clear. Those two ideas will be the keys to invertible matrices. 
I can list four steps to understanding elimination using matrices. 

1. Elimination goes from A to a triangular U by a sequence of matrix steps Eij .

2. The triangular system is solved by back substitution: working bottom to top.

3. In matrix language A is factored into LU = (lower triangular) (upper triangular).

4. Elimination succeeds if A is invertible. (But it may need row exchanges.)

The most-used algorithm in computational science takes those steps (MATLAB calls it lu). 

Its quickest form is backslash: x = A\ b. But linear algebra goes beyond square invertible
matrices! Form by n matrices, Ax = 0 may have many solutions. Those solutions will 
go into a vector space. The rank of A leads to the dimension of that vector space. 

All this comes in Chapter 3, and I don't want to hurry. But I must get there. 

Three Equations in Three Unknowns 

The three unknowns are x, y, z. We have three linear equations:

Ax =b 
X + 

2x +

6x 

2y +

5y +

3y +

3z 

2z 

z 

6 
4 
2 

(3) 

We look for numbers x, y, z that solve all three equations at once. Those desired numbers 
might or might not exist. For this system, they do exist. When the number of unknowns 
matches the number of equations, in this case 3 = 3, there is usually one solution. 

Before solving the problem, we visualize it both ways: 

ROW The row picture shows three planes meeting at a single point. 

COLUMN The column picture combines three columns to produce b = (6, 4, 2). 

In the row picture, each equation produces a plane in three-dimensional space. The first 
plane in Figure 2.3 comes from the first equation x + 2y + 3z = 6. That plane crosses the x 

and y and z axes at the points (6, 0, 0) and (0, 3, 0) and (0, 0, 2). Those three points solve 
the equation and they determine the whole plane. 
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The vector (x, y, z) = (0, 0, 0) does not solve x + 2y + 3z = 6. Therefore that plane
does not contain the origin. The plane x + 2y + 3z = 0 does pass through the origin, and it 
is parallel to x + 2y + 3z = 6. When the right side increases to 6, the parallel plane moves 
away from the origin. 

The second plane is given by the second equation 2x + 5y + 2z = 4. It intersects the 

first plane in a line L. The usual result of two equations in three unknowns is a line L of 
solutions. (Not if the equations were x + 2y + 3z = 6 and x + 2y + 3z = 0.) 

The third equation gives a third plane. It cuts the line L at a single point. That point 
lies on all three planes and it solves all three equations. It is harder to draw this triple 
intersection point than to imagine it. The three planes meet at the solution (which we 
haven't found yet). The column form will now show immediately why z = 2. 

L 

X 

z 

L 

planex +2y +3z=6 
plane 2x + 5y + 2z = 4 

X 

z 

L 

Solution m 
IO---+----y 

3rd plane 6x -3y + z = 2 

(0, 0, 2) is on all three planes 

Figure 2.3: Row picture: Two planes meet at a line L. Three planes meet at a point. 

The column picture starts with the vector form of the equations Ax = b: 

Combine columns (4) 

The unknowns are the coefficients x, y, z. We want to multiply the three column vectors 
by the correct numbers x, y, z to produce b = (6, 4, 2). 

Figure 2.4 shows this column picture. Linear combinations of those columns can pro­
duce any vector b! The combination that produces b = (6, 4, 2) is just 2 times the third 
column. The coefficients we need are x = 0, y = 0, and z = 2. 

The three planes in the row picture meet at that same solution point (0, 0, 2): 

Correct combination 

(x,y,z) = (0,0,2)
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m-column I

U]-column2 

2 times column 3 is b 

Figure 2.4: Column picture: Combine the columns with weights (x, y, z) = (0, 0, 2). 

The Matrix Form of the Equations 

We have three rows in the row picture and three columns in the column picture (plus the 
right side). The three rows and three columns contain nine numbers. These nine numbers 
fill a 3 by 3 matrix A: 

The "coefficient matrix" in Ax = b is 
2 

5 

-3 :] 
The capital letter A stands for all nine coefficients (in this square array). The letter 

b denotes the column vector with components 6, 4, 2. The unknown x is also a column 
vector, with components x, y, z. (We use boldface because it is a vector, x because it is 
unknown.) By rows the equations were (3), by columns they were (4), and by matrices they 
are (5): 

Matrix equation Ax = b [ � � 
6 -3 

(5) 

Basic question: What does it mean to "multiply A times x"? We can multiply by rows 
or by columns. Either way, Ax = b must be a correct statement of the three equations. 
You do the same nine multiplications either way. 

Multiplication by rows Ax comes from dot products, each row times the column x: 

[ ( row I) • x l
Ax = ( row 2) · x .

( row 3) · x 
(6)



2.1. Vectors and Linear Equations 37 

Multiplication by columns Ax is a combination of column vectors:

Ax= x (column 1)+ y (column 2)+ z (column 3). (7) 

When we substitute the solution x = (0, 0, 2), the multiplication Ax produces b: 

[ 
1 2 
2 5 
6 -3 

The dot product from the first row is (1, 2, 3) · (0, 0, 2) = 6. The other rows give dot 
products 4 and 2. This book sees Ax as a combination of the columns of A.

Example 1 Here are 3 by 3 matrices A and I = identity, with three 1 's and six O's: 

If you are a row person, the dot product of (1, 0, 0) with (4, 5, 6) is 4. If you are a column 
person, the linear combination Ax is 4 times the first column ( 1, 1, 1). In that matrix A,
the second and third columns are zero vectors. 

The other matrix I is special. It has ones on the "main diagonal". Whatever vector

this matrix multiplies, that vector is not changed. This is like multiplication by 1, but for 
matrices and vectors. The exceptional matrix in this example is the 3 by 3 identity matrix : 

always yields the multiplication Ix = x . 

Matrix Notation 

The first row of a 2 by 2 matrix contains a11 and a12. The second row contains a21 and 
a22. The first index gives the row number, so that aij is an entry in row i. The second index 
j gives the column number. But those subscripts are not very convenient on a keyboard! 
Instead of aij we type A(i,j). The entry a57 = A(5, 7) would be in row 5, column 7. 

a12 
]- [ 

A(l, 1)
a22 - A(2, 1)

A(l, 2) ]
A(2, 2) 

For an m by n matrix, the row index i goes from 1 to m. The column index j stops at n.
There are mn entries aij = A(i, j). A square matrix of order n has n2 entries. 
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Multiplication in MATLAB 

I want to express A and x and their product Ax using MATLAB commands. This is a first 
step in learning that language (and others). I begin by defining A and x. A vector x in Rn 

is an n by 1 matrix (as in this book). Enter matrices a row at a time, and use a semicolon 
to signal the end of a row. Or enter by columns and transpose by 1 

: 

A= [1 2 3; 2 5 2; 6 -3 1] 

x = [ 0 0 2 ] 1 or x = [ 0 ; 0 ; 2 ] 

Here are three ways to multiply Ax in MATLAB. In reality, A * x is the good way to do it. 
MATLAB is a high level language, and it works with matrices: 

Matrix multiplication b = A * x 

We can also pick out the first row of A (as a smaller matrix!). The notation for that 
3 by 3 submatrix is A(l, :). Here the colon symbol: keeps all columns of row 1. 

Row at a time b = [ A(l, :) * x; A(2, :) * x; A(3, :) * x] 

Each entry of b is a dot product, row times column, 1 by 3 matrix times 3 by 1 matrix. 
The other way to multiply uses the columns of A. The first column is the 3 by 1 

submatrix A(: , 1). Now the colon symbol : comes first, to keep all rows of column 1. 
This column multiplies x(l) and the other columns multiply x(2) and x(3): 

Column at a time b = A(: , 1) * x(l) +A(: , 2) * x(2) +A(: , 3) * x(3) 

I think that matrices are stored by columns. Then multiplying a column at a time will be a 
little faster. So A * x is actually executed by columns. 

Programming Languages for Mathematics and Statistics 

Here are five more important languages and their commands for the multiplication Ax : 

Julia 

Python 

R 

Mathematica 

Maple 

A*X 

dot(A, x) 
A%*%X 

A.x

A*X

julialang.org 

python.org 

r-project.org

wolfram.com/mathematica

maplesoft.com

Julia, Python, and R are free and open source languages. R is developed particularly for 
applications in statistics. Other software for statistics (SAS, JMP, and many more) 
is described on Wikipedia's Comparison of Statistical Packages. 

Mathematica and Maple allow symbolic entries a, b, x, ... and not only real numbers. 
As in MATLAB's Symbolic Toolbox, they work with symbolic expressions like x2 

- x.

The power of Mathematica is seen in Wolfram Alpha. 
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Julia combines the high productivity of SciPy or R for technical computing with per­
formance comparable to C or Fortran. It can call Python and C/Fortran libraries. But it 
doesn't rely on "vectorized" library functions for speed; Julia is designed to be fast. 

I entered juliabox.org. I clicked Sign in via Google to access my gmail space. Then 
I clicked new at the right and chose a Julia notebook. I chose 0.4.5 and not one under 
development. The Julia command line came up immediately. 

As a novice, I computed 1 + 1. To see the answer I pressed Shift+Enter. I also 
learned that 1.0 + 1.0 uses floating point, much faster for a large problem. The website 
math.mit.edu/linearalgebra will show part of the power of Julia and Python and R. 

Python is a popular general-purpose programming language. When combined with 
packages like NumPy and the SciPy library, it provides a full-featured environment for 
technical computing. NumPy has the basic linear algebra commands. Download the Ana­
conda Python distribution from https://www.continuum.io (a prepackaged collection of 
Python and most important mathematical libraries, with a graphical installer). 

R is free software for statistical computing and graphics. To download and install R, go 
to r-project.org (prefix https://www.). Commands are prompted by > and R is a  scripted 
language. It works with lists that can be shaped into vectors and matrices. 

It is important to recommend RStudio for editing and graphing (and help resources). 
When you download from www.RStudio.com, a window opens for R commands-plus 
windows for editing and managing files and plots. Tell R the form of the matrix as well as 
the list of numerical entries: 

>A= matrix (c (1, 2, 3, 2, 5, 2, 6, -3, 1), nrow = 3, byrow = TRUE)
> x = matrix ( c (0, 0, 2), nrow = 3)

To see A and x, type their names at the new prompt>. To multiply type b =A%* %x. 

Transpose by t(A) and use as.matrix to turn a vector into a matrix. 

MATLAB and Julia have a cleaner syntax for matrix computations than R. But R has 
become very familiar and widely used. The website for this book has space for proper 
demos (including the Manipulate command) of MATLAB and Julia and Python and R. 

• REVIEW OF THE KEY IDEAS •

1. The basic operations on vectors are multiplication cv and vector addition v + w.

2. Together those operations give linear combinations cv + dw.

3. Matrix-vector multiplication Ax can be computed by dot products, a row at a time.
But Ax must be understood as a combination of the columns of A.

4. Column picture: Ax = b asks for a combination of columns to produce b.

5. Row picture: Each equation in Ax = b gives a line (n = 2) or a plane (n = 3)
or a "hyperplane" (n > 3). They intersect at the solution or solutions, if any. 
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• WORKED EXAMPLES • 

2.1 A Describe the column picture of these three equations Ax = b. Solve by careful 
inspection of the columns (instead of elimination): 

2: ! �� ! �:: =� which is [� � �i [:] [=�] 
3x + 5y + 6z = -5 3 5 6 z -5 

Solution The column picture asks for a linear combination that produces b from the 
three columns of A. In this example b is minus the second column. So the solution is 
x = 0, y = -1, z = 0. To show that (0, -1, 0) is the only solution we have to know that 
"A is invertible" and "the columns are independent" and "the determinant isn't zero." 

Those words are not yet defined but the test comes from elimination: We need 
(and for this matrix we find) a full set of three nonzero pivots. 

Suppose the right side changes to b = ( 4, 4, 8) = sum of the first two columns. Then 
the good combination has x = 1, y = 1, z = 0. The solution becomes x = (1, 1, 0). 

2.1 B This system has no solution. The planes in the row picture don't meet at a point. 
. No combination of the three columns produces b. How to show this? 

x+3y+ 5z = 4 
X + 2y- 3z = 5 

2x + 5y + 2z = 8 
Idea Add (equation 1) + (equation 2) - (equation 3). The result is O = 1. This system 
cannot have a solution. We could say: The vector (1, 1, -1) is orthogonal to all three 
columns of A but not orthogonal to b.

(1) Are any two of the three planes parallel? What are the equations of planes parallel to
x+3y+5z=4?

(2) Take the dot product of each column of A ( and also b) with y = ( 1, 1, -1).
How do those dot products show that no combination of columns equals b?

(3) Find three different right side vectors b* and b** and b*** that do allow solutions.
Solution 

(1) The planes don't meet at a point, even though no two planes are parallel. For a plane
parallel to x + 3y + 5z = 4, change the "4". The parallel plane x + 3y + 5z = 0
goes through the origin (0, 0, 0). And the equation multiplied by any nonzero con­
stant still gives the same plane, as in 2x + 6y + lOz = 8.

(2) The dot product of each column of A with y = (1, 1, -1) is zero. On the right side,
y · b = (1, 1, -1) · (4, 5, 8) = 1 is not zero. Ax = bled to 0 = 1: no solution.

(3) There is a solution when b is a combination of the columns. These three choices of
b have solutions including x* = (1, 0, 0) and x** = (1, 1, 1) and x*** = (0, 0, 0):

b' � m � fiIBt column b" � m � Sllffi of columns b'" � m 
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Problem Set 2.1 

Problems 1-8 are about the row and column pictures of Ax = b. 

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of 
a box meet at the solutionx = (x,y,z) = (2,3,4): 

lx + Oy +Oz= 2 
Ox+ ly +Oz= 3 
Ox+ Oy + lz = 4 or 

[l 0
0 1 

0 0 

Draw the vectors in the column picture. Two times column 1 plus three times column 
2 plus four times column 3 equals the right side b.

2 If the equations in Problem 1 are multiplied by 2, 3, 4 they become DX= B: 

2x + Oy +Oz= 4 
Ox+ 3y +Oz= 9 
Ox + Oy + 4z = 16 

or DX� [� � �l m ui � B
Why is the row picture the same? Is the solution X the same as x? What is changed 
in the column picture-the columns or the right combination to give B?

3 If equation 1 is added to equation 2, which of these are changed: the planes in the 
row picture, the vectors in the column picture, the coefficient matrix, the solution? 
The new equations in Problem 1 would be x = 2, x + y = 5, z = 4. 

4 Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and 
x - y + z = 4. Find the point with z = 0. Find a third point halfway between. 

5 The first of these equations plus the second equals the third: 

x+ y+ z=2 

X + 2y+ Z = 3 

2x + 3y + 2z = 5. 

The first two planes meet along a line. The third plane contains that line, because 
if x, y, z satisfy the first two equations then they also __ . The equations have
infinitely many solutions (the whole line L). Find three solutions on L. 

6 Move the third plane in Problem 5 to a parallel plane 2x + 3y + 2z = 9. Now the 
three equations have no solution-why not? The first two planes meet along the line 
L, but the third plane doesn't __ that line. 

7 In Problem 5 the columns are (1, 1, 2) and (1, 2, 3) and (1, 1, 2). This is a "singular 
case" because the third column is . Find two combinations of the columns that 
give b = (2, 3, 5). This is only possible for b = (4, 6, c) if c = __ .
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8 Normally 4 "planes" in 4-dimensional space meet at a __ . Normally 4 col­
umn vectors in 4-dimensional space can combine to produce b. What combination 
of (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1) produces b = (3, 3, 3, 2)? What 4 
equations for x, y, z, t are you solving? 

Problems 9-14 are about multiplying matrices and vectors. 

9 Compute each Ax by dot products of the rows with the column vector: 

[ ; 
2 

rim [l 
1 0 

�1 rn 
(a) 3 (b) 2 1

1 2 -4 1 
0 1 

10 Compute each Ax in Problem 9 as a combination of the columns: 

How many separate multiplications for Ax, when the matrix is "3 by 3"? 

11 Find the two components of Ax by rows or by columns: 

[� �] [i] and 
[: 1�J [-n and [� 

2

i] rn.0 

12 Multiply A times x to find three components of Ax:

[! 
0 

i] [�] [l 
1

il Ul [l l] [:] 1 and 2 and 
0 3 

13 (a) A matrix with m rows and n columns multiplies a vector with __ compo-
nents to produce a vector with __ components.

(b) The planes from the m equations Ax = b are in __ -dimensional space.
The combination of the columns of A is in __ -dimensional space.

14 Write 2x + 3y + z + 5t = 8 as a matrix A (how many rows?) multiplying the column 
vector x = (x, y, z, t) to produce b. The solutions x fill a plane or "hyperplane" 
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 15-22 ask for matrices that act in special ways on vectors. 

15 (a) What is the 2 by 2 identity matrix? I times [;] equals [;].

(b) What is the 2 by 2 exchange matrix? P times [;] equals [ �] .
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16 (a) What2by2matrixRrotates every vector by90°? Rtimes [;]is[_�]­

(b) What 2 by 2 matrix R2 rotates every vector by 180°?

43 

17 Find the matrix P that multiplies (x, y, z) to give (y, z, x). Find the matrix Q that 
multiplies (y, z, x) to bring back (x, y, z). 

18 What 2 by 2 matrix E subtracts the first component from the second component? 
What 3 by 3 matrix does the same? 

E [!] rnJ and

19 What 3 by 3 matrix E multiplies (x, y, z) to give (x, y, z + x )? What matrix E- 1 

multiplies (x,y,z) to give (x,y,z - x)? If you multiply (3,4,5) by E and then 
multiply by E- 1

, the two results are ( _ _  ) and ( __ ). 

20 What 2 by 2 matrix Pi projects the vector (x, y) onto the x axis to produce (x, O)? 
What matrix A projects onto they axis to produce (0, y)? If you multiply (5, 7) 
by Pi and then multiply by P2 , you get ( __ ) and ( __ ). 

21 What 2 by 2 matrix R rotates every vector through 45°? The vector (1, 0) goes to 
( /2/2, /2/2). The vector (0, 1) goes to (-/2/2, /2/2). Those determine the 
matrix. Draw these particular vectors in the xy plane and find R.

22 Write the dot product of (1, 4, 5) and (x, y, z) as a matrix multiplication Ax. The
matrix A has one row. The solutions to Ax = 0 lie on a __ perpendicular to the
vector __ . The columns of A are only in __ -dimensional space. 

23 In MATLAB notation, write the commands that define this matrix A and the column 
vectors x and b. What command would test whether or not Ax = b?

A= [� �] b = [�] 

24 The MATLAB commands A = eye(3) and v = [ 3 : 5]' produce the 3 by 3 identity 
matrix and the column vector (3,4,5). What are the outputs from Aw and v'*v? 
(Computer not needed!) If you ask for wA, what happens? 

25 If you multiply the 4 by 4 all-ones matrix A= ones(4) and the column v = ones(4, 1 ), 
what is A*v? (Computer not needed.) If you multiply B = eye(4) + ones(4) times 
w = zeros( 4, 1) + 2*ones( 4, 1 ), what is B*w? 
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Questions 26-28 review the row and column pictures in 2, 3, and 4 dimensions. 

26 Draw the row and column pictures for the equations x - 2y = 0, x + y = 6. 

27 For two linear equations in three unknowns x, y, z, the row picture will show (2 or 3) 
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)­
dimensional space. The solutions normally lie on a __ . 

28 For four linear equations in two unknowns x and y, the row picture shows four __ . 
The column picture is in __ -dimensional space. The equations have no solution 
unless the vector on the right side is a combination of __ . 

29 Start with the vector u0 = (1, 0). Multiply again and again by the same "Markov 
matrix" A= [.8 .3; .2 .7]. The next three vectors are u1, u2, u3: 

Ui =
[·8 .3] [l] [·8]
.2 .7 0 .2 

What property do you notice for all four vectors uo, u1, u2, u3? 

Challenge Problems 

30 Continue Problem 29 from u0 = (1, 0) to u7, and also from v0 = (0, 1) to v7. 

What do you notice about u7 and v7? Here are two MATLAB codes, with while and 
for. They plot u0 to u7 and v0 to v7. You can use other languages: 

u = [1 ; OJ; A= [.8 .3 ; .2 .7);
x = u; k = [O : 7];
while size(x,2) <= 7

u = A*u; x = [x u];
end 
plot(k, x) 

v = [0; 1); A= [.8 .3; .2 .7]; 
X = v; k = [0 : 7]; 
for j = 1 : 7 

v = A*v; x = [xv]; 
end 
plot(k, x) 

The u's and v's are approaching a steady state vectors. Guess that vector and check 
that As = s. If you start withs, you stay withs. 

31 Invent a 3 by 3 magic matrix M3 with entries 1, 2, ... , 9. All rows and columns 
and diagonals add to 15. The first row could be 8, 3, 4. What is M3 times (1, 1, l)? 
What is M4 times (1, 1, 1, 1) if a 4 by 4 magic matrix has entries 1, ... , 16? 

32 Suppose u and v are the first two columns of a 3 by 3 matrix A. Which third columns 
w would make this matrix singular? Describe a typical column picture of Ax = b

in that singular case, and a typical row picture (for a random b). 
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33 Multiplication by A is a "linear transformation". Those words mean:

45 

If w is a combination of u and v, then Aw is the same combination of Au and Av.

It is this "linearity" Aw= cAu + dAv that gives us the name "linear algebra".

Problem: If u = [ � ] and v = [ � ] then Au and Av are the columns of A.

Combine w =cu+ dv. If w = [ � ] how is Aw connected to Au and Av?

34 Start from the four equations -xi+l + 2xi - Xi-l = i (for i = 1, 2, 3, 4 with
x0 = x5 = 0). Write those equations in their matrix form Ax = b. Can you solve
themforx1,x2,x3,x4? 

35 A 9 by 9 Sudoku matrix S has the numbers 1, ... , 9 in every row and every column,
and in every 3 by 3 block. For the all-ones vector x = (1, ... , 1), what is Sx? 

A better question is: Which row exchanges will produce another Sudoku matrix?

Also, which exchanges of block rows give another Sudoku matrix? 
Section 2.7 will look at all possible permutations (reorderings) of the rows. I can see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows? 
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2.2 The Idea of Elimination 

1 For rn = n = 3, there are three equations Ax= band three unknowns x1, x2, x3. 

2 The first two equations are aux1 + · · · = b1 and a21x1 + · · · = b2. 

3 Multiply the first equation by a2i/ au and subtract from the second : then x1 is eliminated.

4 The comer entry au is the first "pivot " and the ratio a2i/ au is the first "multiplier." 

5 Eliminate x1 from every remaining equation i by subtracting aii/ au times the first equation. 

6 Now the last n - 1 equations contain n - 1 unknowns x2, ... , Xn. Repeat to eliminate x2. 

7 Elimination breaks down if zero appears in the pivot. Exchanging two equations may save it. 

This chapter explains a systematic way to solve linear equations. The method is called 
"elimination", and you can see it immediately in our 2 by 2 example. Before elimination, 
x and y appear in both equations. After elimination, the first unknown x has disappeared 
from the second equation 8y = 8: 

Before 
X -2y = 1 

3x + 2y = 11 
(multiply equation 1 by 3) 
(subtract to eliminate 3x) 

The new equation 8y = 8 instantly gives y = 1. Substituting y = 1 back into the first 
equation leaves x - 2 = 1. Therefore x = 3 and the solution (x, y) == (3, 1) is complete. 

Elimination produces an upper triangular system-this is the goal. The nonzero 
coefficients 1, -2, 8 form a triangle. That system is solved from the bottom upwards­
first y = l and then x = 3. This quick process is called back substitution. It is used for 
upper triangular systems of any size, after elimination gives a triangle. 

Important point: The original equations have the same solution x = 3 and y = l. 
Figure 2.5 shows each system as a pair of lines, intersecting at the solution point (3, 1) .. 
After elimination, the lines still meet at the same point. Every step worked with correct 
equations. 

How did we get from the first pair of lines to the second pair? We subtracted 3 times 
the first equation from the second equation. The step that eliminates x from equation 2 is 
the fundamental operation in this chapter. We use it so often that we look at it closely: 

To eliminate x : Subtract a multiple of equation 1 from equation 2. 

Three times x - 2y = l gives 3x - 6y = 3. When this is subtracted from 3x + 2y = 11, 
the right side becomes 8. The main point is that 3x cancels 3x. What remains on the left 
side is 2y - (-6y) or 8y, and xis eliminated. The system became triangular. 
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Ask yourself how that multiplier C = 3 was found. The first equation contains lx. 
So the first pivot was 1 (the coefficient of x). The second equation contains 3x, so the
multiplier was 3. Then subtraction 3x - 3x produced the zero and the triangle. 

You will see the multiplier rule if I change the first equation to 4x - 8y = 4. (Same 
straight line but the first pivot becomes 4.) The correct multiplier is now C = ¾. To find the

multiplier; divide the coefficient "3" to be eliminated by the pivot "4 ": 

4x - 8 y = 4 Multiply equation 1 by ¾ 
� 

= 4 
3x + 2y = 11 Subtract from equation 2 8y = 8. 

The final system is triangular and the last equation still gives y = 1. Back substitution 
produces 4x - 8 = 4 and 4x = 12 and x = 3. We changed the numbers but not the lines 
or the solution. Divide by the pivot to find that multiplier £ = £: 

Pivot 

Multiplier 

first nonzero in the row that does the elimination 

(entry to eliminate) divided by (pivot) = ¾, 

The new second equation starts with the second pivot, which is 8. We would use it to 
eliminate y from the third equation if there were one. To solve n equations we want n 
pivots. The pivots are on the diagonal of the triangle after elimination. 

You could have solved those equations for x and y without reading this book. It is an 
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system, 
elimination might break down. By understanding the possible breakdown (when we can't 
find a full set of pivots), you will understand the whole process of elimination. 

y 

3x + 2y = 11 

2 3 

y 

After elimination 

Figure 2.5: Eliminating x makes the second line horizontal. Then 8y = 8 gives y = 1. 

Breakdown of Elimination 

Normally, elimination produces the pivots that take us to the solution. But failure is possi­
ble. At some point, the method might ask us to divide by zero. We can't do it. The process 
has to stop. There might be a way to adjust and continue-or failure may be unavoidable. 

Example 1 fails with no solution to Oy = 8. Example 2 fails with too many solutions to

Oy = 0. Example 3 succeeds by exchanging the equations. 



48 Chapter 2. Solving Linear Equations

y 

x-2y= 1

first [ 1 ]column 3 

Columns don't combine to give b = [ 1 �]

/J��[�I 
Figure 2.6: Row picture and column picture for Example 1: no solution.

Example 1 Permanent failure with no solution. Elimination makes this clear: 

X - 2y = 1
3x - 6y = 11

Subtract 3 times 
eqn. 1 from eqn. 2 

X - 2y = 1
Oy = 8.

There is no solution to Oy = 8. Normally we divide the right side 8 by the second pivot, 
but this system has no second pivot. (Zero is never allowed as a pivot!) The row and 
column pictures in Figure 2.6 show why failure was unavoidable. If there is no solution, 
elimination will discover that fact by reaching an equation like Oy = 8. 

The row picture of failure shows parallel lines-which never meet. A solution must lie 
on both lines. With no meeting point, the equations have no solution. 

The column picture shows the two columns (1, 3) and (-2, -6) in the same direction. 
All combinations of the columns lie along a line. But the column from the right side is in 
a different direction (1, 11). No combination of the columns can produce this right side­
therefore no solution. 

When we change the right side to (1, 3), failure shows as a whole line of solution points. 
Instead of no solution, next comes Example 2 with infinitely many. 

Example 2 Failure with infinitely many solutions. Change b = (1, 11) to (1, 3). 

x - 2y = 1 Subtract 3 times 
3x - 6y = 3 eqn. 1 from eqn. 2 

X - 2y = 1
Oy = 0.

Still only 
one pivot. 

Every y satisfies Oy = 0. There is really only one equation x - 2y = 1. The unknown y is
''free". After y is freely chosen, xis determined as x = 1 + 2y.

In the row picture, the parallel lines have become the same line. Every point on that 
line satisfies both equations. We have a whole line of solutions in Figure 2.7. 

In the column picture, b = (1, 3) is now the same as column 1. So we can choose x = 1 
and y = 0. We can also choose x = 0 and y = -½; column 2 times-½ equals b. Every 
(x, y) that solves the row problem also solves the column problem. 
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y 

right hand side [;]

J
lies on the line of columns

J---

Same line from both equations
Solutions all along this line 

½(second column)=-[;]

Figure 2.7: Row and column pictures for Example 2: infinitely many solutions.

Failure For n equations we do not get n pivots
Elimination leads to an equation O =/- 0 (no solution) or O = 0 (many solutions)

Success comes with n pivots. But we may have to exchange the n equations. 

Elimination can go wrong in a third way-but this time it can be fixed. Suppose the first
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation
has no term involving x, we can exchange it with an equation below: 

Example 3 Temporary failure (zero in pivot). A row exchange produces two pivots: 

Permutation 
Ox + 2y = 4 Exchange the
3x - 2y = 5 two equations

3x - 2y = 5
2y = 4.

The new system is already triangular. This small example is ready for back substitution.
The last equation gives y = 2, and then the first equation gives x = 3. The row picture is
normal (two intersecting lines). The column picture is also normal (column vectors not in
the same direction). The pivots 3 and 2 are normal-but a row exchange was required. 

Examples 1 and 2 are singular-there is no second pivot. Example 3 is nonsingular­

there is a full set of pivots and exactly one solution. Singular equations have no solution or
infinitely many solutions. Pivots must be nonzero because we have to divide by them. 

Three Equations in Three Unknowns 

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three
is enough to see the pattern. For now the matrices are square-an equal number of rows
and columns. Here is a 3 by 3 system, specially constructed so that all elimination steps
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lead to whole numbers and not fractions: 

2x+4y-2z = 2 
4x + 9y-3z = 8 (1) 

-2x - 3y + 7 z = 10

What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want 
to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by 
£21 = 2 and subtract. Subtraction removes the 4x from the second equation: 
Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4. 
We also eliminate -2x from equation 3-still using the first pivot. The quick way is to add 
equation 1 to equation 3. Then 2x cancels -2x. We do exactly that, but the rule in this book 
is to subtract rather than add. The systematic pattern has multiplier £31 = -2/2 = -1. 
Subtracting -1 times an equation is the same as adding: 
Step 2 Subtract -1 times equation 1 from equation 3. This leaves y + 5z = 12. 
The two new equations involve only y and z. The second pivot (in boldface) is 1: 

ly + lz = 4 
ly + 5z = 12 x is eliminated 

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1: 

Step3 Subtract equation 2new from 3new- The multiplier is 1/1 = 1. Then 4z = 8. 
The original Ax = b has been converted into an upper triangular U x = c: 

2x + 4y- 2z = 2 
4x+9y-3z = 8 

-2x - 3y + 7z = 10

Ax=b 
has become 

Ux=c 

2x + 4y - 2z = 2 
(2) 

The goal is achieved-forward elimination is complete from A to U. Notice the pivots

2, 1, 4 along the diagonal of U. The pivots 1 and 4 were hidden in the original system.
Elimination brought them out. U x = c is ready for back substitution, which is quick: 

(4z = 8 gives z = 2) (y + z = 4 gives y = 2) (equation 1 gives x = -1) 

The solution is (x, y, z) = (-1, 2, 2). The row picture has three planes from three equa­
tions. All the planes go through this solution. The original planes are sloping, but the last 
plane 4z = 8 after elimination is horizontal. 

The column picture shows a combination Ax of column vectors producing the right 
side b. The coefficients in that combination are -1, 2, 2 (the solution): 

Ax +1) [J] + 2 [j] + 2 [ =!] equals Ul- b. (3) 

The numbers x, y, z multiply columns 1, 2, 3 in Ax =b and also in the triangular U x = c. 
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Elimination from A to U 

For a 4 by 4 problem, or an n by n problem, elimination proceeds in the same way. Here is 
the whole idea, column by column from A to U, when Gaussian elimination succeeds. 

Column 1. Use the first equation to create zeros below the first pivot. 

Column 2. Use the new equation 2 to create zeros below the second pivot. 

Columns 3 to n. Keep going to find all n pivots and the upper triangular U. 

After column 2 we have r�:: :1 . We want
0 0 X X 

Q Q X X 

(4) 

The result of forward elimination is an upper triangular system. It is nonsingular if there 
is a full set of n pivots (never zero!). Question: Which x on the left won't be changed 
in elimination because the pivot is known? Here is a final example to show the original 
Ax = b, the triangular system U x = c, and the solution ( x, y, z) from back substitution: 

x+ y+ z=6 

x + 2y + 2z = 9 Forward 

x + 2y + 3z = 10 Forward 

x+y+z=6 

y+z=3 

z=l 

Back 

Back 

All multipliers are 1. All pivots are 1. All planes meet at the solution (3, 2, 1 ). The columns 
of A combine with 3, 2, 1 to give b = (6, 9, 10). The triangle shows Ux = c = (6, 3, 1). 

• REVIEW OF THE KEY IDEAS •

1. A linear system ( Ax = b) becomes upper triangular (U x = c) after elimination.

2. We subtract Cij times equation j from equation i, to make the ( i, j) entry zero.

. . . entry to eliminate in row i . 
3. The multipher 1s Cij = pivot in row j . Pivots can not be zero! 

4. When zero is in the pivot position, exchange rows if there is a nonzero below it.

5. The upper triangular U x = c is solved by back substitution (starting at the bottom).

6. When breakdown is permanent, Ax = b has no solution or infinitely many.
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• WORKED EXAMPLES • 

2.2 A When elimination is applied to this matrix A, what are the first and second pivots? 

What is the multiplier £21 in the first step (£21 times row 1 is subtracted from row 2)? 

A�[i � n-[�; n-[� l :]�u 
What entry in the 2, 2 position (instead of 2) would force an exchange of rows 2 and 3? 

Why is the lower left multiplier £31 = 0, subtracting zero times row 1 from row 3? 

If you change the corner entry from a33 = 2 to a33 = 1, why does elimination fail? 

Solution The first pivot is 1. The multiplier £21 is 1, 1. When 1 times row 1 is subtracted 

from row 2, the second pivot is revealed as another 1. If the original middle entry had been 

1 instead of 2, that would have forced a row exchange. 

The multiplier £31 is zero because a31 = 0. A zero at the start of a row needs no 

elimination. This A is a "band matrix". Everything stays zero outside the band. 

The last pivot is also 1. So if the original corner entry a33 = 2 reduced by 1, elimination 

would produce 0. No third pivot, elimination fails. 

2.2 B Suppose A is already a triangular matrix (upper triangular or lower triangular). 

Where do you see its pivots? When does Ax = b have exactly one solution for every b? 

Solution The pivots of a triangular matrix are already set along the main diagonal. Elim­

ination succeeds when all those numbers are nonzero. Use back substitution when A is 

upper triangular, go forward when A is lower triangular. 

2.2 C Use elimination to reach upper triangular matrices U. Solve by back substitution 

or explain why this is impossible. What are the pivots (never zero)? Exchange equations 

when necessary. The only difference is the -x in the last equation. 

Success x+y+z=7 

x+y-z=5 

x-y+z=3

Failure x+y+z=7 

x+y-z=5 

-x -y + z = 3

Solution For the first system, subtract equation 1 from equations 2 and 3 ( the multipliers 

are £21 = 1 and £31 = 1). The 2, 2 entry becomes zero, so exchange equations 2 and 3: 

Success 

x+y+z= 7 

Oy - 2z = -2 exchanges into 

-2y +Oz= -4

x+y+z= 7 

-2y +Oz= -4

-2z = -2

Then back substitution gives z = 1 and y = 2 and x = 4. The pivots are 1, -2, -2. 
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For the second system, subtract equation 1 from equation 2 as before. Add equation 1 
to equation 3. This leaves zero in the 2, 2 entry and also below: 

Failure 

x+y+z= 7

Oy- 2z = -2

Oy + 2z = 10

There is no pivot in column 2 (it was - column 1) 
A further elimination step gives Oz = 8 
The three planes don't meet 

Plane 1 meets plane 2 in a line. Plane 1 meets plane 3 in a parallel line. No solution. 

If we change the "3" in the original third equation to "-5" then elimination would lead 
to 0 = 0. There are infinitely many solutions! The three planes now meet along a whole line. 

Changing 3 to -5 moved the third plane to meet the other two. The second equation 
gives z = l. Then the first equation leaves x + y = 6. No pivot in column 2 makes y free 

(free variables can have any value). Then x = 6 - y. 

Problem Set 2.2 

Problems 1-10 are about elimination on 2 by 2 systems. 

1 What multiple £21 of equation 1 should be subtracted from equation 2? 

2x + 3y = 1 

lOx + 9y = 11. 

After elimination, write down the upper triangular system and circle the two pivots. 
The numbers 1 and 11 don't affect the pivots-use them now in back substitution. 

2 Solve the triangular system of Problem 1 by back substitution, y before x. Verify 
that x times (2, 10) plus y times (3, 9) equals (1, 11). If the right side changes to 
( 4, 44), what is the new solution? 

3 What multiple of equation 1 should be subtracted from equation 2? 

2x - 4y = 6 

-x + 5y = 0.

After this elimination step, solve the triangular system. If the right side changes to 
(-6, 0), what is the new solution? 

4 What multiple £ of equation 1 should be subtracted from equation 2 to remove e ? 

ax+by=f 

ex+ dy = g. 

The first pivot is a (assumed nonzero). Elimination produces what formula for the 
second pivot ? What is y ? The second pivot is missing when ad = be : singular. 
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5 Choose a right side which gives no solution and another right side which gives 
infinitely many solutions. What are two of those solutions? 

Singular system 
3x + 2y = 10 

6x +4y = 

6 Choose a coefficient b that makes this system singular. Then choose a right side g 
that makes it solvable. Find two solutions in that singular case. 

2x +by= 16 

4x + 8y = g. 

7 For which numbers a does elimination break down (1) permanently (2) temporarily? 

ax+ 3y = -3 

4x + 6y = 6. 

Solve for x and y after fixing the temporary breakdown by a row exchange. 

8 For which three numbers k does elimination break down? Which is fixed by a row 
exchange? In each case, is the number of solutions O or 1 or oo? 

kx + 3y = 6 

3x + ky = -6. 

9 What test on b1 and b2 decides whether these two equations allow a solution? How 
many solutions will they have? Draw the column picture for b = (1, 2) and (1, 0). 

3x -2y = b1 

6x-4y= h 

10 In the xy plane, draw the lines x + y = 5 and x + 2y = 6 and the equation y = __ 

that comes from elimination. The line 5x - 4y = c will go through the solution of 
these equations if c = _ _ . 

Problems 11-20 study elimination on 3 by 3 systems (and possible failure). 

11 (Recommended) A system of linear equations can't have exactly two solutions. Why? 

(a) If (x, y, z) and (X, Y, Z) are two solutions, what is another solution?

(b) If 25 planes meet at two points, where else do they meet?
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12 Reduce this system to upper triangular form by two row operations: 

2x + 3y + z = 8 

4x + 7y + 5z = 20 

- 2y + 2z = 0.

Circle the pivots. Solve by back substitution for z, y, x. 

13 Apply elimination (circle the pivots) and back substitution to solve 

2.T - 3y = 3 

4x - 5y + z = 7 

2x - y - 3z = 5. 

55 

List the three row operations: Subtract -� times row -� from row -�. 

14 Which number d forces a row exchange, and what is the triangular system (not sin­
gular) for that d? Which d makes this system singular (no third pivot)? 

2x + 5y + z = 0 

4x + dy + z = 2 

y - z = 3. 

15 Which number b leads later to a row exchange? Which b leads to a missing pivot? In 
that singular case find a nonzero solution x, y, z. 

x+by =0 

X - 2y - Z = 0

y + z = 0.

16 (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks
down later.

17 If rows 1 and 2 are the same, how far can you get with elimination (allowing row 
exchange)? If columns 1 and 2 are the same, which pivot is missing? 

Equal 2x - y + z = 0 
rows 2x - y + z = 0 

4x+y+z=2 

2x + 2y + z = 0 Equal 

4x + 4y + z = 0 columns 

6x + 6y + z = 2. 

18 Construct a 3 by 3 example that has 9 different coefficients on the left side, but 
rows 2 and 3 become zero in elimination. How many solutions to your system with 
b = (l, 10,100) and how many with b = (0, 0, O)? 



56 Chapter 2. Solving Linear Equations 

19 Which number q makes this system singular and which right side t gives it infinitely 
many solutions? Find the solution that has z = l. 

X + 4y - 2z = l 
X + 7y - 6z = 6 

3y + qz = t. 

20 Three planes can fail to have an intersection point, even if no planes are parallel. 
The system is singular if row 3 of A is a __ of the first two rows. Find a third 
equation that can't be solved together with x + y + z = 0 and x - 2y - z = l. 

21 Find the pivots and the solution for both systems (Ax = b and K x = b ): 

2x+ y 

X + 2y + Z 

=0 

=0 

2x - y 

-x + 2y- z

=0 

=0 

y + 2z + t = 0
z + 2t = 5 

y + 2z - t = 0
- z + 2t = 5.

22 If you extend Problem 21 following the 1, 2, 1 pattern or the -1, 2, -1 pattern, what 
is the fifth pivot? What is the nth pivot? K is my favorite matrix. 

23 If elimination leads to x + y = l and 2y = 3, find three possible original problems. 

24 For which two numbers a will elimination fail on A = [; ;_] ?

25 For which three numbers a will elimination fail to give three pivots? 

A __ [a� 
�
2 

:
3

] is singular for three values of a.

26 Look for a matrix that has row sums 4 and 8, and column sums 2 and s:

Matrix = [: ! ] a+b=4 

c+d=8 

a+c=2 

b+d=s 

The four equations are solvable only ifs = __ . Then find two different matrices 
that have the correct row and column sums. Extra credit: Write down the 4 by 4 
system Ax = b with x = ( a, b, c, d) and make A triangular by elimination. 

27 Elimination in the usual order gives what matrix U and what solution to this "lower
triangular" system? We are really solving by forward substitution:

3x = 3 
6x + 2y = 8 
9x - 2y + z = 9. 
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28 Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3 times row 
1 from the existing row 2 if the matrix A is already known. 

Challenge Problems 

29 Find experimentally the average 1st and 2nd and 3rd pivot sizes from MATLAB 's 
[L, U] = lu (rand (3)). The average size abs (U(l, 1)) is above½ because lu picks 
the largest available pivot in column 1. Here A = nmd (3) has random entries 
between O and 1. 

30 If the last corner entry is A ( 5, 5) = 11 and the last pivot of A is U ( 5, 5) = 4, what 
different entry A(5, 5) would have made A singular? 

31 Suppose elimination takes A to U without row exchanges. Then row j of U is a 
combination of which rows of A? If Ax = 0, is U x = O? If Ax = b, is U x = b?

If A starts out lower triangular, what is the upper triangular U? 

32 Start with 100 equations Ax= 0 for 100 unknowns x = (x1, ... ,x100). Suppose 
elimination reduces the 100th equation to O = 0, so the system is "singular". 

(a) Elimination takes linear combinations of the rows. So this singular system has
the singular property: Some linear combination of the 100 rows is ��.

(b) Singular systems Ax = 0 have infinitely many solutions. This means that some
linear combination of the 100 columns is

(c) Invent a 100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and the column picture of
Ax = 0. Not necessary to draw 100-dimensional space.
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2.3 Elimination Using Matrices 

1 The first step multiplies the equations Ax= b by a matrix E21 to produce E21Ax = E21b. 

2 That matrix E21 A has a zero in row 2, column 1 because x1 is eliminated from equation 2. 

3 E21 is the identity matrix (diagonal of l's ) minus the multiplier a2i/a11 in row 2, column 1. 

4 Matrix-matrix multiplication is n matrix-vector multiplications: EA = [ Ea1 . . .  Ean]. 

5 We must also multiply Eb! So Eis multiplying the augmented matrix [Ab] = [a 1 ... an b].

6 Elimination multiplies Ax= b by E21 , E31 , ... , En1, then E32 , E42 , ... , En2, and onward. 

7 The row exchange matrix is not Eij but Pij . To find Pij , exchange rows i and j of I. 

This section gives our first examples of matrix multiplication. Naturally we start with 
matrices that contain many zeros. Our goal is to see that matrices do something. E acts on 
a vector b or a matrix A to produce a new vector Eb or a new matrix EA. 

Our first examples will be "elimination matrices." They execute the elimination steps. 
Multiply the lh equation by £ij and subtract from the ith equation. (This eliminates 
Xj from equation i.) We need a lot of these simple matrices Eij , one for every nonzero 
to be eliminated below the main diagonal. 

Fortunately we won't see all these matrices Eij in later chapters. They are good exam­
ples to start with, but there are too many. They can combine into one overall matrix E that 
takes all steps at once. The neatest way is to combine all their inverses ( Eij )- 1 into one 
overall matrix L = E- 1

. Here is the purpose of the next pages. 

1. To see how each step is a matrix multiplication.

2. To assemble all those steps Eij into one elimination matrix E.

3. To see how each Eij is inverted by its inverse matrix E;/.

4. To assemble all those inverses EiJ
1 (in the right order ) into L.

The special property of L is that all the multipliers £ij fall into place. Those numbers 
are mixed up in E (forward elimination from A to U). They are perfect in L (undoing 
elimination, returning from U to A). Inverting puts the steps and their matrices E;/ in the 
opposite order and that prevents the mixup. 

This section finds the matrices Eij . Section 2.4 presents four ways to multiply matrices. 
Section 2.5 inverts every step. (For elimination matrices we can already see E;/ here.) 
Then those inverses go into L. 
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Matrices times Vectors and Ax = b 

The 3 by 3 example in the previous section has the short form Ax = b: 

4x1 + 9x2 - 3x3 = 8 is the same as 4 9 3 x2 8 
2x1+4x2 - 2x3 = 2 

[ 
2 4 -2

] [
x1

] [ 
2

] 
-2x1 - 3x2 + 7x3 = 10 -2 -3

-
7 X3 10 

(1) 

The nine numbers on the left go into the matrix A. That matrix not only sits beside x. 
A multiplies x. The rule for "A times x" is exactly chosen to yield the three equations. 
Review of A times x. A matrix times a vector gives a vector. The matrix is square when 
the number of equations (three) matches the number of unknowns (three). Our matrix is 
3 by 3. A general square matrix is n by n. Then the vector x is inn-dimensional space. 

The unknown U 
X � 

rn: l and �esom.ion U 
X � n l .

Key point: Ax = b represents the row form and also tlle column form of the equations. 

Column form (2) 

Ax is a combination of the columns of A. To compute each component of Ax, we use the 
row form of matrix multiplication. Components of Ax are dot products with rows of A. 
The short formula for that dot product with x uses "sigma notation". 

The first component of Ax above is (-1)(2) + (2)(4) + (2)(-2). 

The ith component of Ax is (row i) · x = ai1X1 + ai2X2 + · · · + ainXn· 

This is sometimes written with the sigma symbol as I:7=
1 

aijXj,

I: is an instruction to adli. Start witll j = 1 and stop with j = n. The sum 
begins with ai1X1 and ends with ain Xn, That produces the dot product (row i) · x. 

One point to repeat about matrix notation: The entry in row 1, column 1 (the top left 
corner) is au. The entry in row 1, column 3 is a13. The entry in row 3, column 1 is a31. 
(Row number comes before column number.) The word "entry" for a matrix corresponds 
to "component" for a vector. General rule: aii = A( i, j) is in row i, column j. 
Example 1 This matrix has aij = 2i + j. Then au = 3. Also a12 = 4 and a21 = 5. 
Here is Ax by rows with numbers and letters: 

[
3 4

] [
2

] = [
3·2+4·1

]5 6 1 5-2+6·1 

A row times a column gives a dot product. 

1 Einstein shortened this even more by omitting the L· The repeated j in aijXj 

automatically meant addition. He also wrote the sum as a{ Xj, Not being Einstein, we 
include the I: . 
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The Matrix Form of One Elimination Step 

Ax = b is a convenient form for the original equation. What about the elimination steps? 
In this example, 2 times the first equation is subtracted from the second equation. On 
the right side, 2 times the first component of b is subtracted from the second component. 

First step b � [ 
1
�] changcsto bncw

� Ul 
We want to do that subtraction with a matrix! The same result bnew = Eb is achieved 
when we multiply an "elimination matrix" E times b. It subtracts 2b1 from b2 : 

Theellmina.ion matrtds E � [-l 0 

1 
0 

Multiplication by E subtracts 2 times row 1 from row 2. Rows 1 and 3 stay the same: 

H
0 

1 

0 �l Ul Ul H 
0 

1 

0 

The first and third rows of E come from the identity matrix I. They don't change the first 
and third numbers (2 and 10). The new second component is the number 4 that appeared 
after the elimination step. This is b2 - 2b1 . 

It is easy to describe the "elementary matrices" or "elimination matrices" like this E.

Start with the identity matrix I. Change one of its zeros to the multiplier-£:

The identity matrix has 1 's on the diagonal and otherwise O's. Then lb = b for all b.

The elementary matrix or elimination matrix Eij has the extra nonzero entry -£ 
in the i, j position. Then Eij subtracts a multiple£ of row j from row i. 

Example 2 The matrix E31 has -£ in the 3, 1 position: 

Identity I= [�1 0� 0�] Elimination E31 = [ � 
-f

0 

1 
0 

When you multiply I times b, you get b. But E31 subtracts £ times the first component 
from the third component. With £ = 4 this example gives 9 - 4 = 5 : 

and Eb= [ � 
-4

0 

1 
0 
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What about the left side of Ax = b? Both sides will be multiplied by this E31 . 

The purpose of E31 is to produce a zero in the ( 3, 1) position of the matrix. 

The notation fits this purpose. Start with A. Apply E's to produce zeros below the 
pivots (the first Eis E21). End with a triangular U. We now look in detail at those steps. 

First a small point. The vector x stays the same. The solution x is not changed by 
elimination. (That may be more than a small point.) It is the coefficient matrix that is 
changed. When we start with Ax = b and multiply by E, the result is EAx = Eb. 
The new matrix EA is the result of multiplying E times A. 

Confession The elimination matrices Eij are great examples, but you won't see them 
later. They show how a matrix acts on rows. By taking several elimination steps, we 
will see how to multiply matrices (and the order of the E's becomes important). Products 

and inverses are especially clear for E's. It is those two ideas that the book will use. 

Matrix Multiplication 

The big question is: How do we multiply two matrices? When the first matrix is E, 

we know what to expect for EA. This particular E subtracts 2 times row 1 from row 2. 
The multiplier is £ = 2: 

0 
1 
0 

�i [ ! ! =�] [ � t -:i (with the zero). (3)

1 -2 -3 7 -2 -3 7 

This step does not change rows 1 and 3 of A. Those rows are unchanged in EA-only 
row 2 is different. Twice the first row has been subtracted from the second row. Matrix 
multiplication agrees with elimination-and the new system of equations is EAx = Eb. 

EAx is simple but it involves a subtle idea. Start with Ax = b. Multiplying both 
sides by E gives E(Ax) = Eb. With matrix multiplication, this is also (EA)x = Eb. 

The first was E times Ax, the second is EA times x. They are the same. 

Parentheses are not needed. We just write EAx. 

That rule extends to a matrix C with several column vectors. When multiplying EAC, 
you can do AC first or EA first. This is the point of an "associative law" like 3 x ( 4 x 5) = 
(3 x 4) x 5. Multiply 3 times 20, or multiply 12 times 5. Both answers are 60. That law 
seems so clear that it is hard to imagine it could be false. 

The "commutative law" 3 x 4 = 4 x 3 looks even more obvious. But EA is usually 
different from AE. When E multiplies on the right, it acts on the columns of A-not 
the rows. AE actually subtracts 2 times column 2 from column 1. So EA-/- AE .. 

Associative law is true 

Commutative law is false 

A(BC) = (AB)C 

Often AB=/=- BA 
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There is another requirement on matrix multiplication. Suppose B has only one column 
(this column is b). The matrix-matrix law for EB should agree with the matrix-vector 
law for Eb. Even more, we should be able to multiply matrices EB a column at a time:

If B has several columns b1 , b2 , b3, then the columns of EB are Eb1 , Eb2 , Eb3 . 

Matrix multiplication (4) 

This holds true for the matrix multiplication in (3). If you multiply column 3 of A by 
E, you correctly get column 3 of EA: 

H
0 
1 
0 

0�] [=327] [-2�] 
E(columnj of A)= columnj of EA.

This requirement deals with columns, while elimination is applied to rows. The next

section describes each entry of every product AB. The beauty of matrix multiplication 
is that all three approaches (rows, columns, whole matrices) come out right. 

The Matrix Pii for a Row Exchange 

To subtract row j from row i we use Eij. To exchange or "permute" those rows we use 
another matrix Pij (a permutation matrix). A row exchange is needed when zero is in the 
pivot position. Lower down, that pivot column may contain a nonzero. By exchanging the 
two rows, we have a pivot and elimination goes forward. 

What matrix P23 exchanges row 2 with row 3? We can find it by exchanging rows of 
the identity matrix J: 

Permutation matrix 

This is a row exchange matrix. Multiplying by P23 exchanges components 2 and 3 of any 
column vector. Therefore it also exchanges rows 2 and 3 of any matrix: 

[� � [] m [ i l and [� � �i [� � !] [� : !] 
0 1 0  0 6 5  0 0 3

On the right, P23 is doing what it was created for. With zero in the second pivot position 
and "6" below it, the exchange puts 6 into the pivot. 
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Matrices act. They don't just sit there. We will soon meet other permutation matrices, 
which can change the order of several rows. Rows 1, 2, 3 can be moved to 3, 1, 2. Our P23 

is one particular permutation matrix-it exchanges rows 2 and 3. 

Row Exchange Matrix Pij is the identity matrix with rows i and j reversed. 
When this "permutation matrix" Pij multiplies a matrix, it exchanges rows i and j. 

To exchange equations 1 and 3 multiply by Pi3 = [ 8 � 5] . 
1 0 0 

Usually row exchanges are not required. The odds are good that elimination uses only 
the Eij . But the Pij are ready if needed, to move a pivot up to the diagonal. 

The Augmented Matrix 

This book eventually goes far beyond elimination. Matrices have all kinds of practical 
applications, in which they are multiplied. Our best starting point was a square E times a 
square A, because we met this in elimination-and we know what answer to expect for EA. 
The next step is to allow a rectangular matrix. It still comes from our original equations, 
but now it includes the right side b.

Key idea: Elimination does the same row operations to A and to b. We can include

bas an extra column and follow it through elimination. The matrix A is enlarged or 
"augmented" by the extra column b : 

Augmented matrix [A b] = [ � 
-2 

4 -2 

9 -3 
-3

!] 
7 10 

Elimination acts on whole rows of this matrix. The left side and right side are both mul-
tiplied by E, to subtract 2 times equation 1 from equation 2. With 
happen together: 

H
0 

�] [J 
4 -2

1 9 -3 
0 -3 7 

2]
[

2 
8 - 0

10 -2

4 
1 

-3

-2

1
7

[ A b] those steps 

!] 10 

The new second row contains 0, 1, 1, 4. The new second equation is x2 + x3 = 4. Matrix
multiplication works by rows and at the same time by columns: 

ROWS Each row of E acts on [ A b] to give a row of [ EA Eb]. 

COLUMNS E acts on each column of [ A b] to give a column of [ EA Eb]. 
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Notice again that word "acts." This is essential. Matrices do something ! The matrix 
A acts on x to produce b. The matrix E operates on A to give EA. The whole process of 
elimination is a sequence of row operations, alias matrix multiplications. A goes to E21 A

which goes to E31 E21A. Finally E32E31 E21A is a triangular matrix. 
The right side is included in the augmented matrix. The end result is a triangular system 

of equations. We stop for exercises on multiplication by E, before writing down the rules 
for all matrix multiplications (including block multiplication). 

• REVIEW OF THE KEY IDEAS •

1. Ax= x1 times column 1 + · · · + Xn times column n. And (Ax); = I:?=l a;1x1.

2. Identity matrix = I, elimination matrix = E;1 using C;1, exchange matrix = P;1.

3. Multiplying Ax = b by E21 subtracts a multiple £21 of equation 1 from equation 2.
The number -£21 is the (2, 1) entry of the elimination matrix E21 . 

4. For the augmented matrix [ A b], that elimination step gives [ E21 A E21 b].

5. When A multiplies any matrix B, it multiplies each column of B separately.

• WORKED EXAMPLES • 

2.3 A What 3 by 3 matrix E21 subtracts 4 times row 1 from row 2? What matrix P32 

exchanges row 2 and row 3? If you multiply A on the right instead of the left, describe the 
results AE21 and AP32 .

Solution By doing those operations on the identity matrix I, we find 

E21 = -4 1 0[ 
1 0 0 l

and ?32 = 0 0 1 [ 
1 0 0 l 

0 0 1 0 1 0 

Multiplying by E21 on the right side will subtract 4 times column 2 from column 1. 
Multiplying by P32 on the right will exchange columns 2 and 3.

2.3 B Write down the augmented matrix [A b] with an extra column: 

X + 2y + 2z = 1
4x+8y+9z = 3 

3y + 2z = 1 

Apply E21 and then ?32 to reach a triangular system. Solve by back substitution. What 
combined matrix ?32 E21 will do both steps at once? 
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Solution E21 removes the 4 in column 1. But zero also appears in column 2:

[A b] = [ � � � � l 
0 3 2 1 

and [ 
1 2 2 

E2i[A b] = 0 0 1 
0 3 2 

Now P32 exchanges rows 2 and 3. Back substitution produces z then y and x.

P32 E21 [A b] = [ � � � � l 
0 0 1 -1 

and m [-tl 
For the matrix P32 E21 that does both steps at once, apply P32 to E21. 

One matrix 
Both steps Pe, En � exchange the rows of En � [ 

1 
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2.3 C Multiply these matrices in two ways. First, rows of A times columns of B.

Second, columns of A times rows of B. That unusual way produces two matrices that 
add to AB. How many separate ordinary multiplications are needed? 

Both ways AB= 1 5 = 7 9 

[3 4] [2 4] [10 16]

2 0 l l 4 8 

Solution Rows of A times columns of B are dot products of vectors: 

(row 1) · (column 1) = [ 3 4) [n = 10

[1 5) [
2
1]

-_ 7(row 2) · (column 1) = 

is the (1, 1) entry of AB

is the (2, 1) entry of AB

We need 6 dot products, 2 multiplications each, 12 in all (3 · 2 · 2). The same AB comes 
from columns of A times rows of B. A column times a row is a matrix. 

[
3

] 
[2 4) [4] [1

AB= 1 + 5
2 0

I I 
� 
[! 12] [4 4]

4 + 5 5 
8 0 0 
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Problem Set 2.3 

Problems 1-15 are about elimination matrices. 

1 Write down the 3 by 3 matrices that produce these elimination steps: 

(a) E21 subtracts 5 times row 1 from row 2.

(b) E32 subtracts -7 times row 2 from row 3.

(c) P exchanges rows 1 and 2, then rows 2 and 3.

2 In Problem 1, applying E21 and then E32 to b = (l, 0, 0) gives E32E21 b = __ . 
Applying E32 before E21 gives E21 E32b When E32 comes first, 
row feels no effect from row 

3 Which three matrices E21 , E31 , E32 put A into triangular form U? 

A= [ ! 
-2

1 
6 
2 

Multiply those E's to get one matrix M that does elimination: MA= U. 

4 Include b = (1, 0, 0) as a fourth column in Problem 3 to produce [ A b ]. Carry out 
the elimination steps on this augmented matrix to solve Ax = b.

5 Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot is 
__ . If you change a33 to __ , there is no third pivot. 

6 If every column of A is a multiple of (1, 1, 1), then Ax is always a multiple of 
(1, 1, 1). Do a 3 by 3 example. How many pivots are produced by elimination? 

7 Suppose E subtracts 7 times row 1 from row 3. 

(a) To invert that step you should __ 7 times row __ to row __ .

(b) What "inverse matrix" E- 1 talces that reverse step (so E- 1 E = I)? 
( c) If the reverse step is applied first ( and then E) show that E E- 1 

= I.

8 The determinant of M = [ � �] is det M = ad - be. Subtract C times row 1 
from row 2 to produce a new M*. Show that det M* = det M for every C. When 
C = e/a, the product of pivots equals the determinant: (a)(d - Cb) equals ad - be. 

9 (a) E21 subtracts row 1 from row 2 and then P23 exchanges rows 2 and 3. What 
matrix M = P23E21 does both steps at once? 

(b) P23 exchanges rows 2 and 3 and then E31 subtracts row 1 from row 3. What
matrix M = E31 P23 does both steps at once? Explain why the M's are the
same but the E's are different.
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10 (a) What 3 by 3 matrix E13 will add row 3 to row 1?

(b) What matrix adds row 1 to row 3 and at the same time row 3 to row l?

( c) What matrix adds row 1 to row 3 and then adds row 3 to row 1 ?

67 

11 Create a matrix that has au = a22 = a33 = 1 but elimination produces two negative 
pivots without row exchanges. (The first pivot is 1.) 

12 Multiply these matrices: 

[! 
0 

iW 
2 

�rn 
0 

�] r: 
0 

�rn 
2 

�] 1 5 1 1 
0 8 0 -1 0 4 

13 Explain these facts. If the third column of Bis all zero, the third column of EB is 
all zero (for any E). If the third row of Bis all zero, the third row of EB might not 
be zero. 

14 This 4 by 4 matrix will need elimination matrices E21 and E32 and E43. What are 
those matrices? 

A= r-� J -! !1
0 0 -1 2 

15 Write down the 3 by 3 matrix that has aij = 2i - 3j. This matrix has a32 = 0, but 
elimination still needs E32 to produce a zero in the 3, 2 position. Which previous 
step destroys the original zero and what is E32? 

Problems 16-23 are about creating and multiplying matrices. 

16 Write these ancient problems in a 2 by 2 matrix form Ax = band solve them: 

(a) Xis twice as old as Y and their ages add to 33.

(b) (x, y) = (2, 5) and (3, 7) lie on the line y = mx + c. Find m and c.

17 The parabola y = a+ bx+ cx2 goes through the points (x, y) = (1, 4) and (2, 8) 

and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c). 

18 Multiply these matrices in the orders EF and FE: 

Also compute E2 = EE and F3 = FF F. You can guess F100
. 
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19 Multiply these row exchange matrices in the orders PQ and QP and P2 : 

p � [ [ H l and Q � [ � [ � l 
Find another non-diagonal matrix whose square is M2 = I. 

20 (a) Suppose all columns of Bare the same. Then all columns of EB are the same,
because each one is E times

(b) Suppose all rows of B are [ 1 2 4]. Show by example that all rows of EB are
not [ 1 2 4]. It is true that those rows are _ _ .

21 If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE? 

22 The entries of A and x are aij and x j. So the first component of Ax is I: a1j x j = 
a11x1 + · · · + a1nXn, If E21 subtracts row 1 from row 2, write a formula for 

(a) the third component of Ax

(b) the (2, 1) entry of E21A
(c) the(2,l)entry ofE21(E21A)
(d) the first component of E21Ax.

23 The elimination matrix E = [-� �] subtracts 2 times row 1 of A from row 2 of A. 

The result is EA. What is the effect of E(EA)? In the opposite order AE, we are 
subtracting 2 times __ of A from __ . (Do examples.) 

Problems 24-27 include the column b in the augmented matrix [ A b]. 

24 Apply elimination to the 2 by 3 augmented matrix [ A b]. What is the triangular 
system U x = c? What is the solution x? 

25 Apply elimination to the 3 by 4 augmented matrix [ A b]. How do you know this 
system has no solution? Change the last number 6 so there is a solution. 

26 The equations Ax = b and Ax* b* have the same matrix A. What double 
augmented matrix should you use in elimination to solve both equations at once? 
Solve both of these equations by working on a 2 by 4 matrix: 

[ � �] [:] [ �] 
and 

[ � �] [ �] [ �] . 
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27 Choose the numbers a, b, c, din this augmented matrix so that there is (a) no solution
(b) infinitely many solutions.

[
1 2 3 a

l [A b] = 0 4 5 b 
0 Q d C 

Which of the numbers a, b, c, or d have no effect on the solvability?

28 If AB = I and BC = I use the associative law to prove A = C.

Challenge Problems 

29 Find the triangular matrix E that reduces "Pascal's matrix" to a smaller Pascal:

Elimination on column 1 

Which matrix M (multiplying several E's) reduces Pascal all the way to I? 
Pascal's triangular matrix is exceptional, all of its multipliers are Rij = 1. 

30 Write M = rn i l as a product of many factors A = D �] and B = [ 6 ½].

(a) What matrix E subtracts row 1 from row 2 to make row 2 of EM smaller?

(b) What matrix F subtracts row 2 of EM from row 1 to reduce row 1 of FEM?

(c) Continue E's and F's until (many E's and F's) times (M) is (A or B).

(d) E and F are the inverses of A and B ! Moving all E's and F's to the right side
will give you the desired result M = product of A's and B's.

This is possible for integer matrices M = [ � �] > 0 that have ad - be = 1.

31 Find elimination matrices E21 then E32 then E43 to change K into U: 

[ 

1 0 
-a 1 

E43 E32 E21 O -b
0 0 

o oj
0 0 

1 0 = J. 
-c 1

Apply those three steps to the identity matrix I, to multiply E43E32E21 -
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2.4 Rules for Matrix Operations 

1 Matrices A with n columns multiply matrices B with n rows : I Amxn Bnxp = Cmxp-1 

2 Each entry in AB = C is a dot product : Cij = (row i of A) · ( column j of B).

3 This rule is chosen so that AB times C equals A times BC. And (AB) x = A(B x ).

4 More ways to compute AB: (A times columns of B) (rows of A times B) (columns times rows).

5 It is not usually true that AB = BA. In most cases A doesn't commute with B.

6 Matrices can be multiplied by blocks : A= [A1 A2] times B = [ !� ] is A1 B1 + A2B2. 

I will start with basic facts. A matrix is a rectangular array of numbers or "entries". 
When A has m rows and n columns, it is an "m by n" matrix. Matrices can be added if 
their shapes are the same. They can be multiplied by any constant c. Here are examples of 
A + B and 2A, for 3 by 2 matrices : 

[� �]+[: �] [! i] and ,[i �] [� i] 
Matrices are added exactly as vectors are-one entry at a time. We could even regard a 
column vector as a matrix with only one column (son= 1). The matrix -A comes from 
multiplication by c = -1 (reversing all the signs). Adding A to -A leaves the zero matrix,
with all entries zero. All this is only common sense. 

The entry in row i and column j is called aij or A( i, j). Then entries along the first 
row are au, a12, . . .  , a1n- The lower left entry in the matrix is am1 and the lower right is 
amn· The row number i goes from 1 tom. The column number j goes from 1 ton.

Matrix addition is easy. The serious question is matrix multiplication. When can we 
multiply A times B, and what is the product AB? This section gives 4 ways to find AB.
But we cannot multiply when A and Bare 3 by 2. They don't pass the following test: 

To multiply AB: If A has n columns, B must have n rows. 

When A is 3 by 2, the matrix B can be 2 by 1 (a vector) or 2 by 2 (square) or 2 by 20. 
Every column of B is multiplied by A. I will begin matrix multiplication the dot product
way, and return to this column way: A times columns of B. Both ways follow this rule: 

Fundamental Law of Matrix Multiplication AB times C equals A times BC (1) 

The parentheses can move safely in (AB)C = A(BC). Linear algebra depends on this law. 
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Suppose A is m by n and B is n by p. We can multiply. The product AB is m by p.

(m x n)(n x p) = (m x p) [ 
m rows ] [ n rows ] [ m rows ] n columns p columns - p columns ·

A row times a column is an extreme case. Then 1 by n multiplies n by 1. The result will
be 1 by 1. That single number is the "dot product". 

In every case AB is filled with dot products. For the top corner, the (1, 1) entry of AB
is (row 1 of A) · (column 1 of B). This is the first way, and the usual way, to multiply
matrices. Take the dot product of each row of A with each column of B. 

1. The entry in row i and column j of AB is (row i of A) · ( column j of B) .

Figure 2.8 picks out the second row (i = 2) of a 4 by 5 matrix A. It picks out the third
column (j = 3) of a 5 by 6 matrix B. Their dot product goes into row 2 and column 3
of AB. The matrix AB has as many rows as A (4 rows), and as many columns as B. 

* * b1j * * *

[ "i· 
a;, l 

b2j

[· 

* 

·]
ai2 . .. 

* (AB)ii * * 

*

* 

bsj 

A is 4 by 5 Bis 5 by 6 AB is (4 x 5)(5 x 6) = 4 by 6

Figure 2.8: Here i= 2 and j =3. Then (AB)23 is (row2) · (column 3) = sum of a2kbk3·

Example 1 Square matrices can be multiplied if and only if they have the same size:

The first dot product is 1 · 2 + 1 · 3 = 5. Three more dot products give 6, 1, and 0. Each
dot product requires two multiplications-thus eight in all. 

If A and Bare n by n, so is AB. It contains n2 dot products, row of A times column of
B. Each dot product needs n multiplications, so the computation of AB uses n3 separate
multiplications. For n = 100 we multiply a million times. For n = 2 we have n3 = 8. 

Mathematicians thought until recently that AB absolutely needed 23 
= 8 multiplica­

tions. Then somebody found a way to do it with 7 (and extra additions). By breaking n by 
n matrices into 2 by 2 blocks, this idea also reduced the count to multiply large matrices. 
Instead of n3 multiplications the count has now dropped to n2 ·376. Maybe n2 is possible?
But the algorithms are so awkward that scientific computing is done the regular n3 way.
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Example 2 Suppose A is a row vector (1 by 3) and Bis a column vector (3 by 1). Then 
AB is 1 by 1 (only one entry, the dot product). On the other hand B times A (a column

times a row) is a full 3 by 3 matrix. This multiplication is allowed! 

Column times row 

(n x 1)(1 x n) = (n x n) 

A row times a column is an "inner" product-that is another name for dot product. A col­
umn times a row is an "outer" product. These are extreme cases of matrix multiplication. 

The Second and Third Ways: Rows and Columns 

In the big picture, A multiplies each column of B. The result is a column of AB. In that 
column, we are combining the columns of A. Each column of AB is a combination of

the columns of A. That is the column picture of matrix multiplication: 

2. Matrix A times every column of B

The row picture is reversed. Each row of A multiplies the whole matrix B. The result 
is a row of AB. Every row of AB is a combination of the rows of B: 

3. Every row of A times matrix B [ row i of A] = [ row i of AB ] . [�1 825 3�] 
We see row operations in elimination ( E times A). Soon we see columns in AA - 1 = I. 
The "row-column picture" has the dot products of rows with columns. Dot products are 
the usual way to multiply matrices by hand: mnp separate steps of multiply/add. 

AB= (m x n)(n x p) = (m x p) mp dot products with n steps each (2) 

The Fourth Way: Columns Multiply Rows 

There is a fourth way to multiply matrices. Not many people realize how important this is. 
I feel like a magician explaining a trick. Magicians won't do it but mathematicians try. 
The fourth way was in previous editions of this book, but I didn't emphasize it enough. 

4. Multiply columns 1 ton of A times rows 1 ton of B. Add those matrices.

Column 1 of A multiplies row 1 of B. Columns 2 and 3 multiply rows 2 and 3. Then add : 

col 2 col 3 l [ row 1 · 
· row2 · 
· row3 · 

: : ] � ( coll) (row 1 )+( col 2) (row 2)+( col 3) (,ow 3). 
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If I multiply 2 by 2 matrices this column-row way, you will see that AB is correct.

AB = [ 
a b 

] [ 
E F 

] = [ 
aE + bG aF + bH 

]c d G H cE + dG cF + dH 

Add columns of A 
AB= 

times rows of B (3) 

Column k of A multiplies row k of B. That gives a matrix (not just a number). Then you
add those matrices fork= 1, 2, ... , n to produce AB. 

If AB is (m by n) (n by p) then n matrices will be (column) (row). They are all m by p.

This uses the same mnp steps as in the dot products-but in a new order.

The Laws for Matrix Operations 

May I put on record six laws that matrices do obey, while emphasizing a rule they don't
obey? The matrices can be square or rectangular, and the laws involving A + B are all
simple and all obeyed. Here are three addition laws:

A+B=B+A 
c(A+B) = cA+cB 

A+ (B + C) = (A+ B) + C 

( commutative law)
( distributive law) 
( associative law).

Three more laws hold for multiplication, but AB = BA is not one of them:

AB =I- BA (the commutative "law" is usually broken)
A (B + C) =AB+ AC (distributive law from the left) 
(A+ B) C =AC+ BC (distributive law from the right) 

A (BC) = (AB)C (associative law for ABC ) (parentheses not needed).

When A and B are not square, AB is a different size from BA. These matrices can't be
equal-even if both multiplications are allowed. For square matrices, almost any example
shows that AB is different from BA:

AB = [ � �] [ � �] = rn �] but BA = rn �] [ � �] = [ � �] 
.

It is true that AI = I A. All square matrices commute with I and also with cl. Only these
matrices cl commute with all other matrices. 

The law A (B + C) =AB+ AC is proved a column at a time. Start with A (b + c) =
Ab + Ac for the first column. That is the key to everything-linearity. Say no more.

The law A (BC) = (AB) C means that you can multiply BC first or else AB first. 
The direct proof is sort of awkward (Problem 37) but this law is extremely useful.
We highlighted it above; it is the key to the way we multiply matrices.
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Look at the special case when A = B = C = square matrix. Then (A times A2 ) is 
equal to ( A 2 times A). The product in either order is A 3. The matrix powers AP follow the 
same rules as numbers: 

AP= AAA··· A (p factors) 

Those are the ordinary laws for exponents. A3 times A4 is A7 (seven factors). But the 
fourth power of A3 is 

A
12 (twelve A's). When p and q are zero or negative these rules still 

hold, provided A has a "-1 power" -which is the inverse matrix A - 1
. Then AO 

= I is the 
identity matrix in analogy with 2° 

= 
1. 

For a number, a - 1 is 1 / a. For a matrix, the inverse is written A -l. (It is not I/ A,
except in MATLAB.) Every number has an inverse except a = 0. To decide when A has 
an inverse is a central problem in linear algebra. Section 2.5 will start on the answer. This 
section is a Bill of Rights for matrices, to say when A and B can be multiplied and how. 

Block Matrices and Block Multiplication 

We have to say one more thing about matrices. They can be cut into blocks (which are 
smaller matrices). This often happens naturally. Here is a 4 by 6 matrix broken into blocks 
of size 2 by 2-in this example each block is just I: 

4 by 6 matrix 
2 by 2 blocks give 
2 by 3 block matrix A = 

[ � � � � � � l 

= 
[
I I I

] 
- 1-0---+-1-o---+--1-o- I I I . 
0 1 0 1 0 1 

If Bis also 4 by 6 and the block sizes match, you can add A+ Ba block at a time. 
You have seen block matrices before. The right side vector b was placed next to A

in the "augmented matrix". Then [ A b] has two blocks of different sizes. Multiplying 
by an elimination matrix gave [ EA Eb]. No problem to multiply blocks times blocks, 
when their shapes permit. 

Block multiplication If blocks of A can multiply blocks of B, then block multiplication 
of AB is allowed. Cuts between columns of A match cuts between rows of B. 

(4) 

This equation is the same as if the blocks were numbers (which are l by 1 blocks). We are 
careful to keep A's in front of B's, because BA can be different. 

Main point When matrices split into blocks, it is often simpler to see how they act. The 
block matrix of I's above is much clearer than the original 4 by 6 matrix A.
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Example 3 (Important special case) Let the blocks of A be its n columns. Let the 
blocks of B be its n rows. Then block multiplication AB adds up columns times rows:

Columns 

times 

rows [+ 
This is Rule 4 to multiply matrices. Here is a numerical example: 

(5) 

[� �] . 

Summary The usual way, rows times columns, gives four dot products (8 multiplications). 
The new way, columns times rows, gives two full matrices (the same 8 multiplications). 

Example 4 (Elimination by blocks) Suppose the first column of A contains 1, 3, 4. 
To change 3 and 4 to O and 0, multiply the pivot row by 3 and 4 and subtract. Those 
row operations are really multiplications by elimination matrices E21 and E31 : 

One at a time 

0 1 0 �] and E31 = [ � 
-4

0 1 0 �] 
The "block idea" is to do both eliminations with one matrix E. That matrix clears out the 
whole first column of A below the pivot a = l : 

E = [-� 
-4

0 1 0 0�] multiplies to give EA= [�1 X; X;] 
Using inverse matrices, a block matrix E can do elimination on a whole (block) column. 
Suppose a matrix has four blocks A, B, C, D. Watch how E eliminates C by blocks : 

Block 

elimination 

Elimination multiplies the first row [A BJ by CA- 1 (previously c/a). It subtracts from 
C to get a zero block in the first column. It subtracts from D to get S = D - CA -1 B.

This is ordinary elimination, a column at a time-using blocks. The pivot block is A.

That final block is D - CA- 1 B, just liked - cb/a. This is called the Schur complement.
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• REVIEW OF THE KEY IDEAS •

1. The (i,j) entry of AB is (row i of A)· (columnj of B).

2. An m by n matrix times an n by p matrix uses mnp separate multiplications.

3. A times BC equals AB times C (surprisingly important).

4. AB is also the sum of these n matrices : ( column j of A) times (row j of B).

5. Block multiplication is allowed when the block shapes match correctly.

6. Block elimination produces the Schur complement D - CA - 1 B.

• WORKED EXAMPLES • 

2.4 A A graph or a network has n nodes. Its adjacency matrix S is n by n. This is a 
0-1 matrix with Bij = l when nodes i and j are connected by an edge.

1 

Adjacency matrix 

l I
1 1 

n2 3 
Square and symmetric 

S= 
0 1 

for undirected graphs 1 0 
Edges go both ways 1 1 

4 

The matrix S2 has a useful interpretation. (S2 )ij counts the walks of length 2 between 
node i and node j. Between nodes 2 and 3 the graph has two walks: go via 1 or go via 4. 
From node 1 to node 1, there are also two walks: 1-2-1 and 1-3-1. 

s
3 = l� ! � �15 5 4 5 

2 5 5 2 

Can you find 5 walks of length 3 between nodes 1 and 2 ? 
The real question is why SN counts all the N-step paths between pairs of nodes. Start 

with S2 and look at matrix multiplication by dot products: 

(S2 )ij = (row i of S) · ( column j of S) = Bi1 S1j + Si2 S2j + Bi3B3j + Bi4B4j · (7) 

If there is a 2-step path i -+ 1 -+ j, the first multiplication gives si1s1j = (1)(1) = 1. 
If i -+ 1 -+ j is not a path, then either i -+ 1 is missing or 1 -+ j is missing. So the 
multiplication gives SiiBlj = 0 in that case. 
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(S2 )ij is adding up l's for all the 2-step paths i -4 k -4 j. So it counts those paths. 
In the same way 5N�i5 will count N-step paths, because those are (N - 1)-step paths
from i to k followed by one step from k to j. Matrix multiplication is exactly suited to
counting paths on a graph-channels of communication between employees in a company.

2.4 B For these matrices, when does AB= BA? When does BC = CB? When doesA times BC equal AB times C? Give the conditions on their entries p, q, r, z: 

B = [� �]
If p, q, r, 1, z are 4 by 4 blocks instead of numbers, do the answers change?

Solution First of all, A times BC always equals AB times C. Parentheses are not
needed in A(BC ) = ( AB)C =ABC.But we must keep the matrices in this order: 

Usually AB# BA AB= [: q: r] BA = [p; q �] . 

BychanceBC = CB CB= rn �]. 
Band C happen to commute. Part of the explanation is that the diagonal of Bis I, which
commutes with all 2 by 2 matrices. When p, q, r, z are 4 by 4 blocks and 1 changes to I, 
all these products remain correct. So the answers are the same.

Problem Set 2.4 

Problems 1-16 are about the laws of matrix multiplication. 

1 A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. ,All entries are 1. Which of
these matrix operations are allowed, and what are the results ?

BA AB ABD DC

2 What rows or columns or matrices do you multiply to find

(a) the second column of AB?
(b) the first row of AB ?
(c) the entry in row 3, column 5 of AB?
( d) the entry in row 1, column 1 of CD E ?

3 Add AB to A C  and compare with A(B + C):

A(B + C).

A = [ � �] and B = rn i] and C = rn �] · 
4 In Problem 3, multiply A times BC. Then multiply AB times C.
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5 Compute A 2 and A 3. Make a prediction for A 5 and An : 

A = [ � �] and A = [ � �] . 

6 Show that (A+ B) 2 is different from A2 
+ 2AB + B2

, when

A = [ � �] and B = [ � �] . 

Write down the correct rule for (A+ B)(A + B) = A2 
+ �� + B2

. 

7 True or false. Give a specific example when false: 

(a) If columns 1 and 3 of Bare the same, so are columns 1 and 3 of AB.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.
(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.
(d) (AB)2 

= A2 B2
. 

8 How is each row of DA and EA related to the rows of A, when

D = [ � �] and E = [ � i] and A = [ � ! ] ?
How is each column of AD and AE related to the columns of A? 

9 Row 1 of A is added to row 2. This gives EA below. Then column 1 of EA is added
to column 2 to produce (EA)F: 

EA= [i �] [� !] = [a : c b!d] 

and (EA)F=(EA) [� i]-[a : c a+�:t+d] ·

(a) Do those steps in the opposite order. First add column 1 of A to column 2
by AF, then add row 1 of AF to row 2 by E(AF).

(b) Compare with (EA)F. What law is obeyed by matrix multiplication?

10 Row 1 of A is again added to row 2 to produce EA. Then F adds row 2 of EA to
row 1. The result is F(EA): 

F(EA) = [al 1
1] [ 

a b 
] [

2a + c 2b + d
] a+c b+d - a+c b+d ·

(a) Do those steps in the opposite order: first add row 2 to row 1 by FA, then add
row 1 of FA to row 2.

(b) What law is or is not obeyed by matrix multiplication?
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11 This fact still amazes me. If you do a row operation on A and then a column opera­
tion, the result is the same as if you did the column operation first. (Try it.) Why is
this true? 

12 (3 by 3 matrices) Choose the only B so that for every matrix A

(a) BA= 4A

(b) BA= 4B

(c) BA has rows 1 and 3 of A reversed and row 2 unchanged
(d) All rows of BA are the same as row 1 of A.

13 Suppose AB = BA and AC = CA for these two particular matrices B and C :

A-_ [ac db] [l OJ commutes with B = 0 0 and C = [� �] .

Prove that a = d and b = c = 0. Then A is a multiple of I. The only matrices that
commute with Band C and all other 2 by 2 matrices are A= multiple of I. 

14 Which of the following matrices are guaranteed to equal (A - B)2 : A2 
- B2

, 

(B - A)2, A2 
- 2AB + B2

, A(A - B) - B(A - B), A2 
- AB - BA+ B2 ? 

15 True or false:

(a) If A2 is defined then A is necessarily square.
(b) If AB and BA are defined then A and Bare square.
(c) If AB and BA are defined then AB and BA are square.
(d) If AB= B then A= I.

16 If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector x with n components?
(b) A multiplies an n by p matrix B?

( c) A multiplies itself to produce A2 ? Here m = n.

17 For A = [; =�] and B = [ i g i], compute these answers and nothing more:

(a) column 2 of AB

(b) row 2 of AB

( c) row 2 of AA = A2 

(d) row 2 of AAA= A3
. 



80 Chapter 2. Solving Linear Equations 

Problems 18-20 use aij for the entry in row i, column j of A. 

18 Write down the 3 by 3 matrix A whose entries are 

(a) aij = minimum of i and j

(b) % = (-l)i+j

(c) aij = i/j.

19 What words would you use to describe each of these classes of matrices? Give a 3 
by 3 example in each class. Which matrix belongs to all four classes? 

(a) aiJ = 0 if i -I j

(b) % = 0 if i < j

(c) aij = aji 

(d) %
= 

aij-

20 The entries of A are aij. Assuming that zeros don't appear, what is 

(a) the first pivot?

(b) the multiplier £31 of row 1 to be subtracted from row 3?

(c) the new entry that replaces a32 after that subtraction?

(d) the second pivot?

Problems 21-24 involve powers of A. 

21 Compute A2
, A3, A4 and also Av, A2v, A3v, A4v for 

22 By trial and error find real nonzero 2 by 2 matrices such that 

A2 = -I BC=O DE= -ED (not allowing DE= 0). 

23 (a) Find a nonzero matrix A for which A2 = 0.

(b) Find a matrix that has A2 -=/ 0 but A3 = 0.

24 By experiment with n = 2 and n = 3 predict An for these matrices: 



2.4. Rules for Matrix Operations 

Problems 25-31 use column-row multiplication and block multiplication. 

25 Multiply A times I using columns of A (3 by 3) times rows of I.

26 Multiply AB using columns times rows:

AB� [i �] [; ; �] � rn [3 3 O] + _ = _.
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27 Show that the product of upper triangular matrices is always upper triangular: 

Proof using dot products (Row times column) (Row 2 of A)· (column 1 of B)= 0. 
Which other dot products give zeros ? 
Proof using full matrices (Column times row) Draw x's and O's in (column 2 of A)
times (row 2 of B). Also show (column 3 of A) times (row 3 of B). 

28 Draw the cuts in A (2 by 3) and B (3 by 4) and AB to show how each of the four 

multiplication rules is really a block multiplication: 

(1) Matrix A times columns of B.
(2) Rows of A times the matrix B.
(3) Rows of A times columns of B.
(4) Columns of A times rows of B.

Columns of AB
Rows of AB
Inner products (numbers in AB)
Outer products (matrices add to AB)

29 Which matrices E21 and E31 produce zeros in the (2, 1) and (3, 1) positions of E2 1A
and E31A? 

1 
0 
5 

Find the single matrix E = E31 E21 that produces both zeros at once. Multiply EA. 

30 Block multiplication says that column 1 is eliminated by 

EA= [ 1 0] [a b] = [a b ] -c/a I c D O D- cb/a ·

In Problem 29, what numbers go into c and D and what is D - cb /a?

31 Withi2 = -l,theproductof(A+iB)and(x+iy)isAx+iBx+iAy-By. Use 

blocks to separate the real part without i from the imaginary part that multiplies i: 

[ A -BJ [x] = [Ax - By] �eal �art 

? ? y ? 1magmary part 
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32 (Very important) Suppose you solve Ax = b for three special right sides b: 

If the three solutions x 1, x2, x3 are the columns of a matrix X, what is A times X? 

33 If the three solutions in Question 32 are x 1 = (1, 1, 1) and x2 = (0, 1, 1) and 
x3 = (0, 0, 1), solve Ax= b when b = (3, 5, 8). Challenge problem: What is A? 

34 Find all matrices A = [ � �] that satisfy A [ i ½ ] = [ i i ] A. 

35 Suppose a "circle graph" has 4 nodes connected (in both directions) by edges around 
a circle. What is its adjacency matrix S from Worked Example 2.4 A? What is 32?

Find all the 2-step paths predicted by 32
• 

Challenge Problems 

36 Practical question Suppose A is m by n, B is n by p, and C is p by q. Then the 
multiplication count is mnp for AB + mpq for (AB) C. The same matrix comes 
from A times BC with mnq + npq separate multiplications. Notice npq for BC. 

(a) If A is 2 by 4, Bis 4 by 7, and C is 7 by 10, do you prefer (AB) C or A (BC)?

(b) With N-component vectors, would you choose ( u T v) w T or u T ( vw T)?

(c) Divide by mnpq to show that (AB) C is faster when n- 1 
+ q- 1 < m- 1 

+ p- 1
. 

37 To prove that (AB) C = A (BC), use the column vectors b1, ... , bn of B. First 
suppose that Chas only one column e with entries c1, ... , en: 

AB has columns Ab1, ... , Abn and then (AB) e equals c1Ab1 + · · · + cnAbn. 

Be has one column c1 b1 + · · · + cnbn and then A (Be) equals A ( C1 b1 + · · · + cnbn). 

Linearity gives equality of those two sums. This proves (AB)e = A(Be). The same 
is true for all other�� of C. Therefore (AB)C = A(BC). Apply to inverses: 

If BA= I and AC = I, prove that the left-inverse B equals the right-inverse C. 

38 (a) Suppose A has rows a!, ... , a'!ri. Why does AT A equal a1af + · · · + ama'!ri?

(b) If C is a diagonal matrix with c1, ... , Cm on its diagonal, find a similar sum of
columns times rows for ATC A. First do an example with m = n = 2.
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2.5 Inverse Matrices 

1 If the square matrix A has an inverse, then both A- 1 A= I and AA- 1 = I. 

2 The algorithm to test invertibility is elimination : A must haven (nonzero) pivots. 

3 The algebra test for invertibility is the determinant of A: <let A must not be zero. 

4 The equation that tests for invertibility is Ax = 0 : x = 0 must be the only solution. 

5 If A and B (same size) are invertible then so is AB: I (AB)- 1 = B- 1 A- 1
. I 
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6 AA- 1 = I is n equations for n columns of A - 1
. Gauss-Jordan eliminates [ A I] to [ I A- 1 J. 

7 The last page of the book gives 14 equivalent conditions for a square A to be invertible. 

Suppose A is a square matrix. We look for an "inverse matrix" A - 1 of the same size, 
such that A- 1 times A equals I. Whatever A does, A- 1 undoes. Their product is the 
identity matrix-which does nothing to a vector, so A- 1 Ax = x. But A- 1 might not exist. 

What a matrix mostly does is to multiply a vector x. Multiplying Ax = b by A- 1 

gives A- 1 Ax = A- 1 b. This is x = A- 1 b. The product A- 1 A is like multiplying by 
a number and then dividing by that number. A number has an inverse if it is not zero­
matrices are more complicated and more interesting. The matrix A- 1 is called "A inverse." 

DEFINITION The matrix A is invertible if there exists a matrix A-1 that "inverts" A: 

1\vo-sided inverse (1) 

Not all matrices have inverses. This is the first question we ask about a square matrix: 
Is A invertible? We don't mean that we immediately calculate A- 1

. In most problems 
we never compute it ! Here are six "notes" about A - l. 

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges 
are allowed). Elimination solves Ax = b without explicitly using the matrix A- 1

. 

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also 
AC= I. Then B = C, according to this "proof by parentheses": 

B(AC) = (BA)C gives BI= IC or B = C. (2) 

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (mul­
tiplying A from the right to give AC = I) must be the same matrix. 

Note 3 If A is invertible, the one and only solution to Ax = b is x = A- 1 b: 
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Note 4 (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A

cannot have an inverse. No matrix can bring O back to x. 

If A is invertible, then Ax = 0 can only have the zero solution x = A- 10 = 0. 

Note 5 A 2 by 2 matrix is invertible if and only if ad - be is not zero: 

2 by 2 Inverse: 
[a b]

-l 1 
[ d -bJe d - ad - be -e a · (3) 

This number ad - be is the determinant of A. A matrix is invertible if its determinant is not 
zero (Chapter 5). The test for n pivots is usually decided before the determinant appears. 

Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero : 

Example 1 The 2 by 2 matrix A = [ � �] is not invertible. It fails the test in Note 5,
because ad - be equals 2 - 2 = 0. It fails the test in Note 3, because Ax = 0 when
x = (2, -1 ). It fails to have two pivots as required by Note 1. 

Elimination turns the second row of this matrix A into a zero row. 

The Inverse of a Product AB 

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The 
numbers a= 3 and b = -3 have inverses½ and-½- Their sum a+ b = 0 has no inverse. 
But the product ab= -9 does have an inverse, which is½ times-½-

For two matrices A and B, the situation is similar. It is hard to say much about the
invertibility of A + B. But the product AB has an inverse, if and only if the two factors A
and Bare separately invertible (and the same size). The important point is that A-1 and
3- 1 come in reverse order: 

If A and Bare invertible then so is AB. The inverse of a product AB is 

(4) 

To see why the order is reversed, multiply AB times 3- 1 A- 1
. Inside that is BB- 1 = I: 

Inverse of AB

We moved parentheses to multiply 33- 1 first. Similarly 3- 1 A- 1 times AB equals I.
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B- 1 A- 1 illustrates a basic rule of mathematics: Inverses come in reverse order. 
It is also common sense: If you put on socks and then shoes, the first to be taken off 
are the __ . The same reverse order applies to three or more matrices: 

Reverse order (5) 

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2, 
then E- 1 adds 5 times row 1 to row 2 :  

E subtracts 

E-
1 

adds 

0 
1 
0 �] [

1 o o
land E- 1 = 5 1 0 . 0 0 1 

Multiply EE- 1 to get the identity matrix I. Also multiply E- 1 E to get I. We are adding 
and subtracting the same 5 times row 1. If AC= I then automatically CA= I.

For square matrices, an inverse on one side is automatically an inverse on the other side. 

Example 3 Suppose F subtracts 4 times row 2 from row 3, and p- 1 adds it back: 

[1 0 
F = 0 1 

0 -4 

Now multiply F by the matrix E in Example 2 to find FE. Also multiply E- 1 times p- 1 

to find (F E)- 1
. Notice the orders FE and E- 1 p- 1 ! 

The result is beautiful and correct. The product FE contains "20" but its inverse doesn't. 
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed 
by row 1) from row 3. In this order FE, row 3feels an effect from row 1. 

In the order E- 1 p- 1
, that effect does not happen. First p- 1 adds 4 times row 2 to 

row 3. After that, E- 1 adds 5 times row 1 to row 2. There is no 20, because row 3 doesn't 
change again. In this order E-1 p-1, row 3feels no effect from row 1. 

This is why the next section chooses A = LU, to go back from the triangular U to A.

The multipliers fall into place perfectly in the lower triangular L.

In elimination order F follows E. In reverse order E- 1 follows p- 1
. 

E- 1 p- 1 is quick. The multipliers 5, 4fall into place below the diagonal of 1 's.
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Calculating A-1 by Gauss-Jordan Elimination

I hinted that A- 1 might not be explicitly needed. The equation Ax = bis solved by
x = A- 1 b. But it is not necessary or efficient to compute A- 1 and multiply it times b.

Elimination goes directly to x. And elimination is also the way to calculate A- 1
, as we

now show. The Gauss-Jordan idea is to solve AA- 1 = I, finding each column of A- 1
. 

A multiplies the first column of A- 1 ( call that x1) to give the first column of I ( call
that e1). This is our equation Ax1 = e1 = (1, 0, 0). There will be two more equations.
Each of the columns xi, x2, x3 of A- 1 is multiplied by A to produce a column of I: 

3 columns of A - 1 
(7) 

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax 1 = e1 and
Ax2 = e2 = (0, 1, 0) and Ax3 = e3 = (0, 0, 1). Gauss-Jordan finds A- 1 this way. 

The Gauss-Jordan method computes A- 1 by solving all n equations together. 
Usually the "augmented matrix" [A b] has one extra column b. Now we have three
right sides e 1, e2, e3 ( when A is 3 by 3). They are the columns of I, so the augmented
matrix is really the block matrix [ A I]. I take this chance to invert my favorite matrix K, 
with 2's on the main diagonal and -1 's next to the 2's: 

Start Gauss-Jordan on K 

€3] � [ 

2 -1 0 1 0 

�] [ K e1 e2 -1 2 -1 0 1 
0 -1 2 0 0 

�[ 
2 -1 0 1 0

�] 0 3 
-1

1 
1 2 2 

0 -1 2 0 0
(½ row 1 +row 2) 

�[ 
2 -1 0 1 0 

�] 0 3 -1 1 1 2 I 0 0 4 
3 3 3 ( i row 2 + row 3) 

We are halfway to K-1
. The matrix in the first three columns is U (upper triangular). The

pivots 2, ½, ! are on its diagonal. Gauss would finish by back substitution. The contribution
of Jordan is to continue with elimination! He goes all the way to the reduced echelon form
R = I. Rows are added to rows above them, to produce zeros above the pivots:

[ 
2 -1 0 1 0

n ( Zero above ) 0 3 0 3 3 ( ¾ row 3 + row 2) third pivot -t 2 4 2 
0 0 4 1 

3 3 3 

�[ 
2 0 0 3 1

!] 
( i row 2 + row 1)2 

( Zero above ) 0 3 0 3 3 
second pivot 2 4 2 

0 0 4 1 
3 3 3 

The final Gauss-Jordan step is to divide each row by its pivot. The new pivots are all 1.
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We have reached I in the first half of the matrix, because K is invertible. The three 
columns of K- 1 are in the second half of [ I K- 1 ] : 

1 0 0 3 1 1 

(divide by 2) 4 2 4 

(divide by½) 0 1 0 ! 1 1 = [ I X1 X2 x3] = [I K-1 J. 
2 2 

( divide by ! ) 
0 0 1 1 1 3 

4 2 4 

Starting from the 3 by 6 matrix [ K I], we ended with [ I K- 1 ] . Here is the whole
Gauss-Jordan process on one line for any invertible matrix A : 

Gauss-Jordan Multiply [ A I] by A- 1 to get [I A- 1]. 

The elimination steps create the inverse matrix while changing A to I. For large matrices, 
we probably don't want A- 1 at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations about K- 1: an important example.

1. K is symmetric across its main diagonal. Then K- 1 is also symmetric.

2. K is tridiagonal (only three nonzero diagonals). But K- 1 is a dense matrix with
no zeros. That is another reason we don't often compute inverse matrices. The
inverse of a band matrix is generally a dense matrix.

3. The product of pivots is 2 ( ½) ( ! ) = 4. This number 4 is the determinant of K.

K- 1 involves division by the determinant of K K- 1 = ! [� ! �1-
4 1 2 3 

(8) 

This is why an invertible matrix cannot have a zero determinant: we need to divide. 

Example 4 Find A- 1 by Gauss-Jordan elimination starting from A = [ � �].

3 

7 

0 

3 1 
1 -2 

0 ½ 
1 -2 

( this is [ U L - 1 ]) 

( this is [ I A - 1 ]) . 

Example 5 If A is invertible and upper triangular, so is A - 1. Start with AA - 1 = I.

1 A times column j of A- 1 equals column j of I, ending with n - j zeros.

2 Back substitution keeps those n - j zeros at the end of column j of A- 1. 

3 Put those columns [ * ... * 0 ... OjT into A- 1 and that matrix is upper triangular! 
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Columns j = 1 and 2 end 
with 3 - j = 2 and 1 zeros. 

The code for X = inv(A) can use rref, the reduced row echelon form from Chapter 3: 

I= eye (n); % Define the n by n identity matrix 
R = rref ([A I]); % Eliminate on the augmented matrix [A J] 
X = R( : , n + 1 : n + n) % Pick X = A- 1 from the last n columns of R 

A must be invertible, or elimination cannot reduce it to I (in the left half of R). 
Gauss-Jordan shows why A- 1 is expensive. We solve n equations for its n columns. 

But all those equations involve the same matrix A on the left side (where most of the work 
is done). The total cost for A- 1 is n3 multiplications and subtractions. To solve a single 
Ax = b that cost (see the next section) is n3 /3. 

To solve Ax = b without A- 1
, we deal with one column b to find one column x. 

Singular versus Invertible 

We come back to the central question. Which matrices have inverses? The start of this 
section proposed the pivot test: A - 1 exists exactly when A has a full set of n pivots. 

(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination: 

1. With n pivots, elimination solves all the equations Axi = ei. The columns xi go
into A- 1. Then AA -I = I and A - I is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E's and P's and n- 1
: 

Left-inverse C CA= (D- 1- · -E· · .p. · -E)A = I. (9)

n- 1 divides by the pivots. The matrices E produce zeros below and above the pivots. 
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9) is 
evidently a left-inverse of A. With n pivots we have reached A -I A = I. 

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section. 
So a square matrix with a full set of pivots will always have a two-sided inverse. 

Reasoning in reverse will now show that A must have n pivots if AC = I. 

1. If A doesn't haven pivots, elimination will lead to a zero row.
2. Those elimination steps are taken by an invertible M. So a row of MA is zero.
3. If AC = I had been possible, then MAC = M. The zero row of MA, times C,

gives a zero row of M itself.
4. An invertible matrix M can't have a zero row! A must haven pivots if AC= I.

That argument took four steps, but the outcome is short and important. C is A- 1
. 
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Elimination gives a complete test for invertibility of a square matrix. A- 1 exists (and

Gauss-Jordan finds it) exactly when A has n pivots. The argument above shows more: 

If AC = I then CA = I and C = A -1 

Example 6 If Lis lower triangular with 1 's on the diagonal, so is L- 1
. 

A triangular matrix is invertible if and only if no diagonal entries are zero. 

(10) 

Here L has l's so L-1 also has l's. Use the Gauss-Jordan method to construct L-1 from 
E32 , E31 , E21 . Notice how L-1 contains the strange entry 11, from 3 times 5 minus 4. 

Gauss-Jordan [! 
0 0 1 0 

�] on triangular L
1 0 0 1 = [L I] 
5 1 0 0 

-; [� 
0 0 1 0 

�] 
(3 times row 1 from row 2)

1 0 -3 1 ( 4 times row 1 from row 3) 
-+ 0 5 1 -4 0 ( then 5 times row 2 from row 3) 

The inverse 

J! 
0 0 1 0 

�]�[I L-•J is still 1 0 -3 1
triangular 0 1 11 -5 

Recognizing an Invertible Matrix 

Normally, it takes work to decide if a matrix is invertible. The usual way is to find a full set 
of nonzero pivots in elimination. (Then the nonzero determinant comes from multiplying 
those pivots.) But for some matrices you can see quickly that they are invertible because 
every number aii on their main diagonal dominates the off-diagonal part of that row i. 

Diagonally dominant matrices are invertible. Each aii on the diagonal is larger than 
the total sum along the rest of row i. On every row, 

laiil> L laijl means that laiil>lai!l+···(skiplaiil)···+lainl- (11) 

j-/ci 

Examples. A is diagonally dominant (3 > 2) . Bis not (but still invertible). C is singular. 
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Reasoning. Take any nonzero vector x. Suppose its largest component is !xii- Then 
Ax = 0 is impossible, because row i of Ax = 0 would need 

Those can't add to zero when A is diagonally dominant! The size of aiiXi (that one 
particular term) is greater than all the other terms combined: 

L lai3X31 $ L lai3I !xii< laiil !xii because aii dominates

j=/:i j=/:i 

This shows that Ax = 0 is only possible when x = 0. So A is invertible. The example B
was also invertible but not quite diagonally dominant: 2 is not larger than 1 + 1. 

• REVIEW OF THE KEY IDEAS •

1. The inverse matrix gives AA- 1 = I and A- 1 A = I.

2. A is invertible if and only if it has n pivots (row exchanges allowed).

3. Important. If Ax = 0 for a nonzero vector x, then A has no inverse. 

4. The inverse of AB is the reverse product B-1 A-1
. And ( ABC)-1 

= c- 1 B- 1 A-1
. 

5. The Gauss-Jordan method solves AA- 1 
= I to find the n columns of A-1. 

The augmented matrix [ A I] is row-reduced to [ I A- 1]. 

6. Diagonally dominant matrices are invertible. Each I aii I dominates its row.

• WORKED EXAMPLES • 

2.5 A The inverse of a triangular difference matrix A is a triangular sum matrix S : 

[AI]�[-l 
0 0 1 0 n-+ [ � 

0 0 1 0 

n1 0 0 1 1 0 1 1 
-1 1 0 0 -1 1 0 0 

-+ [ � 
0 0 1 0 n � [ I A-'] � [ I ,um mat,ix] 1 0 1 1 
0 1 1 1 

If I change a13 to -1, then all rows of A add to zero. The equation Ax = 0 will now 
have the nonzero solution x = ( 1, 1, 1). A clear signal : This new A can't be inverted. 
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2.5 B Three of these matrices are inve1iible, and three are singular. Find the inverse
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero
solution to Ax= 0) for the other three. The matrices are in the order A, B, C, D, S, E: 

Solution 

B_ 1 = ! [ 7 -3 ]
4 -8 4 -� ] s-r ... [ 1

-1
0

0 0 l 
1 0 

-1 1 

A is not invertible because its determinant is 4 · 6 - 3 · 8 = 24 - 24 = 0. D is not
invertible because there is only one pivot; the second row becomes zero when the first row
is subtracted. E has two equal rows (and the second column minus the first column is zero).
In other words Ex = 0 has the solution x = ( -1, 1, 0). 

Of course all three reasons for noninvertibility would apply to each of A, D, E.

2.5 C Apply the Gauss-Jordan method to invert this triangular "Pascal matrix" L.

You see Pascal's triangle-adding each entry to the entry on its left gives the entry below.
The entries of Lare "binomial coefficients". The next row would be 1, 4, 6, 4, 1. 

Triangular Pascal matrix L � [ i 0 0 

1 0 

2 1 

3 3 

� ] � abs(pascal ( 4, 1)) 

Solution Gauss-Jordan starts with [ L I] and produces zeros by subtracting row 1:

[LI]� u 0 0 0 1 0 0 

� l [ i 
0 0 0 1 0 0 

n 
1 0 0 0 1 0 1 0 0 -1 1 0 

2 1 0 0 0 1 --+ 2 1 0 -1 0 1
3 3 1 0 0 0 3 3 1 -1 0 0 

The next stage creates zeros below the second pivot, using multipliers 2 and 3. Then the
last stage subtracts 3 times the new row 3 from the new row 4: 

�[� 
0 0 0 1 0 0 

�]�[! 
0 0 0 1 0 0 

] � [I L-'J. 1 0 0 -1 1 0 1 0 0 -1 1 0 

0 1 0 1 -2 1 0 1 0 1 -2 1
0 3 1 2 -3 0 0 0 1 -1 3 -3

All the pivots were 1 ! So we didn't need to divide rows by pivots to get I. The inverse
matrix L- 1 looks like L itself, except odd-numbered diagonals have minus signs. 

The same pattern continues ton by n Pascal matrices. L- 1 has "alternating diagonals".
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Problem Set 2.5 

1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

A = [ � �] and B = [ � �] and C = [ ! �] . 
2 For these "permutation matrices" find p-l by trial and error (with l's and O's):

[o o 1] 
P = 0 l 0 

1 0 0 

[
o 1 o

l and P = 0 0 l .
1 0 0 

3 Solve for the first column ( x, y) and second column ( t, z) of A-1
: 

and [
10 20

] [
t
] [

O
J 20 50 z l .

4 Show that [} � ] is not invertible by trying to solve AA - 1 = I for column 1 of A- 1
: 

[� �] [;] [�] 
(For a different A, could column 1 of A-1

) 
be possible to find but not column 2 ? 

5 Find an upper triangular U (not diagonal) with U2 = I which gives U = u- 1. 

6 (a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If A= [ ½ ½], find two different matrices such that AB = AC.

7 (Important) If A has row 1 + row 2 = row 3, show that A is not invertible:

(a) Explain why Ax= (0, 0, 1) cannot have a solution. Add eqn 1 + eqn 2.

(b) Which right sides ( b1, b2, b3) might allow a solution to Ax = b ?

(c) In elimination, what happens to equation 3 ?

8 If A has column 1 + column 2 = column 3, show that A is not invertible:

(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no
third pivot. 

9 Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible? How would you find B- 1 from A-1?
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10 Find the inverses (in any legal way) of 

11 (a) Find invertible matrices A and B such that A+ Bis not invertible.
(b) Find singular matrices A and B such that A + B is invertible.

93 

12 If the product C = AB is invertible ( A and B are square), then A itself is invertible. 
Find a formula for A- 1 that involves c-

1 and B.

13 If the product M = ABC of three square matrices is invertible, then B is invertible. 
(So are A and C.) Find a formula for B- 1 that involves M- 1 and A and C.

14 If you add row 1 of A to row 2 to get B, how do you find B- 1 from A- 1 7 

Notice the order. The inverse of B = [ � �] [ A ] is 

15 Prove that a matrix with a column of zeros cannot have an inverse. 

16 Multiply [ � �] times [ _� -�]. What is the inverse of each matrix if ad =J. be?

17 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

18 If B is the inverse of A 2, show that AB is the inverse of A.

19 Find the numbers a and b that give the inverse of 5 * eye (4) - ones (4, 4): 

l 

4 -1 -1 -l

i

-l 
-1 4 -1 -1 
-1 -1 4 -1 
-1 -1 -1 4

What are a and bin the inverse of 6 * eye (5) - ones (5, 5)? 

20 Show that A= 4 * eye (4) - ones (4, 4) is not invertible: Multiply A* ones (4, 1). 

21 There are sixteen 2 by 2 matrices whose entries are 1 's and O's. How many of them 
are invertible? 
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Questions 22-28 a:re about the Gauss-Jordan method for cakulating A - 1
• 

22 Change I into A - l as you reduce A to I (by row operations): 
[ A I] = [ � � � �] and [ A I] = [ � � � �] 

23 Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below the pivots to reduce [ A I] to [ I A- 1 J: 
[2 1 [ A I]= 1 2 0 1 

o 1 o o
l 1 0 1 0 .2 0 0 1 

24 Use Gauss-Jordan elimination on [ U I] to find the upper triangular u- 1
: 

uu-
1 = 1 

25 Find A-1 and B-1 (if they exist) by elimination on [ A I] and [ B I]: 
and B = [-� -� =i] .-1 -1 2 

26 What three matrices E21 and E12 and n-1 reduce A = [ � �] to the identity matrix? Multiply n-1 E12 E21 to find A-1. 

27 Invert these matrices A by the Gauss-Jordan method starting with [ A I]: 

28 Exchange rows and continue with Gauss-Jordan to find A -l: 

[
O 2 1 O

J[ A I] = 2 2 0 1 . 
29 True or false ( with a counterexample if false and a reason if true): 

(a) A 4 by 4 matrix with a row of zeros is not invertible.(b) Every matrix with l's down the main diagonal is invertible.( c) If A is invertible then A - l and A 2 are invertible.
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30 (Recommended) Prove that A is invertible if a # 0 and a # b (find the pivots or 
A -l). Then find three numbers c so that C is not invertible: 

A= a a b 
[a b b

l 
a a a 

31 This matrix has a remarkable inverse. Find A - l by elimination on [ A I]. Extend 
to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm. 

Invert A= and solve Ax= (l, 1, 1, 1). 

32 Suppose the matrices P and Q have the same rows as I but in any order. They are 
"permutation matrices". Show that P - Q is singular by solving (P - Q) x = 0. 

33 Find and check the inverses (assuming they exist) of these block matrices: 

[� �] [i �] [� ;]. 
34 Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1, 2, 3 in 

some order? What if every row of B contains 0, 1, 2, -3 in some order? 

35 In the Worked Example 2.5 C, the triangular Pascal matrix L has L- 1 
= DLD, 

where the diagonal matrix D has alternating entries 1, -1, 1, -1. Then LDLD = I, 
so what is the inverse of LD = pascal (4, 1)? 

36 The Hilbert matrices have Hij = 1/(i + j - 1). Ask MATLAB for the exact 6 by 6 
inverse invhilb (6). Then ask it to compute inv (hilb (6)). How can these be different, 
when the computer never makes mistakes? 

37 (a) Use inv(P) to invert MATLAB's 4 by 4 symmetric matrix P = pascal (4).

(b) Create Pascal's lower triangular L = abs (pascal (4, 1)) and test P = LLT _

38 If A= ones (4) and b = rand (4, 1), how does MATLAB tell you that Ax= b has no 
solution? For the special b = ones (4, 1), which solution to Ax= bis found by A \b? 

Challenge Problems 

39 (Recommended) A is a 4 by 4 matrix with 1 's on the diagonal and -a, -b, -con the 
diagonal above. Find A - l for this bidiagonal matrix. 



96 Chapter 2. Solving Linear Equations 40 Suppose E1 , E2, E3 are 4 by 4 identity matrices, except E1 has a, b, c in column 1 and E2 has d, e in column 2 and E3 has fin column 3 (below the l's). Multiply L = E1E2E3 to show that all these nonzeros are copied into L. 
E1E2E3 is in the opposite order from elimination (because E3 is acting first). But 
E1E2E3 =Lis in the correct order to invert elimination and recover A.41 Second difference matrices have beautiful inverses if they start with Tu = 1 (instead of Ku = 2). Here is the 3 by 3 tridiagonal matrix T and its inverse: 

42 

One approach is Gauss-Jordan elimination on [ T I]. I would rather write T as the product of first differences L times U. The inverses of Land U in Worked Example 2.5 A are sum matrices, so here are T = LU and r-
1 = u-

1 L- 1
: 

T � H _; ,] [I -: -:]difference difference sum sum 
Question. (4 by 4) What are the pivots of T? What is its 4 by 4 inverse? The reverse order UL gives what matrix T*? What is the inverse of T*?Here are two more difference matrices, both important. But are they invertible? 

[ 

2 -1 0 
-�1 [ 

-1 0 
-] 

-1 2 -1 -1 2 -1Cyclic C = 0 -1 2 -1 Free ends F = � -1 2 
-1 0 -1 2 0 -1

43 Elimination for a block matrix: When you multiply the first block row [A B] by 
CA- 1 and subtract from the second row [CD], the "Schur complement" S appears: 

A and D are square S=D-cA- 1 B. Multiply on the right to subtract A- 1 B times block column 1 from block column 2. 
[A B] [J -A- 1 B] 0 S O I 

= ? Find S for 
The block pivots are A and S. If they are invertible, so is [ A B ; C D ] . 44 How does the identity A(I + BA) = (I+ AB)A connect the inverses of I+ BAand J + AB? Those are both invertible or both singular: not obvious. 
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2.6 Elimination = Factorization: A = LU 

1 Each elimination step Eij is inverted by L ij . Off the main diagonal change -/!,ij to +eij .

2 The whole forward elimination process (with no row exchanges) is inverted by L:
L = (L21L 31 .. · Ln1)(L 32 · · · Ln2)(L43 · · · Ln3) · · · (Lnn-1).

3 That product matrix L is still lower triangular. Every multiplier .e.ij is in row i, column j.

4 The original A is recovered from U by A = LU = (lower triangular) ( upper triangular).

5 Elimination on Ax = breaches U x = c. Then back-substitution solves U x = c.

6 Solving a triangular system takes n2 /2 multiply-subtracts. Elimination to find U takes n3 /3.

Students often say that mathematics courses are too theoretical. Well, not this section.
It is almost purely practical. The goal is to describe Gaussian elimination in the most 
useful way. Many key ideas of linear algebra, when you look at them closely, are really 
factorizations of a matrix. The original matrix A becomes the product of two or three
special matrices. The first factorization-also the most important in practice--comes now
from elimination. The factors L and U are triangular matrices. The factorization that

comes from elimination is A = LU. 

We already know U, the upper triangular matrix with the pivots on its diagonal. The
elimination steps take A to U. We will show how reversing those steps (taking U back
to A) is achieved by a lower triangular L. The entries of L are exactly the multipliers

/!,ij -which multiplied the pivot row j when it was subtracted from row i. 
Start with a 2 by 2 example. The matrix A contains 2, 1, 6, 8. The number to eliminate

is 6. Subtract 3 times row 1 from row 2. That step is E21 in the forward direction with
multiplier /!,21 = 3. The return step from U to A is L = E2/ (an addition using +3): 

Forward from Ato U: E21A = [-� �] [� ! ] = rn ! ] = U

Back from U to A : E2/ U = [ � �] [ � ! ] = [ � ! ] = A.

The second line is our factorization LU = A. Instead of E2/ we write L. Move now to
larger matrices with many E's. Then L will include all their inverses. 

Each step from A to U multiplies by a matrix Eij to produce zero in the ( i, j) position.
To keep this clear, we stay with the most frequent case-when no row exchanges are 

involved. If A is 3 by 3, we multiply by E21 and E31 and E32. The multipliers /!,ij produce 
zeros in the (2, 1) and (3, 1) and (3, 2) positions-all below the diagonal. Elimination ends
with the upper triangular U. 
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Now move those E's onto the other side, where their inverses multiply U: 

The inverses go in opposite order, as they must. That product of three inverses is L. 
We have reached A = LU. Now we stop to understand it. 

Explanation and Examples 

First point: Every inverse matrix E-1 is lower triangular. Its off-diagonal entry is Cij , to undo the subtraction produced by -Cij · The main diagonals of E and E-1 contain l's. Our example above had £21 = 3 and E = [_! �] and L = E-1 = [ � �]. 

Second point: Equation (2) shows a lower triangular matrix (the product of the Eij) multiplying A. It also shows all the E
ij 

1 multiplying U to bring back A. This lower

triangular product of inverses is L. One reason for working with the inverses is that we want to factor A, not U. The "inverse form" gives A = LU. Another reason is that we get something extra, almost more than we deserve. This is the third point, showing that L is exactly right. 
Third point: Each multiplier Cij goes directly into its i, j position-unchanged-in the product of inverses which is L. Usually matrix multiplication will mix up all the num­bers. Here that doesn't happen. The order is right for the inverse matrices, to keep the C's unchanged. The reason is given below in equation (2). Since each E-1 has l's down its diagonal, the final good point is that L does too. 

A=LU 

This is elimination without row exchanges. The upper triangular U has the pivots on its diagonal. The lower triangular L has all l's on its diagonal. The multipliers Cij are below the diagonal of L.

Example 1 Elimination subtracts ½ times row 1 from row 2. The last step subtracts j times row 2 from row 3. The lower triangular L has £21 = ½ and £32 = j. Multiplying LUproduces A: 
[2 1 ol [ 1A= l 2 1 = ½ 
0 1 2 0 

0 
1 
2 
3 

1 
3 2 0 The (3, 1) multiplier is zero because the (3, 1) entry in A is zero. No operation needed. 

Example 2 Change the top left entry from 2 in A to 1 in B. The pivots all become 1. The multipliers are all 1. That pattern continues when B is 4 by 4: 
Special 

pattern 

1 
1 

0 01 
1 0 
1 � . 
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These LU examples are showing something extra, which is very important in practice.Assume no row exchanges. When can we predict zeros in L and U? 

When a row of A starts with zeros, so does that row of L. 

When a column of A starts with zeros, so does that column of U. 

Ifa row starts with zero, we don't need an elimination step. L has a zero, which saves
computer time. Similarly, zeros at the start of a column survive into U. But please realize:Zeros in the middle of a matrix are likely to be filled in, while elimination sweeps forward.We now explain why L has the multipliers Cij in position, with no mix-up. 
The key reason why A equals LU: Ask yourself about the pivot rows that are subtractedfrom lower rows. Are they the original rows of A? No, elimination probably changed them. 
Are they rows of U? Yes, the pivot rows never change again. When computing the thirdrow of U, we subtract multiples of earlier rows of U (not rows of A!): 

Row 3 of U = (Row 3 of A) - £31 (Row 1 of U) - £32 (Row 2 of U). (1)
Rewrite this equation to see that the row [ £31 £32 l] is multiplying the matrix U:

(Row 3 of A)= £31(Row 1 of U) + £32(Row 2 of U) + l(Row 3 of U). (2)
This is exactly row 3 of A = LU. That row of L holds £31, £32 , 1. All rows look like this,whatever the size of A. With no row exchanges, we have A= LU. 

Better balance from LDU A = L U is "unsymmetric" because U has the pivots on itsdiagonal where L has l's. This is easy to change. Divide U by a diagonal matrix D that

contains the pivots. That leaves a new triangular matrix with l's on the diagonal: 

Split U into : l . . 

1 

It is convenient (but a little confusing) to keep the same letter U for this new triangularmatrix. It has l's on the diagonal (like L ). Instead of the normal LU, the new form has
D in the middle: Lower triangular L times diagonal D times upper triangular U.

The triangular factorization can be written A= LU or A= LDU. 

Whenever you see LDU, it is understood that U has l's on the diagonal. Each row is
divided by its first nonzero entry-the pivot. Then L and U are treated evenly in LDU : 

[! �] [� !] splits further into [! �] [2 5] [� 1]. (3)
The pivots 2 and 5 went into D. Dividing the rows by 2 and 5 left the rows [ 1 4] and[ 0 l] in the new U with diagonal ones. The multiplier 3 is still in L.
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My own lectures sometimes stop at this point. I go forward to 2. 7. The next paragraphs 
show how elimination codes are organized, and how long they take. If MATLAB ( or any 
software) is available, you can measure the computing time by just counting the seconds. 

One Square System = Two Triangular Systems 

The matrix L contains our memory of Gaussian elimination. It holds the numbers that 
multiplied the pivot rows, before subtracting them from lower rows. When do we need this 
record and how do we use it in solving Ax = b ? 

We need L as soon as there is a right side b. The factors L and U were completely 
decided by the left side (the matrix A). On the right side of Ax = b, we use L- 1 and 
then u- 1

. That Solve step deals with two triangular matrices. 

1 Factor (into Land U, by elimination on the left side matrix A). 

2 Solve (forward elimination on b using L, then back substitution for x using U). 

Earlier, we worked on A and b at the same time. No problem with that-just aug­
ment to [ A b ]. But most computer codes keep the two sides separate. The memory of 
elimination is held in L and U, to process b whenever we want to. The User's Guide to 
LAPACK remarks that "This situation is so common and the savings are so important that 
no provision has been made for solving a single system with just one subroutine." 

How does Solve work on b? First, apply forward elimination to the right side (the 
multipliers are stored in L, use them now). This changes b to a new right side e. We are 

really solving Le = b. Then back substitution solves U x = e as always. The original 
system Ax = b is factored into two triangular systems: 

Forward and backward Solve Le = b and then solve Ux = e. 

To see that xis correct, multiply U x = e by L. Then LU x = Le is just Ax = b.

(4) 

To emphasize: There is nothing new about those steps. This is exactly what we have 
done all along. We were really solving the triangular system Le = b as elimination went 
forward. Then back substitution produced x. An example shows what we actually did. 

Example 3 Forward elimination ( downward) on Ax = b ends at U x = e: 

Ax=b 
u + 2v = 5

4u + 9v = 21 
becomes 

u+ 2v = 5 
v=l 

Ux=e 

The multiplier was 4, which is saved in L. The right side used that 4 to change 21 to 1: 
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Le = b The lower triangular system

U x = c The upper triangular system

101 

gave c = [�] .

gives x = [i] . 
L and U can go into the n2 storage locations that originally held A (now forgettable).

The Cost of Elimination 

A very practical question is cost-or computing time. We can solve 1000 equations on a
PC. What if n = 100, 000? (ls A dense or sparse?) Large systems come up all the time
in scientific computing, where a three-dimensional problem can easily lead to a million
unknowns. We can let the calculation run overnight, but we can't leave it for 100 years. 

The first stage of elimination produces zeros below the first pivot in column 1. To 
find each new entry below the pivot row requires one multiplication and one subtraction.
We will count this first stage as n2 multiplications and n2 subtractions. It is actually less, 

n2 
-n, because row 1 does not change.
The next stage clears out the second column below the second pivot. The working

matrix is now of size n -l. Estimate this stage by ( n -l) 2 multiplications and subtractions.
The matrices are getting smaller as elimination goes forward. The rough count to reach U 

is the sum of squares n2 + ( n -l ) 2 + · .. + 2 2 + 1 2
. 

There is an exact formula ½n ( n + ½) ( n + l) for this sum of squares. When n is large,
the ½ and the 1 are not important. The number that matters is ½ n3

. The sum of squares is
like the integral of x2 ! The integral from Oto n is ½ n3

: 

Elimination on A requires about ½ n3 multiplications and ½ n3 subtractions.

What about the right side b? Going forward, we subtract multiples of b1 from the lower
components b2 , ..• , bn . This is n -l steps. The second stage takes only n -2 steps,
because b1 is not involved. The last stage of forward elimination takes one step. 

Now start back substitution. Computing Xn uses one step (divide by the last pivot). The
next unknown uses two steps. When we reach x 1 it will require n steps ( n -l substitutions
of the other unknowns, then division by the first pivot). The total count on the right side,
from b to c to x-forward to the bottom and back to the top-is exactly n2

: 

[(n-l)+(n-2)+···+1] + [1+2+···+(n-l)+n]=n2
. (5)

To see that sum, pair off (n -1) with 1 and (n -2) with 2. The pairings leaven terms,
each equal to n. That makes n 2 . The right side costs a lot less than the left side! 

Solve Each right side needs n
2 multiplications and n2 subtractions. 

A band matrix B has only w nonzero diagonals below and above its main diagonal.
The zero entries outside the band stay zero in elimination (they are zero in L and U).
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Clearing out the first column needs w2 multiplications and subtractions ( w zeros to be 
produced below the pivot, each one using a pivot row of length w ). Then clearing out all n 
columns, to reach U, needs no more than nw2

• This saves a lot of time: 

Band matrix A to U ½ n3 reduces to nw2 Solve n 2 reduces to 2 n w

A tridiagonal matrix (bandwidth w = 1) allows very fast computation. Don't store zeros! 
The book's website has Teaching Codes to factor A into LU and to solve Ax = b.

Professional codes will look down each column for the largest available pivot, to exchange 
rows and reduce roundoff error. 

MATLAB' s backslash command x = A\ b combines Factor and Solve to reach x. 

How long does it take to solve Ax = b? For a random matrix of order n = 1000, 
a typical time on a PC is 1 second. The time is multiplied by about 8 when n is multiplied 
by 2. For professional codes go to netlib.org.

According to this n3 rule, matrices that are 10 times as large (order 10,000) will take a 
thousand seconds. Matrices of order 100,000 will take a million seconds. This is too ex­
pensive without a supercomputer, but remember that these matrices are full. Most matrices 
in practice are sparse (many zero entries). In that case A= LU is much faster. 

• REVIEW OF THE KEY IDEAS •

1. Gaussian elimination (with no row exchanges) factors A into L times U.

2. The lower triangular L contains the numbers £.ij that multiply pivot rows, going from
A to U. The product LU adds those rows back to recover A.

3. On the right side we solve Le = b (forward) and U x = c (backward).

4. Factor : There are ½ ( n 3 
- n) multiplications and subtractions on the left side.

5. Solve : There are n2 multiplications and subtractions on the right side.

6. For a band matrix, change½ n3 to nw2 and change n2 to 2wn.

• WORKED EXAMPLES • 

2.6 A The lower triangular Pascal matrix L contains the famous "Pascal triangle".

Gauss-Jordan inverted L in the worked example 2.5 C. Here we factor Pascal. 
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The symmetric Pascal matrix P is a product of triangular Pascal matrices L and 
U. The symmetric P has Pascal's triangle tilted, so each entry is the sum of the entry above
and the entry to the left. Then by n symmetric P is pascal (n) in MATLAB.
Problem: Establish the amazing lower-upper factorization P = LU. 

pascal (4) = r � i : l� l 
= r � [ � � l r ! � � ! l = LU

. 
1 4 10 20 1 3 3 1 0 0 0 1 

Then predict and check the next row and column for 5 by 5 Pascal matrices. 

Solution You could multiply LU to get P. Better to start with the symmetric P and 
reach the upper triangular U by elimination : 

1' � r1 

1 1 
2 3 
3 6 

4 10 

1 

1 
r

l 1
4 0 1 
10 -+ 0 2
20 0 3 

1 
2 
5 
9 

� ]-+ [! 
19 0 

1 
1 
0 
0 

1 
2 
1 
3 ii

-+ 
r: 10 0

1 1 

�] �u 1 2 
0 1 
0 0 

The multipliers R,ij that entered these steps go perfectly into L. Then P = LU is a particu­
larly neat example. Notice that every pivot is 1 on the diagonal of U.

The next section will show how symmetry produces a special relationship between the 
triangular Land U. For Pascal, U is the "transpose" of L.

You might expect the MATLAB command Ju (pascal (4)) to produce these L and U. 
That doesn't happen because the lu subroutine chooses the largest available pivot in each 
column. The second pivot will change from 1 to 3. But a "Cholesky factorization" does no 
row exchanges: U = chol (pascal (4)) 

The full proof of P = LU for all Pascal sizes is quite fascinating. The paper "Pascal
Matrices" is on the course web page web.mit.edu/18.06 which is also available through 
MIT's OpenCourseWare at ocw.mit.edu. These Pascal matrices have so many remarkable 
properties-we will see them again. 

2.6 B The problem is: Solve Px = b = (1, 0, 0, 0). This right side = column of I
means that x will be the first column of p- 1

. That is Gauss-Jordan, matching the columns 
of P p- 1 = I. We already know the Pascal matrices Land U as factors of P: 

Two triangular systems Le = b (forward) U x = c (back). 

Solution The lower triangular system Le = b is solved top to bottom:

C1 = 1 
C1 + C2 = 0 
C1 + 2c2 + C3 = 0 
c1 + 3c2 + 3c3 + c4 = 0 

gives 

C1 = +1 
C2 = -1 
C3 = +1 
C4 = -1
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Forward elimination is multiplication by L - l. It produces the upper triangular system 
U x = e. The solution x comes as always by back substitution, bottom to top:

Xl + X2 + X3 + X4 = 1 
x2 + 2x3 + 3x4 = -1 

X3 + 3X4 = 1 
X4 = -1 

gives 

X1 = +4 
X2 = -6

X3 = +4 
X4 = -1

I see a pattern in that x, but I don't know where it comes from. Try inv (pascal ( 4)). 

Problem Set 2.6 

Problems 1-14 compute the factorization A = LU (and also A = LDU). 

1 (Important) Forward elimination changes [ ½ �] x = b to a triangular [ 6 ½] x = e: 

x+ y = 5 
X + 2y = 7

--+ 

x+ y = 5 
y=2 [� 

1 
2 �] --+ [� 

1
1

That step subtracted £21 = __ times row 1 from row 2. The reverse step adds £21 

times row 1 to row 2. The matrix for that reverse step is L = __ . Multiply this 
L times the triangular system [ 6 ½] x1 = [ �] to get __ = __ . In letters, L
multiplies U x = e to give __ . 

2 Write down the 2 by 2 triangular systems Le = b and U x = e from Problem 1. 
Check that e = (5, 2) solves the first one. Find x that solves the second one. 

3 (Move to 3 by 3) Forward elimination changes Ax = b to a triangular U x = e: 

x+ y+ z=5 

X + 2y+3z = 7 
X + 3y + 6z = 11 

x+ y+ z=5 

y + 2z = 2 

2y + 5z = 6 

x+ y+ z=5 

y + 2z = 2 
z=2 

The equation z = 2 in U x e comes from the original x + 3y + 6z = 11 in 
Ax = b by subtracting £31 = __ times equation 1 and £32 = __ times the 
final equation 2. Reverse that to recover [ 1 3 6 11 ] in the last row of A and b 
from the final [ 1 1 1 5 ] and [ 0 1 2 2 ] and [ 0 0 1 2 ] in U and e: 

Row 3 of [ A b] = (£31 Row 1 + £32 Row 2 + 1 Row 3) of [ U e]. 

In matrix notation this is multiplication by L. So A = LU and b = Le. 

4 What are the 3 by 3 triangular systems Le = b and U x = e from Problem 3? 
Check that e = (5, 2, 2) solves the first one. Which x solves the second one? 
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5 What matrix E puts A into triangular form EA = U? Multiply by E- 1 
= L to

factor A into LU :

6 What two elimination matrices E21 and E32 put A into upper triangular form
E32E21A = U? Multiply by E3,} and Ei,/ to factor A into LU= E2-/ E3,}U: 

A� [H i]
7 What three elimination matrices E21, E31, E32 put A into its upper triangular form

E32E31 E21A = U? Multiply by E3'}, Eii_1 and E2/ to factor A into L times U:

A
� [H �] L E-1E-1

E-1 
21 31 32 · 

8 This is the problem that shows how the inverses E;/ multiply to give L. You see
this best when A is already lower triangular with 1 's on the diagonal. Then U = I !

A�L� [; � �] 
The elimination matrices E21, E31, E32 contain -a then -b then -c.

(a) Multiply E32E31E21 to find the single matrix E that produces EA= I.
(b) Multiply E:;/ Eii_1 E3'} to bring back L.

The multipliers a, b, care mixed up in E but perfect in L.

9 When zero appears in a pivot position, A = LU is not possible! (We are requiring
nonzero pivots in U.) Show directly why these equations are both impossible: 

These matrices need a row exchange. That uses a "permutation matrix" P.

10 Which number c leads to zero in the second pivot position? A row exchange is 
needed and A = LU will not be possible. Which c produces zero in the third pivot
position? Then a row exchange can't help and elimination fails : 
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11 What are L and D ( the diagonal pivot matrix) for this matrix A? What is U in
A = LU and what is the new U in A = LDU?

Already triangular A [� H] 
12 A and Bare symmetric across the diagonal (because 4 = 4). Find their triple factor­izations LDU and say how U is related to L for these symmetric matrices: 

Symmetric 

13 (Recommended) Compute L and U for the symmetric matrix A:

Find four conditions on a, b, c, d to get A = LU with four pivots.
14 This nonsymmetric matrix will have the same Las in Problem 13:

Find L and U for 

Find the four conditions on a, b, c, d, r, s, t to get A= LU with four pivots.
Problems 15-16 use Land U (without needing A) to solve Ax = b.
15 Solve the triangular system Le = b to find e. Then solve U x = e to find x:

L = [ ! �] and U = rn i] and b = [ l �] ·
For safety multiply LU and solve Ax = b as usual. Circle c when you see it.

16 Solve Le= b to find e. Then solve Ux = c to find x. What was A?
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17 (a) When you apply the usual elimination steps to L, what matrix do you reach?

(b) When you apply the same steps to I, what matrix do you get?

(c) When you apply the same steps to LU, what matrix do you get?

18 If A = LDU and also A = L1 D1 U1 with all factors invertible, then L = L1 and 
D = D1 and U = U1 . "The three factors are unique." 
Derive the equation L1

1 
LD = D1 U1 u�i. Are the two sides triangular or diagonal?

Deduce L = L1 and U = U1 (they all have diagonal l's). Then D = D1 . 

19 Tridiagonal matrices have zero entries except on the main diagonal and the two ad­
jacent diagonals. Factor these into A= LU and A= LDLT :

[a a O l 
and A= a a+ b b 

0 b b+c 

20 When T is tridiagonal, its L and U factors have only two nonzero diagonals. How 
would you take advantage of knowing the zeros in T, in a code for Gaussian elimi­
nation? Find Land U.

Tridiagonal 

T � [i I i �1 
21 If A and B have nonzeros in the positions marked by x, which zeros (marked by 0) 

stay zero in their factors Land U? 

22 Suppose you eliminate upwards (almost unheard of). Use the last row to produce 
zeros in the last column (the pivot is 1). Then use the second row to produce zero 
above the second pivot. Find the factors in the unusual order A= UL.

Upper times lowe:r 

23 Easy but important. If A has pivots 5, 9, 3 with no row exchanges, what are the pivots 
for the upper left 2 by 2 submatrix A2 (without row 3 and column 3)? 
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Challenge Probl_ems 

24 Which invertible matrices allow A = LU (elimination without row exchanges)?
Good question! Look at each of the square upper left submatrices Ak of A. 

All upper left k by k sub matrices Ak must be invertible ( sizes k = l, ... , n ). 

Explain that answer: Ak factors into __ because LU= [ �k � ] [ �k : ]-

25 For the 6 by 6 second difference constant-diagonal matrix K, put the pivots and
multipliers into K = LU. (Land U will have only two nonzero diagonals, because
K has three.) Find a formula for the i, j entry of L- 1

, by software like MATLAB
using inv (L) or by looking for a nice pattern. 

-1, 2, -1 matrix K =

2 -1
-1 

-1
-1 2

= toeplitz ([2 -1 0 0 0 O])

26 If you print K- 1
, it doesn't look so good (6 by 6). But if you print 7 K- 1

, 

that matrix looks wonderful. Write down 7 K- 1 by hand, following this pattern:

1 Row 1 and column 1 are (6, 5, 4, 3, 2, 1).
2 On and above the main diagonal, row i is i times row 1.

3 On and below the main diagonal, column j is j times column 1.

Multiply K times that 7 K-1 to produce 7I. Here is 4K-1 for n = 3:
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2. 7 Transposes and Permutations

1 The transposes of Ax and AB and A- 1 are xT AT and BT AT and (AT)- 1. 

2 The dot product (inner product) is x · y = xTy. This is (1 x n)(n x 1) = (1 x 1). 

The outer product is xy T = column times row = ( n x 1) ( 1 x n) = n x n matrix. 
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3 The idea behind AT is that Ax · y equals x · AT y because (Ax) Ty = x TAT y = x T ( AT y). 

4 A symmetric matrix has ST 
= S (and the product AT A is always symmetric). 

5 An orthogonal matrix has QT 
= Q- 1

. The columns of Q are orthogonal unit vectors. 

6 A permutation matrix P has the same rows as I (in any order). There are n ! different orders. 

7 Then Px puts the components x1, x2, ... , Xn in that new order. And pT equals p- 1
. 

We need one more matrix, and fortunately it is much simpler than the inverse. It is the 
"transpose" of A, which is denoted by AT . The columns of AT are the rows of A. 

When A is an m by n matrix, the transpose is n by m: 

Transpose 

You can write the rows of A into the columns of AT . Or you can write the columns of A 
into the rows of AT . The matrix "flips over" its main diagonal. The entry in row i, column j 
of AT comes from row j, column i of the original A: 

Exchange rows and columns 

The transpose of a lower triangular matrix is upper triangular. (But the inverse is still lower 
triangular.) The transpose of AT is A 

Note MATLAB's symbol for the transpose of A is A 1• Typing [ 1 2 3] gives a row vec­
tor and the column vector is v = [ 1 2 3] 1. To enter a matrix M with second column 
w = [ 4 5 6 ] ' you could define M = [ v w ] . Quicker to enter by rows and then 
transpose the whole matrix: M = [ 1 2 3 ; 4 5 6] '. 

The rules for transposes are very direct. We can transpose A + B to get ( A + B) T . 
Or we can transpose A and B separately, and then add AT 

+ BT-with the same result. 
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The serious questions are about the transpose of a product AB and an inverse A - 1
: 

Sum The transpose of A+B is AT +BT . (1) 

Product The transpose of AB is (AB?= BTAT . (2) 

Inverse The transpose of A-1 is (A-l)T = (AT)-1. (3) 

Notice especially how BT AT comes in reverse order. For inverses, this reverse order 
was quick to check: B- 1 A- 1 times AB produces I. To understand (AB)T = BT AT , 
start with (Ax) T = x TAT when B is just a vector : 

A x  combines the columns of A while x T AT combines the rows of AT . 

It is the same combination of the same vectors! In A they are columns, in AT they are 
rows. So the transpose of the column Ax is the row x TAT . That fits our formula (Ax) T = 
xT AT . Now we can prove the formula (AB)T = BT AT , when B has several columns. 

If B = [x1 x2] has two columns, apply the same idea to each column. The columns 
of AB are Ax1 and Ax2. Their transposes appear correctly in the rows of BT AT : 

The right answer BT AT comes out a row at a time. Here are numbers in ( AB) T = BT AT : 

The reverse order rule extends to three or more factors: ( ABC? equals CT BT AT . 

If A = LDU then AT 
= UT DT LT . The pivot matrix has D = DT . 

Now apply this product rule by transposing both sides of A- 1 A = I. On one side, 
JT is I. We confirm the rule that ( A -l) T is the inverse of AT . Their product is I: 

Transpose of inverse (5) 

Similarly AA- 1 = I leads to (A-1)T AT = I. We can invert the transpose or we can 
transpose the inverse. Notice especially: AT is invertible exactly when A is invertible.

Example 1 The inverse of A = [ � �] is A- 1 = [_! �]. The transpose is AT = [ i �].

(A-1 )T and (AT)-1 are both equal to [l -6] 
0 1 · 
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The Meaning of Inner Products 

We know the dot product (inner product) of x and y. It is the sum of numbers XiYi· 
Now we have a better way to write x · y, without using that unprofessional dot. Use 
matrix notation instead: 

T is inside The dot product or inner product is x Ty ( 1 x n) ( n x 1)

T is outside The rank one product or outer product is xy T ( n x 1) ( 1 x n) 

xTy is a number, xyT is a matrix. Quantum mechanics would write those as< xly > 
(inner) and Ix >< YI (outer). Maybe the universe is governed by linear algebra. Here are 
three more examples where the inner product has meaning: 

Work= (Movements) (Forces) = x T f From mechanics 

From circuits 

From economics 

Heat loss = (Voltage drops) (Currents) = e Ty 
Income = (Quantities) (Prices) = q T p 

We are really close to the heart of applied mathematics, and there is one more point to 
emphasize. It is the deeper connection between inner products and the transpose of A. 

We defined AT by flipping the matrix across its main diagonal. That's not mathematics. 
There is a better way to approach the transpose. AT is the matrix that makes these two 
inner products equal for every x and y: 

(Ax) Ty = x T (AT y) Inner product of Ax with y = Inner product of x with AT y 

[-1 Start with A = 0
1 

-1 �] y 
= [��] 

On one side we have Ax multiplying y: (x2 - x1) Y1 + (x3 - x2) Y2 
That is the same as x1 (

-
y1) + x2 (Y1 - Y2) + x3 (y2). Now xis multiplying ATy. 

[ -
y1 

l AT y must be y1 
� 

Y2 which produces AT = 
[

-1 ol
� -� as expected.

Symmetric Matrices 

For a symmetric matrix, transposing A to AT produces no change. Then AT equals A. 
Its (j, i) entry across the main diagonal equals its ( i, j) entry. In my opinion, these are the 
most important matrices of all. We give symmetric matrices the special letter S. 

DEFINITION A symmetric matrix has ST = S . This means that Sji = Sij 
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Symmetric matrices 

The inverse of a symmetric matrix is also symmetric. The transpose of s-
1 is 

(S-1 )T = (ST)-1 = s-
1

. That says s-1 is symmetric (when Sis invertible): 

Symmetric inverses s-1 = [ 5 -2] 
-2 1 

-1 [1 0 ] and D = 0 O.l .

Now we produce a symmetric matrix S by multiplying any matrix A by AT . 

Symmetric Products AT A and AAT and LDLT 

Choose any matrix A, probably rectangular. Multiply AT times A. Then the product 
S = AT A is automatically a square symmetric matrix: 

The transpose of AT A is AT (AT ) T which is AT A again. ( 6) 

That is a quick proof of symmetry for AT 
A. We could look at the (i,j) entry of AT 

A.

It is the dot product of row i of AT (column i of A) with column j of A. The (j, i) entry 
is the same dot product, column j with column i. So AT A is symmetric. 

The matrix AAT is also symmetric; (The shapes of A and AT allow multiplication.) 
But AAT is a different matrix from AT A. In our experience, most scientific problems that 
start with a rectangular matrix A end up with AT A or AAT or both. As in least squares. 

Example 2 Multiply A - [-� _: �] and AT - [-i -:] in both o,dern.

AAT - [ _; -; ] and AT A- H :i -:] a,e both synnnebie mabiw

The product AT A is n by n. In the opposite order, AAT is m by m. Both are symmetric, 
with positive diagonal (why?). But even if m = n, it is very likely that AT A 'I AAT. 
Equality can happen, but it is abnormal. 

Symmetric matrices in elimination ST 
= S makes elimination faster, because we can 

work with half the matrix (plus the diagonal). It is true that the upper triangular U is 
probably not symmetric. The symmetry is in the triple product S = LDU. Remember 
how the diagonal matrix D of pivots can be divided out, to leave 1 's on the diagonal of 
both Land U: 

L U misses the symmetry of S

LDLT captures the symmetry 
Now Uis the transpose of L. 
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When Sis symmetric, the usual form A = LDU becomes S = LDLT _ The final U 
(with 1 's on the diagonal) is the transpose of L (also with 1 's on the diagonal). The 
diagonal matrix D containing the pivots is symmetric by itself. 

If S = ST is factored into LDU with no row exchanges, then U is exactly LT . 

The symmetric factorization of a symmetric matrix is S = LD LT . 

Notice that the transpose of LDLT is automatically (LT )T DT LT which is LDLT 

again. The work of elimination is cut in half, from n3 /3 multiplications to n3 /6. The 
storage is also cut essentially in half. We only keep L and D, not U which is just LT . 

Permutation Matrices 

The transpose plays a special role for a permutation matrix. This matrix P has a single "1" 
in every row and every column. Then pT is also a permutation matrix-maybe the same 
as P or maybe different. Any product Pi P2 is again a permutation matrix. 

We now create every P from the identity matrix, by reordering the rows of I.

The simplest permutation matrix is P = I (no exchanges). The next simplest are the 
row exchanges Pij · Those are constructed by exchanging two rows i and j of I. Other 
permutations reorder more rows. By doing all possible row exchanges to I, we get all 
possible permutation matrices: 

DEFINITION A permutation matrix P has the rows of the identity I in any order. 

Example 3 There are six 3 by 3 permutation matrices. Here they are without the zeros: 

I - [' I J P,, - [ I 
I J 

Ps, - [
I 

I 
I l Pa, - [

I 

I 
I l 

There are n! permutation matrices of order n. The symbol n! means "n factorial," the 
product of the numbers (1)(2) · · · (n). Thus 3! = (1)(2)(3) which is 6. There will be 24 
permutation matrices of order n = 4. And 120 permutations of order 5. 

There are only two permutation matrices of order 2, namely [ 5 �] and [ � 5]. 

Important: p-l is also a permutation matrix. Among the six 3 by 3 P's displayed 
above, the four matrices on the left are their own inverses. The two matrices on the right 
are inverses of each other. In all cases, a single row exchange is its own inverse. If we 
repeat the exchange we are back to I. But for P32P21, the inverses go in opposite order 
as always. The inverse is P21P32 . 
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More important: p-l is always the same as pT _ The two matrices on the right are 
transposes-and inverses-of each other. When we multiply P pT , the "1" in the first row 
of P hits the "1" in the first column of pT ( since the first row of P is the first column of 
PT). It misses the ones in all the other columns. So P pT 

= I. 

Another proof of pT = p- 1 looks at P as a product of row exchanges. Every row
exchange is its own transpose and its own inverse. pT and p- 1 both come from the 
product of row exchanges in reverse order. So pT and p-l are the same.

Permutations (row exchanges before elimination) lead to PA= LU. 

The PA = LU Factorization with Row Exchanges 

We sure hope you remember A = LU. It started with A = (E:;/ · · · E;/ · · · )U. Every
elimination step was carried out by an Eij and it was inverted by EiJ 

1
. Those inverses

were compressed into one matrix L. The lower triangular L has 1 's on the diagonal, and 
the result is A= LU. 

This is a great factorization, but it doesn't always work. Sometimes row exchanges 
are needed to produce pivots. Then A = (E- 1 · · · p-l · · · E- 1 · · · p-l · · ·) U. Every
row exchange is carried out by a Pij and inverted by that Pij . We now compress those 
row exchanges into a single permutation matrix P. This gives a factorization for every 
invertible matrix A-which we naturally want. 

The main question is where to collect the Pij 's. There are two good possibilities­
do all the exchanges before elimination, or do them after the Ei/s. The first way gives 
PA= LU. The second way has a permutation matrix A in the middle. 

1. The row exchanges can be done in advance. Their product P puts the rows of A in
the right order, so that no exchanges are needed for PA. Then PA = L U.

2. If we hold row exchanges until after elimination, the pivot rows are in a strange order.
A puts them in the correct triangular order in U1 . Then A = L1 P1 U1• 

PA = LU is constantly used in all computing. We will concentrate on this form.

The factorization A = L 1 Pi U1 might be more elegant. If we mention both, it is because 
the difference is not well known. Probably you will not spend a long time on either one. 
Please don't. The most important case has P = I, when A equals LU with no exchanges. 

This matrix A starts with a11 = 0. Exchange rows 1 and 2 to bring the first pivot into 
its usual place. Then go through elimination on PA: 

[[ i i ]-+ [� � i ]-+ [� [ t ]-+ [� ! ! l 
A PA £31 = 2 £32 = 3 

The matrix PA has its rows in good order, and it factors as usual into L U: 

PA� [� � �] [� [ !] dU. (7)
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We started with A and ended with U. The only requirement is invertibility of A. 

If A is invertible, a permutation P will put its rows in the right order to factor PA = L U 
There must be a full set of pivots after row exchanges for A to be invertible. 

In MATLAB, A ([r kl,:) = A ([k r], :) exchanges row k with row r below it (where the 
kth pivot has been found). Then the lu code updates L and P and the sign of P: 

This is part of 

[L, U,P] = lu (A) 

A ([r kl,:)= A ([k r], :); 
L ([r kl, 1: k - 1) = L ([k r], 1: k - 1); 
P ([r kl,:) = P ([k r], :); 
sign = -sign 

The "sign" of P tells whether the number of row exchanges is even (sign = +1). 
An odd number of row exchanges will produce sign = -1. At the start, P is I and sign 
= + 1. When there is a row exchange, the sign is reversed. The final value of sign is the
determinant of P and it does not depend on the order of the row exchanges. 

For PA we get back to the familiar L U. In reality, a code like lu (A) often does not 
use the first available pivot. Mathematically we can accept a small pivot- anything but 
zero. All good codes look down the column for the largest pivot. 

Section 11.1 explains why this "partial pivoting" reduces the roundoff error. Then 
P may contain row exchanges that are not algebraically necessary. Still PA= LU. 

Our advice is to understand permutations but let the computer do the work. Calculations 
of A = LU are enough to do by hand, without P. The Teaching Code splu (A) factors 
PA= LU and splv (A, b) solves Ax = b for any invertible A. The program splu on the 
website stops if no pivot can be found in column k. Then A is not invertible. 

• REVIEW OF THE KEY IDEAS •

1. The transpose puts the rows of A into the columns of AT . Then (AT )ij = Aji·

2. The transpose of AB is BT AT . The transpose of A - l is the inverse of AT .

3. The dot product is x · y = xT y. Then (Ax )T y equals the dot product xT (AT y ).

4. When Sis symmetric (ST= S), its LDU factorization is symmetric: S = LDLT .

5. A permutation matrix P has a 1 in each row and column, and pT 
= p- 1

. 

6. There are n! permutation matrices of size n. Half even, half odd.

7. If A is invertible then a permutation P will reorder its rows for PA= LU.
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• WORKED EXAMPLES • 

2.7 A Applying the permutation P to the rows of S destroys its symmetry : 

[
o 1 o

lP = 0 0 1 
1 0 0 

[
1 4 

S = 4 2 
5 6 i] 

What permutation Q applied to the columns of PS will recover symmetry in P SQ?

The numbers 1, 2, 3 must come back to the main diagonal (not necessarily in order). 
Show that Q is pT , so that symmetry is saved by PS pT . 

Solution To recover symmetry and put "2" back on the diagonal, column 2 of PS

must move to column 1. Column 3 of PS (containing "3") must move to column 2. 
Then the "l" moves to the 3, 3 position. The matrix that permutes columns is Q: 

P SQ � [; ! ; ] issymmebie.

The matrix Q is pT . This choice always recovers symmetry, because PS pT is guaranteed 
to be symmetric. (Its transpose is again PSPT .) The matrix Q is also p-1

, because the 
inverse of every permutation matrix is its transpose. 

If D is a diagonal matrix, we are finding that PD pT is also diagonal. When P moves 
row 1 down to row 3, pT on the right will move column 1 to column 3. The (1, 1) entry 
moves down to (3, 1) and over to (3, 3). 

2.7 8 Find the symmetric factorization S = LDLT for the matrix S above. 

Solution To factor S into LDLT we eliminate as usual to reach U: 

[
1 4 5

] [
1 4 5 l 

[
1 4 5 l 

S = 4 2 6 --+ 0 -14 -14 --+ 0 -14 -14 
5 6 3 0 -14 -22 0 0 -8 

=U. 

The multipliers were £21 = 4 and £31 = 5 and £32 = 1. The pivots 1, -14, -8 go into D.

When we divide the rows of U by those pivots, LT should appear: 

Symmetric 

factorization 

whenS = ST 

This matrix Sis invertible because it has three pivots. Its inverse is (LT)-1 D-1 L-1 and 
s-

1 is also symmetric. The numbers 14 and 8 will turn up in the denominators of s-1
. 

The "determinant" of Sis the product of the pivots (1) ( -14) ( -8) = 112. 
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2.7 C For a rectangular A, this saddle-point matrix Sis symmetric and important:

Block matrix 

from least squares 
S = [ .J.T i] = ST has size m + n.

117 

Apply block elimination to find a block factorization S = LDLT . Then test invertibility:

S is invertible <===;> AT A is invertible <===;> Ax =/- 0 whenever x =/- 0

Solution The first block pivot is I. Subtract AT times row 1 from row 2:

Block elimination S = [ }T i] goes to [ � _JT A] . This is U.

The block pivot matrix D contains I and -AT A. Then L and LT contain AT and A:

L is certainly invertible, with diagonal 1 's. The inverse of the middle matrix involves
(AT A)- 1

. Section 4.2 answers a key question about the matrix AT A: 

When is AT 
A invertible? Answer: A must have independent columns. 

Then Ax = 0 only if x = 0. Otherwise Ax = 0 will lead to AT Ax= 0.

Problem Set 2.7 

Questions 1-7 are about the rules for transpose matrices. 

1 Find AT and A-1 and (A-1 )T and (AT)-1 for

A = [ ! �] and also A = [ ! �] . 
2 Verify that ( AB) T equals BT AT but those are different from AT BT :

A= [� �] B = [� i] AB= [� ;] .

Show also that AAT is different from AT A. But both of those matrices are

3 (a) The matrix ( (AB)-1 )T comes from (A-1 )T and (B-1 ?- In what order?

(b) If U is upper triangular then (u-1? is __ triangular.

4 Show that A 2 = 0 is possible but AT A = 0 is not possible (unless A = zero matrix).
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5 (a) The row vector x T times A times the column y produces what number ?

T [1 2 3] [Ql x Ay = [ 0 1] 4 5 6 � = ��.

(b) This is the row xT A= __ times the column y = (0, 1, 0).
(c) This is the row x T = [ 0 1] times the column Ay = __ .

6 The transpose of a block matrix M = [ � � ] is MT = _ _  . Test an example.
Under what conditions on A, B, C, Dis the block matrix symmetric ? 

7 True or false :

(a) The block matrix [ l_ *] is automatically symmetric.
(b) If A and B are symmetric then their product AB is symmetric.
( c) If A is not symmetric then A - 1 is not symmetric.
(d) When A, B, Care symmetric, the transpose of ABC is CEA.

Questions 8-15 are about permutation matri.ces.

8 Why are there n! permutation matrices of order n?

9 If Pi and P2 are permutation matrices, so is Pi P2. This still has the rows of I in
some order. Give examples with PiP2 =/= P2Pi and P3P4 = P4P3. 

10 There are 12 "even" permutations of (1, 2, 3, 4), with an even number of exchanges. 

Two of them are (1, 2, 3, 4) with no exchanges and ( 4, 3, 2, 1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, just order the numbers. 

11 Which permutation makes PA upper triangular? Which permutations make PiAP2
lower triangular? Multiplying A on the right by P2 exchanges the __ of A. 

12 Explain why the dot product of x and y equals the dot product of Px and Py.
Then (Pxf (Py) = xTy tells us that pT P = I for any permutation. With
x = (1, 2, 3) and y = (1, 4, 2) choose P to show that Px · y is not always x · Py. 

13 (a) Find a 3 by 3 permutation matrix with P3 = I (but not P = I).

(b) Find a 4 by 4 permutation P with P4 =/= I.

14 If P has l's on the antidiagonal from (1, n) to (n, 1), describe PAP. Note P = pT _
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15 All row exchange matrices are symmetric: pT 
= P. Then pT P 

P2 = I. Other permutation matrices may or may not be symmetric. 
I becomes 

(a) If P sends row 1 to row 4, then pT sends row __ to row __ .
When pT = P the row exchanges come in pairs with no overlap.

(b) Find a 4 by 4 example with pT = P that moves all four rows.

Questions 16-21 are about symmetric matrices and their factorizations. 

16 If A = AT and B = BT , which of these matrices are certainly symmetric? 

(a) A2 -B2 (b) (A+ B)(A - B) (c) ABA

17 Find 2 by 2 symmetric matrices S = ST with these properties: 

(a) Sis not invertible.

(d) ABAB.

(b) S is invertible but cannot be factored into L U (row exchanges needed).

(c) Scan be factored into LDLT but not into LLT (because of negative D).

18 (a) How many entries of Scan be chosen independently, if S = ST is 5 by 5 ?

(b) How do L and D (still 5 by 5) give the same number of choices in LD LT ?

( c) How many entries can be chosen if A is skew-symmetric ? (AT = -A).

19 Suppose A is rectangular ( m by n) and S is symmetric ( m by m). 

(a) Transpose AT SA to show its symmetry. What shape is this matrix?

(b) Show why AT A has no negative numbers on its diagonal.

20 Factor these symmetric matrices into S = LDLT . The pivot matrix D is diagonal: 

21 After elimination clears out column 1 below the first pivot, find the symmetric 2 by 
2 matrix that appears in the lower right corner: 

Start from S = [4
2

8 

4
� 

8

�] 
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Questions 22-24 are about the factorizations PA = LU and A = L1 P1 U1 o 

22 Find the PA= LU factorizations (and check them) for 

23 Find a 4 by 4 permutation matrix (call it A) that needs 3 row exchanges to reach the 
end of elimination. For this matrix, what are its factors P, L, and U? 

24 Factor the following matrix into PA = LU. Factor it also into A L1Pi U1 
(hold the exchange of row 3 until 3 times row 1 is subtracted from row 2): 

25 Prove that the identity matrix cannot be the product of three row exchanges ( or five). 
It can be the product of two exchanges ( or four). 

26 (a) Choose E21 to remove the 3 below the first pivot. Then multiply E21SE!i to
remove both 3's:

s� [� 1! :] isgoingtow�d D� [� � �]

(b) Choose E32 to remove the 4 below the second pivot. Then S is reduced to D
by E32 E2 1SE'f1 E;f2 = D. Invert the E's to find Lin S = LDLT _

27 If every row of a 4 by 4 matrix contains the numbers 0, 1, 2, 3 in some order, can the 
matrix be symmetric? 

28 Prove that no reordering of rows and reordering of columns can transpose a typical 
matrix. (Watch the diagonal entries.) 

The next three questions are about applications of the identity (Ax) Ty = x T (AT y). 

29 Wires go between Boston, Chicago, and Seattle. Those cities are at voltages x B, x c, 
xs. With unit resistances between cities, the currents between cities are in y: 

y = Ax is [���i [� -� -�] [:�]
YES 1 0 -1 Xs 

(a) Find the total currents AT 
y out of the three cities.

(b) Verify that (Ax) Ty agrees with x T (AT 
y )-six terms in both.
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30 Producing x1 trucks and x2 planes needs x1 + 50x2 tons of steel, 40x1 + 1000x2 

pounds of rubber, and 2x1 + 50x2 months of labor. If the unit costs y1, Y2, y3 are 
$700 per ton, $3 per pound, and $3000 per month, what are the values of one truck 
and one plane? Those are the components of ATy_ 

31 Ax gives the amounts of steel, rubber, and labor to produce x in Problem 31. Find A. 
Then Ax · y is the __ of inputs while x · AT y is the value of __ . 

32 The matrix P that multiplies ( x, y, z) to give ( z, x, y) is also a rotation matrix. 
Find P and P3

. The rotation axis a = (l, 1, 1) doesn't move, it equals Pa. 
What is the angle of rotation from v = (2, 3, -5) to Pv = (-5, 2, 3)? 

33 Write A = [ l �] as the product ES of an elementary row operation matrix E and a 
symmetric matrix S. 

34 Here is a new factorization of A into LS: triangular (with l's) times symmetric: 

Start from A= LDU. Then A equals L (UT)-1 times S = UT DU.

Why is L (UT)- 1 triangular? Its diagonal is all l's. Why is UT DU symmetric? 

35 A group of matrices includes AB and A - l if it includes A and B. "Products and 
inverses stay in the group." Which of these sets are groups? 
Lower triangular matrices L with l's on the diagonal, symmetric matrices S, 
positive matrices M, diagonal invertible matrices D, permutation matrices P, 
matrices with QT 

= Q-1
. Invent two more matrix groups.

Challenge Problems 

36 A square northwest matrix B is zero in the southeast comer, below the antidiagonal 
that connects (1, n) to (n, 1). Will BT and B2 be northwest matrices? Will B- 1 be 
northwest or southeast? What is the shape of BC = northwest times southeast?

37 If you take powers of a permutation matrix, why is some pk eventually equal to I?

Find a 5 by 5 permutation P so that the smallest power to equal J is P6
• 

38 (a) Write down any 3 by 3 matrix M. Split Minto S + A where S = ST is
symmetric and A = -AT is anti-symmetric.

(b) Find formulas for S and A involving M and MT . We want M = S + A.

39 Suppose QT equals Q- 1 (transpose equals inverse, so QT Q = I). 

(a) Show that the columns q1, ... , qn are unit vectors: llqill2 
= 1. 

(b) Show that every two columns of Q are perpendicular: q'f q
2 

= 0.
( c) Find a 2 by 2 example with first entry q11 = cos 0. 
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The Transpose of a Derivative 

Will you allow me a little calculus? It is extremely important or I wouldn't leave 
linear algebra. (This is really linear algebra for functions x(t).) The matrix changes 

to a derivative so A = d/ dt. To find the transpose of this unusual A we need to define
the inner product between two functions x(t) and y(t). 

The inner product changes from the sum of Xk Yk to the integral of x(t) y(t). 

Inner product 

of functions 
X Ty = ( X, y) = J X ( t) y ( t) dt

-oo 

From this inner product we know the requirement on AT . The word "adjoint" is more 
correct than "transpose" when we are working with derivatives. 

The transpose of a matrix has (Ax) Ty = xT ( AT y). The adjoint of A = !!_ hasdt 
00 00 

(Ax, y) = j �: y(t) dt = j x(t) (-!; ) dt = (x, ATy)
-oo -oo 

I hope you recognize integration by parts. The derivative moves from the first 
function x(t) to the second function y(t). During that move, a minus sign appears.
This tells us that the transpose of the derivative is minus the derivative. 

The derivative is antisymmetric: A = d/ dt and AT = -d/ dt. Symmetric matrices 
have ST = S, antisymmetric matrices have AT = -A. Linear algebra includes derivatives 
and integrals in Chapter 8, because those are both linear. 

This antisymmetry of the derivative applies also to centered difference matrices. 

r
-�

A=
0 

0 

1 

0 

-1

0

0 

1 

0 

-1

r 
O -1
1 0 

transposes to AT = 0 1 
0 0 

-1

0
=-A.

And a forward difference matrix transposes to a backward difference matrix, multiplied 
by -1. In differential equations, the second derivative (acceleration) is symmetric. The 
first derivative (damping proportional to velocity) is antisymmetric. 



Chapter 3 

Vector Spaces and Subspaces 

3.1 Spaces of Vectors 

1 The standard n-dimensional space Rn contains all real column vectors with n components. 

2 If v and ware in a vector space S, every combination cv + dw must be in S. 

3 The "vectors" in Scan be matrices or functions of x. The I-point space Z consists of x = 0.

4 A subspace of Rn is a vector space inside Rn . Example: The line y = 3x inside R2
. 

5 The column space of A contains all combinations of the columns of A: a subspace of Rm . 

6 The column space contains all the vectors Ax. So Ax = bis solvable when bis in C(A). 

To a newcomer, matrix calculations involve a lot of numbers. To you, they involve 

vectors. The columns of Ax and AB are linear combinations of n vectors-the columns 

of A. This chapter moves from numbers and vectors to a third level of understanding (the 

highest level). Instead of individual columns, we look at "spaces" of vectors. Without 

seeing vector spaces and especially their subspaces, you haven't understood everything 

about Ax= b. 

Since this chapter goes a little deeper, it may seem a little harder. That is natural. We 

are looking inside the calculations, to find the mathematics. The author's job is to make it 

clear. The chapter ends with the "Fundamental Theorem of Linear Algebra". 

We begin with the most important vector spaces. They are denoted by R1
, R 2, R 3,

R 4, . . .. Each space Rn consists of a whole collection of vectors. R 5 contains all column 

vectors with five components. This is called "5-dimensional space". 

DEFINITION The space Rn consists of all column vectors v with n components. 

123 
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The components of v are real numbers, which is the reason for the letter R. A vector whose 
n components are complex numbers lies in the space en

.

The vector space R2 is represented by the usual xy plane. Each vector v in R2 has two 
components. The word "space" asks us to think of all those vectors-the whole plane. 
Each vector gives the x and y coordinates of a point in the plane: v = ( x, y). 

Similarly the vectors in R 3 correspond to points ( x, y, z) in three-dimensional space. 
The one-dimensional space R 1 is a line (like the x axis). As before, we print vectors as a 
column between brackets, or along a line using commas and parentheses: 

[!] is inR2
, (1,1,0,1,l)is inR5, u�:] is inC2

. 

The great thing about linear algebra is that it deals easily with five-dimensional space. 
We don't draw the vectors, we just need the five numbers (or n numbers). 

To multiply v by 7, multiply every component by 7. Here 7 is a "scalar". To add vectors 
in R 5, add them a component at a time. The two essential vector operations go on inside 
the vector space, and they produce linear combinations: 

We can add any vectors in Rn, and we can multiply any vector v by any scalar c. 

"Inside the vector space" means that the result stays in the space. If v is the vector in R 4 

with components 1, 0, 0, 1, then 2v is the vector in R4 with components 2, 0, 0, 2. (In this 
case 2 is the scalar.) A whole series of properties can be verified in Rn. The commutative 
law is v + w = w + v; the distributive law is c( v + w) = cv + cw. There is a unique 
"zero vector" satisfying O + v = v. Those are three of the eight conditions listed at the 
start of the problem set. 

These eight conditions are required of every vector space. There are vectors other than 
column vectors, and there are vector spaces other than Rn , and all vector spaces have to 
obey the eight reasonable rules. 

A real vector space is a set of "vectors" together with rules for vector addition and for 
multiplication by real numbers. The addition and the multiplication must produce vectors 
that are in the space. And the eight conditions must be satisfied (which is usually no 
problem). Here are three vector spaces other than Rn : 

M The vector space of all real 2 by 2 matrices. 

F The vector space of all real functions f ( x). 
Z The vector space that consists only of a zero vector. 

In M the "vectors" are really matrices. In F the vectors are functions. In Z the only addition 
is O + 0 = 0. In each case we can add: matrices to matrices, functions to functions, zero 
vector to zero vector. We can multiply a matrix by 4 or a function by 4 or the zero vector 
by 4. The result is still in M or F or Z. The eight conditions are all easily checked. 

The function space F is infinite-dimensional. A smaller function space is P, or P n, 
containing all polynomials a0 + a1 x + · · · + anxn of degree n. 
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The space Z is zero-dimensional (by any reasonable definition of dimension). Z is the 
smallest possible vector space. We hesitate to call it RO

, which means no components­
you might think there was no vector. The vector space Z contains exactly one vector (zero). 
No space can do without that zero vector. Each space has its own zero vector-the zero 
matrix, the zero function, the vector (0, 0, 0) in R3

. 

typical vector in M 

• 

smallest vector space 
zero vector only 

Figure 3.1: "Four-dimensional" matrix space M. The "zero-dimensional" space Z. 

Subspaces 

At different times, we will ask you to think of matrices and functions as vectors. But at all 
times, the vectors that we need most are ordinary column vectors. They are vectors with 
n components-but maybe not all of the vectors with n components. There are important 
vector spaces inside Rn

. Those are subspaces of Rn
.

Start with the usual three-dimensional space R 3. Choose a plane through the origin 
( 0, 0, 0). That plane is a vector space in its own right. If we add two vectors in the plane, 
their sum is in the plane. If we multiply an in-plane vector by 2 or -5, it is still in the plane. 
A plane in three-dimensional space is not R2 (even if it looks like R2). The vectors have 
three components and they belong to R 3. The plane is a vector space inside R 3. 

This illustrates one of the most fundamental ideas in linear algebra. The plane going 
through (0, 0, 0) is a subspace of the full vector space R 3• 

DEFINITION A subspace of a vector space is a set of vectors (including 0) that satisfies 
two requirements: If v and ware vectors in the subspace and c is any scalar, then 

(i) v + w is in the subspace (ii) cv is in the subspace. 
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In other words, the set of vectors is "closed" under addition v + w and multiplication cv

(and dw). Those operations leave us in the subspace. We can also subtract, because -w is
in the subspace and its sum with vis v - w. In short, all linear combinations stay in the

subspace. 

All these operations follow the rules of the host space, so the eight required conditions
are automatic. We just have to check the linear combinations requirement for a subspace.

First fact: Every subspace contains the zero vector. The plane in R 3 has to go through
(0, 0, 0). We mention this separately, for extra emphasis, but it follows directly from rule (ii).
Choose c = 0, and the rule requires Ov to be in the subspace. 

Planes that don't contain the origin fail those tests. Those planes are not subspaces.
Lines through the origin are also subspaces. When we multiply by 5, or add two

vectors on the line, we stay on the line. But the line must go through (0, 0, 0). 
Another subspace is all of R 3. The whole space is a subspace (of itself). Here is a list

of all the possible subspaces of R 3: 

(L) Any line through (0, 0, 0) 
(P) Any plane through (0, 0, 0) 

(R3) The whole space
(Z) The single vector (0, 0, 0)

If we try to keep only part of a plane or line, the requirements for a subspace don't
hold. Look at these examples in R2-they are not subspaces. 

Example 1 Keep only the vectors (x, y) whose components are positive or zero (this is
a quarter-plane). The vector (2, 3) is included but (-2, -3) is not. So rule (ii) is violated
when we try to multiply by c = -1. The quarter-plane is not a subspace. 

Example 2 Include also the vectors whose components are both negative. Now we have
two quarter-planes. Requirement (ii) is satisfied; we can multiply by any c. But rule (i)
now fails. The sum of v = (2, 3) and w = (-3, -2) is (-1, 1), which is outside the
quarter-planes. Two quarter-planes don't make a subspace. 

Rules (i) and (ii) involve vector addition v + w and multiplication by scalars c and d.

The rules can be combined into a single requirement-the rule for subspaces: 

A subspace containing v and w must contain all linear combinations cv + dw. 

Example 3 Inside the vector space M of all 2 by 2 matrices, here are two subspaces:

(U) All upper triangular matrices [ � ! ] (D) All diagonal matrices [ � �] .

Add any two matrices in U, and the sum is in U. Add diagonal matrices, and the sum is
diagonal. In this case D is also a subspace of U ! Of course the zero matrix is in these
subspaces, when a, b, and d all equal zero. Z is always a subspace. 

Multiples of the identity matrix also form a subspace. 2J + 3I is in this subspace, and
so is 3 times 4J. The matrices cJ form a "line of matrices" inside Mand U and D. 
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Is the matrix I a subspace by itself? Certainly not. Only the zero matrix is. Your mind 
will invent more subspaces of 2 by 2 matrices -write them down for Problem 5. 

The Column Space of A

The most important subspaces are tied directly to a matrix A. We are trying to solve 
Ax = b. If A is not invertible, the system is solvable for some band not solvable for other 
b. We want to describe the good right sides b-the vectors that can be written as A times
some vector x. Those b' s form the "column space" of A.

Remember that Ax is a combination of the columns of A. To get every possible b, we 
use every possible x. Start with the columns of A and take all their linear combinations. 
This produces the column space of A. It is a vector space made up of column vectors.

C(A) contains not just then columns of A ,  but all their combinations Ax. 

DEFINITION The column space consists of all linear combinations of the columns . 
The combinations are all possible vectors Ax. They fill the column space C(A). 

This column space is crucial to the whole book, and here is why. To solve Ax = bis to 
express bas a combination of the columns . The right side b has to be in the column space
produced by A on the left side, or no solution! 

The system Ax = b is solvable if and only if b is in the column space of A. 

When b is in the column space, it is a combination of the columns. The coefficients in 
that combination give us a solution x to the system Ax = b. 

Suppose A is an m by n matrix. Its columns have m components (not n). So the 
columns belong to Rm . The column space of A is a subspace ofRrn (not Rn ). The set 
of all column combinations Ax satisfies rules (i) and (ii) for a subspace: When we add 
linear combinations or multiply by scalars, we still produce combinations of the columns. 
The word "subspace" is justified by taking all linear combinations.

Here is a 3 by 2 matrix A, whose column space is a subspace of R 3• The column space 
of A is a plane in Figure 3 .2. With only 2 columns, C (A) can't be all of R 3. 

Example4 

Ax is 
[ i i l [ :: l which is x, m + x, rn 

The column space of all combinations of the two columns fills up a plane in R 3. 

We drew one particular b (a combination of the columns). This b = Ax lies on the plane. 
The plane has zero thickness, so most right sides b in R 3 are not in the column space. For 
most b there is no solution to our 3 equations in 2 unknowns. 
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A=[� i] 

Ax = b has x = [ :! ] 

C(A) all vectors Ax 

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = bis
solvable when b is on that plane. Then b is a combination of the columns. 

Of course (0, 0, 0) is in the column space. The plane passes through the origin. There
is certainly a solution to Ax = 0. That solution, always available, is x = __ . 

To repeat, the attainable right sides b are exactly the vectors in the column space. One
possibility is the first column itself-take x 1 = 1 and x2 = 0. Another combination is the
second column-take x 1 = 0 and x2 = 1. The new level of understanding is to see all

combinations-the whole subspace is generated by those two columns. 

Notation The column space of A is denoted by C(A). Start with the columns and take all
their linear combinations. We might get the whole Rm or only a subspace. 

Important Instead of columns in Rm , we could start with any set S of vectors in a vector
space V. To get a subspace SS of V, we take all combinations of the vectors in that set: 

S set of vectors in V (probably not a subspace)
SS all combinations of vectors in S (definitely a subspace)

SS = all c1 v 1 + · · · + CNV N = the subspace of V "spanned" by S

When S is the set of columns, SS is the column space. When there is only one nonzero
vector v in S, the subspace SS is the line through v. Always SS is the smallest subspace 

containing S. This is a fundamental way to create subspaces and we will come back to it. 
To repeat: The columns "span" the column space. 

The subspace SS is the "span" of S, containing all combinations of vectors in S.



3.1. Spaces of Vectors 

Example 5 Describe the column spaces (they are subspaces of R2
) for

I = [ � �] and A = [ � �] and B = [ � � ! ] . 
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Solution The column space of I is the whole space R2
. Every vector is a combination of

the columns of I. In vector space language, C(I) is R2 . 

The column space of A is only a line. The second column (2, 4) is a multiple of the firstcolumn (1, 2). Those vectors are different, but our eye is on vector spaces. The columnspace contains (1, 2) and (2, 4) and all other vectors (c, 2c) along that line. The equation
Ax = bis only solvable when b is on the line. 

For the third matrix (with three columns) the column space C(B) is all of R2
. Every bis attainable. The vector b = (5, 4) is column 2 plus column 3, so x can be (0, 1, 1). Thesame vector (5, 4) is also 2(column 1) + column 3, so another possible xis (2, 0, 1). This

matrix has the same column space as I-any bis allowed. But now x has extra componentsand there are more solutions-more combinations that give b. 

The next section creates a vector space N(A), to describe all the solutions of Ax = 0.
This section created the column space C(A), to describe all the attainable right sides b.

• REVIEW OF THE KEV IDEAS •

1. Rn contains all column vectors with n real components.
2. M (2 by 2 matrices) and F (functions) and Z (zero vector alone) are vector spaces.
3. A subspace containing v and w must contain all their combinations cv + dw.

4. The combinations of the columns of A form the column space C(A). Then the
column space is "spanned" by the columns.

5. Ax = b has a solution exactly when b is in the column space of A.

C (A) = all combinations of the columns = all vectors Ax. 

• WORKED EXAMPLES • 

3.1 A We are given three different vectors b1, b2 , b3. Construct a matrix so that theequations Ax = b1 and Ax = b2 are solvable, but Ax = b3 is not solvable. How can youdecide if this is possible? How could you construct A? 
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Solution We want to have b1 and b2 in the column space of A. Then Ax = b1 and 
Ax = b2 will be solvable. The quickest way is to make b1 and b2 the two columns of A.

Then the solutions are x = (l, 0) and x = (0, 1). 
Also, we don't want Ax = b3 to be solvable. So don't make the column space any 

larger! Keeping only the columns b1 and b2, the question is: 

Is Ax � [ b, b, ] [ :: ] � be solvable? Is b3 a combination of b1 and b2? 

If the answer is no, we have the desired matrix A. If the answer is yes, then it is not possible

to construct A. When the column space contains b1 and b2, it will have to contain all their 
linear combinations. So b3 would necessarily be in that column space and Ax = b3 would 
necessarily be solvable. 

3.1 B Describe a subspace S of each vector space V, and then a subspace SS of S. 

V1 = all combinations of ( 1, 1, 0, 0) and ( 1, 1, 1, 0) and ( 1, 1, 1, 1) 
V2 = all vectors perpendicular to u = (l, 2, 1), sou· v = 0 
V3 = all symmetric 2 by 2 matrices ( a subspace of M) 
V4 = all solutions to the equation d4y / dx4 

= 0 ( a subspace of F) 

Describe each V two ways: "All combinations of ... " "All solutions of the equations ... "

Solution V 1 starts with three vectors. A subspace S comes from all combinations of the 
first two vectors (1, 1, 0, 0) and (1, 1, 1, 0). A subspace SS of S comes from all multiples 
( c, c, 0, 0) of the first vector. So many possibilities. 

A subspace S of V 2 is the line through ( 1, -1, 1). This line is perpendicular to u. The 
vector x = (0, 0, 0) is in S and all its multiples ex give the smallest subspace SS = Z. 

The diagonal matrices are a subspace S of the symmetric matrices. The multiples cf

are a subspace SS of the diagonal matrices. 
V 4 contains all cubic polynomials y = a + bx + cx2 

+ dx3
, with d4y / dx4 = 0. The 

quadratic polynomials give a subspace S. The linear polynomials are one choice of SS. 
The constants could be SSS. 

In all four parts we could take S = V itself, and SS = the zero subspace Z. 
Each V can be described as all combinations of .... and as all solutions of .... : 

V1 = all combinations of the 3 vectors V1 = all solutions of v1 - v2 = 0 
V2 = all combinations of (1, 0, -1) and (1, -1, 1) V2 = all solutions of u · v = 0. 
V 3 = all combinations of [ 6 g] , [ � 6 ] , [8 � ] . V 3 = all solutions [ � � ] of b = c 

V4 = all combinations of 1, x, x2
, x3 V 4 = all solutions to d4y / dx4 

= 0. 
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Problem Set 3.1 

The first problems 1-8 are about vector spaces in general. The vectors in those spaces 

are not necessarily column vectors. In the definition of a vector space, vector addition 

x + y and scalar multiplication ex must obey the following eight rules: 

(1) X + y = y + X 

(2) x+(y+z)=(x+y)+z

(3) There is a unique "zero vector" such that x + 0 = x for all x

( 4) For each x there is a unique vector -x such that x + ( -x) = 0

(5) 1 times x equals x

(6) (e1e2)x = e1(e2x)

(7) e( x + y) = ex + ey

(8) (e1 + e2)x = e1x + e2x.

(1) to (4) about x + y

(5) to (6) about ex

(7) to (8) connects them

1 Suppose (x1,x2) + (Y1,Y2) is defined to be (x1 + Y2 ,x2 + Y1). With the usual 
multiplication ex = ( ex1, ex2), which of the eight conditions are not satisfied? 

2 Suppose the multiplication ex is defined to produce (ex1, 0) instead of (ex1, ex2). 
With the usual addition in R 2, are the eight conditions satisfied? 

3 (a) Which rules are broken if we keep only the positive numbers x > 0 in R 1 ?
Every e must be allowed. The half-line is not a subspace.

(b) The positive numbers with x + y and ex redefined to equal the usual xy and
xc do satisfy the eight rules. Test rule 7 when e = 3, x = 2, y = 1. (Then 
x + y = 2 and ex= 8.) Which number acts as the "zero vector"? 

4 The matrix A = [; =;] is a "vector" in the space M of all 2 by 2 matrices. Write 
down the zero vector in this space, the vector ½ A, and the vector -A. What matrices 
are in the smallest subspace containing A? 

5 (a) Describe a subspace of M that contains A= [ i g] but not B = [ g -�].

(b) If a subspace of M does contain A and B, must it contain I?

( c) Describe a subspace of M that contains no nonzero diagonal matrices.

6 The functions f(x) = x2 and g(x) = 5x are "vectors" in F. This is the vector 
space of all real functions. (The functions are defined for -oo < x < oo.) The 
combination 3f(x) - 4g(x) is the function h(x) = __ . 
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7 Which rule is broken if multiplying f ( x) by e gives the function f (ex)? Keep the
usual addition f(x) + g(x). 

8 If the sum of the "vectors" f(x) and g(x) is defined to be the function f(g(x)), then
the "zero vector" is g(x) = x. Keep the usual scalar multiplication ef(x) and find
two rules that are broken. 

Questions 9-18 are about the "subspace requirements": x + y and ex (and then ail
I.in.ear combinations ex + dy) stay in the subspace. 

9 One requirement can be met while the other fails. Show this by finding

(a) A set of vectors in R 2 for which x + y stays in the set but ½x may be outside.
(b) A set of vectors in R2 ( other than two quarter-planes) for which every ex stays

in the set but x + y may be outside. 

10 Which of the following subsets of R 3 are actually subspaces ?

(a) The plane of vectors (b1, b2, b3) with b1 = h
(b) The plane of vectors with b1 = 1.
( c) The vectors with b1 b2b3 = 0.
(d) All linear combinations of v = (1, 4, 0) and w = (2, 2, 2).
(e) All vectors that satisfy b1 + b2 + b3 = 0.
(f) All vectors with b1 ::; b2 ::; b3 .

11 Describe the smallest subspace of the matrix space M that contains

(a) [� �]and[� �] (b) [� �] (c) [� �] and [� �]-

12 Let P be the plane in R 3 with equation x + y - 2z = 4. The origin ( 0, 0, 0) is not in
P! Find two vectors in P and check that their sum is not in P. 

13 Let P0 be the plane through (0, 0, 0) parallel to the previous plane P. What is the
equation for PO? Find two vectors in PO and check that their sum is in PO• 

14 The subspaces of R3 are planes, lines, R3 itself, or Z containing only (0, 0, 0).

(a) Describe the three types of subspaces of R2
. 

(b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.



3.1. Spaces of Vectors 133 

15 (a) The intersection of two planes through (0, 0, 0) is probably a __ in R3 but
it could be a . It can't be Z! 

(b) The intersection of a plane through ( 0, 0, 0) with a line through ( 0, 0, 0) is prob­
ably a _ _  but it could be a __ . 

( c) If S and T are subspaces of R 5, prove that their intersection S n T is a
subspace of R 5. Here S n T consists of the vectors that lie in both subspaces.
Check that x + y and ex are in S n T if x and y are in both spaces.

16 Suppose Pis a plane through (0, 0, 0) and Lis a line through (0, 0, 0). The smallest
vector space containing both P and L is either __ or __ . 

17 (a) Show that the set of invertible matrices in Mis not a subspace.
(b) Show that the set of singular matrices in M is not a subspace.

18 True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with AT = A) form a subspace. 
(b) The skew-symmetric matrices in M (with AT = -A) form a subspace.
(c) The unsymmetric matrices in M (with AT I- A) form a subspace.

Questions 19-27 are about column spaces C (A) and the equation Ax = b. 

19 Describe the column spaces (lines or planes) of these particular matrices:

A � [ H] and n � [ H] and C � [ H] 
20 For which right sides (find a condition on b1, b2, b3 ) are these systems solvable?

(b) 

21 Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C.

A combination of the columns of (B or C ?) is also a combination of the columns of
A. Which two matrices have the same column ?

A = [ � �] and B = [ � �] and C = [ � ! ] . 
22 For which vectors (b1, b2, b3) do these systems have a solution?
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23 (Recommended) If we add an extra column b to a matrix A, then the column space 
gets larger unless __ . Give an example where the column space gets larger and 
an example where it doesn't. Why is Ax = b solvable exactly when the column 
space doesn't get larger-it is the same for A and [ A b]? 

24 The columns of AB are combinations of the columns of A. This means: The column 
space of AB is contained in (possibly equal to) the column space of A. Give an 
example where the column spaces of A and AB are not equal. 

25 Suppose Ax = band Ay = b* are both solvable. Then Az = b + b* is solvable. 
What is z? This translates into: If b and b* are in the column space C(A), then 
b + b* is in C(A). 

26 If A is any 5 by 5 invertible matrix, then its column space is __ . Why? 

27 True or false (with a counterexample if false): 

(a) The vectors b that are not in the column space C(A) form a subspace.

(b) If C(A) contains only the zero vector, then A is the zero matrix.

( c) The column space of 2A equals the column space of A.

(d) The column space of A - I equals the column space of A (test this).

28 Construct a 3 by 3 matrix whose column space contains ( 1, 1, 0) and ( 1, 0, 1) but not 
(1, 1, 1). Construct a 3 by 3 matrix whose column space is only a line. 

29 If the 9 by 12 system Ax = bis solvable for every b, then C(A) = __ . 

Challenge Problems 

30 Suppose S and T are two subspaces of a vector space V.

(a) Definition: The sum S + T contains all sums s + t of a vectors in S and a
vector tin T. Show that S + T satisfies the requirements (addition and scalar
multiplication) for a vector space.

(b) If S and T are lines in Rm , what is the difference between S + T and S U T?
That union contains all vectors from S or T or both. Explain this statement:
The span of SU Tis S + T. (Section 3.5 returns to this word "span".)

31 If Sis the column space of A and T is C(B), then S +T is the column space of 
what matrix M? The columns of A and B and M are all in Rm. (I don't think A+ B 
is always a correct M.) 

32 Show that the matrices A and [ A AB] (with extra columns) have the same column 
space. But find a square matrix with C(A2) smaller than C(A). Important point: 

Ann by n matrix has C(A) = Rn exactly when A is an __ matrix. 
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3.2 The Nullspace of A: Solving Ax= 0 and Rx 0 

1 The nullspace N(A) in Rn contains all solutions x to Ax = 0. This includes x = 0.
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2 Elimination (from A to U to R) does not change the nullspace: N(A) = N(U) = N(R).

3 The reduced row echelon form R = rref(A) has all pivots= 1, with zeros above and below.

4 If column j of R is free (no pivot), there is a "special solution" to Ax = 0 with Xj = 1.

5 Number of pivots = number of nonzero rows in R = rank r. There are n - r free columns.

6 Every matrix with m < n has nonzero solutions to Ax = 0 in its nullspace.

This section is about the subspace containing all solutions to Ax = 0. The m by n matrix
A can be square or rectangular. The right hand side is b = 0. One immediate solution is
x = 0. For invertible matrices this is the only solution. For other matrices, not invertible,
there are nonzero solutions to Ax = 0. Each solution x belongs to the nullspace of A.

Elimination will find all solutions and identify this very important subspace. 

The nullspace N(A) consists of all solutions to Ax= 0. These vectors x are in Rn _

Check that the solution vectors form a subspace. Suppose x and y are in the nullspace (this
means Ax = 0 and Ay = 0). The rules of matrix multiplication give A( x + y) = 0 + 0. 
The rules also give A( ex) = e0. The right sides are still zero. Therefore x + y and ex are
also in the nullspace N(A). Since we can add and multiply without leaving the nullspace,
it is a subspace. 

To repeat: The solution vectors x have n components. They are vectors in Rn , so
the nullspace is a subspace of Rn . The column space C(A) is a subspace of Rm . 

Example 1 Describe the nullspace of A = [ ! �] . This matrix is singular!

Solution Apply elimination to the linear equations Ax = 0:

X1 + 2x2 = 0 
3x1 + 6x2 = 0 ---+

There is really only one equation. The second equation is the first equation multiplied
by 3. In the row picture, the line x1 + 2x2 = 0 is the same as the line 3x1 + 6x2 = 0.
That line is the nulls pace N (A). It contains all solutions ( x1, x2). 

To describe the solutions to Ax = 0, here is an efficient way. Choose one point on
the line (one "special solution"). Then all points on the line are multiples of this one.
We choose the second component to be x2 = 1 (a special choice). From the equation
x1 + 2x2 = 0, the first component must be x1 = -2. The special solution is s = (-2, 1).
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Special [1 2] . . [-2] 
solution 

As = 0 The nullspace of A = 3 6 contams all multiples of s = 1 .

This is the best way to describe the nullspace, by computing special solutions to Ax = 0.

The solution is special because we set the free variable to x2 = 1.

The nullspace of A consists of all combinations of the special solutions to Ax = 0. 

Example 2 x + 2y + 3z = 0 comes from the 1 by 3 matrix A = [ 1 2 3 ]. Then 
Ax = 0 produces a plane. All vectors on the plane are perpendicular to (1, 2, 3). 
The plane is the nullspace of A. There are two free variables y and z : Set to 0 and 
1. 

[ 1 2 3] m � O has two special solutions s, � nl and SF nl ·
Those vectors s1 and s2 lie on the plane x + 2y + 3z = 0. All vectors on the plane are 
combinations of s1 and s2. 

Notice what is special about s1 and s2. The last two components are "free" and we

choose them specially as 1, 0 and 0, 1. Then the first components -2 and -3 are deter­
mined by the equation Ax = 0. 

The solutions to x + 2y + 3z = 6 also lie on a plane, but that plane is not a subspace. 
The vector x = 0 is only a solution if b = 0. Section 3.3 will show how the solutions to 
Ax = b (if there are any solutions) are shifted away from zero by one particular solution. 

The two key steps of this section are (1) reducing A to its row echelon form R
( 2) finding the special solutions to Ax = 0

The display on page 138 shows 4 by 5 matrices A and R, with 3 pivots. 
The equations Ax = 0 and also Rx = 0 have 5 - 3 = 2 special solutions s1 and s2. 

Pivot Columns and Free Columns 

The first column of A = [ 1 2 3 ] contains the only pivot, so the first component of x 
is not free. The free components correspond to columns with no pivots. The special 
choice (one or zero) is only for the free variables in the special solutions. 

Example 3 Find the nullspaces of A, B, C and the two special solutions to Cx = 0.

A= [! �] 
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Solution The equation Ax = 0 has only the zero solution x = 0. The nullspace is Z.It contains only the single point x = 0 in R2
. This fact comes from elimination:

[1 2] [Xi] [0] . [l 2] [xi] [0] [xi = 0] Ax = 3 8 x2 0 yields O 2 X2 0 and X2 = 0 .
A is invertible. There are no special solutions. Both columns of this matrix have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in Bx = 0
again require x = 0. The last two equations would also force x = 0. When we add extraequations (giving extra rows), the nullspace certainly cannot become larger. The extra rows
impose more conditions on the vectors x in the nullspace.

The rectangular matrix C is different. It has extra columns instead of extra rows. Thesolution vector x has four components. Elimination will produce pivots in the first two
columns of C, but the last two columns of C and U are "free". They don't have pivots:

Subtract 3 (row 1) 

from row 2 of C 2 

8 

2 

6 � !] 
t t 

pivot columns free columns 

For the free variables x3 and x4, we make special choices of ones and zeros. First X3 = 1,
x4 = 0 and second x3 = 0, x4 = 1. The pivot variables xi and x2 are determined by theequation U x = 0 ( or Cx = 0 or eventually Rx = 0). We get two special solutions in thenullspace of C. This is also the nullspace of U: elimination doesn't change solutions. 

Special 

solutions 

Cs= o
Us= 0 

+--- pivot 

+--- variables 

+--- free 

+--- variables 

The Reduced Row Echelon Form R 

When A is rectangular, elimination will not stop at the upper triangular U. We can continue
to make this matrix simpler, in two ways. These steps bring us to the best matrix R:

1. Produce zeros above the pivots. Use pivot rows to eliminate upward in R.

2. Produce ones in the pivots. Divide the whole pivot row by its pivot. 

Those steps don't change the zero vector on the right side of the equation. The nullspacestays the same: N(A) = N(U) = N(R). This nullspace becomes easiest to see when wereach the reduced row echelon form R = rref (A). The pivot columns of R contain I.
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Reduced 
u = [� 2 2 !] becomes R = [ 1 0 2 0 

]formR 2 0 0 1 0 2 

t t I subtracted row 2 of U from row 1. Then I multiplied row 2 by ½ to get pivot = 1. Now (free column 3) = 2 (pivot column 1), so -2 appears in s1 = (-2, 0, 1, 0). The special solutions are much easier to find from the reduced system Rx = 0. In each free column of R, I change all the signs to finds. Second special solution s2 = (0, -2, 0, 1). 
Before moving to m by n matrices A and their nullspaces N (A) and special solutions, allow me to repeat one comment. For many matrices, the only solution to Ax = 0 is 

x = 0. Their nullspaces N(A) = Z contain only that zero vector: no special solutions. The only combination of the columns that produces b = 0 is then the "zero combination". The solution to Ax = 0 is trivial (just x = 0) but the idea is not trivial. This case of a zero nullspace Z is of the greatest importance. It says that the columns of A are independent. No combination of columns gives the zero vector (except the zero combination). All columns have pivots, and no columns are free. You will see this idea of independence again ... 
Pivot Variables and Free Variables in the Echelon Matrix R 

A� [p 

f 

fl 
R� [� 0 0 

il 

-a -c

p p a -b -d1 b 0 0 0 1 S1 = 1 S2 = 00 0 0 0 -e0 13 pivot columns p I in pivot columns special Rs1 = 0 and Rs2 = 0 2 free columns f F in free columns take -a to -e from Rto be revealed by R 3 pivots: rank r = 3 Rs = 0 means As = 0 
R shows clearly: column 3 = a (column 1) + b (column 2). The same must be true for A.The special solution s1 repeats that combination so ( -a, -b, 1, 0, 0) has Rs1 = 0. Nullspace of A= Nullspace of R = all combinations of s1 and s2. 

Here are those steps for a 4 by 7 reduced row echelon matrix R with three pivots: 
R= 0 1 x x x O x [1 0 X X X O Xl0 0 0 0 0 1 X 0 0 0 0 0 0 0 

Three pivot variables x1, x2, X5 

Four free variables x3, x4, xs, X7 
Four special solutions sin N(R) 
The pivot rows and columns contain I 

Question What are the column space and the nullspace for this matrix R?
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Answer The columns of R have four components so they lie in R4 . (Not in R3 !) 
The fourth component of every column is zero. Every combination of the columns­
every vector in the column space-has fourth component zero. The column space C(R) 
consists of all vectors of the form (bi, b2, b3 , 0). For those vectors we can solve Rx = b. 

The nullspace N(R) is a subspace of R7
. The solutions to Rx = 0 are all the 

combinations of the four special solutions-one for each free variable: 

1. Columns 3, 4, 5, 7 have no pivots. So the four free variables are x3, X4, xs, X7.

2. Set one free variable to 1 and set the other three free variables to zero.

3. To find s, solve Rx = 0 for the pivot variables x1, x2, X5. 

Counting the pivots leads to an extremely important theorem. Suppose A has more
columns than rows. With n > m there is at least one free variable. The system Ax = 0 
has at least one special solution. This solution is not zero! 

Suppose Ax = 0 has more unknowns than equations (n > m, more columns than rows). 
There must be at least one free column. Then Ax = 0 has nonzero solutions. 

A short wide matrix (n > m) always has nonzero vectors in its nullspace. There must be 
at least n - m free variables, since the number of pivots cannot exceed m. (The matrix 
only has m rows, and a row never has two pivots.) Of course a row might have no pivot­
which means an extra free variable. But here is the point: When there is a free variable, 
it can be set to 1. Then the equation Ax = 0 has at least a line of nonzero solutions. 

The nullspace is a subspace. Its "dimension" is the number of free variables. This 
central idea-the dimension of a subspace-is defined and explained in this chapter. 

The Rank of a Matrix 

The numbers m and n give the size of a matrix-but not necessarily the true size of a linear 
system. An equation like O = 0 should not count. If there are two identical rows in A, 
the second one disappears in elimination. Also if row 3 is a combination of rows 1 and 2, 
then row 3 will become all zeros in the triangular U and the reduced echelon form R.

We don't want to count rows of zeros. The true size of A is given by its rank. 

DEFINITION OF RANK The rank of A is the number of pivots. This number is r. 

That definition is computational, and I would like to say more about the rank r. 
The final matrix R will have r nonzero rows. Start with a 3 by 4 example of rank r = 2: 

Four columns 

Two pivots 

1 
2 
3 

2 
2 
2 

0 
1 
0 

2 
0 
0 n 

The first two columns of A are ( 1, 1, 1) and ( 1, 2, 3), going in different directions. 
Those will be pivot columns (revealed by R). The third column (2, 2, 2) is a multiple 
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of the first. We won't see a pivot in that third column. The fourth column ( 4, 5, 6) is the 
sum of the first three. That fourth column will also have no pivot. The rank of A and R is 2. 

Every ''free column" is a combination of earlier pivot columns. It is the 
special solutions s that tell us those combinations: 

Column 3 = 2 (column 1) + 0 (column 2) 
Column 4 = 3 (column 1) + 1 (column 2) 

s1 = (-2, -0, 1, 0) 
s2 = (-3, -1,0, 1) 

The numbers 2, 0 in column 3 of R show up in s 1 (with signs reversed). And the 
numbers 3, 1 in column 4 of R show up in s2 (with signs reversed to -3, -1). 

Rank One 

Matrices of rank one have only one pivot. When elimination produces zero in the first 
column, it produces zero in all the columns. Every row is a multiple of the pivot row. At 
the same time, every column is a multiple of the pivot column! 

Rank one matrix A= 2 6 20 [
1 3 10

] --+ [
1 3 

R= 0 0 
0 0 

0 
10

] 
3 9 30 0 

The column space of a rank one matrix is "one-dimensional". Here all columns are on the 
line through u = (1, 2, 3). The columns of A are u and 3u and l0u. Put those numbers 
into the row v T = [ 1 3 10 ] and you have the special rank one form A = uv T: 

A = column times row = uv T [
1 3 10

] [
l

l
[l 

2 6 20 = 2 
3 9 30 3 

3 10] 

With rank one, Ax = 0 is easy to understand. That equation u( v T x) = 0 leads us to 
v T x = 0. All vectors x in the nullspace must be orthogonal to v in the row space. 
This is the geometry when r = 1: row space = line, nullspace = perpendicular plane.

Example 4 When all rows are multiples of one pivot row, the rank is r = 1: 

[1 3 4] [o2 6 8 and 0 
: ] and [ �] and [ 6 ] all have rank 1. 

For those matrices, the reduced row echelon R = rref (A) can be checked by eye: 

[1 3 4] [o 1] [
1] R = 0 0 0 and 0 0 and 0 and [ 1 ] have only one pivot.

Our second definition of rank will be at a higher level. It deals with entire rows and 
entire columns-vectors and not just numbers. All three matrices A and U and R have r
independent rows. 
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A and U and R also have r independent columns (the pivot columns). Section 3.4 
says what it means for rows or columns to be independent. 

A third definition of rank, at the top level of linear algebra, will deal with spaces of 
vectors. The rank r is the "dimension" of the column space. It is also the dimension of 

the row space. The great thing is that n - r is the dimension of the nullspace. 

• REVIEW OF THE KEY IDEAS •

1. The nullspace N(A) is a subspace of Rn. It contains all solutions to Ax= 0.

2. Elimination on A produces a row reduced R with pivot columns and free columns.

3. Every free column leads to a special solution. That free variable is 1, the others are 0.

4. The rank r of A is the number of pivots. All pivots are 1 's in R = rref (A).

5. The complete solution to Ax = 0 is a combination of the n - r special solutions.

6. A always has a free column if n > m, giving a nonzero solution to Ax = 0.

• WORKED EXAMPLES • 

3.2 A Why do A and R have the same nullspace if EA= Rand Eis invertible? 

Solution If Ax = 0 then 
If Rx= 0 then 

Rx = EAx = E0 = 0 
Ax= E- 1 Rx = E- 1 0 = 0 

A and R also have the same row space and the same rank. 

3.2 B Create a 3 by 4 matrix R whose special solutions to Rx = 0 are s 1 and s2: 

pivot columns 1 and 3 
free variables x2 and X4 

Describe all possible matrices A with this nullspace N(A) = all combinations of s 1 and s2. 

Solution The reduced matrix R has pivots = 1 in columns 1 and 3. There is no third 
pivot, so row 3 of R is all zeros. The free columns 2 and 4 will be combinations of the 
pivot columns: 3, 0, 2, 6 in R come from -3, -0, -2, -6 in s 1 and s2. Every A = ER.

Every 3 by 4 matrix has at least one special solution. These matrices have two. 

0 2 l 
1 6 

0 0 

has Rs1 = 0 and Rs2 = 0. 
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3.2 C Find the row reduced form R and the rank r of A and B (those depend on c).
Which are the pivot columns of A? What are the special solutions? 

Find special solutions 

A=[!l 2� :1 ] 
and B = [ � � ] .

Solution The matrix A has row 2 = 3 (row 1). The rank of A is r = 2 except if c = 4.
Row 4 - 4 (row 1) ends inc - 4. The pivots are in columns 1 and 3. The second variable
x2 is free. Notice the form of R: Row 3 has moved up into row 2. 

R=[� � �i 0 0 0 
c=4 

2 1 l 
0 0 

0 0 

Two pivots leave one free variable x2. But when c = 4, the only pivot is in column 1
(rank one). The second and third variables are free, producing two special solutions: 

c =j:. 4 Special solution (-2, 1, 0) c = 4 Another special solution (-1,0, 1).

The 2 by 2 matrix B = [ � �] has rank r = l except if c = 0, when the rank is zero!

c = 0 R = [ � � ] and nullspace = R2
. 

Problem Set 3.2 

1 Reduce A and B to their triangular echelon forms U. Which variables are free?

(a) A = [o� � � ! �i 
0 1 2 3 

2 For the matrices in Problem 1, find a special solution for each free variable. (Set the
free variable to 1. Set the other free variables to zero.) 

3 By further row operations on each U in Problem 1, find the reduced echelon form R.

True or false with a reason: The nullspace of R equals the nullspace of U.

4 For the same A and B, find the special solutions to Ax= 0 and Bx= 0. For an m by
n matrix, the number of pivot variables plus the number of free variables is __ .
This is the Counting Theorem : r + ( n - r) = n.

[-1 (a) A= _2 
3 
6 1�] (b) B= [-1

-2 

3
6
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Questions 5-14 are about free variables and pivot variables. 

5 True or false (with reason if true or example to show it is false): 

(a) A square matrix has no free variables.

(b) An invertible matrix has no free variables.

(c) An m by n matrix has no more than n pivot variables.

(d) An m by n matrix has no more than m pivot variables.
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6 Put as many l's as possible in a 4 by 7 echelon matrix U whose pivot columns are 

(a) 2, 4, 5 (b)l,3,6,7 (c) 4 and 6.

7 Put as many l's as possible in a 4 by 8 reduced echelon matrix R so that the free 
columns are 

(a) 2, 4, 5, 6 (b) 1, 3, 6, 7, 8.

8 Suppose column 4 of a 3 by 5 matrix is all zero. Then x4 is certainly a 
variable. The special solution for this variable is the vector x = __ .

9 Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). 
Then __ is a free variable. Find the special solution for this variable. 

10 Suppose an m by n matrix has r pivots. The number of special solutions is __ . 
The nullspace contains only x = 0 when r = __ . The column space is all of 
Rm whenr =

11 The nullspace of a 5 by 5 matrix contains only x = 0 when the matrix has _ _
pivots. The column space is R5 when there are __ pivots. Explain why. 

12 The equation x - 3y - z = 0 determines a plane in R3
. What is the matrix A in this 

equation? Which variables are free? The special solutions are __ and _ _ . 

13 (Recommended) The plane x - 3y - z = 12 is parallel to x - 3y - z = 0. One 
particular point on this plane is ( 12, 0, 0). All points on the plane have the form 

14 Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots. 
Which column has no pivot? What is the special solution? Describe N(A). 

Questions 15-22 ask for matrices (if possible) with specific properties. 

15 Construct a matrix for which N(A) = all combinations of (2, 2, 1, 0) and (3, 1, 0, 1). 

16 Construct A so thatN(A) = all multiples of(4,3,2,l). Its rank is __ . 
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17 Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose nullspace contains (1, 1, 2). 
18 Construct a matrix whose column space contains (1, 1, 0) and (0, 1, 1) and whose nullspace contains (1, 0, 1) and (0, 0, 1). 
19 Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is the line of multiples of (1, 1, 1, 1). 
20 Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible. 
21 Why does no 3 by 3 matrix have a nullspace that equals its column space? 
22 If AB = 0 then the column space of B is contained in the _ _  of A. Why?
23 The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure to be __ . What R is virtually certain if the random A is 4 by 3? 
24 Show by example that these three statements are generally false:

(a) A and AT have the same nullspace.(b) A and AT have the same free variables.(c) If R is the reduced form rref(A) then RT is rref(AT).
25 If N(A) = all multiples of x = (2, 1, 0, 1), what is R and what is its rank? 
26 If the special solutions to Rx= 0 are in the columns of these nullspace matrices N,go backward to find the nonzero rows of the reduced matrices R: 

N � [! �] and N � m and N � [ l (empty 3 by I)
27 (a) What are the five 2 by 2 reduced matrices R whose entries are all O's and l's?(b) What are the eight 1 by 3 matrices containing only O's and l's? Are all eight ofthem reduced echelon matrices R ?
28 Explain why A and -A always have the same reduced echelon form R.

29 If A is 4 by 4 and invertible, describe the nullspace of the 4 by 8 matrix B = [ A A].
30 How is the nullspace N(C) related to the spaces N(A) and N(B), if C = [ 1] ?
31 Find the reduced row echelon forms R and the rank of these matrices: 

(a) The 3 by 4 matrix with all entries equal to 4.(b) The 3 by 4 matrix with aij = i + j - l.(c) The 3 by 4 matrix with aij = (-l)j.
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32 Kirchhoff's Current Law AT y = 0 says that current in = current out at every node. 
At node 1 this is y3 = y1 + y4. Write the four equations for Kirchhoff's Law 
at the four nodes (arrows show the positive direction of each y). Reduce AT to R 
and find three special solutions in the nullspace of AT ( 4 by 6 matrix). 

Y1 
2 

-1 1 0 0 

0 -1 1 0 

A= 
1 0 -1 0 

-1 0 0 1 
0 -1 0 1 
0 0 -1 1

3 

33 Which of these rules gives a correct definition of the rank of A?

(a) The number of nonzero rows in R.
(b) The number of columns minus the total number of rows.
( c) The number of columns minus the number of free columns.
( d) The number of l's in the matrix R.

34 Find the reduced R for each of these (block) matrices: 

B= [A A] 

35 Suppose all the pivot variables come last instead of first. Describe all four blocks in 
the reduced echelon form (the block B should be r by r): 

36 

37 

38 

R=[��]-
What is the nullspace matrix N containing the special solutions? 
(Silly problem) Describe all 2 by 3 matrices A1 and A2 , with row echelon forms 
R1 and R2 , such that R1 + R2 is the row echelon form of A1 + A2 . Is is true that 
R1 = A1 and R2 = A2 in this case? Does R1 - R2 equal rref(A1 - A2 )? 

If A has r pivot columns, how do you know that AT has r pivot columns? Give a 3 
by 3 example with different column numbers in pivcol for A and AT .

What are the special solutions to Rx = 0 and y TR = 0 for these R? 

[
l O 2 3

] R= 0 1 4 5 

0 0 0 0 
R= [H �] 
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39 Fill out these matrices so that they have rank 1: 

and B = [1 

9 
] 

2 6 -3
40 If A is an m by n matrix with r = 1, its columns are multiples of one column and its 

rows are multiples of one row. The column space is a _ _  in Rm . The nullspace 
is a __ in Rn . The nullspace matrix N has shape __ . 

41 Choose vectors u and v so that A = uv T = column times row: 

A= 
[

3

! 

6
� 

6
�] and A= [-� -� -� -�] .

A= uv Tis the natural form for every matrix that has rank r = 1. 

42 If A is a rank one matrix, the second row of R is _ _  . Do an example. 

Problems 43-45 are about r by r invertible matrices inside A.

43 If A has rank r, then it has an r by r submatrix S that is invertible. Remove 
m - r rows and n - r columns to find an invertible submatrix S inside A, B, and C.

You could keep the pivot rows and pivot columns: 

2 3] 
2 4 B = [1 2 3]

2 4 6 

44 Suppose P contains only the r pivot columns of an m by n matrix. Explain why this 
m by r submatrix P has rank r. 

45 Transpose P in Problem 44. Find the r pivot columns of pT (which is r by m). 
Transposing back, this produces an r by r invertible submatrix S inside P and A: 

For A -_ [�
1 

!
2 3

�] find P (3 by 2) and then the invertible S (2 by 2).

Problems 46-51 show that rank(AB) is not greater than rank(A) or rank(B). 

46 Find the ranks of AB and AC (rank one matrix times rank one matrix): 

and B = [� 1 4]
1.5 6 

47 The rank one matrix uv T times the rank one matrix wz T is uz T times the number 
__ . This product uv T wz T also has rank one unless __ = 0. 
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48 (a) Suppose column j of Bis a combination of previous columns of B. Show that
column j of AB is the same combination of previous columns of AB. Then
AB cannot have new pivot columns, so rank(AB) � rank(B).

(b) Find A1 and A2 so that rank(A1B) = 1 and rank(A2B) = 0 for B = [ i i].

49 Problem 48 proved that rank(AB) ::::; rank(B). Then the same reasoning gives 
rank(BT AT ) :=:; rank(AT). How do you deduce that rank(AB) � rank A?

50 (Important) Suppose A and B are n by n matrices, and AB = I. Prove from 
rank(AB) ::::; rank(A) that the rank of A is n. So A is invertible and B must be its 
two-sided inverse (Section 2.5). Therefore BA= I (which is not so obvious!). 

51 If A is 2 by 3 and Bis 3 by 2 and AB = I, show from its rank that BA-/- I. Give an 
example of A and B with AB = I. For m < n, a right inverse is not a left inverse. 

52 Suppose A and B have the same reduced row echelon form R. 

(a) Show that A and B have the same nullspace and the same row space.

(b) We know E1 A =Rand E2 B = R. So A equals an __ matrix times B.

53 Express A and then B as the sum of two rank one matrices: 

rank= 2 B = [; ;] .
54 Answer the same questions as in Worked Example 3.2 C for 

[
1 1 2 2

] A= 2 2 4 4 
l C 2 2 

and 

55 What is the nulls pace matrix N ( containing the special solutions) for A, B, C? 

Block matrices A= [I I] and B= [� �] and C=[I I I]. 

56 Neat fact Every m by n matrix of rank r reduces to (m by r) times (r by n): 

A= (pivot columns of A) (first r rows of R) = (COL)(ROW).

Write the 3 by 4 matrix A of all ones as the product of the 3 by 1 matrix from the 
pivot columns and the 1 by 4 matrix from R.
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Challenge Problems

57 Suppose A is an m by n matrix of rank r. Its reduced echelon form is R. Describe
exactly the matrix Z (its shape and all its entries) that comes from transposing the

reduced row echelon form of RT : 

R = rref(A) and Z = (rref(AT ) ?-

58 (Recommended) Suppose R is m by n of rank r, with pivot columns first:

R = [ � �]-

(a) What are the shapes of those four blocks?
(b) Find a right-inverse B with RB = I if r = m. The zero blocks are gone.
( c) Find a left-inverse C with CR = I if r = n. The F and O column is gone.
(d) What is the reduced row echelon form of RT (with shapes)?
(e) What is the reduced row echelon form of RT R (with shapes)?

59 I think that the reduced echelon form of RT R is always R (except for extra zero
rows). Can you do an example when R is 2 by 3? Later we show that AT A always
has the same nullspace as A (a valuable fact). 

60 Suppose you allow elementary column operations on A as well as elementary row
operations (which get to R). What is the "row-and-column reduced form" for an m
by n matrix of rank r? 
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Elimination: The Big Picture 

This page explains elimination at the vector level and subspace level, when A is reduced 
to R. You know the steps and I won't repeat them. Elimination starts with the first pivot. 
It moves a column at a time (left to right) and a row at a time (top to bottom). As it moves, 
elimination answers two questions: 

Question 1 Is this column a combination of previous columns? 

If the column contains a pivot, the answer is no. Pivot columns are "independent" of 
previous columns. If column 4 has no pivot, it is a combination of columns 1, 2, 3. 

Question 2 Is this row a combination of previous rows? 

If the row contains a pivot, the answer is no. Pivot rows are "independent" of previous 
rows. If row 3 ends up with no pivot, it is a zero row and it is moved to the bottom of R. 

It is amazing to me that one pass through the matrix answers both questions. Actually 
that pass reaches the triangular echelon matrix U, not the reduced echelon matrix R. Then 
the reduction from U to R goes bottom to top. U tells which columns are combinations of 
earlier columns (pivots are missing). Then R tells us what those combinations are.

In other words, R tells us the special solutions to Ax = 0. We could reach R from 
A by different row exchanges and elimination steps, but it will always be the same R 

(because the special solutions are decided by A). In the language coming soon, R reveals 
a "basis" for three fundamental subspaces: 

The column space of A-choose the pivot columns of A as a basis. 

The row space of A-choose the nonzero rows of R as a basis. 

The nullspace of A-choose the special solutions to Rx = 0 (and Ax = 0). 

We learn from elimination the single most important number-the rank r. That number 
counts the pivot columns and the pivot rows. Then n - r counts the free columns and 
the special solutions. 

I mention that reducing [A I] to [R E] will tell you even more about A-in fact 
virtually everything (including EA = R). The matrix E keeps a record, otherwise lost, 
of the elimination from A to R. When A is square and invertible, R is I and E is A- 1

. 
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3.3 The Complete Solution to Ax = b

1 Complete solution to Ax = b : x = ( one particular solution X
p
) + ( any Xn in the nullspace). 

2 Elimination on [ A b] leads to [ R d] . Then Ax = bis equivalent to Rx = d. 

3 Ax = b and Rx = d are solvable only when all zero rows of R have zeros in d.

4 When Rx = dis solvable, one very particular solution X
p 

has all free variables equal to zero. 

5 A has full column rank r = n when its nullspace N(A) = zero vector: no free variables.

6 A has full row rank r = m when its column space C(A) is Rm : Ax= bis always solvable. 

7 The four cases are r = m = n (A is invertible) and r = m < n (every Ax = bis solvable) 
and r = n < m (Ax = b has 1 or O solutions) and r < m, r < n (0 or oo solutions). 

The last section totally solved Ax = 0. Elimination converted the problem to Rx = 0. 
The free variables were given special values (one and zero). Then the pivot variables were 
found by back substitution. We paid no attention to the right side b because it stayed 
at zero. The solution x was in the nullspace of A. 

Now b is not zero. Row operations on the left side must act also on the right side. 
Ax = b is reduced to a simpler system Rx = d with the same solutions. One way to 
organize that is to add bas an extra column of the matrix. I will "augment" A with the 
right side (bi, b2, b3) = (1, 6, 7) to produce the augmented matrix [ A b]:

has the 
augmented 
matrix 

[
1 3 
0 0 
1 3 

� � !] = [ A b].
1 6 7 

When we apply the usual elimination steps to A, reaching R, we also apply them to b.

In this example we subtract row 1 from row 3. Then we subtract row 2 from row 3. 
This produces a row of zeros in R, and it changes b to a new right side d = (1, 6, 0): 

[
1 3 o 2

] [
xi

] [
l

l 
has the

[
1 3 0 2 l

l 0 0 1 4 x2 6 augmented O O 1 4 6 = [ R d] . 
0 0 0 0 X3 0 matrix O O O O 0 

X4 

That very last zero is crucial. The third equation has become O = 0. So the equations can 
be solved. In the original matrix A, the first row plus the second row equals the third row. 
If the equations are consistent, this must be true on the right side of the equations also! 
The all-important property of the right side b was 1 + 6 = 7. That led to O = 0. 



3.3. The Complete Solution to Ax = b

Here are the same augmented matrices for a general b = (b1, b2, b3 ):

[ 
1 3 0 2 b1 l [ 1 3 0 2 b1 l [ A b] = 0 0 1 4 b2 -+ 0 0 1 4 b2 = [ R d] 
1 3 1 6 b3 0 0 0 0 b3 - b1 - b2 
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Now we get 0 = 0 in the third equation only if b3 - b1 - b2 = 0. This is b1 + b2 = h

One Particular Solution Ax
p 

= b 

For an easy solution Xp, choose the free variables to be zero: x2 = x4 = 0. Then the two 
nonzero equations give the two pivot variables x1 = 1 and x3 = 6. Our particular 
solution to Ax = b (and also Rx = d) is Xi, = (1, 0, 6, 0). This particular solution 
is my favorite: free variables = zero, pivot variables from d. The method always works. 

For a solution to exist, zero rows in R must also be zero in d. Since I is in the 

pivot rows and pivot columns of R, the pivot variables in Xparticular come from d:

Pivot variables 1, 6 
Free variables 0, 0 
Solution Xp = (1, 0, 6, 0). 

Notice how we choose the free variables (as zero) and solve for the pivot variables. After 
the row reduction to R, those steps are quick. When the free variables are zero, the pivot 
variables for Xi, are already seen in the right side vector d.

Xparticular 

Xnullspace 

The particular solution solves 

The n - r special solutions solve

That particular solution is (1, 0, 6, 0). The two special (nullspace) solutions to 
Rx = 0 come from the two free columns of R, by reversing signs of 3, 2, and 4. 
Please notice how I write the complete solution Xi, + Xn to Ax = b:

Complete solution 
one Xi, 

many Xn 

Question Suppose A is a square invertible matrix, m = n = r. What are Xi, and Xn? 

Answer The particular solution is the one and only solution Xp = A-lb. There 
are no special solutions or free variables. R = I has no zero rows. The only vector 
in the nullspace is Xn = 0. The complete solution is x =Xi,+ Xn = A- 1 b + 0. 



152 Chapter 3. Vector Spaces and Subspaces 

We didn't mention the nullspace in Chapter 2, because A was invertible and N(A) 
contained only the zero vector. Reduction went from [ A b] to [ I A - I b] . The matrix 
A was reduced all the way to I. Then Ax= b became x = A- 1 b which is d. This is a 
special case here, but square invertible matrices are the ones we see most often in practice. 
So they got their own chapter at the start of the book. 

For small examples we can reduce [ A b] to [ R d] . For a large matrix, 
MATLAB does it better. One particular solution (not necessarily ours) is x = A \b 
from backslash. Here is an example with full column rank. Both columns have pivots. 

Example 1 Find the condition on (b1, b2, b3) for Ax = b to be solvable, if 

This condition puts bin the column space of A. Find the complete x = Xp + Xn. 

Solution Use the augmented matrix, with its extra column b. Subtract row 1 of [ A b] 
from row 2. Then add 2 times row 1 to row 3 to reach [ R d]: 

[ 
1 1 b1 l [ 1 1 
1 2b2---+0 1 

-2 -3 b3 0 -1 

The last equation is O = 0 provided b3 + bi + b2 = 0. This is the condition to put b in 
the column space. Then Ax = b will be solvable. The rows of A add to the zero row. 
So for consistency (these are equations!) the entries of b must also add to zero. 

This example has no free variables since n - r = 2 - 2. Therefore no special solutions. 
The nullspace solution is Xn = 0. The particular solution to Ax = b and Rx = d is at the 
top of the final column d: 

Only solution to Ax = b 

If b3 + bi + b2 is not zero, there is no solution to Ax = b (Xp and x don't exist). 
This example is typical of an extremely important case: A has full column rank.

Every column has a pivot. The rank is r = n. The matrix is tall and thin (m � n).

Row reduction puts I at the top, when A is reduced to R with rank n: 

F II I k R [I] [n
 by n identity matrix] u co umn ran = 0 = m - n rows of zeros (1) 

There are no free columns or free variables. The nullspace is Z = { zero vector}. 
We will collect together the different ways of recognizing this type of matrix. 
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Every matrix A with full column rank ( r = n) has all these properties: 

1. All columns of A are pivot columns.

2. There are no free variables or special solutions.

3. The nullspace N(A) contains only the zero vector x = 0.

4. If Ax = b has a solution (it might not) then it has only one solution.

In the essential language of the next section, this A has independent columns. 
Ax = 0 only happens when x = 0. In Chapter 4 we will add one more fact to the list: 
The square matrix AT A is invertible when the rank is n. 

In this case the nullspace of A (and R) has shrunk to the zero vector. The solution 
to Ax = b is unique (if it exists). There will be m - n zero rows in R. So there are 
m - n conditions on b in order to have O = 0 in those rows, and b in the column space. 
With full column rank, Ax = b has one solution or no solution (m > n is overdetermined). 

The Complete Solution 

The other extreme case is full row rank. Now Ax = b has one or infinitely many solutions. 
In this case A must be short and wide (m ::; n). A matrix has full row rank if r = m. 
"The rows are independent." Every row has a pivot, and here is an example. 

Example 2 This system Ax = b has n = 3 unknowns but only m = 2 equations: 

Full row rank 
X + y + Z 

X + 2y Z 

3 
4 

(rankr = m = 2) 

These are two planes in xyz space. The planes are not parallel so they intersect in a line. 
This line of solutions is exactly what elimination will find. The particular solution will 

be one point on the line. Adding the nullspace vectors Xn will move us along the line in 
Figure 3.3. Then x = Xp + Xn gives the whole line of solutions. 

Line of solutions to Ax = 0 

Figure 3.3: Complete solution = one particular solution + all nullspace solutions. 
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We find Xp and Xn by elimination on [ A b]. Subtract row 1 from row 2 and then
subtract row 2 from row 1: 

1 1
2 -1

1 1
1 -2

0 3 

1 -2 
�] = [ R d ] .

The particular solution has free variable x3 = 0. The special solution has x3 = 1:

Xparticular comes directly from don the right side: Xp = (2, 1, 0)
Xspecial comes from the third column (free column) of R: s = (-3, 2, 1)

It is wise to check that Xp and s satisfy the original equations AXp = b and As = 0:

2+1 
2+2 

3 
4 

-3+ 2 + 1 
-3+4- 1 

0
0

The nullspace solution Xn is any multiple of s. It moves along the line of solutions, starting
at X

particular · Please notice again how to write the answer: 

Complete solution 

This line of solutions is drawn in Figure 3.3. Any point on the line could have been chosen
as the particular solution. We chose the point with x3 = 0. 

The particular solution is not multiplied by an arbitrary constant! The special solution
needs that constant, and you understand why-to produce all Xn in the nullspace. 

Now we summarize this short wide case of full row rank. If m < n the equation
Ax = bis underdetermined (many solutions). 

Every matrix A with full row rank (r = m) has all these properties:

1. All rows have pivots, and R has no zero rows.

2. Ax = b has a solution for every right side b.

3. The column space is the whole space Rm .

4. There are n - r = n - m special solutions in the nullspace of A.

In this case with m pivots, the rows are "linearly independent". So the columns of AT 

are linearly independent. The nullspace of AT is the zero vector. 
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We are ready for the definition of linear independence, as soon as we summarize the 
four possibilities-which depend on the rank. Notice how r, m, n are the critical numbers. 

The four possibilities for linear equations depend on the rank r 

r=m and r=n Square and invertible Ax=b has 1 solution 
r=m and r<n Short and wide Ax =b has oo solutions 
r <m and r=n Tall and thin Ax =b has O or 1 solution 
r <m and r<n Not full rank Ax =b has O or oo solutions 

The reduced R will fall in the same category as the matrix A. In case the pivot columns 
happen to come first, we can display these four possibilities for R. For Rx = d (and the 
original Ax = b) to be solvable, d must end in m - r zeros. Fis the free part of R. 

Four types for R

Their ranks 

[I] [IF] [�] [� �] 
r = m = n r = m < n r = n < m r < m, r < n 

Cases 1 and 2 have full row rank r = m. Cases 1 and 3 have full column rank r = n. 

Case 4 is the most general in theory and it is the least common in practice. 

• REVIEW OF THE KEY IDEAS •

1. The rank r is the number of pivots. The matrix R has m - r zero rows.

2. Ax = bis solvable if and only if the last m - r equations reduce to O = 0.

3. One particular solution Xp has all free variables equal to zero.

4. The pivot variables are determined after the free variables are chosen.

S. Full column rank r = n means no free variables: one solution or none.

6. Full row rank r = m means one solution if m = n or infinitely many if m < n.

• WORKED EXAMPLES • 

3.3 A This question connects elimination (pivot columns and back substitution) to 
column space-nullspace-rank-solvability (the higher level picture). A has rank 2: 

x1 + 2x2 + 3x3 + 5x4 = bi 
Ax= b is 2x1 + 4x2 + 8x3 + 12x4 = b2 

3x1 + 6x2 + 7x3 + 13x4 = b3 
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1, Reduce [ A b] to [ U c], so that Ax = b becomes a triangular system U x = c. 2. Find the condition on b1 , b2, b3 for Ax = b to have a solution. 3. Describe the column space of A. Which plane in R3 ?4. Describe the nullspace of A. Which special solutions in R4 ?5. Reduce [ U c] to [ R d]: Special solutions from R, particular solution from d.6. Find a particular solution to Ax = (0, 6, -6) and then the complete solution. 
Solution 

1. The multipliers in elimination are 2 and 3 and -1. They take [ A b] into [ U c].
[ 1 2 3 5 b1 l [ 1 2 4 8 12 b2 -+ 0 
3 6 7 13 b3 0 

2 3 0 2 0 -2 
5 b1 ] [ 1 2 3 5 2 b2 - 2b1 -+ 0 0 2 2 -2 b3 - 3b1 0 0 0 0 

2. The last equation shows the solvability condition b3 + b2 - 5b1 = 0. Then 0 = 0. 3. First description: The column space is the plane containing all combinations of thepivot columns (1, 2, 3) and (3, 8, 7). The pivots are in columns 1 and 3. Seconddescription: The column space contains all vectors with b3 + b2 - 5b1 = 0. Thatmakes Ax = b solvable, so b is in the column space. All columns of A pass this test

b3 + b2 - 5b1 = 0. This is the equation for the plane in the first description !4. The special solutions have free variables x2 = 1, x4 = 0 and then x2 = 0, x4 = 1:
Special solutions to Ax = 0 Back substitution in U x = 0 or change signs of 2, 2, 1 in R

The nullspace N(A) in R4 contains all Xn = c1 s 1 + c2s2. 5. In the reduced form R, the third column changes from (3, 2, 0) in U to (0, 1, 0).The right side c = (0, 6, 0) becomes d = (-9, 3, 0) showing -9 and 3 in :1:p:
[1 2 3 5 0] [1 2 0 2[U c]= 0 0 2 2 6 -+[Rd]= 0 0 1 1 0 0 0 0 0 0 0 0 0

6. One particular solution Xp has free variables = zero. Back substitute in U x = c:
Particular solution to AXp = b 
Bring -9 and 3 from the vectord 
Free variables x2 and x4 are zero 

The complete solution to Ax= (0, 6, -6) is x = Xp + Xn = Xp + c1 s 1 + c2s2. 
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3.3 B Suppose you have this information about the solutions to Ax = b for a specific b.

What does that tell you about m and n and r (and A itself)? And possibly about b.

1. There is exactly one solution.
2. All solutions to Ax = b have the form x = [ i] + c [ i ] .
3. There are no solutions.
4. All solutions to Ax = b have the form x = [ ! ] + c [ �]
5. There are infinitely many solutions.

Solution In case 1, with exactly one solution, A must have full column rank r = n. 
The nullspace of A contains only the zero vector. Necessarily m � n. 

In case 2, A must haven = 2 columns (and m is arbitrary). With [ ½] in the nullspace 
of A, column 2 is the negative of column 1. Also A # 0: the rank is 1. With x = [ i] as a 
solution, b = 2 ( column 1) + ( column 2). My choice for � would be ( 1, 0). 

In case 3 we only know that b is not in the column space of A. The rank of A must be 
less than m. I guess we know b # 0, otherwise x = 0 would be a solution. 

In case 4, A must haven= 3 columns. With (1, 0, 1) in the nullspace of A, column 3 
is the negative of column 1. Column 2 must not be a multiple of column 1, or the nullspace 
would contain another special solution. So the rank of A is 3 - 1 = 2. Necessarily A has 
m � 2 rows. The right side bis column 1 + column 2. 

In case 5 with infinitely many solutions, the nullspace must contain nonzero vectors. 
The rank r must be less than n (not full column rank), and b must be in the column space 
of A. We don't know if every bis in the column space, so we don't know if r = m. 

3.3 C Find the complete solution x = xp + xn by forward elimination on [A b]: 

[ � � ! � ] ' :� l [ � l 
4 8 6 8 l :: j 10 

Find numbers Y1, Y2, y3 so that Y1 ( row 1) + Y2 ( row 2) + y3 ( row 3) = zero row. Check 
that b = ( 4, 2, 10) satisfies the condition y1 b1 + y2 b2 + y3 b3 = 0. Why is this the condition 
for the equations to be solvable and b to be in the column space? 

Solution Forward elimination on [A b] produces a zero row in [U c]. The third equa-
tion becomes O = 0 and the equations are consistent (and solvable): 

[ 

1 2 1 0 
2 4 4 8 

4 8 6 8 

4 l [ 1 2 1 0 
2 

---t 
0 028 

10 0 0 2 8 _: l ---t
[ �-6 0

2 1 0 
0 2 8 
0 0 0 -n

Columns 1 and 3 contain pivots. The variables x2 and x4 are free. If we set those to zero 
we can solve (back substitution) for the particular solution or we continue to R.
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Rx= d shows that the particular solution with free variables= 0 is xp = (7, 0, -3, 0). 

[ 
1 2 1 0 4 l [ 1 2 1 0 4 l [ 1 2 0 -4 7 l 
0 0 2 8 -6 --+ 0 0 1 4 -3 --+ 0 0 1 4 -3 .
0000 0 0000 0 000 0 0 

For the nullspace part xn with b = 0, set the free variables x2, x4 to 1, 0 and also 0, 1: 

Special solutions s1 = (-2,1,0,0) and s2 = (4,0,-4,1) 

Then the complete solution to Ax = b (and Rx = d) is Xcomplete = xp + c1s1 + c2s2.
The rows of A produced the zero row from 2(row 1) + (row 2)-(row 3) = (0, 0, 0, 0). 

Thus y = (2, 1, -1). The same combination for b = (4, 2, 10) gives 2( 4) + (2)- (10) = 0. 
If a combination of the rows ( on the left side) gives the zero row, then the same combi­

nation must give zero on the right side. Of course! Otherwise no solution.

Later we will say this again in different words: If every column of A is perpendicular 
toy = ( 2, 1, -1), then any combination b of those columns must also be perpendicular to 
y. Otherwise bis not in the column space and Ax = bis not solvable.

And again: If y is in the nullspace of AT then y must be perpendicular to every b in
the column space of A. Just looking ahead ... 

Problem Set 3.3 

1 (Recommended) Execute the six steps of Worked Example 3.3 A to describe the 
column space and nullspace of A and the complete solution to Ax = b:

A=[�:�!] b=[��i [!] 
2 3 5 2 b3 5 

2 Carry out the same six steps for this matrix A with rank one. You will find two

conditions on b1 , b2 , b3 for Ax = b to be solvable. Together these two conditions 
put b into the __ space (two planes give a line): 

Questions 3-15 are about the solution of Ax = b. Follow the steps in the text to Xp 
and Xn. Start from the augmented matrix with last column b.

3 Write the complete solution as Xp plus any multiple of s in the nullspace: 

X + 3y + 3z = 1 
2x + 6y + 9z = 5 
-x -3y + 3z = 5.
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4 Find the complete solution (also called the general solution) to 

[� : ! �1 r; 1 [�1 0 0 2 4 ;j 1 
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5 Under what condition on bi, b2, b3 is this system solvable? Include b as a fourth 
column in elimination. Find all solutions when that condition holds: 

X + 2y - 2z = b1 

2x + 5y - 4z = b2 

4x+9y-8z = h 

6 What conditions on b1, b2, b3, b4 make each system solvable? Find x in that case: 

7 Show by elimination that (bi, b2, b3 ) is in the column space if b3 - 2b2 + 4b1 = 0. 

What combination of the rows of A gives the zero row? 

8 Which vectors (b1 , b2, b3 ) are in the column space of A? Which combinations of the 
rows of A give zero? 

(a)A [ii!] (h) A ••• [1 ! ; l 
9 (a) The Worked Example 3.3 A reached [ U c] from [ A b ]. Put the multipliers

into L and verify that LU equals A and Le equals b.

(b) Combine the pivot columns of A with the numbers -9 and 3 in the particular
solution Xp. What is that linear combination and why?

10 Construct a 2 by 3 system Ax = b with particular solution Xp = (2, 4, 0) and 
homogeneous solution Xn = any multiple of (1, 1, 1). 

11 Why can't a 1 by 3 system have Xp = (2, 4, 0) and Xn = any multiple of (1, 1, l)? 
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12 (a) If Ax= b has two solutions x 1 and x2, find two solutions to Ax= 0.
(b) Then find another solution to Ax = 0 and another solution to Ax = b.

13 Explain why these are all false: 

(a) The complete solution is any linear combination of Xi, and Xn. 

(b) A system Ax = b has at most one particular solution.
(c) The solution Xi, with all free variables zero is the shortest solution (minimum

length !!xii). Find a 2 by 2 counterexample.
(d) If A is invertible there is no solution Xn in the nullspace.

14 Suppose column 5 of Uhas no pivot. Then x5 is a __ variable. The zero vector 
(is) (is not) the only solution to Ax = 0. If Ax = b has a solution, then it has __ 
solutions. 

15 Suppose row 3 of U has no pivot. Then that row is __ . The equation U x = c 
is only solvable provided __ . The equation Ax = b (is) (is not) (might not be)
solvable. 

Questions 16-20 are about matrices of "full rank" r = m or r = n. 

16 The largest possible rank of a 3 by 5 matrix is __ . Then there is a pivot in every 
__ of U and R. The solution to Ax= b (always exists) (is unique). The column 
space of A is _ _  . An example is A = __ .

17 The largest possible rank of a 6 by 4 matrix is __ . Then there is a pivot in 
every _ _  of U and R. The solution to Ax = b (always exists) (is unique). The 
nullspace of A is __ . An example is A = __ .

18 Find by elimination the rank of A and also the rank of AT :

A - 2 1 1 5 (rank depends on q). [ 
1 4 O

l and A-_ [1
1

1 

0
� �

l

l 
- -1 2 10 

19 Find the rank of A and also of AT A and also of AAT : 

1 5]
0 1 

20 Reduce A to its echelon form U. Then find a triangular L so that A= LU. 

A= [
3 4 1 O

J 
6 5 2 1 

[
1 0 

and A= 2 2 
0 6 

1 ol 
0 3 .
5 4 
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21 Find the complete solution in the form Xi, + Xn to these full rank systems:

(a) X + y + Z = 4 (b) 
x+y+z=4

X -y + Z = 4.
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22 If Ax = b has infinitely many solutions, why is it impossible for Ax = B (new
right side) to have only one solution? Could Ax = B have no solution? 

23 Choose the number q so that (if possible) the ranks are ( a) 1, (b) 2, ( c) 3:

A� H -� !] and B � [� � �]

24 Give examples of matrices A for which the number of solutions to Ax = b is

(a) 0 or 1, depending on b
(b) oo, regardless of b
(c) 0 or oo, depending on b
(d) 1, regardless of b.

25 Write down all known relations between r and m and n if Ax = b has

(a) no solution for some b
(b) infinitely many solutions for every b
(c) exactly one solution for some b, no solution for other b
(d) exactly one solution for every b.

Questions 26-33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrix R. 

26 Continue elimination from U to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeros above those pivots to reach R: 

u� [H i] and u� [� Hl 
27 If A is a triangular matrix, when is R = rref(A) equal to I?

28 Apply Gauss-Jordan elimination to U x = 0 and U x = c. Reach Rx = 0 and
Rx=d: 

[ U O ] = [ � � ! �] and [ U c] = [ � � ! ! ] . 
Solve Rx= 0 to find Xn (its free variable is x2 = 1). Solve Rx= d to find Xi, (its
free variable is x2 = 0).
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29 Apply Gauss-Jordan elimination to reduce to Rx = 0 and Rx = d:

Solve U x = 0 or Rx = 0 to find Xn (free variable = 1). What are the solutions toRx= d? 

30 Reduce to U x = c (Gaussian elimination) and then Rx = d (Gauss-Jordan):

Ax= [� � � �1 r:�1 [ �1 = b.2 0 4 9 :: 10 

Find a particular solution Xp and all homogeneous solutions Xn. 

31 Find matrices A and B with the given property or explain why you can't:

(a) The only solution of Ax � [ � ] isx � [ � l

(b) The only soJ,tion of/1x � [ � l ;s X � [ n 

32 Find the LU factorization of A and the complete solution to Ax = b:

33 The complete solution to Ax = [ ! ] is x = [ � ] + c [ � ] . Find A.
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Challenge Problems 

34 (Recommended!) Suppose you know that the 3 by 4 matrix A has the vectors = 
(2, 3, 1, 0) as the only special solution to Ax = 0. 

(a) What is the rank of A and the complete solution to Ax = O?

(b) What is the exact row reduced echelon form R of A?

(c) How do you know that Ax = b can be solved for all b?

35 Suppose K is the 9 by 9 second difference matrix (2's on the diagonal, -1 's on 
the diagonal above and also below). Solve the equation Kx = b = (10, ... , 10). 
If you graph x1, ... , x9 above the points 1, ... , 9 on the x axis, I think the nine points 
fall on a parabola. 

36 Suppose Ax = b and Cx

Is it true that A equals C ? 
b have the same (complete) solutions for every b. 

37 Describe the column space of a reduced row echelon matrix R.
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3.4 Independence, Basis and Dimension 

1 Independent columns of A: The only solution to Ax = 0 is x = 0. The nullspace is Z.

2 Independent vectors: The only zero combination c1 v 1 + · · · + CkVk = 0 has all e's= 0. 

3 A matrix with m < n has dependent columns: At least n-m free variables/ special solutions. 

4 The vectors v 1, ... , v k span the space S if S = all combinations of the v 's. 

5 The vectors v 1, ... , v k are a basis for S if they are independent and they span S.

6 The dimension of a space S is the number of vectors in every basis for S.

7 If A is 4 by 4 and invertible, its columns are a basis for R4
. The dimension of R4 is 4. 

This important section is about the true size of a subspace. There are n columns in an 
m by n matrix. But the true "dimension" of the column space is not necessarily n. The 

dimension is measured by counting independent columns-and we have to say what that 

means. We will see that the true dimension of the column space is the rank r. 
The idea of independence applies to any vectors v 1, ... , Vn in any vector space. Most 

of this section concentrates on the subspaces that we know and use---especially the col­

umn space and the nullspace of A. In the last part we also study "vectors" that are not 
column vectors. They can be matrices and functions; they can be linearly independent (or 

dependent). First come the key examples using column vectors. 
The goal is to understand a basis: independent vectors that "span the space". 

Every vector in the space is a unique combination of the basis yectors. 

We are at the heart of our subject, and we cannot go on without a basis. The four essential 

ideas in this section (with first hints at their meaning) are: 

1. Independent vectors

2. Spanning a space

3. Basis for a space

4. Dimension of a space

(no extra vectors) 

(enough vectors to produce the rest) 

(not too many or too few) 

(the number of vectors in a basis) 

Linear Independence 

Our first definition of independence is not so conventional, but you are ready for it. 

DEFINITION The columns of A are linearly independent when the only solution to 
Ax = 0 is x = 0. No other combination Ax of the columns gives the zero vector. 
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The columns are independent when the nullspace N(A) contains only the zero vector. 
Let me illustrate linear independence (and dependence) with three vectors in R3

: 

1. If three vectors are not in the same plane, they are independent. No combination of
v1, v2, v3 in Figure 3.4 gives zero except 0v1 + 0v2 + 0v3.

2. If three vectors w 1, w2, w3 are in the same plane, they are dependent.

V1 

Not in 
a plane V2

V3

In a plane
0 

�---
w-:

W1 

Figure 3.4: Independent vectors v1, v2, v3. Only 0v1 + 0v2 + 0v3 gives the vector 0. 
Dependent vectors w1, w2, w3. The combination w1 - w2 + W3 is (0, 0, 0).

This idea of independence applies to 7 vectors in 12-dimensional space. If they are the 
columns of A, and independent, the nullspace only contains x = 0. None of the vectors is 
a combination of the other six vectors. 

Now we choose different words to express the same idea. The following definition of 
independence will apply to any sequence of vectors in any vector space. When the vectors 
are the columns of A, the two definitions say exactly the same thing. 

DEFINITION The sequence of vectors v1, ... , Vn is linearly independent if the only
combination that gives the zero vector is 0v1 + 0v2 + · · · + 0vn. 

Linear independence 

X1 V1 + X2V2 + · · · + XnVn = 0 only happens when all x's are zero. (1) 

If a combination gives 0, when the x's are not all zero, the vectors are dependent. 
Correct language: "The sequence of vectors is linearly independent." Acceptable 

shortcut: "The vectors are independent." Unacceptable: "The matrix is independent." 
A sequence of vectors is either dependent or independent. They can be combined to 

give the zero vector (with nonzero x's) or they can't. So the key question is: Which com­
binations of the vectors give zero? We begin with some small examples in R2

: 

(a) The vectors (1, 0) and (0, 1) are independent.

(b) The vectors (1, 0) and (1, 0.00001) are independent.

( c) The vectors ( 1, 1) and ( -1, -1) are dependent.

(d) The vectors (1, 1) and (0, 0) are dependent because of the zero vector.

( e) In R 2, any three vectors ( a, b) and ( c, d) and ( e, f) are dependent.



166 Chapter 3. Vector Spaces and Subspaces 

Geometrically, (1, 1) and (-1, -1) are on a line through the origin. They are dependent. 
To use the definition, find numbers x1 and x2 so that x1(1, 1) + x 2(-1, -1) = (0,0). 
This is the same as solving Ax = 0:

[ 
1
1 

-
-
1
1] [x

x2
1] [ o

o
] for x1 = 1 and x2 = l.

The columns are dependent exactly when there is a nonzero vector in the nullspace.

If one of the v's is the zero vector, independence has no chance. Why not? 

Three vectors in R2 cannot be independent! One way to see this: the matrix A with 
those three columns must have a free variable and then a special solution to Ax = 0. 
Another way: If the first two vectors are independent, some combination will produce the 
third vector. See the second highlight below. 

Now move to three vectors in R3
. If one of them is a multiple of another one, these 

vectors are dependent. But the complete test involves all three vectors at once. We put 
them in a matrix and try to solve Ax = 0. 

Example 1 The columns of this A are dependent. Ax = 0 has a nonzero solution: 

The rank is only r = 2. Independent columns produce full column rank r = n = 3. 
In that matrix the rows are also dependent. Row 1 minus row 3 is the zero row. For a 

square matrix, we will show that dependent columns imply dependent rows. 

Question How to find that solution to Ax = 0? The systematic way is elimination. 

A � [ � [ i] <educ� ID R � [ � [ � []

The solution x = (-3, 1, 1) was exactly the special solution. It shows how the free column 
(column 3) is a combination of the pivot columns. That kills independence! 

Full column rank The columns of A are independent exactly when the rank is r = n.

There are n pivots and no free variables. Only x = 0 is in the nullspace. 

One case is of special importance because it is clear from the start. Suppose seven 
columns have five components each (m = 5 is less than n = 7). Then the columns must

be dependent. Any seven vectors from R5 are dependent. The rank of A cannot be larger 
than 5. There cannot be more than five pivots in five rows. Ax = 0 has at least 7 -5 = 2 
free variables, so it has nonzero solutions-which means that the columns are dependent. 

Any set of n vectors in Rm must be linearly dependent if n > m. 
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This type of matrix has more columns than rows-it is short and wide. The columns arecertainly dependent if n > m, because Ax = 0 has a nonzero solution. 
The columns might be dependent or might be independent if n :::; m. Elimination willreveal the r pivot columns. It is those r pivot columns that are independent. 

Note Another way to describe linear dependence is this: "One vector is a combination

of the other vectors." That sounds clear. Why don't we say this from the start? Ourdefinition was longer: "Some combination gives the zero vector, other than the trivial

combination with every x = O." We must rule out the easy way to get the zero vector. That trivial combination of zeros gives every author a headache. If one vector is a combi­nation of the others, that vector has coefficient x = 1. 
The point is, our definition doesn't pick out one particular vector as guilty. All columnsof A are treated the same. We look at Ax = 0, and it has a nonzero solution or it hasn't. Inthe end that is better than asking if the last column ( or the first, or a column in the middle)

is a combination of the others.

Vectors that Span a Subspace 

The first subspace in this book was the column space. Starting with columns v1, ... , Vn, the subspace was filled out by including all combinations x1 v1 + · · · + Xn Vn. The column

space consists of all combinations Ax of the columns. We now introduce the single word"span" to describe this: The column space is spanned by the columns. 

DEFINITION A set of vectors spans a space if their linear combinations fill the space.

The columns of a matrix span its column space. They might be dependent. 

Example 2 v1 = [ �] and v2 = [ �] span the full two-dimensional space R2
. 

Example 3 v1 = [ �] , v2 = [ �] , v3 = [ �] also span the full space R2
. 

Example 4 w 1 = [ �] and w2 = [ = �] only span a line in R2
. So does w 1 by itself.

Think of two vectors coming out from (0, 0, 0) in 3-dimensional space. Generally theyspan a plane. Your mind fills in that plane by taking linear combinations. Mathematicallyyou know other possibilities: two vectors could span a line, three vectors could span all ofR3
, or only a plane. It is even possible that three vectors span only a line, or ten vectorsspan only a plane. They are certainly not independent! 
The columns span the column space. Here is a new subspace-which is spanned by the

rows. The combinations of the rows produce the "row space". 
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DEFINITION The row space of a matrix is the subspace of Rn spanned by the rows.

The row space of A is C(AT ). It is the column space of AT. 

The rows of an m by n matrix haven components. They are vectors in Rn-or they
would be if they were written as column vectors. There is a quick way to fix that: Transpose

the matrix. Instead of the rows of A, look at the columns of AT . Same numbers, but now
in the column space C(AT ). This row space of A is a subspace of Rn . 

Example 5 Describe the column space and the row space of A.

2 

7 
! ] . Here m = 3 and n = 2.

The column space of A is the plane in R 3 spanned by the two columns of A. The row

space of A is spanned by the three rows of A (which are columns of AT )_ This row space
is all of R2

. Remember: The rows are in Rn spanning the row space. The columns are in
Rm spanning the column space. Same numbers, different vectors, different spaces. 

A Basis for a Vector Space 

Two vectors can't span all of R3
, even if they are independent. Four vectors can't be

independent, even if they span R 3. We want enough independent vectors to span the
space (and not more). A "basis" is just right. 

DEFINITION A basis for a vector space is a sequence of vectors with two properties:

The basis vectors are linearly independent and they span the space. 

This combination of properties is fundamental to linear algebra. Every vector v in the space 
is a combination of the basis vectors, because they span the space. More than that, the com­
bination that produces v is unique, because the basis vectors v1, ... , Vn are independent: 

There is one and only one way to write v as a combination of the basis vectors. 

Reason: Supposev = a1v1 
+· · ·+anvn and alsov = b1v1 

+· · -+bnvn . By subtraction
(a1 - b1)v1 +···+(an - bn )vn is the zero vector. From the independence of the v's, each
ai - bi = 0. Hence ai = bi, and there are not two ways to produce v. 

Example 6 The columns of I = [ � �] produce the "standard basis" for R2
. 
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The basis vectors z = [ �] and j = [ �] are independent. They span R2
. 

Everybody thinks of this basis first. The vector i goes across and j goes straight up. The 
columns of the 3 by 3 identity matrix are the standard basis i, j, k. The columns of the n
by n identity matrix give the "standard basis" for Rn. 

Now we find many other bases (infinitely many). The basis is not unique! 

Example 7 (Important) The columns of every invertible n by n matrix give a basis for Rn: 

Invertible matrix 
Independent columns 
Column space is R 3 

Singular matrix 
B 

__ [
1

� 

0

� �
1 l 

Dependent columns 
Column space =/- R 3 

The only solution to Ax = 0 is x = A- 1 0 = 0. The columns are independent. They span 
the whole space Rn -because every vector bis a combination of the columns. Ax = b can 
always be solved by x = A- 1 b. Do you see how everything comes together for invertible 
matrices? Here it is in one sentence: 

The vectors v1, . .. , Vn are a basis for Rn exactly when they are the columns of an n by

n invertible matrix. Thus Rn has infinitely many different bases. 

When the columns are dependent, we keep only the pivot columns-the first two columns 
of B above, with its two pivots. They are independent and they span the column space. 

The pivot columns of A are a basis for its column space. The pivot rows of A are a basis 
for its row space. So are the pivot rows of its echelon form R.

Example 8 This matrix is not invertible. Its columns are not a basis for anything! 

One pivot column 
One pivot row (r = 1) 

A = [; : ] reduces to R = [ � �] . 

Column 1 of A is the pivot column. That column alone is a basis for its column space. 
The second column of A would be a different basis. So would any nonzero multiple of that 
column. There is no shortage of bases. One definite choice is the pivot columns. 

Notice that the pivot column (1, 0) of this Rends in zero. That column is a basis for 
the column space of R, but it doesn't belong to the column space of A. The column spaces 
of A and Rare different. Their bases are different. (Their dimensions are the same.) 

The row space of A is the same as the row space of R. It contains (2, 4) and (1, 2) and 
all other multiples of those vectors. As always, there are infinitely many bases to choose 
from. One natural choice is to pick the nonzero rows of R (rows with a pivot). So this 
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matrix A with rank one has only one vector in the basis:

Basis for the column space: [;] . Basis for the row space: [;] .

The next chapter will come back to these bases for the column space and row space. We
are happy first with examples where the situation is clear (and the idea of a basis is still
new). The next example is larger but still clear. 

Example 9 Find bases for the column and row spaces of this rank two matrix:

2 0 0 
0 3] 
1 4 .
0 0 

Columns 1 and 3 are the pivot columns. They are a basis for the column space (of R!). The
vectors in that column space all have the form b = (x, y, 0). The column space of R is the
"xy plane" inside the full 3-dimensional xyz space. That plane is not R2

, it is a subspace of
R3

. Columns 2 and 3 are also a basis for the same column space. Which pairs of columns
of Rare not a basis for its column space? 

The row space of R is a subspace of R4
. The simplest basis for that row space is the

two nonzero rows of R. The third row (the zero vector) is in the row space too. But it is
not in a basis for the row space. The basis vectors must be independent. 

Question Given five vectors in R 7, how do you find a basis for the space they span?

First answer Make them the rows of A, and eliminate to find the nonzero rows of R.

Second answer Put the five vectors into the columns of A. Eliminate to find the pivot
columns (of A not R). Those pivot columns are a basis for the column space. 

Could another basis have more vectors, or fewer? This is a crucial question with a good
answer: No. All bases/or a vector space contain the same number of vectors. 

The number of vectors, in any and every basis, is the "dimension" of the space. 

Dimension of a Vector Space 

We have to prove what was just stated. There are many choices for the basis vectors, but
the number of basis vectors doesn't change. 

If V1, ... , Vm and W1, ... , Wn are both bases for the same vector space, then m = n. 

Proof Suppose that there are more w's than v's. From n > m we want to reach a
contradiction. The v's are a basis, so w1 must be a combination of the v's. If w1 equals
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an v 1 + · · · + am 1 Vm, this is the first column of a matrix multiplication VA: 

Each w is a 

combination 

of the v's 
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We don't know each a;j, but we know the shape of A (it ism by n). The second vector 
w2 is also a combination of the v's. The coefficients in that combination fill the second 
column of A. The key is that A has a row for every v and a column for every w. A is a 
short wide matrix, since we assumed n > m. So Ax= 0 has a nonzero solution.

Ax = 0 gives V Ax = 0 which is W x = 0. A combination of the w 's gives zero!

Then thew's could not be a basis-our assumption n > mis not possible for two bases. 
If m > n we exchange the v's and w's and repeat the same steps. The only way to 

avoid a contradiction is to have m = n. This completes the proof that m = n.

The number of basis vectors depends on the space-not on a particular basis. The 
number is the same for every basis, and it counts the "degrees of freedom" in the space. 
The dimension of the space Rn is n. We now introduce the important word dimension

for other vector spaces too. 

DEFINITION The dimension of a space is the number of vectors in every basis. 

This matches our intuition. The line through v = (1, 5, 2) has dimension one. It is a sub­
space with this one vector v in its basis. Perpendicular to that line is the plane 
x + 5y + 2z = 0. This plane has dimension 2. To prove it, we find a basis (-5, 1, 0) 
and (-2, 0, 1). The dimension is 2 because the basis contains two vectors. 

The plane is the nullspace of the matrix A = [ 1 5 2], which has two free variables. 
Our basis vectors (-5, 1, 0) and (-2, 0, 1) are the "special solutions" to Ax = 0. The 
next section shows that the n - r special solutions always give a basis for the nullspace.

C(A) has dimension rand the nullspace N(A) has dimension n - r.

Note about the language of linear algebra We never say "the rank of a space" or "the 
dimension of a basis" or "the basis of a matrix". Those terms have no meaning. It is the 
dimension of the column space that equals the rank of the matrix.

Bases for Matrix Spaces and Function Spaces 

The words "independence" and "basis" and "dimension" are not at all restricted to column 
vectors. We can ask whether three matrices A1 , A2 , A3 are independent. When they are in 
the space of all 3 by 4 matrices, some combination might give the zero matrix. We can also 
ask the dimension of the full 3 by 4 matrix space. (It is 12.) 

In differential equations, d2 y / dx2 = y has a space of solutions. One basis is y = ex 

and y = e-x . Counting the basis functions gives the dimension 2 for the space of all 
solutions. (The dimension is 2 because of the second derivative.) 
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Matrix spaces and function spaces may look a little strange after R
n

. But in some 
way, you haven't got the ideas of basis and dimension straight until you can apply them to 
"vectors" other than column vectors. 

Matrix spaces The vector space M contains all 2 by 2 matrices. Its dimension is 4. 

One basis is A1, A2, A3, A4 = [� �], rn �], [� �], [� �]. 
Those matrices are linearly independent. We are not looking at their columns, but at the 
whole matrix. Combinations of those four matrices can produce any matrix in M, so they 
span the space: 

Every A combines 
the basis matrices 

e2] = A.
e4 

A is zero only if the e's are all zero-this proves independence of A1, A2, A3, A4. 
The three matrices A1, A2, A4 are a basis for a subspace-the upper triangular 

matrices. Its dimension is 3. A1 and A4 are a basis for the diagonal matrices. What is 
a basis for the symmetric matrices? Keep A1 and A4, and throw in A2 + A3 . 

To push this further, think about the space of all n by n matrices. One possible basis 
uses matrices that have only a single nonzero entry (that entry is 1). There are n2 positions 
for that 1, so there are n2 basis matrices: 

The dimension of the whole n by n matrix space is n2
. 

The dimension of the subspace of upper triangular matrices is ½n2 
+ ½n. 

The dimension of the subspace of diagonal matrices is n. 

The dimension of the subspace of symmetric matrices is ½n2 
+ ½n (why ?). 

Function spaces The equations d2y/dx2 
= 0 and d2y/dx2 

= -y and d2y/dx2 
= y 

involve the second derivative. In calculus we solve to find the functions y( x): 

y" = 0 
y" = -y 
y" =y 

is solved by any linear function y = ex + d 
is solved by any combination y = e sin x + d cos x 
is solved by any combination y = eex 

+ de-x. 

That solution space for y" = -y has two basis functions: sin x and cos x. The space 
for y" = 0 has x and 1. It is the "nullspace" of the second derivative! The dimension is 2 
in each case (these are second-order equations). 

The solutions of y" = 2 don't form a subspace-the right side b = 2 is not zero. A 
particular solution is y(x) = x2

. The complete solution is y(x) = x2 +ex+ d. All 
those functions satisfy y" = 2. Notice the particular solution plus any function ex + d
in the nullspace. A linear differential equation is like a linear matrix equation Ax = b.

But we solve it by calculus instead of linear algebra. 



3.4. Independence, Basis and Dimension 173 

We end here with the space Z that contains only the zero vector. The dimension of this 
space is zero. The empty set (containing no vectors) is a basis for Z. We can never allow 
the zero vector into a basis, because then linear independence is lost. 

• REVIEW OF THE KEY IDEAS •

1. The columns of A are independent if x = 0 is the only solution to Ax = 0.

2. The vectors v1, ... , Vr span a space if their combinations fill that space.

3. A basis consists of linearly independent vectors that span the space. Every vector
in the space is a unique combination of the basis vectors.

4. All bases for a space have the same number of vectors. This number of vectors in a
basis is the dimension of the space.

5. The pivot columns are one basis for the column space. The dimension is r.

• WORKED EXAMPLES • 

3.4 A Start with the vectors v 1 = (1, 2, 0) and v2 = (2, 3, 0). (a) Are they linearly 
independent? (b) Are they a basis for any space? (c) What space V do they span? 
(d) What is the dimension of V? (e) Which matrices A have Vas their column space?
(f) Which matrices have Vas their nullspace? (g) Describe all vectors v3 that complete
a basis v1, v2, v3 for R3

. 

Solution 

(a) v 1 and v2 are independent-the only combination to give O is 0v1 + Ov2. 

(b) Yes, they are a basis for the space they span.

(c) That space V contains all vectors (x, y, 0). It is the xy plane in R3
. 

(d) The dimension of Vis 2 since the basis contains two vectors.

(e) This Vis the column space of any 3 by n matrix A of rank 2, if every column is a
combination of v1 and v2. In particular A could just have columns v 1 and v2.

(f) This Vis the nullspace of any m by 3 matrix B of rank 1, if every row is a multiple
of (0, 0, 1). In particular take B = [0 0 1]. Then Bv 1 = 0 and Bv2 = 0.

(g) Any third vector v3 = (a, b, c) will complete a basis for R3 provided c-/- 0.
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3.4 B Start with three independent vectors w1, w2, w3. Take combinations of those 
vectors to produce v1, v2, v3. Write the combinations in matrix form as V = vV B: 

V1 = W1 + W2 

V2 = W1 + 2W2 + W3 

V3 = W2 + CW3 

What is the test on B to see if V = W B has independent columns? If c -=/- 1 show 
that v1, v2, v3 are linearly independent. If c = 1 show that the v's are linearly dependent.

Solution The test on V for independence of its columns was in our first definition: 
The nullspace of V must contain only the zero vector. Then x = (0, 0, 0) is the only 
combination of the columns that gives V x = zero vector. 

If c = 1 in our problem, we can see dependence in two ways. First, v1 + v3 will be 
the same as v2. (If you add w1 + w2 to w2 + w3 you get w1 + 2w2 + W3 which is v2.) 
In other words v1 - v2 + v3 = 0-which says that the v's are not independent. 

The other way is to look at the nullspace of B. If c = 1, the vector x = ( 1, -1, 1) is in 
that nullspace, and Bx = 0. Then certainly W Bx = 0 which is the same as V x = 0. So 
the v's are dependent. This specific x = (1, -1, 1) from the nullspace tells us again that 
V1 - V2 + V3 = 0. 

Now suppose c -=/- 1. Then the matrix B is invertible. So if xis any nonzero vector we 
know that Bx is nonzero. Since the w's are given as independent, we further know that 
W Bx is nonzero. Since V = W B, this says that xis not in the nullspace of V. In other 
words v1, v2, v3 are independent. 

The general rule is "independent v's from independent w's when B is invertible". 
And if these vectors are in R3

, they are not only independent-they are a basis for R3
. 

"Basis of v'sfrom basis of w's when the change of basis matrix Bis invertible." 

3.4 C (Important example) Suppose v1, ... , Vn is a basis for Rn and then by n matrix 
A is invertible. Show that Av 1, ... , Avn is also a basis for Rn .

Solution In matrix language: Put the basis vectors v1, ... , Vn in the columns of an 
invertible(!) matrix V. Then Av1, ... , Avn are the columns of AV. Since A is invertible, 
so is AV and its columns give a basis. 

In vector language: Suppose c1Av1 + · · · + cnAVn = 0. This is Av = 0 with 
v = c1 v1 +· · +cnV

n . Multiply by A �l to reach v = 0. By linear independence of the v's,

all Ci = 0. This shows that the Av's are independent. 
To show that the Av's span Rn , solve c1Av1 + · · · + c

nAv
n = b which is the same as 

c1 v1 + · · · + Cn Vn = A �lb. Since the v's are a basis, this must be solvable. 
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Problem Set 3.4 

Questions 1-10 are about linear independence and linear dependence. 

1 Show that v1, v2, v3 are independent but v1, v2, v3, v4 are dependent: 

175 

Solve c1 v1 + c2v2 + C3V3 + c4 V4 = 0 or Ax = 0. The v's go in the columns of A. 

2 (Recommended) Find the largest possible number of independent vectors among 

3 Prove that if a= 0 or d = 0 or f = 0 (3 cases), the columns of U are dependent:

[a b cl 
U= � i ; . 

4 If a, d, f in Question 3 are all nonzero, show that the only solution to U x = 0 is
x = 0. Then the upper triangular U has independent columns. 

5 Decide the dependence or independence of 

(a) the vectors (1, 3, 2) and (2, 1, 3) and (3, 2, 1)

(b) the vectors (1, -3, 2) and (2, 1, -3) and (-3, 2, 1).

6 Choose three independent columns of U. Then make two other choices. Do the same 
for A. 

[J 
3 4 

tl [� 
3 4

�] U= 6 7 
and A= 6 7 

0 0 0 0 
0 0 6 8 

7 If w1, w2, w3 are independent vectors, show that the differences v1 = w2 - W3 and 
v2 = w1 - w3 and v3 = w1 -w2 are dependent. Find a combination of the v's 

that gives zero. Which matrix A in [ v1 v2 v3] = [ w1 w2 w3] A is singular? 

8 If w1, w2, w3 are independent vectors, show that the sums v1 = w2 + w3 and 
V2 = W1 + W3 and V3 = W1 + W2 are independent. (Write C1 V1 + C2V2 + C3V3 = 0 
in terms of thew's. Find and solve equations for the e's, to show they are zero.) 



176 Chapter 3. Vector Spaces and Subspaces 

9 Suppose v 1, v2, v3, V4 are vectors in R3
. 

(a) These four vectors are dependent because __ .
(b) The two vectors v 1 and v2 will be dependent if __ .
(c) The vectors v 1 and (0, 0, 0) are dependent because __ .

10 Find two independent vectors on the plane x + 2y -3z -t = 0 in R4
. Then find three 

independent vectors. Why not four? This plane is the nullspace of what matrix? 

Questions 11-14 are about the space spanned by a set of vectors. Take an l.inear com­
binations of the vectors. 

11 Describe the subspace of R3 (is it a line or plane or R3?) spanned by 
(a) the two vectors (1, 1, -1) and ( -1, -1, 1)
(b) the three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0)
(c) all vectors in R3 with whole number components
(d) all vectors with positive components.

12 The vector b is in the subspace spanned by the columns of A when __ has a 
solution. The vector c is in the row space of A when __ has a solution. 
True or false: If the zero vector is in the row space, the rows are dependent.

13 Find the dimensions of these 4 spaces. Which two of the spaces are the same? (a) col­
umn space of A, (b) column space of U, ( c) row space of A, ( d) row space of U:

[

1 1 ol and u = [o
o
l 2

0

1 0

0
1] A= ! I -� 

14 v +wand v -ware combinations of v and w. Write v and was combinations of
v +wand v -w. The two pairs of vectors __ the same space. When are they a
basis for the same space? 

Questions 15-25 are about the requirements for a basi.s. 

15 If v 1, ... , Vn are linearly independent, the space they span has dimension __ . 
These vectors are a __ for that space. If the vectors are the columns of an m by
n matrix, then m is __ than n. If m = n, that matrix is __ .

16 Find a basis for each of these subspaces of R4
: 

(a) All vectors whose components are equal.
(b) All vectors whose components add to zero.
(c) All vectors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1).
( d) The column space and the nullspace of I ( 4 by 4).
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17 Find three different bases for the column space of U = [ 6 1 6 � 5 ] . Then find two

different bases for the row space of U. 

18 Suppose v 1, v2, ... , v6 are six vectors in R4
. 

(a) Those vectors (do )(do not)(might not) span R4
. 

(b) Those vectors (are )(are not)(might be) linearly independent.

(c) Any four of those vectors (are)(are not)(might be) a basis for R4
. 

19 The columns of A are n vectors from Rm . If they are linearly independent, what is 

the rank of A? If they span Rm , what is the rank? If they are a basis for Rm, what 

then? Looking ahead: The rank r counts the number of __ columns. 

20 Find a basis for the plane x - 2y + 3z = 0 in R3
. Then find a basis for the intersection

of that plane with the xy plane. Then find a basis for all vectors perpendicular to the 

plane. 

21 Suppose the columns of a 5 by 5 matrix A are a basis for R5
. 

(a) The equation Ax = 0 has only the solution x = 0 because __ .

(b) If bis in R5 then Ax = bis solvable because the basis vectors R 5. 

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for R 5. 

22 Suppose Sis a 5-dimensional subspace of R6
. True or false (example if false): 

(a) Every basis for Scan be extended to a basis for R6 by adding one more vector.

(b) Every basis for R6 can be reduced to a basis for S by removing one vector.

23 U comes from A by subtracting row 1 from row 3: 

Find bases for the two column spaces. Find bases for the two row spaces. Find bases 

for the two nullspaces. Which spaces stay fixed in elimination? 

24 True or false (give a good reason): 

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its row space.

( c) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.
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25 For which numbers c and d do these matrices have rank 2? 

2 
0 
0 

5 
C 

0 

0 5] 
2 2 

d 2 
and 

Questions 26-30 are about spaces where the "vectors" are matriceso 
26 Find a basis (and the dimension) for each of these subspaces of 3 by 3 matrices: 

(a) All diagonal matrices.
(b) All symmetric matrices (AT = A).

(c) All skew-symmetric matrices (AT = -A).

27 Construct six linearly independent 3 by 3 echelon matrices U1, ... , U6. 

28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a 
basis for the subspace whose rows also add to zero. 

29 What subspace of 3 by 3 matrices is spanned (take all combinations) by 

(a) the invertible matrices?
(b) the rank one matrices?
(c) the identity matrix?

30 Find a basis for the space of 2 by 3 matrices whose nullspace contains (2, 1, 1 ). 

Questions 31-35 are about spaces where the "vectors" are functions. 

31 (a) Find all functions that satisfy � = 0. 

(b) Choose a particular function that satisfies �; = 3.

(c) Find all functions that satisfy �; = 3.

32 The cosine space F3 contains all combinations y(x) = A cos x+ B cos 2x+C cos 3x. 
Find a basis for the subspace with y(O) = 0. 

33 Find a basis for the space of functions that satisfy 

(a) �; - 2y = 0 

(b) dy - '1L = 0
dx X 

34 Suppose y1 ( x), y2 ( x), y3 ( x) are three different functions of x. The vector space they 
span could have dimension 1, 2, or 3. Give an example of y1, y2, y3 to show each 
possibility. 

35 Find a basis for the space of polynomials p( x) of degree :S: 3. Find a basis for the 
subspace with p(l) = 0. 

36 Find a basis for the space S of vectors ( a, b, c, d) with a+ c + d = 0 and also for the 
space T with a+ b = 0 and c = 2d. What is the dimension of the intersection S n T? 
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37 If AS= SA for the shift matrix S, show that A must have this special form: 

If [� : fl [� � �i [� � �i [� : f] then A = [� ! �i 
g h i  0 0 0  000 g h i  0 0 a
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"The subspace of matrices that commute with the shift S has dimension __ ." 

38 Which of the following are bases for R 3? 

(a) (1,2,0) and(0,1,-1)
(b) (1, 1, -1), (2, 3,4), (4, 1, -1), (0, 1, -1)
(c) (1, 2, 2), (-1, 2, 1), (0, 8, 0)
(d) (1, 2, 2), (-1, 2, 1), (0, 8, 6)

39 Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the 5 by 5 
matrix [ A b] is invertible. Show that Ax = b is solvable when [ A b] is singular. 

40 (a) Find a basis for all solutions to d4y/dx4 = y(x).
(b) Find a particular solution to d4y / dx4 = y( x) + 1. Find the complete solution.

Challenge Problems 

41 Write the 3 by 3 identity matrix as a combination of the other five permutation 
matrices! Then show that those five matrices are linearly independent. (Assume a 
combination gives c1Pi + · · · + c5 P5 = zero matrix, and check entries to prove that 
c1 to c5 must all be zero.) The five permutations are a basis for the subspace of 3 by 
3 matrices with row and column sums all equal. 

42 Choose x = (x1,x2,x3,x4 ) in R4
. It has 24 rearrangements like (x2,x1,x3,x4)

and (x4, x3, x1, x2). Those 24 vectors, including x itself, span a subspace S. Find 
specific vectors x so that the dimension of Sis: (a) zero, (b) one, (c) three, (d) four. 

43 Intersections and sums have dim(V) + dim(W) = dim(V n W) + dim(V + W).
Start with a basis u1, ... , Ur for the intersection V n W. Extend with v 1, ... , Vs to 
a basis for V, and separately with w 1, ... , Wt to a basis for W. Prove that the u's,
v's and w's together are independent. The dimensions have (r + s) + (r + t) = 
(r) + (r + s + t) as desired.

44 Mike Artin suggested a neat higher-level proof of that dimension formula in Prob­
lem 43. From all inputs v in V and w in W, the "sum transformation" produces 
v + w. Those outputs fill the space V + W. The nullspace contains all pairs v = u, 
w = -u for vectors u in V n W. (Then v + w = u - u = 0.) So dim(V + W) +
dim(V n W) equals dim(V) + dim(W) (input dimension from V and W) by the 
Counting Theorem. 

dimension of outputs + dimension of nullspace = dimension of inputs. 

Problem For an m by n matrix of rank r, what are those 3 dimensions? Outputs= 
column space. This question will be answered in Section 3.5, can you do it now? 
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45 Inside Rn , suppose dimension (V) + dimension (W) > n. Show that some nonzero 
vector is in both V and W. 

46 Suppose A is 10 by 10 and A2 = 0 (zero matrix). So A multiplies each column of 
A to give the zero vector. This means that the column space of A is contained in the 
_ _  . If A has rank r, those subspaces have dimension r � 10 � r. So the rank is 

'(' � 5. 
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3.5 Dimensions of the Four Subspaces 
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1 The column space C(A) and the row space C(AT ) both have dimension r (the rank of A).

2 The nullspace N(A) has dimension n - r. The left nullspace N(AT ) has dimension m - r. 

3 Elimination produces bases for the row space and nullspace of A : They are the same as for R. 

4 Elimination often changes the column space and left nullspace (but dimensions don't change). 

S Rank one matrices: A= uvT 
= column times row : C(A) has basis u, C(AT ) has basis v. 

The main theorem in this chapter connects rank and dimension. The rank of a matrix 
is the number of pivots. The dimension of a subspace is the number of vectors in a basis. 
We count pivots or we count basis vectors. The rank of A reveals the dimensions of

all four fundamental subspaces. Here are the subspaces, including the new one. 

Two subspaces come directly from A, and the other two from AT : 

Four Fundamental Subspaces 

1. The row space is C (AT ), a subspace of Rn .

2. The column space is C(A), a subspace of Rm .

3. The nullspace is N (A), a subspace of Rn .

4. The left nullspace is N(AT ), a subspace of Rm . This is our new space.

In this book the column space and nullspace came first. We know C(A) and N(A) pretty 
well. Now the other two subspaces come forward. The row space contains all combinations 
of the rows. This row space of A is the column space of AT . 

For the left nullspace we solve AT y = 0-that system is n by m. This is the nullspace

of AT . The vectors y go on the left side of A when the equation is written yT A = oT .
The matrices A and AT are usually different. So are their column spaces and their nullspaces.
But those spaces are connected in an absolutely beautiful way. 

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One fact 
stands out: The row space and column space have the same dimension r. This number r 

is the rank of the matrix. The other important fact involves the two nullspaces: 

N(A) and N(AT ) have dimensions n - rand rn - r, to make up the full n and rn.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together 
(two in Rn and two in Rm ). That completes the "right way" to understand every Ax= b. 
Stay with it-you are doing real mathematics. 
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The Four Subspaces for R 

Suppose A is reduced to its row echelon form R. For that special form, the four subspaces 
are easy to identify. We will find a basis for each subspace and check its dimension. Then 
we watch how the subspaces change (two of them don't change!) as we look back at A. 
The main point is that the four dimensions are the same for A and R.

As a specific 3 by 5 example, look at the four subspaces for this echelon matrix R: 

m=3 
n=5 

r=2 

3 5 

0 0 

0 0 

0 
1 
0 �] 

pivot rows 1 and 2

pivot columns 1 and 4 

The rank of this matrix is r = 2 (two pivots). Take the four subspaces in order. 

1. The row space of R has dimension 2, matching the rank.

Reason: The first two rows are a basis. The row space contains combinations of all three 
rows, but the third row (the zero row) adds nothing new. So rows 1 and 2 span the row 
space C(RT ). 

The pivot rows 1 and 2 are independent. That is obvious for this example, and it is 
always true. If we look only at the pivot columns, we see the r by r identity matrix. 
There is no way to combine its rows to give the zero row ( except by the combination with 
all coefficients zero). So the r pivot rows are a basis for the row space. 

The dimension of the row space is the rank r. The nonzero rows of Rform a basis. 

2. The column space of R also has dimension r = 2.

Reason: The pivot columns 1 and 4 form a basis for C(R). They are independent because 
they start with the r by r identity matrix. No combination of those pivot columns can give 
the zero column (except the combination with all coefficients zero). And they also span the 
column space. Every other (free) column is a combination of the pivot columns. Actually 
the combinations we need are the three special solutions ! 

Column 2 is 3 (column 1). The special solution is (-3, 1, 0, 0, 0). 

Column 3 is 5 (column 1). The special solution is (-5, 0, 1, 0, 0, ). 

Column 5 is 7 (column 1) + 2 (column4). That solution is (-7, 0,0, -2, 1). 

The pivot columns are independent, and they span, so they are a basis for C(R). 

The dimension of the column space is the rank r. The pivot columns form a basis. 
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3. The nullspace of R has dimension n - r = 5 - 2. There are n - r = 3 free variables.
Here x2 ,x3 ,x5 are free (no pivots in those columns). They yield the three special
solutions to Rx = 0. Set a free variable to 1, and solve for x 1 and x4. 

-3 -5 -7
Rx= 0 has the 

1 0 0
complete solution 

s2 = 0 S3 = 1 S5 = 0
0 0 -2

X = X2S2 + X3S3 + X5S5 

0 0 1
The nullspace has dimension 3. 

Reason: There is a special solution for each free variable. With n variables and r pivots, 
that leaves n - r free variables and special solutions. The special solutions are independent, 
because they contain the identity matrix in rows 2, 3, 5. So N(R) has dimension n - r. 

The nullspace has dimension n - r. The special solutions form a basis. 

4. The nullspace of RT (left nullspace of R) has dimension m - r = 3 - 2.

Reason: The equation RT y = 0 looks for combinations of the columns of RT (the rows 

of R) that produce zero. This equation RT y = 0 or y TR = oT is 

Left nullspace 

Combination 

of rows is zero 

Y1 [1, 3, 5, 0, 7]
+Y2 [0, 0, 0, 1, 2]
+y3[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0] 

(1) 

The solutions y1, Y2, y3 are pretty clear. We need Y1 = 0 and Y2 = 0. The variable y3 is 
free (it can be anything). The nullspace of RT contains all vectors y = (0, 0, y3). 

In all cases R ends with m - r zero rows. Every combination of these m - r rows 
gives zero. These are the only combinations of the rows of R that give zero, because the 
pivot rows are linearly independent. So y in the left nullspace has y1 = 0, ... , Yr = 0. 

If A ism by n of rank r, its left nullspace has dimension m - r. 

Why is this a "left nullspace"? The reason is that RT y = 0 can be transposed to 
yT R = oT _ Now yT is a row vector to the left of R. You see the y's in equation (1) 
multiplying the rows. This subspace came fourth, and some linear algebra books omit 
it-but that misses the beauty of the whole subject. 

In Rn the row space and nullspace have dimensions r and n - r ( adding to n). 
In Rm the column space and left nullspace have dimensions r and m - r ( total m). 
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The Four Subspaces for A 

We have a job still to do. The subspace dimensions for A are the same as for R.

The job is to explain why. A is now any matrix that reduces to R = rref(A). 

This A reduces to R 

N(A) 

row space 
all AT

y 

nullspace 
Ax =0 

dimension n - r 

[ 
1 3 

A= 0 0 

1 3 

The big picture 

Notice C(A) -=/- C(R) ! (2)

C(A) 
dimr 

column space 
all Ax 

left nullspace 
AT

y =O

N(AT)
dimension rn - r 

Figure 3.5: The dimensions of the Four Fundamental Subspaces (for Rand for A).

1 A has the same row space as R. Same dimension rand same basis. 

Reason: Every row of A is a combination of the rows of R. Also every row of R is a 
combination of the rows of A. Elimination changes rows, but not row spaces.

Since A has the same row space as R, we can choose the first r rows of R as a basis. 
Or we could choose r suitable rows of the original A. They might not always be the first r

rows of A, because those could be dependent. The good r rows of A are the ones that end 
up as pivot rows in R. 

2 The column space of A has dimension r. The column rank equals the row rank. 

Rank Theorem: The number of independent columns =the number of independent rows. 

Wrong reason: "A and R have the same column space." This is false. The columns of R

often end in zeros. The columns of A don't often end in zeros. Then C(A) is not C(R).
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Right reason: The same combinations of the columns are zero ( or nonzero) for A and R. 
Dependent in A ¢c;, dependent in R. Say that another way: Ax = 0 exactly when Rx = 0. 
The column spaces are different, but their dimensions are the same-equal to r. 

Conclusion The r pivot columns of A are a basis for its column space C(A). 

3 A has the same nullspace as R Same dimension n - r and same basis. 

Reason: The elimination steps don't change the solutions. The special solutions are a ba­
sis for this nullspace (as we always knew). There are n - r free variables, so the dimension 
of the nullspace is n - r. This is the Counting Theorem : r + ( n - r) equals n. 

( dimension of column space) + ( dimension of nullspace) = dimension of Rn
.

4 The left nullspace of A (the nullspace of AT ) has dimension m - r. 

Reason: AT is just as good a matrix as A. When we know the dimensions for every A, 
we also know them for AT . Its column space was proved to have dimension r. Since AT 

is n by m, the "whole space" is now Rm . The counting rule for A was r + ( n - r) = n. 
The counting rule for AT is r + ( m - r) = m. We now have all details of a big theorem: 

Fundamental Theorem of Linear Algebra, Part 1 

The column space and row space both have dimension r. 

The nullspaces have dimensions n - r and m - r. 

By concentrating on spaces of vectors, not on individual numbers or vectors, we get these 
clean rules. You will soon take them for granted-eventually they begin to look obvious. 
But if you write down an 11 by 17 matrix with 187 nonzero entries, I don't think most 
people would see why these facts are true: 

1\vo key facts 
dimension of C(A) = dimension of C(AT) = rank of A 
dimension of C(A) + dimension of N(A) = 17. 

Example 1 A = [ 1 2 3 ] has m = 1 and n = 3 and rank r = 1. 

The row space is a line in R3
. The nullspace is the plane Ax= x1 + 2x2 + 3x3 = 0. This 

plane has dimension 2 (which is 3 - 1). The dimensions add to 1 + 2 = 3. 
The columns of this 1 by 3 matrix are in R 1 ! The column space is all of R 1. The left 

nullspace contains only the zero vector. The only solution to AT y = 0 is y = 0, no other 
multiple of [ 1 2 3] gives the zero row. Thus N(AT) is Z, the zero space with dimension 
0 (which ism - r). In Rm the dimensions of C(A) and N(AT) add to 1 + 0 = 1. 
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Example 2 A = [ � � ! ] has m = 2 with n = 3 and rank r = l.

The row space is the same line through (1, 2, 3). The nullspace must be the same plane
xi + 2x2 + 3x3 = 0. The line and plane dimensions still add to 1 + 2 = 3. 

All columns are multiples of the first column (1, 2). Twice the first row minus the
second row is the zero row. Therefore AT y = 0 has the solution y = ( 2, -1). The column
space and left nullspace are perpendicular lines in R 2. Dimensions 1 + 1 = 2. 

Column space = line through [ �] Left nullspace = line through [ _ �] .

If A has three equal rows, its rank is __ . What are two of the y's in its left nullspace?

The y's in the left nullspace combine the rows to give the zero row. 

Example 3 You have nearly finished three chapters with made-up equations, and this
can't continue forever. Here is a better example of five equations (one for every edge in
Figure 3.6). The five equations have four unknowns (one for every node). The matrix in
Ax = b is an incidence matrix. This matrix A has 1 and -1 on every row. 

-xi +x2 = bi
Differences Ax = b -Xi +x3 = b2
across edges 1, 2, 3, 4, 5 -x2 +x3 = b3 (3)
between nodes 1, 2, 3, 4 -x2 +x4 = b4

-X3 +x4 = b5 

If you understand the four fundamental subspaces for this matrix (the column spaces and

the nullspaces for A and AT) you have captured the central ideas of linear algebra. 

Xi edges
-1 1 1 

-1 1 2
X2 X3 A= -1 1 3

-1 1 4
-1 1 5 

X4

Figure 3.6: A "graph" with 5 edges and 4 nodes. A is its 5 by 4 incidence matrix.

The nullspace N(A) To find the nullspace we set b = 0. Then the first equation
says xi = x2. The second equation is x3 =xi.Equation 4 is x2 = x4. All four unknowns

xi, x2, X3, x4 have the same value c. The vectors x = ( c, c, c, c) fill the nulls pace of A. 

That nullspace is a line in R4
. The special solution x = (l, 1, 1, 1) is a basis for

N(A). The dimension of N(A) is 1 (one vector in the basis). The rank of A must be 3, 
since n - r = 4 - 3 = 1. We now know the dimensions of all four subspaces. 
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The column space C(A) There must be r = 3 independent columns. The fast way 
is to look at the first 3 columns. The systematic way is to find R = rref(A). 

-1 1 0 1 0 0 -1
Columns -1 0 1 

reduced row 
0 1 0 -1

1,2,3 0 -1 1 R= 
echelon form 

0 0 1 -1
of A 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 

From R we see again the special solution x = (1, 1, 1, 1). The first 3 columns are basic, 
the fourth column is free. To produce a basis for C(A) and not C(R), we go back to 
columns 1, 2, 3 of A. The column space has dimension r = 3. 

The row space C (AT ) The dimension must again be r = 3. But the first 3 rows of 
A are not independent: row 3 = row 2 - row 1. So row 3 became zero in elimination, 
and row 3 was exchanged with row 4. The first three independent rows are rows 1, 2, 4. 
Those three rows are a basis (one possible basis) for the row space. 

I notice that edges 1, 2, 3 form a loop in the picture: Dependent rows 1, 2, 3. 
Edges 1, 2, 4 form a tree in the picture. Trees have no loops! Independent rows 1, 2, 4. 

The left nullspace N(AT ) Now we solve ATy = 0. Combinations of the rows 
give zero. We already noticed that row 3 = row 2 - row 1, so one solution is y = 
(1, -1, 1, 0, 0). I would say: That y comes from following the upper loop in the picture. 
Another y comes from going around the lower loop and it is y = (0, 0, -1, 1, -1) : 
row 3 = row 4 - row 5. Those two y's are independent, they solve ATy = 0, and the 
dimension of N(AT) is rn - r = 5 - 3 = 2. So we have a basis for the left nullspace. 

You may ask how "loops" and "trees" got into this problem. That didn't have to happen. 
We could have used elimination to solve AT y = 0. The 4 by 5 matrix AT would have three 
pivot columns 1, 2, 4 and two free columns 3, 5. There are two special solutions and the 
nullspace of AT has dimension two: m - r = 5 - 3 = 2. But loops and trees identify 
dependent rows and independent rows in a beautiful way. We use them in Section 10.1 for 
every incidence matrix like this A. 

The equations Ax= b give "voltages" x1, x2, x3, x4 at the four nodes. The equations 
ATy = 0 give "currents" Y1,Y2,Y3,Y4,Y5 on the five edges. These two equations are 
Kirchhoff's Voltage Law and Kirchhoff's Current Law. Those words apply to an elec­
trical network. But the ideas behind the words apply all over engineering and science and 
economics and business. 

Graphs are the most important model in discrete applied mathematics. You see graphs 
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country or 
the world. We can understand their matrices A and AT. 
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Rank One Matrices (Review) 

Suppose every row is a multiple of the first row. Here is a typical example: 

[ 
2 3 7 8 l [ll 

2a 3a 7 a 8a = a [ 2 3 7 8] = uv T 

2b 3b 7b 8b b 

On the left is a matrix with three rows. But its row space only has dimension = 1. 
The row vector v T = [ 2 3 7 8] tells us a basis for that row space. The row rank is l. 

Now look at the columns. "The column rank equals the row rank which is l." 
All columns of the matrix must be multiples of one column. Do you see that this key 
rule of linear algebra is true? The column vector u = (l, a, b) is multiplied by 2, 3, 7, 8. 
That nonzero vector u is a basis for the column space. The column rank is also l. 

Every rank one matrix is one column times one row A= uvT 

Rank Two Matrices = Rank One plus Rank One 

Here is a matrix A of rank r = 2. We can't see r immediately from A. So we reduce 
the matrix by row operations to R = rref(A). Some elimination matrix E simplifies A to 
EA= R. Then the inverse matrix C = E- 1 connects R back to A= CR.

You know the main point already: R has the same row space as A.

Rank 

two 
(4) 

The row space of R clearly has two basis vectors v'f = [ 1 0 3] and v! = [ 0 1 4]. 
So the (same!) row space of A also has this basis: row rank= 2. Multiplying C times R 
says that row 3 of A is 4v'f + 2vJ. 

Now look at columns. The pivot columns of R are clearly (1, 0, 0) and (0, 1, 0). 
Then the pivot columns of A are also in columns 1 and 2: u1 = (1, 1, 4) and u2 = (0, 1, 2). 
Notice that Chas those same first two columns! That was guaranteed since multiplying 
by two columns of the identity matrix (in R) won't change the pivot columns u1 and u2. 

When you put in letters for the columns and rows, you see rank 2 = rank 1 + rank 1. 

Matrix A 

Rank two 

Did you see that last step? I multiplied the matrices using columns times rows.

That was perfect for this problem. Every rank r matrix is a sum of r rank one matrices: 
Pivot columns of A times nonzero rows of R. The row [ 0 0 0] simply disappeared. 

The pivot columns u1 and u2 are a basis for the column space, which you knew. 
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• REVIEW OF THE KEY IDEAS •

1. The r pivot rows of Rare a basis for the row spaces of Rand A (same space).

2. The r pivot columns of A(!) are a basis for its column space C(A).
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3. Then - r special solutions are a basis for the nullspaces of A and R (same space).

4. If EA = R, the last m - r rows of E are a basis for the left nullspace of A.

Note about the four subspaces The Fundamental Theorem looks like pure algebra, but 

it has very important applications. My favorites are the networks in Chapter 10 (often 

I go to 10.1 for my next lecture). The equation for y in the left nullspace is AT y = 0: 

Flow into a node equals flow out. Kirchhoff's Current Law is the "balance equation". 

This must be the most important equation in applied mathematics. All models in science 

and engineering and economics involve a balance-of force or heat flow or charge or mo­

mentum or money. That balance equation, plus Hooke's Law or Ohm's Law or some 

law connecting "potentials" to "flows", gives a clear framework for applied mathematics. 

My textbook on Computational Science and Engineering develops that framework, 

together with algorithms to solve the equations: Finite differences, finite elements, 

spectral methods, iterative methods, and multigrid. 

• WORKED EXAMPLES • 

3.5 A Put four 1 's into a 5 by 6 matrix of zeros, keeping the dimension of its row space 
as small as possible. Describe all the ways to make the dimension of its column space as 

small as possible. Describe all the ways to make the dimension of its nullspace as small as 

possible. How to make the sum of the dimensions of all four subspaces small? 

Solution The rank is 1 if the four l's go into the same row, or into the same column. 

They can also go into two rows and two columns (so aii = aij = aji = ajj = 1). 

Since the column space and row space always have the same dimensions, this answers the 

first two questions: Dimension 1. 

The nullspace has its smallest possible dimension 6 - 4 = 2 when the rank is r = 4. 

To achieve rank 4, the 1 's must go into four different rows and four different columns. 

You can't do anything about the sum r + (n-r) + r + (m-r) = n + m. It will be 

6 + 5 = 11 no matter how the 1 's are placed. The sum is 11 even if there aren't any 1 's ... 

If all the other entries of A are 2's instead of O's, how do these answers change? 
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3.5 B Fact: All the rows of AB are combinations of the rows of B. So the row space of 
AB is contained in (possibly equal to) the row space of B. Rank (AB) :::; rank (B). 

All columns of AB are combinations of the columns of A. So the column space of 
AB is contained in (possibly equal to) the column space of A. Rank (AB) :::; rank (A). 

If we multiply by an invertible matrix, the rank will not change. The rank can't drop, 
because when we multiply by the inverse matrix the rank can't jump back. 

Problem Set 3.5 

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associated with A and B: 

A=[l 2 4] 2 4 8 [1 2 4] and B = 2 5 8 .

3 Find a basis for each of the four subspaces associated with A: 

A= [� � � ! !] = [� � �i [� 
00012 011 0 

1 2
0 0 
0 0 3 4]

1 2 . 
0 0 

4 Construct a matrix with the required property or explain why this is impossible: 

(a) Column space contains [ ! ] , [�],row space contains [ �], [ �].

(b) Column space has basis [ l] , nulls pace has basis [ ½] .
( c) Dimension of nullspace = 1 + dimension of left nullspace.
( d) Nullspace contains [ §], column space contains [ f].
( e) Row space = column space, nullspace -/- left nullspace.

5 If V is the subspace spanned by (1, 1, 1) and (2, 1, 0), find a matrix A that has 
Vas its row space. Find a matrix B that has Vas its nullspace. Multiply AB.

6 Without using elimination, find dimensions and bases for the four subspaces for 

[o 3 3 3
]A= 0 0 0 0 

0 1 0 1 

7 Suppose the 3 by 3 matrix A is invertible. Write down bases for the four subspaces 
for A, and also for the 3 by 6 matrix B = [ A A]. (The basis for Z is empty.) 
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8 What are the dimensions of the four subspaces for B, and C, if I is the 3 by 3
identity matrix and O is the 3 by 2 zero matrix? 

A = [ J O ] and B = [ 0; 0;] and C = [ O] .

9 Which subspaces are the same for these matrices of different sizes?

(a) [A] and [ 1] (b) [ 1] and [ 1 �] .
Prove that all three of those matrices have the same rank r.

10 If the entries of a 3 by 3 matrix are chosen randomly between O and 1, what are the
most likely dimensions of the four subspaces? What if the random matrix is 3 by 5? 

11 (Important) A is an m by n matrix of rank r. Suppose there are right sides b for
which Ax = b has no solution.

(a) What are all inequalities ( < or :s;) that must be true between m, n, and r?

(b) How do you know that AT y = 0 has solutions other than y = O?

12 Construct a matrix with ( 1, 0, 1) and ( 1, 2, 0) as a basis for its row space and its
column space. Why can't this be a basis for the row space and nullspace? 

13 True or false (with a reason or a counterexample):

(a) If m = n then the row space of A equals the column space.
(b) The matrices A and -A share the same four subspaces. 
( c) If A and B share the same four subspaces then A is a multiple of B.

14 Without computing A, find bases for its four fundamental subspaces:

A= [! � �i [� � � !] 
981 0012 

15 If you exchange the first two rows of A, which of the four subspaces stay the same? 
If v = ( 1, 2, 3, 4) is in the left nullspace of A, write down a vector in the left nullspace
of the new matrix after the row exchange. 

16 Explain why v = ( 1, 0, -1) cannot be a row of A and also in the nullspace.

17 Describe the four subspaces of R3 associated with
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18 (Left nullspace) Add the extra column b and reduce A to echelon form: 

[Ab]= 4 5 6 b2 [
1 2 3 b1

] 
[1 2 3 

0 -3 -6 
0 0 0 7 8 9 b3 

A combination of the rows of A has produced the zero row. What combination is it? 
(Look at b3 - 2b2 + b1 on the right side.) Which vectors are in the nullspace of AT 

and which vectors are in the nullspace of A?

19 Following the method of Problem 18, reduce A to echelon form and look at zero 
rows. The b column tells which combinations you have taken of the rows: 

[
1 2 

(a) 3 4
4 6 

(b) 

From the b column after elimination, read off m-r basis vectors in the left nullspace. 
Those y's are combinations of rows that give zero rows in the echelon form. 

20 (a) Check that the solutions to Ax = 0 are perpendicular to the rows of A:

A = [� � �i [� � � �i = ER.

341 0000 

(b) How many independent solutions to AT y = O? Why does y T = row 3 of E- 1 ?

21 Suppose A is the sum of two matrices of rank one: A = uv T + wz T. 

(a) Which vectors span the column space of A?

(b) Which vectors span the row space of A?

( c) The rank is less than 2 if __ or if __ .
(d) Compute A and its rank if u = z = (1, 0, 0) and v = w = (0, 0, 1).

22 Construct A = uv T + wz T whose column space has basis (1, 2, 4), ( 2, 2, 1) and 
whose row space has basis (1, 0), (1, 1). Write A as (3 by 2) times (2 by 2). 

23 Without multiplying matrices, find bases for the row and column spaces of A: 

[1 2] [3 o 3] A= i � 1 1 2 .

How do you know from these shapes that A cannot be invertible? 

24 (Important) AT y = d is solvable when d is in which of the four subspaces? The 
solution y is unique when the __ contains only the zero vector. 
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25 True or false (with a reason or a counterexample): 

(a) A and AT have the same number of pivots. 
(b) A and AT have the same left nullspace. 
( c) If the row space equals the column space then AT 

= A. 

(d) If AT = -A then the row space of A equals the column space.
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26 If a, b, c are given with a -/=- 0, how would you choose d so that [ � �] has rank 1? 
Find a basis for the row space and nullspace. Show they are perpendicular! 

27 Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C: 

1 0 1 0 1 0 1 0 r n b q k b n 
0 1 0 1 0 1 0 1 p p p p p p p 

B= 1 0 1 0 1 0 1 0 and C= four zero rows 
p p p p p p p 

0 1 0 1 0 1 0 1 r n b q k b n 

r 
p 

p 
r 

The numbers r, n, b, q, k, p are all different. Find bases for the row space and left 
nullspace of Band C. Challenge problem: Find a basis for the nullspace of C.

28 Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (A) = 2 but 
neither side passed up a winning move? 

Challenge Problems 

29 If A = uv T is a 2 by 2 matrix of rank 1, redraw Figure 3.5 to show clearly the Four 
Fundamental Subspaces. If B produces those same four subspaces, what is the exact 
relation of B to A?

30 M is the space of 3 by 3 matrices. Multiply every matrix X in M by 

(a) Which matrices X lead to AX = zero matrix? 
(b) Which matrices have the form AX for some matrix X?

(a) finds the "nullspace" of that operation AX and (b) finds the "column space".
What are the dimensions of those two subspaces of M? Why do the dimensions add
to(n-r)+r=9?

31 Suppose the m by n matrices A and B have the same four subspaces. If they are 
both in row reduced echelon form, prove that F must equal G:

A=[��] B=[� �]-
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Orthogonality 

4.1 Orthogonality of the Four Subspaces 

1 Orthogonal vectors have vTw = 0. Then llvll2 + llwll2 = llv + wll2 = llv - wll2 . 

2 Subspaces V and W are orthogonal when vTw = 0 for every v in V and every win W. 

3 The row space of A is orthogonal to the nullspace. The column space is orthogonal to N(AT ). 

4 One pair of dimensions adds to r + ( n - r) = n. The other pair has r + ( m - r) = m.

S Row space and nullspace are orthogonal complements: Every x in Rn splits into Xrow + Xnull· 

6 Suppose a space S has dimension d. Then every basis for S consists of d vectors. 

7 If d vectors in Sare independent, they span S. If d vectors span S, they are independent. 

Two vectors are orthogonal when their dot product is zero: v · w = v T w = 0. This 
chapter moves to orthogonal subspaces and orthogonal bases and orthogonal matrices.

The vectors in two subspaces, and the vectors in a basis, and the column vectors in Q, 
all pairs will be orthogonal. Think of a2 + b2 = c2 for a right triangle with sides v and w.

Orthogonal vectors and llvll
2 + llwll2 = llv + wll2 -

The right side is ( v + w) T ( v + w). This equals v T v + w T w when v T w = w T v = 0.

Subspaces entered Chapter 3 to throw light on Ax = b. Right away we needed the 
column space and the nulls pace. Then the light turned onto AT , uncovering two more 
subspaces. Those four fundamental subspaces reveal what a matrix really does. 

A matrix multiplies a vector: A times x. At the first level this is only numbers. At 
the second level Ax is a combination of column vectors. The third level shows subspaces. 
But I don't think you have seen the whole picture until you study Figure 4.2. 

194 
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The subspaces fit together to show the hidden reality of A times x. The 90° angles 
between subspaces are new-and we can say now what those right angles mean. 

The row space is perpendicular to the nullspace. Every row of A is perpendicular to 
every solution of Ax = 0. That gives the 90° angle on the left side of the figure. This 
perpendicularity of subspaces is Part 2 of the Fundamental Theorem of Linear Algebra. 

The column space is perpendicular to the nullspace of AT. When b is outside the 
column space-when we want to solve Ax = band can't do it-then this nullspace of 
AT comes into its own. It contains the error e = b - Ax in the "least-squares" solution. 
Least squares is the key application of linear algebra in this chapter. 

Part 1 of the Fundamental Theorem gave the dimensions of the subspaces. The row 
and column spaces have the same dimension r (they are drawn the same size). The two 
nullspaces have the remaining dimensions n - r and m - r. Now we will show that 
the row space and nullspace are orthogonal subspaces inside Rn.

DEFINITION Two subspaces V and W of a vector space are orthogonal if every vector 
v in V is perpendicular to every vector w in W: 

Orthogonal subspaces v T w = 0 for all v in V and all w in W. 

Example 1 The floor of your room (extended to infinity) is a subspace V. The line where 
two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal. 
Every vector up the meeting line of the walls is perpendicular to every vector in the floor. 

Example 2 Two walls look perpendicular but those two subspaces are not orthogonal! 
The meeting line is in both V and W -and this line is not perpendicular to itself. Two 
planes (dimensions 2 and 2 in R3) cannot be orthogonal subspaces. 

When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular to 
itself. It is v and it is w, so v T v = 0. This has to be the zero vector. 

V 
I 

I 

w 

orthogonal plane V and line W 

V 

non-orthogonal planes 

Figure 4.1: Orthogonality is impossible when dim V + dim W > dim (whole space). 

The crucial examples for linear algebra come from the four fundamental subspaces. 
Zero is the only point where the nullspace meets the row space. More than that, the 
nullspace and row space of A meet at 90° . This key fact comes directly from Ax = 0: 
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Every vector x in the nullspace is perpendicular to every row of A, because Ax = 0. 

The nullspace N(A) and the row space C(AT ) are orthogonal subspaces of Rn . 

To see why xis perpendicular to the rows, look at Ax = 0. Each row multiplies x: 

rowl 

rowm ]H rrl 
(row 1) ·xis zero

(row m) ·xis zero 

(1) 

The first equation says that row 1 is perpendicular to x. The last equation says that row mis 
perpendicular to x. Every row has a zero dot product with x. Then xis also perpendicular 
to every combination of the rows. The whole row space C(AT ) is orthogonal to N(A). 

Here is a second proof of that orthogonality for readers who like matrix shorthand. 
The vectors in the row space are combinations AT y of the rows. Take the dot product 
of AT y with any x in the nullspace. These vectors are perpendicular: 

Nullspace orthogonal to row space (2) 

We like the first proof. You can see those rows of A multiplying x to produce zeros in equa­
tion (1). The second proof shows why A and AT are both in the Fundamental Theorem. 

Example 3 The rows of A are perpendicular to x = ( 1, 1, -1) in the nullspace : 

gives the dot products 
1+3-4=0 

5+2-7=0 

Now we tum to the other two subspaces. In this example, the column space is all of R 2. 

The nullspace of AT is only the zero vector (orthogonal to every vector). The column space 
of A and the nullspace of AT are always orthogonal subspaces. 

Every vector y in the nullspace of AT is perpendicular to every column of A. 
The left nullspace N(AT ) and the column space C(A) are orthogonal in Rm . 

Apply the original proof to AT. The nullspace of AT is orthogonal to the row space of 
AT -and the row space of AT is the column space of A. Q .E.D.

For a visual proof, look at AT y = 0. Each column of A multiplies y to give 0: 

AT
y 

= 
[
(colu�� l)

T

l [Yl
= 

[
�
]-

(column n) T 0 
(3) 

The dot product of y with every column of A is zero. Then y in the left nullspace is 
perpendicular to each column of A-and to the whole column space. 
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dimension 
=r 

row 

space 

of A 

goo 

nullspace 

of A 

dimension 
= n-r

lumn space
row space to co 
� 

Axrow = b 

Axnull = 0 
nullspace to 0

column 

space 

of A 

=m-r 
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dimension 
= r 

Figure 4.2: Two pairs of orthogonal subspaces. The dimensions add to n and add to m.
This is the Big Picture-two subspaces in Rn and two subspaces in Rm . 

Orthogonal Complements 

Important The fundamental subspaces are more than just orthogonal (in pairs). 
Their dimensions are also right. Two lines could be perpendicular in R 3, but those lines

could not be the row space and nullspace of a 3 by 3 matrix. The lines have dimensions 
1 and 1, adding to 2. But the correct dimensions rand n - r must add ton= 3. 

The fundamental subspaces of a 3 by 3 matrix have dimensions 2 and 1, or 3 and 0. 
Those pairs of subspaces are not only orthogonal, they are orthogonal complements.

DEFINITION The orthogonal complement of a subspace V contains every vector that is 
perpendicular to V. This orthogonal subspace is denoted by VJ.. (pronounced "V perp"). 

By this definition, the nullspace is the orthogonal complement of the row space. 
Every x that is perpendicular to the rows satisfies Ax = 0, and lies in the nullspace. 

The reverse is also true. If v is orthogonal to the nullspace, it must be in the row
space. Otherwise we could add this v as an extra row of the matrix, without changing its 
nullspace. The row space would grow, which breaks the law r + ( n - r) = n. We conclude 
that the nullspace complement N(A)J.. is exactly the row space C(AT). 

In the same way, the left nullspace and column space are orthogonal in Rm , and they 
are orthogonal complements. Their dimensions r and m - r add to the full dimension m.
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Fundamental Theorem of Linear Algebra, Part 2

N(A) is the orthogonal complement of the row space C(AT) (in Rn). 

N(AT ) is the orthogonal complement of the column space C(A) (in Rm). 

Part 1 gave the dimensions of the subspaces. Part 2 gives the 90° angles between them. 
The point of "complements" is that every x can be split into a row space component Xr 
and a nullspace component Xn . When A multiplies x = Xr + Xn , Figure 4.3 shows what 
happens to Ax= Axr + Axn : 

The nullspace component goes to zero: Axn = 0. 

The row space component goes to the column space: Axr = Ax. 

Every vector goes to the column space! Multiplying by A cannot do anything else. 
More than that: Every vector b in the column space comes from one and only one vector

Xr in the row space. Proof: If Axr = Ax�, the difference Xr - x� is in the nullspace. 
It is also in the row space, where Xr and x� came from. This difference must be the zero 
vector, because the nullspace and row space are perpendicular. Therefore Xr = x�. 

There is an r by r invertible matrix hiding inside A, if we throw away the two nullspaces. 
From the row space to the column space, A is invertible. The "pseudo inverse" will invert 
that part of A in Section 7.4. 

Example 4 Every matrix of rank r has an r by r invertible submatrix: 

0 

5 

0 

0 

0 

0 

0 

0 

0 �] contains the submatrix [� �] .
The other eleven zeros are responsible for the nullspaces. The rank of B is also r = 2: 

2 
2 
2 

3 4 5
] [1 4 5 6 contains 

1 4 5 6 
! ] in the pivot rows and columns.

Every matrix can be diagonalized, when we choose the right bases for Rn and Rm. This 
Singular Value Decomposition has become extremely important in applications. 

Let me repeat one clear fact. A row of A can't be in the nullspace of A (except for 
a zero row). The only vector in two orthogonal subspaces is the zero vector. 

If a vector v is orthogonal to itself then v is the zero vector.



4.1. Orthogonality of the Four Subspaces 199 

dim r dim r 

all combinations 
of the rows 

all combinations 
A x, = b b of the, 

x,,.,�========����=;:\- columns 
Ax= b 

all vectors 
orthogonal 

dimn-r 
to the rows 

Axn
= O 

Figure 4.3: This update of Figure 4.2 shows the true action of A on x 

Row space vector Xr to column space, nullspace vector Xn to zero. 
Xr + Xn-

Drawing the Big Picture 

I don't know the best way to draw the four subspaces in Figures 4.2 and 4.3. This big 

picture has to show the orthogonality of those subspaces. I can see a possible way to do 

it when a line meets a plane-maybe Figure 4.4 also shows that those spaces are infinite, 

more clearly than the rectangles in Figure 4.3. But how do I draw a pair of two-dimensional 

subspaces in R4
, to show they are orthogonal to each other? Good ideas are welcome. 

direction (1, O, -1) 
orthogonal to rows 

nullspace of A

A-[: j:] 

Figure 4.4: Row space of A = plane. Nullspace = orthogonal line. Dimensions 2 + 1 = 3. 
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Combining Bases from Subspaces 

What follows are some valuable facts about bases. They were saved until now-when we 
are ready to use them. After a week you have a clearer sense of what a basis is (linearly 
independent vectors that span the space). Normally we have to check both properties. 
When the count is right, one property implies the other : 

Any n independent vectors in Rn must span Rn . So they are a basis. 

Any n vectors that span Rn must be independent. So they are a basis. 

Starting with the correct number of vectors, one property of a basis produces the other. 
This is true in any vector space, but we care most about Rn . When the vectors go into the 
columns of an n by n square matrix A, here are the same two facts: 

If the n columns of A are independent, they span Rn . So Ax = b is solvable. 

If the n columns span Rn , they are independent. So Ax = b has only one solution. 

Uniqueness implies existence and existence implies uniqueness. Then A is invertible. If 
there are no free variables, the solution x is unique. There must be n pivot columns. 
Then back substitution solves Ax = b (the solution exists). 

Starting in the opposite direction, suppose that Ax = b can be solved for every b

(existence of solutions). Then elimination produced no zero rows. There are n pivots and 
no free variables. The nullspace contains only x = 0 (uniqueness of solutions). 

With bases for the row space and the nulls pace, we have r + ( n - r) = n vectors. 
This is the right number. Those n vectors are independent. 2 Therefore they span Rn .

Each x is the sum Xr + Xn of a row space vector Xr and a nullspace vector Xn , 

The splitting in Figure 4.3 shows the key point of orthogonal complements-the dimen­
sions add to n and all vectors are fully accounted for. 

Example 5 For A = [ ! � ] split x = [ ! ] into Xr + Xn = [ � ] + [ _ � ] . 

The vector (2, 4) is in the row space. The orthogonal vector (2, -1) is in the nullspace. 
The next section will compute this splitting for any A and x, by a projection. 

2If a combination of all n vectors gives xr + xn = 0, then xr = -xn is in both subspaces. 
So Xr = xn = 0. All coefficients of the row space basis and of the nullspace basis must be zero. 
This proves independence of the n vectors together. 
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• REVIEW OF THE KEY IDEAS •
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1. Subspaces V and Ware orthogonal if every v in Vis orthogonal to every win W.

2. V and W are "orthogonal complements" if W contains all vectors perpendicular to
V (and vice versa). Inside Rn , the dimensions of complements V and W add ton.

3. The nullspace N(A) and the row space C(AT ) are orthogonal complements, with
dimensions (n - r) + r = n. Similarly N(AT ) and C(A) are orthogonal comple­
ments with (m - r) + r = m.

4. Any n independent vectors in Rn span Rn . Any n spanning vectors are independent.

• WORKED EXAMPLES • 

4.1 A Suppose S is a six-dimensional subspace of nine-dimensional space R 
9

. 

(a) What are the possible dimensions of subspaces orthogonal to S?

(b) What are the possible dimensions of the orthogonal complement SJ_ of S?

( c) What is the smallest possible size of a matrix A that has row space S?

(d) What is the smallest possible size of a matrix B that has nullspace SJ_ ?

Solution 

(a) If Sis six-dimensional in R9
, subspaces orthogonal to Scan have dimensions 0, 1, 2, 3.

(b) The complement SJ_ is the largest orthogonal subspace, with dimension 3.

(c) The smallest matrix A is 6 by 9 (its six rows will be a basis for S).

(d) This is the same as question (c) !

If a new row 7 of B is a combination of the six rows of A, then B has the same row 
space as A. It also has the same nullspace. The special solutions s1, s2, s3 to Ax = 0. 
will be the same for Bx = 0. Elimination will change row 7 of B to all zeros. 

4.1 B The equation x - 3y - 4z = 0 describes a plane Pin R3 (actually a subspace). 

(a) The plane Pis the nullspace N(A) of what 1 by 3 matrix A? Ans: A= [1 -3 - 4].

(b) Find a basis s1, s2 of special solutions of x - 3y - 4z = 0 (these would be the
columns of the nullspace matrix N). Answer: s 1 = (3, 1, 0) and s2 = (4, 0, 1).

(c) Find a basis for the line PJ_ that is perpendicular to P. Answer: (1, -3, -4)!
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Problem Set 4.1 

Questions 1-12 grow out of Figures 4.2 and 4.3 with four subspaces. 

1 Construct any 2 by 3 matrix of rank one. Copy Figure 4.2 and put one vector in each
subspace (and put two in the nullspace). Which vectors are orthogonal? 

2 Redraw Figure 4.3 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R2 is Xn = __ . 

3 Construct a matrix with the required property or say why that is impossible:

(a) Column space contains [ _!] and [-!], nullspace contains [ ½]

(b) Row space contains [ _!] and [-!] , nullspace contains [ ½]

( c) Ax = [½ ] has a solution and AT [ g] = [g]
(d) Every row is orthogonal to every column (A is not the zero matrix)
( e) Columns add up to a column of zeros, rows add to a row of 1 's.

4 If AB = 0 then the columns of B are in the of A. The rows of A are in the
__ of B. With AB= 0, why can't A and B be 3 by 3 matrices of rank 2? 

5 (a) IfAx=bhas a solution andATy=O,is(yTx=O)or(yTb=O)?
(b) If A Ty= (1, 1, 1) has a solution and Ax= 0, then __ .

6 This system of equations Ax = b has no solution (they lead to O = 1):

X + 2y + 2z 5
2x + 2y + 3z 5
3x + 4y + 5z 9

Find numbers YI, Y2, y3 to multiply the equations so they add to O = 1. You have
found a vector yin which subspace? Its dot product y Tb is 1, so no solution x. 

7 Every system with no solution is like the one in Problem 6. There are numbers
YI, ... , Ym that multiply the m equations so they add up to O = 1. This is called
Fredholm's Alternative: 

Exactly one of these problems has a solution 

Ax= b OR ATy = O with yT b = 1.

If b is not in the column space of A, it is not orthogonal to the nullspace of AT . 

Multiply the equations XI - x2 = 1 and x2 - x3 = 1 and XI - x3 = 1 by numbers
YI, Yz, y3 chosen so that the equations add up to O = 1. 
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8 In Figure 4.3, how do we know that Axr is equal to Ax? How do we know that this 
vector is in the column space? If A = [ � i] and x = [ 5] what is Xr?

9 If AT Ax = 0 then Ax = 0. Reason: Ax is in the nullspace of AT and also in the
__ of A and those spaces are __ . Conclusion: AT A has the same nullspace

as A. This key fact is repeated in the next section.

10 Suppose A is a symmetric matrix ( AT = A).

(a) Why is its column space perpendicular to its nullspace?

(b) If Ax = 0 and Az = 5z, which subspaces contain these "eigenvectors" x
and z? Symmetric matrices have perpendicular eigenvectors xT 

z = 0. 

11 (Recommended) Draw Figure 4.2 to show each subspace correctly for 

A = [ ! �] and B = [ ! �] . 

12 Find the pieces Xr and Xn and draw Figure 4.3 properly if 

[
1 -l

i A= � � and x = [�] . 

Questions 13-23 are about orthogonal subspaces. 

13 Put bases for the subspaces V and W into the columns of matrices V and W. Ex­
plain why the test for orthogonal subspaces can be written VTW = zero matrix.
This matches v T w = 0 for orthogonal vectors. 

14 The floor V and the wall W are not orthogonal subspaces, because they share a 
nonzero vector (along the line where they meet). No planes V and Win R3 can be 
orthogonal! Find a vector in the column spaces of both matrices: 

and 

This will be a vector Ax and also Bx. Think 3 by 4 with the matrix [ A B ] . 

15 Extend Problem 14 to a p-dimensional subspace V and a q-dimensional subspace 
W of Rn

. What inequality on p + q guarantees that V intersects Win a nonzero 
vector? These subspaces cannot be orthogonal. 

16 Prove that every y in N(AT) is perpendicular to every Ax in the column space, 
using the matrix shorthand of equation (2). Start from AT y = 0.
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11 If S is the subspace of R3 containing only the zero vector, what is S1_ ? If S is 
spanned by (1, 1, 1), what is S1_ ? If Sis spanned by (1, 1, 1) and (1, 1, -1), what 
is a basis for S1_ ? 

18 Suppose Sonly contains two vectors (1, 5, 1) and (2, 2, 2) (not a subspace). Then 
S1- is the nullspace of the matrix A = __ . S1_ is a subspace even if S is not.

19 Suppose L is a one-dimensional subspace (a line) in R3
. Its orthogonal complement 

L1_ is the __ perpendicular to L. Then (L1_ )1_ is a __ perpendicular to L1- _ 
In fact ( L 1-) 1- is the same as __ . 

20 Suppose V is the whole space R 4. Then V 
1- contains only the vector __ . Then 

(V1_)1_ is __ . So (V1- )1_ is the same as __ . 

21 Suppose Sis spanned by the vectors (1, 2, 2, 3) and (1, 3, 3, 2). Find two vectors 
that span S1_ . This is the same as solving Ax = 0 for which A? 

22 If P is the plane of vectors in R 4 satisfying x1 + x2 + x3 + x4 = 0, write a basis
for p.l . Construct a matrix that has P as its nullspace. 

23 If a subspace Sis contained in a subspace V, prove that S.l contains V.l . 

Questions 24-30 are about perpendicular columns and rows. 

24 Suppose an n by n matrix is invertible: AA- 1 
= I. Then the first column of A- 1 is 

orthogonal to the space spanned by which rows of A? 

25 Find AT A if the columns of A are unit vectors, all mutually perpendicular. 

26 Construct a 3 by 3 matrix A with no zero entries whose columns are mutually per­
pendicular. Compute AT A. Why is it a diagonal matrix? 

27 The lines 3x + y = b1 and 6x + 2y = b2 are __ . They are the same line if __ . 
In that case ( b1, b2) is perpendicular to the vector __ . The nullspace of the matrix 
is the line 3x + y = __ . One particular vector in that nullspace is __ . 

28 Why is each of these statements false? 

(a) (1, 1, 1) is perpendicular to (1, 1, -2) so the planes x + y + z = 0 and x + y -
2z = 0 are orthogonal subspaces.

(b) The subspace spanned by (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1) is the orthogonal com­
plement of the subspace spanned by (1, -1, 0, 0, 0) and (2, -2, 3, 4, -4).

(c) Two subspaces that meet only in the zero vector are orthogonal.

29 Find a matrix with v = (l, 2, 3) in the row space and column space. Find another 
matrix with v in the nullspace and column space. Which pairs of subspaces can v 
notbe in? 



4.1. Orthogonality of the Four Subspaces 205 

Challenge Problems 

30 Suppose A is 3 by 4 and B is 4 by 5 and AB = 0. So N(A) contains C(B). 
Prove from the dimensions of N(A) and C(B) that rank(A) + rank(B) S:: 4. 

31 The command N = null(A) will produce a basis for the nullspace of A. Then the 
command B = null(N') will produce a basis for the __ of A. 

32 Suppose I give you four nonzero vectors r, n, c, l in R2
. 

(a) What are the conditions for those to be bases for the four fundamental sub­
spaces C(AT), N(A), C(A), N(AT) of a 2 by 2 matrix?

(b) What is one possible matrix A?

(a) What are the conditions for those pairs to be bases for the four fundamental
subspaces of a 4 by 4 matrix?

(b) What is one possible matrix A?
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4.2 Projections 

1 The projection of a vector b onto the line through a is the closest point p = a( a T b/ a Ta). 

2 The error e = b -pis perpendicular to a: Right triangle b p e has I IPI l 2 + I lei l2 = I Jbl l 2 . 

3 The projection of b onto a subspace Sis the closest vector pin S; b -pis orthogonal to S.

4 AT A is invertible (and symmetric) only if A has independent columns : N(AT A)= N(A).

5 Then the projection of b onto the column space of A is the vector p = A(AT A)- 1 AT b.

6 The projection matrix onto C(A) is IP= A(AT A)- 1 AT . I It hasp= Pb and P2 =P = pT _

May we start this section with two questions? (In addition to that one.) The first 
question aims to show that projections are easy to visualize. The second question is about 
"projection matrices"-symmetric matrices with P2 = P. The projection of bis Pb.

1 What are the projections of b = (2, 3, 4) onto the z axis and the xy plane? 

2 What matrices A and P2 produce those projections onto a line and a plane? 

When b is projected onto a line, its projection pis the part of b along that line.
If b is projected onto a plane, p is the part in that plane. The projection pis Pb.

The projection matrix P multiplies b to give p. This section finds p and also P.

The projection onto the z axis we call p
1

. The second projection drops straight down to 
the xy plane. The picture in your mind should be Figure 4.5. Start with b = (2, 3, 4). 
The projection across gives p1 

= (0, 0, 4). The projection down gives p
2 

= (2, 3, 0). 
Those are the parts of b along the z axis and in the xy plane. 

The projection matrices A and P2 are 3 by 3. They multiply b with 3 components 
to produce p with 3 components. Projection onto a line comes from a rank one matrix. 
Projection onto a plane comes from a rank two matrix: 

Projection matrix 

Onto the z axis: Onto the xy plane: -
p.2 � 

[
1

� 
0
� 

0
�] 

A picks out the z component of every vector. P2 picks out the x and y components. 
To find the projections p

1 and p2 of b, multiply b by A and P2 (small p for the vector, 
capital P for the matrix that produces it): 
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In this case the projections p1 and p2 are perpendicular. The xy plane and the z axis 
are orthogonal subspaces, like the floor of a room and the line between two walls. 

Projection p1 
= Ab= [�zl ..._'' ..._ 

[x l ': b= ; 

Figure 4.5: The projections p1 = Ab and p
2 

= P2b onto the z axis and the xy plane. 

More than just orthogonal, the line and plane are orthogonal complements. Their 
dimensions add to 1 + 2 = 3. Every vector b in the whole space is the sum of its parts in 
the two subspaces. The projections p

1 
and p2 are exactly those two parts of b:

The vectors give p1 + p2 = b. The matrices give A+ P2 = I. (1) 

This is perfect. Our goal is reached-for this example. We have the same goal for any line 
and any plane and any n-dimensional subspace. The object is to find the part p in each 
subspace, and the projection matrix P that produces that part p = Pb. Every subspace 
of Rm has its own m by m projection matrix. To compute P, we absolutely need a good 
description of the subspace that it projects onto. 

The best description of a subspace is a basis. We put the basis vectors into the columns 
of A. Now we are projecting onto the column space of A! Certainly the z axis is the 
column space of the 3 by 1 matrix A1 . The xy plane is the column space of A2 . That plane 
is also the column space of A3 (a subspace has many bases). So p

2 
= p

3 
and P2 = P3. 

Our problem is to project any b onto the column space of any m by n matrix.

Start with a line (dimension n = l). The matrix A will have only one column. Call it a. 

Projection Onto a Line 

A line goes through the origin in the direction of a = (a 1 , . . .  ,am )- Along that line, 
we want the point p closest to b = (b1 , . . .  , bm )- The key to projection is orthogonality: 
The line from b to p is perpendicular to the vector a. This is the dotted line marked 
e = b - p for the error on the left side of Figure 4.6. We now compute p by algebra. 



208 Chapter 4. Orthogonality 

The projection p will be some multiple of a. Call it p = xa = "x hat" times a. 
Computing this number x will give the vector p. Then from the formula for p, we will 
read off the projection matrix P. These three steps will lead to all projection matrices: 
find x, then find the vector p, then find the matrix P.

The dotted line b - p is the "error" e = b - xa. It is perpendicular to a-this will 
determine x. Use the fact that b-xa is perpendicular to a when their dot product is zero: 

Projecting b onto a with error e = b - xa 

a·(b -xa)=O or a,b-xa•a=O 
� a,b aTb x------

-a,a -aTa"
(2) 

The multiplication a Tb is the same as a · b. Using the transpose is better, because it 
applies also to matrices. Our formula x = a T b/ a Ta gives the projection p = xa. 

b 

error 
1 e =h-pI 

p=Ax 

= A(AT A)- 1 AT b 
=Pb 

Figure 4.6: The projection p of b onto a line and onto S = column space of A.

� aTb 
The projection of b onto the line through a is the vector p = xa = -- a.aT a 

Special case 1: If b = a then x = l. The projection of a onto a is itself. Pa= a. 

Special case 2: If bis perpendicular to a then a Tb = 0. The projection is p = 0. 

Example 1 [ 
1

� l Project b = onto a = [ �
1 

l to find p = xa in Figure 4.6.

Solution The number x is the ratio of a T b = 5 to a Ta = 9. So the projection is p = � a. 
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The error vector between b and p is e = b - p. Those vectors p and e will add to
b=(l,1,1): 

The error e should be perpendicular to a= (1, 2, 2) and it is: e T a= ½ - � - � = 0.
Look at the right triangle of b, p, and e. The vector b is split into two parts-its 

component along the line is p, its perpendicular part is e. Those two sides p and e 
have length I IPI I = JJbJJ cos 0 and I Jel I = llbll sin 0. Trigonometry matches the dot product: 

p = ::: a has length IIPII = JJalJ 
i'i'!\\�ose 

lJaJJ = JJbJJ cos 0. (3) 

The dot product is a lot simpler than getting involved with cos 0 and the length of b. 
The example has square roots in cos0 = 5/3/3 and JJbll = /3. There are no square
roots in the projection p = 5a/9. The good way to 5/9 is a T b/ a T a.

Now comes the projection matrix. In the formula for p, what matrix is multiplying b? 
You can see the matrix better if the number xis on the right side of a: 

Projection 
matrix P 

aT b 
p = ax = a-- = Pb when the matrix is 

aT a 

aaT 

P=�­
a a 

P is a column times a row! The column is a, the row is a T. Then divide by the number 
a Ta. The projection matrix P is m by m, but its rank is one. We are projecting onto a
one-dimensional subspace, the line through a. That line is the column space of P. 

T 
Example 2 Find the projection matrix P = :� 

a 
onto the line through a = [ �] .

Solution Multiply column a times row a T and divide by a Ta = 9: 

Projection matrix 

This matrix projects any vector b onto a. Checkp = Pb for b = (1, 1, 1) in Example 1: 

P =Pb= ! [� � �i [�] ! [1
5
0] which is correct. 

9244 1 910

If the vector a is doubled, the matrix P stays the same! It still projects onto the same line. 
If the matrix is squared, P2 equals P. Projecting a second time doesn't change anything, 
so P2 

= P. The diagonal entries of P add up to½ (1 + 4 + 4) = 1.
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The matrix I -P should be a projection too. It produces the other side e of the triangle­
the perpendicular part of b. Note that (I - P)b equals b- p which is e in the left nullspace. 

When P projects onto one subspace, I - P projects onto the perpendicular subspace. 
Here I - P projects onto the plane perpendicular to a. 

Now we move beyond projection onto a line. Projecting onto an n-dimensional 
subspace of Rm takes more effort. The crucial formulas will be collected in equations 
(5)-(6)-(7). Basically you need to remember those three equations. 

Projection Onto a Subspace 

Start with n vectors a1, ... , an in Rm . Assume that these a's are linearly independent. 

Problem: Find the combination p = x1 a1 + · · · + Xnan closest to a given vector b. 
We are projecting each bin Rm onto the subspace spanned by the a's. 

With n = l (one vector a1) this is projection onto a line. The line is the column space 
of A, which has just one column. In general the matrix A has n columns a1, ... , an . 

The combinations in Rm are the vectors Ax in the column space. We are looking for 
the particular combination p = Ax (the projection) that is closest to b. The hat over x 
indicates the best choice x, to give the closest vector in the column space. That choice is 
x = a T b/ a Ta when n = l. For n > l, the best x = (x1, ... , xn) is to be found now. 

We compute projections onto n-dimensional subspaces in three steps as before: 
Find the vector x, find the projection p = Ax, find the projection matrix P. 

The key is in the geometry! The dotted line in Figure 4.6 goes from b to the nearest 
point Ax in the subspace. This error vector b - Ax is perpendicular to the subspace. 
The error b - Ax makes a right angle with all the vectors a 1 , . . .  , an in the base. 
The n right angles give the n equations for x:

aT(b-Ax) = 0

or (4) 

aJ(b-Ax)=O 

The matrix with those rows a; is AT . The n equations are exactly AT (b - Ax) = 0. 
Rewrite AT(b - Ax) = O in its famous form AT Ax = AT b. This is the equation 

for x, and the coefficient matrix is AT A. Now we can find x and p and P, in that order. 



4.2. Projections 211 

The combination p = x1 a1 + · · · + xnan = Ax that is closest to b comes from x:

(5) 

This symmetric matrix AT A is n by n. It is invertible if the a's are independent. 
The solution is x = (AT A)- 1 ATb. The projection of b onto the subspace is p: 

Find p (m x 1) 

The next formula picks out the projection matrix that is multiplying bin (6): 

Find P(m x m) 

Compare with projection onto a line, when A has only one column : AT A is a Ta. 

Forn = 1 and and 
aaT 

P=-. 
aTa 

(6) 

(7) 

Those formulas are identical with (5) and (6) and (7). The number a Ta becomes the 
matrix AT A. When it is a number, we divide by it. When it is a matrix, we invert it. 
The new formulas contain (AT A)- 1 instead of l/aTa. The linear independence of the 
columns a1, ... , an will guarantee that this inverse matrix exists. 

The key step was AT (b - Ax) = 0. We used geometry (e is orthogonal to each a).

Linear algebra gives this "normal equation" too, in a very quick and beautiful way : 

1. Our subspace is the column space of A.

2. The error vector b - Ax is perpendicular to that column space.

3. Therefore b - Ax is in the nulls pace of AT ! This means AT ( b - Ax) = 0. 

The left nullspace is important in projections. That nullspace of AT contains the error 
vector e = b-Ax. The vector bis being split into the projection p and the error e = b-p.

Projection produces a right triangle with sides p, e, and b.

Example 3 If A = [ i i] and b = [ g] find x and p and P.

Solution Compute the square matrix AT A and also the vector ATb: 

1 
1 ; l [: [] � [; ;J 

1 
1 ;1 m [ �]
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Now solve the normal equation AT Ax= AT b to find x:

[� !] [!�] [�] gives x = [!�] [_;]. (8) 

The combination p = Ax is the projection of b onto the column space of A: 

Two checks on the calculation. First, the error e = ( 1, -2, 1) is perpendicular to both 
columns (1, 1, 1) and (0, 1, 2). Second, the matrix P times b = (6, 0, 0) correctly gives 
p = (5, 2, -1 ). That solves the problem for one particular b, as soon as we find P.

The projection matrix is P = A(AT A)-1 AT . The determinant of AT A is 15 - 9 = 6;
then (AT A)-1 is easy. Multiply A times (AT A)-1 times AT to reach P: 

(AT A)-1 = � [ 
5 -3] 

6 -3 3 and P = � [ � ; -�1 
6 -1 2 5 

(10) 

We must have P2 = P, because a second projection doesn't change the first projection. 
Warning The matrix P = A(AT A)-1 AT is deceptive. You might try to split (AT A)-1
into A-1 times (AT)-1. If you make that mistake, and substitute it into P, you will find
P = AA-1(AT)-1 AT . Apparently everything cancels. This looks like P = I, the identity
matrix. We want to say why this is wrong. 

The matrix A is rectangular. It has no inverse matrix. We cannot split (AT A)-1 into
A -1 times (AT )-1 because there is no A - l in the first place.

In our experience, a problem that involves a rectangular matrix almost always leads to 
AT A. When A has independent columns, AT A is invertible. This fact is so crucial that we 
state it clearly and give a proof. 

AT 
A is invertible if and only if A has linearly independent columns. 

Proof AT A is a square matrix ( n by n). For every matrix A, we will now show that 
AT A has the same nullspace as A. When the columns of A are linearly independent, its 
nullspace contains only the zero vector. Then AT A, with this same nullspace, is invertible. 

Let A be any matrix. If xis in its nullspace, then Ax = 0. Multiplying by AT gives 
AT Ax = 0. So x is also in the nullspace of AT A.

Now start with the nullspace of AT A. From AT Ax = Owe must prove Ax = 0.

We can't multiply by (AT)-1, which generally doesn't exist. Just multiply by xT :

(xT )AT Ax= 0 or (Ax?(Ax) = 0 or IIAxll2 = 0. (11) 

We have shown: If AT Ax = 0 then Ax has length zero. Therefore Ax = 0. Every vector 
x in one nullspace is in the other nullspace. If AT A has dependent columns, so has A.

If AT A has independent columns, so has A. This is the good case : AT A is invertible. 
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When A has independent columns, AT A is square, symmetric, and invertible. 

To repeat for emphasis: AT A is (n by m) times (m by n). Then AT A is square (n by n).
It is symmetric, because its transpose is (AT A) T = AT (AT ) T which equals AT A. We just 
proved that AT A is invertible-provided A has independent columns. Watch the difference 
between dependent and independent columns: 

AT A 

[; ; �] [i �] 
dependent singular 

AT A 

[i ; �] [i �] 
indep. invertible 

Very brief summary To find the projectionp = :i\a1 + · · · +xnan , solve AT Ax= A Tb. 
This gives x. The projection is p = Ax and the error is e = b - p = b - Ax. The 
projection matrix P = A(AT A)- 1 AT gives p = Pb. 

This matrix satisfies P
2 

= P. The distance from b to the subspace C(A) is llell-

• REVIEW OF THE KEY IDEAS •

1. The projection of b onto the line through a is p = ax = a( a Tb/ a Ta).

2. The rank one projection matrix P = aa T / a T a multiplies b to produce p.

3. Projecting b onto a subspace leaves e = b - p perpendicular to the subspace.

4. When A has full rank n, the equation AT Ax= AT b leads to x and p = Ax.

5. The projection matrix P = A(AT A)- 1 AT has pT = P and P2 = P and Pb= p.

• WORKED EXAMPLES • 

4.2 A Project the vector b = (3, 4, 4) onto the line through a = (2, 2, 1) and then 
onto the plane that also contains a* = (1, 0, 0). Check that the first error vector b - p

is perpendicular to a, and the second error vector e* = b - p* is also perpendicular to a*. 
Find the 3 by 3 projection matrix P onto that plane of a and a*. Find a vector whose 

projection onto the plane is the zero vector. Why is it exactly the error e* ? 
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Solution The projection of b = (3, 4, 4) onto the line through a= (2, 2, 1) is p = 2a:

Onto a line 
a Tb 18 

p = -T a= -(2,2, 1) = (4,4,2) = 2a.
a a 9 

The error vector e = b -p = (-l, 0, 2) is perpendicular to a= (2, 2, 1). Sop is correct.
The plane of a= (2, 2, 1) and a*= (1, 0, 0) is the column space of A= [a a*]: 

(AT A)-1 = ! [ 1 -2] 5 -2 9 

[1 o o
lP = 0 .8 .4 

0 .4 .2 

Now p* = Pb= (3, 4.8, 2.4). The error e* = b - p* = (0, -.8, 1.6) is perpendicular to
a and a*. This e* is in the nullspace of P and its projection is zero! Note P2 = P = pT _

4.2 B Suppose your pulse is measured at x = 70 beats per minute, then at x = 80,
then at x = 120. Those three equations Ax = b in one unknown have AT = [1 1 1] and
b = (70, 80,120). The best xis the __ of 70, 80,120. Use calculus and projection: 

1. Minimize E = (x - 70)2 + (x - 80)2 + (x - 120)2 by solving dE/dx = 0.

2. Project b = (70, 80,120) onto a= (l, 1, 1) to find x = aTbjaT a.

Solution The closest horizontal line to the heights 70, 80, 120 is the average x = 90:

dE . � 70 + 80 + 120 
-d 

= 2(x - 70) + 2(x - 80) + 2(x - 120) = 0 gives x = ---- = 90.
X 3 

Also by projection x= 
aTb 

= 
(1,1,1?(70,80,120) 

= 
70+80+120 

=90 
aTa (1,1,l)T(l,1,1) 3 

·

In recursive least squares, a fourth measurement 130 changes the average Xold = 90 to
Xnew = 100. Verify the update formula Xnew = Xold + ¾(130 - x01d)- When a new
measurement arrives, we don't have to average all the old measurements again! 

Problem Set 4.2 

Questions 1-9 ask for projections p onto lines. Also errors e = b - p and matrices P.

1 Project the vector b onto the line through a. Check that e is perpendicular to a:
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2 Draw the projection of b onto a and also compute it from p = xa: 

(a) b= [:�:!] and a=[�] (b) b = [ �] and a = [ _ �] . 
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3 In Problem 1, find the projection matrix P = aaTjaTa onto the line through each 
vector a. Verify in both cases that P2 

= P. Multiply Pb in each case to compute
the projection p.

4 Construct the projection matrices A and P2 onto the lines through the a's in Prob­
lem 2. Is it true that (A + P2 ) 2 = A + P2 ? This would be true if AP2 = 0.

5 Compute the projection matrices aa T / a Ta onto the lines through a1 = ( -1, 2, 2)
and a2 = (2, 2, -1). Multiply those projection matrices and explain why their prod­
uct AA is what it is. 

6 Project b = (1, 0, 0) onto the lines through a1 and a2 in Problem 5 and also onto 
a3 = (2, -1, 2). Add up the three projections p1 + p

2 
+ p3. 

7 Continuing Problems 5-6, find the projection matrix P3 onto a3 = (2, -1, 2). Verify 
that A + P2 + P3 = I. This is because the basis a1, a2, a3 is orthogonal! 

a3 = [-�] [-1] 
2 a1 = 2 

a, = [ j] 
Questions 5-6-7: orthogonal 

P1P2a1 

a2 = [;] 

b = [!] 

Questions 8-9-10: not orthogonal 

8 Project the vector b = (1, 1) onto the lines through a1 = (1, 0) and a2 = (1, 2). 
Draw the projections p1 and p2 

and add p1 + p2
. The projections do not add to b

because the a's are not orthogonal.

9 In Problem 8, the projection of b onto the plane of a1 and a2 will equal b. Find
P=A(ATA)- 1AT forA= [a1 a2] = [H] = invertible matrix. 

10 Project a1 = (1, 0) onto a2 = (1, 2). Then project the result back onto a1. Draw
these projections and multiply the projection matrices AP2 : Is this a projection? 
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Questions 11-20 ask for projections, and projection matrices, onto subspaces. 

11 Project b onto the column space of A by solving AT Ax= A Tb and p = Ax: 

(a) A� [� i l and b � m (b) A� [i : l and b � m 
Find e = b - p. It should be perpendicular to the columns of A. 

12 Compute the projection matrices A and P2 onto the column spaces in Problem 11. 
Verify that Ab gives the first projection p

1 . Also verify P} = P2 . 

13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last 
column removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of A. 
What shape is the projection matrix P and what is P? 

14 Suppose b equals 2 times the first column of A. What is the projection of b onto 
the column space of A? Is P = I for sure in this case? Compute p and P when 
b = (0, 2, 4) and the columns of A are (0, 1, 2) and (1, 2, 0). 

15 If A is doubled, then P = 2A(4AT A)- 1 2AT _ This is the same as A(AT A)- 1AT . 
The column space of 2A is the same as __ . Is x the same for A and 2A? 

16 What linear combination of (1, 2, -1) and (1, 0, 1) is closest to b = (2, 1, 1 )? 

17 (Important) If P2 = P show that (I - P)2 = I - P. When P projects onto the 
column space of A, I - P projects onto the __ . 

18 (a) If Pis the 2 by 2 projection matrix onto the line through (1, 1), then I - Pis
the projection matrix onto __ .

(b) If Pis the 3 by 3 projection matrix onto the line through (1, 1, 1), then I - P
is the projection matrix onto __ .

19 To find the projection matrix onto the plane x - y - 2z = 0, choose two vectors in 
that plane and make them the columns of A. The plane will be the column space of 
A! Then compute P = A(AT A)- 1 AT . 

20 To find the projection matrix P onto the same plane x - y - 2z = 0, write down a 
vector e that is perpendicular to that plane. Compute the projection Q = ee T / e Te 
and then P = I - Q. 

Questions21-26show that projection matrices satisfy P2 = P and pT = P.

21 Multiply the matrix P A(AT A)- 1 AT by itself. Cancel to prove that P2 = P. 
Explain why P(Pb) always equals Pb: The vector Pb is in the column space of A 
so its projection onto that column space is __ . 

22 Prove that P = A(AT A)- 1 AT is symmetric by computing pT _ Remember that the 
inverse of a symmetric matrix is symmetric. 
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23 If A is square and invertible, the warning against splitting ( AT A) - 1 does not apply.
It is true that AA - l (AT )- 1 AT = I. When A is invertible, why is P = I? What is
the error e?

24 The nullspace of AT is __ to the column space C(A). So if ATb = 0, the
projection of b onto C(A) should be p = _ _  . Check that P = A(AT A)- 1 AT 

gives this answer. 

25 The projection matrix P onto an n-dimensional subspace of Rm has rank r = n.
Reason: The projections Pb fill the subspace S. So Sis the _ _  of P. 

26 If an m by m matrix has A2 = A and its rank ism, prove that A= I.

27 The important fact that ends the section is this: If AT Ax = 0 then Ax = 0. 
New Proof: The vector Ax is in the nullspace of __ . Ax is always in the column
space of __ . To be in both of those perpendicular spaces, Ax must be zero.

28 Use 
p

T = P and P2 = P to prove that the length squared of column 2 always
equals the diagonal entry A2. This number is � = 3� + 3� + 3� for

p
= ! [ � � -�i6 -1 2 5 

29 If B has rank m (full row rank, independent rows) show that BET is invertible. 

Challenge Problems 

30 (a) Find the projection matrix Pc onto the column space of A (after looking closely
at the matrix!)

A=[3 6 6]
4 8 8 

(b) Find the 3 by 3 projection matrix PR onto the row space of A. Multiply B = 
P0APR . Your answer B should be a little surprising-can you explain it?

31 In Rm , suppose I give you b and also a combination p of a1, ... , an . How would
you test to see if pis the projection of b onto the subspace spanned by the a's? 

32 Suppose Pi is the projection matrix onto the I-dimensional subspace spanned by 
the first column of A. Suppose P2 is the projection matrix onto the 2-dimensional 
column space of A. After thinking a little, compute the product P2 Pi.

A� [ � :] 
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33 Suppose you know the average XoJd of b1, b2, ... , b999. When b1000 arrives, check
that the new average is a combination of XoJd and the mismatch b1000 - Xold: 

x = b1 + · · · + b1000 = b1 + · · · + bggg _1_ 
(b _ b1 + · · · + b999) new 1000 999 + 1000 

1000 999 ·

This is a "Kalman fi.Uer" Xnew = Xold + iloo (b1000 - XoJd) with gain matrix 10

1
00

.
The last page of the book extends the Kalman filter to matrix updates. 

34 (2017) Suppose Pi and P2 are projection matrices (Pl= Pi= P?). Prove this fact:

Pi P2 is a projection matrix if and only if Pi P2 = P2 A.
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4.3 Least Squares Approximations 

1 Solving I AT A x  = AT b I gives the projection p = Ax of b onto the column space of A.

2 When Ax = b has no solution, xis the "least -squares solution": I lb - Axl 1 2 = minimum.

3 Setting partial derivatives of E = I !Ax - bl 1 2 to zero ( gf = 0) also produces AT Ax = AT b.

4 To fit points ( t1, b1), ... , (tm, bm
) by a straight line, A has columns (1, ... , 1) and (t1, ... , tm)-

ATA [ m � ti ] AT b . [ � bi 
] S In that case is the 2 by 2 matrix � ti � tr 

and 1s the vector � tibi .

It often happens that Ax = b has no solution. The usual reason is: too many equations. 
The matrix A has more rows than columns. There are more equations than unknowns
(mis greater than n). Then columns span a small part of m-dimensional space. Unless all
measurements are perfect, b is outside that column space of A. Elimination reaches an
impossible equation and stops. But we can't stop just because measurements include noise!

To repeat: We cannot always get the error e = b - Ax down to zero. When e is zero,
x is an exact solution to Ax = b. When the length of e is as small as possible, x is a
least squares solution. Our goal in this section is to compute x and use it. These are real
problems and they need an answer. 

The previous section emphasized p (the projection). This section emphasizes x (the
least squares solution). They are connected by p = Ax. The fundamental equation is still
AT Ax= AT b. Here is a short unofficial way to reach this "normal equation": 

When Ax= b has no solution, multiply by AT and solve AT Ax= AT b.

Example 1 A crucial application of least squares is fitting a straight line to m points.
Start with three points: Find the closest line to the points (0, 6), (1, 0), and (2, 0). 

No straight line b = C + Dt goes through those three points. We are asking for two
numbers C and D that satisfy three equations: n = 2 and m = 3. Here are the three
equations at t = 0, l, 2 to match the given values b = 6, 0, 0: 

t=O 

t=l 

t=2 

The first point is on the line b = C + Dt if

The second point is on the line b = C + Dt if

The third point is on the line b = C + Dt if

C+D·0=6

C+D·l=0

C+D·2 = 0.
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This 3 by 2 system has no solution: b = (6, 0, 0) is not a combination of the columns 
(1, 1, 1) and (0, 1, 2). Read off A, x, and b from those equations: 

A� [t !] x� [g] b� m Ax�bisnotsolvable

The same numbers were in Example 3 in the last section. We computed x = (5, -3). 
Those numbers are the best C and D, so 5 - 3t will be the best line for the 3 points.

We must connect projections to least squares, by explaining why AT Ax= A Tb. 
In practical problems, there could easily be m = 100 points instead of m = 3. They 

don't exactly match any straight line C + Dt. Our numbers 6, 0, 0 exaggerate the error so 
you can see e1, e2 , and e3 in Figure 4.6. 

Minimizing the Error 

How do we make the error e = b - Ax as small as possible? This is an important question 
with a beautiful answer. The best x (called x) can be found by geometry (the error 
e meets the column space of A at 90° ) and by algebra : AT Ax = AT b. Calculus gives the
same x: the derivative of the error I !Ax - bl 1 2 is zero at x.

By geometry Every Ax lies in the plane of the columns (1, 1, 1) and (0, 1, 2). In that 
plane, we look for the point closest to b. The nearest point is the projection p. 

The best choice for Ax is p. The smallest possible error is e = b - p, perpendicular 
to the columns. The three points at heights (p1, p2, p3) do lie on a line, because p is in the 
column space of A. In fitting a straight line, xis the best choice for ( C, D).

By algebra Every vector b splits into two parts. The part in the column space is p. 
The perpendicular part is e. There is an equation we cannot solve (Ax = b). There is an 
equation Ax= p we can and do solve (by removing e and solving AT Ax= AT b) : 

Ax = b = p + e is impossible Ax = p is solvable 

The solution to Ax = p leaves the least possible error (which is e): 

Squared length for any x IIAx - bll 2 = !!Ax - Pll 2 + llell
2

- (2) 

This is the law c2 = a2 + b2 for a right triangle. The vector Ax - pin the column space 
is perpendicular to e in the left nullspace. We reduce Ax - p to zero by choosing x = x.
That leaves the smallest possible error e = ( e1, e2 , e3) which we can't reduce. 

Notice what "smallest" means. The squared length of Ax -b is minimized: 

The least squares solution x makes E = 11 Ax - b 11 2 as small as possible.

Figure 4.6a shows the closest line. It misses by distances e1, e2 , e3 = 1, -2, 1. 
Those are vertical distances. The least squares line minimizes E = ei + e� + e�. 
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Figure 4.6b shows the same problem in 3-dimensional space (b p e space). The vector 
b is not in the column space of A. That is why we could not solve Ax = b. No line goes 
through the three points. The smallest possible error is the perpendicular vector e. This is 
e = b - Ax, the vector of errors (1, -2, 1) in the three equations. Those are the distances 
from the best line. Behind both figures is the fundamental equation AT Ax = AT b.

b 

P2 = 2 

e2 = -2 b3 = 0 
L------""'*--�,........:')i(' e3 = 1 

p3 = -1 

errors = vertical distances to line 

b= 

e = (1,-2, I) 

Figure 4.6: Best line and projection: Two pictures, same problem. The line has heights 
p = (5, 2, -1) with errors e = (1, -2, 1). The equations AT Ax= ATb give x = (5, -3). 
Same answer! The best line is b = 5 - 3t and the closest point is p = 5a1 - 3a2. 

Notice that the errors 1, -2, 1 add to zero. Reason: The error e = (e1, e2, e3) is 
perpendicular to the first column (1, 1, 1) in A. The dot product gives e1 + e2 + e3 = 0. 

By calculus Most functions are minimized by calculus! The graph bottoms out and the 
derivative in every direction is zero. Here the error function E to be minimized is a sum of 
squares ei + e� + e� (the square of the error in each equation): 

E = IIAx - bll 2 = (C + D · 0 - 6)2 + (C + D · 1)2 + (C + D · 2)2
. (3) 

The unknowns are C and D. With two unknowns there are two derivatives-both zero 
at the minimum. They are "partial derivatives" because 8 E / fJC treats D as constant and 
8E/8D treats C as constant: 

8E/8C=2(C+D·0-6) +2(C+D·l) +2(C+D·2) =0 

8E/8D = 2(C + D · 0 - 6)(0) + 2(C + D · 1)(1) + 2(C + D · 2)(2) = 0. 

8 E / 8 D contains the extra factors O, 1, 2 from the chain rule. (The last derivative from 
(C + 2D)2 was 2 times C + 2D times that extra 2.) Those factors are just 1, 1, 1 in 
8E/8C. 
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It is no accident that those factors 1, 1, 1 and 0, 1, 2 in the derivatives of I I Ax - bl 1 2 

are the columns of A. Now cancel 2 from every term and collect all C's and all D's: 

The C derivative is zero: 30 + 3D = 6 [ 3 3 ] T 
The D derivative is zero: 30 + 5D = O This matrix 3 5 is A A (4)

These equations are identical with AT Ax = AT b. The best C and D are the components
of x. The equations from calculus are the same as the "normal equations" from linear
algebra. These are the key equations of least squares: 

The partial derivatives of II Ax - bll2 are zero when AT Ax = A Tb.

The solution is C = 5 and D = -3. Therefore b = 5 - 3t is the best line-it comes
closest to the three points. At t = 0, 1, 2 this line goes through p = 5, 2, -1.
It could not go through b = 6, 0, 0. The errors are 1, -2, 1. This is the vector el 

The Big Picture for Least Squares 

The key figure of this book shows the four subspaces and the true action of a matrix. The
vector x on the left side of Figure 4.3 went to b = Ax on the right side. In that figure x 
was split into Xr + Xn. There were many solutions to Ax = b. 

In this section the situation is just the opposite. There are no solutions to Ax = b.
Instead of splitting up x we are splitting up b = p + e. Figure 4.7 shows the big picture
for least squares. Instead of Ax = b we solve Ax = p. The error e = b-p is unavoidable.

solvable for p 
row space p is in the column space

column space
inside Rm 

is all of Rn 

Ax=p

0 

---+------------------
.,,
- p = Pb is 

best x 
A _ b .,,.,, nearest to b

X- .,-

----------------� not solvable for b , b = p + e 
b is not in the column space \

-
\ 

\ 

\ 

Independent columns
Nullspace = {O} 

e = minimum error
nullspace/ 
of AT 

Figure 4.7: The projection p =Ax is closest to b, so x minimizes E = llb - Axll2
. 

Notice how the nullspace N(A) is very small-just one point. With independent
columns, the only solution to Ax = 0 is x = 0. Then AT A is invertible. The equation
AT Ax = AT b fully determines the best vector x. The error has AT e = 0. 
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Chapter 7 will have the complete picture-all four subspaces included. Every x splits 
into Xr + Xn , and every b splits into p + e. The best solution is x = Xr in the row space.
We can't help e and we don't want Xn from the nullspace-this leaves Ax = p. 

Fitting a Straight Line 

Fitting a line is the clearest application of least squares. It starts with m > 2 points, 
hopefully near a straight line. At times t1, ... , tm those m points are at heights 
b1, ... , bm . The best line C + Dt misses the points by vertical distances e1, ... , em . 

No line is perfect, and the least squares line minimizes E = er+···+ e;,...
The first example in this section had three points in Figure 4.6. Now we allow m points 

(and m can be large). The two components of x are still C and D. 
A line goes through them points when we exactly solve Ax = b. Generally we can't

do it. Two unknowns C and D determine a line, so A has only n = 2 columns. To fit the
m points, we are trying to solve m equations (and we only have two unknowns!). 

C+Dti = bi 

Ax=b is C + Dt2 = b2 with 

C+Dtm = bm 

A

� r; t, 1 
t2
. 

. 

tm 

(5) 

The column space is so thin that almost certainly b is outside of it. When b happens to lie 
in the column space, the points happen to lie on a line. In that case b = p. Then Ax = b
is solvable and the errors are e = (0, ... , 0). 

The closest line C + Dt has heights p1, . . .  , Prn with errors e 1, • • •  , ern .

Solve AT Ax= A T b for x = (C, D). The errors are ei = bi - C - Dti. 

Fitting points by a straight line is so important that we give the two equations AT Ax = 
AT b, once and for all. The two columns of A are independent (unless all times ti are the 
same). So we turn to least squares and solve AT Ax= AT b. 

Dot-product matrix AT A = [ t� (6) 

On the right side of the normal equation is the 2 by 1 vector AT b: 

(7) 

In a specific problem, these numbers are given. The best x = ( C, D) is (AT A)- 1 ATb.
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The line C + Dt minimizes d + · · · + e;,, = IIAx - bll 2 when AT Ax= ATb: 

[ m I; ti l [ C] [ I; bi l 
I; ti I; t; D - I; tibi 

. (8) 

The vertical errors at the m points on the line are the components of e = b - p. This error vector (the residual) b - Ax is perpendicular to the columns of A (geometry). The error is in the nullspace of AT (linear algebra). The best x = (C, D) minimizes the total error E, the sum of squares (calculus): 
E(x) = IIAx - bll 2 = (C + Dt1 - b1) 2 + · · · + (C + Dtm - bm) 2 , 

Calculus sets the derivatives 8E/8C and 8E/8D to zero, and produces AT Ax= AT b. Other least squares problems have more than two unknowns. Fitting by the best parabola has n = 3 coefficients C, D, E (see below). In general we are fitting m data points by n parameters x1, ... , Xn. The matrix A has n columns and n < m. The derivatives of II Ax - bll 2 give then equations AT Ax= ATb. The derivative of a square is linear.This is why the method of least squares is so popular. 
Example 2 A has orthogonal columns when the measurement times ti add to zero. Suppose b = 1, 2, 4 at times t = -2, 0, 2. Those times add to zero. The columns of A have 
zero dot product: (1, 1, 1) is orthogonal to (-2, 0, 2): 

C + D(-2) = 1 
C + D(O) = 2 C + D(2) = 4 or 

When the columns of A are orthogonal, AT A will be a diagonal matrix: 
is (9) 

Main point: Since A
T A is diagonal, we can solve separately for C = f and D = i. The zeros in AT A are dot products of perpendicular columns in A. The diagonal matrix AT A,with entries m = 3 and tr + t� + t� = 8, is virtually as good as the identity matrix. 

Orthogonal columns are so helpful that it is worth shifting the times by subtracting the

average time t = ( ti + · · · + tm) / m. If the original times were 1, 3, 5 then their average is 
t = 3. The shifted times T = t - t = t - 3 add up to zero! 

T1 = 1- 3 = -2T2 = 3- 3 = 0 
T3 = 5- 3 = 2 

T [3 0] AnewAnew = 0 8 ·
Now C and D come from the easy equation (9). Then the best straight line uses C + DTwhich is C + D(t - t) = C + D(t - 3). Problem 30 even gives a formula for C and D. 



4.3. Least Squares Approximations 225 

That was a perfect example of the "Gram-Schmidt idea" coming in the next section: 
Make the columns orthogonal in advance. Then AJewAnew is diagonal and Xnew is easy. 

Dependent Columns in A: What is x?

From the start, this chapter has assumed independent columns in A. Then AT A is invert­
ible. Then AT Ax= ATb produces the least squares solution to Ax= b.

[ i 

Which x is best if A has dependent columns? Here is a specific example. 

n [ :� J [n [ i i] [ �� ] [;] 
b1 = 3 

=b =p 

b2 = 1 
Ax=b Ax=p 

' • ' / ,,, 
/ 

- - - -... - - -
.,. / I '

' 
/ • ' 

T = 1 
t 

The measurements b1 = 3 and b2 = 1 are at the same time T ! A straight line C + Dt

cannot go through both points. I think we are right to project b = (3, 1) top = (2, 2) in 
the column space of A. That changes the equation Ax = b to the equation Ax = p.

An equation with no solution has become an equation with infinitely many solutions. 
The problem is that A has dependent columns and ( 1, -1) is in its nulls pace. 

Which solution x should we choose? All the dashed lines in the figure have the same 
two errors 1 and -1 at time T. Those errors ( 1, -1) = e = b -p are as small as possible. 
But this doesn't tell us which dashed line is best. 

My instinct is to go for the horizontal line at height 2. If the equation for the best line 
is b = C + Dt, then my choice will have x 1 = C = 2 and x2 = D = 0. But what if 
the line had been written as b = ct + d? This is equally correct (just reversing C and D). 
Now the horizontal line has x 1 = c = 0 and x2 = d = 2. I don't see any way out. 

In Section 7.4, the "pseudoinverse" of A will choose the shortest solution to Ax = p. 
Here, that shortest solution will be x+ = (1, 1). This is the particular solution in the row 
space of A, and x+ has length v'2. (Both solutions x = (2, 0) and (0, 2) have length 2.) 
We are arbitrarily choosing the nullspace component of the solution x+ to be zero. 

When A has independent columns, the nullspace only contains the zero vector and the 
pseudoinverse is our usual left inverse L = (AT A)- 1 AT. When I write it that way, the 
pseudoinverse sounds like the best way to choose x. 

Comment MATLAB experiments with singular matrices produced either Inf or NaN

(Not a Number) or 1016 (a bad number). There is a warning in every case! I believe that Inf

and NaN and 1016 come from the possibilities Ox = b and Ox = 0 and 10- 16 x = 1. 
Those are three small examples of three big difficulties: singular with no solution, 

singular with many solutions, and very very close to singular. 
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Fitting by a Parabola 

If we throw a ball, it would be crazy to fit the path by a straight line. A parabola b = 
C + Dt + Et2 allows the ball to go up and come down again (bis the height at time t). 
The actual path is not a perfect parabola, but the whole theory of projectiles starts with that 
approximation. 

When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated. 
The distance contains a quadratic term ½gt2

. (Galileo's point was that the stone's mass is 
not involved.) Without that t2 term we could never send a satellite into its orbit. 
But even with a nonlinear function like t2

, the unknowns C, D, E still appear linearly! 
Fitting points by the best parabola is still a problem in linear algebra. 

Problem Fit heights b1, ... , bm at times t1, ... , tm by a parabola C + Dt + Et2
• 

Solution With m > 3 points, the m equations for an exact fit are generally unsolvable: 

C + Dtm + Et;,, = bm 

is Ax= b with 
the m by 3 matrix (10) 

Least squares The closest parabola C + Dt + Et2 chooses x = ( C, D, E) to 
satisfy the three normal equations AT Ax = AT b. 

May I ask you to convert this to a problem of projection? The column space of A has 
dimension __ . The projection of b is p = Ax, which combines the three columns 
using the coefficients C, D, E. The error at the first data point is e 1 = b1 - C - Dt i - Etr.
The total squared error is er + __ . If you prefer to minimize by calculus, take the 
partial derivatives of E with respect to __ , __ , __ . These three derivatives will 
be zero when x = ( C, D, E) solves the 3 by 3 system of equations AT Ax = AT b. 

Section 10.5 has more least squares applications. The big one is Fourier series­
approximating functions instead of vectors. The function to be minimized changes from a 
sum of squared errors er + ... + e� to an integral of the squared error. 

Example 3 For a parabola b = C + Dt + Et2 to go through the three heights b = 6, 0, 0 
when t = 0, 1, 2, the equations for C, D, E are 

C + D · 0 + E · 02 = 6 

C+D·l+E-12 =0 

C + D · 2 + E · 22 = 0. 

(11) 

This is Ax = b. We can solve it exactly. Three data points give three equations and 
a square matrix. The solution is x = (C, D, E) = (6, -9, 3). The parabola through the 
three points in Figure 4.8a is b = 6 - 9t + 3t2

. 
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What does this mean for projection? The matrix has three columns, which span the 
whole space R3

. The projection matrix is the identity. The projection of b is b. The error 
is zero. We didn't need AT Ax = AT b, because we solved Ax = b. Of course we could 
multiply by AT , but there is no reason to do it. 

Figure 4.8 also shows a fourth point b4 at time t4. If that falls on the parabola, the new 
Ax = b (four equations) is still solvable. When the fourth point is not on the parabola, we 
tum to AT Ax = AT b. Will the least squares parabola stay the same, with all the error at 
the fourth point? Not likely! 

Least squares balances the four errors to get three equations for C, D, E. 

6 

Figure 4.8: An exact fit of the parabola at t = 0, 1, 2 means that p = b and e = 0. The 
fourth point @ off the parabola makes m > n and we need least squares: project b on 
C (A). The figure on the right shows b-not a combination of the three columns of A. 

• REVIEW OF THE KEY IDEAS •

1. The least squares solution x minimizes 11 Ax - b 112 = x T AT Ax - 2x TAT 
b + b 

T b.
This is E, the sum of squares of the errors in the m equations ( m > n).

2. The best x comes from the normal equations AT Ax = AT 
b. E is a minimum.

3. To fit m points by a line b = C + Dt, the normal equations give C and D.

4. The heights of the best line are p = (p1, ... , Pm). The vertical distances to the data
points are the errors e = (e1, ... , em ), A key equation is AT e = 0.

5. If we try to fit m points by a combination of n < m functions, the m equations
Ax = b are generally unsolvable. Then equations AT Ax = AT b give the least
squares solution-the combination with smallest MSE (mean square error).
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• WORKED EXAMPLES • 

4.3 A Start with nine measurements b1 to b9 , all zero, at times t = 1, ... , 9. The
tenth measurement b10 = 40 is an outlier. Find the best horizontal line y = C to fit
the ten points (1, 0), (2, 0), ... , (9, 0), (10, 40) using three options for the error E: 
(1) Least squares E2 = ef + · · · + ef0 (then the normal equation for C is linear)
(2) Least maximum error E00 = lemaxl (3) Least sum of errors E1 = le1I + · · · + le1ol-

Solution (1) The least squares fit to 0, 0, ... , 0, 40 by a horizontal line is C = 4:

A= column of l's AT A= 10 AT b = sum of bi = 40. So 10 C = 40.

(2) The least maximum error requires C = 20, halfway between O and 40.

(3) The least sum requires C = 0 (!!).The sum of errors 9ICI + 140 - Cl would increase
if C moves up from zero. 

The least sum comes from the median measurement (the median of 0, ... , 0, 40 is zero).
Many statisticians feel that the least squares solution is too heavily influenced by outliers 
like b1o = 40, and they prefer least sum. But the equations become nonlinear. 

Now find the least squares line C + Dt through those ten points (1, 0) to (10, 40):

ATA=[lO Lti]=[lO 55]
I: ti I: t; 55 385 

Those come from equation (8). Then AT Ax= AT b gives C = -8 and D = 24/11. 

What happens to C and D if you multiply b = (0, 0, ... , 40) by 3 and then add 30 to
get bnew = (30, 30, ... , 150)? Linearity allows us to rescale b. Multiplying b by 3 will
multiply C and D by 3. Adding 30 to all bi will add 30 to C. 

4.3 B Find the parabola C + Dt + Et2 that comes closest (least squares error) to the
values b = (0, 0, 1, 0, 0) at the times t = -2, -1, 0, 1, 2. First write down the five equations
Ax = bin three unknowns x = ( C, D, E) for a parabola to go through the five points. No
solution because no such parabola exists. Solve AT Ax = AT b.

I would predict D = 0. Why should the best parabola be symmetric around t = O? 
In AT Ax = ATb, equation 2 for D should uncouple from equations 1 and 3.

Solution The five equations Ax = b have a rectangular Vandermonde matrix A:

C + D (-2) + E (-2)2 0 1 -2 4
C + D ( -1) + E ( -1 )2 0 1 -1 1

ATA- [
5 0

�i C+D (0) + E (0)2 1 A= 1 0 0 0 10
C+D (1) + E (1)2 0 1 1 1 10 0 34 
C+D (2) + E (2)2 0 1 2 4
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Those zeros in AT A mean that column 2 of A is orthogonal to columns 1 and 3. We 
see this directly in A (the times -2, -1, 0, 1, 2 are symmetric). The best C, D, E in the 
parabola C + Dt + Et2 come from AT Ax= AT b, and Dis uncoupled from C and E: 

[ 
5 0 10 l 
0 10 0 

10 0 34 

Problem Set 4.3 

[�] [�] leads to 
C = 34/70
D = 0 as predicted 
E = -10/70 

Problems 1-11 use four data points b = (0, 8, 8, 20) to bring out the key ideas.

t
2 

= 1 t
3 

= 3 t
4 

= 4 

b = (0, 8, 8, 20) 
' 
' 
' 

e ' 
'
'

/p-Ca,+Da, 

a2 = (0, 1, 3, 4) 

Figure 4.9: Problems 1-11: The closest line C + Dt matches Ca 1 + Da2 in R4
. 

1 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations 
AT Ax = ATb. For the best straight line in Figure 4.9a, find its four heights Pi
and four errors ei. What is the minimum value E = ei + e� + e� + e�? 

2 (Line C + Dt does go through p's) With b = 0, 8, 8, 20 at times t = 0, 1, 3, 4, 
write down the four equations Ax = b (unsolvable). Change the measurements to 
p = 1, 5, 13, 17 and find an exact solution to Ax = p. 

3 Check that e = b - p = ( -1, 3, -5, 3) is perpendicular to both columns of the
same matrix A. What is the shortest distance llell from b to the column space of A? 

4 (By calculus) Write down E = II Ax - bll 2 as a sum of four squares-the last one 
is (C + 4D - 20)2

. Find the derivative equations 8E/8C = 0 and 8E/8D = 0. 
Divide by 2 to obtain the normal equations AT Ax= ATb. 

5 Find the height C of the best horizantal line to fit b = (0, 8, 8, 20). An exact fit 
would solve the unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the 
4 by 1 matrix A in these equations and solve AT Ax = ATb. Draw the horizontal 
line at height x = C and the four errors in e. 
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6 Project b = (0, 8, 8, 20) onto the line through a = (1, 1, 1, 1). Find x = a Tb/ a Ta 
and the projection p = xa. Check that e = b - p is perpendicular to a, and find the 
shortest distance llell from b to the line through a.

7 Find the closest line b = Dt, through the origin, to the same four points. An exact 
fit would solve D · 0 = 0, D · l = 8, D · 3 = 8, D · 4 = 20. Find the 4 by 1 matrix 
and solve AT Ax= ATb. Redraw Figure 4.9a showing the best line b = Dt and the 
e's. 

8 Project b = (0, 8, 8, 20) onto the line through a = (0, 1, 3, 4). Find x = D and 
p = xa. The best C in Problems 5-6 and the best Din Problems 7-8 do not agree 
with the best (C, D) in Problems 1-4. That is because (1, 1, 1, 1) and (0, 1, 3, 4) are 
__ perpendicular. 

9 For the closest parabola b = C + Dt + Et2 to the same four points, write down the 
unsolvable equations Ax = b in three unknowns x = ( C, D, E). Set up the three 
normal equations AT Ax = A Tb (solution not required). In Figure 4.9a you are now 
fitting a parabola to 4 points-what is happening in Figure 4.9b? 

10 For the closest cubic b = C + Dt + Et2 
+ Ft3 to the same four points, write down 

the four equations Ax = b. Solve them by elimination. In Figure 4.9a this cubic 
now goes exactly through the points. What are p and e? 

11 The average of the four times is t = ¼(O + 1 + 3 + 4) = 2. The average of the 
four b's is b = ¼(O + 8 + 8 + 20) = 9. 

(a) Verify that the best line goes through the center point (t, b) = (2, 9). 

(b) Explain why C + Dt = b comes from the first equation in AT Ax = AT b.

Questions 12-16 introduce basic ideas of statistics-the foundation for least squares. 

12 (Recommended) This problem projects b = ( b1, ... , bm) onto the line through a = 
(1, ... , 1). We solve m equations ax= bin 1 unknown (by least squares). 

(a) Solve a Tax= a Tb to show that xis the mean (the average) of the b's.

(b) Find e = b - ax and the variance llell2 and the standard deviation llell-
(c) The horizontal line b = 3 is closest to b = (1, 2, 6). Check that p = (3, 3, 3) is

perpendicular to e and find the 3 by 3 projection matrix P.

13 First assumption behind least squares: Ax = b- (noise e with mean zero). Multiply 
the error vectors e = b - Ax by (AT A)- 1AT to get x - x on the right. The 
estimation errors x - x also average to zero. The estimate x is unbiased. 

14 Second assumption behind least squares: Them errors ei are independent with vari­
ance a2 , so the average of (b - Ax )(b - Ax )T is a2 I. Multiply on the left by 
(AT A)- 1 AT and on the right by A(AT A)- 1 to show that the average matrix 
(x - x) (x - x) T is a2 ( AT A )- 1. This is the covariance matrix Win Section 10.2. 
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15 A doctor takes 4 readings of your heart rate. The best solution to x = b1, ... , x = b4 
is the average x of b1, ... , b4. The matrix A is a column of 1 's. Problem 14 gives 
the expected error (x - x)2 as 0"

2 (AT A)- 1 = __ . By averaging, the vmiance

drops from 0"
2 to 0"

2 / 4. 

16 If you know the average x9 of 9 numbers b1, ... , b9 , how can you quickly find the 
average x10 with one more number b10 ? The idea of recursive least squares is to 
avoid adding 10 numbers. What number multiplies x9 in computing x10 ? 

x10 = {0 b10 + __ xg = {
0 

(b1 + · · · + b10) as in Worked Example 4.2 C. 

Questions 17-24 give more practice with x and p and e.

17 Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, 
b = 7 at t = l, and b = 21 at t = 2. Find the least squares solution x = (C, D) and 
draw the closest line. 

18 Find the projection p = Ax in Problem 17. This gives the three heights of the closest 
line. Show that the error vector ise = (2, -6, 4). Why is Pe= O? 

19 Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in Problem 18. 
Compute x and the closest line to these new measurements. Explain the answer: 
b = (2, -6, 4) is perpendicular to _ _  so the projection is p = 0. 

20 Suppose the measurements at t = -1, 1, 2 are b = ( 5, 13, 17). Compute x and the 
closest line and e. The error is e = 0 because this b is 

21 Which of the four subspaces contains the error vector e? Which contains p? Which 
contains x? What is the nullspace of A?

22 Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2.

23 Is the error vector e orthogonal to b or pore or x? Show that llell 2 equals eT b

which equals bTb - pT b. This is the smallest total error E.

24 The partial derivatives of 11Axll 2 with respect to x1, ... , Xn fill the vector 2AT 
Ax.

The derivatives of 2b T 
Ax fill the vector 2A

T
b. So the derivatives of IIAx - bll 2 are 

zero when 

Challenge Problems 

25 What condition on ( t1, b1), ( t2 , b2), ( t3, b3) puts those three points onto a straight

line? A column space answer is: (b1 , b2 , b3 ) must be a combination of (1, 1, 1) and 
( t1, t2, t3). Try to reach a specific equation connecting the t's and b's. I should have 
thought of this question sooner! 
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26 Find the plane that gives the best fit to the 4 values b = (0, 1, 3, 4) at the corners 
(1, 0) and (0, 1) and (-1, 0) and (0, -1) of a square. The equations C + Dx+ Ey =

b at those 4 points are Ax = b with 3 unknowns x = ( C, D, E). What is A? 
At the center (0, 0) of the square, show that C + Dx + Ey = average of the b's. 

27 (Distance between lines ) The points P = (x, x, x) and Q = (y, 3y, -1) are on two 
lines in space that don't meet. Choose x and y to minimize the squared distance 
11 P - Q 11 2

. The line connecting the closest P and Q is perpendicular to __ . 

28 Suppose the columns of A are not independent. How could you find a matrix B so 
that P = B ( BT B )-1 BT does give the projection onto the column space of A? (The
usual formula will fail when AT A is not invertible.) 

29 Usually there will be exactly one hyperplane in Rn that contains the n given points 
x = 0, a1, ... , an-l· (Example for n = 3: There will be one plane containing 
0, a1, a2 unless __ .) What is the test to have exactly one plane in Rn? 

30 Example 2 shifted the times ti to make them add to zero. We subtracted away the 
average time t = (t1 + · · · + tm)/m to get Ti

= ti - t. Those Ti add to zero. 

With the columns (1, ... , 1) and (T1 , ... , Tm) now orthogonal, AT A is diagonal. Its 
entries are m and T'f + · · · + T�. Show that the best C and D have direct formulas: 

Tist - t C = b1 + · · · + bm
m 

and D = b1T1 + · · · + bm T m 

T'f + · · · +T;, 

The best line is C + DT or C + D ( t - t). The time shift that makes AT A diagonal 
is an example of the Gram-Schmidt process: orthogonalize the columns of A in 
advance. 
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4.4 Orthonormal Bases and Gram-Schmidt 
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1 Th 1 h l .f T { 
0
1 £

for 
i_ 

# J_ }· Then I QTQ -- I. I e co umns q1, ... , qn are ort onorma 1 q
i

% = . . or i = J 

2 If Q is also square, then QQT 
= I and I QT 

= Q- 1 I- Q is an "orthogonal matrix".

3 The least squares solution to Qx = bis x = QTb. Projection of b: p = QQTb = Pb. 

4 The Gram-Schmidt process takes independent ai to orthonormal qi. Start with q
1 =ai/ I la1II-

5 q
i is (ai - projection pi)/ l lai -pill; projection Pi

= (a'fq 1 )q1 + · · · + (a'fqi_ 1 )qi-l· 

6 Each ai will be a combination of q1 to qi. Then A = QR: orthogonal Q and triangular R.

This section has two goals, why and how. The first is to see why orthogonality is good. 
Dot products are zero, so AT A will be diagonal. It becomes so easy to find x and p = Ax. 
The second goal is to construct orthogonal vectors. You will see how Gram-Schmidt 
chooses combinations of the original basis vectors to produce right angles. Those original 
vectors are the columns of A, probably not orthogonal. The orthonormal basis vectors

will be the columns of a new matrix Q. 

From Chapter 3, a basis consists of independent vectors that span the space. 
The basis vectors could meet at any angle (except 0 ° and 180 ° ). But every time we visu­
alize axes, they are perpendicular. In our imagination, the coordinate axes are practically 
always orthogonal. This simplifies the picture and it greatly simplifies the computations. 

The vectors q1, ... , qn are orthogonal when their dot products qi · % are zero. More
exactly q'f % = 0 whenever i # j. With one more step-just divide each vector by its 
length-the vectors become orthogonal unit vectors. Their lengths are all 1 (normal). 
Then the basis is called orthonormal.

DEFINITION The vectors q1, ... , q
n 

are orthonormal if

q T q = { 
0 when i # j 

i 1 1 when i = j 

(orthogonal vectors) 
(unit vectors: llqill = 1) 

A matrix with orthonormal columns is assigned the special letter Q. 

The matrix Q is easy to work with because QT Q = I. This repeats in matrix lan­
guage that the columns q

1
, ... , q

n are orthonormal. Q is not required to be square. 
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A matrix Q with orthonormal columns satisfies 

QTQ 
[ -•i- l [ I -q2 -

Q1 

-qJ- I +lQ2 

QTQ =I:

1 0 

ri 
0 

I. (1)

0 0 

When row i of QT multiplies column j of Q, the dot product is q; q
j
. Off the diagonal 

( i -=/- j) that dot product is zero by orthogonality. On the diagonal ( i = j) the unit vectors 
give q; qi

= llqill2 = 1. Often Q is rectangular (m > n). Sometimes m = n.

When Q is square, QT Q = I means that QT= Q- 1
.- transpose= inverse.

If the columns are only orthogonal (not unit vectors) , dot products still give a diagonal 
matrix (not the identity matrix). This diagonal matrix is almost as good as I. The important 
thing is orthogonality-then it is easy to produce unit vectors. 

To repeat: QT Q = I even when Q is rectangular. In that case QT is only an inverse
from the left. For square matrices we also have QQT 

= I, so QT is the two-sided in­
verse of Q. The rows of a square Qare orthonormal like the columns. The inverse is the
transpose. In this square case we call Q an orthogonal matrix. 1 

Here are three examples of orthogonal matrices-rotation and permutation and reflec­
tion. The quickest test is to check QTQ = I.

Example 1 (Rotation) Q rotates every vector in the plane by the angle 0: 

Q= 
[
c?s0 - sin0

] sm0 cos0 
and QT=Q-i=[ 

c?s0 sin0

]
·

- sm0 cos0 

The columns of Q are orthogonal (take their dot product). They are unit vectors because
sin2 0 + cos

2 0 = 1. Those columns give an orthonormal basis for the plane R2
. 

The standard basis vectors i and j are rotated through 0 (see Figure 4.10a). Q- 1 rotates 
vectors back through -0. It agrees with QT , because the cosine of -0 equals the cosine 
of 0, and sin(-0) = - sin 0. We have QTQ = I and QQT 

= I.

Example 2 (Permutation) These matrices change the order to (y, z, x) and (y, x): 

[� � !] m m and 
[� � l [; l [ � l .

All columns of these Q's are unit vectors (their lengths are obviously 1). They are also 
orthogonal (the 1 's appear in different places). The inverse of a permutation matrix is its
transpose: Q-1 = QT . The inverse puts the components back into their original order: 

1 "Orthonormal matrix" would have been a better name for Q, but it's not used. Any matrix with

orthonormal columns has the letter Q. But we only call it an orthogonal matrix when it is square. 
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Inve,se= t,anspose, [[ � � l [;] m ond 
[� �] [ � l [:]

Every permutation matrix is an orthogonal matrix. 

Example 3 (Reflection) If u is any unit vector, set Q = I - 2uu T. Notice that 
uu T is a matrix while u T u is the number llu ll2 = 1. Then QT and Q- 1 both equal Q: 

QT = I -2uuT = Q and QTQ = I -4uuT +4uuT uuT = I. (2) 

Reflection matrices I -2uu T are symmetric and also orthogonal. If you square them, you 
get the identity matrix: Q2 = QT Q = I. Reflecting twice through a mirror brings back the 
original, like ( -1 )2 = 1. Notice u T u = l inside 4uu T uu T in equation (2). 

j 

0 sm0 

Qi= j 

u 

Reflect

/ ,' 

)" 
mirror Qj = [-:�::] 

�
i = [

c?s0
] 

Rotate by 0
0 . 

I uto-u ----- Qj = i

Figure 4.10: Rotation by Q = [ � -�] and reflection across 45 ° by Q = [ � i] . 

As example choose the direction u = (-l/ v12, 1/ v12). Compute 2uu T (column times 
row) and subtract from I to get the reflection matrix Qin the direction of u:

Reflection Q = I -2 [ _: �
-

: �]
= 

[ � �] 
and 

[ � �] [:] [;] 
. 

When (x, y) goes to (y, x), a vector like (3, 3) doesn't move. It is on the mirror line. 
Rotations preserve the length of every vector. So do reflections. So do permutations. 

So does multiplication by any orthogonal matrix Q-lengths and angles don't change.

Proof 11Qxll2 equals llxll2 because (Qx)T (Qx) = xTQTQx = xTJx = xT x. 

If Q has orthonormal columns ( QT Q = I), it leaves lengths unchanged:

Same length for Qx II Qxll = llxll for every vector x. (3)
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Projections Using Orthonormal Bases: Q Replaces A 

Orthogonal matrices are excellent for computations-numbers can never grow too large
when lengths of vectors are fixed. Stable computer codes use Q's as much as possible.

For projections onto subspaces, all formulas involve AT 
A. The entries of AT A are the

dot products a; a1 of the basis vectors a1, ... , an . 
Suppose the basis vectors are actually orthonormal. Thea's become the q's. Then

AT A simplifies to QTQ = I. Look at the improvements in x and p and P. Instead of
QT Q we print a blank for the identity matrix:

__ X = QTb and p = Qx and p = Q __ QT . (4) 

The least squares solution of Qx = bis x = QT b. The projection matrix is QQT . 

There are no matrices to invert. This is the point of an orthonormal basis. The best x = 
QTb just has dot products of q1

, . . .  ,q
n 

with b. We have !-dimensional projections!
The "coupling matrix" or "correlation matrix" AT A is now QTQ = I. There is no
coupling. When A is Q, with orthonormal columns, here is p = Qx = QQT b: 

Projection 

onto q's 

(5)
Important case: When Q is square and m = n, the subspace is the whole space. Then
QT = Q- 1 and x = QTb is the same as x = Q- 1 b. The solution is exact! The projection
of b onto the whole space is b itself. In this case p = band P = QQT = I.

You may think that projection onto the whole space is not worth mentioning. But when
p = b, our formula assembles b out of its 1-dimensional projections. If q1 , . . .  , q

n 
is an 

orthonormal basis for the whole space, then Q is square. Every b = QQTb is the sum of 
its components along the q's:

(6) 

Transforms QQT = I is the foundation of Fourier series and all the great "transforms"
of applied mathematics. They break vectors b or functions f ( x) into perpendicular pieces.
Then by adding the pieces in (6), the inverse transform puts band f(x) back together.

Example 4 The columns of this orthogonal Qare orthonormal vectors q1 , q2 , q3: 

m=n=3 Q=� 
3 [-� -i �i 2 2 -1 
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The separate projections of b 
= (0, 0, 1) onto q1 and q2 and <1:3 are p1 and p2 and p

3 : 

q1 (qTb) = jq1 
and q2 (qib) = jq2 and q3 (qjb) = -½q3 . 
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The sum of the first two is the projection of b onto the plane of q1 and q2 . 
The sum of all 

three is the projection of b onto the whole space-which is p
1 
+ p

2 
+ p

3 
= b itself: 

Reconstruct b 

b = P1 +P2 + P3 

The Gram-Schmidt Process 

The point of this section is that "orthogonal is good". Projections and least squares 
always involve AT A. When this matrix becomes QT Q 

= 
I, the inverse is no problem. 

The one-dimensional projections are uncoupled. The best x is QTb (just n separate dot 
products). For this to be true, we had to say "If the vectors are orthonormal". 
Now we explain the "Gram-Schmidt way" to create orthonormal vectors. 

Start with three independent vectors a, b, c. We intend to construct three orthogonal 
vectors A, B, C. Then (at the end may be easiest) we divide A, B, C by their lengths. 
That produces three orthonormal vectors q1 = A/IIAII, q2 = B/IIBII, q3 = C /IICII-
Gram-Schmidt Begin by choosing A 

= 
a. This first direction is accepted as it comes. 

The next direction B must be perpendicular to A. Start with b and subtract its

projection along A. This leaves the perpendicular part, which is the orthogonal vector B:

First Gram-Schmidt step (7) 

A and B are orthogonal in Figure 4.11. Multiply equation (7) by AT to verify that AT B = 
AT b - AT b = 0. This vector B is what we have called the error vector e, perpendicular
to A. Notice that B in equation (7) is not zero (otherwise a and b would be dependent). 
The directions A and B are now set. 

The third direction starts with c. This is not a combination of A and B (because c is 
not a combination of a and b). But most likely c is not perpendicular to A and B. So 
subtract off its components in those two directions to get a perpendicular direction C:

Next Gram-Schmidt step (8) 

This is the one and only idea of the Gram-Schmidt process. Subtract from every new

vector its projections in the directions already set. That idea is repeated at every step.2 

If we had a fourth vector d, we would subtract three projections onto A, B, C to get D.

21 think Gram had the idea. I don't really know where Schmidt came in.
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Subtract the 
projection p 

to getB = b - p 

lf

B 

A=ab 
A 

C=c-p 

B1 
I 

' I 

C 

projection p 

Chapter 4. Orthogonality 

Unit vectors 

Figure 4.11: First project b onto the line through a and find the orthogonal B as b - p. 

Then project c onto the AB plane and find C as c - p. Divide by IIA II, IIBII, IIC II-

At the end, or immediately when each one is found, divide the orthogonal vectors A, B, 

C, D by their lengths. The resulting vectors q
1

, q
2

, q3, q
4 

are orthonormal. 

Example of Gram-Schmidt Suppose the independent non-orthogonal vectors a, b, c are 

Then A = a has AT A = 2 and AT 
b = 2. Subtract from b its projection p along A: 

First step 

Check: AT B = 0 as required. Now subtract the projections of c on A and B to get C: 

Next step 

Check: C = (1, 1, 1) is perpendicular to both A and B. Finally convert A, B, C to 
unit vectors (length 1, orthonormal). The lengths of A, B, C are v'2 and v'6 and \/'3. 
Divide by those lengths, for an orthonormal basis: 

Usually A, B, C contain fractions. Almost always q 1 , q2 , q
3 

contain square roots. 
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The Factorization A = QR 

We started with a matrix A, whose columns were a, b, c. We ended with a matrix Q, 
whose columns are q1 , q2 , q

3
. How are those matrices related? Since the vectors a, b, c 

are combinations of the q's (and vice versa), there must be a third matrix connecting A 
to Q. This third matrix is the triangular R in A = QR. 

The first step was q
1 = a/llall (other vectors not involved). The second step was 

equation (7), where b is a combination of A and B. At that stage C and q
3 

were not 
involved. This non-involvement of later vectors is the key point of Gram-Schmidt: 

• The vectors a and A and q1 
are all along a single line.

• The vectors a, band A, B and q
1

, q2 are all in the same plane.

• The vectors a, b, c and A, B, C and q
1 , q

2
, q

3 
are in one subspace (dimension 3).

At every step a1, ... ,ak are combinations of q1 , ... ,qk. Later q's are not involved. 
The connecting matrix R is triangular, and we have A= QR: 

or A=QR. (9) 

A= QR is Gram-Schmidt in a nutshell. Multiply by QT to recognize R = QT A above. 

(Gram-Schmidt) From independent vectors a1, . . .  , an , Gram-Schmidt constructs 
orthonormal vectors q 1, ... , q n. The matrices with these columns satisfy A = QR.
Then R = QT A is upper triangular because later q's are orthogonal to earlier a's. 

Here are the original a's and the final q's from the example. The i, j entry of R = QT A

is row i of QT times column j of A. The dot products q; a1 go into R. Then A = QR:

[ 
1 2 3

] [ 
1/./2 1/v'6 

A= -1 0 -3 = -1/./2 1/v'6 
0 -2 3 0 -2/v'6 

1 / v'3
] [ 

v12 v'2 v'IS] 
1/v'3 0 v'6 -v'6 = QR.
1/v'3 0 0 v'3 

Look closely at Q and R. The lengths of A, B, C are ./2, v'6, v'3 on the diagonal of R. 
The columns of Q are orthonormal. Because of the square roots, QR might look harder 
than LU. Both factorizations are absolutely central to calculations in linear algebra. 

Any m by n matrix A with independent columns can be factored into A = QR. The 
m by n matrix Q has orthonormal columns, and the square matrix R is upper triangular 
with positive diagonal. We must not forget why this is useful for least squares: 
AT A = (QR)TQR = RTQTQR = RT R The least squares equation AT Ax = 
AT b simplifies to RT Rx = RT QT b. Then finally we reach Rx = QT b: good. 
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Least squares (10) 

Instead of solving Ax = b, which is impossible, we solve Rx = QT b by back substitu­
tion-which is very fast. The real cost is the mn 2 multiplications in the Gram-Schmidt pro­
cess, which are needed to construct the orthogonal Q and the triangular R with A = QR. 

Below is an informal code. It executes equations (11) for j = 1 then j = 2 and eventually 
j = n. The important lines 4-5 subtract from v = a, its projection onto each q

i
, i < j.

The last line of that code normalizes v ( divides by r jj = 11 v 11) to get the unit vector q { 

Starting from a, b, c = a1, a2 , a3 this code will construct q1 , then B, q
2
, then C, q

3
: 

Q1 = ai/llaill B = a2 - (q'f a2 )q1 Q2 = B/IIBII 

C* = a3 - (q'fa3 )q1 C = C* - (q'JC*)q2 q
3 

= C/IICII 

Equation (11) subtracts one projection at a time as in C* and C. That change is called 
modified Gram-Schmidt. This code is numerically more stable than equation (8) which 
subtracts all projections at once. 

for j = 1 :n 
V = A(:,j); 
for i = 1 :j-1 

R(i,j) = Q(:,i)'*v; 
v = v-R(i,j)*Q(:, i); 

end 
R(j,j) = norm(v ); 
Q(:,j) = v/R(j,j); 

end 

% modified Gram-Schmidt

% v begins as column j of the original A
% columns q1 

to %-l are already settled in Q
% compute Rij = q; a1 which is q; v

% subtract the projection (q;v)qi 

% vis now perpendicular to all of q1 , ... , %-l 
% the diagonal entries R11 are lengths 
% divide v by its length to get the next % 
% the "for j = 1 : n loop" produces all of the % 

To recover column j of A, undo the last step and the middle steps of the code: 
j-1 

R(j,j)Qj = (vminus itsprojections) = (column jofA ) - LR(i,j)qi. (12)
i=l 

Moving the sum to the far left, this is column j in the multiplication QR = A.
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Confession Good software like LAPACK, used in good systems like MATLAB and
Julia and Python, will not use this Gram-Schmidt code. There is now a better way.
"Householder reflections" act on A to produce the upper triangular R. This happens one
column at a time in the same way that elimination produces the upper triangular U in LU.

Those reflection matrices I -2uu T will be described in Chapter 11 on numerical linear
algebra. If A is tridiagonal we can simplify even more to use 2 by 2 rotations. The result
is always A = QR and the MATLAB command to orthogonalize A is [Q, R] = qr(A).
I believe that Gram-Schmidt is still the good process to understand, even if the reflections
or rotations lead to a more perfect Q.

• REVIEW OF THE KEY IDEAS •

1. If the orthonormal vectors q1, ... , qn are the columns of Q, then q; q
1 

= 0 and
q; q

i 
= 1 translate into the matrix multiplication QT Q = I.

2. If Q is square (an orthogonal matrix) then QT = Q- 1
: transpose= inverse.

3. The length of Qx equals the length of x: IIQxll = llxll-

4. The projection onto the column space of Q spanned by the q's is P = QQT.

5. If Q is square then P = QQT 
= I and every b = q

1 
(qlb) + · · · + qn(qJb).

6. Gram-Schmidt produces orthonormal vectors q1 , q2 , q3 from independent a, b, c.
In matrix form this is the factorization A= QR= (orthogonal Q)(triangular R). 

• WORKED EXAMPLES • 

4.4 A Add two more columns with all entries 1 or -1, so the columns of this 4 by 4
"Hadamard matrix" are orthogonal. How do you turn H4 into an orthogonal matrix Q?

The block matrix H8 = [ ;: _;:]

and l 
is the next Hadamard matrix with 1 's and -1 's.
What is the product Hl' H 8? 

The projection of b = (6, 0, 0, 2) onto the first column of H4 is p
1 

= (2, 2, 2, 2). The
projection onto the second column is p2 = ( 1, -1, 1, -1). What is the projection p

1 2 of b
onto the 2-dimensional space spanned by the first two columns? 
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Solution H4 can be built from H 2 just as Hs is built from H4:

has orthogonal columns.

Then Q = H /2 has orthonormal columns. Dividing by 2 gives unit vectors in Q. A 5 by
5 Hadamard matrix is impossible because the dot product of columns would have five 1 's
and/or -1 's and could not add to zero. H8 has orthogonal columns of length Js. 

T [
H T H T

] [
H H

] [
2H T H O 

] [
SJ O

] 
Hs Hs Hs = H T -H T H -H = 0 2H T H = 0 8I . Qs = Js

4.4 B What is the key point of orthogonal columns? Answer: AT A is diagonal and
easy to invert. We can project onto lines and just add. The axes are orthogonal. 

Add p's Projection p1 ,2 onto a plane equals p1 + p2 onto orthogonal lines.

Problem Set 4.4 

Problems 1-12 are about orthogonal vectors and orthogonal matrices. 

1 Are these pairs of vectors orthonormal or only orthogonal or only independent?

(a) [�] and [-n (b) [:�] and[-:!] (c) [
c�s0

] and [
- sin0

] _
sm0 cos0 

Change the second vector when necessary to produce orthonormal vectors.

2 The vectors (2, 2, -1) and ( -1, 2, 2) are orthogonal. Divide them by their lengths to
find orthonormal vectors q

1 
and q2 . Put those into the columns of Q and multiply

Q TQ andQQ T _ 

3 (a) If A has three orthogonal columns each of length 4, what is AT A?
(b) If A has three orthogonal columns of lengths 1, 2, 3, what is AT A?

4 Give an example of each of the following:

(a) A matrix Q that has orthonormal columns but QQ T =/- I.
(b) Two orthogonal vectors that are not linearly independent.
(c) An orthonormal basis for R3

, including the vector q
1 = (1, 1, 1)/v3.

5 Find two orthogonal vectors in the plane x + y + 2z = 0. Make them orthonormal.

6 If Q 1 and Q 2 are orthogonal matrices, show that their product Q 1 Q 2 is also an or­
thogonal matrix. (Use Q T Q = I.) 
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7 If Q has orthonormal columns, what is the least squares solution x to Qx = b?
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8 If q
1 

and q2 are orthonormal vectors in R.5
, what combination __ q1 

+ __ q2 is closest to a given vector b?

9 (a) Compute P = QQT when q
1 

= (.8, .6, 0) and q
2 

= (-.6, .8, 0). Verify that
p2 =P. 

(b) Prove that always (QQT)2 = QQT by using QTQ = I. Then P = QQT isthe projection matrix onto the column space of Q. 

10 Orthonormal vectors are automatically linearly independent.
(a) Vector proof: When c1 q1 

+c2 q2 +c3q3 
= 0, what dot product leads to c1 = O?Similarly c2 = 0 and c3 = 0. Thus the q's are independent. 

(b) Matrix proof: Show that Qx = 0 leads to x = 0. Since Q may be rectangular,you can use QT but not Q� 1. 
11 (a) Gram-Schmidt: Find orthonormal vectors q

1 
and q

2 in the plane spanned by
a= (1, 3, 4, 5, 7) and b = (-6, 6, 8, 0, 8).

(b) Which vector in this plane is closest to ( 1, 0, 0, 0, 0)?
12 If a1 , a2, a3 is a basis for R 3, any vector b can be written as

or

(a) Suppose the a's are orthonormal. Show that x1 = af b.
(b) Suppose the a's are orthogonal. Show that x1 = afb/af a1 .
(c) If the a's are independent, x1 is the first component of __ times b.

Problems 13-25 are about the Gram-Schmidt process and A= QR.

13 What multiple of a = [ i ] should be subtracted from b = [ 6] to make the result Borthogonal to a? Sketch a figure to show a, b, and B. 

14 Complete the Gram-Schmidt process in Problem 13 by computing q1 = a/ llall andq
2 = B/IIBII and factoring into QR:

[l 4] = [ ] [ilall1 0 ql q
2 0 



244 Chapter 4. Orthogonality 

15 (a) Find orthonormal vectors q
1

, q
2 , q3 such that q

1 , q
2 

span the column space of

A= 
[ � -�l--2 4 

(b) Which of the four fundamental subspaces contains q 3?
(c) Solve Ax= (1, 2, 7) by least squares.

16 What multiple of a = (4, 5, 2, 2) is closest to b = (1, 2, 0, 0)? Find orthonormal 
vectors q

1 
and q

2 
in the plane of a and b. 

17 Find the projection of b onto the line through a: 

a m and b� rn and p ? and e b-p c ? 

Compute the orthonormal vectors q
1 

= a/llall and q2 = e/llell-

18 (Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c: 

a= (1, -1, 0, 0) b = (0, 1, -1, 0) c= (0,0,1,-1). 

A, B, C and a, b, care bases for the vectors perpendicular to d = (1, 1, 1, 1). 

19 If A = QR then AT A = RT R = __ triangular times __ triangular. 
Gram-Schmidt on A corresponds to elimination on AT 

A. The pivots for AT A must 
be the squares of diagonal entries of R. Find Q and R by Gram-Schmidt for this A: 

[
-1 l

l A= ; ! 
and 

20 True or false (give an example in either case): 

(a) Q� 1 is an orthogonal matrix when Q is an orthogonal matrix.
(b) If Q (3 by 2) has orthonormal columns then IIQxll always equals llxll-

21 Find an orthonormal basis for the column space of A: 

[

1 -2

] A= 
1 0 
1 1 
1 3 

and 

Then compute the projection of b onto that column space. 
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22 Find orthogonal vectors A, B, C by Gram-Schmidt from
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23 Find q 1 , q
2

, q
3 

( orthonormal) as combinations of a, b, c (independent columns).
Then write A as QR: 

24 (a) Find a basis for the subspace Sin R4 spanned by all solutions of

(b) Find a basis for the orthogonal complement SJ_ .
(c) Find b 1 in Sand b2 in SJ_ so that b 1 

+ b2 = b = (1, 1, 1, 1).

25 If ad - be> 0, the entries in A= QR are

[a 
b] [: -: ] [ a2

; c
2 

:: � �!] 
C d - ._/ a2 + c2 ._/ a2 + c2 

.

Write A = QR when a, b, c, d = 2, 1, 1, 1 and also 1, 1, 1, 1. Which entry of R
becomes zero when the columns are dependent and Gram-Schmidt breaks down? 

Problems 26-29 use the QR code in equation (11). It executes Gram-Schmidt.

26 Show why C (found via C* in the steps after (11)) is equal to C in equation (8). 

27 Equation (8) subtracts from cits components along A and B. Why not subtract the
components along a and along b? 

28 Where are the mn2 multiplications in equation (11)?

29 Apply the MATLAB qr code to a= (2, 2, -1), b = (0, -3, 3), c = (1, 0, 0). What 
are the q's? 

Problems 30-35 involve orthogonal matrices that are special. 

30 The first four wavelets are in the columns of this wavelet matrix W: 

r l 1
w- � 1 1

2 1 -1 
1 -1 J] 0 -v'2 

0 

What is special about the columns? Find the inverse wavelet transform w- 1
. 
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31 (a) Choose c so that Q is an orthogonal matrix:

[ 

1 -1 
-1 1

Q = 

C -1 -1
-1 -1

Project b = (l, 1, 1, 1) onto the first column. Then project b onto the plane of the 
first two columns. 

32 If u is a unit vector, then Q = I - 2uu Tis a reflection matrix (Example 3). Find Q1 

from u = (0, 1) and Q2 from u = (0, v'J,/2, v'J,/2). Draw the reflections when Q 1 

and Q2 multiply the vectors (1, 2) and (1, 1, 1). 

33 Find all matrices that are both orthogonal and lower triangular. 

34 Q = I - 2uu T is a reflection matrix when u Tu = l. Two reflections give Q2 = I. 

(a) Show that Qu = -u. The mirror is perpendicular to u.

(b) Find Qv when u T v = 0. The mirror contains v. It reflects to itself.

Challenge Problems 

35 (MATLAB) Factor [ Q, R] = qr(A) for A = eye(4) - diag([ 1 1 1 ],-1). You 
are orthogonalizing the columns (1, -1, 0, 0) and (0, 1, -1, 0) and (0, 0, 1, -1) and 
(0, 0, 0, 1) of A. Can you scale the orthogonal columns of Q to get nice integer 
components? 

36 If A ism by n with rank n, qr(A) produces a square Q and zeros below R: 

The factors from MATLAB are ( m by m) ( m by n) 

The n columns of Q 1 are an orthonormal basis for which fundamental subspace? 
The m-n columns of Q2 are an orthonormal basis for which fundamental subspace? 

37 We know that P = QQT is the projection onto the column space of Q(m by n). 
Now add another column a to produce A = [Q a]. Gram-Schmidt replaces a by 
what vector q? Start with a, subtract _ _  , divide by __ to find q.



Chapter 5 

Determinants 

1 The determinant of A = [ � �] is ad - be. Singular matrix A = [ � :�] has det = 0.

2 
Row exch�nge p A = [ 

0 
0
1 
] [ 

a
e d

b
] = [ a

e d
b] has det p A = be - ad = - det A.

reverses signs 1 

. 
[ 

xa + yA xb + yB 
] 

. Det is linear in
3 The determmant of d 1s x(ad - be)+ y(Ad- Be). 1 b ·t If e row y I se . 

4 Elimination EA= [ � d _
b
� b] det EA= a ( d - � b) = product of pivots= det A.

5 If A is n by n then 1, 2, 3, 4 remain true: det = 0 when A is singular, det reverses sign 

when rows are exchanged, det is linear in row 1 by itself, <let = product of the pivots. 
Always det BA = ( det B )( det A) and det AT = det A. This is an amazing number.

5.1 The Properties of Determinants 

The determinant of a square matrix is a single number. That number contains an amazing 
amount of information about the matrix. It tells immediately whether the matrix is invert­
ible. The determinant is zero when the matrix has no inverse. When A is invertible, the
determinant of A-1 is 1 / ( <let A). If det A = 2 then det A - I = ½. In fact the determinant
leads to a formula for every entry in A - 1

. 

This is one use for determinants-to find formulas for inverse matrices and pivots and 
solutions A - I b. For a large matrix we seldom use those formulas, because elimination is
faster. For a 2 by 2 matrix with entries a ,  b, e, d, its determinant ad - be shows how A- 1 

changes as A changes. Notice the division by the determinant! 

A=[� !] A_ 1 _ 
1

[ 
d -

a
b
] .has inverse 

ad- be -e 

247 

(1)
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Multiply those matrices to get I. When the determinant is ad - be = 0, we are asked to 
divide by zero and we can't-then A has no inverse. (The rows are parallel when a/ e =
b / d. This gives ad = be and det A = 0.) Dependent rows always lead to det A = 0.

The determinant is also connected to the pivots. For a 2 by 2 matrix the pivots are a
and d - (e/ a)b. The product of the pivots is the determinant: 

Product of pivots a ( d - ;;b) = ad - be which is det A.

After a row exchange the pivots change to e and b - (a/ e) d. Those new pivots multiply to 
give be - ad. The row exchange to [ � �] reversed the sign of the determinant. 

Looking ahead The determinant of an n by n matrix can be found in three ways: 

1 Multiply the n pivots ( times 1 or -1) 
2 Add up n! terms (times 1 or -1) 
3 Combine n smaller determinants ( times 1 or -1) 

This is the pivot formula. 
This is the "big" formula.
This is the cofactor formula.

You see that plus or minus signs-the decisions between 1 and -1-play a big part in 
determinants. That comes from the following rule for n by n matrices: 

The determinant changes sign when two rows ( or two columns) are exchanged.

The identity matrix has determinant + 1. Exchange two rows and det P = -1. Exchange
two more rows and the new permutation has det P = + 1. Half of all permutations are
even ( det P = 1) and half are odd ( det P = -1). Starting from I, half of the P's involve
an even number of exchanges and half require an odd number. In the 2 by 2 case, ad has a 
plus sign and be has minus-coming from the row exchange: 

det [ � �] = 1 and det [ � �] = -1.

The other essential rule is linearity-but a warning comes first. Linearity does not mean
that det(A + B) = det A+ det B. This is absolutely false. That kind of linearity is not 
even true when A= I and B =I.The false rule would say that det(J + I) = 1 + 1 = 2.
The true rule is det 2J = 2 n. Determinants are multiplied by 2n (not just by 2) when 
matrices are multiplied by 2. 

We don't intend to define the determinant by its formulas. It is better to start with 
its properties-sign reversal and linearity. The properties are simple (Section 5.1). They 
prepare for the formulas (Section 5.2). Then come the applications, including these three: 

(1) Determinants give A- 1 and A- 1 b (this formula is called Cramer's Rule).

(2) When the edges of a box are the rows of A, the volume is I det Al.

(3) For n special numbers .\, called eigenvalues, the determinant of A - >-I is zero.
This is a truly important application and it fills Chapter 6.
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The Properties of the Determinant 

Determinants have three basic properties (rules 1, 2, 3). By using those rules we can 
compute the determinant of any square matrix A. This number is written in two ways,
<let A and IAI. Notice: Brackets for the matrix, straight bars for its determinant. When 
A is a 2 by 2 matrix, the rules 1, 2, 3 lead to the answer we expect: 

The determinant of [: ! ] is I : ! I = ad - be.

From rules 1-3 we will reach rules 4-10. The last two are det( AB) = ( det A) ( det B) and 
det AT = det A. We will check all rules with the 2 by 2 formula, but do not forget: The 
rules apply to any n by n matrix A. 

Rule 1 (the easiest) matches det I= l with volume= 1 for a unit cube. 
1 The determinant of the n by n identity matrix is 1.

1 

I� �I= 1 and = l. 

1 

2 The determinant changes sign when two rows are exchanged (sign reversal): 

Check·. I a
e d

b 1-- - I 
a
e d

b 
I (b h ·ct 1 b d) ot s1 es equa e - a .

Because of this rule, we can find det P for any permutation matrix. Just exchange rows
of I until you reach P. Then det P = +l for an even number of row exchanges and
det P = -l for an odd number.

The third rule has to make the big jump to the determinants of all matrices. 
3 The determinant is a linear function of each row separately (all other rows stay fixed). 
If the first row is multiplied by t, the determinant is multiplied by t. If first rows are added, 
determinants are added. This rule only applies when the other rows do not change! Notice 
how e and d stay the same:

multiply row 1 by any number t
<let is multiplied by t

add row 1 of A to row 1 of A': 
then determinants add 

I t; t: I 
= 

t I : : I

I 
a : a' b : b' I = I: : I + I� � I 

.

In the first case, both sides are 
t
ad -

t
be. Then t factors out. In the second case, both sides 

are ad + a '  d - be - b' e. These rules still apply when A is n by n, and one row changes . .

4 8 8 1 2 2 4 8 8 4 0 0 0 8 8 

A= 0 1 1 =4 0 1 1 and 0 1 1 = 0 1 1 + 0 1 1 
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 

By itself, rule 3 does not say what those determinants are (det A is 4). 
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Combining multiplication and addition, we get any linear combination in one row.

Rule 2 for row exchanges can put that row into the first row and back again. 
This rule does not mean that det 21 = 2 det l. To obtain 21 we have to multiply both

rows by 2, and the factor 2 comes out both times: 

and 

This is just like area and volume. Expand a rectangle by 2 and its area increases by 4. 
Expand an n-dimensional box by t and its volume increases by tn. The connection is no 
accident-we will see how determinants equal volumes.

Pay special attention to rules 1-3. They completely determine the number det A. We 
could stop here to find a formula for n by n determinants (a little complicated). We prefer 
to go gradually, because rules 4 - 10 make determinants much easier to work with. 

4 If two rows of A are equal, then <let A = 0. 

Equal rows Check 2 by 2 : I : t I = 0.

Rule 4 follows from rule 2. (Remember we must use the rules and not the 2 by 2 formula.) 
Exchange the two equal rows. The determinant Dis supposed to change sign. But also D
has to stay the same, because the matrix is not changed. The only number with -D = D

is D = 0-this must be the determinant. (Note: In Boolean algebra the reasoning fails, 
because -1 = 1. Then Dis defined by rules 1, 3, 4.) 

A matrix with two equal rows has no inverse. Rule 4 makes det A = 0. But matrices 
can be singular and determinants can be zero without having equal rows! Rule 5 will be 
the key. We can do row operations (like elimination) without changing det A.

5 Subtracting a multiple of one row from another row leaves det A unchanged. 

£ times row 1 
from row 2 

Rule 3 (linearity) splits the left side into the right side plus another term -£1 ! g I­
This extra term is zero by rule 4: equal rows. Therefore rule 5 is correct (not just 2 by 2). 

Conclusion The determinant is not changed by the usual elimination steps from A to U. 

Thus det A equals det U. If we can find determinants of triangular matrices U, we can 
find determinants of all matrices A. Every row exchange reverses the sign, so always 
det A= ± det U. Rule 5 has narrowed the problem to triangular matrices. 

6 A matrix with a row of zeros has det A = 0.

Row of zeros I� �I
= 0 and I� �I

= 0
· 

For an easy proof, add some other row to the zero row. The determinant is not changed 
(rule 5). But the matrix now has two equal rows. So det A = 0 by rule 4. 
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7 If A is triangular then det A = a11 a22 • • • ann = product of diagonal entries. 

Triangular and also 
1: �I

= ad.

Suppose all diagonal entries are nonzero. Remove the off-diagonal entries by elimination! 
(If A is lower triangular, subtract multiples of each row from lower rows. If A is upper 
triangular, subtract from higher rows.) By rule 5 the determinant is not changed-and now 
the matrix is diagonal: 

0 

Diagonal matrix det = (an)(a22) · · · (ann )-

0 

Factor an from the first row by rule 3. Then factor a22 from the second row. Eventually
factor ann from the last row. The determinant is an times a22 times · · · times ann times 
det I. Then rule 1 (used at last!) is det I = 1.

What if a diagonal entry aii is zero? Then the triangular A is singular. Elimination 
produces a zero row. By rule 5 the determinant is unchanged, and by rule 6 a zero row
means det A= 0. We reach the great test for singular or invertible matrices. 

8 If A is singular then det A = 0. If A is invertible then det A =I- 0.

Singular [ac d
b
] is singular if and only if ad - be= 0.

Proof Elimination goes from A to U. If A is singular then Uhas a zero row. The rules 
give det A = det U = 0. If A is invertible then U has the pivots along its diagonal. The 
product of nonzero pivots (using rule 7) gives a nonzero determinant: 

Multiply pivots det A= ± det U = ± (product of the pivots). 

The pivots of a 2 by 2 matrix (if a =/- 0) are a and d - ( c/ a )b: 

The determinant is lac d
b
l=l

a
o 

b 
I d - (c/a)b = ad - be.

(2) 

This is the first formula for the determinant. MATLAB multiplies the pivots to find
det A. The sign in ± det U depends on whether the number of row exchanges is even or 
odd: + 1 or -1 is the determinant of the permutation P that exchanges rows. 

With no row exchanges, P = I and det A = det U = product of pivots. And det L = 1:

If PA = LU then det P det A = det L det U and det A = ± det U. (3)
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9 The determinant of AB is det A times det B: I AB I = I A 11 BI, 

Product rule I a b 11 p q I = I ap + br aq + bs I ·
e d r s ep + dr eq + ds 

When the matrix B is A-1, this rule says that the determinant of A- 1 is 1 / det A: 

A times A- 1 AA- 1 
= I so ( det A)( det A - l) = det I = l. 

This product rule is the most intricate so far. Even the 2 by 2 case needs some algebra: 

IAI IBI = (ad - bc)(ps - qr)= (ap + br)(eq + ds) - (aq + bs)(ep + dr) = IABI. 

For then by n case, here is a snappy proof that IABI = IAI IBI. When IBI is not zero, 
consider the ratio D(A) = IABI/IBI. Check that this ratio D(A) has properties 1,2,3. 
Then D (A) has to be the determinant and we have I AB I/ I BI = I A 1- Good. 

Property 1 (Determinant of I) If A= I then the ratio D(A) becomes IBI/IBI = 1. 

Property 2 (Sign reversal) When two rows of A are exchanged, so are the same two 
rows of AB. Therefore IABI changes sign and so does the ratio IABI/IBI. 

Property 3 (Linearity) When row 1 of A is multiplied by t, so is row 1 of AB. This 
multiplies the determinant IABI by t. So the ratio IABI/IBI is multiplied by t.

Add row 1 of A to row 1 of A'. Then row 1 of AB adds to row 1 of A' B. 
By rule 3, determinants add. After dividing by IBI, the ratios add-as desired. 

Conclusion This ratio IABI/IBI has the same three properties that define IAI. Therefore 
it equals IAI. This proves the product rule IABI = IAI IBI. The case IBI = 0 is separate 
and easy, because AB is singular when Bis singular. Then IABI = IAI IBI is O = 0. 

10 The transpose AT has the same determinant as A. 

Transpose I ae d
b 1--1 ab d

e I since both sides equal ad - be.

The equation IAT I = IAI becomes O = 0 when A is singular (we know that AT is also 
singular). Otherwise A has the usual factorization PA = LU. Transposing both sides 
gives AT pT 

= UT LT _ The proof of IAI = IAT I comes by using rule 9 for products: 

Compare det P det A = det L det U with det AT det pT 
= det UT det LT . 

First, det L = det LT 
= 1 (both have 1 's on the diagonal). Second, det U = det UT (those 

triangular matrices have the same diagonal). Third, det P = det pT (permutations have 
pT P = I, so IPT I IPI = 1 by rule 9; thus IPI and IPT I both equal 1 or both equal -1). 
So L, U, P have the same determinants as LT , UT , pT and this leaves det A = det AT. 
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Important comment on columns Every rule for the rows can apply to the columns (just 
by transposing, since IAI = IATI)- The determinant changes sign when two columns are 
exchanged. A zero column or two equal columns will make the determinant zero. If a 
column is multiplied by t, so is the determinant. The determinant is a linear function of 
each column separately. 

It is time to stop. The list of properties is long enough. Next we find and use an explicit 
formula for the determinant. 

• REVIEW OF THE KEY IDEAS •

1. The determinant is defined by det I = 1, sign reversal, and linearity in each row. 

2. After elimination det A is ± (product of the pivots).

3. The determinant is zero exactly when A is not invertible.

4. Two remarkable properties are det AB= (det A)(det B) and det AT = det A.

• WORKED EXAMPLES • 

5.1 A Apply these operations to A and find the determinants of M1, M2, M3, M4: 

In M1 , multiplying each aij by (-l)i+j gives a checkerboard sign pattern. 
In M2 , rows 1, 2, 3 of A are subtracted from rows 2, 3, 1. 
In M3, rows 1, 2, 3 of A are added to rows 2, 3, 1. 

How are the determinants of M1, M2, M3 related to the determinant of A? 

[ 
au -a12 a13

] -a21 a22 -a23 
a31 -a32 a33 

[
row 1 -row 3

] row 2 -row 1 
row 3 -row 2 

[
row 1 + row 3

] row 2 + row 1 
row 3 + row 2 

Solution The three determinants are det A, 0, and 2 det A. Here are reasons: 

M1 = [
l 

-1 l [:�� :�� :�:] [
l 

-1 l so det M1 = (-l)(detA)(-1). 
1 a31 a32 a33 1 

M2 is singular because its rows add to the zero row. Its determinant is zero. 
M3 can be split into eight matrices by Rule 3 (linearity in each row separately): 

row 1 + row 3 row 1 row 3 row 1 row 3 
row 2 + row 1 = row 2 + row 2 + row 1 + · · · + row 1
row 3 + row 3 row3 row 3 row 3 row2 

All but the first and last have repeated rows and zero determinant. The first is A and the 
last has two row exchanges. So det M3 = det A+ det A. (Try A= I.)
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5.1 B Explain how to reach this determinant by row operations: 
[1- a 1 1 ldet 1 1-a 1 =a2 (3-a).1 1 1-a 

Solution Subtract row 3 from row 1 and then from row 2 .  This leaves 
det [ �a �a : ] 1 1 1- a

(4) 

Now add column 1 to column 3, and also column 2 to column 3. This leaves a lower triangular matrix with -a, -a, 3 - a on the diagonal: det = (-a)(-a)(3 - a). The determinant is zero if a = 0 or a = 3. For a = 0 we have the all-ones matrix­certainly singular. For a = 3, each row adds to zero-again singular. Those numbers 0 and 3 are the eigenvalues of the all-ones matrix. This example is revealing and important, leading toward Chapter 6. 
Problem Set 5.1 

Questions 1-12 are about the rules for determinants. 

1 If a 4 by 4 matrix has det A = ½, find det(2A) and det(-A) and det(A2) and det(A-1 ).
2 If a 3 by 3 matrix has det A = - 1, find det(½A) and det(- A) and det(A2 ) and det(A-1 ).
3 True or false, with a reason if true or a counterexample if false: 

(a) The determinant of I+ A is 1 + det A.(b) The determinant of ABC is IAI IBI ICI .(c) The determinant of 4A is 4IAI.
(d) The determinant of AB - BA is zero. Try an example with A= [ � � ] .

4 Which row exchanges show that these "reverse identity matrices" J3 and J4 have IJ3I = -1 but IJ4I = +1? 
[
o o 1] det O 1 0 = -11 0 0 but ro o o 11 0 0 1 0 det O 1 0 0 = + 1.1 0 0 0 

5 For n = 5, 6, 7, count the row exchanges to permute the reverse identity Jn to the identity matrix In . Propose a rule for every size n and predict whether J101 has determinant + 1 or - 1. 



5.1. The Properties of Determinants 

6 Show how Rule 6 (determinant= 0 if a row is all zero) comes from Rule 3.

7 Find the determinants of rotations and reflections:

Q = [
c�s0 -sin0] sm0 cos0 d [ 

1 - 2 cos2 0 -2 cos 0 sin 0
] an Q = 

-2cos0sin0 1- 2sin2 0 ·

8 Prove that every orthogonal matrix ( QT Q = I) has determinant 1 or -1.

(a) Use the product rule IABI = IAI IBI and the transpose rule IQI = IQTI.

255 

(b) Use only the product rule. If I det QI > 1 then det Qn = (det Qr blows up.
How do you know this can't happen to Qn? 

9 Do these matrices have determinant 0, 1, 2, or 3?

10 If the entries in every row of A add to zero, solve Ax = 0 to prove det A = 0. If
those entries add to one, show that det(A - I) = 0. Does this mean det A= 1? 

11 Suppose that CD = -DC and find the flaw in this reasoning: Taking determinants
gives ICI IDI = -IDI ICI- Therefore ICI = 0 or IDI = 0. One or both of the
matrices must be singular. (That is not true.) 

12 The inverse of a 2 by 2 matrix seems to have determinant = 1:

detA-l=det 
1 

[ 
d -b

] =
ad- be

=l .
ad - be -e a ad - be 

What is wrong with this calculation? What is the correct det A - I?

Questions 13-27 use the rules to compute specific determinants. 

13 Reduce A to U and find det A = product of the pivots:

14 By applying row operations to produce an upper triangular U, compute

r 1 2 
2 6det _1 0 

0 2 3 ol

6 1 
0 3

0 7 

and

r-� -� -� �1 det 0
0 

-1 2 -1 .

0 -1 2 
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15 Use row operations to simplify and compute these determinants: 

[
101 201 301

] det 102 202 302 
103 203 303 

and 

16 Find the determinants of a rank one matrix and a skew-symmetric matrix : 

and 
[ 0 1 

A= -1 0 

-3 -4

17 A skew-symmetric matrix has AT= -A. Insert a, b, e for 1, 3, 4 in Question 16 and
show that [Al = 0. Write down a 4 by 4 example with \A\ = 1. 

18 Use row operations to show that the 3 by 3 "Vandermonde determinant" is 

b b2 = (b - a) ( e - a) ( e - b). 
a a

2 ] 
e e2 

19 Find the determinants of U and u- 1 and U2
: 

and U=[� !]-
20 Suppose you do two row operations at once, going from 

to [
a - Le b- Ld

]e - la d - lb 
. 

Find the second determinant. Does it equal ad - be?

21 Row exchange: Add row 1 of A to row 2, then subtract row 2 from row 1. Then add 
row 1 to row 2 and multiply row 1 by -1 to reach B. Which rules show

det B = I � ! I equals - det A = - I : ! I? 
Those rules could replace Rule 2 in the definition of the determinant. 

22 From ad - be, find the determinants of A and A- 1 and A - >-.I:

Which two numbers>-. lead to det(A - >-.I)= 0? Write down the matrix A- >-.I for
each of those numbers >-.-it should not be invertible. 
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23 From A = [ i ! ] find A 2 and A -1 and A - )J and their determinants. Which two
numbers,\ lead to det(A - ,\I) = 0 ?

24 Elimination reduces A to U. Then A= LU: 

[J 
3 

j] [ l 
0 

�rn 
3 t] A= 8 1 2 = LU. 

5 4 0 -1 

Find the determinants of L, U, A, u-1 L-1
, and u-1 L -1 A.

25 If the i, j entry of A is i times j, show that det A = 0. (Exception when A = [ 1 ] . )

26 If the i, j entry of A is i + j, show that det A = 0. (Exception when n = 1 or 2.)

27 Compute the determinants of these matrices by row operations:

A�[! �] [ 
a 0 

] 
a 0 b 0 and B = 0 0 and C=

0 0 0 

28 True or false (give a reason if true or a 2 by 2 example if false):

(a) If A is not invertible then AB is not invertible. 
(b) The determinant of A is always the product of its pivots.
( c) The determinant of A - B equals det A - det B.

(d) AB and BA have the same determinant.

[; 

29 What is wrong with this proof that projection matrices have det P = 1?

p = A(AT A)-lAT so IPI = IAI 
IA/IIAI I

AT

/ 
= l.

a
b
b

30 (Calculus question) Show that the partial derivatives of ln( det A) give A-1 !

�] 

f(a, b, c, d) = ln(ad - be) leads to [8f /8a 8f /8c] _ A_ 1 

a JI ob a JI od -

31 (MATLAB) The Hilbert matrix hilb(n) has i,j entry equal to 1/(i + j - 1). Print
the determinants ofhilb(l), hilb(2), ... , hilb(lO). Hilbert matrices are hard to work
with! What are the pivots of hilb ( 5)?

32 (MATLAB) What is a typical determinant (experimentally) ofrand(n) and randn(n)
for n = 50,100,200, 400? (And what does "Inf" mean in MATLAB?)

33 (MATLAB) Find the largest determinant of a 6 by 6 matrix of 1 's and -1 's.

34 If you know that det A = 6, what is the determinant of B? 

row 1 row 3 + row 2 + row I
From det A = row 2 = 6 find det B = row 2 + row I

row 3 row I
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5.2 Permutations and Cofactors 

1 2 by 2 : ad - be has 2 ! terms with ± signs. n by n : det A adds n! terms with ± signs.

2 For n = 3, det A adds 3! = 6 terms. Two terms are +a12a23a31 and -a13a22a31. 
Rows 1, 2, 3 and columns 1, 2, 3 appear once in each term. 

3 That minus sign came because the column order 3, 2, 1 needs one exchange to recover 1, 2, 3. 

4 The six terms include +a11 a22a33 -a11 a23a32 = a11 ( a22a33 -a23a32) = a11 ( cofactor C11). 

5 Always detA = a11C11 + a12C12 + · · · + a1nC1n - Cofactors are determinants of size n - l. 

A computer finds the determinant from the pivots. This section explains two other ways 
to do it. There is a "big formula" using all n! permutations. There is a "cofactor formula" 
using determinants of size n - l. The best example is my favorite 4 by 4 matrix: 

A =  -l 2 -1 0 
[ 

2 -1 0 0

1 0 -1 2 -1 
0 0 -1 2 

has detA = 5.

We can find this determinant in all three ways: pivots, big formula, cofactors.

1. The product of the pivots is 2 · ! · ½ · ¾. Cancellation produces 5.

2. The "big formula" in equation (8) has 4! = 24 terms. Only five terms are nonzero:

det A = 16 - 4 - 4 - 4 + 1 = 5. 

The 16 comes from 2 · 2 · 2 · 2 on the diagonal of A. Where do -4 and +1 come 
from? When you can find those five terms, you have understood formula (8). 

3. The numbers 2, -1, 0, 0 in the first row multiply their cofactors 4, 3, 2, 1 from the
other rows. That gives 2 · 4 - 1 · 3 = 5. Those cofactors are 3 by 3 determinants.
Cofactors use the rows and columns that are not used by the entry in the first row.
Every term in a determinant uses each row and column once!

The Pivot Formula 

When elimination leads to A = LU, the pivots d1 , . . .  , dn are on the diagonal of the 
upper triangular U. If no row exchanges are involved, multiply those pivots to find the 
determinant: 

(1) 

This formula for det A appeared in Section 5.1, with the further possibility of row 
exchanges. Then a permutation enters PA= L U. The determinant of P is -1 or + 1. 
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( det P)( det A) = (det L )(det U) gives <let A= ±(d1 d2 · · · dn)- (2) 

Example 1 A row exchange produces pivots 4, 2, 1 and that important minus sign: 

detA = -(4)(2)(1) = -8. 

The odd number of row exchanges (namely one exchange) means that <let P = -l. 
The next example has no row exchanges. It may be the first matrix we factored into 

LU (when it was 3 by 3). What is remarkable is that we can go directly ton by n. Pivots 
give the determinant. We will also see how determinants give the pivots. 

Example 2 The first pivots of this tridiagonal matrix A are 2, ! , ½. The next are ¾ and 
i and eventually �- Factoring this n by n matrix reveals its determinant: 

2 -1 1 
-1 2 -1 1 

-2

-1 2
-1

-1 2

1 
2 1 

-3

_n-1 
n 

1 

2 -1
3 -1 
2 

4 
-J3 

The pivots are on the diagonal of U (the last matrix). When 2 and ! and ½ and ¾ are 
multiplied, the fractions cancel. The determinant of the 4 by 4 matrix is 5. The 3 by 3 
determinant is 4. Then by n determinant is n + l: 

-1, 2, -1 matrix detA = (2) (!) (1) · · · (0!1
) = n + 1. 

Important point: The first pivots depend only on the upper left corner of the original 
matrix A. This is a rule for all matrices without row exchanges. 

The first k pivots come from the k by k matrix Ak in the top left corner of A. 
The determinant of that corner submatrix Ak is d1d2 · · · dk (first k pivots).

The 1 by 1 matrix A1 contains the very first pivot d1. This is det A1. The 2 by 2 matrix in 
the corner has <let A2 = d1d2. Eventually then by n determinant multiplies all n pivots. 

Elimination deals with the matrix Ak in the upper left corner while starting on the whole 
matrix. We assume no row exchanges-then A = LU and Ak = LkUk. Dividing one 
determinant by the previous determinant ( <let Ak divided by <let Ak-l) cancels everything 
but the latest pivot dk. Each pivot is a ratio of determinants: 

Pivots from 

determinants 

d1d2 · · -dk 
The kth pivot is dk = d d d 1 2 • . • k-1 

detAk 
detAk-1

. 

We don't need row exchanges when all the upper left submatrices have <let Ak -:/- 0. 

(3)
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The Big Formula for Determinants 

Pivots are good for computing. They concentrate a lot of information-enough to find the 
determinant. But it is hard to connect them to the original aij. That part will be clearer if 
we go back to rules 1-2-3, linearity and sign reversal and det I = l. We want to derive a 
single explicit formula for the determinant, directly from the entries aij. 

The formula has n! terms. Its size grows fast because n! = 1, 2, 6, 24, 120, .... For 
n = 11 there are about forty million terms. For n = 2, the two terms are ad and be. Half 
the terms have minus signs (as in -be). The other half have plus signs (as in ad). For n = 3 
there are 3! = (3)(2)(1) terms. Here are those six terms: 

3 by 3 
determinant 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

+a11a22a33 + a12a23a31 +a13a21a32 

-a11a23a32 - a12a21a33 - a13a22a31. 

� _______ _..._, (4) 
Notice the pattern. Each product like a11a23a32 has one entry from each rollf. It also has 
one entry from each column. The column order 1,3, 2 means that this particular term 
comes with a minus sign. The column order 3, 1, 2 in a13a21a32 has a plus sign (boldface). 
It will be "permutations" that tell us the sign. 

The next step (n = 4) brings 4! = 24 terms. There are 24 ways to choose one entry 
from each row and column. Down the main diagonal, a11 a22a33a44 with column order 
1, 2, 3, 4 always has a plus sign. That is the "identity permutation". 

To derive the big formula I start with n = 2. The goal is to reach ad- be in a systematic 
way. Break each row into two simpler rows: 

[a b]=[a o]+[o b] and [e d]=[e o]+[o d]. 

Now apply linearity, first in row 1 (with row 2 fixed) and then in row 2 (with row 1 fixed): 

I: !l
=

I: �l+I� !I 

=I: �l+I� �l+I� �l+I� !I 

(break up row 1) 

(break up row 2). 

(5) 

The last line has 22 = 4 determinants. The first and fourth are zero because one row is a 
multiple of the other row. We are left with 2! = 2 determinants to compute: 

1� �I+ I� �I
= ad I� �I+ be I� �I

= ad - be.

The splitting led to permutation matrices. Their determinants give a plus or minus sign. 
The permutation tells the column sequence. In this case the column order is (1, 2) or (2, 1 ). 

Now try n = 3. Each row splits into 3 simpler rows like [ a11 0 0]. Using linearity in 
each row, det A splits into 33 

= 27 simple determinants. If a column choice is repeated­
for example if we also choose the row [ a21 0 0 ]-then the simple determinant is zero. 
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We pay attention only when the entries aij come from different columns, like (3, 1, 2): 

au a12 a13 au a12 a13 
a21 a22 a23 a22 + a23 + a21 
a31 a32 a33 a33 a31 a32 

au a12 a13 
Six terms + a23 + a21 + a22 

a32 a33 a31 

There are 3 ! = 6 ways to order the columns, so six determinants. The six permutations 
of (1, 2, 3) include the identity permutation (1, 2, 3) from P = I.

Column numbers = (1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (2, 1, 3), (3, 2, 1). (6)

The last three are odd permutations (one exchange). The first three are even permutations

(0 or 2 exchanges). When the column sequence is (3, 1, 2), we have chosen the entries 
a13a21a32-that particular column sequence comes with a plus sign (2 exchanges). The 
determinant of A is now split into six simple terms. Factor out the aij: 

1 1 1 
1 

1 1 1 
(7) 

1 1 1 
1 

1 1 1 

The first three (even) permutations have det P + l, the last three (odd) permutations 
have det P = -l. We have proved the 3 by 3 formula in a systematic way. 

Now you can see the n by n formula. There are n! orderings of the columns. The 
columns (1, 2, ... , n) go in each possible order ( a, fJ, ... , w). Taking a1a. from row 1 
and a2(3 from row 2 and eventually anw from row n, the determinant contains the product 
a1a.a2(3 · · · anw times + 1 or -1. Half the column orderings have sign -1. 

The determinant of A is the sum of these n! simple determinants, times 1 or -1. 
The simple determinants a1a.a2(3 · · · anw choose one entry from every row and column.

For 5 by 5, the term a15a22a33a44a51 would have det P = -l from exchanging 5 and 1. 

det A = sum over all n! column permutations P = ( a, fJ, ... , w) 

= L ( det P)a1a.a2(3 · · · anw = BIG FORMULA.

The 2 by 2 case is +a11a22 - a12a21 (which is ad - be). Here P is (1, 2) or (2, 1). 

(8)
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The 3 by 3 case has three products "down to the right" (see Problem 28) and three 
products "down to the left". Warning: Many people believe they should follow this pattern 
in the 4 by 4 case. They only take 8 products-but we need 24. 

Example 3 (Determinant of U) When U is upper triangular, only one of the n! products 
can be nonzero. This one term comes from the diagonal: det U = +u11 u22 · · · Unn· All 
other column orderings pick at least one entry below the diagonal, where U has zeros. As 
soon as we pick a number like u21 = 0, that term in equation (8) is sure to be zero. 

Of course det I= 1. The only nonzero term is +(1)(1) · · · (1) from the diagonal. 

Example 4 Suppose Z is the identity matrix except for column 3. Then 

1 0 a 0 

The determinant of Z =
0 1 b 0 

(9) 0 0 0 
IS C. 

C 

0 0 d 1 

The term (l)(l)(c)(l) comes from the main diagonal with a plus sign. There are 4! = 24 
products (choosing one factor from each row and column) but the other 23 products are 
zero. Reason: If we pick a, b, or d from column 3, that column is used up. Then the only 
available choice from row 3 is zero. 

Here is a different reason for the same answer. If c = 0, then Z has a row of zeros and 
det Z = c = 0 is correct. If c is not zero, use elimination. Subtract multiples of row 3 from 
the other rows, to knock out a, b, d. That leaves a diagonal matrix and det Z = c. 

This example will soon be used for "Cramer's Rule". If we move a, b, c, d into the first 
column of Z, the determinant is det Z = a. (Why?) Changing one column of I leaves Z 

with an easy determinant, coming from its main diagonal only. 

Example 5 Suppose A has l's just above and below the main diagonal. Here n = 4: 

and have determinant 1. 

The only nonzero choice in the first row is column 2. The only nonzero choice in row 4 is 
column 3. Then rows 2 and 3 must choose columns 1 and 4. In other words det P = det A. 

The determinant of Pis + 1 (two exchanges to reach 2, 1, 4, 3). Therefore det A = +1. 

Determinant by Cofactors 

Formula (8) is a direct definition of the determinant. It gives you everything at once­
but you have to digest it. Somehow this sum of n! terms must satisfy rules 1-2-3 (then 
all the other properties 4-10 will follow). The easiest is detJ = 1, already checked. 
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When you separate out the factor a11 or a12 or a1°' that comes from the first row,you see linearity. For 3 by 3, separate the usual 6 terms of the determinant into 3 pairs: 

Those three quantities in parentheses are called "cofactors". They are 2 by 2 determi­
nants, from rows 2 and 3. The first row contributes the factors a11, a12, a13. The lower

rows contribute the cofactors C11, C12, C13. Certainly the determinant a11 C11 +a12C12 + a13C13 depends linearly on a11, a12, a13-this is Rule 3. The cofactor of a11 is C11 = a22a33 - a23a32. You can see it in this splitting: 
a11 a12 a13 a21 a22 a23 a31 a32 a33 

a11 a12 a13 a22 a23 + a21 a23 + a21 a22 a32 a33 a31 a33 a31 a32 
We are still choosing one entry from each row and column. Since a11 uses up row 1 and column 1, that leaves a 2 by 2 determinant as its cofactor. As always, we have to watch signs. The 2 by 2 determinant that goes with a12 looks like a21 a33 - a23a31. But in the cofactor C12, its sign is reversed. Then a12C12 is the correct 3 by 3 determinant. The sign pattern for cofactors along the first row is plus-minus­

plus-minus. You cross out row 1 and column j to get a submatrix M1j of size n - 1. Multiply its determinant by the sign ( -1) Hj to get the cofactor:
The cofactors along row 1 are C1j = ( -1) Hj det M1j . 

ThecofactorexpansionisdetA = a11C11 + a12C12 + · · · + a1nC1n- (11) 
In the big formula (8), the terms that multiply a11 combine to give C11 = det M11. The sign is ( -1) 1 + 1, meaning plus. Equation ( 11) is another form of equation (8) and alsoequation (10), with factors from row 1 multiplying cofactors that use only the other rows. 
Note Whatever is possible for row 1 is possible for row i. The entries aij in that row also have cofactors Cij. Those are determinants of order n - 1, multiplied by ( -1 )i+j. Sinceaij accounts for row i and column j, the sub matrix Mij throws out row i and column j.The display shows a43 and M43 (with row 4 and column 3 removed). The sign ( -1 )4+3multiplies the determinant of M43 to give C43. The sign matrix shows the± pattern: 

• 

• 

• :1 
signs (-l)i+j = [ + +__ ++ 

++ ++--] 
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The determinant is the dot product of any row i of A with its cofactors using other rows: 

COFACTOR FORMULA (12) 

Each cofactor Cij (order n - l, without row i and column j) includes its correct sign: 

Cofactor 

A determinant of order n is a combination of determinants of order n - l. A recursive 
person would keep going. Each subdeterminant breaks into determinants of order n - 2. 
We could define all determinants via equation (12). This rule goes from order n ton - l 
ton - 2 and eventually to order 1. Define the 1 by 1 determinant !al to be the number a. 

Then the cofactor method is complete. 
We preferred to construct det A from its properties (linearity, sign reversal, det I = l). 

The big formula (8) and the cofactor formulas (10)-(12) follow from those rules. 
One last formula comes from the rule that det A = det AT . We can expand in cofactors, 
down a column instead of across a row. Down column j the entries are a1j to anj. The 
cofactors are C1j to Cnj . The determinant is the dot product: 

Cofactors down column j (13) 

Cofactors are useful when matrices have many zeros-as in the next examples. 

Example 6 The -1, 2, -1 matrix has only two nonzeros in its first row. So only two 
cofactors C11 and C12 are involved in the determinant. I will highlight C12 : 

2 -1
2 -1 -1 -1

-1 2 -1
=2 -1 2 -1 - (-1) 2 -1 (14) 

-1 2 -1

-1 2 
-1 2 -1 2 

You see 2 times C11 first on the right, from crossing out row 1 and column 1. This cofactor 
C11 has exactly the same -1, 2, -1 pattern as the original A-but one size smaller. 

To compute the boldface C12 , use cofactors down its first column. The only nonzero 
is at the top. That contributes another -1 (so we are back to minus). Its cofactor is the 
-1, 2, -1 determinant which is 2 by 2, two sizes smaller than the original A.

Summary Each determinant Dn of order n comes from Dn-l and Dn-2 : 

and generally (15) 

Direct calculation gives D2 = 3 and D3 = 4. Equation (14) has D4 = 2(4) - 3 = 5. 
These determinants 3, 4, 5 fit the formula Dn = n + 1. Then Dn equals 2n - (n - 1). 
That "special tridiagonal answer" also came from the product of pivots in Example 2. 
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Example 7 This is the same matrix, except the first entry (upper left) is now 1: 
[-� 

-� -1 l -1 2 -1-1 2 

265 

All pivots of this matrix turn out to be 1. So its determinant is 1. How does that come from cofactors? Expanding on row 1, the cofactors all agree with Example 6. Just change an = 2 to b11 = 1: instead of The determinant of B4 is 4 - 3 = 1. The determinant of every Bn is n - ( n - 1) = 1. If you also change the last 2 into 1, why is det = 0? 
• REVIEW OF THE KEY IDEAS •

1. With no row exchanges, det A = (product of pivots). In the upper left corner of A,det Ak = (product of the first k pivots).

2. Every term in the big formula (8) uses each row and column once. Half of then! terms have plus signs (when det P = + 1) and half have minus signs.
3. The cofactor Cij is ( -1) i+ j times the smaller determinant that omits row i andcolumn j (because aij uses that row and column).
4. The determinant is the dot product of any row of A with its row of cofactors.When a row of A has a lot of zeros, we only need a few cofactors.

• WORKED EXAMPLES • 

5.2 A A Hessenberg matrix is a triangular matrix with one extra diagonal. Use cofactors of row 1 to show that the 4 by 4 determinant satisfies Fibonacci's rule IH4I = IH3I + IH2I­The same rule will continue for all sizes, IHnl = IHn-11 + IHn-21- Which Fibonacci number is IHnl? 
H2 = [� �] 
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Solution The cofactor C11 for H4 is the determinant IH3 1. We also need C12 (in boldface): 

1 1 0 2 1 0 1 0 0 
C12 = - 1 2 1 = - 1 2 1 + 1 2 1 

1 1 2 1 1 2 1 1 2 

Rows 2 and 3 stayed the same and we used linearity in row 1. The two determinants on the 
right are -IH3I and +IH2I- Then the 4 by 4 determinant is 

IH4I = 2Cn + lC12 = 2IH3I - IH3I + IH2I = IH3I + IH2I-

The actual numbers are IH2I = 3 and IH3I = 5 (and of course IH1I = 2). Since 
IHn I = 2, 3, 5, 8, ... follows Fibonacci's rule IHn-1 I+ IHn-2 I, it must be IHn I = Fn+2 . 

5.2 B These questions use the± signs (even and odd P's) in the big formula for det A: 

1. If A is the 10 by 10 all-ones matrix, how does the big formula give det A = 0? 

2. If you multiply all n! permutations together into a single P, is P odd or even?

3. If you multiply each% by the fraction i/ j, why is det A unchanged?

Solution In Question 1, with all aij = l, all the products in the big formula (8) will 
be 1. Half of them come with a plus sign, and half with minus. So they cancel to leave 
det A= 0. (Of course the all-ones matrix is singular. I am assuming n > 1.) 

In Question 2, multiplying [ � �] [ � �] gives an odd permutation. Also for 3 by 3, the 
three odd permutations multiply (in any order) to give odd. But for n > 3 the product of 
all permutations will be even. There are n!/2 odd permutations and that is an even number 
as soon as n! includes the factor 4. 

In Question 3, each aij is multiplied by i/ j. So each product a1°'a213 · • · anw in the big 
formula is multiplied by all the row numbers i = 1, 2, ... , n and divided by all the column 
numbers j 

= 1, 2, ... , n. (The columns come in some permuted order!) Then each product 
is unchanged and det A stays the same. 

Another approach to Question 3: We are multiplying the matrix A by the diagonal 
matrix D = diag(l : n) when row i is multiplied by i. And we are postmultiplying by 
v-1 when column j is divided by j. The determinant of DAD-1 is the same as detA
by the product rule. 

Problem Set 5.2 

Problems 1-10 use the big formula with n! terms: IAI = L ±a1aa2,a • • • Unw · 
Every term uses each row and each column once. 

1 Compute the determinants of A, B, C from six terms. Are their rows independent? 

[
1 2 3

] A= 3 1 2 
3 2 1 

[
1 1 l

l C= 1 1 0 . 
1 0 0 
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2 Compute the determinants of A, B, C, D. Are their columns independent? 
A= [o� 01

1 �ll B = [47
1 2

� 
3
�] C=[� 1] D=[i �]-

3 Show that det A = 0, regardless of the five nonzeros marked by x's: 
X 

0 

0 

X] 
X 

X 

What are the cofactors of row 1? What is the rank of A?What are the 6 terms in det A?

4 Find two ways to choose nonzeros from four different rows and columns: 
0 0 0 0 
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ri 11 ri �1 
A= 

1 1 
B= 

3 4 
(B has the same zeros as A).1 0 4 0 0 0 0 0 

Is det A equal to 1 + 1 or 1 - 1 or -1 - 1? What is det B?

5 Place the smallest number of zeros in a 4 by 4 matrix that will guarantee det A = 0. Place as many zeros as possible while still allowing det A# 0. 
6 (a) If an = a22 = a33 = 0, how many of the six terms in det A will be zero?(b) If au = a22 = a33 = a44 = 0, how many of the 24 products a1ja2ka3za4m are sure to be zero?7 How many 5 by 5 permutation matrices have det P = + l? Those are even permuta­tions. Find one that needs four exchanges to reach the identity matrix. 8 If det A is not zero, at least one of the n! terms in formula (8) is not zero. Deduce from the big formula that some ordering of the rows of A leaves no zeros on the diagonal. (Don't use P from elimination; that PA can have zeros on the diagonal.) 9 Show that 4 is the largest determinant for a 3 by 3 matrix of 1 's and -1 's. 
10 How many permutations of (1, 2, 3, 4) are even and what are they? Extra credit: What are all the possible 4 by 4 determinants of I + Peven? 
Problems 11-22 use cofactors Cij = (-l) i+j <let Mij · Remove row i and columnj. 
11 Find all cofactors and put them into cofactor matrices C, D. Find AC and det B.

A=[� !] 
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12 Find the cofactor matrix C and multiply A times CT. Compare ACT with A-1
: 

A= [-� -� -�]
0 -1 2 

13 Then by n determinant Cn has 1 's above and below the main diagonal: 

0 1 0 
0 1 0 0 

C2 = I� �I 1 0 1 0 C1 = IOI C3 = 1 0 1 C4 = 
0 1 0 1

0 1 0 
0 0 1 0 

(a) What are these determinants C1, C2, C3, C4?

(b) By cofactors find the relation between Cn and Cn-1 and Cn-2· Find C10.

14 The matrices in Problem 13 have 1 's just above and below the main diagonal. Going 
down the matrix, which order of columns (if any) gives all l's? Explain why that 
permutation is even for n = 4, 8, 12, ... and odd for n = 2, 6, 10, .... Then 

Cn = 0 (oddn) Cn = 1 (n = 4, 8, · · ·) Cn = -1 (n = 2,6, · · · ). 

15 The tridiagonal 1, 1, 1 matrix of order n has determinant En : 

1 1 0 
1 1 0 0 

E2 = I� �I 1 1 1 0 E1 = Ill E3 = 1 1 1 E4 = 
0 1 1 1 

0 1 1 
0 0 1 1 

(a) By cofactors show that En = En-1 - En-2·
(b) Starting from E1 = 1 and E2 = 0 find E3, E4, ... , Es.
(c) By noticing how these numbers eventually repeat, find E100.

16 Fn is the determinant of the 1, 1, -1 tridiagonal matrix of order n: 

11 -11 F2 = l l = 2 F3 = 
1 
1 
0 

-1 0
1 -1
1 1 

1 -1 
=3 F4 = 1 1 -1 

#4. 1 1 -1 
1 1 

Expand in cofactors to show that Fn = Fn-l + Fn_2. These determinants are
Fibonacci numbers 1, 2, 3, 5, 8, 13, .... The sequence usually starts 1, 1, 2, 3 (with 
two l's) so our Fn is the usual Fn+l· 
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17 The matrix Bn is the -1, 2, -1 matrix An except that bu = 1 instead of au = 2. 
Using cofactors of the last row of B4 show that IB4I = 2IB3I - IB2J = 1. 

r-� -�
-1

l 
-1 2 -1 

-1 2 

[ 1 -lJ B2 = -1 2 .

The recursion IBnl = 2IBn-1I - JBn-21 is satisfied when every IBnl = 1. This 
recursion is the same as for the A's in Example 6. The difference is in the starting 
values 1, 1, 1 for the determinants of sizes n = l, 2, 3. 

i 8 Go back to Bn in Problem 17. It is the same as An except for bu = 1. So use 
linearity in the first row, where [ 1 -1 0] equals [ 2 -1 0] minus [ 1 0 0]: 

1 -1 0 2 -1 

JBnJ =
-1 -1

An-1 An-1 
0 0

Linearity gives IBnJ = IAnl - JAn-11 = ��·

0 1 0 
-1

An-1 
0

19 Explain why the 4 by 4 Vandermonde determinant contains x3 but not x4 or x5
: 

r l a a2 

l b b2 

Vi= <let 1 c c2

l X X
2 

a3 ] 
b3

c3 

x3 

0 

The determinant is zero at x = __ , __ , and __ . The cofactor of x3 is 
V3 = (b- a)(c - a)(c - b). Then Vi= (b- a)(c - a)(c - b)(x - a)(x - b)(x - c). 

20 Find G2 and G3 and then by row operations G4. Can you predict Gn ? 

0 1 
1 0 

0 1 1 
1 0 1 
1 1 0 

0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

21 Compute S1 , S2 , S3 for these 1, 3, 1 matrices. By Fibonacci guess and check S4 . 

3 1 0 
S3 = 1 3 1 

0 1 3 

22 Change 3 to 2 in the upper left comer of the matrices in Problem 21. Why does 
that subtract Sn-l from the determinant Sn ? Show that the determinants of the new 
matrices become the Fibonacci numbers 2, 5, 13 (always F2n+1). 
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Problems 23-26 are about block matrices and block determinants. 

23 With 2 by 2 blocks in 4 by 4 matrices, you cannot always use block determinants: 

I� �I= IAI IDI but

(a) Why is the first statement true? Somehow B doesn't enter.

(b) Show by example that equality fails (as shown) when Centers.

(c) Show by example that the answer det(AD -CB) is also wrong.

24 With block multiplication, A= LU has Ak = LkUk in the top left corner: 

(a) Suppose the first three pivots of A are 2, 3, -1. What are the determinants of
L 1 , L 2 , L 3 (with diagonal l's) and U 1 , U2, U 3 and A 1 , A 2 , A 3?

(b) If A 1 , A 2 , A 3 have determinants 5, 6, 7 find the three pivots from equation (3).

25 Block elimination subtracts CA -l times the first row [ A B ] from the second row 
[ C D]. This leaves the Schur complement D -CA -l B in the corner: 

Take determinants of these block matrices to prove correct rules if A- 1 exists: 

1i �I= IAI ID-cA- 1 BI = IAD- CBI providedAC = CA. 

26 If A is m by n and B is n by m, block multiplication gives det M = det AB: 

If A is a single row and B is a single column what is det M? If A is a column and 
B is a row what is det M? Do a 3 by 3 example of each. 

27 (A calculus question) Show that the derivative of det A with respect to au is the 
cofactor Cu. The other entries are fixed-we are only changing au. 
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28 A 3 by 3 determinant has three products "down to the right" and three "down to the left" with minus signs. Compute the six terms like (1)(5)(9) = 45 to find D.

+ + +

Explain without determinants why this particular matrix is or is not invertible. 
29 For E4 in Problem 15, five of the 4! = 24 terms in the big formula (8) are nonzero. Find those five terms to show that E4 = -1.30 For the 4 by 4 tridiagonal second difference matrix (entries -1, 2, -1) find the five terms in the big formula that give det A= 16 - 4 - 4 - 4 + 1. 31 Find the determinant of this cyclic P by cofactors of row 1 and then the "big for­mula". How many exchanges reorder 4, 1, 2, 3 into 1, 2, 3, 4? Is IP2 1 = 1 or -1? 

[ � � ] .
Challenge Problems 32 Cofactors of the 1, 3, 1 matrices in Problem 21 give a recursion Sn = 3Sn-l -Sn-2·Amazingly that recursion produces every second Fibonacci number. Here is the chal­lenge. 

Show that Sn is the Fibonacci number F2n+2 by proving F2n+2 = 3F2n - F2n-2· Keep using Fibonacci's rule Fk = Fk-l + Fk-2 starting with k = 2n + 2. 33 The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n, n entry, why does the determinant become zero? (Use rule 3 or cofactors.) 
<let [1 � L�] = 1 (known)

4 10 20 

1 3 
6 

det [i l
1 4 10 

1�] = 0 (to explain). 19 
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34 This problem shows in two ways that det A= 0 (the x's are any numbers): 

X X X X X 

X X X X X 

A= 0 0 0 x x 

0 Q O X X 

Q O O X X 

(a) How do you know that the rows are linearly dependent?

(b) Explain why all 120 terms are zero in the big formula for det A.

35 If ldet(A)I > 1, prove that the powers An cannot stay bounded. But if ldet(A)I :S 1, 
show that some entries of An might still grow large. Eigenvalues will give the right 
test for stability, determinants tell us only one number. 



5.3. Cramer's Rule, Inverses, and Volumes 
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1 A- 1 equals CT / det A. Then (A- 1 )ij = cofactor Cji divided by the determinant of A.

2 Cramer's Rule computes x = A-lb from x j = <let ( A with column j changed to b) / <let A.

3 Area of parallelogram= lad-bcl if the four corners are (0, 0), (a, b), (c, d), and (a+c, b+d). 

4 Volume of box= ldet Al if the rows of A (or the columns of A) give the sides of the box. 

Notice v x u = -(u xv). 
S The cross product w = u x v is det [ :1 

V1 
w1, w2, W3 are cofactors of row 1. 
Notice wTu = 0 and wTv = 0. 

This section solves Ax = band also finds A- 1-by algebra and not by elimination.
In all formulas you will see a division by <let A. Each entry in A -l and A- 1 b is a determi­
nant divided by the determinant of A. Let me start with Cramer's Rule. 

Cramer's Rule solves Ax = b. A neat idea gives the first component x 1 . Replacing 
the first column of I by x gives a matrix with determinant x 1 . When you multiply it by A, 
the first column becomes Ax which is b. The other columns of B1 are copied from A: 

Key idea [ A 

o o
l [

b1 
1 0 = b2 
0 1 b3 

We multiplied a column at a time. Take determinants of the three matrices to find x 1 : 

Product rule or 
detB1 xi = 

detA ·

(1) 

(2) 

This is the first component of x in Cramer's Rule! Changing a column of A gave B1 . 

To find x2 and B2 , put the vectors x and b into the second columns of I and A: 

Same idea (3) 

Take determinants to find ( <let A)(x2) = <let B2. This gives x2 = ( det B2) / ( det A). 

Example 1 Solving 3x 1 + 4x2 = 2 and 5x 1 + 6x2 = 4 needs three determinants: 
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Those determinants of A, B1, B2 are -2 and -4 and 2. All ratios divide by det A= -2: 

-4 
X1 = - = 2 

-2 

2 
X2 = - = -1 

-2 

CRAMER'S RULE If det A is not zero, Ax = b is solved by determinants: 

detB1 xi = 

detA 
detBn 

Xn = 
detA

The matrix Bj has the jth column of A replaced by the vector b. 

(4) 

To solve an n by n system, Cramer's Rule evaluates n + l determinants ( of A and the 
n different B's). When each one is the sum of n! terms-applying the "big formula" with
all permutations-this makes a total of ( n + l) ! terms. It would be crazy to solve equations
that way. But we do finally have an explicit formula for the solution.x. 

Example 2 Cramer's Rule is inefficient for numbers but it is well suited to letters. For
n = 2, find the columns of A-1 = [x y] by solving AA-1 = I: 

Columns of A- 1 [ a b ] [ x1 ] [ 1 ]
are x and y c d x2 0 

Those share the same matrix A. We need IAI and four determinants for x1, x2, YI, Y2: 

The last four determinants are d, -c, -b, and a. (They are the cofactors!) Here is A-1: 

d -c -b a _
1 

1 
[ d -b] x1 = TAT' x2 = TAT, y1 = TAT, Y2 = TAT and then A = 

ad _ be -c a . 

I chose 2 by 2 so that the main points could come through clearly. The new idea is : 
A-

1 
involves the cofactors. When the right side is a column of the identity matrix I,

as in AA-1 = I, the determinant of each Bj in Cramer's Rule is a cofactor of A.

You can see those cofactors for n = 3. Solve Ax = (l, 0, 0) to find column 1 of A-1 : 

Determinants of B's 

= Cofactors of A 

1 a12 a13 

0 a22 a23 
0 a32 a33 

a11 1 a13 

a21 0 a23 
a31 0 a33 

a11 a12 1 
a21 a22 0 
a31 a32 0

(5) 

That first determinant IB1 I is the cofactor C11 = a22a33 -a23a32. Then IB2I is the cofactor 
C1 2- Notice that the correct minus sign appears in -(a21a33 - a23a31). This cofactor C12 
goes into column 1 of A -I. When we divide by det A, we have the inverse matrix ! 
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The i, j entry of A-1 
is the cofactor Cji (not Cij) divided by det A:

FORMULA FOR A- 1 and 
CT 

A-1 = detA.
(6) 

The cofactors Cij go into the "cofactor matrix" C. The transpose of C leads to A-1. 

To compute the i, j entry of A-1, cross out row j and column i of A. Multiply the 
determinant by ( -1 )i+j to get the cofactor Cji , and divide by det A.

Check this rule for the 3, 1 entry of A-1. For column 1 we solve Ax = (l, 0, 0).
The third component x3 needs the third determinant in equation (5), divided by det A.
That determinant is exactly the cofactor C13 = a21a32-a22a31. So (A-1 

h1 = C13/ det A.

Summary In solving AA- 1 
= I, each column of I leads to a column of A-1. Every 

entry of A-1 is a ratio: determinant of size n - l / determinant of size n.

Direct proof of the formula A- 1 = CT/ det A This means ACT = ( det A)I:

c31

] l 
detA 

C32 = 0 
C33 

0 

0 

detA 

0 

(Row 1 of A) times (column 1 of CT) yields the first det A on the right: 

0 j
0 

detA 

an Cn + a12C12 + a13C13 = det A This is exactly the cofactor rule! 

(7) 

Similarly row 2 of A times column 2 of CT (notice the transpose) also yields det A.
The entries a2j are multiplying cofactors C2j as they should, to give the determinant. 

How to explain the zeros off the main diagonal in equation (7)? The rows of A are 
multiplying cofactors from different rows. Why is the answer zero? 

Row2 of A
Row 1 ofC (8) 

Answer: This is the cofactor rule for a new matrix, when the second row of A is copied into 
its first row. The new matrix A* has two equal rows, so det A* = 0 in equation (8) .  Notice 
that A* has the same cofactors C11, C12, C13 as A-because all rows agree after the first 
row. Thus the remarkable multiplication (7) is correct: 

ACT = (detA)I or A-1 = 

CT 

. detA 
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Example 3 The "sum matrix" A has determinant 1. Then A-1 contains cofactors: 

[1 
0 0 

�1 r' � C: � [-l 0 0 

�1 A= 
1 0 

has inverse 
1 0 

1 1 -1 1
1 1 0 -1 

Cross out row 1 and column 1 of A to see the 3 by 3 cofactor C11 = 1. Now cross out row 
1 and column 2 for C12 . 

The 3 by 3 submatrix is still triangular with determinant 1. But 
the cofactor C12 is -1 because of the sign ( -1) 1+2

. This number -1 goes into the (2, 1)
entry of A-1-don't forget to transpose C.

The inverse of a triangular matrix is triangular. Cofactors give a reason why. 

Example 4 If all cofactors are nonzero, is A sure to be invertible? No way.

Area of a Triangle 

Everybody knows the area of a rectangle-base times height. The area of a triangle is half

the base times the height. But here is a question that those formulas don't answer. If we 
know the corners (x1, Y1) and (x2, Y2) and (x3, y3) of a triangle, what is the area? 
Using the corners to find the base and height is not a good way to compute area. 

Determinants are the best way to find area. The area of a triangle is half of a 3 by 3 
determinant. The square roots in the base and height cancel out in the good formula. If 
one corner is at the origin, say ( x3, y3) = ( 0, 0), the determinant is only 2 by 2. 

Figure 5 .1: General triangle; special triangle from ( 0, 0); general from three specials. 

. . determinant 
The tnangle with corners (x1, y1) and (x2, Y2) and (x3, y3) has area=

2 
: 

Area of triangle 
1 X1 Yl 
- X2 Y2 2

1 
1 
1 

Area= ! 1x1 
2 X2 

Yi I when (x3, y3) = (0, 0).
Y2 
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When you set x3 = y3 = 0 in the 3 by 3 determinant, you get the 2 by 2 determinant. These 
formulas have no square roots-they are reasonable to memorize. The 3 by 3 determinant 
breaks into a sum of three 2 by 2's (cofactors),just as the third triangle in Figure 5.1 breaks 
into three special triangles from ( 0, 0) : 

Area 
1 
1 
1 

+½(x1Y2 - X2Y1)
+½ (x2y3 - X3y2) 
+½(x3y1 - X1Y3).

(9) 

If ( 0, 0) is outside the triangle, two of the special areas can be negative-but the sum is still 
correct. The real problem is to explain the area of a triangle with comer (0, 0). 

Why is 
½ 

lx1y2 - x2 y1 I the area of this triangle? We can remove the factor ½ 
for

a parallelogram (twice as big, because the parallelogram contains two equal triangles). 
We now prove that the parallelogram area is the determinant x1y 2 - x 2 y1. This area in 
Figure 5.2 is 11, and therefore the triangle has area 1

2

1
• 

(0, 0) 

Parallelogram 

Area= 
I� !I

= 11

11
Triangle: Area = 

2 

Figure 5.2: A triangle is half of a parallelogram. Area is half of a determinant. 

Proof that a parallelogram starting from ( O, 0) has area = 2 by 2 determinant. 

There are many proofs but this one fits with the book. We show that the area has the same 
properties 1-2-3 as the determinant. Then area= determinant! Remember that those three 
rules defined the determinant and led to all its other properties. 

1 When A= I, the parallelogram becomes the unit square. Its area is <let I= 1. 

2 When rows are exchanged, the determinant reverses sign. The absolute value (positive 
area) stays the same-it is the same parallelogram. 

3 If row 1 is multiplied by t, Figure 5.3a shows that the area is also multiplied by t. Sup­
pose a new row (x�, YD is added to (x1, y1) (keeping row 2 fixed). Figure 5.3b shows 
that the solid parallelogram areas add to the dotted parallelogram area (because the two 
triangles completed by dotted lines are the same). 

That is an exotic proof, when we could use plane geometry. But the proof has a major 
attraction-it applies in n dimensions. The n edges going out from the origin are given by 
the rows of an n by n matrix. The box is completed by more edges, like the parallelogram. 
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Dotted area = Solid area = A + A' 

Full area = tA 

(0,0) (0, 0) 

Figure 5.3: Areas obey the rule of linearity in side 1 (keeping the side (x2, y2) constant). 

Figure 5.4 shows a three-dimensional box-whose edges are not at right angles. The 

volume equals the absolute value of <let A. Our proof checks again that rules 1-3 for 
determinants are also obeyed by volumes. When an edge is stretched by a factor t, the 
volume is multiplied by t. When edge 1 is added to edge l', the volume is the sum of the 
two original volumes. This is Figure 5.3b lifted into three dimensions or n dimensions. I 
would draw the boxes but this paper is only two-dimensional. 

z 

X 

volume of box 

=ldeterminantl 

Figure 5.4: Three-dimensional box formed from the three rows of A. 

The unit cube has volume= 1, which is det I. Row exchanges or edge exchanges leave 
the same box and the same absolute volume. The determinant changes sign, to indicate 
whether the edges are a right-handed triple (det A > 0) or a left-handed triple ( det A< 0). 
The box volume follows the rules for determinants, so volume of det A = absolute value. 

Example 5 Suppose a rectangular box (90° angles) has side lengths r, s, and t. Its 
volume is r times s times t. The diagonal matrix A with entries r, s, and t produces those 
three sides. Then det A also equals the volume rs t.
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Example 6 In calculus, the box is infinitesimally small! To integrate over a circle, wemight change x and y to r and 0. Those are polar coordinates: x = r cos 0 and y = r sin 0.The area of a "polar box" is a determinant J times dr d0: 

Area r dr d0 in calculus J= lox/or ox/801 = lcos0 -rsin01 =roy / or oy / ae sin e r cos e 
This determinant is the r in the small area dA = r dr d0. The stretching factor J goes intodouble integrals just as dx / du goes into an ordinary integral J dx = J ( dx /du) du. Fortriple integrals the Jacobian matrix J with nine derivatives will be 3 by 3. 

The Cross Product 

The cross product is an extra (and optional) application, special for three dimensions. Startwith vectors u = (u1, u2, u3) and v = (v1, v2, v3). Unlike the dot product, which is anumber, the cross product is a vector-also in three dimensions. It is written u x v andpronounced "u cross v." The components of this cross product are 2 by 2 cofactors. Wewill explain the properties that make u x v useful in geometry and physics. This time we bite the bullet, and write down the formula before the properties. 

DEFINITION The cross product of u = ( u1, u2, u3) and v = ( v1, v2, v3) is a vector 

ux v 
i j k 

U1 U2 U3 = (u2V3 - U3V2)i + (u3V1 - u1v3)j + (u1V2 - u2v1)k. V1 V2 V3 
(10) 

This vector u x v is perpendicular to u and v. The cross product v x u is -( u x v).

Comment The 3 by 3 determinant is the easiest way to remember u xv. It is not especiallylegal, because the first row contains vectors i, j, k and the other rows contain numbers. In the determinant, the vector i = (1, 0, 0) multiplies u2v3 and -u3v2. The result is( u2v3 - u3v2, 0, 0), which displays the first component of the cross product. Notice the cyclic pattern of the subscripts: 2 and 3 give component 1 of u x v, then 3and 1 give component 2, then 1 and 2 give component 3. This completes the definition of
u x v. Now we list the properties of the cross product: 
Property 1 v x u reverses rows 2 and 3 in the determinant so it equals -( u x v).

Property 2 The cross product u x v is perpendicular to u ( and also to v). The direct proofis to watch terms cancel, producing a zero dot product: 
u. (u Xv)= u1(u2V3 - U3V2) + u2(u3V1 - U1v3) + U3(U1V2 - U2V1) = 0. (11)

The determinant for u·( u x v) has rows u, u and v (2 equal rows) so it is zero. 
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Property 3 The cross product of any vector with itself (two equal rows) is u x u = 0. 

When u and v are parallel, the cross product is zero. When u and v are perpendicular, the 
dot product is zero. One involves sin 0 and the other involves cos 0: 

llu xvii= llull llvll I sin01 and lu ·vi= !lull !Iv!! I cos 01. (12)

Example 7 u = (3, 2, 0) and v = (1, 4, 0) are in the xy plane, u xv goes up the z axis: 

i J k

u x v = 3 2 0 = 10k. The cross product is u x v = (0, 0, 10). 
1 4 0 

The length of u X v equals the area of the parallelogram with sides u and v. This will 
be important: In this example the area is 10. 

Example 8 The cross product of u = (1, 1, 1) and v = (1, 1, 2) is (1, -1, 0): 

i j k ·
1

1 1
1 

·
1

1 1
1 1

1 
� � � ='I, 1 2 -J 1 2 +k 1 

1
1 . . 1 = 'I, - J.

This vector ( 1, -1, 0) is perpendicular to ( 1, 1, 1) and ( 1, 1, 2) as predicted. Area = )2. 

Example 9 The cross product of i = (1, 0, 0) and j = (0, 1, 0) obeys the right hand rule.

That cross product k = i x j goes up not down: 

i j k 

1 0 0 

0 1 0 

=k 

i X j = k 

vl-u = l = J 

Rule u x v points along 
your right thumb when the 
fingers curl from u to v. 

Thus i x j = k. The right hand rule also gives j x k = i and k x i = j. Note the cyclic 
order. In the opposite order (anti-cyclic) the thumb is reversed and the cross product goes 
the other way: k x j = -i and i x k = -j and j x i = -k. You see the three plus signs 
and three minus signs from a 3 by 3 determinant. 

The definition of u x v can be based on vectors instead of their components: 

DEFINITION The cross product is a vector with length !lull !!vii I sin 01. Its direction
is perpendicular to u and v. It points "up" or "down" by the right hand rule. 

This definition appeals to physicists, who hate to choose axes and coordinates. They see 
( u1, u2, u3) as the position of a mass and (Fx , F

y
, Fz) as a force acting on it. If F is
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parallel to u, then u x F = 0-there is no turning. The cross product u x F is the turning 
force or torque. It points along the turning axis (perpendicular to u and F). Its length 
llull llFII sin 0 measures the "moment" that produces turning. 

Triple Product = Determinant = Volume 

Since u x vis a vector, we can take its dot product with a third vector w. That produces 
the triple product ( u x v) · w. It is called a "scalar" triple product, because it is a number. 
In fact it is a determinant-it gives the volume of the u, v, w box: 

Triple product (uxv)·w 
W1 Wz W3 

U1 Uz U3 

V1 Vz V3 

U1 Uz U3 

V1 Vz V3 

W1 Wz W3 

(13) 

We can put w in the top or bottom row. The two determinants are the same because __ 
row exchanges go from one to the other. Notice when this determinant is zero: 

( u x v) · w = 0 exactly when the vectors u, v, w lie in the same plane.

First reason u x v is perpendicular to that plane so its dot product with w is zero. 

Second reason Three vectors in a plane are dependent. The matrix is singular (<let= 0). 

Third reason Zero volume when the u, v, w box is squashed onto a plane. 

It is remarkable that ( u x v) · w equals the volume of the box with sides u, v, w. This 
3 by 3 determinant carries tremendous information. Like ad - be for a 2 by 2 matrix, it 
separates invertible from singular. Chapter 6 will be looking for singular. 

• REVIEW OF THE KEY IDEAS •

1. Cramer's Rule solves Ax= b by ratios like X1 = IB1I/IAI = lba2 · · · an l/lAI. 

2. When C is the cofactor matrix for A, the inverse is A- 1 = CT / det A.

3. The volume of a box is I det Al, when the box edges are the rows of A.

4. Area and volume are needed to change variables in double and triple integrals.

5. In R 3, the cross product u x v is perpendicular to u and v. Notice i x j = k.
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• WORKED EXAMPLES • 

5.3 A If A is singular, the equation ACT = ( det A )I becomes ACT = zero matrix. 

Then each column of CT is in the nullspace of A. Those columns contain cofactors along 
rows of A. So the cofactors quickly find the nullspace for a 3 by 3 matrix of rank 2. My 
apologies that this comes so late! 

Solve Ax = 0 by x = cofactors along a row, for these singular matrices of rank 2: 

Cofactors 

give 

nullspace 

Solution The first matrix has these cofactors along its top row (note each minus sign): 

I ; � I
= 

-
2

Then x = (6, 2, -2) solves Ax = 0. The cofactors along the second row are (-18, -6, 6) 
which is just -3x. This is also in the one-dimensional nullspace of A.

The second matrix has zero cofactors along its first row. The nullvector x = (0, 0, 0) is 
not interesting. The cofactors of row 2 give x = (l, -1, 0) which solves Ax = 0.

Every n by n matrix of rank n - l has at least one nonzero cofactor by Problem 3.3.12. 
But for rank n - 2, all cofactors are zero and we only find x = 0. 

5.3 B Use Cramer's Rule with ratios det BJ/ det A to solve Ax = b. Also find the
inverse matrix A- 1 = CT/ det A. For this b = (0, 0, 1) the solution xis column 3 of 
A- 1 ! Which cofactors are involved in computing that column x = ( x, y, z)?

Column 3 of A- 1 

Find the volumes of two boxes : edges are columns of A and edges are rows of A- 1
. 

Solution The determinants of the BJ (with right side b placed in column j) are 

0 6 2 

IB1l = 0 4 2 = 4 
1 9 0 

2 0 2 

IB2l = 1 0 2 = -2
5 1 0 

2 6 0 

JB3J = 1 4 0 = 2. 
5 9 1 

Those are cofactors C31, C32, C33 of row 3. Their dot product with row 3 is det A = 2: 

The three ratios det BJ/ det A give the three components of x = (2, -1, 1). This x is the 
third column of A - l because b = ( 0, 0, 1) is the third column of I.
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The cofactors along the other rows of A, divided by det A, give the other columns of A- 1
: 

CT l
[ 

-18 18 4 l 
A- 1 = 

d A= -
10 -10 -2 . Multiply to check AA- 1 = I

et 2 -11 12 2

The box from the columns of A has volume = det A = 2. The box from the rows also has
volume 2, since IATI = IAI. The box from the rows of A- 1 has volume 1/IAI = ½-

Problem Set 5.3 C °'\\ 0,1.., \ ( \ 
"1 \ 

01.1 '01,) 0 \) 

Problems 1-5 are about Cramer's Rule for x = A- 1 b. 
( O �\ ( lA,(\ 

I Lo 1- , � ::- L(/-.1,\ > 
1 

2 

3 

() --\0 'v 
Solve these linear equations by Cramer's Rule x1 = det B1 / det A: 0 ,1 \ 0 ,1. _ 

111 
·"\ 0 

(\ri( -'\lo-1.L_-i/1\0 1.� 1.1--

(a) 2x1 + 5x2 = 1
X1 + 4X2 = 2 (b) 

2X1 + x2 = 1 LO-v _, 
X1 + 2x2 + X3 = 0 ( 0 '\

X2 + 2X3 = 0. 

Use Cramer's Rule to solve for y (only). Call the 3 by 3 determinant D: 

""CA\,-\ 0,� 

'11 cJ.1_.\"'°o"'� ,,, 

(a) ax+ by = 1 
ex+ dy = 0 

0' 
ax+ by+ cz = 1 

( 
q ,, C{h / \ 

) (b) dx + ey + f z = 0 '-', \ Q n } '- "'-' ::::-
gx + hy + iz = 0. 

( (). \ \ .,,p, \ 'lflCramer's Rule breaks down when det A = 0. Example (a) has no solution while o.._ 
(b) has infinitely many. What are the ratios x1 = det B1 / det A in these two cases? -i\ \-1"10,H

2x1 + 3x2 = 1 (a) 4 6 1 (parallel lmes)X1 + X2 = (b) 2x1 + 3x2 = 1 . 
' 

4 6 2 (same lme)X1 + X2 = 

4 Quick proof of Cramer's rule. The determinant is a linear function of column 1. It is 
zero if two columns are equal. When b = Ax = x1 a1 + x2a2 + x3a3 goes into the \.­
first column of A, the determinant of this matrix B1 is

(a) What formula for x1 comes from left side= right side?
(b) What steps lead to the middle equation?

5 If the right side b is the first column of A, solve the 3 by 3 system Ax = b. How 
does each determinant in Cramer's Rule lead to this solution x?
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Problems 6-15 are about A- 1 
= CT / det A. Remember to transpose C. 

6 Find A - 1 from the cofactor formula CT/ <let A. Use symmetry in part (b ). 

7 If all the cofactors are zero, how do you know that A has no inverse? If none of the 
cofactors are zero, is A sure to be invertible? 

8 Find the cofactors of A and multiply ACT to find <let A: 

and 

If you change that 4 to 100, why is <let A unchanged? 

and ACT =

9 Suppose <let A= 1 and you know all the cofactors in C. How can you find A?

10 From the formula ACT = ( <let A )I show that <let C = ( <let A r- 1
. 

11 If all entries of A are integers, and det A = 1 or -1, prove that all entries of A - 1 

are integers. Give a 2 by 2 example with no zero entries. 

12 If all entries of A and A - 1 are integers, prove that <let A = 1 or -1. Hint: What is 
det A times <let A- 1? 

13 Complete the calculation of A- 1 by cofactors that was started in Example 5. 

14 L is lower triangular and S is symmetric. Assume they are invertible: 

To invert 
triangular L 
symmetric S 

S = b C e 

[a b d
l 

d e f 

(a) Which three cofactors of L are zero? Then L- 1 is also lower triangular.
(b) Which three pairs of cofactors of Sare equal? Then s-1 is also symmetric.
( c) The cofactor matrix C of an orthogonal Q will be __ . Why?

15 For n = 5 the matrix C contains __ cofactors. Each 4 by 4 cofactor contains 
__ terms and each term needs __ multiplications. Compare with 53 = 125 
for the Gauss-Jordan computation of A- 1 in Section 2.4. 

Problems 16-26 are about area and volume by determinants. 

16 (a) Find the area of the parallelogram with edges v = (3, 2) and w = (1, 4).
(b) Find the area of the triangle with sides v, w, and v + w. Draw it.
(c) Find the area of the triangle with sides v, w, and w - v. Draw it.
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17 A box has edges from (0, 0,0) to (3, 1, 1) and (1, 3, 1) and (1, 1,3). Find its volume.Also find the area of each parallelogram face using llu x vll-
18 (a) The corners of a triangle are (2, 1) and (3, 4) and (0, 5). What is the area? 

(b) Add a comer at ( -1, 0) to make a lopsided region (four sides). Find the area.
19 The parallelogram with sides (2, 1) and (2, 3) has the same area as the parallelogramwith sides (2, 2) and (1, 3). Find those areas from 2 by 2 determinants and say whythey must be equal. (I can't see why from a picture. Please write to me if you do.) 
20 The Hadamard matrix H has orthogonal rows. The box is a hypercube! 

What is 
1 1 1 11 -1 -1 1 IHI= 1 -1 -1 1 1 -1 1 -1 

volume of a hypercube in R 4? 

21 If the columns of a 4 by 4 matrix have lengths L1, L2, L3, L4, what is the largestpossible value for the determinant (based on volume)? If all entries of the matrix are1 or -1, what are those lengths and the maximum determinant? 
22 Show by a picture how a rectangle with area x 1y2 minus a rectangle with area x2y1 produces the same area as our parallelogram. 
23 When the edge vectors a, b, care perpendicular, the volume of the box is llall timesllbll times llcll- The matrix AT A is _ _  . Find det AT A and det A. 
24 The box with edges i and j and w = 2i + 3j + 4k has height _ _  . What is the volume? What is the matrix with this determinant? What is i x j and what is its dot product with w? 

25 An n-dimensional cube has how many corners? How many edges? How many(n - 1)-dimensional faces? The cube in Rn whose edges are the rows of 2I hasvolume _ _  . A hypercube computer has parallel processors at the corners withconnections along the edges. 
26 The triangle with corners (0, 0), (1, 0), (0, 1) has area ½- The pyramid in R3 withfour corners (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) has volume __ . What is the vol­ume of a pyramid in R 4 with five corners at ( 0, 0, 0, 0) and the rows of I? 
Problems 27-30 are about areas dA and volumes dV in calculus.

27 Polar coordinates satisfy x = r cos 0 and y = r sin 0. Polar area is J dr d0: 
J = I 8x / 8r 8x / 801 = I cos 0 -r sin 01 8y / 8r 8y / 80 sin 0 r cos 0 ·

The two columns are orthogonal. Their lengths are __ . Thus J = __ . 
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28 Spherical coordinates P, cp, 0 satisfy x = p sin¢ cos 0 and y = p sin¢ sin 0 and 
z = p cos¢. Find the 3 by 3 matrix of partial derivatives: ax/ 8 P, ax/ acp, ax/ 80 in 
row 1. Simplify its determinant to 1 = p2 

sin¢. Then dV in spherical coordinates is
p

2 
sin ¢ dp dcpd0, the volume of an infinitesimal "coordinate box". 

29 The matrix that connects r, 0 to x, y is in Problem 27. Invert that 2 by 2 matrix: 

1- 1 = I or I ax or I ay I = I cos e ? I = ? 
ae / ax ae / ay ? ? · 

It is surprising that or/ ax= ax/ or (Calculus, Gilbert Strang, p. 501). Multiplying
the matrices 1 and 1- 1 gives the chain rule ax = ax Br + ax ae = l. ax or ax 80 OX 

30 The triangle with corners (0, 0), (6, 0), and (1, 4) has area ___ . When you rotate
it by 0 = 60° the area is ___ . The determinant of the rotation matrix is 

1 = I c?s 0 - sin 01 = I ½ 
sm0 cos 0 ? 

?I=?
? 

Problems 31-38 are about the triple product ( u x v) · win three dimensions. 

31 A box has base area llu xvii- Its perpendicular height is llwll cos 0. Base area times
height= volume= llu xvii llwll cos 0 which is (u xv) · w. Compute base area,
height, and volume for u = (2, 4, 0), v = (-1, 3, 0), w = (1, 2, 2). 

32 The volume of the same box is given more directly by a 3 by 3 determinant. Evaluate
that determinant. 

33 Expand the 3 by 3 determinant in equation (13) in cofactors of its row u1, u2, u3. 

This expansion is the dot product of u with the vector __ . 

34 Which of the triple products ( u x w) · v and ( w x u) · v and ( v x w) · u are the
same as ( u xv)· w? Which orders of the rows u, v, w give the correct determinant?

35 Let P = (1, 0, -1) and Q = (1, 1, 1) and R = (2, 2, 1). Choose S so that PQRS

is a parallelogram and compute its area. Choose T, U, V so that OPQRSTUV is a 
tilted box and compute its volume. 

36 Suppose (x, y, z) and (1, 1, 0) and (1, 2, 1) lie on a plane through the origin. What
determinant is zero? What equation does this give for the plane? 

37 Suppose ( x, y, z) is a linear combination of ( 2, 3, 1) and ( 1, 2, 3). What determinant
is zero? What equation does this give for the plane of all combinations? 

38 (a) Explain from volumes why det 2A = 2n det A for n by n matrices. 
(b) For what size matrix is the false statement det A + det A = det ( A + A) true?
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Challenge Problems 

39 If you know all 16 cofactors of a 4 by 4 invertible matrix A, how would you find A? 

40 Suppose A is a 5 by 5 matrix. Its entries in row 1 multiply determinants (cofactors) 
in rows 2-5 to give the determinant. Can you guess a "Jacobi formula" for det A
using 2 by 2 determinants from rows 1-2 times 3 by 3 determinants from rows 3-5? 

Test your formula on the -1, 2, -1 tridiagonal matrix that has determinant= 6. 

41 The 2 by 2 matrix AB =(2 by 3)(3 by 2) has a "Cauchy-Binet formula" for det AB: 

det AB = sum of (2 by 2 determinants in A) (2 by 2 determinants in B) 

(a) Guess which 2 by 2 determinants to use from A and B.

(b) Test your formula when the rows of A are 1, 2, 3 and 1, 4, 7 with B = AT .

42 The big formula has n! terms. But if an entry of A is zero, ( n - l) ! terms disappear. 
If A has only three diagonals, how many terms are left? 

For n = l, 2, 3, 4 the tridiagonal determinant has 1, 2, 3, 5 terms. Those are 
Fibonacci numbers in Section 6.2 ! Show why a tridiagonal 5 by 5 determinant has 
5 + 3 = 8 nonzero terms (Fibonacci again). Use the cofactors of a11 and a12. 



Chapter 6 

Eigenvalues and Eigenvectors 

6.1 Introduction to Eigenvalues 

1 An eigenvector x lies along the same line as Ax : I Ax = Ax. I The eigenvalue is A. 

2 If Ax = AX then A2x = A2x and A- 1 x = A- 1 x and (A+ cI)x = (A+ c)x: the same x. 

3 If Ax = AX then (A->-I)x = 0 and A-Al is singular and I det(A->..J) = 0. I n eigenvalues. 

4 Check A's by det A= (A1)(A2) ···(An) and diagonal sum a11 + a22 + · · · + ann = sum of A's. 

5 Projections have A= 1 and 0. Reflections have 1 and -1. Rotations have ei& and e-i&: complex!

This chapter enters a new part of linear algebra. The first part was about Ax = b: 
balance and equilibrium and steady state. Now the second part is about change. Time 
enters the picture-continuous time in a differential equation du/dt = Au or time steps 
in a difference equation Uk+i = Auk. Those equations are NOT solved by elimination. 

The key idea is to avoid all the complications presented by the matrix A. Suppose 
the solution vector u(t) stays in the direction of a fixed vector x. Then we only need to 
find the number (changing with time) that multiplies x. A number is easier than a vector. 
We want "eigenvectors" x that don't change direction when you multiply by A.

A good model comes from the powers A, A 2, A 3, . . . of a matrix. Suppose you need 
the hundredth power A 100. Its columns are very close to the eigenvector ( .6, .4) : 

A A2 A3 = [·8 .3] ' ' .2 .7 [
.70 .45

] .30 .55 [
.650 .525

].350 .475 
AlOO � [

.6000 .6000
].4000 .4000 

A 100 was found by using the eigenvalues of A, not by multiplying 100 matrices. Those 
eigenvalues (here they are A = 1 and 1/2) are a new way to see into the heart of a matrix. 

288 
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To explain eigenvalues, we first explain eigenvectors. Almost all vectors change di­rection, when they are multiplied by A. Certain exceptional vectors x are in the same 

direction as Ax. Those are the "eigenvectors". Multiply an eigenvector by A, and the vector Ax is a number>- times the original x. 

The basic equation is Ax= .>-x. The number>- is an eigenvalue of A. 

The eigenvalue >- tells whether the special vector x is stretched or shrunk or reversed or leftunchanged-when it is multiplied by A. We may find A = 2 or ½ or -1 or 1. The eigen­value A could be zero! Then Ax = Ox means that this eigenvector x is in the nullspace. If A is the identity matrix, every vector has Ax= x. All vectors are eigenvectors of I.All eigenvalues "lambda" are >-= 1. This is unusual to say the least. Most 2 by 2 matriceshave two eigenvector directions and two eigenvalues. We will show that det(A ->-I) = 0.This section will explain how to compute the x's and A's. It can come early in the coursebecause we only need the determinant of a 2 by 2 matrix. Let me use det(A -Al) = 0 tofind the eigenvalues for this first example, and then derive it properly in equation (3). 
Example 1 The matrix A has two eigenvalues >- = 1 and>- = 1 /2. Look at det (A-Al):

A= [·8 .3].2 .7 .3 ] 2 3 1 ( 1) 
=>- --.>-+-=(>-- 1) >---. 7 ->- 2 2 2

I factored the quadratic into A - l times A - ½, to see the two eigenvalues .X = 1 and.X = ½. For those numbers, the matrix A ->-I becomes singular (zero determinant). Theeigenvectors x 1 and x2 are in the nullspaces of A -I and A -½I. 
(A - I)x1 = 0 is Ax1 = x 1 and the first eigenvector is ( .6, .4).
(A - ½I)x2 = 0 is Ax2 = ½x2 and the second eigenvector is (1, -1):
X1 = [:�]
X2 = [ 1]-1 

and Ax1 = 

and Ax2 = 
[·8 ·3] [·6] = x 1 (Ax= x means that >-1 = 1).2 .7 .4 
[·8 ·3] [_ 1] [_·5] (this is½ x2 so >-2 = ½).
.2 .7 1 .5 

If x 1 is multiplied again by A, we still get x 1 . Every power of A will give Anx1 = x 1 . Multiplying x2 by A gave ½x2 , and if we multiply again we get ( ½ )2 times x2 .
When A is squared, the eigenvectors stay the same. The eigenvalues are squared. 

This pattern keeps going, because the eigenvectors stay in their own directions (Figure 6.1)and never get mixed. The eigenvectors of A 100 are the same x 1 and x2 . The eigenvalues
of A100 are 1100 

= 1 and (½)100 
= very small number. Other vectors do change direction. But all other vectors are combinations of the twoeigenvectors. The first column of A is the combination x 1 + ( .2)x2 : 

Separate into eigenvectors 

Then multiply by A
(1)
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A=l 

A= .5 
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A2 
= 1

A2 
= .25 

Ax2 = A2x2 = [-:n 

Figure 6.1: The eigenvectors keep their directions. A2x = >.2x with >.2 = 12 and ( .5)2 . 

When we multiply separately for x1 and (.2)x2, A multiplies x2 by its eigenvalue½: 

Each eigenvector is multiplied by its eigenvalue, when we multiply by A. At every step 
x1 is unchanged and x2 is multiplied by (½), so 99 steps give the small number (½)99

: 

A99 [ :�] [ 6] [ 
very l 

is really x1 +(.2)(½)99x2
= :4 + small .

vector 

This is the first column of A100. The number we originally wrote as .6000 was not exact. 
We left out (.2)(½)99 which wouldn't show up for 30 decimal places. 

The eigenvector x1 is a "steady state" that doesn't change (because >-1 
= 1). The 

eigenvector x2 is a "decaying mode" that virtually disappears (because >-2 = .5). The 
higher the power of A, the more closely its columns approach the steady state. 

This particular A is a Markov matrix. Its largest eigenvalue is A = l. Its eigenvector 
x1 = (.6, .4) is the steady state-which all columns of Ak will approach. Section 10.3 
shows how Markov matrices appear when you search with Google. 

For projection matrices P, we can see when Px is parallel to x. The eigenvectors 
for>- = 1 and A = 0 fill the column space and nullspace. The column space doesn't move 
(Px = x ). The nullspace goes to zero (Px = 0 x ). 
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Example2 The projection matrix P = [ :� ·5 ] has eigenvalues,\= 1 and,\ = 0..5 

Its eigenvectors are x 1 = (1, 1) and x 2 = (1, -1). For those vectors, Px 1 = x 1 (steady
state) and Px 2 = 0 (nullspace). This example illustrates Markov matrices and singular
matrices and (most important) symmetric matrices. All have special ,\'s and x's: 

1. Markov matrix: Each column of P adds to 1, so ,\ = 1 is an eigenvalue.

2. Pis singular, so,\= 0 is an eigenvalue.

3. P is symmetric, so its eigenvectors ( 1, 1) and ( 1, -1) are perpendicular.

The only eigenvalues of a projection matrix are O and 1. The eigenvectors for,\= 0 (which
means Px = Ox) fill up the nullspace. The eigenvectors for,\ = 1 (which means Px = x)
fill up the column space. The nullspace is projected to zero. The column space projects
onto itself. The projection keeps the column space and destroys the nullspace: 

Project each part v = [ _ �] + [;] projects onto Pv = [ �] + [;] .

Projections have,\ = 0 and 1. Permutations have all i>-1 = 1. The next matrix Ris a
reflection and at the same time a permutation. R also has special eigenvalues. 

Example 3 The reflection matrix R = [ � 5] has eigenvalues 1 and -1.

The eigenvector ( 1, 1) is unchanged by R. The second eigenvector is ( 1, -1 )-its signs
are reversed by R. A matrix with no negative entries can still have a negative eigenvalue!
The eigenvectors for Rare the same as for P, because reflection= 2(projection) - I: 

R=2P-I 
[o 1] = 2 [·5 
1 0 .5 

.5] _ [l OJ 

.5 0 1 . (2)

When a matrix is shifted by I, each.Xis shifted by 1. No change in eigenvectors.

x2 Px1 = x1

��ox, 

Projection onto blue line

x,

y

fu,�x, 

Reflection across line • Rx2 = -X2

Figure 6.2: Projections P have eigenvalues 1 and 0. Reflections R have ,\ = 1 and -1.
A typical x changes direction, but an eigenvector stays along the same line. 
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The Equation for the Eigenvalues 

For projection matrices we found A's and x's by geometry: Px = x and Px = 0.
For other matrices we use determinants and linear algebra. This is the key calculation
in the chapter-almost every application starts by solving Ax = Ax.

First move >.x to the left side. Write the equation Ax = Ax as (A - AI)x = 0.

The matrix A - Al times the eigenvector x is the zero vector. The eigenvectors make up
the nullspace of A - >.I. When we know an eigenvalue A, we find an eigenvector by 
solving (A - AI)x = 0. 

Eigenvalues first. If (A - AI)x = 0 has a nonzero solution, A - Al is not invertible. 
The determinant of A - >.I must be zero. This is how to recognize an eigenvalue A: 

Eigenvalues The number A is an eigenvalue of A if and only if A - Al is singular. 

Equation for the eigenvalues det(A - AI) = 0. (3) 

This "characteristic polynomial" det(A - AI) involves only>., not x. When A is n by n, 
equation (3) has degree n. Then A has n eigenvalues (repeats possible!) Each A leads to x: 

For each eigenvalue>. solve (A - AI)x = 0 or Ax= Ax to find an eigenvector x.

Example 4 A= [ � ! ] is already singular (zero determinant). Find its A's and x's.

When A is singular, A = 0 is one of the eigenvalues. The equation Ax = Ox has
solutions. They are the eigenvectors for A= 0. But det(A - AI) = 0 is the way to find all
A's and x's. Always subtract Al from A: 

Subtract>-from the diagonal to find A - >.I = [ 1 
; 

A 
4 � A] . ( 4) 

Take the determinant "ad - be" of this 2 by 2 matrix. From 1 - A times 4 - A,
the "ad" part is A2 

- 5A + 4. The "be" part, not containing A, is 2 times 2.

det [ 1
; 

A 
4 � 

A 
] = (1 - A)(4 - A) - (2)(2) = A2 

- 5A. (5) 

Set this determinant >.2 
- 5>. to zero. One solution is A = 0 (as expected, since A is 

singular). Factoring into A times A - 5, the other root is A = 5:

det(A - AI) = >.2 
- 5A = 0 yields the eigenvalues A1 = 0 and A2 = 5 . 
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Now find the eigenvectors. Solve (A - >..I)x = 0 separately for >..1 = 0 and >..2 = 5:

(A - OI)x = [� �] [;] rnJ yields an eigenvector 
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(A-5I)x= [-i -�] [;] [�] yields an eigenvector 

[;] [-�] 
[;] [�] for >--2 = 5.

The matrices A - OJ and A - 51 are singular (because O and 5 are eigenvalues). The
eigenvectors (2, -1) and (1, 2) are in the nullspaces: (A - >..I)x = 0 is Ax= >..x. 

We need to emphasize: There is nothing exceptional about >.. = 0. Like every other
number, zero might be an eigenvalue and it might not. If A is singular, the eigenvectors
for >.. = 0 fill the nullspace: Ax = Ox = 0. If A is invertible, zero is not an eigenvalue.
We shift A by a multiple of I to make it singular.

In the example, the shifted matrix A - 51 is singular and 5 is the other eigenvalue.

Summary To solve the eigenvalue problem for an n by n matrix, follow these steps:

1. Compute the determinant of A - >..I. With >.. subtracted along the diagonal, this
determinant starts with >.. n or ->.. n. It is a polynomial in >.. of degree n.

2. Find the roots of this polynomial, by solving det(A - >..I) = 0. Then roots are
the n eigenvalues of A. They make A - >..I singular.

3. For each eigenvalue>.., solve (A - >..I)x = 0 to find an eigenvector x.

A note on the eigenvectors of 2 by 2 matrices. When A - >..I is singular, both rows are
multiples of a vector (a, b). The eigenvector is any multiple of (b, -a). The example had

>.. = 0 : rows of A - OJ in the direction ( 1, 2); eigenvector in the direction ( 2, -1)
>.. = 5 : rows of A - 51 in the direction (-4, 2); eigenvector in the direction (2, 4).

Previously we wrote that last eigenvector as (1, 2). Both (1, 2) and (2, 4) are correct.
There is a whole line of eigenvectors-any nonzero multiple of x is as good as x.
MATLAB's eig(A) divides by the length, to make the eigenvector into a unit vector. 

We must add a warning. Some 2 by 2 matrices have only one line of eigenvectors.
This can only happen when two eigenvalues are equal. (On the other hand A = I has equal
eigenvalues and plenty of eigenvectors.) Without a full set of eigenvectors, we don't have a
basis. We can't write every v as a combination of eigenvectors. In the language of the next
section, we can't diagonalize a matrix without n independent eigenvectors.
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Determinant and Trace 

Bad news first: If you add a row of A to another row, or exchange rows, the eigenvalues
usually change. Elimination does not preserve the >.'s. The triangular Uhas its eigenvalues
sitting along the diagonal-they are the pivots. But they are not the eigenvalues of A!
Eigenvalues are changed when row 1 is added to row 2: 

u = [� �] has >. = 0 and >. = l · A = [ 1 3] ' 2 6 has A = 0 and A = 7.

Good news second: The product >. 1 times >-2 and the sum >.1 + >-2 can be found quickly

from the matrix. For this A, the product is O times 7. That agrees with the determinant
(which is 0). The sum of eigenvalues is O + 7. That agrees with the sum down the main
diagonal (the trace is 1 + 6). These quick checks always work: 

The product of the n eigenvalues equals the determinant. 
The sum of the n eigenvalues equals the sum of the n diagonal entries. 

The sum of the entries along the main diagonal is called the trace of A:

A1 + A2 + · · · + An = trace = a11 + a22 + · · · + ann· (6) 

Those checks are very useful. They are proved in Problems 16-17 and again in the next
section. They don't remove the pain of computing >.'s. But when the computation is wrong,
they generally tell us so. To compute the correct >.'s, go back to det(A - AI) = 0. 

The trace and determinant do tell everything when the matrix is 2 by 2. We never want
to get those wrong! Here trace= 3 and det = 2, so the eigenvalues are A= 1 and 2 :  

[ 1 9 ] [ 3 1 ] [ 7 -3 ] 
A = 0 2 or -2 0 or 10 -4 . (7) 

And here is a question about the best matrices for finding eigenvalues : triangular.

Why do the eigenvalues of a triangular matrix lie along its diagonal? 

Imaginary Eigenvalues 

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

Example 5 The 90° rotation Q = [ � -�] has no real eigenvectors. Its eigenvalues

are ..\1 = i and ..\2 = -i. Then ..\1 + ..\2 = trace = 0 and ..\1..\2 =determinant= l.

After a rotation, no real vector Qx stays in the same direction as x (x = 0 is useless).
There cannot be an eigenvector, unless we go to imaginary numbers. Which we do. 
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To see how i = H can help, look at Q2 which is -I. If Q is rotation through goo , 
then Q2 is rotation through 180° . Its eigenvalues are -1 and -1. (Certainly -Ix = -lx.) 
Squaring Q will square each .X, so we must have ). 2 = -1. The eigenvalues of the goo 

rotation matrix Q are +i and -i, because i2 = -1.
Those .X's come as usual from det( Q - Al) = 0. This equation gives ).2 

+ 1 = 0. 
Its roots are i and -i. We meet the imaginary number i also in the eigenvectors: 

Complex 

eigenvectors 
and [o -1] [i] . [i] 

1 0 1 =i 1 .

Somehow these complex vectors x1 = (1, i) and x2 = ( i, 1) keep their direction as they are 
rotated. Don't ask me how. This example makes the all-important point that real matrices 
can easily have complex eigenvalues and eigenvectors. The particular eigenvalues i and -i 
also illustrate two special properties of Q: 

1. Q is an orthogonal matrix so the absolute value of each A is I.XI = 1.

2. Q is a skew-symmetric matrix so each ). is pure imaginary.

A symmetric matrix ( ST = S) can be compared to a real number. A skew-symmetric
matrix (AT = -A) can be compared to an imaginary number. An orthogonal matrix
(QTQ = I) corresponds to a complex number with I.XI = 1. For the eigenvalues of S 
and A and Q, those are more than analogies-they are facts to be proved in Section 6.4. 

The eigenvectors for all these special matrices are perpendicular. Somehow ( i, 1) and 
(1, i) are perpendicular (Chapter 9 explains the dot product of complex vectors). 

Eigenvalues of AB and A+ B 

The first guess about the eigenvalues of AB is not true. An eigenvalue ). of A times an 
eigenvalue f3 of B usually does not give an eigenvalue of AB:

False proof ABx = Af3x = f3Ax = (3.Xx. (8) 

It seems that f3 times). is an eigenvalue. When x is an eigenvector for A and B, this 
proof is correct. The mistake is to expect that A and B automatically share the same

eigenvector x. Usually they don't. Eigenvectors of A are not generally eigenvectors of B.
A and B could have all zero eigenvalues while 1 is an eigenvalue of AB:

A = rn �] and B = [ � �] ; then AB = [ � �] and A + B = [ � �] . 

For the same reason, the eigenvalues of A+ Bare generally not A+ (3. Here A+ f3 = 0
while A+ B has eigenvalues 1 and -1. (At least they add to zero.) 
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The false proof suggests what is true. Suppose x really is an eigenvector for both A and 
B. Then we do have ABx = >-f3x and BAx = >.f3x. When all n eigenvectors are shared, 
we can multiply eigenvalues. The test AB = BA for shared eigenvectors is important in 
quantum mechanics-time out to mention this application of linear algebra: 

A and B share the same n independent eigenvectors if and only if AB = BA. 

Heisenberg's uncertainty principle In quantum mechanics, the position matrix P and 
the momentum matrix Q do not commute. In fact QP - PQ = I (these are infinite 
matrices). To have Px = 0 at the same time as Qx = 0 would require x = Ix = 0. 
If we knew the position exactly, we could not also know the momentum exactly.
Problem 36 derives Heisenberg's uncertainty principle IIPxll llQxll ?". ½ llxll2 -

• REVIEW OF THE KEV IDEAS •

1. Ax = >.x says that eigenvectors x keep the same direction when multiplied by A.

2. Ax = >.x also says that det(A - >.I) = 0. This determines n eigenvalues. 

3. The eigenvalues of A2 and A - 1 are >. 2 and >. - 1
, with the same eigenvectors. 

4. The sum of the >.'s equals the sum down the main diagonal of A (the trace).

The product of the >.'s equals the determinant of A.

5. Projections P, reflections R, 90° rotations Q have special eigenvalues 1, 0, -1, i, -i. 
Singular matrices have>. = 0. Triangular matrices have >.'s on their diagonal. 

6. Special properties of a matrix lead to special eigenvalues and eigenvectors.
That is a major theme of this chapter (it is captured in a table at the very end). 

• WORKED EXAMPLES • 

6.1 A Find the eigenvalues and eigenvectors of A and A2 and A- 1 and A+ 41: 

A
= [ 2 -l

J
-1 2 

2 [ 5 -4
] and A = _4 5 

.

Check the trace >.1 + >.2 = 4 and the determinant >.1>.2 = 3. 

Solution The eigenvalues of A come from det(A - >.I) = 0: 

A=[ 
2

-1 det(A - >.I) = 1 2 �/ 2 -=._\ I = >.2 - 4>. + 3 = 0.

This factors into(>. - 1)(>. - 3) = 0 so the eigenvalues of A are >.1 = 1 and >.2 = 3. For 
the trace, the sum 2 + 2 agrees with 1 + 3. The determinant 3 agrees with the product >.1 >.2 . 
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The eigenvectors come separately by solving (A ->-.I)x = 0 which is Ax = >-.x:

A= l: (A -I)x = [-� -�] [:] rnJ gives the eigenvector x 1 = [n

A= 3: (A -3I)x = [=� =�] [:] = [�] gives the eigenvector x2 = [-n 
A 2 and A- 1 and A + 4I keep the same eigenvectors as A. Their eigenvalues are >-. 2 and
>-.- 1 and>-.+ 4: 

A2 has eigenvalues 12 = 1 and 32 = 9 1 
1 1

A- has - and -
1 3 

1+4=5
A + 4I has 3 + 4 = 7

Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric
matrices). A can be diagonalized since >-.1 =/- >-.2 (Section 6.2). A is similar to any 2 by 2
matrix with eigenvalues 1 and 3 (Section 6.2). A is a positive definite matrix (Section 6.5)
since A = AT and the >-.'s are positive. 

6.1 B How can you estimate the eigenvalues of any A? Gershgorin gave this answer.

Every eigenvalue of A must be "near" at least one of the entries aii on the main diagonal.
For>-. to be "near ai/' means that laii ->-.i is no more than the sum Ri of all other laij I 
in that row i of the matrix. Then Ri = �#ilaij I is the radius of a circle centered at aii·

Every A is in the circle around one or more diagonal entries aii: laii - Al :S: Ri .

Here is the reasoning. If>-. is an eigenvalue, then A ->-.I is not invertible. Then A ->-.I
cannot be diagonally dominant (see Section 2.5). So at least one diagonal entry aii - >-.
is not larger than the sum Ri of all other entries laij I (we take absolute values!) in row i.

Example 1. Every eigenvalue >-. of this A falls into one or both of the Gershgorin circles:

The centers are a and d, the radii are R1 = lbl and R2 = lei-

First circle: 
Second circle: 

i>-.-ai � lbl
i>-.-dl � lei 

Those are circles in the complex plane, since >-. could certainly be complex.

Example 2. All eigenvalues of this A lie in a circle of radius R = 3 around one or more

of the diagonal entries d1 , d2 , d3 :

l, l 
i>-. -d1 I � 1 + 2 = R1 

I>-. -d2 I � 2 + 1 = R2 

i>-. -d3 I � 1 + 2 = R3 

You see that "near" means not more than 3 away from d1 or d2 or d3 , for this example.
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6.1 C Find the eigenvalues and eigenvectors of this symmetric 3 by 3 matrix S: 

Symmetric matrix 

Singular matrix 

Trace 1 + 2 + 1 = 4 

Solution Since all rows of S add to zero, the vector x = (1, 1, 1) gives Sx = 0.

This is an eigenvector for ,\ = 0. To find ,\2 and ,\3 I will compute the 3 by 3 determinant: 

1 -,\ 
det(S - >-I)= -1

0 

-1
2 -,\ 
-1

0 
-1

1 -,\

= (1- >-)(2 - >-)(1 - >-) - 2(1 - >-) 
= (1 - >-)[(2 - >-)(1 - >-) - 2] 
= (1 - A)(-A)(3 - A). 

Those three factors give,\ = 0, 1, 3. Each eigenvalue corresponds to an eigenvector (or a 
line of eigenvectors): 

I notice again that eigenvectors are perpendicular when S is symmetric. We were lucky to 
find,\ = 0, 1, 3. For a larger matrix I would use eig(A), and never touch determinants. 

The full command [X ,E] =eig(A)will produce unit eigenvectors in the columns of X.

Problem Set 6.1 

1 The example at the start of the chapter has powers of this matrix A: 

A= [·8 .3] .2 .7 
d A2 

= [
.70 an .30 

.45] .55 
d ACX)= [·6 .6] an .4 _4 .

Find the eigenvalues of these matrices. All powers have the same eigenvectors. 

(a) Show from A how a row exchange can produce different eigenvalues.
(b) Why is a zero eigenvalue not changed by the steps of elimination?

2 Find the eigenvalues and the eigenvectors of these two matrices: 

A = u : ] and A + I = [; : ] .

A + I has the __ eigenvectors as A. Its eigenvalues are __ by 1. 

3 Compute the eigenvalues and eigenvectors of A and A- 1
. Check the trace! 

A- 1 has the __ eigenvectors as A. When A has eigenvalues ,\1 and >.2 , its inverse 
has eigenvalues __ . 
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4 Compute the eigenvalues and eigenvectors of A and A 2: 

A = [-21 30] 2 [ 7 -3] and A = _2 6 .

299 

A 
2 has the same __ as A. When A has eigenvalues ,\1 and ,\2, A 2 has eigenvalues

__ . In this example, why is "-I+ A§= 13?

5 Find the eigenvalues of A and B (easy for triangular matrices) and A+ B:

A = [ � �] and B = [ � �] and A + B = [ 1 ! ] . 
Eigenvalues of A+ B (are equal to)(are not equal to) eigenvalues of A plus eigen­
values of B. 

6 Find the eigenvalues of A and B and AB and BA:

A = [ � �] and B = [ � �] and AB = [ � �] and BA = [ � �] .

(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B?

(b) Are the eigenvalues of AB equal to the eigenvalues of BA?

7 Elimination produces A = LU. The eigenvalues of U are on its diagonal; they
are the __ . The eigenvalues of L are on its diagonal; they are all __ . The
eigenvalues of A are not the same as __ . 

8 (a) If you know that x is an eigenvector, the way to find,\ is to __ .

(b) If you know that ,\ is an eigenvalue, the way to find x is to __ .

9 What do you do to the equation Ax= ,\x, in order to prove (a), (b), and (c)?

(a) ,\2 is an eigenvalue of A2
, as in Problem 4.

(b) ,\ - 1 is an eigenvalue of A - 1
, as in Problem 3.

(c) ,\ + 1 is an eigenvalue of A+ I, as in Problem 2.

10 Find the eigenvalues and eigenvectors for both of these Markov matrices A and A 
00

. 

Explain from those answers why A 
100 is close to A 

00
: 

A=[·6 .2] 
.4 .8 

A
00 [

1/3 1/3
] and = 2/3 2/3 ·

11 Here is a strange fact about 2 by 2 matrices with eigenvalues ,\1 -=/= ,\2 : The columns
of A -,\1 J are multiples of the eigenvector x2 . Any idea why this should be?
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12 Find three eigenvectors for this matrix P (projection matrices have .X = 1 and 0):

Projection. matrix

If two eigenvectors share the same .X, so do all their linear combinations. Find an
eigenvector of P with no zero components. 

13 From the unit vector u = ( ½, ½, ¾, i) construct the rank one projection matrix
P = uu T. This matrix has P2 = P because u Tu = 1. 

(a) Pu= u comes from (uuT)u = u( __ ). Then u is an eigenvector with
.A= 1. 

(b) If v is perpendicular to u show that Pv = 0. Then .X = 0.
(c) Find three independent eigenvectors of Pall with eigenvalue .X = 0.

14 Solve det( Q - AI) = 0 by the quadratic formula to reach .X = cos 0 ± i sin 0:

Q __ [co_ s0 -sin0] sm 0 cos 0 
rotates the xy plane by the angle 0. No real .X's.

Find the eigenvectors of Q by solving ( Q - .XI)x = 0. Use i2 = -1.

15 Every permutation matrix leaves x = (1, 1, ... , 1) unchanged. Then .X = 1. Find
two more A's (possibly complex) for these permutations, from det(P - .XI) = 0: 

16 The determinant of A equals the product .X1 .X2 · · · >-n - Start with the polynomial
det(A - Al) separated into its n factors (always possible). Then set .X = 0: 

det(A - .XI) = (.X1 - .X)(.X2 - .X) · · · (.Xn - .X) so det A=

Check this rule in Example 1 where the Markov matrix has .X = 1 and ½.

17 The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

A= [ � �] has det(A - .XI) = .X2 - (a+ d).X + ad - be= 0.

The quadratic formula gives the eigenvalues .X = (a+ d + r) / 2 and .X = _ _.
Their sum is __ . If A has .X1 = 3 and .X2 = 4 then det(A - .XI) = __ . 

18 If A has .X1 = 4 and .X2 = 5 then det(A - .XI)= (.X - 4)(.X - 5) = .X2 - 9.X + 20.
Find three matrices that have trace a+ d = 9 and determinant 20 and .X = 4, 5. 
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19 A 3 by 3 matrix Bis known to have eigenvalues 0, 1, 2. This information is enough
to find three of these (give the answers where possible) : 

(a) the rank of B 

(b) the determinant of BT B

( c) the eigenvalues of BT B 

( d) the eigenvalues of ( B2 
+ J)-1

. 

20 Choose the last rows of A and C to give eigenvalues 4, 7 and 1, 2, 3:

Companion matrices 

21 The eigenvalues of A equal the eigenvalues of AT . This is because <let ( A - Al) 
equals det (AT - >.I). That is true because __ . Show by an example that the
eigenvectors of A and AT are not the same. 

22 Construct any 3 by 3 Markov matrix M: positive entries down each column add to 1. 
Show that MT (l, 1, 1) = (1, 1, 1). By Problem 21, >. = l is also an eigenvalue
of M. Challenge: A 3 by 3 singular Markov matrix with trace ½ has what >.'s?

23 Find three 2 by 2 matrices that have >.1 = >.2 = 0. The trace is zero and the
determinant is zero. A might not be the zero matrix but check that A2 = 0.

24 This matrix is singular with rank one. Find three >.'s and three eigenvectors:

25 Suppose A and B have the same eigenvalues >.1 , . . .  , An with the same independent
eigenvectors x 1 , . . .  , Xn. Then A = B. Reason: Any vector x is a combination
c1X1 + · · · + CnXn- What is Ax? What is Bx?

26 The block B has eigenvalues 1, 2 and C has eigenvalues 3, 4 and D has eigenval­
ues 5, 7. Find the eigenvalues of the 4 by 4 matrix A:

�! 
1 3 

�]A=[� gJ = 3 0 
0 6 
0 1 

27 Find the rank and the four eigenvalues of A and C:

[1 
1 1 

1l [j 
0 1

�] A= 
1 1 and C = 1 0
1 1 0 1
1 1 1 0
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28 Subtract I from the previous A. Find the Xs and then the determinants of 

fl 
1 1 

J r

0 -1 -1

B=A-I= 
0 1 and -1 0 -1

1 0 C=I-A= 
-1 0 -1

1 1 -1 -1 -1

29 (Review) Find the eigenvalues of A, B, and C: 

[! 
2 
i] [! 

0 

�] [l 
2 

A= 4 and B = 2 and C = 2 0 0 2 

-
1

1 

-1
-1 

. 

0

!] 
30 When a + b = c + d show that ( 1, 1) is an eigenvector and find both eigenvalues : 

A=[:!]·
31 If we exchange rows 1 and 2 and columns I and 2, the eigenvalues don't change. 

Find eigenvectors of A and B for.,\= 11. Rank one gives .-\2 = .-\3 = 0. 

32 Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w.

(a) Give a basis for the nullspace and a basis for the column space.
(b) Find a particular solution to Ax= v + w. Find all solutions.
( c) Ax = u has no solution. If it did then __ would be in the column space.

Challenge Problems 

33 Show that u is an eigenvector of the rank one 2 x 2 matrix A = uv T. Find both 
eigenvalues of A. Check that .-\1 + .-\2 agrees with the trace u1 v1 + u2v2. 

34 Find the eigenvalues of this permutation matrix P from det (P 
-

U) = 0. Which 
vectors are not changed by the permutation? They are eigenvectors for .,\ = 1. Can 
you find three more eigenvectors? 

0 0 0 
0 0 1 l 

0 0 

1 0 
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35 There are six 3 by 3 permutation matrices P. What numbers can be the determinants

of P? What numbers can be pivots? What numbers can be the trace of P? What 
four numbers can be eigenvalues of P, as in Problem 15? 

36 (Heisenberg's Uncertainty Principle) AB -BA = I can happen for infinite ma­
trices with A = AT and B = -BT . Then 

xTx = xT ABx -xT BAx :S: 2IIAxll llBxll-

Explain that last step by using the Schwarz inequality I u T v I :S: I I u I 1 11 v 11- Then
Heisenberg's inequality says that IIAxll/llxll times IIBxll/llxll is at least ½­
It is impossible to get the position error and momentum error both very small. 

37 Find a 2 by 2 rotation matrix (other than J) with A3 = I. Its eigenvalues must satisfy 
.,\

3 = 1. They can be e21ri
/

3 and e- 21ri
/

3 . What are the trace and determinant? 

38 (a) Find the eigenvalues and eigenvectors of A. They depend on c:

A= [.4 1-c
J .

. 6 C 

(b) Show that A has just one line of eigenvectors when c = 1.6.
(c) This is a Markov matrix when c= .8. Then An will approach what matrix A00?

Eigshow in MATLAB

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a 2 
by 2 matrix. It starts with the unit vector x = (1, 0). The mouse makes this vector move

around the unit circle. At the same time the screen shows Ax, in color and also moving. 
Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is parallel to x. 

At that parallel moment, Ax = .,\x (at x1 and x2 in the second figure). 

y = (0, 1) 
A= [

0.8 0.3
]0.2 0.7 

.3, 0.7) 

A,x = (0.8, 0.2) 

X = (1, 0) 
These are not eigenvectors 

\ 

I 

" 
/ 

'- - -- ,,.circle of x's 
Ax lines up with x at eigenvectors 

The eigenvalue.,\ is the length of Ax, when the unit eigenvector x lines up. The built-in 
choices for A illustrate three possibilities: 0, 1, or 2 real vectors where Ax crosses x. 

The axes of the ellipse are singular vectors in 7.4-and eigenvectors if AT = A.
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6.2 Diagonalizing a Matrix 

1 The columns of AX = XA are Axk = Ak Xk . The eigenvalue matrix A is diagonal. 

2 n independent eigenvectors in X diagonalize A I A = XAx- 1 and A= x-1 
AX I 

3 The eigenvector matrix X also diagonalizes all powers A k : I A k = X A k x-
1 I 

4 Solve Uk+l = Auk by Uk
= Akuo = XAk 

x-
1uo = I c1(.X1) kx1 + ... + Cn(An) kxn I 

5 No equal eigenvalues=} X is invertible and A can be diagonalized. 
Equal eigenvalues=} A might have too few independent eigenvectors. Then x-

1 fails. 

6 Every matrix C = B- 1 AB has the same eigenvalues as A. These C's are "similar" to A.

When x is an eigenvector, multiplication by A is just multiplication by a number >-.: 
Ax = >-.x. All the difficulties of matrices are swept away. Instead of an interconnected 
system, we can follow the eigenvectors separately. It is like having a diagonal matrix,

with no off-diagonal interconnections. The 100th power of a diagonal matrix is easy. 

The point of this section is very direct. The matrix A turns into a diagonal matrix A
when we use the eigenvectors properly. This is the matrix form of our key idea. We start 
right off with that one essential computation. The next page explains why AX = X A. 

Diagonalization Suppose the n by n matrix A has n linearly independent eigenvectors 
x1, ... , Xn . Put them into the columns of an eigenvector matrix X. Then x-

1 AX is 
the eigenvalue matrix A: 

Eigenvector matrix X
Eigenvalue matrix A 

(1) 

The matrix A is "diagonalized." We use capital lambda for the eigenvalue matrix, 
because the small A's (the eigenvalues) are on its diagonal. 

Example 1 This A is triangular so its eigenvalues are on the diagonal: >-. = land>-.= 6. 

Eigenvectors 
go into X [�] [!] [� -n 

x-1
[� �] 

A 

In other words A = XAx- 1
. Then watch A2 = XAx- 1 XAx- 1

. So A2 is XA2 x- 1
. 

A2 has the same eigenvectors in X and squared eigenvalues in A 2. 
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Why is AX = X A ? A multiplies its eigenvectors, which are the columns of X. The 
first column of AX is Ax1. That is A1 x1 . Each column of X is multiplied by its eigenvalue : 

A times X

The trick is to split this matrix AX into X times A: 

X times A 

Keep those matrices in the right order! Then A1 multiplies the first column x1, as shown. 
The diagonalization is complete, and we can write AX = X A in two good ways: 

AX= XA is x-
1
AX = A or A= XAx- 1

. (2) 

The matrix X has an inverse, because its columns (the eigenvectors of A) were assumed to 
be linearly independent. Without n independent eigenvectors, we can't diagonalize.

A and A have the same eigenvalues A1 , . . .  , An · The eigenvectors are different. The 
job of the original eigenvectors x1, ... , Xn was to diagonalize A. Those eigenvectors in X
produce A = X Ax- 1

. You will soon see their simplicity and importance and meaning. 
The kth power will be Ak = X A k 

x-
1 which is easy to compute: 

Powers of A

Example 1 

With k = 1 we get A. With k = 0 we get A0 = I (and Ao = 1). With k = -1 we get A- 1
. 

You can see how A2 = [1 35; 0 36] fits that formula when k = 2. 
Here are four small remarks before we use A again in Example 2. 

Remark 1 Suppose the eigenvalues A1, . . .  , An are all different. Then it is automatic that 
the eigenvectors x1, . . . , Xn are independent. The eigenvector matrix X will be invertible.

Any matrix that has no repeated eigenvalues can be diagonalized. 

Remark 2 We can multiply eigenvectors by any nonzero constants. A( ex) = A( ex) is 
still true. In Example 1, we can divide x = ( 1, 1) by v2 to produce a unit vector. 

MATLAB and virtually all other codes produce eigenvectors of length I lxl I = 1. 
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Remark 3 The eigenvectors in X come in the same order as the eigenvalues in A. 
To reverse the order in A, put the eigenvector ( 1, 1) before ( 1, 0) in X: 

New order 6, 1 [ � -n [ � �] [ � �] = [ � �] = Anew

To diagonalize A we must use an eigenvector matrix. From x-
1 AX = A we know

that AX = X A. Suppose the first column of X is x. Then the first columns of AX and
X A are Ax and ,\1 x. For those to be equal, x must be an eigenvector. 

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few 
eigenvectors. Those matrices cannot be diagonalized. Here are two examples:

Not diagonalizable A = [ � = �] and B = rn �] . 
Their eigenvalues happen to be O and 0. Nothing is special about A = 0, the problem is the
repetition of >.. All eigenvectors of the first matrix are multiples of ( 1, 1): 

Only one line 
of eigenvectors 

Ax = Ox means [ � = � ] [ x] [ �] and x = c [ � ] .

There is no second eigenvector, so this unusual matrix A cannot be diagonalized. 
Those matrices are the best examples to test any statement about eigenvectors. In many

true-false questions, non-diagonalizable matrices lead to false.
Remember that there is no connection between invertibility and diagonalizability: 

Invertibility is concerned with the eigenvalues (,\ = 0 or ,\ =/= 0). 

Diagonalizability is concerned with the eigenvectors (too few or enough for X). 

Each eigenvalue has at least one eigenvector! A - Al is singular. If (A - AI)x = 0 leads
you to x = 0, A is not an eigenvalue. Look for a mistake in solving det(A - AI) = 0.

Eigenvectors for n different A's are independent. Then we can diagonalize A.

Independent x from different ,\ Eigenvectors x1, ... , Xj that correspond to 
distinct (all different) eigenvalues are linearly independent. An n by n matrix 
that has n different eigenvalues (no repeated A's) must be diagonalizable. 

Proof Suppose c1x1 + c2x2 = 0. Multiply by A to find c1>-1x1 + c2>-2x2 = 0. Multiply 
by >.2 to find c1 >.2x1 + c2 >.2x2 = 0. Now subtract one from the other: 

Subtraction leaves (>-1 - >.2)c1x1 = 0. Therefore c1 = 0. 

Since the ,\'s are different and x1 =/- 0, we are forced to the conclusion that c1 = 0.
Similarly c2 = 0. Only the combination with c1 = c2 = 0 gives c1X1 + c2X2 = 0. So the
eigenvectors x1 and x2 must be independent. 
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This proof extends directly to j eigenvectors. Suppose that c1x 1 + · · · + CjXj = 0. 
Multiply by A, multiply by Aj, and subtract. This multiplies Xj by Aj - Aj = 0, and Xj is 
gone. Now multiply by A and by Aj-l and subtract. This removes Xj-l· Eventually only 
x 1 is left: 

We reach (>--1 -.>-.2)···(>--1 -.>-.j)cix 1 =0 whichforces c1 =0. (3) 

Similarly every Ci = 0. When the A's are all different, the eigenvectors are independent.
A full set of eigenvectors can go into the columns of the eigenvector matrix X. 

Example 2 Powers of A The Markov matrix A = [ :� J) in the last section had
>--1 = 1 and >--2 = .5. Here is A= X Ax-1 with those eigenvalues in the diagonal A: 

Markov example [
.8 .3] = [·6 1

] [
1 0

] [ 
1 1

] = XAx- 1..2 .7 .4 -1 0 .5 .4 -.6 

The eigenvectors (.6, .4) and (1, -1) are in the columns of X. They are also the eigenvec­
tors of A 2. Watch how A 2 has the same X, and the eigenvalue matrix of A 2 is A 2: 

Same X for A2 
(4) 

Just keep going, and you see why the high powers Ak approach a "steady state": 

Powers of A Ak =XAkx-1 = [·6 1
] [

l k 
O ] [ 

1 1
] .4 -1 0 (.5)k .4 -.6 

.

As k gets larger, ( .5) k gets smaller. In the limit it disappears completely. That limit is A00
: 

Limit k-+ oo Aoo = [·6 1
] [

1 OJ [ 
1 1

] = [·6 .6
] ..4 -1 0 0 .4 -.6 .4 .4 

The limit has the eigenvector x 1 in both columns. We saw this A00 on the very first page 
of Chapter 6. Now we see it coming from powers like A100 = XA100 x- 1. 

Question When does A k -+ zero matrix? Answer All I A I < 1. 

Similar Matrices: Same Eigenvalues 

Suppose the eigenvalue matrix A is fixed. As we change the eigenvector matrix X, we get
a whole family of different matrices A = X AX-1-all with the same eigenvalues in A.
All those matrices A (with the same A) are called similar. 

This idea extends to matrices that can't be diagonalized. Again we choose one constant
matrix C (not necessarily A). And we look at the whole family of matrices A = BC B- 1

, 

allowing all invertible matrices B. Again those matrices A and Care called similar.
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We are using C instead of A because C might not be diagonal. We are using B instead 
of X because the columns of B might not be eigenvectors. We only require that B is 
invertible-its columns can contain any basis for Rn. The key fact about similar matrices 
stays true. Similar matrices A and C have the same eigenvalues.

All the matrices A = BCB- 1 are "similar." They all share the eigenvalues of C.

Proof Suppose Cx = >.x. Then BCB- 1 has the same eigenvalue).. with the new eigen­
vector Bx : 

Same A (BCB- 1 )(Bx) = BCx = B>.x = >. (Bx). (5) 

A fixed matrix C produces a family of similar matrices BC B- 1
, allowing all B .

When C is the identity matrix, the "family" is very small. The only member is BI B- 1 = I.

The identity matrix is the only diagonalizable matrix with all eigenvalues >. = l. 
The family is larger when>. = 1 and 1 with only one eigenvector (not diagonalizable). 

The simplest C is the Jordan form-to be developed in Section 8.3. All the similar 
A's have two parameters rand s, not both zero : always determinant= 1 and trace= 2. 

C = [ � ! ] = Jordan form gives A= BCB- 1 = [
1 
�

s
;s 

1 :
2

rs
] . (6) 

For an important example I will take eigenvalues>.= 1 and O (not repeated!). Now the 
whole family is diagonalizable with the same eigenvalue matrix A .  We get every 2 by 2 
matrix that has eigenvalues 1 and 0. The trace is 1 and the determinant is zero: 

All 

similar 
A= [ � � ] A= [ � � ] or A= [ :� :� ] or any A= :�:-

The family contains all matrices with A2 = A, including A= A when B = I. When 
A is symmetric these are also projection matrices. Eigenvalues 1 and O make life easy. 

Fibonacci Numbers 

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow. 
Every new Fibonacci number is the sum of the two previous F's: 

The sequence 0, l, 1, 2, 3, 5, 8, 13, ... 

These numbers turn up in a fantastic variety of applications. Plants and trees grow in a 
spiral pattern, and a pear tree has 8 growths for every 3 turns. For a willow those numbers 
can be 13 and 5. The champion is a sunflower of Daniel O'Connell, which had 233 seeds 
in 144 loops. Those are the Fibonacci numbers Fi3 and Fi2. Our problem is more basic. 
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Problem: Find the Fibonacci number F100 The slow way is to apply the rule 
Fk+2 = Fk+1 + Fk one step at a time. By adding F6 = 8 to F1 = 13 we reach F8 = 21. 
Eventually we come to F100. Linear algebra gives a better way. 

The key is to begin with a matrix equation Uk+i = Auk. That is a one-step rule for
vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting
two Fibonacci numbers into a vector. Then you will see the matrix A. 

Every step multiplies by A= [½A]. After 100 steps we reach u100 = A100uo: 

. . . ' [F101 ] U100 = F100 
.

This problem is just right for eigenvalues. Subtract .>. from the diagonal of A: 

A-Al= [1
�

>-

-
�] leads to det(A-Al)= >-

2-.>.-1.

(7) 

The equation .>.2 
- >. - l = 0 is solved by the quadratic formula (-b ± )b2 

- 4ac) /2a:

Eigenvalues >-1 = l + v15 
� 1 618

2 
and 

1- v15 
>-2 = -- � -.618.

2 

These eigenvalues lead to eigenvectors x 1 = ( .>.1, 1) and x2 = ( .>.2 , 1). Step 2 finds the 
combination of those eigenvectors that gives u0 = ( 1, 0): 

or (8) 

Step 3 multiplies u0 by A100 to find u100 . The eigenvectors x1 and x2 stay separate!
They are multiplied by (.>.1)100 and (.>.2)100: 

100 steps from u0 

(.>.i)lOO
Xl _ (A2 )100

X2 

UlQ0 = \ \ 
/\1 - /\2 

(9) 

We want F100 = second component of u1oo- The second components of x1 and x2 are 1.
The difference between .>.1 = (1 + v15)/2 and .>.2 = (1 - v15)/2 is v15. And A§oo � 0 . 

.>.100 -.).100 1 (
1 + v15

)
100 

100th Fibonacci number = \
1 

_ 
.>.� = nearest integer to 

v15 
--

2
- (10)

Every Fk is a whole number. The ratio F101 / Fioo must be very close to the
limiting ratio (1 + v15)/2. The Greeks called this number the "golden mean". 
For some reason a rectangle with sides 1.618 and 1 looks especially graceful. 
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Matrix Powers A k

Fibonacci's example is a typical difference equation Uk+l = Auk . Each step multiplies

by A. The solution is Uk = Aku0. We want to make clear how diagonalizing the matrix
gives a quick way to compute Ak and find Uk in three steps. 

The eigenvector matrix X produces A = X Ax-1. This is a factorization of the matrix,
like A = LU or A= QR. The new factorization is perfectly suited to computing powers,
because every time x-

1 
multiplies X we get I: 

Powers of A 

I will split X A k x-
1 u0 into three steps that show how eigenvalues work:

1. Write u0 as a combination c1 x1 + · · · + CnXn of the eigenvectors. Then c = x-
1u0.

2. Multiply each eigenvector Xi by (..\i ) k . Now we have A k 
x-

1u0. 

3. Add up the pieces ci (..\i ) k xi to find the solution uk = Ak u0. This is XAk 
x-

1u0.

Solution for uk+l = Auk (11)

In matrix language A k equals ( X Ax-1 ) k which is X times A k times x-
1
. In Step 1,

the eigenvectors in X lead to the e's in the combination uo = c1x1 + · · · + CnXn : 

Step 1 (12)

The coefficients in Step 1 are c = x-
1u0. Then Step 2 multiplies by Ak . The final result

Uk= E ci (..\i ) k xi in Step 3 is the product of X and Ak and x-
1uo: 

This result is exactly Uk= c1(..\1)kx1 + · · · + Cn (..\n ) kxn . It solves Uk+l = Auk .

Example 3 Start from u0 = (1, 0). Compute Aku0 for this faster Fibonacci:

A = [ � �] has ..\1 = 2 and X1 = [ �] , ..\2 = -1 and X2 = [-n . 
This matrix is like Fibonacci except the rule is changed to Fk+2 = Fk+l + 2Fk .
The new numbers start with 0, 1, 1, 3. They grow faster because of,,\= 2. 
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Step 1 

Step 2 

Step3 

SO C1 = Cz = 
3 

Multiply the two parts by (>-1l = 2k and (>-2l = (-ll

Combine eigenvectors c1 (>.1 )kx1 and c2 (>.2)kx2 into uk: 

The new number is Fk = (2k - (-tt)/3. After 0, 1, 1, 3 comes F4 = 15/3 = 5.
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Behind these numerical examples lies a fundamental idea: Follow the eigenvectors.

In Section 6.3 this is the crucial link from linear algebra to differential equations (>.k will 
become e>.t). Chapter 8 sees the same idea as "transforming to an eigenvector basis." 
The best example of all is a Fourier series, built from the eigenvectors eikx of d/ dx. 

Nondiagonalizable Matrices (Optional) 

Suppose >. is an eigenvalue of A. We discover that fact in two ways: 

1. Eigenvectors (geometric) There are nonzero solutions to Ax = >.x. 

2. Eigenvalues (algebraic) The determinant of A - Al is zero. 

The number >. may be a simple eigenvalue or a multiple eigenvalue, and we want to know
its multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues). Then
there is a single line of eigenvectors, and det(A - >.I) does not have a double factor. 

For exceptional matrices, an eigenvalue can be repeated. Then there are two different
ways to count its multiplicity. Always GM :S AM for each >.: 

1. (Geometric Multiplicity = GM) Count the independent eigenvectors for >..
Then GM is the dimension of the nullspace of A - >.I.

2. (Algebraic Multiplicity = AM) AM counts the repetitions of >. among the
eigenvalues. Look at then roots of det(A - Al) = 0.

If A has >.= 4, 4, 4, then that eigenvalue has AM= 3 and GM= 1, 2, or 3. 
The following matrix A is the standard example of trouble. Its eigenvalue >. = 0 is

repeated. It is a double eigenvalue (AM= 2) with only one eigenvector (GM= 1). 

AM=2 
GM=l 

[o 1] 1->. 
A= 0 0 has det(A - Al)= 0 

>. = O, 0 but
1 eigenvector 



312 Chapter 6. Eigenvalues and Eigenvectors

There "should" be two eigenvectors, because >.2 = 0 has a double root. The double
factor >.2 makes AM = 2. But there is only one eigenvector x = ( 1, 0) and GM = 1.
This shortage of eigenvectors when GM is below AM means that A is not diagonalizable.

These three matrices all have the same shortage of eigenvectors. Their repeated eigen­
value is>.= 5. Traces are 10 and determinants are 25: 

A = 
[50 51] [6 -lJ and A= 1 4 and A = [ _ � �] .

Those all have det(A - >.I) = (>. - 5) 2
. The algebraic multiplicity is AM = 2. But

each A - 51 has rank r = 1. The geometric multiplicity is GM = 1. There is only one
line of eigenvectors for >. = 5, and these matrices are not diagonalizable. 

• REVIEW OF THE KEY IDEAS •

1. If A has n independent eigenvectors x 1, ... , Xn, they go into the columns of X.

A is diagonalized by X x-
1AX = A and A= XAx- 1

. 

2. The powers of A are A k = X A k x-
1

. The eigenvectors in X are unchanged.

3. The eigenvalues of A k are ( ). 1 ) k, ... , (An) k in the matrix A k.

4. The solution to u k+l = Au k starting from uo is u k = Ak uo = XAk 
x-

1 uo:

That shows Steps 1, 2, 3 (e's from x-
1 u 0, ,>.k from Ak , and x's from X)

5. A is diagonalizable if every eigenvalue has enough eigenvectors (GM= AM).

• WORKED EXAMPLES • 

6.2 A The Lucas numbers are like the Fibonacci numbers except they start with
L1 = 1 and L2 = 3. Using the same rule Lk+2 = Lk+ 1 + Lk , the next Lucas numbers
are 4, 7, 11, 18. Show that the Lucas number L100 is >-t00 + >.½00 . 
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Solution uk+l = [ ½ 6) uk is the same as for Fibonacci, because Lk+2 = Lk+l + Lk 
is the same rule (with different starting values). The equation becomes a 2 by 2 system: 

. [1 IS Uk+l = l

The eigenvalues and eigenvectors of A = [ ½ 6] still come from ,\ 2 = ,\ + 1: 

1-v'5 >-2 = ---
2 

and x2 = [
>-

1
2
] 

. 

Now solve C1X 1 + c2x2 = u1 = (3, 1). The solution is c 1 = .\1 and c2 = >-2. Check: 

A1X1 + A2X2 = [ �! ! �� ] = [ �:c
e
/:f � ] 

= [ � ] 
= U1

uwo = A99u1 tells us the Lucas numbers (L101, L100). The second components of the 
eigenvectors x1 and x2 are 1, so the second component of u100 is the answer we want: 

Lucas number L _ , 99 , 99 _ , 100 , 100 
100 - C1A1 + C2/\2 - Al + A2 · 

Lucas starts faster than Fibonacci, and ends up larger by a factor near y5. 

6.2 B Find the inverse and the eigenvalues and the determinant of this matrix A:

[ 

4 
-1

A= 5 * eye(4) - ones(4) = _1 
-1 

-1 
4 

-1
-1

Describe an eigenvector matrix X that gives x-
1 
AX = A. 

-1
-1

4
-1

-1

l

-1 
-1 .

4 

Solution What are the eigenvalues of the all-ones matrix? Its rank is certainly 1, 
so three eigenvalues are ,\ = 0, 0, 0. Its trace is 4, so the other eigenvalue is ,\ = 4. 
Subtract this all-ones matrix from 51 to get our matrix A: 

Subtract the eigenvalues 4, 0, 0, 0 from 5, 5, 5, 5. The eigenvalues of A are 1, 5, 5, 5. 

The determinant of A is 125, the product of those four eigenvalues. The eigenvector for 
A = l is x = ( 1, 1, 1, 1) or ( c, c, c, c). The other eigenvectors are perpendicular to x 
(since A is symmetric). The nicest eigenvector matrix X is the symmetric orthogonal 
Hadamard matrix H The factor ½ produces unit column vectors. 

O,thonornal eigenveeto.-s X � H � i [ 1 1 1 

=1] �H"�W'.-1 1 
1 -1 

-1 -1 
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The eigenvalues of A- 1 are 1, ½, ½, ½- The eigenvectors are not changed so A- 1 

H A  - 1 H- 1
. The inverse matrix is surprisingly neat: 

1 

lr
�

� �� 
�

� 

2�11

A- 1 = 
5 

* (eye(4) + ones(4)) = 
5

A is a rank-one change from 51. So A- 1 is a rank-one change from l /5.
In a graph with 5 nodes, the determinant 125 counts the "spanning trees" (trees that 

touch all nodes). Trees have no loops (graphs and trees are in Section 10.1). 
With 6 nodes, the matrix 6 * eye(5) - ones(5) has the five eigenvalues 1, 6, 6, 6, 6. 

Problem Set 6.2 

Questions 1-7 are about the eigenvalue and eigenvector matrices A and X.

1 (a) Factor these two matrices into A= XAx- 1
: 

A= [� �] and

(b) If A= XAx- 1 then A3 = ( )( )( ) and A- 1 = ( )( )( ).

2 If A has .\1 = 2 with eigenvector x1 = [ 6] and .\2 = 5 with x2 = [ ½], 
use XAx- 1 to find A. No other matrix has the same .\'s and x's. 

3 Suppose A = XAx- 1
. What is the eigenvalue matrix for A+ 2I? What is the

eigenvector matrix? Check that A + 21 = ( ) ( ) ( )- 1
. 

4 True or false: If the columns of X (eigenvectors of A) are linearly independent, then 

(a) A is invertible (b) A is diagonalizable

(c) Xis invertible (d) Xis diagonalizable.

5 If the eigenvectors of A are the columns of l, then A is a __ matrix. If the eigen­
vector matrix Xis triangular, then x- 1 is triangular. Prove that A is also triangular. 

6 Describe all matrices X that diagonalize this matrix A (find all eigenvectors):

A=[1�]-
Then describe all matrices that diagonalize A - l. 

7 Write down the most general matrix that has eigenvectors [ ½] and [_�]. 
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Questions 8-10 are about Fibonacci and Gibonacci numbers. 

8 Diagonalize the Fibonacci matrix by completing x- 1: 

Do the multiplication X A k x-
1 [ i] to find its second component. This is the kth

Fibonacci number Fk = ( ,\} -,\�) / ( A1 -,\z). 

9 Suppose Gk+2 is the average of the two previous numbers Gk+l and Gk: 

Gk+2 = ½Gk+1 + ½Gk 
Gk+i = Gk+1 

is 

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the limit as n --+ oo of the matrices An = X An x- 1. 

(c) If G0 = 0 and G1 = 1 show that the Gibonacci numbers approach l

10 Prove that every third Fibonacci number in 0, 1, 1, 2, 3, ... is even. 

Questions 11-14 are about diagonalizability. 

11 True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly 

(a) invertible (b) diagonalizable ( c) not diagonalizable.

12 True or false: If the only eigenvectors of A are multiples of (1, 4) then A has 

(a) no inverse (b) a repeated eigenvalue ( c) no diagonalization X Ax- 1. 

13 Complete these matrices so that det A = 25. Then check that,\ = 5 is repeated­
the trace is 10 so the determinant of A -,\J is ( ,\ - 5 ) 2

. Find an eigenvector with 
Ax = 5x. These matrices will not be diagonalizable because there is no second line 
of eigenvectors. 

and A= [9 i] [10and A= _5

14 The matrix A = [ 8 i ] is not diagonalizable because the rank of A - 3I is _ _ . 
Change one entry to make A diagonalizable. Which entries could you change? 

Questions 15-19 are about powers of matrices. 

15 A k = X A k x-
1 approaches the zero matrix as k --+ oo if and only if every ,\ has 

absolute value less than . Which of these matrices has Ak --+ O? 

A1 = [·6 .9] . 4 .l and A = [·6 .9] 2 .l .6 
.
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16 (Recommended) Find A and X to diagonalize A1 in Problem 15. What is the limit of A k as k -+ oo? What is the limit of X A k x-

1? In the columns of this limiting matrix you see the __ . 
17 Find A and X to diagonalize A2 in Problem 15. What is (A2 ) 10 u0 for these u0?

Uo = [ n and Uo = [-n and Uo = [ �] .
18 Diagonalize A and compute X A k x- 1 to prove this formula for A k: 

A=[ 2 -lJ 
-1 2 

has 
19 Diagonalize Band compute X A k 

x-
1 to prove this formula for Bk : 

B = [� ! ] has 
20 Suppose A= XAx- 1

. Take determinants to prove detA = detA = >.1>.2 ···An .This quick proof only works when A can be __ . 
21 Show that trace XY = trace Y X, by adding the diagonal entries of XY and Y X: 

and 
Now choose Y to be Ax- 1

. Then XAx- 1 has the same trace as Ax- 1x = A. This proves that the trace of A equals the trace of A = sum of the eigenvalues.

22 AB - BA = I is impossible since the left side has trace = elimination matrix so that A = E and B = ET give 
AB - BA = [-� �] which has trace zero.

But find an 

23 If A = X Ax- 1 , diagonalize the block matrix B = [ � 21 ] - Find its eigenvalue and eigenvector (block) matrices. 
24 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector matrix X. Show that the A's form a subspace (cA and A1 + A2 have this same X). What is this subspace when X = I? What is its dimension? 
25 Suppose A2 = A. On the left side A multiplies each column of A. Which of our four subspaces contains eigenvectors with >. = l? Which subspace contains eigenvectors with >. = 0? From the dimensions of those subspaces, A has a full set of independent eigenvectors. So a matrix with A 2 = A can be diagonalized. 
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26 (Recommended) Suppose Ax = ,\x. If,\ = 0 then x is in the nullspace. If,\ =J 0 
then x is in the column space. Those spaces have dimensions ( n - r) + r = n. So 
why doesn't every square matrix haven linearly independent eigenvectors? 

27 The eigenvalues of A are 1 and 9, and the eigenvalues of B are -1 and 9: 

A= [� !] and B=[!�]-

Find a matrix square root of A from R = X vA x- 1
. Why is there no real matrix 

square root of B? 

28 If A and B have the same ..\'s with the same independent eigenvectors, their factor-
izations into are the same. So A = B. 

29 Suppose the same X diagonalizes both A and B. They have the same eigenvectors 
in A= XA1x- 1 and B= XA2x- 1

. Prove that AB= BA.

30 (a) If A= [0 �] then the determinant of A - ..\I is(..\ - a)(..\ - d). Check the
"Cayley-Hamilton Theorem" that (A - aI)(A - dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci's A = [½ 6]. The theorem
predicts that A2 

- A - I= 0, since the polynomial det(A- ..\I) is ..\2 
- ,\ - 1.

31 Substitute A= XAx- 1 into the product (A -..\1I)(A -..\21) ···(A -..\nI) and 
explain why this produces the zero matrix. We are substituting the matrix A for the 
number,\ in the polynomial p(..\) = det(A - ..\I). The Cayley-Hamilton Theorem 
says that this product is always p(A) = zero matrix, even if A is not diagonalizable. 

32 If A = [ 6 g] and AB = BA, show that B = [ � �] is also a diagonal matrix. B
has the same eigen __ as A but different eigen __ . These diagonal matrices 
B form a two-dimensional subspace of matrix space. AB - BA = 0 gives four
equations for the unknowns a, b, c, d-find the rank of the 4 by 4 matrix. 

33 The powers A k approach zero if all I ..\i I < 1 and they blow up if any I ..\i I > 1. 
Peter Lax gives these striking examples in his book Linear Algebra: 

A= [I �] B _ [ 
3 2]- -5 -3 C _ [ 5 7]- -3 -4 D = [ 5 6.9]-3 -4 

IIA102411 > 10700 B1024 = I 01024 = -C 11n102411 < rn-1s

Find the eigenvalues..\ = ei0 of B and C to show B4 = I and C3 = -I.
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Challenge Problems 
34 The nth power of rotation through 0 is rotation through n0: 

An = [ cos 0 -sin 0 ] 
n 

= [ cos n0 -sin n0 ] sin 0 cos 0 sin n0 cos n0 ·
Prove that neat formula by diagonalizing A = X AX -1. The eigenvectors ( columns
of X) are (1,i) and (i, 1). You need to know Euler's formulaei0 = cos0 + isin0. 

35 The transpose of A = X Ax-1 is AT = ( x-1) T AXT. The eigenvectors in AT y =
>.y are the columns of that matrix (x-1 )T. They are often called left eigenvectors of

A, because y 
T

A = >.y T. How do you multiply matrices to find this formula for A? 

Sum ofrank-1 matrices A = X Ax-1 
= A1X1Yf + ... + AnXnYJ-

36 The inverse of A = eye( n) + ones( n) is A-1 = eye( n) + C * ones( n). Multiply
AA -1 to find that number C (depending on n). 

37 Suppose A1 and A2 are n by n invertible matrices. What matrix B shows that A2 A1 = 
B(A1 A2) B-1? Then A2 A1 is similar to A1 A2: same eigenvalues.

38 When is a matrix A similar to its eigenvalue matrix A ? 
A and A always have the same eigenvalues. But similarity requires a matrix B with 
A = BAB-1

. Then Bis the _ _  matrix and A must haven independent _ _. 

39 (Pavel Grinfeld) Without writing down any calculations , can you find the eigenvalues 
of this matrix? Can you find the 2017th power A 

2017 ?

A = [ l �� �� 
-
��i l · 

88 44 -131 

If A is rn by n and B is n by rn, then AB and BA have same nonzero eigenvalues. 
Proof. Start with this identity between square matrices (easily checked). The first and 
third matrices are inverses. The "size matrix" shows the shapes of all blocks. 

[ � -1 ] [ A

: � ] [ � 1 ] = [ � BOA ] [ : : : : : � ]
This equation n-1 ED= F says Fis similar to E-they have the same m+n eigenvalues.

E = [ A

: � ] has the m eigenvalues of AB, plus n zeros

F = [ � }
A

] has then eigenvalues of BA , plus m zeros

So A B and BA have the same eigenvalues except for In -ml zeros. Wow. 

If A = [1 1] and B = A
T then A

T 
A = [ � � ] (notice >. = 2 and 0) and AA

T = [ 2 ] .
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6.3 Systems of Differential Equations 

1 If Ax = AX then u(t) = e>-.tx will solve �: = Au. Each A and x give a solution e>-.tx.

3 A is stable and u( t) ---+ 0 and eAt ---+ 0 when all eigenvalues of A have real part < 0. 
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4 Matrix exponential eAt = I+ At+···+ (At)n /n! + · · · = X eAt 
x-

1 if A is diagonalizable. 
S Second order equation II 

B I C _ 0 . . 1 [ u ] 1 
_ [ 

0 1 ] [ u ] F. t d t u + u + u - 1s eqmva ent to 1 -
C B 1 . irs or er sys em u - - u 

Eigenvalues and eigenvectors and A = X Ax- 1 are perfect for matrix powers A k. They are also perfect for differential equations du/ dt = Au. This section is mostly linear algebra, but to read it you need one fact from calculus: The derivative of e>--t is Ae>-.t . The whole point of the section is this: To convert constant-coefficient differential equations

into linear algebra. The ordinary equations d

d

u 
= u and du 

= >.u are solved by exponentials: 
t dt 

du 

dt 
= u produces u(t) = Get 

du 

dt 
= AU produces u(t) = ce>-t (1) 

At time t = 0 those solutions include e0 1. So they both reduce to u(0) = C. This"initial value" tells us the right choice for C. The solutions that start from the number

u(0) at time t = 0 are u(t) = u(0)et and u(t) = u(0)e>-t . We just solved a 1 by 1 problem. Linear algebra moves to n by n. The unknown is a vector u (now boldface). It starts from the initial vector u(0), which is given. The n equations contain a square matrix A. We expect n exponents e>-.t in u(t), from n A's: 
System of 

n equations 

du 
=Au 

dt 
starting from the vector u(0) = [ u� ��) ] at t = 0. (2) 

Un(0) 

These differential equations are linear. If u(t) and v(t) are solutions, so is Cu(t) + Dv(t). We will need n constants like C and D to match then components of u(0). Our first job is to find n "pure exponential solutions" u = e>-.tx by using Ax = AX. Notice that A is a constant matrix. In other linear equations, A changes as t changes. In nonlinear equations, A changes as u changes. We don't have those difficulties, 
du/dt = Au is "linear with constant coefficients". Those and only those are the dif­ferential equations that we will convert directly to linear algebra. Here is the key: 

Solve linear constant coefficient equations by exponentials e>--tx, when Ax = AX. 
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Solution of du/dt = Au 

Our pure exponential solution will be e>-t times a fixed vector x. You may guess that ).. is
an eigenvalue of A, and x is the eigenvector. Substitute u(t) = e>-tx into the equation
du/ dt = Au to prove you are right. The factor e>-t will cancel to leave >.x = Ax: 

Choose u = e>-tx
when Ax= AX (3) 

All components of this special solution u = e>-t x share the same e>-t. The solution
grows when ).. > 0. It decays when ).. < 0. If ).. is a complex number, its real part decides 
growth or decay. The imaginary part w gives oscillation eiwt like a sine wave.

Example 1 Solve �� =Au= [ � � ] u starting from u(O) = [ � ] . 

This is a vector equation for u. It contains two scalar equations for the components y and z.

They are "coupled together" because the matrix A is not diagonal: 

du 
=Au

dt :t [ �] = [ � �] [ �] means that :: = z and :: = y.

The idea of eigenvectors is to combine those equations in a way that gets back to 1 by 1 
problems. The combinations y + z and y - z will do it. Add and subtract equations: 

and 
d 
-(y - z) = -(y - z).
dt 

The combination y + z grows like et , because it has ).. = 1. The combination y - z decays
like e-t , because it has ).. = -1. Here is the point: We don't have to juggle the original
equations du/ dt = Au, looking for these special combinations. The eigenvectors and
eigenvalues of A will do it for us. 

This matrix A has eigenvalues 1 and -1. The eigenvectors x are ( 1, 1) and ( 1, -1). 
The pure exponential solutions u 1 and u2 take the form e>-tx with )..1 = 1 and )..2 = -1: 

and (4) 

Notice: These u's satisfy Au1 = u 1 and Au2 = -u2 , just like x 1 and x2 . The factors et 

and e-t change with time. Those factors give dui/ dt = u1 = Au1 and du2/ dt = -u2 =
Au2. We have two solutions to du/dt =Au.To find all other solutions, multiply those

special solutions by any numbers C and D and add: 

Complete solution [1] [ 1] [cet 
+ De-t

] u(t) = Get l + De-
t 

-1 = Get - De-t . (5)
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With these two constants C and D, we can match any starting vectoru(0) = ( u1 (0), u2 (0)). 
Sett = 0 and e0 = 1. Example 1 asked for the initial value to be u(0) = ( 4, 2): 

u(0) decides C, D C [ n + D [-n = [ i] yields C = 3 and D = 1.

With C = 3 and D = 1 in the solution (5), the initial value problem is completely solved. 
The same three steps that solved Uk+I = Auk now solve du/ dt = Au:

1. Write u(0) as a combination c1x1 + · · · + CnXn of the eigenvectors of A.

2. Multiply each eigenvector x; by its growth factor e>-.it .

3. The solution is the same combination of those pure solutions e>--tx:

du 
=Au 

dt 
(6) 

Not included: If two ,\'s are equal, with only one eigenvector, another solution is needed. 
(It will be te>--tx.) Step 1 needs to diagonalize A= XAx- 1

: a basis of n eigenvectors. 

Example 2 Solve du/ dt = Au knowing the eigenvalues,\= 1, 2, 3 of A: 

Typical example 
Equation for u 
Initial condition u(O)

d 

[

l 1 l

l [gl d

u = 0 2 1 u starting from u(0) = 7
t O O 3 4 

The eigenvectors are x1 = (1, 0, 0) and x2 = (1, 1, 0) and x3 = (1, 1, 1). 

Step 1 The vector u(0) = (9, 7, 4) is 2x1 + 3x2 + 4x3. Thus (c1, c2, c3) = (2, 3, 4). 

Step 2 The factors e>--t give exponential solutions etx1 and e2tx2 and e3tx3. 

Step 3 The combination that starts from u(0) is u(t) = 2etx1 + 3e2tx2 + 4e3tx3. 

The coefficients 2, 3, 4 came from solving the linear equation c1x1 + c2x2 + c3x3 = u(0): 

[x, x, x,] [:] [ 
i � ; l m m whlchis Xc-u(O). (7) 

You now have the basic idea-how to solve du/ dt = Au. The rest of this section goes 
further. We solve equations that contain second derivatives, because they arise so often in 
applications. We also decide whether u ( t) approaches zero or blows up or just oscillates. 

At the end comes the matrix exponential eAt _ The short formula eAtu(0) solves the 
equation du/dt = Au in the same way that Ak u0 solves the equation Uk+l = Auk .
Example 3 will show how "difference equations" help to solve differential equations. 
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All these steps use the ,\'s and the x's. This section solves the constant coefficient
problems that turn into linear algebra. It clarifies these simplest but most important
differential equations-whose solution is completely based on growth factors e>.t .

Second Order Equations 

The most important equation in mechanics is rny" +by'+ ky = 0. The first term
is the mass m times the acceleration a = y". This term ma balances the force F (that is
Newton's Law). The force includes the damping -by' and the elastic force -ky, propor­
tional to distance moved. This is a second-order equation because it contains the second
derivative y" = d2y / dt2

. It is still linear with constant coefficients m, b, k. 

In a differential equations course, the method of solution is to substitute y = e>.t .
Each derivative of y brings down a factor A. We want y = e>.t to solve the equation: 

d 2y dy 
rn - + b - + ky = 0 becomes (rn.X2 + b.X + k) e>.t = 0. (8)

dt2 dt 

Everything depends on m,\2 
+ b,\ + k = 0. This equation for ,\ has two roots ,\1 and

>-2. Then the equation for y has two pure solutions y1 = e>.it and y2 = e>.2t . Their
combinations c1 y1 + C2Y2 give the complete solution unless ,\1 = >-2. 

In a linear algebra course we expect matrices and eigenvalues. Therefore we turn the
scalar equation (with y") into a vector equation for y and y 1

: first derivative only. 
Suppose the mass ism= l. Two equations for u = (y, y') give du/dt = Au:

dy/dt = y'

dy' /dt = -ky - by' 
converts to ! [:,] = [-� _!] [:,] = Au

. (9)

The first equation dy / dt = y' is trivial (but true). The second is equation (8) connecting
y" toy' and y. Together they connect u' to u. So we solve u 1 = Au by eigenvalues of A:

[-,\ 1 ] 
A-Al= 

-k -b->-
has determinant

The equation for the ,\ 's is the same as ( 8) ! It is still .X 2 + b.X + k = 0, since rn = 1.
The roots ,\1 and ,\2 are now eigenvalues of A. The eigenvectors and the solution are 

The first component of u(t) has y = c1 e>.it 
+ c2e>.2t-the same solution as before.

It can't be anything else. In the second component of u(t) you see the velocity dy/dt.
The vector problem is completely consistent with the scalar problem. The 2 by 2 matrix A
is called a companion matrix-a companion to the second order equation with y 11

• 
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Example 3 Motion around a circle with y" + y = 0 and y = cos t 

This is our master equation with mass m = 1 and stiffness k = l and d = 0: no damping.
Substitute y = e>-t into y" + y = 0 to reach .X2 + 1 = 0. The roots are .X = i and
.X = -i. Then half of eit 

+ e- it gives the solution y = cost. 
As a first-order system, the initial values y(0) = 1, y'(0) = 0 go into u(0) = (1, 0):

Use y" = -y
du = !!:._ [ y] = [ 0 1 ] [ y] = Au
dt dt y' -1 0 y' 

(10) 

The eigenvalues of A are again the same >. = i and >. = -i (no surprise). A is anti­
symmetric with eigenvectors x 1 = (1, i) and x2 = (1, -i). The combination that matches
u(0) = (1,0) is ½(x 1 + x2). Step 2 multiplies the x's by eit and e- it _ Step 3 combines
the pure oscillations into u( t) to find y = cost as expected: 

u(t) = �eit [1] + �e- it [ 1] = [ c?s t] . 
2 i 2 -i - smt Th. . [ y(t)]IS IS 

y' (t) .

All good. The vector u = (cost, - sin t) goes around a circle (Figure 6.3). The radius is 1
because cos2 t + sin2 t = l. 

Difference Equations ( optional) 

To display a circle on a screen, replace y" = -y by a difference equation. Here are three
choices using Y(t + b.t) - 2Y(t) + Y(t - b.t). Divide by (b.t)2 to approximate y". 

F Forward from n - l 

C Centered at time n 
B Backward from n + l 

Yn+l - 2Yn + Yn-1 
(b.t)2

(11 F)
(11 C)
(11 B)

Figure 6.3 shows the exact y(t) = cost completing a circle at t = 21r. The three dif­
ference methods don't complete a perfect circle in 32 time steps of length b.t = 21r /32.
Those pictures will be explained by eigenvalues: 

Forward I.XI >1 (spiral out) Centered I.XI= 1 (best) Backward 1-Xl<l (spiral in)

The 2-step equations ( 11) reduce to 1-step systems Un+ 1 = A Un. Instead of u = (y, y 1)
the discrete unknown is Un = (Yn , Zn)- We take n time steps b.t starting from U 0: 

Those are like Y' = Zand Z' = -Y. They are first order equations involving times n and
n + l. Eliminating Z would bring back the "forward" second order equation (11 F). 
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My question is simple. Do the points (Yn , Zn ) stay on the circle Y2 + Z2 = 1?
No, they are growing to infinity in Figure 6.3. We are taking powers An and not eAt, so
we test the magnitude I.XI and not the real parts of the eigenvalues. 

Eigenvalues of A .X = 1 ± iat 

y' 

t = 2n 
1-----+----____.--

t = 0 y 

[ cost]-sint 

Then I.XI > 1 and (Yn , Zn ) spirals out 

; 

; 
' '

[I:] [J::] 

Figure 6.3: Exact u = (cost, - sin t) on a circle. Forward Euler spirals out (32 steps).

The backward choice in (11 B) will do the opposite in Figure 6.4. Notice the new A:

That matrix has eigenvalues 1 ± ib.t. But we invert it to reach U n+l from Un ·
Then l>-1 < 1 explains why the solution spirals in to (0, 0) for backward differences.

On the right side of Figure 6.4 you see 32 steps with the centered choice. The solution
stays close to the circle (Problem 28) if b.t < 2. This is the leapfrog method, constantly
used. The second difference Yn+l - 2Yn + Yn-l "leaps over" the center value Yn in (11).

This is the way a chemist follows the motion of molecules (molecular dynamics leads
to giant computations). Computational science is lively because one differential equation
can be replaced by many difference equations-some unstable, some stable, some neutral.
Problem 30 has a fourth (very good) method that stays right on the circle. 

Real engineering and real physics deal with systems (not just a single mass at
one point). The unknown y is a vector. The coefficient of y" is a mass matrix M,
with n masses. The coefficient of y is a stiffness matrix K, not a number k. The coef­
ficient of y' is a damping matrix which might be zero. 

The vector equation My" + Ky = f is a major part of computational mechanics.
It is controlled by the eigenvalues of M- 1 Kin K x = >-M x. 
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Figure 6.4: Backward differences spiral in. Leapfrog stays near the correct circle. 
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Stability of 2 by 2 Matrices 

For the solution of du/ dt = Au, there is a fundamental question. Does the solution

approach u = 0 as t -+ oo? Is the problem stable, by dissipating energy? A solution that
includes et is unstable. Stability depends on the eigenvalues of A.

The complete solution u(t) is built from pure solutions e>-tx. If the eigenvalue>. is real, 
we know exactly when e>-t will approach zero: The number >. must be negative.

If the eigenvalue is a complex number >. = r + is, the real part r must be negative.

When e>-t splits into erteist , the factor eist has absolute value fixed at 1: 

eist = cos st+ i sin st has leist 1 2 = cos2 st+ sin2 st = 1.

The real part of>. controls the growth (r > 0) or the decay (r < 0). 
The question is: Which matrices have negative eigenvalues? More accurately, when 

are the real parts of the >.'s all negative? 2 by 2 matrices allow a clear answer. 

Stability A is stable and u(t) -+ 0 when all eigenvalues >. have negative real parts.

The 2 by 2 matrix A = [ � �] must pass two tests:

The trace T = a + d must be negative.
The determinant D = ad - be must be positive. 

Reason If the A's are real and negative, their sum is negative. This is the trace T. Their 
product is positive. This is the determinant D. The argument also goes in the reverse 
direction. If D = .\1.\2 is positive, then .\1 and .\2 have the same sign. IfT = .\ 1 + >-2 is
negative, that sign will be negative. We can test T and D.

If the .\'s are complex numbers, they must have the form r + is and r - is.
Otherwise T and D will not be real. The determinant D is automatically positive, since 
(r + is)(r - is) = r2 

+ s2
. The trace Tis r +is+ r - is= 2r. So a negative trace T

means that the real part r is negative and the matrix is stable. Q.E.D. 
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Figure 6.5 shows the parabola T2 = 4D separating real A's from complex A's. 
Solving .\2 

- T >. + D = 0 involves the square root v1T2 
- 4D. This is real below the 

parabola and imaginary above it. The stable region is the upper left quarter of the figure­
where the trace T is negative and the determinant D is positive.

determinant D 

', lbothRe,l., < 0 bothRe,l., > 0
', stable unstable ., " 

' / 

' / 

/ 

----'�1- ., ., both ,l., > 0 
both A < o,I ', .:/.1 "' 1 � A-V ,, ., unstable 

' -. '1,2 anc r�""" ,,. "' stable ... , - - _ trace T

D< 0 means ,l., 1 < 0 and ,l.,2 > 0: unstable 

rn =!] stable

[o 4] unstable5 -6 

[� -6] neutral

Figure 6.5: A 2 by 2 matrix is stable ( u(t) -+ 0) when trace< 0 and det > 0.

The Exponential of a Matrix 

We want to write the solution u(t) in a new form eAtu(O). First we have to say what eAt 

means, with a matrix in the exponent. To define eAt for matrices, we copy ex for numbers. 
The direct definition of ex is by the infinite series 1 + x + ½x2 + ¼x3 + · · ·. When you 

change x to a square matrix At, this series defines the matrix exponential eAt :

Matrix exponential eAt eAt =I+ At+ ½(At) 2 + ¼(At) 3 + · · ·

Its t derivative is AeAt A+ A2t + ½A3t2 + ... = AeAt 

(14) 

Its eigenvalues are e>.t (I+ At+ ½(At)2 + · · · )x = (1 + >.t + ½(>-t) 2 + · · ·) x 

The number that divides (At) n is "n factorial". This is n! = ( 1) ( 2) · · · ( n - 1) ( n). 
The factorials after 1, 2, 6 are 4! = 24 and 5! = 120. They grow quickly. The series 
always converges and its derivative is always AeAt _ Therefore eAtu(O) solves the 
differential equation with one quick formula-even if there is a shortage of eigenvectors.

I will use this series in Example 4, to see it work with a missing eigenvector. 
It will produce te>.t . First let me reach X eAt x- 1 in the good (diagonalizable) case.
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This chapter emphasizes how to find u(t) = eAtu(O) by diagonalization. Assume A
does haven independent eigenvectors, so it is diagonalizable. Substitute A = X Ax-1 

into the series for eAt . Whenever X Ax-1 X Ax-1 appears, cancel x-1 
X in the middle: 

Use the series eAt =I+ XAx- 1t + ½(XAx-1t)(XAx-1t) + ... 

Factor out X and x-1 =X[J+At+½(At)2+···JX-1 

(15) 

eAt is diagonalized! I eAt = X eAt x-1. I 

eAt has the same eigenvector matrix X as A. Then A is a diagonal matrix and so is eAt. 
The numbers e>-;t are on the diagonal. Multiply X eAt 

x-
1 u(O) to recognize u(t): 

This solution eAtu(O) is the same answer that came in equation (6) from three steps: 

1. u(O) = c1 x 1 + · · · + CnXn = X c. Here we need n independent eigenvectors.

2. Multiply each Xi by its growth factor e>-;t to follow it forward in time.

3. The best form of eAtu(O) is u(t) = c1e>-1 tx 1 + · · · + Cne>.ntxn. (17) 

Example 4 When you substitute y = e>-t into y" - 2y' + y = 0, you get an equation with
repeated roots: >.2 

- 2,\ + 1 = 0 is (>. - 1)2 
= 0 with.>.= 1, 1. A differential equations 

course would propose et and tet as two independent solutions. Here we discover why. 
Linear algebra reduces y" - 2y' + y = 0 to a vector equation for u = (y, y'):

A has a repeated eigenvalue.>. = 1, 1 (with trace = 2 and <let A = l). The only eigen­
vectors are multiples of x = (l, 1). Diagonalization is not possible, A has only one line of 
eigenvectors. So we compute eAt from its definition as a series: 

Short series eAt 
= eit e(A-I)t 

= et [I+ (A - J)t]. (19) 

That "infinite" series for e(A-I)t ended quickly because (A - J)2 is the zero matrix! 
You can see tet in equation (19). The first component of eAt u(O) is our answer y(t): 

[ �' ] = et [1 + [ =� � ] t] [ y���� ] y(t) = ety(O) - tety(O) + tety'(O).



328 Chapter 6. Eigenvalues and Eigenvectors 

Example 5 Use the infinite series to find eAt for A= [ _� �]. Notice that A4 = I: 

A5,A6,A7,A8 will be a repeat of A,A2,A3,A4
. The top right corner has 1,0,-1,0

repeating over and over in powers of A. Then t - ½t3 starts the infinite series for eAt in
that top right corner, and 1 - ½t2 starts the top left corner: 

[ 
1 - lt2 + · · · t - ½t3 + · · · i . 

eAt =I+ At+ ½(At)2 + ½(At)3 + · · · = � 3-t + 6t - · · · 1 - ½t2 + · · · 

The top row of that matrix eAt shows the infinite series for the cosine and sine! 

A
= [ 0 1

] 
-1 0 

At = [ 
cost sin t

] e - sin t cos t · (20)

A is an antisymmetric matrix (AT = -A). Its exponential eAt is an orthogonal matrix.
The eigenvalues of A are i and -i. The eigenvalues of eAt are eit and e- it _ Three rules: 

1 eAt always has the inverse e-At. 

2 The eigenvalues of eAt are always e>..t . 

3 When A is antisymmetric, eAt is orthogonal. Inverse= transpose= e-At.

Antisymmetric is the same as "skew-symmetric". Those matrices have pure imaginary
eigenvalues like i and -i. Then eAt has eigenvalues like eit and e-it . Their absolute value 
is 1: neutral stability, pure oscillation, energy is conserved. So I lu(t) 11 = I lu(0) 11-

Our final example has a triangular matrix A. Then the eigenvector matrix X is trian­
gular. So are x-

1 and eAt. You will see the two forms of the solution: a combination of
eigenvectors and the short form eAtu(0). 

Example 6 Solve !: = Au = [ � �] u starting from u(0) = [ n at t = 0. 

Solution The eigenvalues 1 and 2 are on the diagonal of A (since A is triangular). The
eigenvectors are (1, 0) and (1, 1). The starting u(0) is x 1 + x2 so c1 = c2 = 1.
Then u(t) is the same combination of pure exponentials (no te>.t when,\= land 2): 

Solution to u' = Au u(t) =et [�] +e2t [i]. 
That is the clearest form. But the matrix form with eAt produces u(t) for every u(0):

u(t) = XeAtx-1u(0) is [� i] [ et 

e2t] [� -i] u(0) = [ � e2t

e
t et

] u(0).

That last matrix is eAt. It is nice because A is triangular. The situation is the same as 
for Ax = band inverses. We don't need A- 1 to find x, and we don't need eAt to solve 
du/ dt = Au. But as quick formulas for the answers, A-1 b and eAtu(0) are unbeatable. 
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• REVIEW OF THE KEY IDEAS •
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1. The equation u' = Au is linear with constant coefficients in A. Start from u(0).

2. Its solution is usually a combination of exponentials, involving every >- and x:

Independent eigenvectors 

3. The constants C1, ... , Cn are determined by u(0) = c1X1 + · · · + CnXn = X c.

4. u( t) approaches zero (stability) if every >- has negative real part: All e>..t -+ 0.

5. Solutions have the short form u(t) = eAtu(O), with the matrix exponential eAt _

6. Equations with y" reduce to u' = Au by combining y and y' into the vector u.

• WORKED EXAMPLES • 

6.3 A Solve y" + 4y' + 3y = 0 by substituting e>-t and also by linear algebra.

Solution Substituting y = e>-t yields (>-2 
+ 4>. + 3)e>-t 

= 0. That quadratic factors into
>-2 +4>-+3 = (>-+ l)(>-+3) = 0. Therefore ,\1 = -1 and ,\2 = -3. The pure solutions
are YI = e-t and Y2 = e-3t_ The complete solution y = c1y1 + C2Y2 approaches zero. 

To use linear algebra we set u = (y, y'). Then the vector equation is u' = Au: 

dy I dt = y' du [ o 1] 
'/ 

, converts to - = u 
dy dt = -3y - 4y dt -3 -4 .

This A is a "companion matrix" and its eigenvalues are again -1 and -3 :

Same quadratic 

The eigenvectors of A are (1, >-1) and (1, >-2). Either way, the decay in y(t) comes from
e-t and e-3t. With constant coefficients, calculus leads to linear algebra Ax = >.x. 

Note In linear algebra the serious danger is a shortage of eigenvectors. Our eigenvectors
(1, >-1) and (1, >-2) are the same if >-1 = >.2 . Then we can't diagonalize A. In this case we
don't yet have two independent solutions to du/ dt = Au. 

In differential equations the danger is also a repeated >.. After y = e>-t, a second
solution has to be found. It turns out to be y = te>..t . This "impure" solution (with an
extra t) appears in the matrix exponential eAt _ Example 4 showed how. 
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6.3 B Find the eigenvalues and eigenvectors of A. Then write u(0) = (0, 2v'2, 0) as 
a combination of the eigenvectors. Solve both equations u' = Au and u" = Au: 

du
= 1 -2 1 u [

-2 1 ol 
dt 

O 1 -2 

and -= 1 -2 1 u d2u [
-2 1 O

l 
dt2 

0 1 -2 

u' = Au is like the heat equation au/ at= a2u/ ax2
. 

Its solution u(t) will decay (A has negative eigenvalues). 
u" = Au is like the wave equation a2u/ at2 = a2u/ ax2

. 

Its solution will oscillate (the square roots of A are imaginary). 

du 
with dt(O) = 0.

Solution The eigenvalues and eigenvectors come from det(A - >-I) = 0: 

-2->- 1 0 

det(A-M)= 1 -2->- 1 =(-2->-)[(-2->-)2 - 2]=0. 
0 1 -2->-

One eigenvalue is A= -2, when -2 - A is zero. The other factor is >-2 + 4A + 2, so the 
other eigenvalues (also real and negative) are>-= -2 ± v'2. Find the eigenvectors: 

,\ = -2 (A+ 2I)x = 
[
� � �rn l m fo,x, = [J]

A=-2-0 (A-AI)x= [f � 1Wl m 
[-y'2 1 0 l [X] [0

] ,\ = -2 + v12 (A - >-I)x = 
t -Y2 -1 � � 

fo,x, = [-[2] 
fo, X3 = 

[ 
{2 l 

The eigenvectors are orthogonal (proved in Section 6.4 for all symmetric matrices). 
All three Ai are negative. This A is negative definite and eAt decays to zero (stability). 

The starting u(0) = (0, 2v'2, 0) is x3 -x2 . The solution is u(t) = eA3t
x3 - e

A2t
x2. 

Heat equation In Figure 6.6a, the temperature at the center starts at 2v'2. Heat diffuses 
into the neighboring boxes and then to the outside boxes (frozen at 0°). The rate of heat 
flow between boxes is the temperature difference. From box 2, heat flows left and right at 
the rate u 1 - u2 and u3 - u2. So the flow out is u 1 - 2u2 + u3 in the second row of Au. 

Wave equation d2u/ dt2 = Au has the same eigenvectors x. But now the eigenvalues A 
lead to oscillations eiwtx and e-iwtx. The frequencies come from w2 = -A: 

d2 . t . t . t . t 

dt2 
(eiw x) = A(eiw x) becomes (iw)2eiw x = >-eiw x and w2 = -,\. 

There are two square roots of -A, so we have eiwtx and e-iwtx. With three eigenvectors 
this makes six solutions to u" = Au. A combination will match the six components of 
u(0) and u'(0). Since u' = 0 in this problem, eiwtx and e-iwtx produce 2 cos wt x. 
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t=O • t=O • 

�-
0 1 2 3 4 

Figure 6.6: Heat diffuses away from box 2 (left). Wave travels from box 2 (right). 

6.3 C Solve the four equations da/dt = O,db/dt = a,dc/dt = 2b,dz/dt = 3c 
in that order starting from u(O) = (a(O), b(O), c(O), z(O)). Solve the same equations 
by the matrix exponential in u(t) = eAtu(O). 

Four equations 

>-=0,0,0,0 

Eigenvalues on 

the diagonal 

is 
du

= Au. 
dt 

First find A2,A3,A4 and eAt =I+ At+ ½(At)2 
+ ½(At)3

• Why does the series stop? 
Why is it true that (eA)(eA) = (e2A)? Always e-4-s times e-4-t is e-4-(s + t).

Solution 1 Integrate da/ dt = 0, then db/ dt = a, then de/ dt = 2b and dz/ dt = 3c: 

a(t) = a(O) 
b(t) = ta(O) + b(O) 

The 4 by 4 matrix which is 
multiplying a(O), b(O), c(O), d(O) 
to produce a(t), b(t), c(t), d(t) 
must be the same eAt as below 

c(t) = t2 a(O) + 2tb(O) + c(O) 
z(t) = t3a(O) + 3t2b(O) + 3tc(O) + z(O) 

Solution 2 The powers of A (strictly triangular) are all zero after A3
. 

A� 
[
� � � �] A'� 

[
� I � �] A'� 

[
� � � j A4 � 0 

The diagonals move down at each step. So the series for eAt stops after four terms: 

Same eAt as 

in Solution 1 
At _ I A 

(At)2 (At)3 _ [ 

� 

1 

l 

e - + t + 2 + 6 - t2 2t 1
t3 3t2 3t 1 

The square of eA is e2A. But e-4-/3 and /3 e4 and e4 + B can be all different.
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Problem Set 6.3 

1 Find two ,\'s and x's so that u = e >-tx solves

du [4 3] 
dt 

= 
0 1 

u.

What combination u = c1 e>-1 tx1 + c2 e >-2tx2 starts from u(O) = (5, -2)?

2 Solve Problem 1 for u = (y, z) by back substitution, z before y:

dz 
Solve 

dt 
= z from z(O) = -2.

dy 
Then solve 

dt 
= 4y + 3z from y(0) = 5.

The solution for y will be a combination of e4t and et. The ,\'s are 4 and 1.

3 (a) If every column of A adds to zero, why is,\= 0 an eigenvalue?
(b) With negative diagonal and positive off-diagonal adding to zero, u' = Au

will be a "continuous" Markov equation. Find the eigenvalues and eigenvec­
tors, and the steady state as t -+ oo 

du [-2 
Solve

dt 
= 2 -�] u with u(O) = [ i] . What is u( oo )?

4 A door is opened between rooms that hold v(O) = 30 people and w(O) = 10 people.
The movement betwe�n rooms is proportional to the difference v - w: 

dv 
-=w-v 
dt 

and
dw 
- =v-w.
dt 

Show that the total v + w is constant (40 people). Find the matrix in du/dt = Au
and its eigenvalues and eigenvectors. What are v and watt= 1 and t = oo?

5 Reverse the diffusion of people in Problem 4 to du/dt = -Au:

dv 
-=v-w 
dt 

and
dw 
- =w-v.
dt 

The total v+w still remains constant. How are the ,\'s changed now that A is changed
to -A? But show that v(t) grows to infinity from v(O) = 30. 

6 A has real eigenvalues but B has complex eigenvalues:

A-_ [ 
a
l a

l
] B -_ [ l

b -l
b] ( a and bare real)

Find the conditions on a and b so that all solutions of du/ dt
dv / dt = Bv approach zero as t -+ oo : Re,\ < 0 for all eigenvalues.

Au and
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7 Suppose P is the projection matrix onto the 45° line y = x in R2
. What are its

eigenvalues? If du/ dt = -Pu (notice minus sign) can you find the limit of u(t) at
t = oo starting from u(0) = (3, 1)? 

8 The rabbit population shows fast growth (from 6r) but loss to wolves (from -2w).
The wolf population always grows in this model ( -w2 would control wolves): 

dr 
- = 6r - 2w
dt 

and
dw 
- = 2r+w.
dt

Find the eigenvalues and eigenvectors. If r(O) = w(O) = 30 what are the populations
at time t? After a long time, what is the ratio of rabbits to wolves? 

9 (a) Write (4, 0) as a combination c1x 1 + c2x2 of these two eigenvectors of A:

[-� �J [n =i DJ 
(b) The solution to du/dt = Au starting from (4, 0) is c1eitx 1 + c2e-itx2. Sub­

stitute eit = cost+ i sin t and e-it = cost -i sin t to find u( t). 

Questions 10-13 reduce second-order equations to first-order systems for (y, y').

10 Find A to change the scalar equation y11 = 5y' + 4y into a vector equation for
u = (y, y'): 

du 

dt 

What are the eigenvalues of A? Find them also by substituting y = e>-t into y" = 

5y' + 4y. 

11 The solution to y11 = 0 is a straight line y = C + Dt. Convert to a matrix equation:

d 
[y] [0 1] [y] . [y

] At [y(O)] 
dt y' = 0 0 y' has the solut10n y' = e y'(O) .

This matrix A has >- = 0, 0 and it cannot be diagonalized. Find A2 and compute
eAt =I+ At+ ½A2t2 + .... Multiply your eAt times (y(0), y'(0)) to check the
straight line y( t) = y(O) + y' (0)t. 

12 Substitute y = e>-t into y" = 6y' - 9y to show that A = 3 is a repeated root. This is
trouble; we need a second solution after e3t. The matrix equation is 

Show that this matrix has A = 3, 3 and only one line of eigenvectors. Trouble here
too. Show that the second solution toy" = 6y' - 9y is y = te3t. 
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13 (a) Write down two familiar functions that solve the equation d2y/dt2 = -9y.
Which one starts with y(0) = 3 and y'(0) = 0? 

(b) This second-order equation y" = -9y produces a vector equation u' = Au:

du 
[ 

y' 
] [ 

0 1] [ y 
] dt 

= y" = -9 0 y' = Au.

Find u(t) by using the eigenvalues and eigenvectors of A: u(0) = (3, 0).

14 The matrix in this question is skew-symmetric (AT= -A):

[ 0 C -bi
!: = -

� -� � 
u or 

Ui = CU2 - bu3 
u; = au3 - cu1 
u; = bu1 - au2. 

(a) The derivative of llu(t) \1 2 = ui+u�+u§ is 2u1 Ui +2u2u;+2u3u;. Substitute
ui, u;, Uj to get zero. Then llu(t)ll 2 stays equal to llu(0)ll 2

. 

(b) When A is skew-symmetric, Q = eAt is orthogonal. Prove QT = e-At from
the series for Q = eAt _ Then QTQ = I. 

15 A particular solution to du/ dt = Au - bis up = A- 1 b, if A is invertible. The usual
solutions to du/ dt = Au give Un. Find the complete solution u = up + Un: 

du 
(a) - = u - 4

dt 

16 If c is not an eigenvalue of A, substitute u = ectv and find a particular solution to
du/ dt = Au - ectb. How does it break down when c is an eigenvalue of A? The
"nullspace" of du/dt = Au contains the usual solutions e>-,txi.

17 Find a matrix A to illustrate each of the unstable regions in Figure 6.5: 

(a) .\ 1 < 0 and .\2 > 0 (b) .\1 > 0 and .\2 > 0 (c) .\=a± ib with a> 0.

Questions 18-27 are about the matrix exponential eAt .

18 Write five terms of the infinite series for eAt . Take the t derivative of each term.
Show that you have four terms of AeAt . Conclusion: eAtu0 solves u' = Au.

19 The matrix B = [ g -t] has B2 = 0. Find eBt from a (short) infinite series.
Check that the derivative of eBt is BeBt .

20 Starting from u(0) the solution at time Tis eAT u(0). Go an additional time t to
reach eAt eAT u(0). This solution at time t + T can also be written as 
Conclusion: eAt times eAT equals _ _  . 

21 Write A= [ 6 il] in the form X Ax- 1
. Find eAt from X eAt x- 1

. 
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22 If A2 = A show that the infinite series produces eAt = I+ ( et -1) A. For A = [ 5 il]
in Problem 21 this gives eAt = __ .

23 Generally eAeB is different from eB eA. They are both different from eA + B .
Check this using Problems 21-22 and 19. (If AB= BA, all three are the same.) 

A= [� �] A+B= [� �]-

24 Write A =  [A 1] as XAx-1
. Multiply XeAtx-1 to find the matrix exponential

eAt _ Check eAt and the derivative of eAt when t = 0.

25 Put A = [ 5 g] into the infinite series to find eAt . First compute A2 and An :

At = [ 1 0] [ t 3t] !. [e O 1 + 0 0 +
2 ] 

26 (Recommended) Give two reasons why the matrix exponential eAt is never singular: 

(a) Write down its inverse.
(b) Why are these eigenvalues nonzero? If Ax= >-x then eAtx = __ x.

27 Find a solution x( t), y( t) that gets large as t ---+ oo. To avoid this instability a scientist
exchanged the two equations: 

dx/dt = Ox - 4y 
dy/dt = -2x + 2y becomes dy/dt = -2x + 2y 

dx/dt = Ox - 4y.

Now the matrix [-� -�] is stable. It has negative eigenvalues. How can this be?

Challenge Problems 

28 Centering y" = -y in Example 3 will produce Yn+l - 2Yn + Yn-1 = -(b.t) 2Yn .
This can be written as a one-step difference equation for U = (Y, Z): 

Yn+l = Yn + b.t Zn 

Zn+l = Zn - b.t Yn+l [ 1 0 ] [ Yn+l ] = [ 1 b.t ] [ Yn ]b.t 1 Zn+l O l Zn 

Invert the matrix on the left side to write this as U n+l = AU n · Show that det A = l.
Choose the large time step b.t = 1 and find the eigenvalues >-1 and >-2 = >:1 of A: 

A= [-� �] has [.X1[ = [.X2[ = 1. Show that A6 is exactly I.

After 6 steps tot= 6, U6 equals U 0. The exact y =cost returns to 1 at t = 21r.
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29 That centered choice (leapfrog method) in Problem 28 is very successful for small
time steps 6..t. But find the eigenvalues of A for 6..t = y'2 and 2: 

Both matrices have i>-1 = 1. Compute A4 in both cases and find the eigenvectors
of A. That second value 6..t = 2 is at the border of instability. Any time step 6..t > 2 
will lead to l>-1 > 1, and the powers in Un = An u O will explode. 
Note You might say that nobody would compute with 6..t > 2. But if an atom
vibrates with y" = -lO00000y, then 6..t > .0002 will give instability. Leapfrog has
a very strict stability limit. Yn+l = Yn + 3Zn and Zn+l = Zn -3Yn+l will explode
because 6..t = 3 is too large. The matrix has i>-1 > 1. 

30 Another good idea for y" = -y is the trapezoidal method (half forward/half back).
This may be the best way to keep (Yn , Zn ) exactly on a circle. 

(a) Invert the left matrix to write this equation as U n+l = AU n · Show that A is
an orthogonal matrix: AT A = I. These points Un never leave the circle.
A= (I - B)- 1 (1 + B) is always an orthogonal matrix if BT= -B. 

(b) (Optional MATLAB) Take 32 steps from U O = (1, 0) to U 32 with 6..t = 21r /32.
Is U 32 = U O ? I think there is a small error. 

31 The cosine of a matrix is defined like eA, by copying the series for cost:

1 2 1 4 
cost = 1 - -t + -t2! 4! 

1 2 1 4 
cos A = I - -A + -A - · · ·

2! 4! 
(a) If Ax = Ax, multiply each term times x to find the eigenvalue of cos A.

(b) Find the eigenvalues of A = [: : ] with eigenvectors ( 1, 1) and ( 1, -1).

From the eigenvalues and eigenvectors of cos A, find that matrix C = cos A.

(c) The second derivative of cos(At) is -A2 cos(At).

d2u 
u(t) = cos(At)u(0) solves 

dt2 
= -A2u starting from u'(0) = 0.

Construct u(t) = cos(At) u(0) by the usual three steps for that specific A:
1. Expand u(0) = ( 4, 2) = c1x1 + c2x2 in the eigenvectors.
2. Multiply those eigenvectors by __ and __ (instead of e>-t).
3. Add up the solution u(t) = c1 __ x1 + c2 __ x2.
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32 Explain one of these three proofs that the square of eA is e2A. 

337 

1. Solving with eA from t = 0 to 1 and then 1 to 2 agrees with e2A from O to 2.

2. The squared series (I+ A+ 1
2 

+ ... ) 2 matches I+ 2A + (2�l2 

+ ... = e2A.

3. If A can be diagonalized then (X eA x- 1 )(X eA x- 1 ) = X e2A x- 1 . 

Notes on a Differential Equations Course 

Certainly constant-coefficient linear equations are the simplest to solve. This section 6.3 of 
the book shows you part of a differential equations course, but there is more: 

1. The second order equation mu 11 + bu 1 + ku = 0 has major importance in appli­
cations. The exponents ,\ in the solutions u = e>-.t solve m.\2 + b,\ + k = 0.
The damping coefficient b is crucial:
Underdamping b2 < 4mk Critical damping b2 = 4mk Overdamping b2 > 4mk

This decides whether .\1 and .\2 are real roots or repeated roots or complex roots.
With complex A's the solution u(t) oscillates as it decays.

2. Our equations had no forcing term f (t). We were finding the "nullspace solution".
To un

(t) we need to add a particular solution u
p
(t) that balances the force f(t):

Input f(s) at times 
Growth factor eA (t-s)
Add up outputs at time t 1t 

A(t-s) 
Uparticular = 

0 
e f ( S) ds.

This solution can also be discovered and studied by Laplace transform-that is 
the established way to convert linear differential equations to linear algebra. 

In real applications, nonlinear differential equations are solved numerically. A standard 
method with good accuracy is "Runge-Kutta"-named after its discoverers. Analysis can 
find the constant solutions to du/dt = f(u). Those are solutions u(t) = Y with f(Y) = 0 
and du/ dt = 0: no movement. We can also understand stability or instability near u = Y.
Far from Y, the computer takes over. 

This basic course is the subject of my textbook (companion to this one) on 
Differential Equations and Linear Algebra: math.mit.edu/dela. 
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6.4 Symmetric Matrices 

1 A symmetric matrix S has n real eigenvalues Ai and n orthonormal eigenvectors q 1, ... , q n. 

2 Every real symmetric S can be diagonalized : I S = QAQ- 1 = QAQT I 

3 The number of positive eigenvalues of S equals the number of positive pivots. 

4 Antisymmetric matrices A= -AT have imaginary .\'s and orthonormal (complex) q's.

5 Section 9.2 explains why the test S = ST becomes S = ST for complex matrices.

S = [ -� � ] = S
T 

has real.\= 1, -1. A= [ � � ] = -AT has.\= i, -i. 

It is no exaggeration to say that symmetric matrices S are the most important matrices
the world will ever see-in the theory of linear algebra and also in the applications. We
come immediately to the key question about symmetry. Not only the question, but also the
two-part answer. 

What is special about Sx = AX when Sis symmetric? 

We look for special properties of the eigenvalues .\ and eigenvectors x when S = 5T. 

The diagonalization S = X Ax- 1 will reflect the symmetry of S. We get some hint by 
transposing to 5T = (x- 1 ) T AXT. Those are the same since S = ST. Possibly x- 1 

in the first form equals XT in the second form? Then XT X = I. That makes each 
eigenvector in X orthogonal to the other eigenvectors when S = 5T . Here are the key facts: 

1. A symmetric matrix has only real eigenvalues.

2. The eigenvectors can be chosen orthonormal.

Those n orthonormal eigenvectors go into the columns of X. Every symmetric matrix can
be diagonalized. Its eigenvector matrix X becomes an orthogonal matrix Q. Orthogonal
matrices have Q- 1 = QT-what we suspected about the eigenvector matrix is true. To 
remember it we write Q instead of X, when we choose orthonormal eigenvectors. 

Why do we use the word "choose"? Because the eigenvectors do not have to be unit
vectors. Their lengths are at our disposal. We will choose unit vectors-eigenvectors of 
length one, which are orthonormal and not just orthogonal. Then A = XAx- 1 is in its 
special and particular form S = QAQT for symmetric matrices. 
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(Spectral Theorem) Every symmetric matrix has the factorization S = QAQT with real 
eigenvalues in A and orthonormal eigenvectors in the columns of Q: 

Symmetric diagonalization 

It is easy to see that QAQT is symmetric. Take its transpose. You get ( QT)T A TQT , which 
is QAQT again. The harder part is to prove that every symmetric matrix has real A's and 
orthonormal x's. This is the "spectral theorem" in mathematics and the "principal axis 
theorem" in geometry and physics. We have to prove it! No choice. I will approach the 
proof in three steps: 

1. By an example, showing real A's in A and orthonormal x's in Q.

2. By a proof of those facts when no eigenvalues are repeated.

3. By a proof that allows repeated eigenvalues (at the end of this section).

Example 1 Find the A's and x's when S = [� �] and S - Al= [
1; A 

4 �A].

Solution The determinant of S - Al is A2 
- 5A. The eigenvalues are O and 5 (both real).

We can see them directly: A = 0 is an eigenvalue because Sis singular, and A= 5 matches 
the trace down the diagonal of S: 0 + 5 agrees with 1 + 4. 

Two eigenvectors are (2, -1) and (1, 2)-orthogonal but not yet orthonormal. The 
eigenvector for A = 0 is in the nullspace of A. The eigenvector for A = 5 is in the column 
space. We ask ourselves, why are the nullspace and column space perpendicular? The 
Fundamental Theorem says that the nullspace is perpendicular to the row space-not the 
column space. But our matrix is symmetric! Its row and column spaces are the same. Its 
eigenvectors ( 2, -1) and ( 1, 2) must be ( and are) perpendicular. 

These eigenvectors have length v'5. Divide them by v'5 to get unit vectors. Put those 
unit eigenvectors into the columns of Q. Then Q-1 SQ is A and Q-1 = QT :

Q-1sQ = _1
[
2 -1

] [
1 2

] � [ 
2 1

] = [o o] = A.y'5 1 2 2 4 y'5 -1 2 0 5 

Now comes then by n case. The A's are real when S = ST and Sx = AX. 

Real Eigenvalues All the eigenvalues of a real symmetric matrix are real. 

Proof Suppose that Sx = AX. Until we know otherwise, A might be a complex number 
a + ib ( a and b real). Its complex conjugate is � = a - ib. Similarly the components 
of x may be complex numbers, and switching the signs of their imaginary parts gives x. 
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The good thing is that ,\ times xis always the conjugate of,\ times x. So we can takeconjugates of Sx = .\x, remembering that Sis real: 
S x = ,\ x leads to S x = >.' x. Transpose to xT S = xT >.'.

Now take the dot product of the first equation with x and the last equation with x:
and also (2)

The left sides are the same so the right sides are equal. One equation has ,\, the otherhas >.'. They multiply xT x = lx1 1 2 + lx2 1 2 + · · · = length squared which is not zero.
Therefore ,\ must equal>.', and a + ib equals a - ib. So b = 0 and ,\ = a = real. Q.E.D.

The eigenvectors come from solving the real equation (S -.\I)x = 0. So the x's arealso real. The important fact is that they are perpendicular. 

Orthogonal Eigenvectors Eigenvectors of a real symmetric matrix (when they corre­spond to different A's) are always perpendicular. 

Proof Suppose Sx = .\1 x and Sy = .\2 y. We are assuming here that .\1 # .\2 . Take dotproducts of the first equation with y and the second with x: 
Use ST = S (.\1 x)Ty = (Sx?y = xTST

y = xTSy = xT.\2y. (3)
The left side is x T .\1 y, the right side is x T .\2y. Since ,\1 # .\2 , this proves that x Ty = 0.
The eigenvector x (for .\1) is perpendicular to the eigenvector y (for .\2). 
Example 2 The eigenvectors of a 2 by 2 symmetric matrix have a special form:

Not widelyknown S= [� �] has x1 = [
.\i�a] and x2 = [,\z; c]· (4)

This is in the Problem Set. The point here is that x1 is perpendicular to x2 :
x{x2 = b( .\2 - c) + ( .\1 - a)b = b(.\1 + .\2 - a - c) = 0.

This is zero because .\1 + .\2 equals the trace a+ c. Thus Xf x2 = 0. Eagle eyes might
notice the special case S = I, when band .\1 - a and .\2 - c and x1 and x2 are all zero.
Then .\1 = .\2 = 1 is repeated. But of course S = I has perpendicular eigenvectors.
Symmetric matrices S have orthogonal eigenvector matrices Q. Look at this again:

Symmetry S = XAx- 1 becomes S = QAQT with QTQ = I.

This says that every 2 by 2 symmetric matrix is (rotation)(stretch)(rotate back)

(5)
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Every symmetric matrix 

Remember the steps to this great result (the spectral theorem).
Section 6.2 Write Axi = AiXi in matrix form AX= XA or A= XAx- 1 

Section 6.4 Orthonormal Xi= qi gives X = Q S = QAQ- 1 = QAQT 

QAQT in equation (6) has columns of QA times rows of QT. Here is a direct proof.

S has correct eigenvectors

Those q's are orthonormal (7) 

Complex Eigenvalues of Real Matrices 

For any real matrix, S x = ,\ x gives S x = "Xx. For a symmetric matrix, ,\ and x turn out
to be real. Those two equations become the same. But a nonsymmetric matrix can easily
produce,\ and x that are complex. Then Ax = "Xx is true but different from A x  = ,\ x.
We get another complex eigenvalue (which is "X) and a new eigenvector (which is x): 

Example 3 

For real matrices, complex ,\'sand x's come in "conjugate pairs." 

..\=a+ ib 

X = a - ib
If A x= ..\x then Ax= Xx. 

A [ cos 0 - sin 0] h , 0 · · 0 d , 0 · · 0 = . 0 0 as /\1 = cos + ism an /\2 = cos - ism .
Sill COS 

(8) 

Those eigenvalues are conjugate to each other. They are ,\ and ..\. The eigenvectors
must be x and x, because A is real: 

This is,\ x Ax= [ cos0 - sin0] [-�] = ( cos 0 + i sin 0) [ -�]sin0 cos0 
(9)

This is..\ x Ax= [ 
cos0 - sin0] [ �] = ( cos 0 - i sin 0) [ �] .sin0 cos0 

Those eigenvectors (1, -i) and (1, i) are complex conjugates because A is real.
For this rotation matrix the absolute value is i>-1 = 1, because cos2 0 + sin2 0 = 1.

This fact I,\ I = 1 holds for the eigenvalues of every orthogonal matrix Q. 
We apologize that a touch of complex numbers slipped in. They are unavoidable even

when the matrix is real. Chapter 9 goes beyond complex numbers ,\ and complex eigen­
vectors x to complex matrices A. Then you have the whole picture. 

We end with two optional discussions. 
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Eigenvalues versus Pivots 

The eigenvalues of A are very different from the pivots. For eigenvalues, we solve
det(A - AI) = 0. For pivots, we use elimination. The only connection so far is this:

product of pivots = determinant = product of eigenvalues. 

We are assuming a full set of pivots d1, ... , dn . There are n real eigenvalues A1, ... , An .
The d's and A's are not the same, but they come from the same symmetric matrix. Those
d's and A's have a hidden relation. For symmetric matrices the pivots and the eigenvalues
have the same signs: 

The number of positive eigenvalues of S = ST equals the number of positive pivots. 
Special case: S has all Ai > 0 if and only if all pivots are positive.

That special case is an all-important fact for positive defin ite matrices in Section 6.5.

Example 4 This symmetric matrix has one positive eigenvalue and one positive pivot:

Matching signs 
s 

= [! f] has pivots 1 and -8 
eigenvalues 4 and -2.

The signs of the pivots match the signs of the eigenvalues, one plus and one minus.
This could be false when the matrix is not symmetric: 

Opposite signs B = [ _ � _:] 
has pivots 1 and 2 
eigenvalues -1 and -2.

The diagonal entries are a third set of numbers and we say nothing about them.

Here is a proof that the pivots and eigenvalues have matching signs, when S = ST .

You see it best when the pivots are divided out of the rows of U. Then S is LDLT . 
The diagonal pivot matrix D goes between triangular matrices L and LT: 

[! f] = [� �] [
1 _8] [� �] This isS=LDLT .It issymmetric.

Watch the eigenvalues of LD LT when L moves to I. S changes to D. 

The eigenvalues of LDLT are 4 and -2. The eigenvalues of IDJT are 1 and -8 (the
pivots!). The eigenvalues are changing, as the "3" in L moves to zero. But to change sign,
a real eigenvalue would have to cross zero. The matrix would at that moment be singular.
Our changing matrix always has pivots 1 and -8, so it is never singular. The signs cannot
change, as the A's move to the d's. 

We repeat the proof for any S = LDLT . Move L toward I, by moving the off-diagonal
entries to zero. The pivots are not changing and not zero. The eigenvalues A of LDLT 

change to the eigenvalues d of ID IT . Since these eigenvalues cannot cross zero as they
move into the pivots, their signs cannot change. Sa me signs for the A's and d's. 

This connects the two halves of applied linear algebra-pivots and eigenvalues. 
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All Symmetric Matrices are Diagonalizable 

When no eigenvalues of A are repeated, the eigenvectors are sure to be independent. 
Then A can be diagonalized. But a repeated eigenvalue can produce a shortage of 
eigenvectors. This sometimes happens for nonsymmetric matrices. It never happens 
for symmetric matrices. There are always enough eigenvectors to diagonalize S = ST . 

Here is one idea for a proof. Change S slightly by a diagonal matrix diag( c, 2c, ... , nc). 
If c is very small, the new symmetric matrix will have no repeated eigenvalues. Then we 
know it has a full set of orthonormal eigenvectors. As c ---+ 0 we obtain n orthonormal 
eigenvectors of the original S--even if some eigenvalues of that S are repeated. 

Every mathematician knows that this argument is incomplete. How do we guarantee 
that the small diagonal matrix will separate the eigenvalues? (I am sure this is true.) 

A different proof comes from a useful new factorization that applies to all square 
matrices A, symmetric or not. This new factorization quickly produces S = QAQT with a 
full set of real orthonormal eigenvectors when S is any real symmetric matrix. 

-T

Every square A factors into QTQ- 1 where Tis upper triangular and Q = Q- 1
• 

If A has real eigenvalues then Q and T can be chosen real: QT Q = I. 

This is Schur's Theorem. Its proof will go onto the website math.mit.edu/linearalgebra. 
Here I will show how Tis diagonal (T = A) when Sis symmetric. Then Sis QAQT. 

We know that every symmetric S has real eigenvalues, and Schur allows repeated A's: 

Schur's S = QTQ- 1 means that T = QT SQ. The transpose is again QT SQ. 
The triangular T is symmetric when ST = S. Then T must be diagonal and T = A. 

This proves that S = QAQ- 1
. The symmetric S has n orthonormal eigenvectors in Q. 

Note. I have added another proof in Section 7.2 of this book. That proof shows how the 
eigenvalues>, can be described one at a time. The largest >.1 is the maximum of xT Sx/xT x. 
Then >.2 (second largest) is again the same maximum, if we only allow vectors x that 
are perpendicular to the first eigenvector. The third eigenvalue >.3 comes by requiring 
X T ql = 0 and X T q2 = 0 ... 

This proof is placed in Chapter 7 because the same one-at-a-time idea succeeds for the 
singular values of any matrix A. Singular values come from AT A and AA T. 

• REVIEW OF THE KEY IDEAS •

1. Every symmetric matrix S has real eigenvalues and perpendicular eigenvectors.

2. Diagonalization becomes S = QAQT with an orthogonal eigenvector matrix Q.

3. All symmetric matrices are diagonalizable, even with repeated eigenvalues.

4. The signs of the eigenvalues match the signs of the pivots, when S = ST .

5. Every square matrix can be "triangularized" by A= QTQ- 1
. If A= S then T = A.
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• WORKED EXAMPLES • 

6.4 A What matrix A has eigenvalues A = 1, -1 and eigenvectors x 1 = (cos 0, sin 0)
and x2 = ( - sin 0, cos 0)? Which of these properties can be predicted in advance? 

A=A T A 2=I detA=-1 pivot are+and - A- 1=A

Solution All those properties can be predicted! With real eigenvalues 1, -1 and 
orthonormal x 1 and x2 , the matrix A = QAQT must be symmetric. The eigenvalues 
1 and -1 tell us that A 2 = I (since A2 = 1) and A- 1 = A (same thing) and det A = -1. 
The two pivots must be positive and negative like the eigenvalues, since A is symmetric. 

The matrix will be a reflection. Vectors in the direction of x 1 are unchanged by A
(since A = 1). Vectors in the perpendicular direction are reversed (since A = -1). The 
reflection A = QAQT is across the "0-line". Write c for cos 0 and s for sin 0: 

A= [
c -s

J [
1 O

J [ 
c s

J 
= 

[
c2 

- s2 2cs 
J = [

cos20 sin20
J s c O -1 -s c 2cs s2 

- c2 sin 20 - cos 20 ·

Notice that x = ( 1, 0) goes to Ax = ( cos 20, sin 20) on the 20-line. And ( cos 20, sin 20) 
goes back across the 0-line to x = (1, 0). 

6.4 B Find the eigenvalues and eigenvectors (discrete sines and cosines) of A3 and B4. 

-1 B4 = 

r 

-1
2 -1

-1 2
-1 -: l

The -1, 2, -1 pattern in both matrices is a "second difference". This is like a second 
derivative. Then Ax= AX and Bx= AX are like d2x/dt2 = Ax. This has eigenvectors 
x = sin kt and x = cos kt that are the bases for Fourier series. 

An and Bn lead to "discrete sines" and "discrete cosines" that are the bases for the 
Discrete Fourier Transform. This DFT is absolutely central to all areas of digital signal 
processing. The favorite choice for JPEG in image processing has been B8 of size n = 8. 
Solution The eigenvalues of A3 are A = 2 -y'2 and 2 and 2 + y'2 (see 6.3 B). Their 
sum is 6 (the trace of A3) and their product is 4 (the determinant). The eigenvector matrix 
gives the "Discrete Sine Transform" and the eigenvectors fall onto sine curves. 

[ 

1 v'2 1 i . r � v'2
1
- 1 -�

Sines 

� -J2 -�
Cosmes = 

� 
l
-:=_(2 -� 1 -

l
v'2 lv'2 - 1  

-1

Sine matrix = Eigenvectors of A3 Cosine matrix = Eigenvectors of B4 
The eigenvalues of B4 are A = 2-y'2 and 2 and 2 + y'2 and O (the same as for A3, plus 

the zero eigenvalue). The trace is still 6, but the determinant is now zero. The eigenvector 
matrix C gives the 4-point "Discrete Cosine Transform". The graph on the Web shows how 
the first two eigenvectors fall onto cosine curves. (So do all the eigenvectors of B.) These 
eigenvectors match cosines at the halfway points 1r /8, 31r /8, 51r /8, 71r /8. 
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Problem Set 6.4 

1 Which of these matrices ASE will be symmetric with eigenvalues 1 and -1? 
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E = AT doesn't do it. E = A- 1 doesn't do it. E = will succeed. 
So E must be an matrix. 

2 Suppose S = ST . When is ASE also symmetric with the same eigenvalues as S? 

(a) Transpose ASE to see that it stays symmetric when E = __ .
(b) ASE is similar to S (same eigenvalues) when E = __ .

Put (a) and (b) together. The symmetric matrices similar to S look like ( _ )S( _ ). 

3 Write A as S + N, symmetric matrix S plus skew-symmetric matrix N: 

A = [! � �i = S + N 
8 6 5 

(ST = S and NT = -N). 

For any square matrix, S =½(A+ AT) and N = __ add up to A. 

4 If C is symmetric prove that AT C A is also symmetric. (Transpose it.) When A is 6 
by 3, what are the shapes of C and ATCA? 

5 Find the eigenvalues and the unit eigenvectors of 

s 
= 

[; � �i 2 0 0 

6 Find an orthogonal matrix Q that diagonalizes S = [-� �]. What is A? 

7 Find an orthogonal matrix Q that diagonalizes this symmetric matrix: 

8 

s 
= [� -� _;] 

2 -2 0 

Find all orthogonal matrices that diagonalize S = [ 1
; 12] 16 .

9 (a) Find a symmetric matrix [ i �] that has a negative eigenvalue.
(b) How do you know it must have a negative pivot?
(c) How do you know it can't have two negative eigenvalues?
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i O If A 3 
= 0 then the eigenvalues of A must be _ _  . Give an example that hasA =I= 0. But if A is symmetric, diagonalize it to prove that A must be a zero matrix.

11 If A = a + ib is an eigenvalue of a real matrix A, then its conjugate "X = a - ib isalso an eigenvalue. (If Ax = Ax then also Ax = "Xx: a conjugate pair A and °X.)
Explain why every real 3 by 3 matrix has at least one real eigenvalue. 

12 Here is a quick "proof" that the eigenvalues of every real matrix A are real:
False proof Ax = AX gives x T Ax = AXT x so A = x T Ax = real

xT x real
Find the flaw in this reasoning-a hidden assumption that is not justified. You could
test those steps on the 90° rotation matrix [ 0 -1; 1 0 ] with A = i and x = ( i, 1).

13 Write S and Bin the form A1x1x'f + A2 x2 x:f of the spectral theorem QAQT: 
12]
16 

14 Every 2 by 2 symmetric matrix is A1x1x'f + A2x2x:f = A1A + A2 P2. Explain
A+ P2 = x1x'f + x2x:f = I from columns times rows of Q. Why is AP2 = O? 

15 What are the eigenvalues of A = [_� �]? Create a 4 by 4 antisymmetric matrix
(AT 

= -A) and verify that all its eigenvalues are imaginary.
16 (Recommended) This matrix M is antisymmetric and also . Then all its

eigenvalues are pure imaginary and they also have I A I = 1. ( 11 M x 11 = 11 x 11 for everyx so II Ax II = llxll for eigenvectors.) Find all four eigenvalues from the trace of M: 
r O 11 -1 0 M=

J3 -l 1 -1 -1 
-1 0 can only have eigenvalues i or - i. 

17 Show that this A (symmetric but complex) has only one line of eigenvectors:
A= [: _!] is not even diagonalizable: eigenvalues A= 0, 0.

AT = A is not such a special property for complex matrices. The good property is
AT = A (Section 9.2). Then all A's are real and the eigenvectors are orthogonal.

18 Even if A is rectangular, the block matrix S = [ }T i] is symmetric:

Sx = Ax is which is
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(a) Show that -A is also an eigenvalue, with the eigenvector (y, -z).

(b) Show that AT Az = A 2 z, so that A 2 is an eigenvalue of AT A.

(c) If A= I (2 by 2) find all four eigenvalues and eigenvectors of S.

19 If A = [ �] in Problem 18, find all three eigenvalues and eigenvectors of S. 
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20 Another proof that eigenvectors are perpendicular when S = ST . Two steps: 

1. Suppose Sx = AX and Sy = Oy and A # 0. Then y is in the nullspace
and x is in the column space. They are perpendicular because __ . Go
carefully-why are these subspaces orthogonal?

2. If Sy = (3y, apply that argument to S - f3I. One eigenvalue of S - f3I moves
to zero. The eigenvectors x, y stay the same-so they are perpendicular.

21 Find the eigenvector matrices Q for Sand X for B. Show that X doesn't collapse 
at d = l, even though A = l is repeated. Are those eigenvectors perpendicular? 

22 Write a 2 by 2 complex matrix with I
? 

= S (a "Hermitian matrix"). Find ,\1 and ,\2 

for your complex matrix. Check that x{ x2 = 0 (this is complex orthogonality). 

23 True (with reason) or false (with example). 

(a) A matrix with real eigenvalues and n real eigenvectors is symmetric.

(b) A matrix with real eigenvalues and n orthonormal eigenvectors is symmetric.

(c) The inverse of an invertible symmetric matrix is symmetric.

(d) The eigenvector matrix Q of a symmetric matrix is symmetric.

24 (A paradox for instructors) If AAT = AT A then A and AT share the same eigen­
vectors (true). A and AT always share the same eigenvalues. Find the flaw in this 
conclusion: A and AT must have the same X and same A. Therefore A equals AT . 

25 (Recommended) Which of these classes of matrices do A and B belong to: 
Invertible, orthogonal, projection, permutation, diagonalizable, Markov? 

Which of these factorizations are possible for A and B: LU, QR, X Ax- 1
, QAQT? 

26 What number bin A= [ i g] makes A= QAQT possible? What number will make 
it impossible to diagonalize A? What number makes A singular? 
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27 Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two numberscan be eigenvalues of those two matrices? 
28 This A is nearly symmetric. But its eigenvectors are far from orthogonal:

[1 10-15 ] 
A =  0 1 + 10-15 has eigenvectors [�] and [?]

What is the angle between the eigenvectors?
29 (MATLAB) Take two symmetric matrices with different eigenvectors, say A = [ fi g]

and B = [ 1 fi]. Graph the eigenvalues >. 1 (A+ tB) and >-2 (A+ tB) for -8 < t < 8.Peter Lax says on page 113 of Linear Algebra that >.1 and >.2 appear to be on acollision course at certain values of t. "Yet at the last minute they turn aside."
How close does >-1 come to >-2 ? 

Challenge Problems 

30 For complex matrices, the symmetry ST = S that produces real eigenvalues must
change in Section 9.2 to ST 

= S. From det(S - >.I) = 0, find the eigenvalues of
the 2 by 2 Hermitian matrix S = [4 2 + i; 2 - i OJ= ST .

31 Normal matrices have N
T

N = N N
T

. For real matrices, this is NT N = N NT .Normal includes symmetric, skew-symmetric, and orthogonal (with real >., imagi­nary>-, and i>-1 = 1). Other normal matrices can have any complex eigenvalues. 
Key point: Normal matrices have n orthonormal eigenvectors. Those vectors Xi probably will have complex components. In that complex case (Chapter 9)orthogonality means x; x j = 0. Inner products ( dot products) x Ty become xT y. 
The test for n orthonormal columns in Q becomes Q

T 

Q = I instead of QT Q = I. 

N has n orthonormal eigenvectors (N = QAQ
T

) if and only if N is normal.

-T -T -T -T (a) StartfromN=QAQ withQ Q =I. Show thatN N=NN : Nis normal.
-T -T -T (b) Now start from N N = N N . Schur found A = QTQ for every matrix A,with a triangular T. For normal matrices A = N we must show (in 3 steps)that this triangular matrix T will actually be diagonal. Then T = A. 

-T -T -T -T -T 

Stepl.PutN=QTQ intoN N= NN tofindT T =TT .

[ a b ] -T -T Step 2. Suppose T = 0 d 
has T T = TT . Prove that b = 0.

Step 3. Extend Step 2 to size n. Any normal triangular T must be diagonal.
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32 If Amax is the largest eigenvalue of a symmetric matrix S, no diagonal entry can be 
larger than Amax · What is the first entry au of S = QAQT? Show why au ::; Amax · 

33 Suppose A T = -A (real antisymmetric matrix). Explain these facts about A: 

(a) x T Ax = 0 for every real vector x. 

(b) The eigenvalues of A are pure imaginary.

( c) The determinant of A is positive or zero (not negative).

For (a), multiply out an example of xT Ax and watch terms cancel. Or reverse 
xT (Ax) to -(Ax)T x. For (b), Az = AZ leads to :zT Az = AZT z = Allzll2

• Part(a) 
shows that :zT Az = ( x - iy) TA( x + iy) has zero real part. Then (b) helps with ( c ). 

34 If Sis symmetric and all its eigenvalues are A= 2, how do you know that S must be 
21? Key point: Symmetry guarantees that S = Q AQT . What is that A? 

35 Which symmetric matrices Sare also orthogonal? Then ST = s- 1
. 

(a) Show how symmetry and orthogonality lead to S2 = I.

(b) What are the possible eigenvalues of this S ?

( c) What are the possible eigenvalue matrices A ?  Then S must be Q AQT for those
A and any orthogonal Q.

36 If Sis symmetric, show that A T SA is also symmetric (take the transpose of A T SA). 
Here A is m by n and S is m by m. Are eigenvalues of S = eigenvalues of A TS A ? 

In case A is square and invertible, A T S A is called congruent to S. They have 

the same number of positive, negative, and zero eigenvalues: Law of Inertia. 

37 Here is a way to show that a is in between the eigenvalues A1 and A2 of S: 

det (S - AI) = A2 - aA - CA+ ac - b2 

is a parabola opening upwards (because of >.2 ) 

Show that det ( S - >.I) is negative at >. = a. So the parabola crosses the axis left
and right of >. = a. It crosses at the two eigenvalues of S so they must enclose a. 

The n - 1 eigenvalues of A always fall between the n eigenvalues of S = [ :T : ] . 
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6.5 Positive Definite Matrices 

1 Symmetric S : all eigenvalues > 0 {:} all pivots > 0 {:} all upper left determinants > 0.

2 The matrix Sis then positive definite. The energy test is x T Sx > 0 for all vectors x -/- 0.

3 One more test for positive definiteness : S = AT A with independent columns in A.

4 Positive semidefinite Sallows.\= 0, pivot= 0, determinant= 0, energy xT Sx = 0.

5 The equation xT Sx = l gives an ellipse in Rn when Sis symmetric positive definite.

This section concentrates on symmetric matrices that have positive eigenvalues. If
symmetry makes a matrix important, this extra property (all>. > 0) makes it truly special. 
When we say special, we don't mean rare. Symmetric matrices with positive eigenvalues
are at the center of all kinds of applications. They are called positive definite. 

The first problem is to recognize positive definite matrices. You may say, just find all the
eigenvalues and test.\ > 0. That is exactly what we want to avoid. Calculating eigenvalues
is work. When the .\'s are needed, we can compute them. But if we just want to know that
all the A's are positive, there are faster ways. Here are two goals of this section: 

• To find quick tests on a symmetric matrix that guarantee positive eigenvalues.

• To explain important applications of positive definiteness.

Every eigenvalue is real because the matrix is symmetric.

Start with 2 by 2. When does S = [ � �] have Ai > 0 and A2 > 0?

Test: The eigenvalues of Sare positive if and only if a > 0 and ac - b2 
> 0.

S1 = [ � �] is not positive definite because ac - b2 = l - 4 < 0

S2 = [ -� 
-�] is positive definite because a = l and ac - b2 = 6 - 4 > 0

S3 = [ -� -�] is not positive definite ( even with det A = + 2) because a = -l

The eigenvalues 3 and -1 of Si confirm that S1 is not positive definite. Positive trace
3 - 1 = 2, but negative determinant (3)(-1) = -3. And S3 = -S2 is negative definite. 
Two positive eigenvalues for S2 , two negative eigenvalues for S3 . 

Proof that the 2 by 2 test is passed when .\1 > 0 and .\2 > 0. Their product .\1 .\2 is the
determinant so ac - b2 > 0. Their sum .\1 + .\2 is the trace so a+ c > 0. Then a and c are
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both positive (if a or c is not positive, ac - b2 > 0 will fail). Problem 1 reverses the 
reasoning to show that the tests a > 0 and ac > b2 guarantee )11 > 0 and A2 > 0. 

This test uses the 1 by 1 determinant a and the 2 by 2 determinant ac - b2 . When S is 
3 by 3, det S > 0 is the third part of the test. The next test requires positive pivots.

Test: The eigenvalues of Sare positive if and only if the pivots are positive: 

a>O and 
ac- b

2 
-->0. 

a 

a > 0 is required in both tests. So ac > b2 is also required, for the determinant test and 
now the pivot test. The point is to recognize that ratio as the second pivot of S: 

The first pivot is a

The multiplier is b / a

The second pivot is 

b2 ac - b2 

c--=---

a a 

This connects two big parts of linear algebra. Positive eigenvalues mean positive pivots

and vice versa. Each pivot is a ratio of upper left determinants. The pivots give a quick test 
for A > 0, and they are a lot faster to compute than the eigenvalues. It is very satisfying to 
see pivots and determinants and eigenvalues come together in this course. 

3 by 3 example S � [l 1 
2 
1 

\] is positive definite 
eigenvalues 1, 1, 4 
determinants 2 and 3 and 4 
pivots 2 and 3/2 and 4/3 

S-I will be semidefinite: eigenvalues 0, 0, 3. S- 21 is indefinite because A= -1, -1, 2.
Now comes a different way to look at symmetric matrices with positive eigenvalues.

Energy-based Definition 

From Sx = AX, multiply by x T to get x T Sx = AXT x. The right side is a positive A times 
a positive number x T x = llxll2 . So the left side xT Sx is positive for any eigenvector. 

Important point: The new idea is that x T Sx is positive for all nonzero vectors x,

not just the eigenvectors. In many applications this number xT Sx (or ½x T Sx) is the 
energy in the system. The requirement of positive energy gives anothe r definition of a 
positive definite matrix. I think this energy-based definition is the fundamental one. 

Eigenvalues and pivots are two equivalent ways to test the new requirement xT Sx > 0. 
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Definition S is positive definite if x T Sx > 0for every nonzero vector x:

2by2 xTSx 
= [x y] [� :] [:] = ax2 +2bxy +cy2 

>0. (1) 

The four entries a, b, b, c give the four parts of x T Sx. From a and c come the pure squares 
ax2 and cy2

. From b and b off the diagonal come the cross terms bxy and byx (the same).
Adding those four parts gives x T Sx. This energy-based definition leads to a basic fact: 

If S and T are symmetric positive definite, so is S + T.

Reason: xT (S+T)x is simply xT Sx+xTTx. Those two terms are positive (forx-/- 0)
so S + T is also positive definite. The pivots and eigenvalues are not easy to follow when 
matrices are added, but the energies just add. 

x TS x also connects with our final way to recognize a positive definite matrix.
Start with any matrix A, possibly rectangular. We know that S = AT A is square and 
symmetric. More than that, S will be positive definite when A has independent columns: 

Test: If the columns of A are independent, then S = AT A is positive definite.

Again eigenvalues and pivots are not easy. But the number xT Sx is the same as xT AT Ax.
xT AT Ax is exactly (Ax)T (Ax) = IIAxll2-another important proof by parenthesis! 
That vector Ax is not zero when x -/- 0 (this is the meaning of independent columns).
Then xT Sx is the positive number 11Axll2 and the matrix Sis positive definite. 

Let me collect this theory together, into five equivalent statements of positive definite­
ness. You will see how that key idea connects the whole subject of linear algebra: pivots, 
determinants, eigenvalues, and least squares (from AT A). Then come the applications.

When a symmetric matrix S has one of these five properties, it has them all :

1. All n pivots of S are positive.

2. All n upper left determinants are positive.

3. All n eigenvalues of S are positive.

4. x T Sx is positive except at x = 0. This is the energy-based definition.

5. S equals AT A for a matrix A with independent columns.

The "upper left determinants" are 1 by 1, 2 by 2, ... , n by n. The last one is the determinant 
of the complete matrix S. This theorem ties together the whole linear algebra course. 
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Example 1 Test these symmetric matrices S and T for positive definiteness : 

and 

353 

Solution The pivots of S are 2 and ½ and ½, all positive. Its upper left determinants are 2
and 3 and 4, all positive. The eigenvalues of S are 2 - v'2 and 2 and 2 + \1'2, all positive. 
That completes tests 1, 2, and 3. Any one test is decisive! 

I have three candidates A 1, A2, A3 to suggest for S = AT A. They all show that S is 
positive definite. A 1 is a first difference matrix, 4 by 3, to produce -1, 2, -1 in S: 

H ] -!l [� 
-1

1 
0 

0 
-1

1

The three columns of A 1 are independent. Therefore S is positive definite. 
A2 comes from S = LDLT (the symmetric version of S = LU). Elimination gives 

the pivots 2, ½,½ in D and the multipliers-½, 0, -j in L. Just put A2 = Lffi. 

LDLT = [-; 1 l [ 2 ½ l [
l 

-i -i] = (LvJ5)(LvJ5? = A'.f A2 . 
O -j 1 ½ 1 A2 is the Cholesky factor of S 

This triangular choice of A has square roots (not so beautiful). It is the "Cholesky factor" 
of Sand the MATLAB command is A = chol(S). In applications, the rectangular A 1 is 
how we build S and this Cholesky A2 is how we break it apart. 

Eigenvalues give the symmetric choice A3 = Qv'i\.QT . This is also successful with 
A§ A3 = QAQT = S. All tests show that the -1, 2, -1 matrix Sis positive definite. 

To see that the energy x T Sx is positive, we can write it as a sum of squares. The three 
choices A 1, A2, A3 give three different ways to split up x T Sx: 

XT Sx = 2Xi - 2x 1X2 + 2x§ - 2x 2X3 + 2x� 

IIA 1 xll2 =Xi+ (x 2 - x 1 ) 2 + (x3 - x2 ) 2
 + x�

Rewrite with squares 

Using differences in A1 

IIA 2 xll2 = 2(x 1 - ½x 2 ) 2 + ½(x2 - jx3) 2 + ½ x� Using S = LDLT 

IIA3xll2 = >-.1(qtx)2 + >-.2(q'.f x)2 + A3(q§x)2 Using S = QAQT 

Now turn to T (top of this page). The (1, 3) and (3, 1) entries move away from Oto b.

This b must not be too large! The determinant test is easiest. The 1 by 1 determinant is 2, 
the 2 by 2 determinant T is still 3. The 3 by 3 determinant involves b: 

Test on T det T = 4 + 2b - 2b2 = ( 1 + b) ( 4 - 2b) must be positive. 

At b = -l and b = 2 we get det T = 0. Between b = -land b = 2 this matrix T

is positive definite. The corner entry b = 0 in the matrix S was safely between -1 and 2. 
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Positive Semidefinite Matrices 

Often we are at the edge of positive definiteness. The determinant is zero. The smallest 
eigenvalue is zero. The energy in its eigenvector is x T Sx = x Tox = 0. These matrices 
on the edge are called positive semidefinite. Here are two examples (not invertible): 

S � [; ! ] and T � [ =: ] = i] are positive semidefinite

S has eigenvalues 5 and 0. Its upper left determinants are 1 and 0. Its rank is only 1. This 
matrix S factors into AT 

A with dependent columns in A: 

Dependent columns in A

Positive semidefinite S

If 4 is increased by any small number, the matrix S will become positive definite. 
The cyclic T also has zero determinant (computed above when b = -1). Tis singular. 

The eigenvector x = (l, 1, 1) has Tx = 0 and energy xTTx = 0. Vectors x in all other 
directions do give positive energy. This T can be written as AT 

A in many ways, but A
will always have dependent columns, with ( 1, 1, 1) in its nullspace: 

Second differences T 

from first differences A

Cyclic T from cyclic A
[ 2 -1 -1] [ 1 -1 o

l [ 
1 o -1] -1 2 -1 0 1 -1 -1 1 0 -1 -1 2 -1 0 1 0 -1 1 

Positive semidefinite matrices have all .\ 2 0 and all x T Sx 2 0. Those weak inequalities 
( � instead of > ) include positive definite S and also the singular matrices at the edge.

The Ellipse ax2 + 2bxy + cy2 
= 1 

Think of a tilted ellipse x T Sx = l. Its center is (0, 0), as in Figure 6.7a. Tum it to line up 
with the coordinate axes (X and Y axes). That is Figure 6.7b. These two pictures show the 
geometry behind the factorization S = QAQ- 1 = QAQT : 

1. The tilted ellipse is associated with S. Its equation is x T Sx = l.

2. The lined-up ellipse is associated with A. Its equation is XT AX = 1. 

3. The rotation matrix that lines up the ellipse is the eigenvector matrix Q.

Example 2 Find the axes of this tilted ellipse 5x2 
+ 8xy + 5y2 

= 1. 

Solution Start with the positive definite matrix that matches this equation: 

The equation is [ x y] [ � : ] [;] = 1. The matrix is S = [� !] . 
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Figure 6.7: The tilted ellipse 5x2 + 8xy + 5y2 
= 1. Lined up it is 9X2 + Y2 

= 1. 

The eigenvectors are [ ½] and [_!]. Divide by v'2 for unit vectors. Then S = QAQT: 
Eigenvectors in Q 

Eigenvalues 9 and 1 [5 4] 1 [1 1] [9 OJ 1 [1 1] 4 5 = y'2 1 -1 0 1 y'2 1 -1 .

Now multiply by [x y] on the left and[;] on the right to get xTSx = (xTQ)A(QTx): 

x+y x-y 
( )2 ( )2 

x T Sx = sum of squares 5x2 + 8xy + 5y2 = 9 v'2 + 1 v'2 (2) 

The coefficients are not the pivots 5 and 9/5 from D, they are the eigenvalues 9 and 1from A. Inside the squares are the eigenvectors q 1 = (1, 1)/v'2 and q2 = (1, -1)/v'2. 
The axes of the tilted ellipse point along those eigenvectors. This explains why 

S = QAQT is called the "principal axis theorem"-it displays the axes. Not only the axis directions (from the eigenvectors) but also the axis lengths (from the eigenvalues).To see it all, use capital letters for the new coordinates that line up the ellipse : 
Lined up and x-y --=Y v'2 and 9X2 + y2 

= l. 

The largest value of X2 is 1/9. The endpoint of the shorter axis has X = 1/3 and Y = 0. Notice: The bigger eigenvalue .\ 1 gives the shorter axis, of half-length 1/� = 1/3. The smaller eigenvalue >-2 = 1 gives the greater length 1/ 0½ = 1. 
In the xy system, the axes are along the eigenvectors of S. In the XY system, the 

axes are along the eigenvectors of A-the coordinate axes. All comes from S = QAQT . 
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S = Q AQT is positive definite when all Ai > 0. The graph of x T Sx = l is an ellipse:

Ellipse [x y] QAQT [;] = [X Y] A [i] = .X1 X2 
+ .X2Y2 

= 1. (3)

The axes point along eigenvectors of S. The half-lengths are 1 / � and 1 / JX;°.

S = I gives the circle x2 + y2 = 1. If one eigenvalue is negative (exchange 4's and 5's
in S), the ellipse changes to a hyperbola. The sum of squares becomes a difference of
squares: 9X2 

- Y2 = 1. For a negative definite matrix like S = -I, with both .X's
negative, the graph of -x2 - y2 = 1 has no points at all. 

If S is n by n, xT Sx = l is an "ellipsoid" in Rn . Its axes are the eigenvectors of S.

Important Application: Test for a Minimum 

Does F(x, y) have a minimum if 8F/8x = 0 and 8F/8y = 0 at the point (x, y) = (0, O)?

For f ( x ), the test for a minimum comes from calculus: df / dx is zero and d2 f / dx2 > 0.
Two variables in F(x, y) produce a symmetric matrix S. It contains four second deriva­
tives. Positive d2 f / dx2 changes to positive definite S: 

Second 
derivatives 

s - [ 82 FI 8x2 82 FI 8x8y ]- 82 F/8y8x 82 F/8y2 

X 

F ( x, y) has a minimum if a F / 8x = a F / 8y = 0 and S is positive definite. 

Reason: S reveals the all-important terms ax2 
+ 2bxy + cy2 near (x, y) = (0, 0).

The second derivatives of Fare 2a, 2b, 2b, 2c. For F(x, y, z) the matrix Swill be 3 by 3.

• REVIEW OF THE KEY IDEAS •

1. Positive definite matrices have positive eigenvalues and positive pivots.

2. A quick test is given by the upper left determinants: a > 0 and ac - b2 > 0.

3. The graph of the energy x T Sx is then a "bowl" going up from x = 0:

x T Sx = ax2 
+ 2bxy + cy2 is positive except at (x, y) = (0, 0).

4. S= AT A is automatically positive definite if A has independent columns.

5. The ellipsoid x T Sx = l has its axes along the eigenvectors of S. Lengths 1 / ,/>...

6. Minimum of F(x, y) if!:=!: =0 and 2nd derivative matrix is positive definite.
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• WORKED EXAMPLES • 

6.5 A The great factorizations of a symmetric matrix are S = LDLT from pivots and
multipliers, and S = QAQT from eigenvalues and eigenvectors. Try these n by n tests
on pascal(6) and ones(6) and hilb(6) and other matrices in MATLAB's gallery. 
pascal(6) is positive definite because all its pivots are 1 (Worked Example 2.6 A).

ones(6) is positive semidefinite because its eigenvalues are 0, 0, 0, 0, 0, 6.

H:hilb(6) is positive definite even though eig(H) shows eigenvalues very near zero. 
Hilbert matrix xT Hx = f0

1 (xi+ x2s + · · · + x5s5)2 ds > 0, Hij = 1/(i + j - l).

rand(6) + rand(6)' can be positive definite or not. Experiments gave only 2 in 20000.
n = 20000;p = O; fork= l :n, A= rand(6); p = p + all(eig(A +A')> O); end, p / n 

6.5 B When is the symmetric block matrix M = [ ;;-T � ] positive definite?

Solution Multiply the first row of M by BT A- 1 and subtract from the second row, to
get a block of zeros. The Schur complement S = C - BT A- 1 B appears in the corner:

[_B1A- 1 �J[;;-T �]=[i C-B�A- 1B] [i !] (4)

Those two blocks A and S must be positive definite. Their pivots are the pivots of M. 

6.5 C Find the eigenvalues of the -1, 2, -1 tridiagonal n by n matrix S (my favorite).
Solution The best way is to guess..\ and x. Then check Sx = ..\x. Guessing could not
work for most matrices, but special cases are a big part of mathematics (pure and applied).

The key is hidden in a differential equation. The second difference matrix S is like a
second derivative, and those eigenvalues are much easier to see:

Eigenvalues A1, A2, .. . 

Eigenfunctions Y1, Y2, .. . 

d2
y 

dx2 = ..\y(x) with y(0) = 0
y(l) = 0 (5) 

Try y = sin ex. Its second derivative is y" = -e2 sin ex. So the eigenvalue in (5) will be
..\ = -e2

, provided y = sin ex satisfies the end point conditions y(0) = 0 = y(l). 
Certainly sin O = 0 (this is where cosines are eliminated). At the other end x = l,

we need y(l) =sine= 0. The number e must be br, a multiple of Jr. Then..\ is -k2
1r

2
: 

Eigenvalues A = -k2
1r

2 

Eigenfunctions y = sin k7rx
d\ sin k1rx = -k2

1r
2 sin k1rx. 

dx (6) 

Now we go back to the matrix S and guess its eigenvectors. They come from sin k1rx 
at n points x = h, 2h, ... , nh, equally spaced between 0 and 1. The spacing �x is h =

1/(n + 1), so the (n + l)st point has (n + l)h = l. Multiply that sine vector x by S: 
Eigenvalue of S is positive S x = Ak x = ( 2 - 2 cos k7r h) x
Eigenvector of S is sine vector x = (sin kJrh, ... , sin nk1rh). (7)
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Problem Set 6.5 

Problems 1-13 are about tests for positive definiteness. 

1 Suppose the 2 by 2 tests a > 0 and ac - b2 > 0 are passed. Then c > b2 / a > 0. 

(i) .\1 and >-2 have the same sign because their product .\1 .\2 equals __ .

(i) That sign is positive because .\1 + .\2 equals __ .

Conclusion: The tests a > 0, ac - b2 > 0 guarantee positive eigenvalues .\1 , .\2 . 

2 Which of S1 , S2, S3, S4 has two positive eigenvalues? Use a test, don't compute the 
.\'s. Also find an x so that x T S1 x < 0, so S1 is not positive definite. 

_ [-1 -2] 
S2 - -2 -5 [ 1 10]53 = 10 100 

3 For which numbers b and care these matrices positive definite? 

s = [! �] s = 
[
� !] S=[��]-

With the pivots in D and multiplier in L, factor each A into LD LT .

4 What is the function f = ax2 + 2bxy + cy 2 for each of these matrices? Complete 
the square to write each fas a sum of one or two squares f = d1 ( ) 2 + d2 ( ) 2 . 

f = 
[x y] [ S ] [;] 

5 Write f(x, y) = x2 + 4xy + 3y 2 as a difference of squares and find a point (x, y)
where f is negative. No minimum at (0, 0) even though f has positive coefficients. 

6 The function f (x, y) = 2xy certainly has a saddle point and not a minimum at (0, 0). 
What symmetric matrix S produces this f? What are its eigenvalues? 

7 Test to see if AT A is positive definite in each case: A needs independent columns. 

8 The function f(x, y) = 3(x + 2y) 2 + 4y 2 is positive except at (0, 0). What is the 
matrix inf= [ x y ]S[ x y ]T? Check that the pivots of A are 3 and 4. 
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9 Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant: 

[x, x, x,] [ S l rn:l �4(x, -x, +2x,)'.

10 Which 3 by 3 symmetric matrices Sand T produce these quadratics? 
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XT Sx = 2 (xr + X§ + X§ 
- X1X2 - X2X3). Why is S positive definite?

xTTx = 2(xr + X§ + X§ 
- X1X2 - X1X3 - X2x3). Why is T semidefinite?

11 Compute the three upper left determinants of S to establish positive definiteness. 
Verify that their ratios give the second and third pivots. 

Pivots = ratios of determi.nants 

12 For what numbers c and dare Sand T positive definite? Test their 3 determinants: 

and 

13 Find a matrix with a > 0 and c > 0 and a + c > 2b that has a negative eigenvalue. 

Problems 14-20 are about applications of the tests. 

14 If S is positive definite then s- 1 is positive definite. Best proof: The eigenvalues 
of s-

1 are positive because __ . Second proof ( only for 2 by 2): 

1 
1 [ C -b]The entries of s- = ---

2 b ac - b - a 
pass the determinant tests 

15 If Sand Tare positive definite, their sum S +T is positive definite. Pivots and 
eigenvalues are not convenient for S + T. Better to use xT (S + T)x > 0. Also 
S = AT A and T = BT B give S + T = [ A B ] T [ �] with independent columns. 

16 A positive definite matrix cannot have a zero (or even worse, a negative number) 
on its main diagonal. Show that this matrix fails to have x T Sx > 0: 

[ xl X2 X3 l [4� �

1 

�

l

l [
x

::

1
] is not positive when (x1, x2, X3) = ( ) 

17 A diagonal entry Sjj of a symmetric matrix cannot be smaller than all the >.'s. If it 
were, then S - SjjI would have __ eigenvalues and would be positive definite. 
But S - SjjI has a __ on the main diagonal. 
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18 If Sx = >-.x then x T Sx = __ . Why is this number positive when)., > O?
19 Reverse Problem 18 to show that if all)., > 0 then xT Sx > 0. We must do thisfor every nonzero x, not just the eigenvectors. So write x as a combination of the

eigenvectors and explain why all "cross terms" are x; Xj = 0. Then xT Sx is 
(c1X1 +· · +cnXn)T 

(c1A1X1 +· · +cnAnXn) = CiA1X{ X1 +· · ·+c;;,>-.nxJxn > 0.
20 Give a quick reason why each of these statements is true : 

(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is P = I.

( c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite!

Problems 21-24 use the eigenvalues; Problems 25-27 are based on pivots.
21 For which sand t do Sand T have all>-. > 0 (therefore positive definite)?

[ s -4 -4] 
S = -4 s -4

-4 -4 s 
and

22 From S = QAQT compute the positive definite symmetric square root Q,/li._QT 

of each matrix. Check that this square root gives AT 
A = S: 

s = [� :] and S = [ 1� 
1
�] ·

23 You may have seen the equation for an ellipse as x2 / a2 
+ y2 /b2 = 1. What are aand b when the equation is written >-.1x2 

+ >-.2y2 = 1? The ellipse 9x2 
+ 4y2 = 1has axes with half-lengths a = __ and b = __ . 

24 Draw the tilted ellipse x2 
+ xy + y2 = 1 and find the half-lengths of its axes from

the eigenvalues of the corresponding matrix S. 

25 With positive pivots in D, the factorization S = LDLT becomes L/l5/l5LT .(Square roots of the pivots give D = /l5/l5.) Then C = /l5LT yields the
Cholesky factorization A = CT C which is "symmetrized L U": 

From C = [� �] find S. From S = [ ! 2!] find C = chol(S).

26 In the Cholesky factorization S = CT C, with C = vJ5 LT , the square roots of thepivots are on the diagonal of C. Find C (upper triangular) for 

and
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27 The symmetric factorization S = LDLT means that xT Sx = xT LDLT x: 

28 

The left side is ax2 + 2bxy + cy2 . The right side is a ( x + ¾ y) 2 

+ _ _ y2 . 

The second pivot completes the square! Test with a= 2, b = 4, c = 10. 

[
cos0 Without multiplying S = sin 0

- sine
] [

2 o] [ cos e
cos0 0 5 - sin0 

(b) the eigenvalues of S

sine
], findcos0 

(a) the determinant of S
( c) the eigenvectors of S (d) a reason why Sis symmetric positive definite.

29 For F1 (x, y) = ¼x4+x2y+y2 and F2 (x, y) = x3+xy-x find the second derivative 
matrices S1 and S2: 

Test for minimum [ 
82F/8x2 82F/8x8y

l S = 
2 / 2 / 2 

is positive definite 
8 F 8y8x 8 F 8y 

S1 is positive definite so F1 is concave up (=convex). Find the minimum point of F1 . 

Find the saddle point of F2 (look only where first derivatives are zero). 

30 The graph of z = x2 + y2 is a bowl opening upward. The graph of z = x2 - y2 is a
saddle. The graph of z = -x2 - y2 is a bowl opening downward. What is a test on
a, b, c for z = ax2 + 2bxy + cy2 to have a saddle point at (x, y) = (0, O)? 

31 Which values of c give a bowl and which c give a saddle point for the graph of 
z = 4x2 + 12xy + cy2? Describe this graph at the borderline value of c. 

The Minimum of a Function F ( x, y, z) 

What tests would you expect for a minimum point? First come zero slopes : 
8F 8F 8F . . . First derivatives are zero ax 

= ay 
= 

oz 
= 0 at the mm1mum pomt.

Next comes the linear algebra version of the usual calculus test d2 f / dx2 > 0 : 

[ 
Fxx Fxy Fxz l 

Second derivative matrix S is positive definite S = Pyx Fyy Fyz 
Fzx Fzy Fzz 

H F 8 (8F) 8 (8F) F . , . d" d d . . ere xy = 
OX ay 

= ay OX 
= yx lS a m1xe secon envatlve. 
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Challenge Problems 

32 A group of nonsingular matrices includes AB and A - l if it includes A and B. 
"Products and inverses stay in the group." Which of these are groups (as in 2.7.37)? 

Invent a "subgroup " of two of these groups (not I by itself= the smallest group). 

(a) Positive definite symmetric matrices S.

(b) Orthogonal matrices Q.

( c) All exponentials et 
A of a fixed matrix A.

(d) Matiices P with positive eigenvalues.

(e) Matrices D with determinant 1.

33 When S and T are symmetric positive definite, ST might not even be symmetric. 
But its eigenvalues are still positive. Start from STx = AX and take dot products 
with Tx. Then prove A > 0. 

34 Write down the 5 by 5 sine matrix Q from Worked Example 6.5 C, containing the 
eigenvectors of S when n = 5 and h = l/6. Multiply SQ to see the five A's. 

The sum of Xs should equal the trace 10. Their product should be det S = 6. 

35 Suppose C is positive definite (so y T Cy > 0 whenever y =/= 0) and A has indepen­
dent columns (so Ax=/= 0 whenever x =/= 0). Apply the energy test to xT AT CAx 
to show that S = AT C A is positive definite: the crucial matrix in engineering. 

36 Important! Suppose S is positive definite with eigenvalues A1 ?: A2 ?: ... ?: An. 

(a) What are the eigenvalues of the matrix A1 J - S? Is it positive semidefinite?

(b) How does it follow that A1 x T x ?: x T Sx for every x?

(c) Draw this conclusion: The maximum value of xTSx/xTx is __ .

37 For which a and c is this matrix positive definite ? For which a and c is it positive 
semidefinite (this includes definite) ? 

[ 
a a a l 

S= a a+c a-c 
a a-c a+c 

All 5 tests are possible. 

The energy x T S x equals 

a (x1 + x2 + x3)2 
+ c(x2 - x3)2 . 
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Table of Eigenvalues and Eigenvectors 

How are the properties of a matrix reflected in its eigenvalues and eigenvectors? 
This question is fundamental throughout Chapter 6. A table that organizes the key facts may 
be helpful. Here are the special properties of the eigenvalues Ai and the eigenvectors Xi. 

Symmetric: sT = s = QAQT 

Orthogonal: QT = Q-1

Skew-symmetric: AT 
= -A

Complex Hermitian: I
P = S 

Positive Definite: xT Sx > 0 
Markov: mij > 0, I::�=l mij = 1 
Similar: A= BCB- 1 

Projection: P = P 2 = pT 

Plane Rotation : cosine-sine 
Reflection: l - 2uu T 
Rank One: uvT 

Inverse: A - 1 

Shift: A+ cl 
Stable Powers: An -+ 0 
Stable Exponential: eAt -+ O 
Cyclic Permutation: Pi,i+l = 1, Pn1 = 1 
Circulant: c0l + c1P + · · ·

Tridiagonal: -1, 2, -1 on diagonals 
Diagonalizable: A = X Ax- 1 

Schur: A = QTQ- 1 

Jordan: A= BJB- 1 

SVD: A= U�VT 

real eigenvalues 
all IAI = 1 
imaginary Xs 

real A's
allA > 0 

Amax = 1 
A(A) = A(C) 
A= l; 0 
ei0 and e-i0 

A= -1; 1, .. , 1 
A= vTu; 0, .. ,0 
1/ A(A) 
A(A) + C 

all IAI < 1 

orthogonal X[ Xj = 0 
orthogonal X[ Xj = 0 
Orthogonal X[ Xj = 0 

orthogonal X[ Xj = 0 
orthogonal since ST = S 

steady state x > 0 
B times eigenvector of C 
column space; nullspace 
x = (l, i) and (1, -i) 

u; whole plane u-1 

u; whole plane v -1 

keep eigenvectors of A
keep eigenvectors of A

any eigenvectors 
all Re A < 0 any eigenvectors 

Ak = e2nik/n = roots of 1 Xk = (l, Ak , ... 'A�-l) 
Ak =Co+ C1 e2nik/n + · · · Xk = (l, Ak , ... , A�-l) 

Ak = 2 - 2 cos nk

.;1 
Xk = ( sin nk

.;1
, sin �t, ... ) 

diagonal of A columns of X are independent 
diagonal of triangular T columns of Q if AT A = AA T 
diagonal of J each block gives 1 eigenvector 
r singular values in� eigenvectors of AT A, AAT in V, U



Chapter 7 

The Singular Value Decomposition (SVD) 

7 .1 Image Processing by Linear Algebra 

1 An image is a large matrix of grayscale values, one for each pixel and color. 

2 When nearby pixels are correlated (not random) the image can be compressed. 

3 The SVD separates any matrix A into rank one pieces uv T = (column)(row). 

4 The columns and rows are eigenvectors of symmetric matrices AA T and AT A. 

The singular value theorem for A is the eigenvalue theorem for AT 
A and AA T. 

That is a quick preview of what you will see in this chapter. A has two sets of singular 
vectors (the eigenvectors of AT A and AAT). There is one set of positive singular values 
(because AT A has the same positive eigenvalues as AAT). A is often rectangular, but 
AT A and AA T are square, symmetric, and positive semidefinite. 

The Singular Value Decomposition (SVD) separates any matrix into simple pieces. 

Each piece is a column vector times a row vector. An m by n matrix has m times n en­
tries (a big number when the matrix represents an image). But a column and a row only 
have m + n components, far less than m times n. Those (column)(row) pieces are full 
size matrices that can be processed with extreme speed-they need only m plus n numbers. 

Unusually, this image processing application of the SVD is coming before the ma­
trix algebra it depends on. I will start with simple images that only involve one or two 
pieces. Right now I am thinking of an image as a large rectangular matrix. The entries aij 

tell the grayscales of all the pixels in the image. Think of a pixel as a small square, i steps 
across and j steps up from the lower left corner. Its grayscale is a number (often a whole 
number in the range O::; aij < 256 = 28). An all-white pixel has aij = 255 = 11111111. 
That number has eight 1 's when the computer writes 255 in binary notation. 

364 
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You see how an image that has m times n pixels, with each pixel using 8 bits (0 or 1) 
for its grayscale, becomes an m by n matrix with 256 possible values for each entry aij.

In short, an image is a large matrix. To copy it perfectly, we need 8 ( m) ( n) bits of 
information. High definition television typically has m = 1080 and n = 1920. Often 
there are 24 frames each second and you probably like to watch in color (3 color scales). 
This requires transmitting ( 3) ( 8) ( 48, 4 70, 400) bits per second. That is too expensive and 
it is not done. The transmitter can't keep up with the show. 

When compression is well done, you can't see the difference from the original. 
Edges in the image (sudden changes in the grayscale) are the hard parts to compress. 

Major success in compression will be impossible if every aij is an independent random 
number. We totally depend on the fact that nearby pixels generally have similar grayscales.

An edge produces a sudden jump when you cross over it. Cartoons are more compressible 
than real-world images, with edges everywhere. 

For a video, the numbers aij don't change much between frames. We only transmit

the small changes. This is difference coding in the H.264 video compression standard (on 
this book's website). We compress each change matrix by linear algebra (and by nonlinear 
"quantization" for an efficient step to integers in the computer). 

The natural images that we see every day are absolutely ready and open for 
compression-but that doesn't make it easy to do. 

Low Rank Images (Examples) 

The easiest images to compress are all black or all white or all a constant grayscale g.

The matrix A has the same number g in every entry : aij = g. When g = 1 and m = n = 6, 
here is an extreme example of the central SVD dogma of image processing : 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

Example 1 Don't send A=
1 1 1 1 1 1 

Send this A=
1 [111111]1 1 1 1 1 1 1 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

36 numbers become 12 numbers. With 300 by 300 pixels, 90,000 numbers become 600. 
And if we define the all-ones vector x in advance, we only have to send one number.

That number would be the constant grayscale g that multiplies xx T to produce the matrix. 

Of course this first example is extreme. But it makes an important point. If there 
are special vectors like x = ones that can usefully be defined in advance, then image 
processing can be extremely fast. The battle is between preselected bases (the Fourier 
basis allows speed-up from the FFT) and adaptive bases determined by the image. The 
SVD produces bases from the image itself-this is adaptive and it can be expensive. 

I am not saying that the SVD always or usually gives the most effective algorithm in 
practice. The purpose of these next examples is instruction and not production. 
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Example2 
aaccee 1
aaccee 1

"ace flag" 
aaccee 1 French flag A Don't send A = Send A= 1 [aaccee]

Italian flag A 
aaccee 

German flag AT aaccee 1 
aaccee 1

This flag has 3 colors but it still has rank 1. We still have one column times one row. 
The 36 entries could even be all different, provided they keep that rank 1 pattern A = u1 vI.
But when the rank moves up tor = 2, we need u1 Vf + u2v'.f. Here is one choice : 

Example3 
Embedded square 

A = [ � � ] is equal to A = [ � ] [ 1 1 ] - [ � ] [ 0 1 ]

The l's and the O in A could be blocks of l's and a block of O's. We would still
have rank 2. We would still only need two terms u1 vI and u2v'.f. A 6 by 6 image
would be compressed into 24 numbers. An N by N image (N2 numbers) would be
compressed into 4N numbers from the four vectors u1, v1, u2, v2. 

Have I made the best choice for the u's and v's? This is not the choice from the SVD!
I notice that u1 = ( 1, 1) is not orthogonal to u2 = ( 1, 0). And v 1 = ( 1, 1) is not orthogonal
to v2 = ( 0, 1). The theory says that orthogonality will produce a smaller second piece
c2u2v'.f. (The SVD chooses rank one pieces in order of importance.) 

If the rank of A is much higher than 2, as we expect for real images, then A will
add up many rank one pieces. We want the small ones to be really small-they can be
discarded with no loss to visual quality. Image compression becomes lossy, but good
image compression is virtually undetectable by the human visual system. 

The question becomes: What are the orthogonal choices from the SVD?

Eigenvectors for the SVD 

I want to introduce the use of eigenvectors. But the eigenvectors of most images are not
orthogonal. Furthermore the eigenvectors x1, x2 give only one set of vectors, and we want
two sets ( u's and v's). The answer to both of those difficulties is the SVD idea: 

Use the eigenvectors u of AA T and the eigenvectors v of AT A.

Since AAT and AT A are automatically symmetric (but not usually equal!) the u's will be
one orthogonal set and the eigenvectors v will be another orthogonal set. We can and will
make them all unit vectors : I lui 11 = 1 and I lvi I I = 1. Then our rank 2 matrix will be
A = <T1 u1 vI + <T2u2v'.f. The size of those numbers <T1 and CJ2 will decide whether they
can be ignored in compression. We keep larger CJ's, we discard small <T's. 
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The u's from the SYD are called left singular vectors (unit eigenvectors of AAT). 
The v's are right singular vectors (unit eigenvectors of AT A). The cr's are singular

values, square roots of the equal eigenvalues of AA T and AT A : 

In Example 3 (the embedded square), here are the symmetric matrices AAT and AT A: 

ATA=[ll][lO] [21]01 11 11. 

Their determinants are 1, so .>-1 .>-2 = 1. Their traces (diagonal sums) are 3: 

[ 1- .>- 1 ] 
. 3+v15 3- v15 

det 1 2 _ A = .>-2 - 3.>-+ 1 = 0 gives .>- 1 = --
2
- and .>-2 = --

2
-. 

v15+1 v15- 1 . The square roots of .>-1 and >-2 are cr1 = --
2
- and cr2 = --

2
- with cr1 cr2 = 1.

The nearest rank 1 matrix to A will be cr1 u1 vI. The error is only cr2 ,:::: 0.6 = best possible. 

The orthonormal eigenvectors of AA T and AT A are 

u1 = [ :
1 

] u2 = [ �� ] v1 = [ �1 ] v2 = [ -�
i ] all divided by V 1 +err. (2)

Every reader understands that in real life those calculations are done by computers! 
(Certainly not by unreliable professors. I corrected myself using svd (A) in MATLAB.) 
And we can check that the matrix A is correctly recovered from cr1 u1 vI + cr2u2vJ: 

Important The key point is not that images tend to have low rank. No: Images mostly 
have full rank. But they do have low effective rank. This means: Many singular values 
are small and can be set to zero. We transmit a low rank approximation.

Example 4 Suppose the flag has two triangles of different colors. The lower left triangle 
has 1 's and the upper right triangle has O's. The main diagonal is included with the 1 's. 
Here is the image matrix when n = 4. It has full rank r = 4 so it is invertible : 

Triangular 

flag matrix 

0 
1 
1 
1 

0 
0 
1 0 
1 1 

1 
-1

0
0 

0 
1 
-1

0 

0 0 

l 
0 0 

1 0 

-1 1
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With full rank, A has a full set of n singular values u (all positive). The SVD will
produce n pieces (]" i U; V r of rank one. Perfect reproduction needs all n pieces. 

In compression small u's can be discarded with no serious loss in image quality. We
want to understand and plot the u's for n = 4 and also for large n. Notice that Example 3
was the special case n = 2 of this triangular Example 4. 

Working by hand, we begin with AAT (a computer would proceed differently):

[1 
1 1 

!1 
and (AAT) _, "" (A-')'"A ' � [-� 

-1 0 

-] AAT 
= 

2 2 2 -1
2 3 -1 2
2 3 0 -1

That -1, 2, -1 inverse matrix is included because its eigenvalues all have the
2 -2 cos 0. So we know the .\'s for AAT and the u's for A: 

>-= 
1 _ 1 

2-2cos0 4sin2 (0/2) 
gives 

1 
0"=�=---

2 sin( 0 /2)

. (4) 

form

(5) 

The n different angles 0 are equally spaced, which makes this example so exceptional:

0 = _1r_ � (2n - l) 
7f (n = 4 includes 0 = 

3
9
1r with 2 sin �2 

= 1) .2n + 1 ' 2n + 1 ' · · · ' 2n + 1 

That special case gives >- = l as an eigenvalue of AAT when n = 4. So u = � = 1
is a singular value of A. You can check that the vector u = ( 1, 1, 0, -1) has AA Tu = u
(a truly special case). 

The important point is to graph the n singular values of A. Those numbers drop off
(unlike the eigenvalues of A, which are all 1). But the dropoff is not steep. So the SVD
gives only moderate compression of this triangular flag. Great compression for Hilbert. 

Singular values of tril( ones ( 40 ) ) 

G 100 •• 

C 

• 
. 

• 

• 

Singular values of hilb( 40 ) 

• 

• 

. 

• 

• 

e 

• 

• 

•••••••••••••• ••••••••e 

Figure 7.1: Singular values of the triangle of l's in Examples 3-4 (not compressible) and
the evil Hilbert matrix H ( i, j) = ( i + j - 1)- 1 in Section 8.3 : compress it to work with it.
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Your faithful author has continued research on the ranks of flags. Quite a few are based on 
horizontal or vertical stripes. Those have rank one-all rows or all columns are multiples 
of the ones vector (1, 1, ... , 1). Armenia, Austria, Belgium, Bulgaria, Chad, Colombia, 
Ireland, Madagascar, Mali, Netherlands, Nigeria, Romania, Russia (and more) have three 
stripes. Indonesia and Poland have two ! Libya was the extreme case in the Gadaffi years 
1977 to 2011 (the whole flag was green). 

At the other extreme, many flags include diagonal lines. Those could be long diagonals 
as in the British flag. Or they could be short diagonals corning from the edges of a star­
as in the US flag. The text example of a triangle of ones shows how those flag matrices 
will have large rank. The rank increases to infinity as the pixel sizes get small. 

Other flags have circles or crescents or various curved shapes. Their ranks are large and 
also increasing to infinity. These are still compressible! The compressed image won't be 
perfect but our eyes won't see the difference (with enough terms CTiUiV{ from the SVD). 
Those examples actually bring out the main purpose of image compression: 

Visual quality can be preserved even with a big reduction in the rank. 

For fun I looked back at the flags with finite rank. They can have stripes and they can 
also have crosses-provided the edges of the cross are horizontal or vertical. Some flags 
have a thin outline around the cross. This artistic touch will increase the rank. Right now 
my champion is the flag of Greece shown below, with a cross and also stripes. Its rank 
is three by my counting (three different columns). I see no US State Flags of finite rank ! 

The reader could google "national flags" to see the variety of designs and colors. I 
would be glad to know any finite rank examples with rank > 3. Good examples of all kinds 
will go on the book's website math.mit.edu/linearalgebra (and flags in full color). 

* • * * • • 

• * * * * 

* * * * * * 

• • * * * 

* * * * * * 

• * * * * 

• * * * * * 

* * • * "' 

• • * * * • 

= 
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Problem Set 7 .1 

1 What are the ranks r for these matrices with entries i times j and i plus j ? Write A 
and B as the sum of r pieces uv T of rank one. Not requiring uT u2 = Vf v2 = 0. 

A�[l 

2 3 

j] [ � 

3 4 

! 1
4 6 

B= 
4 5 

6 9 5 6 

8 12 16 6 7 

2 We usually think that the identity matrix I is as simple as possible. But why is I
completely incompressible? Draw a rank 5 flag with a cross.

3 These flags have rank 2. Write A and B in any way as u1 Vf + u2vI. 

Asweden � AF>nland � [ ! 2 1 1 l 
2 2 2 

2 1 1 
BBenin = 

[ 
i 2 2 

] 
3 3 

4 Now find the trace and determinant of 
Problem 3. The singular values of B are close to ar 

BET and BTB 
= 28 - /

4 
and a� 

Is B compressible or not? 

5 Use [U, S, V] = svd (A) to find two orthogonal pieces auv T of Asweden · 

6 Find the eigenvalues and the singular values of this 2 by 2 matrix A. 

in 
1 

14" 

A=[��] with and AAT = 

[ 

5 10 

] 
10 20 

The eigenvectors (1, 2) and (1, -2) of A are not orthogonal. How do you know the 
eigenvectors v 1, v2 of AT A are orthogonal? Notice that AT A and AA T have the 
same eigenvalues (25 and 0). 

7 How does the second form AV = U� in equation (3) follow from the first form 
A = U�VT ? That is the most famous form of the SVD. 

8 The two columns of AV = UY:, are Av1 = a1 u1 and Av2 = a2u2. So we hope that 

and [ i � ] [ 
The first needs a1 + 1 = ar and the second needs 1 - a1 = -a2. Are those true? 

9 The MATLAB commands A = rand (20, 40) and B = randn (20, 40) produce 20 by 
40 random matrices. The entries of A are between O and 1 with uniform probability. 
The entries of B have a normal "bell-shaped" probability distribution. Using an svd 
command, find and graph their singular values a1 to a20. Why do they have 20 a's ? 
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7 .2 Bases and Matrices in the SVD 

371 

1 The SVD produces orthonormal basis of v's and u's for the four fundamental subspaces. 

2 Using those bases, A becomes a diagonal matrix I; and Avi = uiui : ui = singular value. 

3 The two-bases diagonalization A = U:E VT often has more information than A = X Ax-1.

4 UI;VT separates A into rank-1 matrices CT1 u1 Vf + · · · + CTrUrv;. CT1 u1 vT is the largest! 

The Singular Value Decomposition is a highlight of linear algebra. A is any m by n 
matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by x-

1 AX.

The eigenvectors in X have three big problems: They are usually not orthogonal, there are 
not always enough eigenvectors, and Ax = >.x requires A to be a square matrix. The 
singular vectors of A solve all those problems in a perfect way. 

Let me describe what we want from the SVD : the right bases for the four subspaces. 

Then I will write about the steps to find those basis vectors in order of importance. 

The price we pay is to have two sets of singular vectors, u's and v's. The u's are in 
Rm and the v 's are in Rn. They will be the columns of an m by m matrix U and an n by 
n matrix V. I will first describe the SVD in terms of those basis vectors. Then I can also 
describe the SVD in terms of the orthogonal matrices U and V. 

(using vectors) The u's and v's give bases for the four fundamental subspaces: 

u1, ... , Ur is an orthonormal basis for the column space

Ur+ 1, ... , Um is an orthonormal basis for the left nullspace N (AT) 
v1, ... , Vr is an orthonormal basis for the row space

Vr+l, ... , Vn is an orthonormal basis for the nullspace N(A). 

More than just orthogonality, these basis vectors diagonalize the matrix A : 

"A is diagonalized" (1) 

Those singular values u1 to Ur will be positive numbers: CTi is the length of Avi. 
The CT's go into a diagonal matrix that is otherwise zero. That matrix is I;. 

(using matrices) Since the u's are orthonormal, the matrix Ur with those r columns 
has U;Ur = I. Since the v's are orthonormal, the matrix Vr has V?Vr = I. Then the 
equations Avi = CTiUi tell us column by column that AVr = Ur :Er: 

(m by n)(n by r) 
AVr = Ur :Er 

(m by r)(r by r) 
(2)
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This is the heart of the SVD, but there is more. Those v's and u's account for the row 
space and column space of A. We haven - r more v's and m - r more u's, from the 
nullspace N(A) and the left nullspace N(AT). They are automatically orthogonal to the 
first v's and u's (because the whole nullspaces are orthogonal). We now include all the 
v's and u's in V and U, so these matrices become square. We still have AV = U:E.

The new I; is m by n. It is just the r by r matrix in equation (2) with m - r extra zero 
rows and n - r new zero columns. The real change is in the shapes of U and V. Those 
are square matrices and v-1 = VT . So AV= UI; becomes A= U:EVT . This is the
Singular Value Decomposition. I can multiply columns Ui/Ji from UI; by rows of VT: 

SVD (4) 

Equation (2) was a "reduced SVD" with bases for the row space and column space. 
Equation (3) is the full SVD with nullspaces included. They both split up A into the same 
r matrices Ui!JiV[ of rank one. Column times row is the fourth way to multiply matrices. 

We will see that each /Jr is an eigenvalue of AT A and also AA T. When we put the 
singular values in descending order, 1J1 ;:::: 1J2 ;:::: •.. /Jr > 0, the splitting in equation ( 4) 
gives the r rank-one pieces of A in order of importance. This is crucial. 

Example 1 When is A= UI;VT (singular values) the same as X Ax-1 (eigenvalues)?

Solution A needs orthonormal eigenvectors to allow X = U = V. A also needs 
eigenvalues>-;:::: 0 if A= I;. So A must be a positive semidefinite (or definite) symmetric 

matrix. Only then will A= XAx- 1 which is also QAQT coincide with A= UI;VT . 

Example 2 If A= xyT (rank 1) with unit vectors x and y, what is the SVD of A? 

Solution The reduced SVD in (2) is exactly xy T, with rank r = 1. It has u1 = x and 
v1 = y and 1J1 = 1. For the full SVD, complete u1 = x to an orthonormal basis 
of u's, and complete v1 = y to an orthonormal basis of v's. No new /J's, only 1J1 = 1. 

Proof of the SVD 

We need to show how those amazing u's and v's can be constructed. The v's will be 
orthonormal eigenvectors of AT A. This must be true because we are aiming for 

AT A= (UI;VT)T (UI;VT) = VI;TUTUI;VT = V:ET:EVT . (5) 

On the right you see the eigenvector matrix V for the symmetric positive (semi) definite 
matrix AT A. And (I;TI;) must be the eigenvalue matrix of (AT A): Each 1J2 is >-(AT A)! 
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Now Avi = CTiUi tells us the unit vectors u1 to Ur . This is the key equation (1).The essential point-the whole reason that the SVD succeeds-is that those unit vectorsu1 to Ur are automatically orthogonal to each other (because the v's are orthogonal): 

Key step 
i =I= j

The v's are eigenvectors of AT A (symmetric). They are orthogonal and now the u's are
also orthogonal. Actually those u's will be eigenvectors of AAT . 

Finally we complete the v's and u's ton v's and m u's with any orthonormal basesfor the nullspaces N(A) and N(AT ). We have found V and� and U in A = U�VT .

An Example of the SVD 

Here is an example to show the computation of all three matrices in A = U�VT .

Example 3 Find the matrices U, �, V for A= [ ! � ] . The rank is r = 2.

With rank 2, this A has positive singular values cr1 and cr2. We will see that cr1 is largerthan Amax = 5, and cr2 is smaller than Amin = 3. Begin with AT A and AAT : 
AT A= [ 25 20 ] AAT = [ 9 12 ]20 25 12 41 

Those have the same trace (50) and the same eigenvalues err = 45 and er� = 5. The square roots are cr1 = v'45 and cr2 = ,v5. Then cr1cr2 = 15 and this is the determinant of A.

A key step is to find the eigenvectors of AT A (with eigenvalues 45 and 5):

[ �� �� ] [ - � ] = 5 [ - � ]
Then v1 and v2 are those orthogonal eigenvectors rescaled to length 1. Divide by ../2.

R. . 1 [ 1] 1 [-1] L f . l 
Avi

1ght smgular vectors v1 = ../2 1 v2 = ../2 1 e t smgu ar vectors ui = ----;:

J5-1 [ -3] 
vio 1 

The division by V:W makes u1 and u2 orthonormal. Then cr1 = -./45 and cr2 = v15
as expected. The Singular Value Decomposition of A is U times � times VT . 
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-1 ]
1 

(7) 

U and V contain orthonormal bases for the column space and the row space (both spaces are just R2). The real achievement is that those two bases diagonalize A: AV equals UY:,.The matrix A splits into a combination of two rank-one matrices, columns times rows: 
-3 ] [ 3 0 ] 1 = 4 5 =A.

An Extreme Matrix Here is a larger example, when the u's and the v's are just columns of the identity matrix. So the computations are easy, but keep your eye on the order of the columns. The matrix A is badly lopsided (strictly triangular). All its eigenvalues are zero. AAT is not close to AT A. The matrices U and V will be permutations that fix these problems properly. 
A= [ 0 1 0 0 l eigenvalues>. = 0, 0, 0, 0 all zero! 0 0 2 0 only one eigenvector (1, 0, 0, 0) 0 0 0 3 singular values c, = 3, 2, 1 0 0 0 0 singular vectors are columns of I AT A and AAT are diagonal (with easy eigenvectors, but in different orders): 

Their eigenvectors (u's for AAT and v's for AT A) go in decreasing order d > c,§ > c,� of the eigenvalues. Those eigenvalues are c,2 
= 9, 4, 1. 

Those first columns u1 and v1 have l's in positions 3 and 4. Then u1c,1 vI picks out the biggest number A34 = 3 in the original matrix A. The three rank-one matrices in the SVD come (for this extreme example) exactly from the numbers 3, 2, 1 in A. A= U:EVT 
= 3u1Vf + 2u2v'.f + lu3V§-

Note Suppose I remove the last row of A (all zeros). Then A is a 3 by 4 matrix and 
AA T is 3 by 3-its fourth row and column will disappear. We still have eigenvalues >. = 1, 4, 9 in AT A and AAT , producing the same singular values c, = 3, 2, 1 in I:,. 
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Removing the zero row of A (now 3 x 4) just removes the last row of I; and also 
the last row and column of U. Then (3 x 4) = UI;VT = (3 x 3)(3 x 4)(4 x 4). The SVD 
is totally adapted to rectangular matrices. 

A good thing, because the rows and columns of a data matrix A often have completely 
different meanings (like a spreadsheet). If we have the grades for all courses, there would 
be a column for each student and a row for each course: The entry aij would be the grade. 
Then 0'1 u1 vI could have u1 = combination course and v1 = combination student.

And 0'1 would be the grade for those combinations: the highest grade. 
The matrix A could count the frequency of key words in a journal: A different article 

for each column of A and a different word for each row. The whole journal is indexed 
by the matrix A and the most important information is in 0'1 u1 vI. Then 0'1 is the largest 
frequency for a hyperword (the word combination u1) in the hyperarticle v1. 

Section 7.3 will apply the SVD to finance and genetics and search engines. 

Singular Value Stability versus Eigenvalue Instability 

The 4 by 4 example A provides an example (an extreme case) of the instability of eigen­
values. Suppose the 4,1 entry barely changes from zero to 1/60, 000. The rank is now 4. 

A= 

0 
0 
0 
1 

60,000 � � � j 
0 0 3 

0 0 0 

That change by only 1/60, 000 produces a 
much bigger jump in the eigenvalues of A

1 i -1 -i 
>-=0,0,0,0 to A=-

,
-

,
-

, 
-

10 10 10 10 

The four eigenvalues moved from zero onto a circle around zero. The circle has radius /
0 

when the new entry is only 1/60, 000. This shows serious instability of eigenvalues when 
AAT is far from AT A. At the other extreme, if AT A = AAT (a "normal matrix") 
the eigenvectors of A are orthogonal and the eigenvalues of A are totally stable. 

By contrast, the singular values of any matrix are stable. They don't change more 
than the change in A. In this example, the new singular values are 3, 2, 1, and 1/60, 000.
The matrices U and V stay the same. The new fourth piece of A is O' 4 U4 V r, with 
fifteen zeros and that small entry 0'4 = 1/60, 000. 

Singular Vectors of A and Eigenvectors of S = A
T 

A

Equations (5-6) "proved" the SVD all at once. The singular vectors v i are the eigenvectors 
qi of S = AT A. The eigenvalues Ai of Sare the same as O'f for A. The rank r of S equals 
the rank of A. The expansions in eigenvectors and singular vectors are perfectly parallel. 

Symmetric S

Any matrix A 

S = QAQT = >-1q1 qt+ A2q2qi + ... + Arqrq'f
A= UI;VT = 0'1 U 1 vI + 0'2U2 Vi + · · · + O'rUrv'f 
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The q's are orthonormal, the u's are orthonormal, the v's are orthonormal. Beautiful. 
But I want to look again, for two good reasons. One is to fix a weak point in the 

eigenvalue part, where Chapter 6 was not complete. If A is a double eigenvalue of S, we 
can and must find two orthonormal eigenvectors. The other reason is to see how the SVD 
picks off the largest term er1 u1 vT before er2 u2 vJ. We want to understand the eigenvalues 
A ( of S) and the singular values er ( of A) one at a time instead of an at once. 

Start with the largest eigenvalue >-1 of S. It solves this problem: 

, · t· 
xT Sx Th · · · · h S ' (8) Al = maximum ra IO -T-. e wmnmg vector 1s x = q 1 

wit q 1 = /\1 q 1. 
X X 

Compare with the largest singular value er1 of A. It solves this problem: 

. t' IIAxll Th . . . . h A (9) o-1 = maximum ra IO 

W
. e wmnmg vector 1s x = v1 wit v1 = er1 u1. 

This "one at a time approach" applies also to >-2 and er2. But not all x's are allowed: 

xT Sx 
A2 = maximum ratio -T- among all x's with qf x = 0. x = q2 will win. (10) 

X X 

a2 = maximum ratio 
IIAxll among all x's with vTx = 0 x = v2 will win. (11)
llxll 

1 
· 

When S = AT A we find >-1 =errand >-2 = er�. Why does this approach succeed? 

Start with the ratio r(x) = xT Sx/xTx. This is called the Rayleigh quotient. To 
maximize r(x), set its partial derivatives to zero: ar/axi = 0 for i = 1, ... , n. Those 
derivatives are messy and here is the result: one vector equation for the winning x: 

xT Sx 
The derivatives of r(x) = -- are zero when Sx = r(x)x. (12) 

xTx 

So the winning x is an eigenvector of S. The maximum ratio r ( x) is the largest eigenvalue 
,\, 1 of S. All good. Now tum to A-and notice the connection to S = AT A! 

Maximizing I I Ax I I also maximizes ( 11 Ax 11 ) 
2 

llxll llxll 

So the winning x = v1 in (9) is the same as the top eigenvector q
1 of S = AT A in (8). 

Now I have to explain why q2 and v2 are the winning vectors in (10) and (11). We 
know they are orthogonal to q

1 
and v1 , so they are allowed in those competitions. These 

paragraphs can be optional for readers who aim to see the SVD in action (Section 7.3). 
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Start with any orthogonal matrix Q1 that has q
1 

in its first column. The other n - l
orthonormal columns just have to be orthogonal to q

1
. Then use Sq1 = A1 q1

: 

Multiply by QT, remember QT Q1 = I, and recognize that QT SQ1 is symmetric like S:

The symmetry of Q{ SQ1 = [ �1 WT ] T 

S 
forces w = 0 and Sn-l = Sn- 1 -

n-1 

The requirement qT x = 0 has reduced the maximum problem (10) to size n - l. The
largest eigenvalue of Sn-l will be the second largest for S. It is A2 . The winning vector
in (10) will be the eigenvector q

2 
with Sq

2 
= A2 q

2
. 

We just keep going-or use the magic word induction-to produce all the eigenvectors
q1 , ... , qn and their eigenvalues A1 , ... , An . The Spectral Theorem S = QAQT is proved
even with repeated eigenvalues. All symmetric matrices can be diagonalized. 

Similarly the SVD is found one step at a time from (9) and (11) and onwards. Section
7.4 will show the geometry-we are finding the axes of an ellipse. Here I ask a different
question: How are the A's and u's actually computed? 

Computing the Eigenvalues of S and Singular Values of A

The singular values ui of A are the square roots of the eigenvalues Ai of S = AT A.

This connects the SVD to a symmetric eigenvalue problem (good). But in the end we don't
want to multiply AT times A (squaring is time-consuming: not good). 

The first idea is to produce zeros in A and S without changing any u's and A's.
Singular vectors and eigenvectors will change-no problem. The similar matrix Q- 1 SQ
has the same A's as S. If Q is orthogonal, this matrix is QT SQ and still symmetric. 

Section 11.3 will show how to build Q from 2 by 2 rotations so that QT SQ is
symmetric and tridiagonal (many zeros). But rotations can't get all the way to a
diagonal matrix. To show all the eigenvalues of S needs a new idea and more work. 

For the SVD, what is the parallel to QT SQ? Now we don't want to change any singular
values of A. Natural answer: You can multiply A by two different orthogonal matrices Q1 

and Q2. Use them to produce zeros in QT AQ2 . The u's don't change : 

The freedom of two Q's allows us to reach QT AQ2 = bidiagonal matrix (2 diagonals).
This compares perfectly to QT SQ = 3 diagonals. It is nice to notice the connection 
between them: (bidiagonal)T (bidiagonal) = tridiagonal. 

The final steps to a diagonal A and a diagonal� need more ideas. This problem can't
be easy, because underneath we are solving det(S - AI) = 0 for polynomials of degree
n = 100 or 1000 or more. We certainly don't use those polynomials ! 
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The favorite way to find ,\'s and O"'s in LAPACK uses simple orthogonal matrices to 
approach QT SQ= A and UT AV= I;, We stop when very close to A and I;, 

This 2-step approach (zeros first) is built into the commands eig(S) and svd(A).

• REVIEW OF THE KEY IDEAS •

1. The SVD factors A into UI;VT , with r singular values 0"1 2". ... 2". O"r > 0.

2. The numbers O"f, ... , O"; are the nonzero eigenvalues of AA T and AT A.

3. The orthonormal columns of U and V are eigenvectors of AAT and AT A.

4. Those columns hold orthonormal bases for the four fundamental subspaces of A.

5. Those bases diagonalize the matrix: Avi = O"iUi for i � r. This is AV = U"E.

6. A= 0"1 u1 Vf + · · · + O"rUrv; and 0"1 is the maximum of the ratio I I Ax I I/ I lxl 1-

• WORKED EXAMPLES • 

7.2 A Identify by name these decompositions of A into a sum of columns times rows: 

l. Orthogonalcolumns U10"1, ... ,urO"r times orthonormalrows vT, ... ,v;. 
2. Orthonormal columns q 1 , . . . 

,qr 
times triangularrows rT, ... ,r;.

3. Triangular columns l 1, ... , lr times triangular rows uT, ... , u;. 
Where do the rank and the pivots and the singular values of A come into this picture? 

Solution These three factorizations are basic to linear algebra, pure or applied: 

1. Singular Value Decomposition A = U"EVT 

2. Gram-Schmidt Orthogonalization A= QR

3. Gaussian Elimination A = LU

You might prefer to separate out singular values CTi and heights hi and pivots di : 

1. A= UI;VT with unit vectors in U and V. The r singular values CTi are in 'E.

2. A = Q HR with unit vectors in Q and diagonal l's in R. The r heights hi are in H.

3. A= LDU with diagonal l's in Land U. The r pivots di are in D.

Each hi tells the height of column i above the plane of columns 1 to i - 1. The volume 
of the full n-dimensional box (r = m = n) comes from A = UI;VT = LDU = QH R: 

I det A I = I product of u's I = I product of d's I = I product of h's 1-
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7.2 B Show that o-1 2': 1-Xl max · The largest singular value dominates all eigenvalues.

Solution Start from A = U�VT. Remember that multiplying by an orthogonal matrix 
does not change length: IIQxll = llxll because 11Qxll2 = xTQTQx = xTx = llxll2

. 

This applies to Q = U and Q = VT. In between is the diagonal matrix �-

(14) 

An eigenvector has IIAxll = l>-l llxll- So (14) says that l>-l llxll::; u1llxll- Then I.XI � 0-1. 

Apply also to the unit vector x = (1, 0, ... , 0). Now Ax is the first column of A. 
Then by inequality (14), this column has length::; u1. Every entry must have laijl ::; u1. 

Equation (14) shows again that the maximum value of I I Ax 11 / 11 x I I equals 0-1. 

Section 11.2 will explain how the ratio u max/ u min governs the roundoff error in solving 
Ax = b. MATLAB warns you if this "condition number" is large. Then x is unreliable.

Problem Set 7 .2 

1 Find the eigenvalues of these matrices. Then find singular values from AT A : 

A=[� i] 
For each A, construct V from the eigenvectors of AT A and U from the eigenvectors 
of AAT. Check that A = U�VT. 

2 Find AT A and V and � and ui = Avi/ui and the full SYD: 

A= [ -i i ] = u�v
T
_

3 In Problem 2, show that AAT is diagonal. Its eigenvectors u1, u2 are __ . Its 
eigenvalues uf, U§ are __ . The rows of A are orthogonal but they are not __ . 
So the columns of A are not orthogonal. 

4 Compute AT A and AA T and their eigenvalues and unit eigenvectors for V and U. 

Rectangular matrix [ 1 1 0 ] A= 0 1 1 .
Check AV = U� (this decides± signs in U). � has the same shape as A: 2 x 3. 

5 (a) The row space of A= [ ! ! ] is 1-dimensional. Find v1 in the row space and 

u1 in the column space. What is u1? Why is there no u2? 
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(b) Choose v2 and u2 in U and V. Then A = UI;VT = u1a1 vT (one term only).

6 Substitute the SVD for A and AT to show that AT A has its eigenvalues in I;T I; and
AAT has its eigenvalues in I:I:T . Since a diagonal I:T I: has the same nonzeros as
I:I:T , we see again that AT A and AAT have the same nonzero eigenvalues. 

7 If(AT A)v = a2 v,multiply by A. Movetheparenthesestoget (AAT )Av = a2(Av).
If v is an eigenvector of AT A, then __ is an eigenvector of AA T. 

8 Find the eigenvalues and unit eigenvectors v1, v2 of AT A. Then find u1 = Av1/ a1: 

[ 1 2] T [ 10 20] T [ 5 15] A = 

3 6 and A A = 

20 40 and AA = 15 45 . 

Verify that u1 is a unit eigenvector of AA T . Complete the matrices U, I:, V.

9 Write down orthonormal bases for the four fundamental subspaces of this A.

10 (a) Why is the trace of AT A equal to the sum of all a;
j

? In Example 3 it is 50.

(b) For every rank-one matrix, why is ar = sum of all a;
j
?

11 Find the eigenvalues and unit eigenvectors of AT A and AA T . Keep each Av = au.
Then construct the singular value decomposition and verify that A equals UI:VT .

Fibonacci matrix 

12 Use the svd part of the MATLAB demo eigshow to find those v's graphically.

13 If A = UI:VT is a square invertible matrix then A- 1 = ____ __ .
Check A- 1 A. This shows that the singular values of A- 1 are 1/ ai. 
Note: The largest singular value of A- 1 is therefore 1 / a min (A). The largest eigen­
value !>.(A- 1) I max is 1/l>.(A) I min· Then equation (14) says that a min (A) :S: !>.(A) I min· 

14 Suppose u1, ... , Un and v1, ... , Vn are orthonormal bases for Rn . Construct the
matrix A=UI:VT that transforms each Vj into uj to give Av1 =u1, ... , Avn = Un .

15 Construct the matrix with rank one that has Av = 12u for v = ½(1, 1, 1, 1) and
u = ½(2, 2, 1). Its only singular value is a1 = __ . 

16 Suppose A has orthogonal columns w 1 ,w2, ... ,wn of lengths a1 ,a2, ... ,an ,
What are U, I:, and Vin the SYD? 

17 Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u1 and u2. If its
eigenvalues are >.1 = 3 and >.2 = -2, what are the matrices U, I:, VT in its SYD? 
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18 If A = QR with an orthogonal matrix Q, the SVD of A is almost the same as the
SVD of R. Which of the three matrices U, I;, V is changed because of Q?

19 Suppose A is invertible (with 0"1 > 0"2 > 0). Change A by as small a matrix as

possible to produce a singular matrix Ao. Hint: U and V do not change:

From A= [ U1 U2 ] [ O"l 
0"2 

] [ V1 V2 r find the nearest Ao ,

20 Find the singular values of A from the command svd (A) or by hand. 

A= [ l�O � ] . Why is 0"2 = :
1 

for this matrix?

21 Why doesn't the SVD for A+ I just use I;+ I? 

22 If A= UI;VT then Q1AQJ = (Q1 U)I;(Q2 V)T. Why will any orthogonal matrices
Q1 and Q2 leave Q1 U = orthogonal matrix and Q2 V = orthogonal matrix? Then I; 
sees no change in the singular values: Q1 AQ;f has the same o-'s as A. 

23 If Q is an orthogonal matrix, why do all its singular values equal 1 ?

24 ( )  F. d h . f xTSx 3xi+2x1x2+3x� Wh .. S? a m t e maximum o -
T- 2 2 

. at matnx 1s . 
X X X1 + X2 

(b) F. d h . f 
(x1 + 4x2)2 

F h . A. h' IIAxll2
? m t e maximum o 2 2 . or w at matnx 1s t 1s 

- 1-1 - 1-12-
. 

X1 + X2 
X 

25 What are the minimum values of the ratios x::: and 11,��r ? We should take X 

to be which eigenvectors of S ? Should x always be an eigenvector of A ? 

26 Every matrix A = UI;VT takes circles to ellipses. AV = UI; says that the radius
vectors Vi and v2 of the circle go to the semi-axes 0"1 u1 and 0"2u2 of the ellipse.
Draw the circle and the ellipse for 0 = 30° : 

V=[� �] U = [ 
c�s0 

sm0 -
sin0 

] cos0 
I;=[��]-

Section 7.4 will start with an important SVD picture for 2 by 2 matrices: 
A = (rotate) (stretch) (rotate). With symmetry S = (rotate) (stretch) (rotate back).

27 This problem looks for all matrices A with a given column space in Rm and a given
row space in Rn. Suppose c1, ... , Cr and b1, ... , br are bases for those two spaces.
Make them columns of C and B. The goal is to show that A has this form : 

A= CMBT for an r by r invertible matrix M. Hint: Start from A= UI;VT.
The first r columns of U and V must be connected to C and B by invertible matrices, 
because they contain bases for the same column space (in U) and row space (in V). 
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7.3 Principal Component Analysis (PCA by the SVD) 

1 Data often comes in a matrix : n samples and m measurements per sample. 

2 Center each row of the matrix A by subtracting the mean from each measurement. 

3 The SVD finds combinations of the data that contain the most information. 

4 Largest singular value a1 +-+ greatest variance +-+ most information in u1. 

This section explains a major application of the SVD to statistics and data analysis. 
Our examples will come from human genetics and face recognition and finance. The prob­
lem is to understand a large matrix of data(= measurements). For each of n samples we 
are measuring m variables. The data matrix Ao has n columns and m rows. 

Graphically, the columns of Ao are n points in Rm. After we subtract the average of 
each row to reach A, the n points are often clustered along a line or close to a plane ( or 
other low-dimensional subspace of Rm). What is that line or plane or subspace? 

Let me start with a picture instead of numbers. Form = 2 variables like age and height, 
the n points lie in the plane R2

. Subtract the average age and height to center the data. 
If the n recentered points cluster along a line, how will linear algebra find that line? 

A is 2 x n (large nulls pace) 

AAT is 2 x 2 (small matrix) 

AT A is n x n (large matrix) 

Two singular values a1 > a2 > 0 

Figure 7 .2: Data points in A are often close to a line in R2 or a subspace in Rm. 

Let me go more carefully in constructing the data matrix. Start with the measurements 
in Ao: the sample data. Find the average (the mean) µ1, µ2, •.• , µm of each row. Subtract

each mean µifrom row i to center the data. The average along each row is now zero, for the 
centered matrix A. So the point (0, 0) in Figure 7.2 is now the true center of then points. 

AAT 
The "sample covariance matrix" is defined by S = --- .

n-l

A shows the distance aij - µi from each measurement to the row average µi. 

(AAT)11 and (AAT)22 showthesum ofsquareddistances(samplevariancess�, s�). 

(AAT)i2 shows the sample covariance s12 = (row 1 of A)·(row 2 of A). 

The variance is a key number throughout statistics. An average exam score µ = 85 
tells you it was a decent exam. A variance of s2 = 25 (standard deviation s = 5) 
means that most grades were in the SO's: closely packed. A sample variance s2 = 225 

(s = 15) means that grades were widely scattered. Chapter 12 explains variances. 
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The covariance of a math exam and a history exam is a dot product of those rows of
A, with average grades subtracted out. Covariance below zero means: One subject strong
when the other is weak. High covariance means: Both strong or both weak. 

We divide by n - 1 instead of n for reasons known best to statisticians. They tell me
that one degree of freedom was used by the mean, leaving n - 1. (I think the best plan is
to agree with them.) In any case n should be a big number to count on reliable statistics.
Since the rows of A have n entries, the numbers in AAT have size growing like n and the
division by n - 1 keeps them steady. 

Example 1 Six math and history scores (notice the zero mean in each row) 

A= [ � -4

-6 

7
8

1
-1

-4

-1 -3]-7 

AAT 

has sample covariance S = -
5
- = [ 20 25]25 40 

The two rows of A are highly correlated : s 12 = 25. Above average math went with
above average history. Changing all the signs in row 2 would produce negative covariance
s12 = -25. Notice that S has positive trace and determinant; AAT is positive definite.

The eigenvalues of Sare near 57 and 3. So the first rank one piece v57 u1 Vf is much
larger than the second piece v'3 u2 v'.f. The leading eigenvector u1 shows the direction
that you see in the scatter graph of Figure 7.2. That eigenvector is close to u1 = (.6, .8)
and the direction in the graph nearly gives a 6 - 8 - 10 or 3 - 4 - 5 right triangle. 

The SVD of A (centered data) shows the dominant direction in the scatter plot. 

The second singular vector u2 is perpendicular to u1. The second singular value
CJ2 ::::; v'3 measures the spread across the dominant line. If the data points in A fell exactly
on a line ( u1 direction), then CJ2 would be zero. Actually there would only be CJ1. 

The Essentials of Principal Component Analysis (PCA) 

PCA gives a way to understand a data plot in dimension m = the number of measured
variables (here age and height). Subtract average age and height (m = 2 for n samples)
to center the m by n data matrix A. The crucial connection to linear algebra is in the
singular values and singular vectors of A. Those come from the eigenvalues ,\ = CJ

2 and
the eigenvectors u of the sample covariance matrix S = AA T / ( n - 1). 

• The total variance in the data is the sum of all eigenvalues and of sample variances s2 
: 

Total variance T = o-i + · · · + o-� = Si + · · · + s� = trace (diagonal sum). 

• The first eigenvector u1 of S points in the most significant direction of the data.
That direction accounts for (or explains) a fraction e7i/T of the total variance. 

• The next eigenvector u2 (orthogonal to u1) accounts for a smaller fraction d/T.

• Stop when those fractions are small. You have the R directions that explain most of
the data. The n data points are very near an R-dimensional subspace with basis
u1 to UR- These u's are the principal components in m-dimensional space. 

• R is the "effective rank" of A. The true rank r is probably m or n : full rank matrix.
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Perpendicular Least Squares 

It may not be widely recognized that the best line in Figure 7.2 (the line in the u1 direction) 
also solves a problem of perpendicular least squares ( = orthogonal regression) : 

The sum of squared distances from the points to the line is a minimum. 

Proof Separate each column aj into its components along the u1 line and u2 line: 
n n n 

Right triangles L llaJll2 = L la;u11 2 
+ L la;u2 1 2 

(1) 

j=l j=l j=l 

The sum on the left is fixed by the data points aj (columns of A). The first sum on the right 
is Uf AAT u1. So when we maximize that sum in PCA by choosing the eigenvector u1, 

we minimize the second sum. That second sum (squared distances from the data points 
to the best line) is a minimum for perpendicular least squares. 

Ordinary least squares in Chapter 4 reached a linear equation AT Ax = AT b by using 
vertical distances to the best line. PCA produces an eigenvalue problem for u1 by using 
perpendicular distances. "Total least squares" will allow for errors in A as well as b. 

The Sample Correlation Matrix 

Data analysis works mostly with A (centered data). But the measurements in A might have 
different units like inches and pounds and years and dollars. Changing one set of units 
(inches to meters or years to seconds) would have a big effect on that row of A and S.

If scaling is a problem, we change from covariance matrix S to correlation matrix C : 

A diagonal matrix D rescales A. Each row of DA has length�-
The sample correlation matrix C = D AA TD/ ( n - 1) has 1 's on its diagonal. 

Chapter 12 on Probability and Statistics will introduce the expected covariance 
matrix V and the expected correlation matrix (with diagonal 1 's). Those use probabili­
ties instead of actual measurements. The covariance matrix predicts the spread of future 
measurements around their mean, while A and the sample covariances S and the scaled 
correlation matrix C = DSD use real data. All are highly important-a big connection 
between statistics and the linear algebra of positive definite matrices and the SYD. 

Genetic Variation in Europe 

We can follow changes in human populations by looking at genomes. To manage the huge 
amount of data, one good way to see genetic variation is from SNP's. The uncommon 
alleles (bases A/Cff/G in a pair from father and mother) are counted by the SNP : 

SNP = 0 No change from the common base in that population : normal genotype 
SNP = 1 The base pair shows one change from the usual pair 
SNP = 2 Both bases are the less common allele 

The uncentered matrix Ao has a column for every person and a row for every base pair. 
The entries are mostly 0, quite a few 1, not so many 2. We don't test all 3 billion pairs. 
After subtracting row averages from Ao , the eigenvectors of AAT are extremely revealing. 
In Figure 7.4 the first singular vectors of A almost reproduce a map of Europe. 
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This means: The SNP's from France and Germany and Italy are quite different. Even 
from the French and German and Italian parts of Switzerland those "snips" are different! 
Only Spain and Portugal are surprisingly confounded and harder to separate. More often 
than not, the DNA of an individual reveals his birthplace within 300 kilometers or 200 
miles. A mixture of grandparents usually places the grandchild between their origins. 

:1 !T 
IT iT 

CY 

Countries are 
identified by 
small circles 

Figure 7.3: Nature (2008) Novembre et al: vol. 456 pp.98-101/doc:10.1038/nature07331. 

What is the significant message? If we test genomes to understand how they correlate 
with diseases, we must not forget their spatial variation. Without correcting for geography, 
what looks medically significant can be very misleading. Confounding is a serious problem 
in medical genetics that PCA and population genetics can help to solve-to remove effects 
due to geography that don't have medical importance. 

In fact "spatial statistics" is a tricky world. Example: Every matrix with three diagonals 
of 1, C, 1 shows a not surprising influence of next door neighbors (from the l's). But its 
singular vectors have sine and cosine oscillations going across the map, independent of C.

You might think those are true wave-like variations but they can be meaningless. 

Maybe statistics produces more arguments than mathematics does? Reducing big data 
to a single small "P-value" can be instructive or it can be extremely deceptive. The ex­
pression P-value appears in many articles. P stands for the probability that an observation 
is consistent with the null hypothesis(= pure chance). If you see 5 heads in a row, the 
probability is P = 1/32 that this came by chance from a fair coin (or P = 2/32 if your 
observation is taken to be 5 heads or 5 tails in a row). Often a P-value below 0.05 makes 
the null hypothesis doubtful-maybe a crook is flipping the coin. As here, P-values are 
not the most reliable guides in statistics-but they are extremely convenient. 
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Eigenfaces 

Recognizing faces would not seem to depend-at first glance-on linear algebra. But an 

early and well publicized application of the SYD was to face recognition. We are not 
compressing an image, we are identifying it. 

The plan is to start with a "training set" Ao of n images of a wide variety of faces. 
Each image becomes a very long vector by stacking all pixel grayscales into a column. 

Then Ao must be centered : subtract the average of every column of Ao to reach A.

The singular vector v1 of this A tells us the combination of known faces that best 

identifies a new face. Then v2 tells us the next best combination. 

Probably we will use the R best vectors v1, ... , v R with largest singular values 

0"1 2 · · · 2 O"R of A. Those identify new faces more accurately than any other 
R vectors. Perhaps R = 100 of those eigenfaces Av will capture nearly all the variance in 

the training set. Those R eigenfaces span "face space". 

This plan of attack was suggested by Matthew Turk and Alex Pentland. It developed 

the suggestion by Sirovich and Kirby to use PCA in compressing images of faces. I learned 

a lot from Jeff Jauregui's description on the Web. His summary is this: PCA provides a 

mechanism to recognize geometric/photometric similarity through algebraic means. 

He assembled the first principal component (first singular vector) into the first eigenface. 

Of course the average of each column was added back or you wouldn't see a face! 

Note PCA is compared to NMF in a fascinating letter to Nature (Lee and Seung, 

vol. 401, 21 Oct. 1999). Nonnegative Matrix Factorization does not allow the negative 

entries that always appear in the singular vectors v. So everything adds-which needs 

more vectors but they are often more meaningful. 

Figure 7.4: Eigenfaces pick out hairline and mouth and eyes and shape. 
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Applications of Eigenfaces 

The first commercial use of PCA face recognition was for law enforcement and security. 
An early test at Super Bowl 35 in Tampa produced a very negative reaction from the crowd! 
The test was without the knowledge of the fans. Newspapers began calling it the "Snooper 
Bowl". I don't think the original eigenface idea is still used commercially (even in secret). 

New applications of the SVD approach have come for other identification problems : 

Eigenvoices, Eigengaits, Eigeneyes, Eigenexpressions. I learned this from Matthew Turk 
(now in Santa Barbara, originally an MIT grad student. He told me he was in my class). 
The original eigenfaces in his thesis had problems accounting for rotation and scaling and 
lighting in the facial images. But the key ideas live on. 

In the end, face space is nonlinear. So eventually we want nonlinear PCA. 

Model Order Reduction 

For a large-scale dynamic problem, the computational cost can become unmanageable. 
"Dynamic" means that the solution u(t) evolves as time goes forward. Fluid flow, 
chemical reactions, wave propagation, biological growth, electronic systems, these prob­
lems are everywhere. A reduced model tries to identify important states of the system. 

From a reduced problem we compute the needed information at much lower cost. 
Model reduction is a truly important computational approach. Many good ideas have 

been proposed to reduce the original large problem. One simple and often useful idea is 
to take "snapshots" of the flow, put them in a matrix A, find the principal components 
(the left singular vectors of A), and work in their much smaller subspace: 

A snapshot is a column vector that describes the state of the system 
It can be an approximation to a typical true state u( t*) 
From n snapshots, build a matrix A whose columns span a useful range of states 

Now find the first R left singular vectors u1 to UR of A. They are a basis for a Proper 
Orthogonal Decomposition (POD basis). In practice we choose R so that 

Variance � Energy 

These vectors are an optimal basis for reconstructing the snapshots in A. If those snapshots 
are well chosen, then combinations of u1 to UR will be close to the exact solution u(t) for 
desired times t and parameters p. 

So much depends on the snapshots! SIAM Review 2015 includes an excellent survey 
by Beiner, Gugercin, and Willcox. The SVD compresses data as well as images. 

Searching the Web 

We believe that Google creates rankings by a walk that follows web links. When this 
walk goes often to a site, the ranking is high. The frequency of visits gives the leading 
eigenvector(>-= 1) of the "Web matrix"-the largest eigenvalue problem ever solved. 

That Markov matrix has more than 3 billion rows and columns, from 3 billion web sites. 
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Many of the important techniques are well-kept secrets of Google. Probably they 
start with an earlier eigenvector as a first approximation, and they run the random 
walk very fast. To get a high ranking, you want a lot of links from important sites. 

Here is an application of the SVD to web search engines. When you google a word, 
you get a list of web sites in order of importance. You could try typing "four subspaces". 

The HITS algorithm was an early proposal to produce that ranked list. 
It begins with about 200 sites found from an index of key words. After that we look 
only at links between pages. Search engines are link-based more than content-based. 

Start with the 200 sites and all sites that link to them and all sites they link to. That is 
our list, to be put in order. Importance can be measured by links out and links in. 

1. The site may be an authority: Links come in from many sites. Especially from hubs.

2. The site may be a hub: Links go out to many sites in the list. Especially to authorities.

We want numbers x1 , ... , x N to rank the authorities and y1 , ••• , YN to rank the hubs. 
Start with a simple count: x? and Y? count the links into and out of site i. 

Here is the point: A good authority has links from important sites (like hubs). Links 
from universities count more heavily than links from friends. A good hub is linked to 

important sites (like authorities). A link to amazon.com unfortunately means more than 
a link to wellesleycambridge.com. The raw counts x0 and y0 are updated to x1 and y1 

by taking account of good links (measuring their quality by x0 and y0): 

Authority /Hub xf / Yi = Add up yJ / xJ for all links into i / out from i (2) 

In matrix language those are x1 = AT y0 and y1 = Ax0 . The matrix A contains 1 's and 
O's, with aij = 1 when i links to j. In the language of graphs, A is an "adjacency matrix" 
for the Web (an enormous matrix). The new x1 and y1 give better rankings, but not the 
best. Take another step like (2), to reach x2 and y2 from AT Ax0 and AAT y0 : 

Authority x2 = AT y1 = AT Ax0 

In two steps we are multiplying by AT A and AAT . Twenty steps will multiply by ( AT A) 10 

and ( AA T) 10. When we take powers, the largest eigenvalue ui begins to dominate.

The vectors x and y line up with the leading eigenvectors v 1 and u1 of AT A and AAT . 
We are computing the top terms in the SVD, by the power method that is discussed in 
Section 11.3. It is wonderful that linear algebra helps to understand the Web. 

This HITS algorithm is described in the 1999 Scientific American (June 16). But I 
don't think the SVD is mentioned there. . . The excellent book by Langville and Meyer, 
Google's PageRank and Beyond, explains in detail the science of search engines. 
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PCA in Finance: The Dynamics of Interest Rates 

The mathematics of finance constantly applies linear algebra and PCA. We choose one 
application: the yield curve for Treasury securities. The "yield" is the interest rate paid 
on the bonds or notes or bills. That rate depends on time to maturity. For longer bonds 
(3 years to 20 years) the rate increases with length. The Federal Reserve adjusts short term 
yields to slow or stimulate the economy. This is the yield curve, used by risk managers and 
traders and investors. 

Here is data for the first 6 business days of 2001-each column is a yield curve for 
investments on a particular day. The time to maturity is the "tenor". The six columns at 
the left are the interest rates, changing from day to day. The five columns at the right are 
interest rate differences between days, with the mean difference subtracted from each row. 
This is the centered matrix A with its rows adding to zero. A real world application 
might start with 252 business days instead of 5 or 6 (a year instead of a week). 

Table 1. U.S. Treasury Yields : 6 Days and 5 Centered Daily Differences 

US Treasury Yields in 2001 Matrix A in Basis Points (0.01 %) 
Tenor Jan 3 Jan 4 Jan 5 Jan 6 Jan 7 Jan 10 Jan 4 Jan 5 Jan 6 Jan 7 Jan 10 
3MO 5.87 5.69 5.37 5.12 5.19 5.24 -5.4 -19.4 -12.4 19.6 17.6
6MO 5.58 5.44 5.20 4.98 5.03 5.11 -4.6 -14.6 -12.6 14.4 17.4
1 YR 5.11 5.04 4.82 4.60 4.61 4.71 1.0 -14.0 -14.0 9.0 18.0 
2YR 4.87 4.92 4.77 4.56 4.54 4.64 9.6 -10.4 -16.4 2.6 14.0 
3YR 4.82 4.92 4.78 4.57 4.55 4.65 13.4 -10.6 -17.6 1.4 13.4 
5YR 4.76 4.94 4.82 4.66 4.65 4.73 18.6 -11.4 -15.4 -0.4 8.6 
7YR 4.97 5.18 5.07 4.93 4.94 4.98 20.8 -11.2 -14.2 0.8 3.8 

lOYR 4.92 5.14 5.03 4.93 4.94 4.98 20.8 -12.2 -11.2 -0.2 2.8 
20YR 5.46 5.62 5.56 5.50 5.52 5.53 14.6 -7.4 -7.4 0.6 -0.4

With five columns we might expect five singular values. But the five column vectors add to 
the zero vector (since every row of A adds to zero after centering). So S = AAT /(5 - 1) 
has four nonzero eigenvalues CJf > CJ� > CJ� > d- Here are the singular values CJi and 
their squares CJ; and the fractions of the total variance T = CJf + · · · + CJl = trace of S 
that are "explained" by each principal component (each eigenvector ui of S). 

Ui 
(]"2 

i 
u:JT 

Principal component u1 36.39 1323.9 .7536 
Principal component u2 19.93 397.2 .2261 
Principal component u3 5.85 34.2 .0195 
Principal component u4 1.19 1.4 .0008 
Principal component u5 0.00 0.0 .0000 

T = 1756.7 1.0000 

A "scree plot" graphs those fractions CJ; /T dropping quickly to zero. In a larger problem 
you often see fast dropoff followed by a flatter part at the bottom (near CJ2 = 0). Locating 
the elbow between those two parts (significant and insignificant PC's) is important. 
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We also aim to understand each principal component. Those singular vectors u; of A
are eigenvectors of S. The entries in those vectors are the "loadings". Here are u1 to u5 

for this yield curve example (with Su5 = 0). 
U1 U2 U3 U4 U5 

3MO 0.383 0.529 -0.478 0.060 0.084 
6MO 0.336 0.436 -0.046 0.210 -0.263
1 YR 0.358 0.263 0.225 -0.491 0.237 
2 YR 0.352 -0.028 0.460 0.096 0.242 
3 YR 0.371 -0.131 0.430 0.258 -0.555
5 YR 0.349 -0.293 0.117 -0.188 0.446 
7 YR 0.323 -0.365 -0.228 0.459 0.081 

lOYR 0.297 -0.378 -0.351 -0.579 -0.470
20YR 0.184 -0.280 -0.361 0.227 0.268 

Those five u's are orthonormal. They give bases for the four-dimensional column space 
of A and the one-dimensional nullspace of AT. What financial meaning do they have ? 

u1 measures a weighted average of the daily changes in the 9 yields 
u2 gauges the daily change in the yield spread between long and short bonds 
u3 shows daily changes in the curvature (short and long bonds versus medium) 

These graphs show the nine loadings on u1, u2, u3 above from 3 months to 20 years. 

The output from a typical code (written in R) will include two more tables-which are 
going on the book's website. One will show the right singular vectors v; of A. These are 
eigenvectors of AT 

A. They are proportional to the vectors AT u. They have 5 components 
and they show the movement of yields and short-long spreads during the week. 

The total variance T = 1756. 7 (the trace err + er� + er� + er� of S) is also the sum of 
the diagonal entries of S. Those are the sample variances of the rows of A. Here they are : 

Si+·· +s� = 313.3+225.8+199.5+172.3+195.8+196.8+193.7+178.7+80.8 = 1756. 7. 
Every s2 is below err. And 1756. 7 is also the trace of AT A/ ( n - 1): column variances. 

Note that this PCA section 7.3 is working with centered rows in A. In some applica­
tions (like finance), the matrix is usually transposed and the columns are centered. Then 
the sample covariance matrix S uses AT A, and the v's are the more important principal 
components. Linear algebra with practical interpretations tells us so much. 
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Problem Set 7 .3 

1 Suppose Ao holds these 2 measurements of 5 samples:
[ 5 4 3 2 1]Ao

= -1 1 0 1 -1 

391 

Find the average of each row and subtract it to produce the centered matrix A. Com­pute the sample covariance matrix S = AAT / ( n - 1) and find its eigenvalues >.1 and >.2 . What line through the origin is closest to the 5 samples in columns of A? 

2 Take the steps of Problem 1 for this 2 by 6 matrix Ao :
[101010]Ao

= 123321 
3 The sample variances Bi, s� and the sample covariance s12 are the entries of S.

What is S (after subtracting means) when Ao = [ ! � � ] ? What is a1 ?
4 From the eigenvectors of S = AAT , find the line (the u1 direction through thecenter point) and then the plane ( u1, u2 directions) closest to these four points inthree-dimensional space

[ 1 -1 0 0 l A= 0 0 2 -2 .1 1 -1 -1 
5 From this sample covariance matrix S, find the correlation matrix DSD with l'sdown its main diagonal. D is a positive diagonal matrix that produces those 1 's.

s� [ H :l 
6 Choose the diagonal matrix D that produces DSD and find the correlations Cij: 

S � [ ::l: :! ::n DSD � [ :'.: ::: �: l 
7 Suppose Ao is a 5 by 10 matrix with average grades for 5 courses over 10 years. Howwould you create the centered matrix A and the sample covariance matrix S ? Whenyou find the leading eigenvector of S, what does it tell you ? 
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7 .4 The Geometry of the SVD 

1 A typical square matrix A = UI:VT factors into (rotation) (stretching) (rotation).

2 The geometry shows how A transforms vectors x on a circle to vectors Ax on an ellipse.

3 The norm of A is 11 A 11 = o-1. This singular value is its maximum growth factor 11 Ax 11 / 11 x 11-

4 Polar decomposition factors A into QS: rotation Q = UVT times stretching S = VI:VT.

5 The pseudoinverse A+ = VI;+ UT brings Ax in the column space back to x in the row space.

The SYD separates a matrix into three steps: ( orthogonal) x ( diagonal) x ( orthogonal).

Ordinary words can express the geometry behind it: (rotation) x (stretching) x (rotation).

UI:VT x starts with the rotation to VT x. Then I: stretches that vector to I:VT x, and U
rotates to Ax = UI:VT x. Here is the picture. 

A

.... 

Figure 7.5: U and V are rotations and possible reflections. I: stretches circle to ellipse.

Admittedly, this picture applies to a 2 by 2 matrix. And not every 2 by 2 matrix,
because U and V didn't allow for a reflection-all three matrices have determinant> 0.
This A would have to be invertible because the three steps are shown as invertible: 

[a b]=[c?s0 

c d sm 0 

- sin 0 ] [ 0-1 

cos0 
] [ c?s <f> sin</> ] = UI:VT . 

0-2 - sm </> cos <f> 
(1)

The four numbers a, b, c, d in the matrix A led to four numbers 0, o-1, 0-2, </> in its SYD.

This picture will guide us to three neat ideas in the algebra of matrices:

1 The norm 11 A 11 of a matrix-its maximum growth factor.

2 The polar decomposition A = QB-orthogonal Q times positive definite S.

3 The pseudoinverse A+ -the best inverse when the matrix A is not invertible.
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The Norm of a Matrix 

If I choose one crucial number in the picture it is a-1. That number is the largest growth

factor of any vector x. If you follow the vector v1 on the left, you see it rotate to (1, 0) 
and stretch to ( cr1, 0) and finally rotate to cr1 u1 . The statement Av1 = cr1 u1 is exactly the 
SVD equation. This largest singular value cr1 is the "norm" of the matrix A.

The norm I IAI I is the largest ratio
I l

1
!�i' I 

IIAII = max IIAxll = a-1
x#O llxll 

(2) 

MATLAB uses norm (x) for vector lengths and the same word norm (A) for matrix norms. 
The math symbols have double bars: llxll and IIAII- Here llxll means the standard length 
of a vector with llxll2 

= lx112 
+ · · · + lxn l2 . The matrix norm comes from this vector 

norm when x = V 1 and Ax = cr1u1 and IIAxll / llxll = cr1 = largest ratio = IIAII-

Two valuable properties of that number norm (A) come directly from its definition: 

Triangle 

inequality IIA + BIi::; IIAII + IIBII 
Product 

inequality IIABII::; IIAII IIBII (3) 

The definition (2) says that I IAxl I :S I IAI I I lxl I for every vector x. That is what we 
know! Then the triangle inequality for vectors leads to the triangle inequality for matrices: 

For vectors ll(A + B)xll::; IIAxll + IIBxll::; IIAll llxll + IIBll llxll-

Divide this by I lxl 1- Take the maximum over all x. Then I IA+ Bl I ::; I IAI I + I IBI I-

The product inequality comes quickly from I I AB xi I ::; I IAI I I IBxl I ::; I IAI I I IBI 1 1  lxl I­
Again divide by 11 x 11- Take the maximum over all x. The result is 11 AB 11 ::; 11 A 11 11 BI I, 

Example 1 A rank-one matrix A = uv T is as basic as we can get. It has one nonzero 
eigenvalue ,\ 1 and one nonzero singular value cr1 . Neatly, its eigenvector is u and its 
singular vectors (left and right) are u and v.

Eigenvector Au= (uvT)u = u(vTu) = ,\ 1 u So ,\ 1 = vTu 

Singular vector AT Av= (vuT)(uvT)v = v(uTu)(vTv) = crfv So cr1 = llull llvll­
It makes you feel good that l>-1 1::; cr1 is exactly theSchwarz inequality lvTul::; llull llvll-

How do we know that l>-11 ::; cr1 ? The eigenvector for Ax = ,\ 1x will give the ratio 
I IAxl I/ I lxl I = I l>-1xl I/ I lxl I which is l>-1 1- The maximum ratio cr1 can't be less than l>-1 I­

Is it also true that l>-2 I ::; cr2 ? No. That is completely wrong. In fact a 2 by 2 matrix 
will have I det Al = l>-1>-2 I = cricr2 . In this case l>-1 I ::; cr1 will force l>-2 I � cr2 . 
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The closest rank k matrix to A is Ak = CJ1U1v'[ + · · · + CTkUkVf 

This is the key fact in matrix approximation : The Eckart-Young-Mirsky Theorem says that 

I IA - Bl I � IIA - Aki I= o-k+1 for all matrices B of rank k.

To me this completes the Fundamental Theorem of Linear Algebra. The v's and u's give 
orthonormal bases for the four fundamental subspaces, and the first k v 'sand u 'sand CJ's 

give the best matrix approximation to A. 

Polar Decomposition A = Q S

Every complex number x + iy has the polar form rei0 . A number r 2 0 multi­
plies a number ei0 on the unit circle. We have x + iy = r cos 0 + ir sin 0 = r ( cos 0 +
i sin 0) = rei0 . Think of these numbers as 1 by 1 matrices. Then ei0 is an orthogonal ma­

trix Q and r 2 0 is a positive sem idefin ite matrix ( call it S). The polar decomposition ex­
tends the same idea ton by n matrices: orthogonal times positive semidefinite, A = QB.

Every real square matrix can be factored into A = Q S, where Q is orthogonal

and S is symmetric positive semidefinite. If A is invertible, S is positive definite. 

For the proof we just insert VTV = I into the middle of the SYD: 

Polar decomposition 

The first factor UVT is Q. The product of orthogonal matrices is orthogonal. The second
factor VI;VT is S. It is positive semidefinite because its eigenvalues are in I;.

If A is invertible then I; and S are also invertible. S is the symmetric positive

de.finite square root of AT A, because S2 = VI;2 VT = AT A. So the eigenvalues of
S are the singular values of A. The eigenvectors of S are the singular vectors v of A. 

There is also a polar decomposition A = K Q in the reverse order. Q is the same but 
now K = UI;UT. Then K is the symmetric positive definite square root of AA T.

Example 2 The SYD example in Section 7 .2 was A = [ ! � ] = UI;VT . Find the

factors Q and S (rotation and stretch) in the polar decomposition A= QS. 

Solution 

Q 

I will just copy the matrices U and I; and V from Section 7 .2: 

uvT __1 
[

1 -3
1] [_ 

1
1 

-1
] 

__ 1 
[

4 -2
] 

__ 1 
[
2 

- y'20 3 l- v'25 2 4- y's l

s = VI;VT = vs [1 
2 1 -n [ 3 1J [-i 

In mechanics, the polar decomposition separates the rotation (in Q) from the stretching

(in S). The eigenvalues of S give the stretching factors as in Figure 7 .5. The eigenvectors 
of S give the stretching directions ( the principal axes of the ellipse). The orthogonal matrix 
Q includes both rotations U and VT .

Here is a fact about rotations. Q = UVT is the nearest orthogonal matrix to A.
This Q makes the norm I IQ - Al I as small as possible. That corresponds to the fact that 
ei0 is the nearest number on the unit circle to rei0 . 
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The SVD tells us an even more important fact about nearest singular matrices:

The nearest singular matrix Ao to A comes by changing the smallest u min to zero. 

So O"min is measuring the distance from A to singularity. For the matrix in Example 2
that distance is O"min = y5. If I change O"min to zero, this knocks out the last (smallest)
piece in A = a-1 u1 Vf + a-2u2vI. Then only the rank-one (singular!) matrix a-1 u1 Vf
will be left: the closest to A. The smallest change had norm a-2 = v5 (smaller than 3 ). 

In computational practice we often do knock out a very small a-. Working with singular
matrices is better than coming too close to zero and not noticing.

The Pseudoinverse A+ 

By choosing good bases, A multiplies Vi in the row space to give O"iUi in the column space.
A -1 must do the opposite! If Av = a-u then A-1 u = v /a-. The singular values of A-1 

are 1/ a-, just as the eigenvalues of A- 1 are 1/ .\. The bases are reversed. The u's are in the
row space of A-1, the v 's are in the column space. 

Until this moment we would have added "if A - l exists." Now we don't.
A matrix that multiplies ui to produce vda-i does exist. It is the pseudoinverse A+:

-1 l [ u, U, Um 

T 

Pseudoinverse of A 
[ v, v, Vn] 

(T 1 

A+= v1:+uT -1 O"r 

n byn nbym mbym 

The pseudoinverse A+ is an n by m matrix. If A- 1 exists (we said it again), then A+ is 
the same as A- 1

. In that case m = n = r and we are inverting U�VT to get v�-
1 UT.

The new symbol A+ is needed when r < m or r < n. Then A has no two-sided inverse,
but it has a pseudoinverse A+ with that same rank r:

+ 1 
A ui = -vi fori :S: r and

O"i 

The vectors u1, ... , Ur in the column space of A go back to v1, ... , Vr in the row space.
The other vectors Ur+l, ... , Um are in the left nullspace, and A+ sends them to zero.
When we know what happens to all those basis vectors, we know A+ . 

Notice the pseudoinverse of the diagonal matrix �- Each a- in � is replaced by a--1 in
�+. The product �+ � is as near to the identity as we can get. It is a projection matrix,
�+� is partly I and otherwise zero. We can invert the a-'s, but we can't do anything about
the zero rows and columns. This example has a-1 = 2 and a-2 = 3:

[1/2 
�+� =

�

The pseudoinverse A+ is the n by m matrix that makes AA+ and A+ A into projections.
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space 
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A Row space to column space 
A+ Column space to row space 

PseudoinverseA + 

A+ A = [ I O ] row space
_ 0 0 nullspace 

column 

space 

Figure 7.6: Ax+ in the column space goes back to A+ Ax+ = x+ in the row space.

Trying for 
AA- 1 =A- 1 A=I

AA+ = projection matrix onto the column space of A
A+ A =  projection matrix onto the row space of A 

Example 3 Every rank one matrix is a column times a row. With unit vectors u and v, 
that is A = a-uv T. Its pseudoinverse is A+ = vu T / a-. The product AA+ is uu T, the
projection onto the line through u. The product A+ A is vv T. 

Example 4 Find the pseudoinverse of A = [ � �] . This matrix is not invertible. The

rank is 1. The only singular value is a-1 = 2. That is inverted to 1/2 in I;+ (also rank 1).

A+ = VI;+ UT = _2:_ [1 1] [1/2 0] _2:_ [1 1] = � [1 1] 
y12 1 -1 0 0 y12 1 -1 4 1 1 .

A+ also has rank 1. Its column space is always the row space of A.

Least Squares with Dependent Columns 

That matrix A with four 1 's appeared in Section 4.3 on least squares. It broke the require­
ment of independent columns. The matrix appeared when we made two measurements,
both at time t = l. The closest straight line went halfway between the measurements 3
and 1, but there was no way to decide on the slope of the best line. 

In matrix language, AT A was singular. The equation AT Ax = AT 
b had infinitely

many solutions. The pseudoinverse gives us a way to choose a "best solution" x+ =A+ b.



7.4. The Geometry of the SYD 397 

Let me repeat the unsolvable Ax = b and the infinitely solvable AT Ax= ATb: 

Any vector x = (1 + c, 1 - c) will solve those normal equations AT Ax ATb. 
The purpose of the pseudoinverse is to choose one solution x = x +. 

x+ = A+b = (1, 1) is the shortest solution to AT Ax= ATb and Ax= p.

You can see that x+ = (1, 1) is shorter than any other solution x = (1 + c, 1 - c). 
The length squared of x is (1 + c)2 + (1 - c)2 = 2 + 2c2

. The shortest choice is c = 0. 
That gives the solution x+ = (1, 1) in the row space of A.

The geometry tells us what A+ should do: Take the column space of A back to the row 
space. Both spaces have dimension r. Kill off the error vector e in the left nulls pace. 

The pseudoinverse A+ and this best solution x+ are essential in statistics, because 
experiments often have a matrix with dependent columns as well as dependent rows. 

• REVIEW OF THE KEY IDEAS •

1. The ellipse of vectors Ax has axes along the singular vectors ui.

2. The matrix norm I IAI I = 0-1 comes from the vector length: Maximize I IAxl 1/1 lxl 1-

3. Invertible matrix= (orthogonal matrix) (positive definite matrix): A= QS.

4. Every A= U�VT has a pseudoinverse A+ 
= v�+ uT that sends N(AT ) to Z.

• WORKED EXAMPLES • 

7.4 A If A has rank n (full column rank) then it has a left inverse L = (AT A)- 1 AT . 
This matrix L gives LA = I. Explain why the pseudoinverse is A+ = L in this case. 

If A has rank m (full row rank) then it has a right inverse R = AT ( AA T )- 1 . 

This matrix R gives AR = I. Explain why the pseudoinverse is A+ = R in this case. 

Find L for A1 and find R for A2 . Find A+ for all three matrices A1 , A2 , A3 : 
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Solution If A has independent columns then AT A is invertible-this is a key point 
of Section 4.2. Certainly L = (AT A)- 1 AT multiplies A to give LA = I: a left inverse. 

AL = A(AT A)- 1 AT is the projection matrix (Section 4.2) on the column space. 
So L meets the requirements on A+ : LA and AL are projections on C(A) and C(AT). 

If A has rank m (full row rank) then AAT is invertible. Certainly A multiplies R = 
AT(AAT)- 1 to give AR= I. In the opposite order, RA= AT(AAT)- 1 A is the projec­
tion matrix onto the row space ( column space of AT). So R equals the pseudoinverse A+ . 

The example A1 has full column rank (for L) and A2 has full row rank (for R): 

+ T( T)-1 1 
[ 

2 
] A2 = A2 A2A2 = /8 2 .

Notice At A1 = [1] and A2At [1]. But A3 has no left or right inverse. 
Its rank is not full. Its pseudoinverse brings the column space of A3 to the row space. 

At = [ � � r = v�:f = 1
1
0 [ � � ] .

Problem Set 7 .4 

Problems 1-4 compute and use the SVD of a particular matrix (not invertible). 

1 (a) Compute AT A and its eigenvalues and unit eigenvectors v1 and v2. Find 0"1. 

Rank one matrix A = [ ! �] 

(b) Compute AAT and its eigenvalues and unit eigenvectors u1 and u2. 

(c) Verify that Av1 = 0"1 u1. Put numbers into A= U�VT (this is the SYD).

2 (a) From the u's and v's in Problem 1 write down orthonormal bases for the four
fundamental subspaces of this matrix A.

(b) Describe all matrices that have those same four subspaces. Multiples of A?

3 From U, V, and I; in Problem 1 find the orthogonal matrix Q = UVT and the
symmetric matrix S = VI;VT . Verify the polar decomposition A= QS. This S is
only semidefinite because __ . Test S2 = A.

4 Compute the pseudoinverse A+ = VI;+ UT . The diagonal matrix I;+ contains 1 / 0"1. 

Rename the four subspaces (for A) in Figure 7 .6 as four subspaces for A+ . Compute 
the projections A+ A and AA+ on the row and column spaces of A. 
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Problems 5-9 are about the SVD of an invertible matrix. 

5 Compute AT A and its eigenvalues and unit eigenvectors v1 and v2. What are the 
singular values CT1 and CT2 for this matrix A?

6 AAT has the same eigenvalues (Tr and (T� as AT A. Find unit eigenvectors U1 and 
u2. Put numbers into the SVD: 

7 In Problem 6, multiply columns times rows to show that A = CT1 u1 v[ + CT2 u2vJ. 
Prove from A = U�VT that every matrix of rank r is the sum of r matrices of rank 
one. 

8 From U ,  V, and� find the orthogonal matrix Q = UVT and the symmetric matrix 
K = U�U T . Verify the polar decomposition in reverse order A = K Q.

9 The pseudoinverse of this A is the same as __ because __ . 

Problems 10-11 compute and use the SVD of a 1 by 3 rectangular matrix.

10 Compute AT A and AA T and their eigenvalues and unit eigenvectors when the matrix 
is A = [ 3 4 0] . What are the singular values of A?

11 Put numbers into the singular value decomposition of A: 

Put numbers into the pseudoinverse v� + U T of A. Compute AA+ and A+ A: 

12 What is the only 2 by 3 matrix that has no pivots and no singular values? What is 
� for that matrix? A+ is the zero matrix, but what is its shape? 

13 If det A= 0 why is det A+ = O? If A has rank r, why does A+ have rank r? 

14 For vectors in the unit circle 11 x 11 = 1, the vectors y = Ax in the ellipse will 
have 11 A -l y 11 = 1. This ellipse has axes along the singular vectors with lengths 
= 0"1, ... , O"r (as in Figure 7.5). Expand IIA-1 Yll2 = 1 for A= [2 1; 1 2]. 
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Problems 15-18 bring out the main p.rope:rties of A+ and x+ 
= A+ b. 

15 All matrices in this problem have rank one. The vector b is (bi, b2 ), 

A+ = [,2 ,l] 
,2 .1 

(a) The equation AT Ax= AT b has many solutions because AT A is _ _ ,
(b) Verify that x+ = A+ b = (,2b1 + ,lb2, ,2b1 + ,lb2) solves AT Ax+ = AT b,
(c) Add (1, -1) to that x+ to get another solution to AT Ax= ATb, Show that

llxll2 = llx+ ll2 
+ 2, and x+ is shorter.

16 The vector x+ = A+ b is the shortest possible solution to AT Ax= ATb. Reason: The difference x -x+ is in the nullspace of AT A, This is also the nullspace of A, orthogonal to x+ , Explain how it follows that llxll2 = llx+ 112 
+ llx - x+ 112

, 

17 Every b in Rm is p + e, This is the column space part plus the left nullspace part Every x in Rn is x+ + Xn . This is the row space part plus the nullspace part Then 
AA+ e =  

18 Find A+ and A+ A and AA+ and x+ for this matrix A = U�VT and these b: 
A= [�] = [:� -::] [�] [1] 

19 A general 2 by 2 matrix A is determined by four numbers. If triangular, it is de­termined by three, If diagonal, by two, If a rotation, by one, If a unit eigenvector, also by one, Check that the total count is four for each factorization of A:

Fournumbersin LU LDU QR U�VT 
XAx-

1
, 

20 Following Problem 18, check that LDLT and QAQT are determined by three numbers. This is correct because the matrix is now 
21 From A and A+ show that A+ A is correct and (A+ A) 2 

A= LO"iUiV[ 
1 

A+ A = projection. 

22 Each pair of singular vectors v and u has Av = O"U and AT u = O"V, Show that the 
double vector [:] is an eigenvector of the symmetric block matrix M = [ � � T] , 
The SVD of A is equivalent to the diagonalization of that symmetric matrix M. 
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Linear Transformations 

8.1 The Idea of a Linear Transformation 

1 A linear transformation T takes vectors v to vectors T( v ). Linearity requires 

I T(c v + dw) = c T(v) + dT(w) I Note T(O) = 0 so T(v) = v + u0 is not linear. 

2 The input vectors v and outputs T( v) can be in Rn or matrix space or function space. 

3 If A ism by n, T(x) =Axis linear from the input space Rn to the output space Rm . 

4 The derivative T(f) = :: is linear. The integral T+ (J) = 1
x

j(t) dt is its pseudoinverse. 

5 The product ST of two linear transformations is still linear : I ( ST) ( v) = S (T ( v)) .1 

When a matrix A multiplies a vector v, it "transforms" v into another vector Av.
In goes v, out comes T( v) = Av. A transformation T follows the same idea as a function. 
In goes a number x, out comes f(x). For one vector v or one number x, we multiply 
by the matrix or we evaluate the function. The deeper goal is to see all vectors v at once. 
We are transforming the whole space V when we multiply every v by A.

Start again with a matrix A. It transforms v to Av. It transforms w to Aw. Then we 
know what happens to u = v + w. There is no doubt about Au, it has to equal Av+ Aw.
Matrix multiplication T( v) = Av gives a linear transformation:

A transformation T assigns an output T( v) to each input vector v in V. 
The transformation is linear if it meets these requirements for all v and w: 

(a) T(v + w) = T(v) + T(w) (b) T(cv) = cT(v) for allc. 
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If the input is v = 0, the output must be T( v) = 0. We combine rules (a) and (b) into one: 

Linear transformation T(cv + dw) must equal cT(v) + dT(w). 

Again I can test matrix multiplication for linearity: A( cv + dw) = cAv + dAw is true. 

A linear transformation is highly restricted. Suppose T adds u0 to every vector. 
Then T(v) = v + u0 and T(w) = w + u0. This isn't good, or at least it isn't linear. 
Applying T to v + w produces v + w + u0. That is not the same as T( v) + T( w ): 

Shift is not linear v + w + uo is not T(v) + T(w) = (v + uo) + (w + ua). 

The exception is when u0 = 0. The transformation reduces to T( v) = v. This is the 
identity transformation (nothing moves, as in multiplication by the identity matrix). 
That is certainly linear. In this case the input space Vis the same as the output space W. 

The linear-plus-shift transformation T( v) = Av + u0 is called "affine". Straight lines 
stay straight although T is not linear. Computer graphics works with affine transformations 
in Section 10.6, because we must be able to move images. 

Example 1 Choose a fixed vector a = ( 1, 3, 4), and let T ( v) be the dot product a · v: 

The output is T(v) =a· v = v1 + 3v2 + 4v3. 

Dot products are linear. The inputs v come from three-dimensional space, so V = R 3. 

The outputs are just numbers, so the output space is W = R 1. We are multiplying by the 
row matrix A = [ 1 3 4]. Then T ( v) = Av. 

You will get good at recognizing which transformations are linear. If the output involves 
squares or products or lengths, vf or v1 v2 or llv II, then Tis not linear. 

Example 2 The length T( v) = llvll is not linear. Requirement (a) for linearity would be 
llv + wll = llvll + llwll- Requirement (b) would be llcvll = cllvll- Both are false! 

Not (a): The sides of a triangle satisfy an inequality llv + wll ::; llvll + llwll­
Not (b): The length II -vii is llvll and not -llvll- For negative c, linearity fails. 

Example 3 (Rotation) T is the transformation that rotates every vector by 30° . The 
"domain" of Tis the xy plane (all input vectors v). The "range" of Tis also the xy plane 
( all rotated vectors T ( v) ). We described T without a matrix: rotate the plane by 30° . 

Is rotation linear? Yes it is. We can rotate two vectors and add the results. The sum of 
rotations T( v) + T( w) is the same as the rotation T( v + w) of the sum. The whole plane 

is turning together, in this linear transformation. 
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Lines to Lines, Triangles to Triangles, Basis Tells All 

Figure 8.1 shows the line from v tow in the input space. It also shows the line from T( v)
to T( w) in the output space. Linearity tells us: Every point on the input line goes onto 
the output line. And more than that: Equally spaced points go to equally spaced points.

The middle point u = ½v + ½w goes to the middle point T(u) = ½T(v) + ½T(w). 
The second figure moves up a dimension. Now we have three corners v1, v2, v3. 

Those inputs have three outputs T(v1), T(v2), T(v3). The input triangle goes onto the
output triangle. Equally spaced points stay equally spaced (along the edges, and then 
between the edges). The middle point u = ½ ( v1 + v2 + v3) goes to the middle point 
T(u) = ½(T(v1) + T(v2) + T(v3)). 

Figure 8.1: Lines to lines, equal spacing to equal spacing, u = 0 to T(u) = 0. 

The rule of linearity extends to combinations of three vectors or n vectors: 

Linearity 

(1) 

The 2-vector rule starts the 3-vector proof: T ( cu + dv + ew) = T (cu) + T ( dv + ew). 
Then linearity applies to both of those parts, to give cT(u) + dT(v) + eT(w). 

Then-vector rule (1) leads to the most important fact about linear transformations: 

Suppose you know T ( v) for all vectors v1, • • •  , Vn in a basis

Then you know T ( u) for every vector u in the space.

You see the reason: Every u in the space is a combination of the basis vectors Vj. 

Then linearity tells us that T ( u) is the same combination of the outputs T ( v j). 
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Example 4 The transformation T takes the derivative of the input: T( u) = du/ dx. How do you find the derivative of u = 6 - 4x + 3x2 ? You start with the derivatives of 1, x, and x2 • Those are the basis vectors. Their derivatives are 0, 1, and 2x. Then you use linearity for the derivative of any combination: 
du = 6 ( derivative of 1) - 4 ( derivative of x) + 3 ( derivative of x2 ) = -4 + 6x.
dx All of calculus depends on linearity! Precalculus finds a few key derivatives, for xn and sin x and cos x and ex . Then linearity applies to all their combinations. I would say that the only rule special to calculus is the chain rule. That produces the derivative of a chain of functions f (g(x) ). 

Nullspace of T(u) = du/dx. For the nullspace we solve T(u) = 0. The derivative iszero when u is a constant function. So the one-dimensional nullspace is a line in function space-all multiples of the special solution u = 1. 
Column space of T ( u) = du/ dx. In our example the input space contains all quadratics 
a+ bx+ cx2 . The outputs (the column space) are all linear functions b + 2cx. Notice that the Counting Theorem is still true : r + ( n - r) = n. 

dimension ( column space) +dimension ( nullspace) = 2+ 1 = 3 = dimension (input space)

What is the matrix for d/ dx? I can't leave derivatives without asking for a matrix. We have a linear transformation T = d/ dx. We know what T does to the basis functions: 
dv1 -=0 
dx The 3-dimensional input space V ( = quadratics) transforms to the 2-dimensional output space W (= linear functions). If v 1, v2, v3 were vectors, I would know the matrix. 

A = [ � � � ] = matrix form of the derivative T = ! . (3) 
The linear transformation du/ dx is perfectly copied by the matrix multiplication Au.

Input u Multiplication Au= [ � � �] [ �
c
] = [ ;c ] 

a+ bx+ cx2 

du 
Output 

dx 
= b + 2cx. 

The connection from T to A (we will connect every transformation to a matrix) depended on choosing an input basis 1, x, x2 and an output basis 1, x.

Next we look at integrals. They give the pseudoinverse r+ of the derivative! I can't write r-
1 and I can't say "inverse of T" when the derivative of 1 is 0. 
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Example 5 Integration T+ is also linear: fox ( D + Ex) dx = Dx + ½ Ex2
. 
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The input basis is now 1, x. The output basis is 1, x, x2
. The matrix A+ for r+ is 3 by 2:

Output = Integral of v r+(v) = Dx + ½Ex2 

The Fundamental Theorem of Calculus says that integration is the (pseudo )inverse of 
differentiation. For linear algebra, the matrix A+ is the (pseudo )inverse of the matrix A:

A+ A= [� �i [O 1 0] = [� � �iQl 002 001 
2 

(4) 

The derivative of a constant function is zero. That zero is on the diagonal of A+ A.
Calculus wouldn't be calculus without that 1-dimensional nullspace of T = d/ dx. 

Examples of Transformations (mostly linear) 

Example 6 Project every 3-dimensional vector onto the horizontal plane z = 1. The 
vector v = ( x, y, z) is transformed to T ( v) = ( x, y, 1). This transformation is not linear. 
Why not? It doesn't even transform v = 0 into T( v) = 0. 

Example 7 Suppose A is an invertible matrix. Certainly T( v + w) = Av + Aw = 
T ( v) + T ( w). Another linear transformation is multiplication by A - 1

. This produces the 
inverse transformation r-

1
, which brings every vector T ( v) back to v: 

r- 1(T(v)) =v matches the matrix multiplication A- 1 (Av) =v. 
If T(v) = Av and S(u) = Bu, then the product T(S(u)) matches the product ABu. 

We are reaching an unavoidable question. Are all linear transformations from V = Rn 

to W = Rm produced by matrices? When a linear T is described as a "rotation" or 
"projection" or" ... ", is there always a matrix A hiding behind T? Is T(v) always Av? 

The answer is yes! This is an approach to linear algebra that doesn't start with 
matrices. We still end up with matrices-after we choose an input basis and output basis. 

Note Transformations have a language of their own. For a matrix, the column space 
contains all outputs Av. The nullspace contains all inputs for which Av = 0. Translate
those words into "range" and "kernel": 

Range of T = set of all outputs T ( v). Range corresponds to column space. 

Kernel of T = set of all inputs for which T( v) = 0. Kernel corresponds to nullspace. 

The range is in the output space W. The kernel is in the input space V. When T is 
multiplication by a matrix, T ( v) = Av, range is column space and kernel is nulls pace.
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Linear Transformations of the Plane 

It is more interesting to see a transformation than to define it. When a 2 by 2 matrix A
multiplies all vectors in R 2, we can watch how it acts. Start with a "house" that has eleven 
endpoints. Those eleven vectors v are transformed into eleven vectors Av. Straight lines 
between v's become straight lines between the transformed vectors Av. (The transfor­
mation from house to house is linear!) Applying A to a standard house produces a new 
house-possibly stretched or rotated or otherwise unlivable. 

This part of the book is visual, not theoretical. We will show four houses and the 
matrices that produce them. The columns of H are the eleven comers of the first house. (H 
is 2 by 12, so plot2d in Problem 25 will connect the 11th comer to the first.) A multiplies 
the 11 points in the house matrix H to produce the comers AH of the other houses. 

House 
[
-6 -6 -7 0 7 6 

matrix 
H= 

2 1 8 1 2 -7

A = [� �] 

A = [� �] 

6 -3 -3 0 0 -6
] 

-7 -7 -2 -2 -7 -7 .

A = [cos 35° 

sin 35° 

-sin 35�cos 35° 

A= 10.7 0.31
Lo.3 o.1J 

Figure 8.2: Linear transformations of a house drawn by plot2d(A * H).

• REVIEW OF THE KEY IDEAS •

1. A transformation T takes each v in the input space to T( v) in the output space.

2. Tis linear ifT(v + w) = T(v) + T(w) and T(cv) = cT(v): lines to lines.

3. Combinations to combinations: T (c1 v 1 + · · · +cnvn) = c1 T( vi)+··· +en T( vn)-

4. T = derivative and r+ = integral are linear. So is T(v) = Av from Rn to Rm .
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• WORKED EXAMPLES • 

8.1 A The elimination matrix [½ �] gives a shearing transformation from (x,y) to
T ( x, y) = ( x, x + y). If the inputs fill a square, draw the transformed square. 

Solution The points ( 1, 0) and ( 2, 0) on the x axis transform by T to ( 1, 1) and ( 2, 2) on 
the 45° line. Points on they axis are not moved: T(0, y) = (0, y) =eigenvectors with.\= 1. 

Vertical lines slide up
[ 

1 0 ]

D
(l, l) 

This is the shearing A = 1 1 v 
Squares go to parallelograms (1, 0) 

(1, 2) 

r:
5

l, l) 

8.1 B A nonlinear transformation T is invertible if every b in the output space comes
from exactly one x in the input space: T(x) = b always has exactly one solution. 
Which of these transformations ( on real numbers x) is invertible and what is T- 1? 
None are linear, not even T3• When you solve T(x) = b, you are inverting T: 

1 
T1 (x) =x2 T2 (x) =x3 T3 (x) =x + 9 T4 (x) =e"' T5 (x) = - for nonzero x's

X 

Solution T1 is not invertible: x2 = 1 has two solutions and x2 = -1 has no solution. 
T4 is not invertible because ex = -1 has no solution. (If the output space

changes to positive b's then the inverse of ex = bis x = ln b.) 

Notice Tf = identity.But Tj(x) = x + 18. What are T}(x) and T;(x)? 

T2 , T3 , T5 are invertible: x3 =band x + 9 =band¾ = b have one solution x. 

x = T; 1 (b) = b - 9 

Problem Set 8.1 

1 A linear transformation must leave the zero vector fixed: T(O) = 0. Prove this from 
T( v + w) = T( v) + T( w) by choosing w = __ (and finish the proof). Prove it 
also from T(cv) = cT(v) by choosing c = __ . 

2 Requirement (b) gives T ( cv) = cT ( v) and also T ( dw) = dT ( w). Then by addition, 
requirement (a) gives T( ) = ( ). What is T(cv + dw + eu)? 

3 Which of these transformations are not linear? The input is v = ( v1, v2): 

(a) T(v) = (v2,v1)
(d) T(v) = (0, 1)

(b) T(v) = (v1,v1)
(e) T(v)=v1-v2

(c) T(v) = (0, v1)
(f) T(v) = v1v2.
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4 If Sand Tare linear transformations, is T(S( v)) linear or quadratic? 

(a) (Special case) If S(v) = v and T(v) = v, then T(S(v)) = v or v2 ?

(b) (General case) S( V1 +v2 ) = S( v1) + S( v2 ) and T( V1 +v2) = T( v1) + T( v2 )
combine into

T(S(v1 + v2)) = T( __ ) = __ + __ .

5 Suppose T ( v) = v except that T ( 0, v2) = ( 0, 0). Show that this transformation 
satisfies T(cv) = cT(v) but does not satisfy T(v + w) = T(v) + T(w). 

6 Which of these transformations satisfy T ( v + w) = T ( v) + T ( w) and which satisfy 
T(cv) = cT(v)? 

(a) T(v) = v/llvll

( d) T ( v) = largest component of v.

7 For these transformations ofV = R2 to W = R2 , find T(T(v)). Show that when 
T ( v) is linear, then also T ( T ( v)) is linear. 

(a) T(v) = -v (b) T(v) = v + (l, 1)

(c) T( v) = 90° rotation= (-v2 , v1)

(d) T(v) =projection= ½(vi+ v2 , v1 + v2 )-

8 Find the range and kernel (like the column space and nulls pace) of T: 

(a) T(v1,v2) = (v1 - v2 ,0)

(c) T(v1, v2 ) = (0, 0)

(b) T(v1,v2 ,v3) = (v1,v2)

(d) T(v1,v2 ) = (v1,vi).

9 The "cyclic" transformation T is defined by T( v1, v2 , v3) = ( v2 , v3 , vi). What is 
T(T(v))? What is T3 (v)? What is T100 ( v)? Apply Ta hundred times to v. 

10 A linear transformation from V to W has an inverse from W to V when the range is 
all of W and the kernel contains only v = 0. Then T( v) = w has one solution v for 
each w in W. Why are these T's not invertible? 

(a) T(v1,v2) = (v2 ,v2 )

(b) T(v1,v2) = (v1,v2 ,v1 +v2)

(c) T(v1,v2) = v1

W=R2 

W=R3 

W=R1 

11 If T( v) = Av and A is m by n, then Tis "multiplication by A." 

(a) What are the input and output spaces V and W?

(b) Why is range of T = column space of A?

( c) Why is kernel of T = null space of A?
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12 Suppose a linear T transforms (1, 1) to (2, 2) and (2, 0) to (0, 0). Find T( v ):

409 

(a) V = (2, 2) (b) v=(3,l) (c) V = (-l, 1) (d) V = (a, b). 

Problems 13-19 may be harder. The input space V contains all 2 by 2 matrices M.

13 M is any 2 by 2 matrix and A = [ ½ z] . The transformation T is defined by
T ( M) = AM. What rules of matrix multiplication show that T is linear?

14 Suppose A = [ ½ � ] . Show that the range of T is the whole matrix space V and the
kernel is the zero matrix: 

(1) If AM= 0 prove that M must be the zero matrix.
(2) Find a solution to AM= B for any 2 by 2 matrix B.

15 Suppose A = [ ½ � ] . Show that the identity matrix I is not in the range of T. Find a
nonzero matrix M such that T(M) = AM is zero. 

16 Suppose T transposes every 2 by 2 matrix M. Try to find a matrix A which gives
AM = MT. Show that no matrix A will do it. To professors: Is this a linear
transformation that doesn't come from a matrix? The matrix should be 4 by 4!

17 The transformation T that transposes every 2 by 2 matrix is definitely linear. Which
of these extra properties are true?

(a) T2 = identity transformation.
(b) The kernel of T is the zero matrix.
( c) Every 2 by 2 matrix is in the range of T.
(d) T(M) =-M is impossible.

18 Suppose T(M) = [6 8] [ M] [g �]- Find a matrix with T(M) cf= 0. Describe all
matrices with T(M) = 0 (the kernel) and all output matrices T(M) (the range). 

19 If A and Bare invertible and T(M) = AM B, find r-
1 (M) in the form ( )M( ).

Questions 20-26 are about house transformations. The output is T(H) = AH.

20 How can you tell from the picture of T (house) that A is

(a) a diagonal matrix?
(b) a rank-one matrix?
(c) a lower triangular matrix?

21 Draw a picture of T (house) for these matrices:

D = [� �] and A= [:; :;] and U = [� n · 
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22 What are the conditions on A = [ � �] to ensure that T (house) will

(a) sit straight up?
(b) expand the house by 3 in all directions?
(c) rotate the house with no change in its shape?

23 Describe T (house) when T(v) = -v + (1, 0). This Tis "affine".

24 Change the house matrix H to add a chimney.

25 The standard house is drawn by plot2d(H). Circles from o and lines from -:

x = H(l, :)';y = H(2, :)'; 
axis([-1010-1010]), axis('square')
l t( / / / ').p o  x,y, o ,x,y, - , 

Test plot2d(A '* H) and pfot2d(A 1 * A * H) with the matrices in Figure 8.1.

26 Without a computer sketch the houses A * H for these matrices A:

and [ .5 .5] .5 .5 and [ .5 .5] -.5 .5 and [� �] .

27 This code creates a vector theta of 50 angles. It draws the unit circle and then
it draws T (circle) = ellipse. T ( v) = Av takes circles to ellipses. 

A= [2 1 ;1 2] % You can change A
theta= [0:2 * pi/50:2 * pi]; 
circle= [cos(theta); sin(theta)]; 
ellipse = A * circle; 
axis([-4 4 -4 4]); axis('square') 
plot(circle(1,:), circle(2,:), ellipse(1,:), ellipse(2,:))

28 Add two eyes and a smile to the circle in Problem 27. (If one eye is dark and the
other is light, you can tell when the face is reflected across the y axis.) Multiply by
matrices A to get new faces. 

29 What conditions on det A = ad - be ensure that the output house AH will
(a) be squashed onto a line?
(b) keep its endpoints in clockwise order (not reflected)?
(c) have the same area as the original house?

30 Why does every linear transformation T from R 2 to R 2 take squares to parallelo­
grams? Rectangles also go to parallelograms (squashed if T is not invertible). 
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8.2 The Matrix of a Linear Transformation 
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1 We know all T(v) ifwe know T(v1), ... , T(vn ) for an input basis v1, ... , Vn : use linearity. 

2 Column j in the "matrix for T" comes from applying T to the input basis vector v j. 

3 Write T( Vj) = a 1 jw1 + · · · + am jWm in the output basis of w's. Those aij go into column j. 

4 The matrix for T(x) =Axis A ,  if the input and output bases= columns of Inxn and Imxm · 

5 When the bases change to v's and w's, the matrix for the same T changes from A to w- 1 AV.

6 Best bases: V = W = eigenvectors and V, W = singular vectors give diagonal A and :B. 

The next pages assign a matrix A to every linear transformation T. For ordinary column 
vectors, the input v is in V = Rn and the output T ( v) is in W = Rm. The matrix A for 
this transformation will be m by n. Our choice of bases in V and W will decide A. 

The standard basis vectors for Rn and Rm are the columns of I. That choice leads to 
a standard matrix. Then T(v) = Av in the normal way. But these spaces also have other 
bases, so the same transformation T is represented by other matrices. A main theme of 
linear algebra is to choose the bases that give the best matrix (a diagonal matrix) for T. 

All vector spaces V and W have bases. Each choice of those bases leads to a matrix 
for T. When the input basis is different from the output basis, the matrix for T( v) = v will 
not be the identity I. It will be the "change of basis matrix". Here is the key idea: 

Suppose we know T( v) for the input basis vectors v1 to Vn . 

Columns 1 ton of the matrix will contain those outputs T(v1) to T(vn )­

A times c = matrix times vector = combination of those n columns. 

Acis thecorrect combination c1T(v1) + · · · + cnT(vn ) = T(v). 

Reason Every vis a unique combination c1v1 + · · · + CnVn of the basis vectors Vj. 
Since T is a linear transformation (here is the moment for linearity), T( v) must be 
the same combination c1T(v1) + · · · + cnT(vn ) of the outputs T(vj) in the columns. 

Our first example gives the matrix A for the standard basis vectors in R 2 and R 3.

Example 1 Suppose T transforms v1 = (1, 0) to T( vi) = (2, 3, 4). Suppose the second 
basis vectorv2 = (0,l)goes to T(v2) = (5,5,5). IfTis linearfromR2 toR3 then its
"standard matrix" is 3 by 2. Those outputs T( v1) and T( v2) go into the columns of A :
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Change of Basis 

Example 2 Suppose the input space V = R
2 is also the output space W = R

2
. 

Suppose that T( v) = v is the identity transformation. You might expect its matrix 
to be I, but that only happens when the input basis is the same as the output basis. 
I will choose different bases to see how the matrix is constructed. 

For this special case T( v) = v, I will call the matrix B instead of A. We are just 
changing basis from the v's to thew's. Each vis a combination of w1 and w2. 

W1 W2 = Output [ ] [ 3 0] Change v1 = lw1 + lw2
basis 1 2 of basis v2 = 2w1 + 3w2 

Please notice! I wrote the input basis v 1, v2 in terms of the output basis w 1, w2. 
That is because of our key rule. We apply the identity transformation T to each input 
basis vector: T(v1) = v1 and T(v2) = v2. Then we write those outputs v1 and v2 
in the output basis w1 and w2. Those bold numbers 1, 1 and 2, 3 tell us column 1 and 
column 2 of the matrix B (the change of basis matrix): W B = V so B = w-

1 V.

Matrix B for 

change of basis 

When the input basis is in the columns of a matrix V, and the output basis 
is in the columns of W, the change of basis matrix for T = I is B = w-

1 
V.

(1) 

The key I see a clear way to understand that rule B = w-
1 V. Suppose the same vec­

tor u is written in the input basis of v's and the output basis of w's. I will do that three ways: 

[ l [ C
1 

l [ l [ d
1 

l
U = 

C
1V1 + · · · + CnVn . . . 

_ d d 
1s V1 · · · Vn - = W1 · · · Wn . and V c = W d.

U - 1 W1 + · · · + nWn · 

Cn dn 

The coefficients din the new basis of w's are d = w-
1 V c. Then Bis w-

1 V. (2) 

This formula B = w-
1 V produces one of the world 's greatest mysteries: When the 

standard basis V = I is changed to a different basis W, the change of basis matrix is

not W but B = w-
1

. Larger basis vectors have smaller coefficients! 

[:] in the standard basis has coefficients [ W1 W2 ]-l [:] in the w1, w2 basis.
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Construction of the Matrix 

Now we construct a matrix for any linear transformation. Suppose T transforms the space 
V ( n-dimensional) to the space W ( m-dimensional). We choose a basis v 1, ... , Vn for V 
and we choose a basis w1, ... , Wm for W. The matrix A will be m by n. To find the first 
column of A, apply T to the first basis vector Vi. The output T ( v1) is in W. 

T(v1) is a combination a11w1 + · · · + arn1Wrn ofthe outputbasisforW.

These numbers an, . .. ,am1 go into the first column of A. Transforming Vi to T(v1) 

matches multiplying (1, 0, ... , 0) by A. It yields that first column of the matrix. 
When Tis the derivative and the first basis vector is 1, its derivative is T(v1) = 0. 
So for the derivative matrix below, the first column of A is all zero. 

Example 3 The input basis of v's is 1, x, x2 , x3 . The output basis of w's is 1, x, x2 . 
dv 

Then T takes the derivative: T( v) = - and A "derivative matrix". 
dx 

lfv = C1 + C2X + C3X
2 

+ C4X3 

dv 
then 

dx 
= lc2 + 2c3x + 3c4x2 

Key rule: The jth column of A is found by applying T to the jth basis vector v1 

T( v1) = combination of output basis vectors= a11w1 + · · · + amjWm. (3) 

These numbers aij go into A. The matrix is constructed to get the basis vectors right.
Then linearity gets all other vectors right. Every vis a combination c1 v1 + · · · + CnVn, 

and T ( v) is a combination of the w 's. When A multiplies the vector c = ( c1, . . . , Cn) 

in the v combination, Ac produces the coefficients in the T( v) combination. This is 
because matrix multiplication (combining columns) is linear like T.

The matrix A tells us what T does. Every linear transformation from V to W can be 
converted to a matrix. This matrix depends on the bases. 

Example 4 For the integral r+ ( v ), the first basis function is again 1. Its integral is the 
second basis function x. So the first column of the "integral matrix" A+ is (0, 1, 0, 0). 

The integral of d1 + d2x + d3x2 

is 
1 2 1

3 d1x + -d2x + -d3x
2 3 

A+d= 

0 0 
1 0 
0 1 

0 0 

0 0 
0 

[ ;: l 
d1 

0 ½d2 

1 
!.d3 3 3 
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If you integrate a function and then differentiate, you get back to the start. So AA+ = I.But if you differentiate before integrating, the constant term is lost. So A+ A is not I.
The integral of the derivative of l is zero: 

T+T(l) = integral of zero function = 0.
This matches A+ A, whose first column is all zero. The derivative T has a kernel (theconstant functions). Its matrix A has a nullspace. Main idea again: Av copies T( v ). The examples of the derivative and integral made three points. First, linear trans­formations T are everywhere-in calculus and differential equations and linear algebra.
Second, spaces other than Rn are important-we had functions in V and W. Third,
if we differentiate and then integrate, we can multiply their matrices A+ A. 

Matrix Products AB Match Transformations TS 

We have come to something important-the real reason for the rule to multiply matrices.
At last we discover why! Two linear transformations T and S are represented by twomatrices A and B. Now compare TS with the multiplication AB: 

When we apply the transformation T to the output from S, we get TS by this rule:
(TS)( u) is defined to be T(S( u)). The output S( u) becomes the input to T. 

When we apply the matrix A to the output from B, we multiply AB by this rule:
(AB)(x) is defined to be A(Bx ). The output Bx becomes the input to A. 
Matrix multiplication gives the correct matrix AB to represent TS. 

The transformation S is from a space U to V. Its matrix B uses a basis u1, ... , up 

for U and a basis v 1, ... , Vn for V. That matrix is n by p. The transformation T is fromV to W as before. Its matrix A must use the same basis v 1, ... , Vn for V-this is theoutput space for S and the input space for T. Then the matrix AB matches TS. 

Multiplication The linear transformation TS starts with any vector u in U, goesto S(u) in V and then to T(S(u)) in W. The matrix AB starts with any x in RP, 
goes to Bx in Rn and then to ABx in Rm . The matrix AB correctly represents TS:

TS: U-+ V-+ W AB: (m by n)(n by p) = (m by p).

The input is u = x1u1 + · · · + XpUp. The output T(S(u)) matches the output ABx.
Product of transformations TS matches product of matrices AB. The most important cases are when the spaces U, V, W are the same and their basesare the same. With m = n = p we have square matrices that we can multiply. 
Example 5 S rotates the plane by 0 and T also rotates by 0. Then TS rotates by 20.This transformation T2 corresponds to the rotation matrix A 2 through 20 : 

T = S A= B T2 
= rotation by 20 A2 

= [cos 20 - sin 20] (4)sin 20 cos 20 · 
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By matching (transformation)2 with (matrix)2 , we pick up the formulas for cos 20 

and sin 20. Multiply A times A: 

[cos0 - sin0 ] [cos0 - sin0 ] = [cos
2

0 - sin2
0 

sin 0 cos 0 sin 0 cos 0 2 sin 0 cos 0 
-2 sin 0 cos 0 ] cos2 0 - sin2 0 (5)

Comparing ( 4) with ( 5) produces cos 20 = cos
2 0 - sin 2 0 and sin 20 

Trigonometry (the double angle rule) comes from linear algebra. 
2 sin0 cos 0.

Example 6 S rotates by the angle 0 and T rotates by -0. Then TS = I leads to AB = I.
In this case T(S(u)) is u. We rotate forward and back. For the matrices to match,
ABx must be x. The two matrices are inverses. Check this by putting cos(-0) = cos 0
and sin( -0) = - sin 0 into the backward rotation matrix A: 

AB= [ c�s0 

- sm0 

sin 0] [cos 0 - sin 0] = [cos
2 0 + sin2 0 

cos 0 sin 0 cos 0 0 cos
2 0 � sin2 0] = I.

Choosing the Best Bases 

Now comes the final step in this section of the book. Choose bases that diagonalize the

matrix. With the standard basis (the columns of J) our transformation T produces some
matrix A-probably not diagonal. That same T is represented by different matrices when
we choose different bases. The two great choices are eigenvectors and singular vectors: 

Eigenvectors If T transforms Rn to Rn , its matrix A is square. But using the
standard basis, that matrix A is probably not diagonal. If there are n indepen­
dent eigenvectors, choose those as the input and output basis. In this good basis, 
the matrix for T is the diagonal eigenvalue matrix A. 

Example 7 The projection matrix T projects every v = (x, y) in R2 onto the
line y = -x. Using the standard basis, v1 = (1,0) projects to T(v1) = (½,-½)­
For v2 = (0, 1) the projection is T(v2) = (-½,½)-Those are the columns of A: 

Projection matrix 

Standard bases 

Not diagonal 

A = [ -! -: l has AT = A and A2 = A. 

Now comes the main point of eigenvectors. Make them the basis vectors ! Diagonalize !
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When the basis vectors are eigenvectors, the matrix becomes diagonal. 
v1 = w 1 = (1, -1) projects to itself: T(vi) = v1 and .\1 = 1
v2 = w2 = (1, 1) projects to zero : T(v2) = 0 and .\2 = 0

Eigenvector bases 

Diagonal matrix 
The new matrix is [� �] = [ �1 �J = A.

Eigenvectors are the perfect basis vectors. They produce the eigenvalue matrix A. 

(6) 

What about other choices of input basis = output basis? Put those basis vectors into 
the columns of B. We saw above that the change of basis matrices (between standard basis 
and new basis) are Bin = B and Bout = B- 1

. The new matrix for T is similar to A: 

Anew = B- 1 AB in the new basis of b's is similar to A in the standard basis: 

Ab's to b's = B- 1 

standard to b's Astandard B b's to standard (7)

I used the multiplication rule for the transformation IT I. The matrices for I, T, I were 
B- 1

, A, B. The matrix B contains the input vectors b in the standard basis. 

Finally we allow different spaces V and W, and different bases v's and w's. When 
we know T and we choose bases, we get a matrix A. Probably A is not symmetric or even 
square. But we can always choose v's and w's that produce a diagonal matrix. This will 
be the singular value matrix l"; = diag ( o-1, • . .  , a r) in the decomposition A = U�VT . 

Singular vectors The SVD says that u- 1 AV = �- The right singular vectors 
v 1, ... , Vn will be the input basis. The left singular vectors u1, ... , Um will be 
the output basis. By the rule for matrix multiplication, the matrix for the same 
transformation in these new bases is B;;u�AB;n = u- 1 AV=�-

I can't say that� is "similar" to A. We are working now with two bases, input and output. 
But those are orthonormal bases and they preserve the lengths of vectors. Following a good 
suggestion by David Vogan, I propose that we say: 1": is "isometric" to A.

Definition C = Q1
1 AQ2 is isometric to A if Q1 and Q2 are orthogonal. 

Example 8 To construct the matrix A for the transformation T = ix, we chose the 
input basis 1, x, x2

, x3 and the output basis 1, x, x2
. The matrix A was simple but unfortu­

nately it wasn't diagonal. But we can take each basis in the opposite order. 
Now the input basis is x3

, x2
, x, 1 and the output basis is x2

, x, 1. The change of basis 
matrices B;n and Bout are permutations. The matrix for T(u) = du/dx with the new 
bases is the diagonal singular value matrix B;;u�ABin = 1": with cr's = 3, 2, 1: 

B;;.�AB,. - [ 1 'W 
1 0 

� l [ 1

1 
1 

]-[ ! 
0 o o

l
1 0 2 1 2 0 0 . (8)

0 0 0 1 0 

Well, this was a tough section. We found that x3
, x2

, x, 1 have derivatives 3x2
, 2x, 1, 0. 
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• REVIEW OF THE KEY IDEAS •

1. If we know T(v1), ... , T(vn) for a basis, linearity will determine all other T(v).

{ 
Linear transformation T

} 
Matrix A (m by n) 

2. Input basis v1, . . .  , Vn -t represents T
Output basis w 1, . . .  , Wm in these bases 

3. The change of basis matrix B = w- 1 V = B;;u\Bin represents the identity T( v) =v.

4. If A and B represent T and S, and the output basis for Sis the input basis for T,
then the matrix AB represents the transformation T ( S ( u)).

5. The best input-output bases are eigenvectors and/or singular vectors of A. Then
B- 1 AB= A= eigenvalues B;;u\ABin =�=singular values. 

• WORKED EXAMPLES • 

8.2 A The space of 2 by 2 matrices has these four "vectors" as a basis: 

Vz = [ � � ] 

T is the linear transformation that transposes every 2 by 2 matrix. What is the matrix A that 
represents Tin this basis (output basis= input basis )? What is the inverse matrix A- 17 
What is the transformation y- 1 that inverts the transpose operation? 

Solution Transposing those four "basis matrices" just reverses v2 and v3: 

T(vi) = V1 

T(vz) = V3 
T(v3) = vz 
T(v4) = V4 

gives the four columns of A--
[ 0�

1 �

� 

0

�
1 

�

� 
l 

The inverse matrix A - 1 is the same as A. The inverse transformation y- 1 is the same as T.
If we transpose and transpose again, the final matrix equals the original matrix. 

Notice that the space of 2 by 2 matrices is 4-dimensional. So the matrix A (for the 
transpose T) is 4 by 4. The nullspace of A is Z and the kernel of Tis the zero matrix-the 
only matrix that transposes to zero. The eigenvalues of A are 1 , 1 , 1 , -1. 

Which line of matrices has T (A) = AT = -A with that eigenvalue .\ = -1 ? 
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Problem Set 8.2 

Questions 1-4 extend the first derivative example to higher derivatives. 

1 The transformation S takes the second derivative. Keep 1, x, x2 , x3 as the input 
basis vi, v2 , V3, V4 and also as output basis w1, w2 , W3, W4. Write S(v1), S(v2), 
S( v3), S( v4) in terms of thew's. Find the 4 by 4 matrix A2 for S. 

2 What functions have S ( v) = O? They are in the kernel of the second derivative S. 
What vectors are in the nullspace of its matrix A2 in Problem 1? 

3 The second derivative A2 is not the square of a rectangular first derivative matrix A1: 

A1 = [� � � �i does not allow Ai = A2 . 
0 0 0 3 

Add a zero row 4 to A1 so that output space= input space. Compare Ar with A2 . 
Conclusion: We want output basis = __ basis. Then m = n. 

4 (a) The product TS of first and second derivatives produces the third derivative.
Add zeros to make 4 by 4 matrices, then compute A1A2 = A3.

(b) The matrix A� corresponds to S2 = fourth derivative. Why is this zero?

Questions 5-9 are about a particular transformation T and its matrix A.

5 With bases V1, V2 , V3 andw1, w2 , W3, suppose T(v1) = w2 and T(v2) = T(v3) =
w1 + w3 . T is a linear transformation. Find the matrix A and multiply by the 
vector (1, 1, 1). What is the output from T when the input is v1 + v2 + v3? 

6 Since T( v2) = T( v3), the solutions to T( v) = 0 are v = __ . What vectors are 
in the nullspace of A? Find all solutions to T ( v) = w2 . 

7 Find a vector that is not in the column space of A. Find a combination of w's that is 
not in the range of the transformation T. 

8 You don't have enough information to determine T2 . Why is its matrix not necessar­
ily A2? What more information do you need? 

9 Find the rank of A. The rank is not the dimension of the whole output space W.

It is the dimension of the of T. 

Questions 10-13 are about invertible linear transformations. 

10 Suppose T(v1) = w1 + w2 + W3 and T(v2) = w2 + w3 and T(v3) = W3. Find 
the matrix A for T using these basis vectors. What input vector v gives T( v) = w1? 

11 Invert the matrix A in Problem 10. Also invert the transformation T-what are 
r-

1 (wi) and r-
1(w2) and r-

1(w3)?

12 Which of these are true and why is the other one ridiculous? 
(a) r-

1
r = I (b) r-

1 (T(v1 )) = v1 (c) r-
1(T(w1)) = w1.
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13 Suppose the spaces V and W have the same basis v1, v2 . 

(a) Describe a transformation T (not I) that is its own inverse.

(b) Describe a transformation T (not I) that equals T2 .

(c) Why can't the same T be used for both (a) and (b)?

Questions 14-19 are about changing the basis. 
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14 (a) What matrix B transforms (1, 0) into (2, 5) and transforms (0, 1) to (1, 3)?
(b) What matrix C transforms (2, 5) to (1, 0) and (1, 3) to (0, 1)?

(c) Why does no matrix transform (2, 6) to (1, 0) and (1, 3) to (0, 1)?

15 (a) What matrix M transforms (1, 0) and (0, 1) to (r, t) and (s, u)?

(b) What matrix N transforms (a, c) and (b, d) to (1, 0) and (0, 1)?
(c) What condition on a, b, c, d will make part (b) impossible?

16 (a) How do Mand Nin Problem 15 yield the matrix that transforms (a, c) to (r, t)
and (b, d) to (s, u)?

(b) What matrix transforms (2, 5) to (1, 1) and (1, 3) to (0, 2)?

17 If you keep the same basis vectors but put them in a different order, the change of 
basis matrix B is a __ matrix. If you keep the basis vectors in order but change 
their lengths, B is a __ matrix. 

18 The matrix that rotates the axis vectors ( 1, 0) and ( 0, 1) through an angle 0 is Q. 
What are the coordinates ( a, b) of the original ( 1, 0) using the new (rotated) axes? 
This inverse can be tricky. Draw a figure or solve for a and b: 

Q= 
[c?s 0 - sin0] 
sm0 cos0 

[ 1] 
= a 

[ c?s 0] 
+

b [- sin 0] .0 sm0 cos0 

19 The matrix that transforms (1, 0) and (0, 1) to (1, 4) and (1, 5) is B = 
The combination a(l, 4) + b(l, 5) that equals (1, 0) has (a, b) = ( , ). 
How are those new coordinates of (1, 0) related to B or B-17

Questions 20-23 are about the space of quadratic polynomials y = A + Bx + C x2
• 

20 The parabola w1 = ½(x2 
+ x) equals one at x = 1, and zero at x = 0 and x = -1. 

Find the parabolas w2, w3, and then find y(x) by linearity. 

(a) w2 equals one at x = 0 and zero at x = 1 and x = -1.
(b) w3 equals one at x = -1 and zero at x = 0 and x = 1.
(c) y(x) equals 4 at x = 1 and 5 at x = 0 and 6 at x = -1. Use w1, w2 , W3. 

21 One basis for second-degree polynomials is v1 = 1 and v2 = x and v3 = x2 . 
Another basis is w1, w2 , w3 from Problem 20. Find two change of basis matrices, 
from thew's to the v's and from the v's to thew's. 
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22 What are the three equations for A, B, C if the parabola y =A+ Bx+ Cx2 equals
4 at x = a and 5 at x = b and 6 at x = c? Find the determinant of the 3 by 3 matrix.
That matrix transforms values like 4, 5, 6 to parabolas y-or is it the other way? 

23 Under what condition on the numbers m1 , m2 , ... , m9 do these three parabolas give
a basis for the space of all parabolas a + bx + cx2 ? 

V1 = m1 + m2x + m3x2, v2 = m4 + m5x + m5x2, V3 = m7 + msx + mgx2 .

24 The Gram-Schmidt process changes a basis a1 , a2 , a3 to an orthonormal basis
q 1 , q2 , q

3 . These are columns in A = QR. Show that R is the change of basis
matrix from the a's to the q's (a2 is what combination of q's when A= QR?).

25 Elimination changes the rows of A to the rows of U with A = LU. Row 2 of A is
what combination of the rows of U? Writing AT 

= UT LT to work with columns,
the change of basis matrix is B = LT. We have bases if the matrices are __ . 

26 Suppose v1 , v2 , v3 are eigenvectors for T. This means T( vi) = Ai Vi for i = 1, 2, 3.
What is the matrix for T when the input and output bases are the v's? 

27 Every invertible linear transformation can have I as its matrix! Choose any input
basis v1 , ... , Vn. For output basis choose Wi = T( vi)- Why must T be invertible? 

28 Using v1 = w 1 and v2 = w2 find the standard matrix for these T's:

(a) T(vi) = 0 and T(v2) = 3v1 (b) T(v1 ) = v1 and T(v1 + v2) = v1.

29 Suppose T reflects the xy plane across the x axis and S is reflection across the y
axis. If v = (x, y) what is S(T( v ))? Find a simpler description of the product ST.

30 Suppose Tis reflection across the 45° line, and S is reflection across the y axis. If
v = (2, 1) then T(v) = (1, 2). Find S(T(v)) and T(S(v)). Usually ST# TS.

31 The product of two reflections is a rotation. Multiply these reflection matrices to
find the rotation angle: 

[cos 20 sin 20] sin 20 - cos 20 [cos 2a sin 2a]sin 2a - cos 2a 

32 Suppose A is a 3 by 4 matrix of rank r = 2, and T( v) = Av. Choose input basis
vectors v1 , v2 from the row space of A and v3, v4 from the nullspace. Choose
output basis vectors w 1 = Av1, w2 = Av2 in the column space and w3 from the
nullspace of AT. What specially simple matrix represents Tin these special bases?

33 The space M of 2 by 2 matrices has the basis v1 , v2 , v3, v4 in Worked
Example 8.2 A. Suppose T multiplies each matrix by [ � �] . With w 's equal to
v's, what 4 by 4 matrix A represents this transformation Ton matrix space? 

34 True or False: If we know T(v) for n different nonzero vectors in Rn , then we
know T ( v) for every vector v in Rn .



8.3. The Search for a Good Basis 

8.3 The Search for a Good Basis 

421 

1 With a new input basis Bin and output basis Bout , every matrix A becomes B�t AB;0. 

2 Bin 
= Bout = "generalized eigenvectors of A" produces the Jordan form J = B- 1 AB. 

3 The Fourier matrix F = Bin = Bout diagonalizes every circulant matrix (use the FFT). 

4 Sines and cosines, Legendre and Chebyshev: those are great bases for function space. 

This is an important section of the book. I am afraid that most readers will skip it-or 
won't get this far. The first chapters prepared the way by explaining the idea of a basis. 

Chapter 6 introduced the eigenvectors x and Chapter 7 found singular vectors v and u. 
Those are two winners but many other choices are very valuable. 

First comes the pure algebra from Section 8.2 and then come good bases. The input 
basis vectors will be the columns of B;0• The output basis vectors will be the columns of 
Bout · Always B;0 and Bout are invertible-basis vectors are independent! 

Pure algebra If A is the matrix for a transformation T in the standard basis, then 

B;;:} AB;0 is the matrix in the new bases. (1) 

The standard basis vectors are the columns of the identity: B;n = Inxn and Bout = Im x m · 
Now we are choosing special bases to make the matrix clearer and simpler than A.

When Bin
= Bout = B, the square matrix B- 1 AB is similar to A. 

Applied algebra Applications are all about choosing good bases. Here are four 
important choices for vectors and three choices for functions. Eigenvectors and singular 
vectors led to A and I: in Section 8.2. The Jordan form is new. 

1 B;0 =Bout= eigenvector matrix X. Then x- 1 
AX = eigenvalues in A. 

This choice requires A to be a square matrix with n independent eigenvectors. 
"A must be diagonalizable." We get A when B;0 = Bout is the eigenvector matrix X. 

2 B;0 = V and Bout = U: singular vectors of A. Then u-
1 AV = diagonal :E. 

I: is the singular value matrix (with u1, ... , O"r on its diagonal) when Bin and Bout 

are the singular vector matrices V and U. Recall that those columns of Bin and Bout 

are orthonormal eigenvectors of A T A andAA T . Then A= UI:VT gives I:= u-
1 AV. 

3 B;0 = Bout = generalized eigenvectors of A. Then B- 1 
AB= Jordan form J.

A is a square matrix but it may only have s independent eigenvectors. (If s = n then 
B is X and J is A.) In all cases Jordan constructed n - s additional " generalized" 
eigenvectors, aiming to make the Jordan form J as diagonal as possible : 

i) There ares square blocks along the diagonal of J.

ii) Each block has one eigenvalue >., one eigenvector, and 1 's above the diagonal.

The good case has n l x 1 blocks, each containing an eigenvalue. Then J is A ( diagonal). 
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Example 1 This Jordan matrix J has eigenvalues >,. = 2, 2, 3, 3 (two double eigen­
values). Those eigenvalues lie along the diagonal because J is triangular. There are two 
independent eigenvectors for>-. = 2, but there is only one line of eigenvectors for >-. = 3. 
This will be true for every matrix C = BJ B- 1 that is similar to J. 

Jonlanmatrix J �
l 

2 
2 

[� � 

l j Two 1 by 1 blocks
One 2 by 2 block 
Three eigenvectors 
Eigenvalues 2, 2, 3, 3 

Two eigenvectors for>-. = 2 are x1 = (1, 0, 0, 0) and x2 = (0, 1, 0, 0). One eigenvector 
for>,. = 3 is x3 = (0, 0, 1, 0). The "generalized eigenvector" for this Jordan matrix is 
the fourth standard basis vector x4 = (0, 0, 0, 1). The eigenvectors for J (normal and 
generalized) are just the columns x 1, x2, X3, x4 of the identity matrix I.

Notice ( J - 3I)x4 = x3. The generalized eigenvector X4 connects to the true

eigenvector x3. A true x4 would have (J - 3I)x4 = 0, but that doesn't happen here. 

Every matrix C = BJB- 1 that is similar to this J will have true eigenvectors 
b1 , b2 , b3 in the first three columns of B. The fourth column of B will be a generalized 
eigenvector b4 of C, tied to the true b3 . Here is a quick proof that uses Bx3 = b3 

and Bx4 = b4 to show: The fourth column b4 is tied to b3 by ( C - 3I)b4 = b3 . 

The point of Jordan's theorem is that every square matrix A has a complete set of 
eigenvectors and generalized eigenvectors. When those go into the columns of B, the 
matrix B- 1 AB = J is in Jordan form. Based on Example 1, here is a description of J.

The Jordan Form 

For every A, we want to choose B so that B- 1 AB is as nearly diagonal as possi­
ble. When A has a full set of n eigenvectors, they go into the columns of B. Then 
B = X. The matrixX- 1AX is diagonal, period. This is the Jordan form of A-when A
can be diagonalized. In the general case, eigenvectors are missing and A can't be reached. 

Suppose A has s independent eigenvectors. Then it is similar to a Jordan matrix 
with s blocks. Each block has an eigenvalue on the diagonal with 1 's just above it. 
This block accounts for exactly one eigenvector of A. Then B contains generalized 
eigenvectors as well as ordinary eigenvectors. 

When there are n eigenvectors, all n blocks will be 1 by 1. In that case J = A. 
The Jordan form solves the differential equation du/ dt = Au for any square matrix

A = BJ B- 1
. The solution eAtu(0) becomes u(t) = BeJt B- 1 u(0). J is triangular 

and its matrix exponential eJt involves e>-t times powers 1, t, ... , ts-l _ 



8.3. The Search for a Good Basis 423 

(Jordan form) If A has s independent eigenvectors, it is similar to a matrix J that has 
s Jordan blocks J1 ... , J5 on its diagonal. Some matrix B puts A into Jordan form : 

Jordan form (3) 

Each block Ji has one eigenvalue Ai, one eigenvector, and 1 's just above the diagonal: 

Jordan block 

Matrices are similar if they share the same Jordan form J-not otherwise. 

The Jordan form J has an off-diagonal 1 for each missing eigenvector (and the l's 
are next to the eigenvalues). In every family of similar matrices, we are picking one 
outstanding member called J. It is nearly diagonal ( or if possible completely diagonal). 
We can quickly solve du/ dt = Ju and take powers Jk . Every other matrix in the 
family has the form BJ B- 1

. 

Jordan's Theorem is proved in my textbook Linear Algebra and Its Applications. 
Please refer to that book (or more advanced books) for the proof. The reasoning is 
rather intricate and in actual computations the Jordan form is not at all popular-its cal­
culation is not stable. A slight change in A will separate the repeated eigenvalues and 
remove the off-diagonal 1 's-switching Jordan to a diagonal A. 

Proved or not, you have caught the central idea of similarity-to make A as simple as 
possible while preserving its essential properties. The best basis B gives B- 1 AB = J. 

Question Find the eigenvalues and all possible Jordan forms if A 2 
= zero matrix. 

Answer The eigenvalues must all be zero, because Ax = AX leads to A2x = A2x = Ox. 
The Jordan form of A has J2 

= 0 because J2 
= (B- 1 AB)(B- 1 AB) = B- 1 A2 B = 0. 

Every block in J has A= 0 on the diagonal. Look at Jf for block sizes 1, 2, 3 :  

[0]
2

=[0] 
[o 1 0]

2 0 0 1 
0 0 0 

Conclusion: If J2 
= 0 then all block sizes must be 1 or 2. J2 is not zero for 3 by 3. 

The rank of J (and A) will be the total number of 1 's. The maximum rank is n/2. 
This happens when there are n/2 blocks, each of size 2 and rank 1. 

(4)



424 Chapter 8. Linear Transformations 

Now come the great bases of applied mathematics. Their discrete forms are vectors 
in Rn. Their continuous forms are functions in a function space. Since they are chosen 
once and for all, without knowing the matrix A, these bases Bin = Bout probably don't 
diagonalize A. But for many important matrices A in applied mathematics, the matrices 
B� 1 AB are close to diagonal. 

4 B;n = Bout = Fourier matrix F Then Fx is a Disc.rete Fourier Transform of x. 

Those words are telling us : The Fourier matrix with columns ( 1, . .\, .,\, 2, .,\, 3) in equation 
(6) is important. Those are good basis vectors to work with.

We ask: Which matrices are diagonalized by F? This time we are starting with the 
eigenvectors ( 1, >-, ), 2 , .,\, 3 ) and finding the matrices that have those eigenvectors : 

If .\4 
= 1 then 

1 
0 
0 
0 

0 
1 
0 
0 

(5) 

P is a permutation matrix. The equation Px >-x says that x is an eigenvector 
and .,\, is an eigenvalue of P. Notice how the fourth row of this vector equation is 
1 = .,\, 4. That rule for ), makes everything work. 

Does this give four different eigenvalues.,\,? Yes. The four numbers.,\,= 1, i, -1, -i 
all satisfy .,\,4 = 1. (You lmow i2 = -1. Squaring both sides gives i4 = 1.) So those 
four numbers are the eigenvalues of P, each with its eigenvector x = (1, >-, ),2 , .,\,3 ). 
The eigenvector matrix F diagonalizes the permutation matrix P : 

Eigenvalue 

matrix A 

Ei.genvector 

matrix is 

Fourier 

matrix F r1 

1 
i 
i2 
i3 

1 
-1

1
-1

1 l 
-i

( -i)2
(-i)3

(6) 

Those columns of Fare orthogonal because they are eigenvectors of P (an orthogonal 
matrix). Unfortunately this Fourier matrix F is complex (it is the most important 
complex matrix in the world). Multiplications Fx are done millions of times very 
quickly, by the Fast Fourier Transform. The FFT comes in Section 9.3. 

Key question : What other matrices beyond P have this same eigenvector matrix F ? 
We know that P2 and P3 and P4 have the same eigenvectors as P. The same matrix F 
diagonalizes all powers of P. And the eigenvalues of P2 and P3 and P4 are the numbers 
.,\,2 and .,\,3 and .,\,4 . For example P2x = >-2x: 

0 
0 
0 
1 

1 
0 
0 
0 
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The fourth power is special because P4 
= I. When we do the "cyclic permutation" 

four times, P4x is the same vector x that we started with. The eigenvalues of P4 = 1 are 
just 1, 1, 1, 1. And that number 1 agrees with the fourth power of all the eigenvalues of P : 
14 = 1 andi4 = 1 and (-1)4 = 1 and (-i)4 = 1. 

One more step brings in many more matrices. If P and P2 and P3 and P4 = 1 have 
the same eigenvector matrix F, so does any combination C = c1P + c2P2 

+ c3P3 
+ c01:

C. 1 t t . C C3 co c1 c2 has four eigenvalues c0 + c1>. + c2>.2 
+ c3>.3 

[ 

co c1 c2 C3 

l 

has eigenvectors in the Fourier matrix F

ircu an ma r1x = . .c2 c3 co c1 from the four numbers>-= 1, i, -1, -i 

c1 c2 c3 co The eigenvalue from >-= 1 is co + c1 + c2 + c3 

That was a big step. We have found all the matrices (circulant matrices C) whose 
eigenvectors are the Fourier vectors in F. We also know the four eigenvalues of C, but 
we haven't given them a good formula or a name until now: 

The four eigenvalues of C 
are given by the 

Fourier transform Fe 
Fe= 

[� � -� -�1 r:�1 1 -1 1 -1 C2 

Co + C1 + C2 + C3 

co + ic1 - c2 - ic3 

Co - C1 + C2 - C3 

co - ic1 - c2 + ic3 1 -i -1 i C3 

Example 2 The same ideas work for a Fourier matrix F and a circulant matrix C of 
any size. Two by two matrices look trivial but they are very useful. Now eigenvalues 
of P have >-2 = 1 instead of >.4 = 1 and the complex number i is not needed: A = ±1. 

Fourier matrix F from 
eigenvectors of P and C 

F=[l 1] P=[Ol] 
1 -1 1 0 

Circulant 
C = [ co c1 ] .

col+ c1P c1 co 

The eigenvalues of C are c0 + c1 and c0 - c1. Those are given by the Fourier transform F c
when the vector c is (co, c1). This transform Fe gives the eigenvalues of C for any size n.

Notice that circulant matrices have constant diagonals. The same number c0 goes 
down the main diagonal. The number c1 is on the diagonal above, and that diagonal 
"wraps around" or "circles around" to the southwest corner of C. This explains the name 
circulant and it indicates that these matrices are periodic or cyclic. Even the powers of>. 
cycle around because >. 4 = 1 leads to >.5 , ,>.6 , >. 7, ,>.8 = >., ,>.2 , ,>.3 , ,>.4 • 

Constancy down the diagonals is a crucial property of C. It corresponds to constant
coefficients in a differential equation. This is exactly when Fourier works perfectly! 

d2u 
The equation 

dt2 
= -u is solved by u = co cost + c1 sin t.

The equation 
d2u 

dt2 
= tu cannot be solved by elementary functions. 

These equations are linear. The first is the oscillation equation for a simple spring. 
It is Newton's Law f = ma with mass m = 1, a = d2u/dt2

, and force f = -u.
Constant coefficients produce the differential equations that you can really solve. 
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The equation u 11 = tu has a variable coefficient t. This is Airy's equation in physics
and optics (it was derived to explain a rainbow). The solutions change completely when t
passes through zero, and those solutions require infinite series. We won't go there.

The point is that equations with constant coefficients have simple solutions like e>-t .
You discover ,\ by substituting e>-t into the differential equation. That number ,\ is like
an eigenvalue. For u = cost and u = sin t the number is ,\ = i. Euler's great formula
eit 

= cost+ i sin t introduces complex numbers as we saw in the eigenvalues of P and C.

Bases for Function Space 

For functions of x, the first basis I would think of contains the powers 1, x, x2
, x3

, ...

Unfortunately this is a terrible basis. Those functions xn are just barely independent.
x10 is almost a combination of other basis vectors 1, x, ... , x9 . It is virtually impossible
to compute with this poor "ill-conditioned" basis. 

If we had vectors instead of functions, the test for a good basis would look at BT B.
This matrix contains all inner products between the basis vectors (columns of B).
The basis is orthonormal when BT B = I. That is best possible. But the basis 1, x, x2 , ... 

produces the evil Hilbert matrix : BT B has an enormous ratio between its largest and
smallest eigenvalues. A large condition number signals an unhappy choice of basis. 

Note Now the columns of B are functions instead of vectors. We still use BT B to
test for independence. So we need to know the dot product (inner product is a better name)
of two functions-those are the numbers in BT B.

The dot product of vectors is just xTy = x 1 y1 + · · · + XnYn · The inner product of
functions will integrate instead of adding, but the idea is completely parallel : 

Inner product (f, g) J f(x)g(x) dx 

Complex inner product (f, g) J f ( x) g( x) dx, f = complex conjugate

Weighted inner product (f, g )w fw(x)f(x) g(x)dx, w= weightfunction
When the integrals go from x = 0 to x = 1, the inner product of xi with xj is

1 1 . . xi+j+l 
] 

x=l 1 
x'x1 dx = ----

o i + j + 1 x=O i + j + 1 
entries of Hilbert matrix BT B

By changing to the symmetric interval from x = -1 to x = 1, we immediately have
orthogonality between all even functions and all odd functions: 

Interval [ -1, 1] [
1 

x2 x5 dx = 0

1-1 
[

1

1 
even(x) odd(x) dx = 0.

This change makes half of the basis functions orthogonal to the other half. It is so simple
that we continue using the symmetric interval -1 to 1 (or -1r to 1r). But we want a better
basis than the powers xn-hopefully an orthogonal basis. 
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Orthogonal Bases for Function Space 

Here are the three leading even-odd bases for theoretical and numerical computations: 

5. The Fourier basis

6. The Legendre basis

7. The Chebyshev basis

1, sin x, cos x, sin 2x, cos 2x, ... 

2 1 3 3 
1, X, X -

3
, X -

5
x, .. . 

1, x, 2x2 
- 1, 4x3 

- 3x, .. .

The Fourier basis functions (sines and cosines) are all periodic. They repeat over every 
21r interval because cos(x+21r) = cos x and sin(x+21r) = sin x. So this basis is especially 
good for functions f ( x) that are themselves periodic : f ( x + 21r) = f ( x). 

This basis is also orthogonal. Every sine and cosine is orthogonal to every other sine 
and cosine. Of course we don't expect the basis function cos nx to be orthogonal to itself. 

Most important, the sine-cosine basis is also excellent for approximation. If we have 
a smooth periodic function f ( x), then a few sines and cosines (low frequencies) are all 
we need. Jumps in f(x) and noise in the signal are seen in higher frequencies (larger n).

We hope and expect that the signal is not drowned by the noise. 
The Fourier transform connects f ( x) to the coefficients ak and bk in its Fourier series: 

Fourier series f (x) = ao + b1 sinx + a1 cos x + b2 sin 2x + a2 cos 2x + · · · 

We see that function space is infinite-dimensional. It takes infinitely many basis func­
tions to capture perfectly a typical f ( x). But the formula for each coefficient (for example 
a3) is just like the formula bT a/ a Ta for projecting a vector b onto the line through a. 

Here we are projecting the function f ( x) onto the line in function space through cos 3x : 

F · 
ffi . (f ( x) , cos 3x) J f ( x) cos 3x dx 

ourier coe c1ent a3 = ------ = �------. (7) 
( cos 3x, cos 3x) J cos 3x cos 3x dx

Example 3 The double angle formula in trigonometry is cos 2x = 2 cos2 x -1. This tells 
us that cos2 x = ½ + ½ cos 2x. A very short Fourier series. So is sin2 x = ½ - ½ cos 2x. 

Fourier series is just linear algebra in function space. Let me explain that properly 
as a highlight of Chapter 10 about applications. 
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Legendre Polynomials and Chebyshev Polynomials 

The Legendre polynomials are the result of applying the Gram-Schmidt idea (Section 4.4). 
The plan is to orthogonalize the powers 1, x, x2

, . . . To start, the odd function x is already 
orthogonal to the even function 1 over the interval from -1 to 1. Their product ( x) ( 1) = x 
integrates to zero. But the inner product between x2 and 1 is J x2 dx = 2/3: 

(x2 ,l) 

(1, 1) 

J x2 dx 
J ldx 

2/3 
2 

1 
3 

1 
Gram-Schmidt gives x2 

- - = Legendre 
3 

Similarly the odd power x3 has a component 3x / 5 in the direction of the odd function x : 

(x3,x) fx4 dx 2/5 3 
(x, x) - J x2 dx - 2/3 - 5

3 
Gram-Schmidt gives x3 

- -x = Legendre
5 

Continuing Gram-Schmidt for x4
, x5

, . . .  produces every Legendre function-a good basis. 

Finally we turn to the Chebyshev polynomials 1, x, 2x2 
- 1, 4x3 

- 3x. They don't 
come from Gram-Schmidt. Instead they are connected to 1, cos 0, cos 20, cos 30. This 
gives a giant computational advantage-we can use the Fast Fourier Transform. 
The connection of Chebyshev to Fourier appears when we set x = cos 0 : 

Chebyshev 

to Fourier 

2x2 
- 1 = 2(cos0) 2 

- 1 = cos 20 
4x3 

- 3x = 4(cos0)3 
- 3(cos0) = cos30 

The nth degree Chebyshev polynomial Tn (x) converts to Fourier's cos n0 = Tn ( cos 0).

Note These polynomials are the basis for a big software project called "chebfun".
Every function f(x) is replaced by a super-accurate Chebyshev approximation. Then you 
can integrate f(x), and solve f(x) = 0, and find its maximum or minimum. More than 
that, you can solve differential equations involving f ( x )-fast and to high accuracy. 

When chebfun replaces f(x) by a polynomial, you are ready to solve problems. 

• REVIEW OF THE KEY IDEAS •

1. A basis is good if its matrix B is well-conditioned. Orthogonal bases are best.

2. Also good if A= B- 1 AB is diagonal. But the Jordan form J can be very unstable.

3. The Fourier matrix diagonalizes constant-coefficient periodic equations: perfection.

4. The basis 1, x, x2
, . . .  leads to BT B = Hillbert matrix: Terrible for computations. 

5. Legendre and Chebyshev polynomials are excellent bases for function space.
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Problem Set 8.3 

1 In Example 1, what is the rank of J - 31 ? What is the dimension of its nullspace?
This dimension gives the number of independent eigenvectors for ,,\ = 3. 
The algebraic multiplicity is 2, because det ( J - H) has the repeated factor ( ,,\ -3) 2 . 
The geometric multiplicity is 1, because there is only 1 independent eigenvector. 

2 These matrices A1 and A2 are similar to J. Solve A1 B1 = B1 J and A2 B2 = B2J
to find the basis matrices B1 and B2 with J = B1

1 A1 B1 and J = R2
1 A2 B2 .

J = [ � � ] A1 = [ � � ] A2 = [ ; =� ] 
3 This transpose block JT has the same triple eigenvalue 2 (with only one eigenvector)

as J. Find the basis change B so that J = B- 1 JT B (which means BJ= JT B):

JT = 1 2 0 [ 
2 0 0 l 
0 1 2 

4 J and K are Jordan forms with the same zero eigenvalues and the same rank 2 .  But
show that no invertible B solves BK = J B, so K is not similar to J:

5 If A3 = 0 show that all,,\ = 0, and all Jordan blocks with J3 = 0 have size 1, 2, or
3. It follows that rank (A) ::; 2n/3. If An = 0 why is rank (A) < n?

6 Show that u(t) = [ 
t
::t

t 

] solves �: = Ju with J = [ � �] and u(O) = [ �].

J is not diagonalizable so te>--t enters the solution.

7 Show that the difference equation Vk+2 - 2,,\vk+l + ,,\
2

vk = 0 is solved by
Vk = ,,\ k and also by vk = k,,\ k. Those correspond to e>--t and te>--t in Problem 6.

8 What are the 3 solutions to ,,\ 3 = 1 ?  They are complex numbers,,\ = cos 0+i sin 0 =
e

i0 . Then ,,\ 3 = e
3i0 = 1 when the angle 30 is O or 21r or 41r. Write the 3 by 3 Fourier

matrix F with columns (1, ,,\, ,,\ 2 ). 

9 Check that any 3 by 3 circulant C has eigenvectors (1, >-, >- 2 ) from Problem 8.
If the diagonals of your matrix C contain c0, c1, c2 then its eigenvalues are in Fe.

10 Using formula(7)finda3 cos3xin theFourier series off(x) ={ � ;�;-f ! l:
I 
! 2�
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Complex Vectors and Matrices 

Real versus Complex 

R = line of all real numbers -oo < x < oo +-+ C = plane of all complex numbers z = x + iy 

Ix I = absolute value of x +-+ I z I = j x2 + y2 
= r = absolute value ( or modulus) of z

1 and -1 solve x2 
= 1 +-+ z = 1, w, ... , wn-l solve zn 

= 1 where w = 
e21ri/n 

1 z 
The complex conjugate of Z = X + iy is Z = X - iy. lzl2 

= x2 
+ y2 

= zz and ; = w· 

The polar form of z = x + iy is lzlei0 
= rei0 

= r cos 0 + ir sin 0. The angle has tan0 = '}L_ 
X 

Rn : vectors with n real components 
length: llxll2 

= xr + ... + x;, 
transpose: (AT )ij = A1i 

dot product: X 
T

y = X1Y1 + · · · + XnYn 

reason for AT : (Ax) T
y = xT (AT

y ) 
orthogonality: x T y = O 

symmetric matrices: S = ST 

S = QAQ- 1 
= QAQT (real A) 

skew-symmetric matrices: KT 
= -K

orthogonal matrices: QT 
= Q-1 

orthonormal columns: QT Q = I 
(Qx) T (Qy) = xT

y and IIQxll = llxll 

+-+ 
+-+ 
+-+ 

+-+ 
+-+ 
+-+ 

+-+ 
+-+ 
+-+ 
+-+ 
+-+ 
+-+ 

en: vectors with n complex components 
length: llzll2 

= lz11 2 
+ · · · + lznl2 

conjugate transpose: (AH )ij = A1i 

inner product: uH v = u1 V1 + · · · + Un Vn 

reason for AH : (Au) Hv = uH (AHv) 
orthogonality: uHv = 0 

Hermitian matrices: S = SH 

S = U Au- 1 
= U AUH (real A) 

skew-Hermitian matrices KH 
= -K

unitary matrices: UH 
= u-l

orthonormal columns: uH u = I 
(Ux) H (U y ) = xH

y and IIUzll = llzll 

A complete presentation of linear algebra must include complex numbers z = x + iy.

Even when the matrix is real, the eigenvalues and eigenvectors are often complex.

Example: A 2 by 2 rotation matrix has complex eigenvectors x = (1, i) and x = (1, -i). 
I will summarize Sections 9.1 and 9.2 in these few unforgettable words: When you 
transpose a vector v or a matrix A, take the conjugate of every entry (i changes to -i). 
Section 9.3 is about the most important complex matrix of all-the Fourier matrix F.

430 
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9.1 Complex Numbers 

Start with the imaginary number i. Everybody knows that x2 = -1 has no real solution. 
When you square a real number, the answer is never negative. So the world has agreed on 
a solution called i. (Except that electrical engineers call it j .) Imaginary numbers follow 
the normal rules of addition and multiplication, with one difference. Replace i2 by -1. 

This section gives the main facts about complex numbers. It is a review for some 
students and a reference for everyone. Everything comes from i2 = -1 and e21ri = 1.

A complex number (say 3 + 2i) is a real number (3) plus an imaginary number (2i). 
Addition keeps the real and imaginary parts separate. Multiplication uses i2 

= -1: 

Add: (3 + 2i) + (3 + 2i) = 6 + 4i 

Multiply: (3 + 2i)(l - i) = 3 + 2i - 3i - 2i2 = 5 - i. 

If I add 3 + i to 1 - i, the answer is 4. The real numbers 3 + 1 stay separate from the 
imaginary numbers i - i. We are adding the vectors (3, 1) and (1, -1) to get (4, 0). 

The number (1 + i)2 is 1 + i times 1 + i. The rules give the surprising answer 2i: 

(1 + i)(l + i) = 1 + i + i + i2 = 2i. 

In the complex plane, 1 + i is at an angle of 45 ° . It is like the vector ( 1, 1). When we square
1 + i to get 2i, the angle doubles to go0

• If we square again, the answer is (2i)2 
= -4. The

goo angle doubled to 180° , the direction of a negative real number.
A real number is just a complex number z = a + bi, with zero imaginary part: b = 0. 

The real part is a= Re (a+ bi). The imaginary part is b = Im (a+ bi). 

The Complex Plane 

Complex numbers correspond to points in a plane. Real numbers go along the x axis. Pure 
imaginary numbers are on the y axis. The complex number 3 + 2i is at the point with 

coordinates (3, 2). The number zero, which is O + Oi, is at the origin. 
Adding and subtracting complex numbers is like adding and subtracting vectors in the 

plane. The real component stays separate from the imaginary component. The vectors go 
head-to-tail as usual. The complex plane C 1 is like the ordinary two-dimensional plane R2

, 

except that we multiply complex numbers and we didn't multiply vectors. 
Now comes an important idea. The complex conjugate of 3 + 2i is 3 - 2i. The 

complex conjugate of z = 1 - i is z = 1 + i. In general the conjugate of z = a + bi is 
z = a - bi. (Some writers use a "bar" on the number and others use a "star": z = z* .) 
The imaginary parts of z and "z bar" have opposite signs. In the complex plane, z is the 
image of z on the other side of the real axis. 
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Complex 
plane 

Unit 
circle 

2i Imaginary 
axis 

-2i 

z = 3 + 2i 

r = lzl = .J32 + 22 

Real axis 
2 3 

Conjugate z = 3 - 2i

Figure 9 .1: The number z = a + bi corresponds to the point ( a, b) and the vector [ b] . 

Two useful facts. When we multiply conjugates z1 and z2, we get the conjugate of z1 z2 • 

And when we add z1 and z2 , we get the conjugate of z1 + z2 : 

z1 + z2 = (3 - 2i) + (1 + i) = 4 - i. This is the conjugate of z1 + z2 = 4 + i. 
z1 X z2 = (3 - 2i) x (1 + i) = 5 + i. This is the conjugate of z1 x z2 = 5 - i. 

Adding and multiplying is exactly what linear algebra needs. By taking conjugates of 
Ax = .\x, when A is real, we have another eigenvalue "X and its eigenvector x: 

Eigenvalues A and X If Ax= Ax and A is real then Ax= Ax. (1) 

Something special happens when z = 3 + 2i combines with its own complex conjugate 
z = 3 - 2i. The result from adding z + z or multiplying zz is always real: 

z+z=real 
zz = real 

(3 + 2i) + (3 - 2i) = 6 (real) 
(3 + 2i) x (3 - 2i) = 9 + 6i - 6i - 4i2 = 13 (real). 

The sum of z = a + bi and its conjugate z = a - bi is the real number 2a. The product of 
z times z is the real number a2 + b2

: 

Multiply z times z to get I z 1 2 = r2 (a+ bi)(a - bi)= a2 
+ b2

. (2) 

The next step with complex numbers is 1/z. How to divide by a+ ib? The best idea 
is to multiply first by z/z = 1. That produces zz in the denominator, which is a2 + b2

: 

1 1 a - ib 
----

a +ib a+ ib a - ib 
a - ib ---

a2 + b2 
1 1 3 - 2i 3 - 2i 

----

3 + 2i 3 + 2i 3 - 2i 13 

In case a2 + b2 = 1, this says that (a+ ib )- 1 is a -ib. On the unit circle, 1 / z equals z. 
Later we will say: 1/ei0 is e-ie_ Use distance rand angle 0 to multiply and divide. 
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The Polar Form rei8 

The square root of a2 
+ b2 is lzl. This is the absolute value (or modulus) of the number 

z =a+ ib. The square root lzl is also written r, because it is the distance from Oto z. The

real number r in the polar form gives the size of the complex number z: 

The absolute value of z =a+ ib is lzl = J a2 + b2
. This is called r. 

The absolute value of z = 3 + 2i is lzl = J32 + 22
. This is r = vl3. 

The other part of the polar form is the angle 0. The angle for z = 5 is 0 = 0 (because this z
is real and positive). The angle for z = 3i is 1r /2 radians. The angle for a negative z = -9 
is 1r radians. The angle doubles when the number is squared. The polar form is excellent 
for multiplying complex numbers (not good for addition). 

When the distance is rand the angle is 0, trigonometry gives the other two sides of the 
triangle. The real part (along the bottom) is a = r cos 0. The imaginary part (up or down) 
is b = r sin 0. Put those together, and the rectangular form becomes the polar form rei0

. 

The number z = a + ib is also z = r cos 0 + ir sin 0. This is rei9 

Note: cos 0 + i sin 0 has absolute value r = 1 because cos2 0 + sin2 0 = 1. Thus 
cos 0 + i sin 0 lies on the circle of radius I -the unit circle.

Example 1 Find r and 0 for z = 1 + i and also for the conjugate z = 1 - i. 

Solution The absolute value is the same for z and z. It is r = Jf+T = vf2: 

and also lzl2 = 12 
+ (-1) 2 = 2. 

The distance from the center is r J2. What about the angle 0? The number 1 + i 
is at the point ( 1, 1) in the complex plane. The angle to that point is 1r / 4 radians or 45 °. 
The cosine is 1/V2 and the sine is 1/vf2. Combining rand 0 brings back z = 1 + i: 

The angle to the conjugate 1 - i can be positive or negative. We can go to 71r / 4 radians 
which is 315° . Or we can go backwards through a negative angle, to -1r / 4 radians or 
-45° . If z is at angle 0, its conjugate z is at 2n - 0 and also at -0.

We can freely add 21r or 41r or -21r to any angle! Those go full circles so the final point
is the same. This explains why there are infinitely many choices of 0. Often we select the 
angle between 0 and 21r. But -0 is very useful for the conjugate z. And 1 = e0 

= e21ri
_ 
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Powers and Products: Polar Form 

Computing (1 + i)2 and (1 + i)8 is quickest in polar form. That form has r = v'2 and 
0 = 1r /4 (or 45°). If we square the absolute value to get r2 = 2, and double the angle to 
get 20 = 1r /2 (or 90°), we have (1 + i)2

. For the eighth power we need r8 and 80: 

(1 + i) 8 r8 = 2. 2. 2. 2 = 16 and 80 = 8 · � = 21r.4 
This means: (1 + i)8 has absolute value 16 and angle 21r . So (l + i)8 = 16. 

Powers are easy in polar form. So is multiplication of complex numbers. 

The nth power of z = r( cos 0 + i sin 0) is zn 
= rn ( cos n0 + i sin n0). (3) 

In that case z multiplies itself. To multiply z times z', multiply r's and add angles:

r(cos0 + isin0) times r'(cos0' + isin0') = rr'(cos(0 + 0') + isin(0 + 0')). (4) 

One way to understand this is by trigonometry. Why do we get the double angle 20 for z2 ? 

(cos0+isin0) x (cos0+isin0) =cos2 0+i2sin2 0+2isin0cos0. 

The real part cos2 0 - sin2 0 is cos 20. The imaginary part 2 sin 0 cos 0 is sin 20. Those are 
the "double angle" formulas. They show that 0 in z becomes 20 in z2 . 

There is a second way to understand the rule for zn
. It uses the only amazing formula 

in this section. Remember that cos 0 + i sin 0 has absolute value 1. The cosine is made up 
of even powers, starting with 1 - ½02

• The sine is made up of odd powers, starting with 
0 - ¼03

. The beautiful fact is that ei0 combines both of those series into cos 0 + i sin 0: 

X 
l 

2 1
3 

e = 1 + X + -X + -X + · · ·
2 6 

Write -1 for i2 to see 1 - ½02
. The complex number ei8 

is cos 0 + i sin 0: 

Euler's Formula ei0 = cos 0 + i sin 0 gives z = r cos 0 + ir sin 0 = rei8 (5)

The special choice 0 = 21r gives cos 21r + i sin 21r which is l. Somehow the infinite series 
e2

1ri = 1 + 21ri + ½ (21ri)2 + · · · adds up to l. 
Now multiply ei0 times ei0 '. Angles add for the same reason that exponents add: 

e2 times e3 is e5 e i0 times i0 is e2i0 
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The powers (rei0)n are equal to rneine _ They stay on the unit circle when r = 1
and rn = 1. Then we find n different numbers whose nth powers equal 1: 

Set w = e27r:i/n. The nth powers of 1, w, w2 , • • •  , wn-I all equal 1. 

Those are the "nth roots of l." They solve the equation zn 
= 1. They are equally spaced 

around the unit circle in Figure 9.2b, where the full 2w is divided by n. Multiply their 
angles by n to take nth powers. That gives wn = e2-rri which is 1. Also ( w2 r = e4-rri = 1. 
Each of those numbers, to the nth power, comes around the unit circle to 1. 

These n roots of 1 are the key numbers for signal processing. The Discrete Fourier 
Transform uses w = e2-rri/n and its powers. Section 9.3 shows how to decompose a vector
(a signal) into n frequencies by the Fast Fourier Transform. 

e2i0 
e4n i/6 __ _ e2n i/6 

-I
6 solutions to z

6 = 1 
e 12n i/6 = e2n i = 1

Add the angles 0 + 0 ' 

eBn i/6 elOn i/6 

Figure 9.2: (a) ei0 times ei0' is ei (e+e '). (b) The nth power of e2-rri/n is e2-rri = 1. 

• REVIEW OF THE KEY IDEAS •

1. Adding a+ ib to c + id is like adding ( a, b) + ( c, d). Use i2 = -1 to multiply.

2. The conjugate of z = a+ bi = rei0 is z = z* = a - bi = re- i0. 

3. z times z is rei0 times re- i0. This is r2 = lzl2 = a2 + b2 (real).

4. Powers and products are easy in polar form z = rei0. Multiply r's and add 0's.
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Problem Set 9.1 

Questions 1-8 are about operations on complex numbers. 

1 Add and multiply each pair of complex numbers: 

(a) 2 + i, 2 - i (b) -l+i,-l+i ( c) cos 0 + i sin 0, cos 0 -i sin 0

2 Locate these points on the complex plane. Simplify them if necessary: 

(a) 2 + i (b) (2+i)2 (c) 1 
2+i (d) 12 + ii

3 Find the absolute valuer = lzl of these four numbers. If 0 is the angle for 6 -8i, 
what are the angles for the other three numbers? 

(a) 6 -8i (b) (6 - 8i)2 (c) 1 
6-8i (d) (6 + 8i)2 

4 If izl = 2 and lwl = 3 then iz x wl = __ and lz + wl ::; __ and iz/wl = 
__ and lz -wl::; __ . 

5 Find a + ib for the numbers at angles 30°, 60°, 90°, 120° on the unit circle. If w is 
the number at 30° , check that w2 is at 60° . What power of w equals 1? 

6 If z = r cos 0 + ir sin 0 then 1 / z has absolute value __ and angle __ . Its 
polar form is __ . Multiply z x 1/ z to get 1. 

7 The complex multiplication M = (a+ bi)(c + di) is a 2 by 2 real multiplication 

The right side contains the real and imaginary parts of M. Test M = (1 +3i)(l-3i). 

8 A = A1 + iA2 is a complex n by n matrix and b = b1 + ib2 is a complex vector. 
The solution to Ax = bis x 1 + ix2. Write Ax =bas a real system of size 2n: 

Complex n by n

Real 2n by 2n ] [ :�] = [t] . 
Questions 9-16 are about the conjugate z = a - ib = re-i0 = z*. 

9 Write down the complex conjugate of each number by changing i to -i: 

(a) 2 - i (b) (2-i)(l -i) (c) ei1r/2 (which is i) 
(d) ei1r = -1 (e) i�! (which is alsoi) (f) i l 03 = 

10 The sum z + z is always __ . The difference z - z is always __ . Assume 
z -=J 0. The product z x z is always __ . The ratio z /z has absolute value __ .
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11 For a real matrix, the conjugate of Ax = AX is Ax = Xx. This proves two things: 
Xis another eigenvalue and xis its eigenvector. Find the eigenvalues A, X and eigen­
vectors x, x of A= [a b; -b a]. 

12 The eigenvalues of a real 2 by 2 matrix come from the quadratic formula : 

det 
[a: A 

d �A] = A2 
- (a+ d)A + (ad - be) = 0

gives the two eigenvalues A = [a+ d ± J (a+ d)2 
- 4( ad - be)] /2.

(a) If a = b = d = 1, the eigenvalues are complex when e is __ .

(b) What are the eigenvalues when ad = be?

13 In Problem 12 the eigenvalues are not real when (trace)2 = (a+ d) 2 is smaller than 
. Show that the A's are real when be> 0.

14 A real skew-symmetric matrix ( AT = -A) has pure imaginary eigenvalues. First 
proof: If Ax = AX then block multiplication gives 

This block matrix is symmetric. Its eigenvalues must be __ ! So A is __ . 

Questions 15-22 are about the form rei8 of the complex number r cos 0 + ir sin 0. 

15 Write these numbers in Euler's form rei0 . Then square each number: 

(a) 1 + vf3i (b) cos 20 + i sin 20 (c) -7i (d) 5 - 5i.

16 (A favorite) Find the absolute value and the angle for z = sin 0 + i cos 0 (careful). 
Locate this z in the complex plane. Multiply z by cos 0 + i sin 0 to get __ . 

17 Draw all eight solutions of z8 = 1 in the complex plane. What is the rectangular 
form a+ ib of the root z = w = exp(-2ni/8)? 

18 Locate the cube roots of l in the complex plane. Locate the cube roots of -1. To­
gether these are the sixth roots of __ . 

19 By comparing e3i0 = cos 30 + i sin 30 with ( ei8 ) 3 = ( cos 0 + i sin 0)3 , find the 
"triple angle" formulas for cos 30 and sin 30 in terms of cos 0 and sin 0. 

20 Suppose the conjugate z is equal to the reciprocal 1/ z. What are all possible z's? 

21 (a) Why do ei and ie both have absolute value I?

(b) In the complex plane put stars near the points ei and ie.

(c) The number ie could be ( ei1r l2)e or ( e5i1r l2)e . Are those equal?

22 Draw the paths of these numbers from t = 0 to t = 27T in the complex plane: 

(a) eit 
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9.2 Hermitian and Unitary Matrices 

The main message of this section can be presented in one sentence: When you transpose a
complex vector z or matrix A, take the complex co njugate too. Don't stop at zT or AT . 
Reverse the signs of all imaginary parts. From a column vector with Zj = aj + ibj ,
the good row vector :zT is the conjugate transpose with components aj - ibj : 

Conjugate transpose (1) 

Here is one reason to go to z. The length squared of a real vector is xr + · · · + x;;,. The
length squared of a complex vector is not zr + · · · + z;. With that wrong definition, the
length of (1, i) would be 12 + i2 = 0. A nonzero vector would have zero length-not
good. Other vectors would have complex lengths. Instead of (a+ bi)2 we want a2 + b2

, 

the absolute value squared. This is ( a + bi) times ( a - bi). 
For each component we want Zj times Zj , which is lzj 1

2 = a; + b;. That comes when
the components of z multiply the components ofz: 

Now the squared length of (1, i) is 12 + lil2 = 2. The length is y12. The squared length of
(1 + i, 1 - i) is 4. The only vectors with zero length are zero vectors. 

The length llzll is thesquareroot of :zT z = zHz = lz11 2 + · · · + lzn l 2 

Before going further we replace two symbols by one symbol. Instead of a bar for the 
conjugate and T for the transpose, we just use a superscript H. Thus :zT = zH . This is
"z Hermitian," the conjugate transpose of z. The new word is pronounced "Hermeeshan." 
The new symbol applies also to matrices: The conjugate transpose of a matrix A is AH . 

Another popular notation is A*. The MATLAB transpose command I automatically 
takes complex conjugates (z I is zH = :zT and A I is AH =AT).

AH is "A Hermitian" If A= [� 1: i] then AH = [ 1 0] -i 1- i

Complex Inner Products 

For real vectors, the length squared is x T x-the inner product of x with itself. For 
complex vectors, the length squared is zH z. It will be very desirable if zH z is the in­
ner product of z with itself. To make that happen, the complex inner product should use 
the conjugate transpose (not just the transpose). This has no effect on real vectors. 
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DEFINITION The inner product of real or complex vectors u and v is uHv:

(3) 

With complex vectors, uHv is different from vHu. The order of the vectors is now impor­

tant. In fact vHu = v1 u 1 + · · · + VnUn is the complex conjugate of uHv. We have to put
up with a few inconveniences for the greater good. 

Example 1 The inner product of u = [ ! ] with v = [ �] is [ 1 - i] [ �] = 0.

Example 1 is surprising. Those vectors (1, i) and (i, 1) don't look perpendicular. But
they are. A zero inner product still means that the (complex) vectors are orthogonal.
Similarly the vector (1, i) is orthogonal to the vector (1, -i). Their inner product is 1 - 1.
We are correctly getting zero for the inner product-where we would be incorrectly
getting zero for the length of (1, i) if we forgot to take the conjugate. 

Note We have chosen to conjugate the first vector u. Some authors choose the second
vector v. Their complex inner product would be u Tv. I think it is a free choice. 

The inner product of Au with v equals the inner product of u with AHv:

AH is also called the "adjoint" of A (4) 

The conjugate of Au is Au. Transposing Au gives uTAT as usual. This is uH AH .
Everything that should work, does work. The rule for H comes from the rule for T. 
We constantly use the fact that ( a - ib) ( c - id) is the conjugate of ( a + ib) ( c + id).

The conjugate transpose of AB is (AB) H = BH AH . 

Hermitian Matrices S = SH 

Among real matrices, symmetric matrices form the most important special class: S = ST .
They have real eigenvalues and the orthogonal eigenvectors in an orthogonal matrix Q.

Every real symmetric matrix can be written as S = QAQ- 1 and also as S = QAQT 

(because Q- 1 = QT ). All this follows from ST = S, when Sis real. 
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Among complex matrices, the special class contains the Hermitian matrices:

S = SH . The condition on the entries is Sij = s ji · In this case we say that "S is 
Hermitian." Every real symmetric matrix is Hermitian, because taking its conjugate has 
no effect. The next matrix is also Hermitian, S = SH : 

[ 
2 3 - 3i

] 
The main diagonal must be real since Sii = Sii· 

Example2 S = 
3 + 3

,; 
5 , Across it are conjugates 3 + 3i and 3 -3i. 

This example will illustrate the three crucial properties of all Hermitian matrices. 

If S = SH and z is any real or complex column vector, the number zH Sz is real.

Quick proof: zHSz is certainly 1 by 1. Take its conjugate transpose: 
(zHSz)H = zHSH(zH)8 which is zHSz again. 

So the number zHSz equals its conjugate and must be real. Here is that "energy" zHSz: 

[
- _ 

] [ 
2 3 - 3i

] [
zi] 

= 2z1z1 + 5z2z2 + (3 - 3i)z1z2 + (3 + 3i)z1z2 . zi z2 3 + 3i 5 z2 diagonal off-diagonal 

The terms 2lz112 and 5lz2 12 from the diagonal are both real. The off-diagonal terms are
conjugates of each other-so their sum is real. (The imaginary parts cancel when we add.)
The whole expression zH S z is real, and this will make A real. 

Every eigenvalue of a Hermitian matrix is real. 

Proof Suppose Sz = AZ. Multiply both sides by zH to get zHSz = AzHz. On the left
side, zH S z is real. On the right side, zH z is the length squared, real and positive. So the
ratio A= zHSz/ zHz is a real number. Q.E.D. 

The example above has eigenvalues A = 8 and A = -1, real because S = SH : 

1 2-A 
3 + 3i 

3 -3i 
I = A2 -7A + 10 -13 + 3il2 

5-A 

= A2 
- 7A + 10 - 18 = (A -8)(A + 1). 

The eigenvectors of a Hermitian matrix are orthogonal (when they correspond to 

different eigenvalues). If Sz = AZ and Sy= {3y then yH z = 0. 

Proof Multiply S z = AZ on the left by yH . Multiply yH SH 
= {3y

H on the right by z: 

y
HSz = Ay

Hz and y
HSHz = {3y

Hz. (5) 

The left sides are equal so AY
H z = {3y

H z. Then yH z must be zero.
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The eigenvectors are orthogonal in our example with A = 8 and j3 = -1: 

[ -6 (S - 8I)z = 3 
+ 

3i 

(S + I)y = [ 313i 

Orthogonal eigenvectors 

and

and

441 

These eigenvectors have squared length 1 2 
+ 1 2 

+ 1 2 = 3. After division by v3 they are
unit vectors. They were orthogonal, now they are orthonormal. They go into the columns
of the eigenvector matrix X, which diagonalizes S. 

When Sis real and symmetric, Xis Q-an orthogonal matrix. Now Sis complex and 
Hermitian. Its eigenvectors are complex and orthonormal. The eigenvector matrix X is

like Q, but complex: QH Q =I.We assign Q a new name "unitary" but still call it Q.

Unitary Matrices 

A unitary matrix Q is a (complex) square matrix that has orthonormal columns.

Unitary matrix that diagonalizes S: 1 
[ 1 

Q
= 

v3 l+i 
1 - i]

-1 

This Q is also a Hermitian matrix. I didn't expect that! The example is almost too perfect. 
We will see that the eigenvalues of this Q must be 1 and -1. 

The matrix test for real orthonormal columns was QT Q = I. The zero inner prod­
ucts appear off the diagonal. In the complex case, QT becomes Q8. The columns show 
themselves as orthonormal when Q8 multiplies Q. The inner products fill up QH Q = I:

Every matrix Q with orthonormal columns has QH Q = I. 

If Q is square, it is a unitary matrix. Then QH = Q- 1. 

Suppose Q (with orthonormal columns) multiplies any z. The vector length stays the 
same, because z8 Q8 Qz = z8z. If z is an eigenvector of Q we learn something more: 
The eigenvalues of unitary (and orthogonal) matrices Q all have absolute value i>-1 = 1. 

If Q is unitary then IIQzll = llzll- Therefore Qz = ..\z leads to I..\I = 1.

Our 2 by 2 example is both Hermitian (Q = Q8) and unitary (Q- 1 = Q8). That
means real eigenvalues and it means i>-1 = 1. A real number with i>-1 = 1 has only two
possibilities: The eigenvalues are 1 or -1. The trace of Q is zero so A = 1 and A = -1. 
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Example 3 The 3 by 3 Fourier matrix is in Figure 9.3. Is it Hermitian? Is it uni­
tary? F3 is certainly symmetric. It equals its transpose. But it doesn't equal its conjugate 
transpose-it is not Hermitian. If you change i to -i, you get a different matrix. 

Fourier 

matrix 
e2:n:i/3 

e4:n:i/3 

Figure 9.3: The cube roots of 1 go into the Fourier matrix F = F3. 

1 
e4:n:i/3 

e2:n:i/3 l 

Is F unitary? Yes. The squared length of every column is ½(1 + 1 + 1) (unit vector). 
The first column is orthogonal to the second column because 1 + e21ri/3 + e41ri/3 

= 0. 
This is the sum of the three numbers marked in Figure 9.3. 

Notice the symmetry of the figure. If you rotate it by 120° , the three points are in the 
same position. Therefore their sum S also stays in the same position! The only possible 
sum in the same position after 120° rotation is S = 0. 

Is column 2 of F orthogonal to column 3? Their dot product looks like 

½(1 + e61ri/3 + e61ri/3) = ½(l + 1 + 1).

This is not zero. The answer is wrong because we forgot to take complex conjugates. The 
complex inner product uses H not T: 

(column 2)8(column 3) = ½(1. 1 + e-21ri/3e41ri/3 + e-41ri/3e21ri/3)
= ½(1 + e21ri/3 + e-21ri/3) = 0.

So we do have orthogonality. Conclusion: F is a unitary matrix.

The next section will study the n by n Fourier matrices. Among all complex unitary 
matrices, these are the most important. When we multiply a vector by F, we are comput­
ing its Discrete Fourier Transform. When we multiply by p-1

, we are computing the 
inverse transform. The special property of unitary matrices is that p-l = pH _ The inverse 
transform only differs by changing i to -i: 

Change i to -i 

1 
e-21ri/3 
e-41ri/3 

Everyone who works with F recognizes its value. The last section of this chapter will bring 
together Fourier analysis and complex numbers and linear algebra. 
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Problem Set 9.2 

1 Find the lengths of u = (l + i, 1 - i, 1 + 2i) and v = (i, i, i). Find uHv and vHu. 

2 Compute AH A and AA H . Those are both __ matrices:

[ i 1 i] A= 
l i i .

3 Solve Az = 0 to find a vector z in the nullspace of A in Problem 2. Show that z is
orthogonal to the columns of AH . Show that z is not orthogonal to the columns of 
AT . The good row space is no longer C(AT ). Now it is C(AH ). 

4 Problem 3 indicates that the four fundamental subspaces are C(A) and N(A) and
__ and __ . Their dimensions are still rand n - rand rand m - r. They are 
still orthogonal subspaces. The symbol H takes the place of T.

5 (a) Prove that AH A is always a Hermitian matrix. 

(b) If Az = 0 then AH Az = 0. If AH Az = 0, multiply by zH to prove that
Az = 0. The nulls paces of A and AH A are __ . Therefore AH A is an
invertible Hermitian matrix when the nullspace of A contains only z = 0.

6 True or false (give a reason if true or a counterexample if false): 

(a) If A is a real matrix then A+ if is invertible. 

(b) If S is a Hermitian matrix then S + if is invertible.

( c) If Q is a unitary matrix then Q + if is invertible.

7 When you multiply a Hermitian matrix by a real number c, is cS still Hermitian? 
Show that iS is skew-Hermitian when Sis Hermitian. The 3 by 3 Hermitian matrices
are a subspace provided the "scalars" are real numbers. 

8 Which classes of matrices does P belong to: invertible, Hermitian, unitary? 

p 
= 

[� � �i i O 0 

Compute P2
, P3

, and pioo . What are the eigenvalues of P? 

9 Find the unit eigenvectors of P in Problem 8, and put them into the columns of a 
unitary matrix Q. What property of P makes these eigenvectors orthogonal? 

10 Write down the 3 by 3 circulant matrix C = 2f + 5P. It has the same eigenvectors
as Pin Problem 8. Find its eigenvalues. 

11 If Q and U are unitary matrices, show that Q-1 is unitary and also QU is unitary.
Start from QHQ = f and UHU = f.
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12 How do you know that the determinant of every Hermitian matrix is real? 
13 The matrix AH A is not only Hermitian but also positive definite, when the columns of A are independent. Proof: zH AH Az is positive if z is nonzero because __ . 
14 Diagonalize these Hermitian matrices to reach S = Q AQH : 

and 1 + i]3 
15 Diagonalize this skew-Hermitian matrix to reach K = QAQH _ All ,,\'s are __ : 

K=[O -l+i] 1 + i i .
16 Diagonalize this orthogonal matrix to reach U = QAQH . Now all Xs are __ : 

U = [c�s 0 - sin 0] _sm0 cos0 
17 Diagonalize this unitary matrix to reach U = Q AQH . Again all ,,\ 's are __ : 

U = __2_ [ 1 1 - i] v3 1 + i -1 .
18 If v 1, ... , Vn is an orthonormal basis for en , the matrix with those columns is a __ matrix. Show that any vector z equals ( vr z )v 1 + · · · + ( v� z )vn . 
19 v = (l, i, 1), w = (i, 1, 0) and z = __ are an orthogonal basis for __ . 
20 If S = A + iB is a Hermitian matrix, are its real and imaginary parts symmetric? 
21 The ( complex) dimension of en is __ . Find a non-real basis for en . 
22 Describe all 1 by 1 and 2 by 2 Hermitian matrices and unitary matrices. 
23 How are the eigenvalues of AH related to the eigenvalues of the square matrix A? 
24 If uHu = 1 show that I - 2uuH is Hermitian and also unitary. The rank-one matrix uuH is the projection onto what line in en? 
25 If A + iB is a unitary matrix (A and B are real) show that Q = [ � -! ] is anorthogonal matrix. 
26 If A+ iB is Hermitian (A and Bare real) show that [ � -! ] is symmetric. 
27 Prove that the inverse of a Hermitian matrix is also Hermitian (transpose s-

1 S = I). 

28 A matrix with orthonormal eigenvectors has the form N = QAQ- 1 = QAQH . 
Prove that NNH = NHN. These N are exactly the normal matrices. Examples are Hermitian, skew-Hermitian, and unitary matrices. Construct a 2 by 2 normal matrix from QAQH by choosing complex eigenvalues in A. 
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9.3 The Fast Fourier Transform 
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Many applications of linear algebra take time to develop. It is not easy to explain them 
in an hour. The teacher and the author must choose between completing the theory and 
adding new applications. Often the theory wins, but this section is an exception. It explains 
the most valuable numerical algorithm in the last century. 

We want to multiply quickly by F and p-1, the Fourier matrix and its inverse. This 
is achieved by the Fast Fourier Transform. An ordinary product F c uses n 2 multiplications 
(F has n2 entries). The FFT needs only n times ½ log2 n. We will see how. 

The FFT has revolutionized signal processing. Whole industries are speeded up by this 
one idea. Electrical engineers are the first to know the difference-they take your Fourier 
transform as they meet you (if you are a function). Fourier's idea is to represent f as a 
sum of harmonics Ck eikx . The function is seen infrequency space through the coefficients 
Ck , instead of physical space through its values f(x). The passage backward and forward 
between e's and f's is by the Fourier transform. Fast passage is by the FFT. 

Roots of Unity and the Fourier Matrix 

Quadratic equations have two roots (or one repeated root). Equations of degree n haven 
roots (counting repetitions). This is the Fundamental Theorem of Algebra, and to make it 
true we must allow complex roots. This section is about the very special equation zn = l. 
The solutions z are the "nth roots of unity." They are n evenly spaced points around the 
unit circle in the complex plane. 

Figure 9 .4 shows the eight solutions to z8 = l. Their spacing is ½ ( 360°) = 45 °. The 
first root is at 45° or 0 = 21r/8 radians. It is the complex number w = ei0 

= ei2,r/B_ 

We call this number w8 to emphasize that it is an 8th root. You could write it in terms 
of cos 2; and sin 2;, but don't do it. The seven other 8th roots are w2 , w3 , . .. , w8 , going
around the circle. Powers of w are best in polar form, because we work only with the angles 
2;, 4;, ... , l�1r = 21r. Those 8 angles in degrees are 45° , 90°, 135°, ... , 360°. 

w2 
= i 

w3 

w4 
= -1

·; 
2:rr 2:rr 

w = e2rrz 8 = cos - + i sin -

w8 
= 1 

8 8 

----------,e-�-----11>------- Real axis 

wS 

w6 
= -i 

2:rr 2:rr 
w 7 

= w = cos - - i sin -
8 8 

Figure 9.4: The eight solutions to z8 = 1 are 1, w, w2 , ... , w7 with w = (l + i)/ ./2. 
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The fourth roots of 1 are also in the figure. They are i, -1, -i, 1. The angle is now 
21r / 4 or 90° . The first root w4 = e21ri/4 is nothing but i. Even the square roots of 1
are seen, with w2 = ei2rr 12 = -1. Do not despise those square roots 1 and -1. The 
idea behind the FFT is to go from an 8 by 8 Fourier matrix (containing powers of ws) 
to the 4 by 4 matrix below (with powers of w4 = i). The same idea goes from 4 to 2. 
By exploiting the connections of F8 down to F4 and up to F15 (and beyond), the FFT 
makes multiplication by F1024 very quick. 

We describe the Fourier matrix, first for n = 4. Its rows contain powers of 1 and w and
w2 and w3

. These are the fourth roots of 1, and their powers come in a special order. 

Fourier 

F

� [1 
1 1

matrix w w2

n=4 w2 w4

w =i w3 w6

The matrix is symmetric (F = FT). It is not Hermitian. Its main diagonal is not real. But
½Fis a unitary matrix, which means that (½pH) ( ½ F) = I:

The columns of P give pH P = 41. Its inverse is¼ pH which is p-l = ¼ P. 

The inverse changes from w = i tow= -i. That takes us from F to F. When the Fast
Fourier Transform gives a quick way to multiply by F, it does the same for P and p- 1

. 

Every column has length fo,. So the unitary matrices are Q = F / ,/n and Q- 1 =
F / fo,. We avoid ,/n and just use F and p-l = p / n. The main point is to multiply p
times co, c1, c2, c3: 

4-point

Fourier

series

1 
w2

w4

w6 ::1 r��i-w
9 

C3 

(1) 

The input is four complex coefficients c0, c1, c2, c3. The output is four function values 
Yo, Yi, Y2, y3. The first output Yo = co + c1 + c2 + c3 is the value of the Fourier series
L ck e

ikx at x = 0. The second output is the value of that series L Ck e
ikx at x = 21r /4: 

The third and fourth outputs y2 and y3 are the values of I:; ck e
ikx at x = 41r / 4 and

x = 61r / 4. These are finite Fourier series! They contain n = 4 terms and they are evaluated
at n = 4 points. Those points x = 0, 21r / 4, 41r / 4, 61r / 4 are equally spaced. 

The next point would be x = 81r / 4 which is 21r. Then the series is back to Yo, because
e2rri is the same as e0 = 1. Everything cycles around with period 4. In this world 2 + 2 is 0 
because ( w2) ( w2) = w0 = 1. We follow the convention that j and k go from O to n - l
(instead of 1 ton). The "zeroth row" and "zeroth column" of F contain all ones. 
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The n by n Fourier matrix contains powers of w = e21ri/n : 

1 1 1 1 Co 
1 w w2 wn-1

C1 

Fn c= 1 w2 w4 w2(n-l)
C2 

1 wn-1 w2(n-l) w(n-1)2 Cn-1 

Yo 
Y1 
Y2 

Yn-1 

=y. (2) 

Fn is symmetric but not Hermitian. Its columns are orthogonal, and FnF n = nl. Then 
F,;; 1 is F n/n. The inverse contains powers of Wn = e-21ri/n_ Look at the pattern in F:

The entry in row j, column k is wJk _ Row zero and column zero contain w0 = l. 

When we multiply c by Fn , we sum the series at n points. When we multiply y by F,;; 1 , we 
find the coefficients cfrom the function values y. In MATLAB that command is c = fft(y). 
The matrix F passes from "frequency space" to "physical space." 

Important note. Many authors prefer to work with w = e-21ri/N, which is the complex
conjugate of our w. (They often use the Greek omega, and I will do that to keep the two 
options separate.) With this choice, their DFT matrix contains powers of w not w. It is F, 
the conjugate of our F. F goes from physical space to frequency space. 

Fis a completely reasonable choice! MATLAB uses w = e-21ri/N. The DFT matrix
fft(eye(N)) contains powers of this number w = w. The Fourier matrix F with w's 
reconstructs y from c. The matrix F with w's computes Fourier coefficients as fft(y). 

Also important. When a function f(x) has period 21r, and we change x to ei0 , 

the function is defined around the unit circle (where z = ei0). The Discrete Fourier 
Transform is the same as interpolation. Find the polynomial p(z) = c0 + c1 z + · · · +

Cn-1Zn-l that matches n values Jo, ... , fn-1:

Interpolation Find co, ... , Cn-1 so that p( z) = f at n points z = l, ... , wn-l

The Fourier matrix is the Vandermonde matrix for interpolation at those n special points. 

One Step of the Fast Fourier Transform 

We want to multiply F times c as quickly as possible. Normally a matrix times a vector 
takes n2 separate multiplications-the matrix has n2 entries. You might think it is impos­
sible to do better. (If the matrix has zero entries then multiplications can be skipped. But 
the Fourier matrix has no zeros!) By using the special pattern wjk for its entries, F can be 
factored in a way that produces many zeros. This is the FFT. 

The key idea is to connect Fn with the half-size Fourier matrix Fn;2. A ssume that
n is a power of 2 (say n = 210 = 1024). We will connect F1024 to two copies of F512-
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When n = 4, the key is in the relation between F4 and two copies of F2 : 

p4 = [� ! i; i\j and [ F2 j [� i; j 1 i 2 i 4 i 6 F2 1 1 
1 i 3 i 6 i 9 1 i 2 

On the left is F4, with no zeros. On the right is a matrix that is half zero. The work 
is cut in half. But wait, those matrices are not the same. We need two sparse and simple 
matrices to complete the FFT factorization: 

Factors 

forFFT 

1 

1 
(3) 

The last matrix is a permutation. It puts the even e's ( c0 and c2) ahead of the odd e's ( c1 

and c3). The middle matrix performs half-size transforms F2 and F2 on the even e's and 
odd e's. The matrix at the left combines the two half-size outputs-in a way that produces 
the correct full-size output y = F4c. 

The same idea applies whenn = 1024 andm = ½n = 512. The numberwise21ri/io24_
It is at the angle 0 = 21r / 1024 on the unit circle. The Fourier matrix F1024 is full of powers 
of w. The first stage of the FFT is the great factorization discovered by Cooley and Tukey 
(and foreshadowed in 1805 by Gauss): 

[ even-odd ]permutation (4) 

fs12 is the identity matrix. D512 is the diagonal matrix with entries (1, w, ... , w511 ). The
two copies of F512 are what we expected. Don't forget that they use the 512th root of unity 
(which is nothing but w2 ! !) The permutation matrix separates the incoming vector c into 
its even and odd parts c' = (co, c2, ... , c1022) and c" = (c1, c3, ... , c1023). 

Here are the algebra formulas which say the same thing as that factorization of F1024: 

(One step of the FFT) Set m = ½n. The first m and last m components of y = Fn c 
combine the half-size transforms y' = Fm c' and y" = Fm c". Equation (4) shows this 
step from n to m = n/2 as I y' + Dy" and I y' - Dy": 

Yi = Yj + (wn)iyj', 

Yi+m = Yj - (wn)iyj', 
j = 0, ... ,m-1 
j = 0, ... ,m- l. 

Split c into c' and c", transform them by Fm into y' and y", then (5) reconstructs y. 

(5) 

Those formulas come from separating co ... , Cn-l into even c2k and odd c2k+l : w is Wn. 

y = Fe 
n-1 m-1 m-1 

Yi = L wik Ck = L w2ik C2k + L wi(2k+1) C2k+1 with m = ½n. (6)
0 0 0 
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The even e's go into c '  = (co, c2, ... ) and the odd e's go into c "  = (c1, c3, ... ). Then 
come the transforms Fmc' and Fmc11

• The key is w� = Wrn - This gives w�jk 
= w�. 

R "t (6) 
_ '°'( )jk I + ( )j '°'( )jk II _ I + ( )j II 

ewn e Yj - L.., Wm ck Wn L.., Wm ck - Yj Wn Yj . 

For j � m, the minus sign in (5) comes from factoring out ( Wn)m 
= -1 from ( Wn)J.

(7) 

MATLAB easily separates even e's from odd e's and multiplies by w�. We use conj(F) 
or equivalently MATLAB's inverse transform ifft, because fft is based on w = w= e-21ri/n. 
Problem 16 shows that F and conj(F) are linked by permuting rows.

FFT step 

from n to n/2 
in MATLAB 

y' = ifft ( c(0 : 2 : n - 2)) * n/2; 
y11 

= ifft (c(l : 2: n - 1)) * n/2; 
d

= w/'(0: n/2 - 1)';
y

= 

[y' + d. * y11 ; y' - d. * y11]; 

The flow graph shows c' and c11 going through the half-size F2. Those steps are called
"butte,fiies," from their shape. Then the outputs y' and y11 are combined (multiplying y11 

by 1, i from D and also by -1, -i from -D) to produce y = F4 c.
This reduction from Fn to two Fm's almost cuts the work in half-you see the zeros in 

the matrix factorization. That reduction is good but not great. The full idea of the FFT is 
much more powerful. It saves much more than half the time. 

00 Co Yo 00 

c' 

10 C2 YI 10 

01 C1 Y2 01 

c" 
11 C3 Y3 11 

-1 -i

The Full FFT by Recursion 

If you have read this far, you probably guessed what comes next. We reduced Fn to Fn;2. 
Keep going to Fn;4. Every Fs12 leads to F256. Then 256 leads to 128. That is recursion. 

Recursion is a basic principle of many fast algorithms. Here is step 2 with four 
copies of F255 and D (256 powers of w512). Evens of evens co, c4, cs, ... come first:

l [J 

D l [

F l 
[

pick 0, 4, 8, .. · 1 
I -D F pick 2, 6, 10, ... 

Fs12 
- I D F p�ck 1, 5, 9,... .

I -D F pick 3, 7, 11, ... 
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We will count the individual multiplications, to see how much is saved. Before the FFT 
was invented, the count was the usual n 2 = (1024)2

. This is about a million multiplica­
tions. I am not saying that they take a long time. The cost becomes large when we have 
many, many transforms to do-which is typical. Then the saving by the FFT is also large: 

The final count for size n = 2£ is reduced from n 2 to ½ n.e. 

The number 1024 is 210
, so£ = 10. The original count of (1024)2 is reduced to 

(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That is why 
the FFT has revolutionized signal processing. 

Here is the reasoning behind ½n£. There are £ levels, going from n = 2e down to 
n = l. Each level has n/2 multiplications from the diagonal D's, to reassemble the half­
size outputs from the lower level. This yields the final count ½n£, which is ½n log2 n .  

One last note about this remarkable algorithm. There is an amazing rule for the order 
that the e's enter the FFT, after all the even-odd permutations. Write the numbers Oto n - 1 
in binary (like 00, 01, 10, 11 for n = 4 ). Reverse the order of those digits: 00, 10, 01, 11. 
That gives the bit-reversed order O, 2, 1, 3 with evens before odds (See Problem 17.) 
The complete picture shows the e's in bit-reversed order, the £ = log

2 n steps of the 
recursion, and the final output Yo, ... , Yn-l which is Fn times c.

The chapter ends with that very fundamental idea, a matrix multiplying a vector. 

Problem Set 9.3 

1 Multiply the three matrices in equation (3) and compare with F. In which six entries 
do you need to know that i2 = -1? 

2 Invert the three factors in equation (3) to find a fast factorization of p-1
. 

3 Fis symmetric. So transpose equation (3) to find a new Fast Fourier Transform! 

4 All entries in the factorization of F6 involve powers of w6 = sixth root of 1: 

Write down these matrices with 1, w6, w� in D and w3 = w� in F3. Multiply! 

5 If v = (l, 0, 0, 0) and w = (l, 1, 1, 1), show that Fv =wand Fw = 4 v. Therefore 
p- 1 w = v and p-1 v = 

6 What is F2 and what is F4 for the 4 by 4 Fourier matrix? 

7 Put the vector c = (1, 0, 1, 0) through the three steps of the FFT to find y =Fe.Do 
the same for c = (0, 1, 0, 1). 

8 Compute y = F8c by the three FFT steps for c = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the 
computation for c = (0, 1, 0, 1, 0, 1, 0, 1). 
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9 If w = e27ri/54 then w2 and -/ware among the __ and __ roots of 1. 

10 (a) Draw all the sixth roots of l on the unit circle. Prove they add to zero.
(b) What are the three cube roots of 1? Do they also add to zero?

451 

11 The columns of the Fourier matrix F are the eigenvectors of the cyclic permutation 
P (see Section 8.3). Multiply PF to find the eigenvalues ..\1, ..\2, ..\3, ..\4: 

J 
This is PF= FA or P = FAF-1

. The eigenvector matrix (usually X) is F. 

12 The equation det ( P - ..\I) = 0 is ..\ 4 
= 1. This shows again that the eigenvalues 

are ..\ = __ . Which permutation P has eigenvalues = cube roots of 1? 

13 (a) Two eigenvectors of Care (1, 1, 1, 1) and (1, i, i2 , i3 ). Find the eigenvalues e.

[

Co C1 
C3 Co 
C2 C3 

C1 C2 

and 

(b) P = FAF-1 immediately gives P2 
= FA2 F-1 and P3 

= FA3F-1
. Then 

C = cof+c1P+c2P2 +c3P3 
= F(cof+c1A+c2A2+c3A3 )F-1

= FEF- 1
. 

That matrix E in parentheses is diagonal. It contains the __ of C.

14 Find the eigenvalues of the "periodic" -1, 2, -1 matrix from E = 21 -A -A 3, with 
the eigenvalues of P in A. The -1 's in the comers make this matrix periodic: 

C= [ 

2 -1 0 -1
1-1 2 -1 0 

0 -1 2 -1 
-1 0 -1 2

has Co = 2' C1 = -1, C2 = 0' C3 = -1.

15 Fast convolution = Fast multiplication by C: To multiply C times a vector x, we 
can multiply F(E(F-1x )) instead. The direct way uses n2 separate multiplications. 
Knowing E and F, the second way uses only n log2 n + n multiplications. How 
many of those come from E, how many from F, and how many from F-17 

16 Notice. Why is row i of F the same as row N - i of F (numbered Oto N - 1) ? 

17 What is the bit-reversed order of the numbers 0, 1, ... , 7? Write them all in binary 
(base 2) as 000, 001, ... , 111 and reverse each order. The 8 numbers are now __ . 
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Applications 

10.1 Graphs and Networks 

Over the years I have seen one model so often, and I found it so basic and useful, that I 
always put it first. The model consists of nodes connected by edges. This is called a graph. 

Graphs of the usual kind display functions f ( x). Graphs of this node-edge kind lead 
to matrices. This section is about the incidence matrix of a graph-which tells how the n 
nodes are connected by them edges. Normally m > n, there are more edges than nodes. 

For any m by n matrix there are two fundamental subspaces in Rn and two in Rm . They 
are the row spaces and nullspaces of A and AT . Their dimensions r, n - r and r, m - r 

come from the most important theorem in linear algebra. The second part of that theorem 
is the orthogonality of the row space and nullspace. Our goal is to show how examples 
from graphs illuminate this Fundamental Theorem of Linear Algebra. 

When I construct a graph and its incidence matrix, the subspace dimensions will be 
easy to discover. But we want the subspaces themselves-and orthogonality helps. It 
is essential to connect the subspaces to the graph they come from. By specializing to 
incidence matrices, the laws of linear algebra become Kirchhoff's laws. Please don't be 
put off by the words "current" and "voltage." These rectangular matrices are the best. 

Every entry of an incidence matrix is O or 1 or -1. This continues to hold during 
elimination. All pivots and multipliers are ±1. Therefore both factors in A = LU also 
contain 0, 1, -1. So do the nullspace matrices! All four subspaces have basis vectors with 
these exceptionally simple components. The matrices are not concocted for a textbook, 
they come from a model that is absolutely essential in pure and applied mathematics. 

The Incidence Matrix 

Figure 10.1 displays a graph with m = 6 edges and n = 4 nodes. The 6 by 4 matrix A
tells which nodes are connected by which edges. The first row -1, 1, 0, 0 shows that the 
first edge goes from node 1 to node 2 ( -1 for node 1 because the arrow goes out, + 1 for 
node 2 with arrow in). 

Row numbers in A are edge numbers, column numbers 1, 2, 3, 4 are node numbers! 

452 
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CD 

@F---------------"<> edge 3 
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-1 I 0 0 

-1 0 l 0

0 -1 1 0 

-1 0 0 1 

0 -1 0 l 

0 0 -1 1 
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6 

Figure 10.1: Complete graph with m = 6 edges and n = 4 nodes: 6 by 4 incidence matrix A.

You can write down the matrix by looking at the graph. The second graph has the 
same four nodes but only three edges. Its incidence matrix B is 3 by 4. 

CD 

CD CZl (3)@ 

row 1 
[
1-1 o o

l 
1 

B = 0 1 -1 0 2 edge
row 3 0 0 1 -1 3 

(]) 
row2 

Figure 10.1 *: Tree with 3 edges and 4 nodes and no loops. Then B has independent rows. 

The first graph is complete-every pair of nodes is connected by an edge. The second 
graph is a tree-the graph has no closed loops. Those are the two extremes. The maximum 
number of edges is ½n(n - 1) = 6 and the minimum to stay connected is n - l = 3. 

Elimination reduces every graph to a tree. Loops produce dependent rows in A and 
zero rows in the echelon forms U and R. Look at the large loop from edges 1, 2, 3 in the 
first graph, which leads to a zero row in U:

[
-1 1
-1 0

0 -1

0 
1 
1 

�i ---t [
-

� 
-

�
0 0 -1 

0 
1 
1 

1 
-1

0

0 
1 
0 �] 

Those steps are typical. When edges 1 and 2 share node 1, elimination produces the "short­
cut edge" without node 1. If the graph already has this shortcut edge making a loop, then 
elimination gives a row of zeros. When the dust clears we have a tree. 

An idea suggests itself: Rows are dependent when edges form a loop. Independent 
rows come from trees. This is the key to the row space. We are assuming that the graph 
is connected, and the arrows could go either way. On each edge, flow with the arrow is

"positive." Flow in the opposite direction counts as negative. The flow might be a current 
or a signal or a force-or even oil or gas or water. 
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When x1, x2, x3, x4 are voltages at the nodes, Ax gives voltage differences: 

-1 1 0 0 Xz - X1 

-1 0 1 0 

r�ll 
X3 - X1 

Ax= 
0 -1 1 0 X3 - Xz 

(1) 
-1 0 0 1 X4 - X1 

0 -1 0 1 X4 - Xz 

0 0 -1 1 X4 - X3 

Let me say that again. The incidence matrix A is a difference matrix. The input vector 
x gives voltages, the output vector Ax gives voltage differences (along edges 1 to 6). If the 
voltages are equal, the differences are zero. This tells us the nullspace of A.

1 The nullspace contains the solutions to Ax = 0. All six voltage differences are zero. 
This means: All four voltages are equal. Every x in the nullspace is a constant vector:
x = (c, c, c, c). The nullspace of A is a line in Rn-its dimension is n - r = l. 

The second incidence matrix B has the same nullspace. It contains (1, 1, 1, 1):

I-dimensional
nullspace: same
for the tree

[
-1 1 0

Bx= 0 -l 1
0 0 -1

We can raise or lower all voltages by the same amount c, without changing the differ­
ences. There is an "arbitrary constant" in the voltages. Compare this with the same state­
ment for functions. We can raise or lower a function by C, without changing its derivative. 

Calculus adds" +C" to indefinite integrals. Graph theory adds ( c, c, c, c) to the vector x.

Linear algebra adds any vector Xn in the nullspace to one particular solution of Ax = b.

The "+C" disappears in calculus when a definite integral starts at a known point. 
Similarly the nullspace disappears when we fix x4 = 0. The unknown x4 is removed and 
so are the fourth columns of A and B (those columns multiplied x4). Electrical engineers 
would say that node 4 has been "grounded." 

2 The row space contains all combinations of the six rows. Its dimension is certainly not 6. 
The equation r + (n - r) = n must be 3 + 1 = 4. The rank is r = 3, as we saw from 
elimination. After 3 edges, we start forming loops! The new rows are not independent. 

How can we tell if v = (v1, v2, v3, v4) is in the row space? The slow way is to combine 
rows. The quick way is by orthogonality: 

v is in the row space if and only if it is perpendicular to ( 1, 1, 1, 1) in the nullspace.

The vector v = (0, 1, 2, 3) fails this test-its components add to 6. The vector (-6, 1, 2, 3) 
is in the row space: -6+ 1 + 2+3 = 0. That vector equals 6(row 1) +5(row 3) +3(row 6). 

Each row of A adds to zero. This must be true for every vector in the row space. 
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3 The column space contains all combinations of the four columns. We expect three 
independent columns, since there were three independent rows. The first three columns 
of A are independent (so are any three). But the four columns add to the zero vector, which 
says again that (1, 1, 1, 1) is in the nullspace. How can we tell if a particular vector b 

is in the column space of an incidence matrix? 

First answer Try to solve Ax = b. That misses all the insight. As before, orthogonal­
ity gives a better answer. We are now corning to Kirchhoff's two famous laws of circuit 
theory-the voltage law and current law (KVL and KCL). Those are natural expressions 
of "laws" of linear algebra. It is especially pleasant to see the key role of the left nullspace. 

Second answer Ax is the vector of voltage differences Xi - Xj- If we add differences 
around a closed loop in the graph, they cancel to leave zero. Around the big triangle 
formed by edges 1, 3, -2 (the arrow goes backward on edge 2) the differences cancel: 

Sum of differences is 0 

Kirchhoff's Voltage Law: The components of Ax = b add to zero around every loop. 

Around the big triangle: 

By testing each loop, the Voltage Law decides whether bis in the column space. Ax = b 

can be solved exactly when the components of b satisfy all the same dependencies as the 
rows of A. Then elimination leads to O = 0, and Ax = b is consistent. 

4 The left nullspace contains the solutions to AT y = 0. Its dimension is m - r = 6 - 3: 

Current Law 

-1 0 -1 0 
0 -1 0 -1 
1 1 0 0 
0 0 1 1 

(2) 

The true number of equations is r = 3 and not n = 4. Reason: The four equations add to 
0 = 0. The fourth equation follows automatically from the first three. 

What do the equations mean? The first equation says that -y1 - Y2 - y4 = 0. The 

net flow into node 1 is zero. The fourth equation says that y4 + y5 + Y6 = 0. Flow into 

node 4 minus flow out is zero. The equations AT y = 0 are famous and fundamental: 

Kirchhoff's Current Law:ATy = 0 Flow in equals flow out at each node. 

This law deserves first place among the equations of applied mathematics. It expresses 
"conservation" and "continuity" and "balance." Nothing is lost, nothing is gained. When 
currents or forces are balanced, the equation to solve is AT y = 0. Notice the beautiful fact 
that the matrix in this balance equation is the transpose of the incidence matrix A.
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What are the actual solutions to AT y = O? The currents must balance themselves. 
The easiest way is to flow around a loop. If a unit of current goes around the big triangle 
(forward on edge 1 and 3, backward on 2), the six currents are y = (l, -1, 1, 0, 0, 0). 
This satisfies ATy = 0. Every loop current is a solution to the Current Law. Flow in 
equals flow out at every node. A smaller loop goes forward on edge 1, forward on 5, back 
on 4. Then y = (1, 0, 0, -1, 1, 0) is also in the left nullspace. 

We expect three independent y's: m-r = 6-3 = 3. The three small loops in the graph 
are independent. The big triangle seems to give a fourth y, but that flow is the sum of flows 
around the small loops. Flows around the 3 small loops are a basis for the left nullspace. 

CD 

2 
1 0 0 1 

0 0 -1 -1

0 1 0 1

-1
+ 

0 
+ 

1 0

1 -1 0 0

@ ® 0 1 -1 0

3 3 small loops big loop 

The incidence matrix A comes from a connected graph with n nodes and m edges. The 
row space and column space have dimensions r = n - l. The nullspaces of A

.and AT have dimensions 1 and m - n + l:

N(A) The constant vectors (c, c, ... , c) make up the nullspace of A: dim= 1. 

C ( AT) The edges of any tree give r independent rows of A : r = n - 1.

C(A) Voltage Law: The components of Ax add to zero around all loops: dim= n - l. 

N(AT) Current Law: ATy = (flow in) - (flow out)= 0 is solved by loop currents.

There are m - r = m - n + 1 independent small loops in the graph.

For every graph in a plane, linear algebra yields Euler's formula: Theorem 1 in topology! 

(number of nodes) - (number of edges) + (number of small loops) = 1. 

This is ( n) - ( m) + ( m - n + 1) = 1. The graph in our example has 4 - 6 + 3 = 1.

A single triangle has (3 nodes) - (3 edges)+ (I loop). On a 10-node tree with 9 edges 
and no loops, Euler's count is 10 - 9 + 0. All planar graphs lead to the answer 1. 

The next figure shows a network with a current source. Kirchhoff's Current Law changes 
from AT y = 0 to AT y = f, to balance the source f from outside. Flow into each node
still equals flow out. The six edges would have conductances c1, ... , c6, and the current 
source goes into node 1. The source comes out from node 4 to keep the overall balance 
(in= out). The problem is: Find the currents y1, • • •  , y6 on the six edges. 
Flows in networks now lead us from the incidence matrix A to the Laplacian matrix AT A.
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Voltages and Currents and AT 
Ax = f 

We started with voltages x = ( x1, ... , Xn ) at the nodes. So far we have Ax to find voltage 
differences Xi - x j along edges. And we have the Current Law AT y = 0 to find edge 
currents y = (y1, ... Ym )- If all resistances in the network are 1, Ohm's Law will match 
y = Ax. Then AT y = AT Ax = 0. We are close but not quite there. 

Without any sources, the solution to AT Ax = 0 will just be no flow: x = 0 and y = 0. 
I can see three ways to produce x -=/= 0 and y -=/= 0. 

1 Assign fixed voltages Xi to one or more nodes. 

2 Add batteries (voltage sources) in one or more edges. 

3 Add current sources going into one or more nodes. See Figure 10.2 

Figure 10.2: The currents y1 to Y6 in a network with a source S from node 4 to node 1. 

Example Figure 10.2 includes a current source S from node 4 to node 1. That current 
will trickle back through the network to node 4. Some current y4 will go directly on edge 
4. Other current will go the long way from node 1 to 2 to 4, or 1 to 3 to 4. By symmetry
I expect no current (y3 = 0) from node 2 to node 3. Solving the network equations will
confirm this. The matrix in those equations is AT A, the graph Laplacian matrix:

-1 1 0 0 

r-�
-1 0 -1 0 

-�]
-1 0 1 0 

[-: 
-1 -1 -l 

1
0 -1 0 -1 0 -1 1 0 3 -1 -1 

1 1 0 0 -1 0 0 1 -1 -1 3 -1 

0 0 1 1 0 -1 0 1 -1 -1 -1 3 
0 0 -1 1 

ATA 
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That Laplacian matrix is not invertible! We cannot solve for all four potentials because 
(1, 1, 1, 1) is in the nullspace of A and AT A. One node has to be grounded. Setting x4 = 0 
removes the fourth row and column, and this leaves a 3 by 3 invertible matrix. Now we 
solve AT Ax= f for the unknown potentials x1, x2, x3, with source S into node 1: 

[-; 
Voltages 

AT Ax= f -1 

Y1 

Y2 

Currents Y3 

y=-Ax Y4 

Ys 

Y6 

-1
3

-1

-1 

i [ 
x

, l -1 X2 
3 X3 

-1 1
-1 0 

0 -1
-1 0 

0 -1
0 0 

m 
0 0 
1 0 
1 0 
0 1 
0 1 

-1 1 

gives 
[x'] [S/2] 
X2 = S/4 
X3 S/4 

S/4 

[

S/2

] 

S/4 
S/4 _ 0 
S/4 - S/2

0 S/4 
S/4 

Half the current goes directly on edge 4. That is y4 = S /2. No current crosses from node 
2 to node 3. Symmetry indicated y3 = 0 and now the solution proves it. 

Admission of error I remembered that current flows from high voltage to low voltage. 
That produces the minus sign in y = -Ax. And the correct form of Ohm's Law will be 
Ry = -Ax when the resistances on the edges are not all 1. Conductances are neater than 
resistances: C = R- 1 = diagonal matrix. We now present Ohm's Law y = -CAx. 

Networks and AT C A 

In a real network, the current y along an edge is the product of two numbers. One number 
is the difference between the potentials x at the ends of the edge. This voltage difference 
is Ax and it drives the flow. The other number c is the "conductance"-which measures 
how easily flow gets through. 

In physics and engineering, c is decided by the material. For electrical currents, c 
is high for metal and low for plastics. For a superconductor, c is nearly infinite. If we 
consider elastic stretching, c might be low for metal and higher for plastics. In economics, 
c measures the capacity of an edge or its cost. 

To summarize, the graph is known from its incidence matrix A. This tells the node­
edge connections. A network goes further, and assigns a conductance c to each edge. 
These numbers c1, ... , Cm go into the "conductance matrix" C-which is diagonal. 

For a network of resistors, the conductance is c = 1 / (resistance). In addition to Kirch­
hoff's Laws for the whole system of currents, we have Ohm's Law for each current. 
Ohm's Law connects the current y1 on edge 1 to the voltage difference x2 - x1: 

Ohm's Law: Current along edge = conductance times voltage difference. 

Ohm's Law for all m currents is y = -CAx. The vector Ax gives the potential differ­
ences, and C multiplies by the conductances. Combining Ohm's Law with Kirchhoff's 
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Current Law AT y = 0, we get AT C Ax = 0. This is almost the central equation for net­
work flows. The only thing wrong is the zero on the right side! The network needs power 
from outside-a voltage source or a current source-to make something happen. 

Note about signs In circuit theory we change from Ax to -Ax. The flow is from higher 
potential to lower potential. There is (positive) current from node 1 to node 2 when xi - x2 
is positive-whereas Ax was constructed to yield x2 - xi. The minus sign in physics and 
electrical engineering is a plus sign in mechanical engineering and economics. Ax versus 
-Ax is a general headache but unavoidable.

Note about applied mathematics Every new application has its own form of Ohm's Law. 
For springs it is Hooke's Law. The stress y is (elasticity C) times (stretching Ax). For 
heat conduction, Ax is a temperature gradient. For oil flows it is a pressure gradient. For 
least squares regression in statistics (Chapter 12) c-i is the covariance matrix. 

My textbooks Introduction to Applied Mathematics and Computational Science and 

Engineering (Wellesley-Cambridge Press) are practically built on AT CA. This is the key 
to equilibrium in matrix equations and also in differential equations. Applied mathematics 
is more organized than it looks! In new problems I have learned to watch for ATC A. 

Problem Set 10.1 

Problems 1-7 and 8-14 are about the incidence matrices for these graphs. 

1 1 2 
1 

edge 1 edge 2 
2 3 4 

5 
2 

edge 3 
3 

3 4 

1 Write down the 3 by 3 incidence matrix A for the triangle graph. The first row has 
-1 in column 1 and + 1 in column 2. What vectors (xi, x2, X3) are in its nulls pace?
How do you know that (1, 0, 0) is not in its row space?

2 Write down AT for the triangle graph. Find a vector y in its nullspace. The compo­
nents of y are currents on the edges-how much current is going around the triangle? 

3 Eliminate xi and x2 from the third equation to find the echelon matrix U. What tree 
corresponds to the two nonzero rows of U? 

-Xi+ X2 = bi

-Xi+ X3 = b2

-X2 + X3 = b3. 
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4 Choose a vector (b1, b2, b3) for which Ax = b can be solved, and another vector b 
that allows no solution. How are those b's related toy = (1, -1, l)? 

5 Choose a vector (Ji, h, h) for which AT y = f can be solved, and a vector f

that allows no solution. How are those f's related to x = (1, 1, l)? The equation 
AT

y = f is Kirchhoff's __ law.

6 Multiply matrices to find AT 
A. Choose a vector f for which AT Ax = f can be

solved, and solve for x. Put those potentials x and the currents y = -Ax and 
current sources f onto the triangle graph. Conductances are 1 because C = I. 

7 With conductances c1 = 1 and c2 = c3 = 2, multiply matrices to find ATC A. For
f = ( 1, 0, -1) find a solution to ATC Ax = f. Write the potentials x and currents 

y = -C Ax on the triangle graph, when the current source f goes into node 1 and 
out from node 3. 

13 Write down the 5 by 4 incidence matrix A for the square graph with two loops. Find 
one solution to Ax = 0 and two solutions to AT y = 0.

9 Find two requirements on the b's for the five differences x2 - x1, x3 - x1, x3 - x2, 
x4 - x2, x4 - x3 to equal b1, b2, b3, b4 , b5 . You have found Kirchhoff's _ _  law 
around the two __ in the graph. 

10 Reduce A to its echelon form U. The three nonzero rows give the incidence matrix 
for what graph? You found one tree in the square graph-find the other seven trees. 

11 Multiply matrices to find AT A and guess how its entries come from the graph:

(a) The diagonal of AT A tells how many __ into each node.

(b) The off-diagonals -1 or O tell which pairs of nodes are __ .

12 Why is each statement true about AT A? Answer for AT A not A.

(a) Its nullspace contains (1, 1, 1, 1). Its rank is n - 1.

(b) It is positive semidefinite but not positive definite.

( c) Its four eigenvalues are real and their signs are __ .

13 With conductances c1 = c2 = 2 and c3 = c4 = c5 = 3, multiply the matrices 
ATCA. Find a solution toATCAx = f = (1,0,0,-1). Write these potentials x
and currents y = -C Ax on the nodes and edges of the square graph. 

14 The matrix ATC A is not invertible. What vectors x are in its nullspace? Why does
ATC Ax= f have a solution if and only if Ji+ h + h + f4 = O?

15 A connected graph with 7 nodes and 7 edges has how many loops? 

16 For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect it 
to one old node, Euler's formula becomes ( ) - ( ) + ( ) = 1. If you connect it 
to two old nodes, Euler's formula becomes ( ) - ( ) + ( ) = 1. 
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17 Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph. 

(a) How many columns of A are independent?

(b) What condition on f makes it possible to solve AT y = f?

( c) The diagonal entries of AT A give the number of edges into each node. What is

the sum of those diagonal entries?

18 Why does a complete graph with n = 6 nodes have m = 15 edges? A tree connect-

ing 6 nodes has __ edges. 

Note The stoichiometric matrix in chemistry is an important "generalized" incidence 

matrix. Its entries show how much of each chemical species (each column) goes into 

each reaction (each row). 
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10.2 Matrices in Engineering 

This section will show how engineering problems produce symmetric matrices K ( often 
K is positive definite). The "linear algebra reason" for symmetry and positive definiteness 
is their form K = AT A and K = AT C A. The "physical reason" is that the expression 
½u T Ku represents energy-and energy is never negative. The matrix C, often diagonal, 
contains positive physical constants like conductance or stiffness or diffusivity. 

Our best examples come from mechanical and civil and aeronautical engineering. 
K is the stiffness matrix, and K- 1 f is the structure's response to forces f from outside. 
Section 10.1 turned to electrical engineering-the matrices came from networks and cir­
cuits. The exercises involve chemical engineering and I could go on! Economics and 
management and engineering design come later in this chapter (the key is optimization). 

Engineering leads to linear algebra in two ways, directly and indirectly: 

Direct way The physical problem has only a finite number of pieces. The laws 
connecting their position or velocity are linear (movement is not too big or too fast). 
The laws are expressed by matrix equations. 
Indirect way The physical system is "continuous". Instead of individual masses, the 
mass density and the forces and the velocities are functions of x or x, y or x, y, z. 
The laws are expressed by differential equations. To find accurate solutions we

approximate by finite difference equations or finite element equations. 

Both ways produce matrix equations and linear algebra. I really believe that you cannot 
do modern engineering without matrices. 

Here we present equilibrium equations Ku = f. With motion, M d2 u / dt2 
+ Ku = f 

becomes dynamic. Then we would use eigenvalues from K x = >-.M x, or finite differences. 

Differential Equation to Matrix Equation 

Differential equations are continuous. Our basic example will be -d2u/dx2 = f(x). 
Matrix equations are discrete. Our basic example will be K0u = f. By taking the step 
from second derivatives to second differences, you will see the big picture in a very short 
space. Start with fixed boundary conditions at both ends x = 0 and x = l : 

Fixed-fixed 

boundary value problem 

d2
u 

-
dx2 

= 1 with u(O) = 0 and u(l) = 0. (1) 

That differential equation is linear. A particular solution is u
p

= -½x2 (then d2 u/ dx2 = -1). 
We can add any function "in the nullspace". Instead of solving Ax = 0 for a vector x, 
we solve -d2u/ dx2 = 0 for a function un(x). (Main point: The right side is zero.) 

The nullspace solutions are un(x) = C + Dx (a 2-dimensional nullspace for a 
second order differential equation). The complete solution is Up + Un : 
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Complete 

solution to 

d2u
--=1 

dx2 

1 
u(x) = -

2
x2 

+ C + Dx. (2) 

Now find C and D from the two boundary conditions: Set x = 0 and then x = l. At 
x = 0, u(0) = 0 forces C = 0. At x = l, u(l) = 0 forces-½+ D = 0. Then D = ½:

1 1 1 
u(x) = --x2 +-x = -(x - x2 ) solves thefixed-fixed boundaryvalue problem. (3)

2 2 2 

Differences Replace Derivatives 

To get matrices instead of derivatives, we have three basic choices-forward or backward
or centered differences. Start with first derivatives and first differences :

du u(x + .6.x) - u(x) u(x) - u(x - .6.x) u(x + .6.x) - u(x - .6.x) - � ------- or ----'---'-------'-----'-- or ----'----'----'----'-.
dx .6.x .6.x 2.6.x

Between x = 0 and x = l, we divide the interval into n + l equal pieces. The pieces have 
width .6.x = l/(n + 1). The values of u at then breakpoints .6.x, 2.6.x, ... will be the
unknowns u 1 to Un in our matrix equation Ku = f:

Solution to compute: u = ( u1, u2, ... , un) � ( u(.6.x), u(2.6.x ), ... , u( n.6.x) ).
Zero values u0 = Un+i = 0 come from the boundary conditions u(0) = u(l) = 0.

Replace the derivatives in -d
� ( ��) = 1 by forward and backward differences :

1 
(.6.x)2 

[ 
1 -1 0 
0 1 -1 
0 0 1 

(4) 

This is our matrix equation when n - 3 and .6.x = .!. . The two first differences
are transposes of each other! The equation is AT Au= (.6.x)1 f. When we multiply AT A,
we get the positive definite second difference matrix Ko:

K0 u = 
(Ax) 2 f [ 

2-1 ol 
-1 2 -1 

0-1 2 

gives (5)
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The wonderful fact in this example is that those numbers u1, u2, u3 are exactly correct!They agree with the true solution u = ½ ( x - x2) at the three mesh points x = ¼, ¾, ¾.
Figure 10.3 shows the true solution (continuous curve) and the approximations u1, u2, u3 (lying exactly on the curve). This curve is a parabola.

U2 
1

4 u(x) = 2 (x - x2 ) 

U1 
32 

U3 

3 3 

32 32 

x=O 3D.x 4D.x = 1

Figure 10.3: Solutions to - �:� = 1 and K0u = (..:lx) 2 f with fixed-fixed boundaries.
How to explain this perfect answer, lying right on the graph of u(x)? In the matrixequation, Ko = AT A is a "second difference matrix." It gives a centered approximationto -d2u/ dx2

. I included the minus sign because the first derivative is antisymmetric.The second derivative by itself is negative: 

The "transpose" of :
x 

is -
d

� . Then ( -
d
�) ( 

d
�) is positive definite.

You can see that in the matrices A and AT . The transpose of A = forward difference is
AT = - backward difference. I don't want to choose a centered u(x+ D.x)-u(x-D.x).
Centered is the best for a first difference, but then the second difference AT A wouldstretch from u(x + 2D.x) to u(x - 2D.x): not good. Now we can explain the perfect answers, exactly on the true curve u(x) = ½ (x - x2). Second differences -1, 2, -1 are exactly correct for straight lines y = x and parabolas !

y=x 

Y = x2 

d2y 
dx2 

0 

d2y 
--=-2 

dx2 

-(x + D.x) +2x -(x - D.x) =
-(x + D.x)2 +2x2 -(x - D.x)2 = -2(D.x)2 

The miracle continues to y = x3. The correct -d2y / dx2 = -6x is produced bysecond differences. But for y = x4 we return to earth. Second differences don't exactlymatch -y" = -12x2
. The approximations u1, u2, u3 won't fall on the graph of u(x). 
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Fixed End and Free End and Variable Coefficient c( x) 

To see two new possibilities, I will change the equation and also one boundary condition: 

d 
( �) 

� 
-

dx 
(l + x) 

dx 
= f(x) with u( 0) = 0 and dx (1) = 0. (6) 

The end x = l is now free. There is no support at that end. "A hanging bar is fixed 
only at the top." There is no force at the free end x = l. That translates to du/ dx = 0 
instead of the fixed condition u = 0 at x = l. 

The other change is in the coefficient c( x) = 1 + x. The stiffness of the bar is 
varying as you go from x = 0 to x = l. Maybe its width is changing, or the material 
changes. This coefficient 1 + x will bring a new matrix C into the difference equation. 

Since u4 is no longer fixed at 0, it becomes a new unknown. The backward difference 
A is 4 by 4. And the multiplication by c(x) = 1 + x becomes a diagonal matrix C-which 
multiplies by 1 + �x, ... , 1 + 4�x at the meshpoints. Here are AT , C, and A: 

-1
1
0
0

0 
-1

1 
0 � l l 

1.2 5 
1.5 

1 r-� -1 1.75 0 
1 2.0 0 

0 
1 

-1
0 
HJ. (7) 

-1 1 

This matrix K = ATCA will be symmetric and positive definite! Symmetric because 
(AT CA) T = AT CT ATT = ATCA. Positive definite because it passes the energy test: 
A has independent columns, so Ax =J O when x =J 0. 

Energy = xT ATCAx = (Ax) TC(Ax) > 0 for every x =J 0, because Ax =J 0. 

When you multiply the matrices AT A and AT CA for this fixed-free combination, watch 
how 1 replaces 2 in the last corner of AT A. That fourth equation has u4 - u3, a first 
(not second) difference coming from the free boundary condition du/ dx = 0. 

Notice in AT C A how c1, c2, c3, c4 come from c( x) = 1 + x in equation (7). Previously 
the e's were simply 1, 1, 1, 1. Here are the fixed-free matrices: 

AT A = 
-l 2

-1

l 2 -1
-1 l 2 -1
-1 1
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Free-free Boundary Conditions 

Suppose both ends of the bar are free. Now du/ dx = 0 at both x = 0 and x = l. 
Nothing is holding the bar in place! Physically it is unstable-it can move with no force. 
Mathematically all constant functions like u = 1 satisfy these free conditions. Algebraically 
our matrices AT A and AT C A will not be invertible: 

Free-free examples 
Unknown uo, u1, u2 
�x = 0.5 

The vector (1, 1, 1) is in both nullspaces. This matches u(x) 1 in the continuous 
problem. Free-free AT Au= f and ATC Au= fare generally unsolvable. 

Before explaining more physical examples, may I write down six of the matrices? The 
tridiagonal Ko appears many times in this textbook. Now we are seeing its applications. 
These matrices are all symmetric, and the first four are positive definite: 

-1
2

-1

Fixed-fixed 

-1
2

-1

Fixed-free 

-1
2

-1

Free-free 

AJ' Co Ao = [

c1
-:2

c2 

c2-:
2

c3 -c3 ] 
-C3 C3 + C4 

Spring constants included 

A{C,A, � [ c,_�," c,:::c, �:' l 

K circular
= 

Spring constants included 

[-i -; =�]
-1 -1 2 

Periodic u(O) = u(l) 

The matrices Ko, K1, Ksingular, and Kcircular have C = I for simplicity. This means 

that all the "spring constants" are Ci = 1. We included AJ' C0A0 and AT C1A1 to show how 
the spring constants enter the matrix (without changing its positive definiteness). 
Our next goal is to see these same stiffness matrices in other engineering problems. 
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A Line of Springs and Masses 

Figure 10.4 shows three masses mi, m2, m3 connected by a line of springs. The fixed­
fixed case has four springs, with top and bottom fixed. That leads to Ko and AJ C0A0. The 
fixed-free case has only three springs; the lowest mass hangs freely. That will lead to Ki 
and At Ci Ai. A free-free problem produces Ksingular-

We want equations for the mass movements u and the spring tensions y: 

u (ui, u2, u3) = movements of the masses (down is positive)
Y (Yi, Y2, y3, y4) or (Yi, Y2, y3) = tensions in the springs

fixed end 
spring c1 
mass m1 

C2 
mz 
C3 

m3 
C4 

fixed end 

Uo = 0 
tension y1 

movementu1 
Yz 
Uz 
Y3 
U3 
Y4 
U4= 0 

fixed end Uo = 0 
spring c1 tension y1 
mass m1 movementu1 
spring Cz tension y2 
massm2 movementu2 
spring c3 tension y3 
massm3 movement U3 

free end Y4 = 0 

Figure 10.4: Lines of springs and masses: fixed-fixed and fixed-free ends. 

When a mass moves downward, its displacement is positive (uj > 0). For the springs, 
tension is positive and compression is negative (Yi < 0). In tension, the spring is stretched 
so it pulls the masses inward. Each spring is controlled by its own Hooke's Law y = ce: 
(stretching force y) = (spring constant c) times (stretching distance e ). 

Our job is to link these one-spring equations y = c e into a vector equation Ku = f 
for the whole system. The force vector f comes from gravity. The gravitational constant 
g will multiply each mass to produce downward forces f = (mig, m2g, m3g). 

The real problem is to find the stiffness matrix (fixed-fixed and fixed-free). The best 
way to create K is in three steps, not one. Instead of connecting the movements Uj directly 
to ilie forces Ji, it is much better to connect each vector to the next in this list: 

u 
e 
y 
f 

Movements of n masses 
Elongations of m springs 
Internal forces in m springs 
External forces on n masses 

(uI,···,un) 
(el,···,em) 
(Y1, · · ·, Ym) 
(fi, ... ,fn) 

A great framework for applied mathematics connects u to e to y to f. Then AT C Au = f : 

� 0 e=Au A is m by n 

At tAT 
y =Ce C is m by m 

0 
C 

0 f =AT
y AT is n by m --+ 
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We will write down the matrices A and C and AT for the two examples, first with fixed 

ends and then with the lower end free. Forgive the simplicity of these matrices, it is their 

form that is so important. Especially the appearance of A together with AT . 

The elongation e is the stretching distance-how far the springs are extended. Orig­

inally there is no stretching-the system is lying on a table. When it becomes vertical 

and upright, gravity acts. The masses move down by distances u1, u2, u3. Each spring is 

stretched or compressed by ei = Ui - Ui-l, the difference in displacements of its ends: 

Stretching of 

each spri.ng 

First spring: e 1 = u1 (the top is fixed so u0 = 0) 

Second spring: e2 = u2 - u1 

Third spring: e3 = u3 - u2

Fourth spring: e4 = - u3 (the bottom is fixed so u4 = 0) 

If both ends move the same distance, that spring is not stretched: Uj = Uj-l and 

ej = 0. The matrix in those four equations is a 4 by 3 difference matrix A, and e = Au:

Stretching 

distances 

(elongations) 

e = Au is 

1 

-1

0

0

0 

1 

-1

0

(9) 

The next equation y = Ce connects spring elongation e with spring tension y. This is 
Hooke's Law Yi = cieifor each separate spring. It is the "constitutive law" that depends 

on the material in the spring. A soft spring has small c, so a moderate force y can produce 

a large stretching e. Hooke's linear law is nearly exact for real springs, before they are 

overstretched and the material becomes plastic. 

Since each spring has its own law, the matrix in y = Ce is a diagonal matrix C: 

Hooke's 

Law 

y =Ce 

C1e1 

C2e2 

C3e3 

C4e4 

Combining e = Au with y = Ce, the spring forces (tension forces) are y = CAu. 

(10) 

Finally comes the balance equation, the most fundamental law of applied math­

ematics. The internal forces from the springs balance the external forces on the masses. 

Each mass is pulled or pushed by the spring force Yj above it. From below it feels the 

spring force YHl plus ]j from gravity. Thus Yj = YHl + ]j or ]j = Yj - YH1:

Force 

balance 

f =AT
y 

-1

1

0

0 

-1

1

(11) 

That matrix is AT ! The equation for balance of forces is f = AT y. Nature transposes 

the rows and columns of the e -u matrix to produce the f -y matrix. This is the beauty of 

the framework, that AT appears along with A. The three equations combine into Ku = f. 
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combine into ATCAu = f or Ku= f 
K = AT C A is the stiffness matrix (mechanics) 
K = AT C A is the conductance matrix (networks) 

Finite element programs spend major effort on assembling K = ATCA from thousands 
of smaller pieces. We find K for four springs (fixed-fixed) by multiplying AT times CA: 

-1
1
0

0 
-1

1

0 

l [
C1 

-c2 0 0-1 0

0 

If all springs are identical, with c1 = c2 = c3 = c4 = 1, then C = I. The stiffness matrix 
reduces to AT A. It becomes the special -1, 2, -1 matrix K0 . 

Note the difference between AT A from engineering and LU from linear algebra. The 
matrix A from four springs is 4 by 3. The triangular matrices from elimination are square. 
The stiffness matrix K is assembled from AT A, and then broken up into LU. One step 
is applied mathematics, the other is computational mathematics. Each K is built from 
rectangular matrices and factored into square matrices. 

May I list some properties of K = AT C A? You know almost all of them: 

1. K is tridiagonal, because mass 3 is not connected to mass 1.

2. K is symmetric, because C is symmetric and AT comes with A.

3. K is positive definite, because Ci > 0 and A has independent columns.

4. K- 1 is a full matrix (not sparse) with all positive entries.

Property 4 leads to an important fact about u = K- 1 f: If all forces act downwards 
(!J > 0) then all movements are downwards (uj > 0). Notice that "positive" is 
different from "positive definite". K- 1 is positive (K is not). Both are positive definite. 

Example 1 Suppose all Ci = c and mj = m. Find the movements u and tensions y. 
All springs are the same and all masses are the same. But all movements and elonga­

tions and tensions will not be the same. K- 1 includes l because AT C A includes c: 

Movements 

[ 

3
/

2 

lmg 2 
C 3

/
2 

The displacement u2, for the mass in the middle, is greater than u1 and u3. The units are 
correct: the force 

mg 
divided by force per unit length c gives a length u. Then 

Elongations 

1 
-1

0 
0 

0 
1 � 1 mg [ ! l mg [ !�� 1 · -1 1 C 3 C -1/2 
0 -1 2 -3/2 
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Warning: Normally you cannot write K- 1 
= 

A- 10- 1 (AT )- 1
. 

The three matrices are mixed together by ATC A, and they cannot easily be untangled. 
In general, AT y = f has many solutions. And four equations Au = e would usually 
have no solution with three unknowns. But ATC A gives the correct solution to all three 
equations in the framework. Only when m = n and the matrices are square can we go from 
y = (AT )- 1 f toe= c- 1 y to u = A- 1e. We will see that now.

Fixed End and Free End 

Remove the fourth spring. All matrices become 3 by 3. The pattern does not change! The 
matrix A loses its fourth row and ( of course) AT loses its fourth column. The new stiffness 
matrix K1 becomes a product of square matrices: 

1 
-1

0

0 
1 

-1 n 
The missing column of AT and row of A multiplied the missing c4. So the quickest way to 
find the new ATC A is to set c4 = 0 in the old one: 

FIXED 
FREE (12) 

Example 2 If c1 = c2 = c3 = 1 and C = I, this is the -1, 2, -1 tridiagonal matrix K1. 

The last entry of K1 is 1 instead of 2 because the spring at the bottom is free. Suppose all 
mj=m: 

Fixed-free 

Those movements are greater than the free-free case. The number 3 appears in u1 because 
all three masses are pulling the first spring down. The next mass moves by that 3 plus an 
additional 2 from the masses below it. The third mass drops even more (3 + 2 + 1 = 6). 
The elongations e = Au in the springs display those numbers 3, 2, 1: 
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Tuo Free Ends: K is Singular 

Freedom at both ends means trouble. The whole line can move. A is 2 by 3 : 

FREE-FREE 
e=Au 

1 
-1 (13) 

Now there is a nonzero solution to Au = 0. The masses can move with no stretching of

the springs. The whole line can shift by u = (l, 1, 1) and this leaves e = (0, 0): 

[ -1 Au= O
1 

-1 � ]
[ 

: 
] � [ �] � nostretching. (14) 

Au = 0 certainly leads to AT CAu 0. Then AT CA is only positive semidefinite, 
without c1 and c4. The pivots will be c2 and c3 and no third pivot. The rank is only 2: 

1 0 
] [ 

C2 -C2 

-l l = -C2 C2 + C3 

0 -C3 -c� lC3 

(15) 

Two eigenvalues will be positive but x = (l, 1, 1) is an eigenvector for.\ = 0. We can 
solve AT C Au= f only for special vectors f. The forces have to add to Ji+ h + h = 0, 
or the whole line of springs (with both ends free) will take off like a rocket. 

Circle of Springs 

A third spring will complete the circle from mass 3 back to mass 1. This doesn't make K 
invertible-the stiffness matrix K circular matrix is still singular: 

A�rcular
Acircular = [ � -� -�] [-� � -�i [-� -� =�] (16) 

-1 0 1 0 -1 1 -1 -1 2

The only pivots are 2 and ! . The eigenvalues are 3 and 3 and 0. The determinant is zero. 
The nullspace still contains x = (l, 1, 1), when all the masses move together. 
This movement vector (1, 1, 1) is in the nullspace of Acircular and Kcircular = AT CA. 

May I summarize this section? I hope the example will help you connect calculus with 
linear algebra, replacing differential equations by difference equations. If your step D.x is 
small enough, you will have a totally satisfactory solution. 

. . d 
( 

du
) 

. 
[ 

du 
] The equation 1s - dx 

c(x) 
dx 

= f(x) with u(0) = 0 and u(l) or 
dx 

(l) = 0

Divide the bar into N pieces of length D.x. Replace du/dx by Au and -dy/dx by ATy. 
Now A and AT include 1/ D.x. The end conditions are u0 = 0 and [uN = 0 or YN = 0]. 
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The three steps -d/dx and c(x) and d/dx correspond to AT and C and A:

f = AT

y and y = Ce and e = Au give AT CAu = f.

This is a fundamental example in computational science and engineering. 

1. Model the problem by a differential equation

2. Discretize the differential equation to a difference equation

3. Understand and solve the difference equation (and boundary conditions!)

4. Interpret the solution; visualize it; redesign if needed.

Numerical simulation has become a third branch of science, beside experiment and deduc­
tion. Computer design of the Boeing 777 was much less expensive than a wind tunnel. 

The two texts Introduction to Applied Mathematics and Computational Science and
Engineering (Wellesley-Cambridge Press) develop this whole subject further-see the
course page math.mit.edu/18085 with video lectures (The lectures are also on ocw.mit.edu

and YouTube). I hope this book helps you to see the framework behind the computations. 

Problem Set 10.2 

1 Show that det AJ C oAo = c1c2c3+c1c3c4 +c1c2c4 +c2c3C4. Find also det At C 1A1 

in the fixed-free example.

2 Invert AtC 1A1 in the fixed-free example by multiplying AL 1 C1
1 (At)- 1 .

3 In the free-free case when AT C A in equation ( 15) is singular, add the three equations
AT CAu = f to show that we needfi+h+h = 0. Find a solution toAT CAu = f
when the forces f = (-1, 0, 1) balance themselves. Find all solutions! 

4 Both end conditions for the free-free differential equation are du/ dx = 0:

d ( du
) -- c(x)- = f(x) 

dx dx 
with 

du 
dx 

= 0 at both ends.

Integrate both sides to show that the force f ( x) must balance itself, J f ( x) dx = 0,
or there is no solution. The complete solution is one particular solution u( x) plus
any constant. The constant corresponds to u = ( 1, 1, 1) in the nulls pace of AT C A. 

5 In the fixed-free problem, the matrix A is square and invertible. We can solve AT
y =

f separately from Au= e. Do the same for the differential equation: 

dy
Solve - dx

= f(x) with y(l) = 0. Graph y(x) if f(x) = 1.
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6 The 3 by 3 matrix K 1 = A IC 1 A 1 in equation ( 6) splits into three "element matrices" 
c1E1 + c2 E2 + c3E3. Write down those pieces, one for each c. Show how they 
come from column times row multiplication of AI C1A1. This is how finite element 
stiffness matrices are actually assembled. 

7 For five springs and four masses with both ends fixed, what are the matrices A and 
C and K? With C = I solve Ku= ones(4). 

8 Compare the solution u = ( u1, u2 , u3, u4) in Problem 7 to the solution of the con­
tinuous problem -u11 = l with u(O) = 0 and u(l) = 0. The parabola u(x) should 
correspond at x = ½, i, ¾, ! to u-is there a ( 6.x )2 factor to account for? 

9 Solve the fixed-free problem -u11 = mg with u(O) = 0 and u1 (l) = 0. Compare 
u(x) at x = ½, i, i with the vector u = (3mg, 5mg, 6mg) in Example 2. 

10 Suppose c1 = c2 = c3 = c4 = 1, m1 = 2 and m2 = m3 = 1. Solve ATCA u = 
(2, 1, 1) for this fixed-fixed line of springs. Which mass moves the most (largest u)? 

11 (MATLAB) Find the displacements u(l), . . .  , u(lOO) of 100 masses connected by 
springs all with c = 1. Each force is f(i) = .01. Print graphs of u with fixed-fixed

and fixed-free ends. Note that diag(ones(n, 1), d) is a matrix with n ones along 
diagonal d. This print command will graph a vector u: 

plot(u, '+'); xlabel('mass number'); ylabel('movement'); print 

12 (MATLAB) Chemical engineering has a first derivative du/ dx from fluid velocity as 
well as d2 u/ dx2 from diffusion. Replace du/ dx by a forward difference, then a 
centered difference, then a backward difference, with 6.x = ½. Graph your three 
numerical solutions of 

d2 u du
-- + 10 - = 1 with u(O) = u(l) = 0. 

dx2 dx 

This convection-diffusion equation appears everywhere. It transforms to the 
Black-Scholes equation for option prices in mathematical finance. 

Problem 12 is developed into the first MATLAB homework in my 18.085 course on 
Computational Science and Engineering at MIT. Videos on ocw.mit.edu. 
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10.3 Markov Matrices, Population, and Economics 

This section is about positive matrices: every aij > 0. The key fact is quick to state: 
The largest eigenvalue is real and positive and so is its eigenvector. In economics 
and ecology and population dynamics and random walks, that fact leads a long way: 

Markov >-max = 1 Population >-max > 1 Consumption >-max < 1 

>-max controls the powers of A. We will see this first for >-max = 1. 

Markov Matrices 

Multiply a positive vector u0 again and again by this matrix A : 

Markov 

matrix 
A=[·S .3].2 .7 

After k steps we have Ak u0. The vectors u1, u2, u3, ... will approach a "steady state"

u00 = (.6, .4). This final outcome does not depend on the starting vector u0. For every
u0 = (a, 1 - a) we converge to the same u00 (.6,.4). The question is why. 

The steady state equation Au00 = u00 makes u00 an eigenvector with eigenvalue 1: 

Steady state 
[.8 .3] [·6] [·6] = Uoo . .2 .7 .4 .4 

Multiplying by A does not change u00 • But this does not explain why so many vectors uo 
lead to u00 . Other examples might have a steady state, but it is not necessarily attractive: 

Not Markov B -_ [ol 0
2] h h . d B [

1
] [

1
] as t e unattractive stea y state O O .

In this case, the starting vector uo = (0, 1) will give u 1 = (0, 2) and u2 = (0, 4). The 
second components are doubled. In the language of eigenvalues, B has ,X = 1 but also
,X = 2- this produces instability. The component of u along that unstable eigenvector is
multiplied by .X, and l>-1 > 1 means blowup. 

This section is about two special properties of A that guarantee a stable steady state.

These properties define a positive Markov matrix, and A above is one particular example: 

Markov matrix 
1. Every entry of A is positive: aij > 0.
2. Every column of A adds to 1. 

Column 2 of B adds to 2, not 1. When A is a Markov matrix, two facts are immediate: 
Because of 1: Multiplying u0 2 0 by A produces a nonnegative u1 = Auo 2 0. 
Because of 2: If the components of u0 add to 1, so do the components of u1 = Auo. 
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Reason: The components of u0 add to 1 when [ 1 1 ] u0 = 1. This is true for each
column of A by Property 2. Then by matrix multiplication [ 1 . . . 1 ]A= [ 1 . . . 1 ]: 

Components of A u0 add to 1 [1 ... l]Auo = [1 ... l]uo = 1.

The same facts apply to u2 = Au1 and u3 = Au2 . Every vector Akuo is nonnegative

with components adding to 1. These are "probability vectors." The limit u00 is also a
probability vector-but we have to prove that there is a limit. We will show that Amax = 1
for a positive Markov matrix. 

Example 1 The fraction of rental cars in Denver starts at lo = .02. The fraction outside
Denver is .98. Every month, 80% of the Denver cars stay in Denver (and 20% leave).
Also 5% of the outside cars come in (95% stay outside). This means that the fractions
u0 = (.02, .98) are multiplied by A: 

First month A = [ :�� :�:] leads to u1 = Au0 = A [ :��] = [ :���] .

Notice that .065 + .935 = 1. All cars are accounted for. Each step multiplies by A:

Next month u2 = Au1 = (.09875, .90125). This is A2uo.

All these vectors are positive because A is positive. Each vector U
k 

will have its compo­
nents adding to 1. The first component has grown from .02 and cars are moving toward
Denver. What happens in the long run? 

This section involves powers of matrices. The understanding of Ak was our first and
best application of diagonalization. Where A k can be complicated, the diagonal matrix A k 

is simple. The eigenvector matrix X connects them: A k equals X A k x-
1
. The new ap­

plication to Markov matrices uses the eigenvalues (in A) and the eigenvectors (in X). We
will show that u00 is an eigenvector of A corresponding to .X. = 1. 

Since every column of A adds to 1, nothing is lost or gained. We are moving rental cars
or populations, and no cars or people suddenly appear (or disappear). The fractions add to
1 and the matrix A keeps them that way. The question is how they are distributed after k
time periods-which leads us to A k. 

Solution A ku0 gives the fractions in and out of Denver after k steps. We diagonalize A to
understand A k. The eigenvalues are ,X. = 1 and. 75 (the trace is 1. 75). 

Ax=.X.x A[:�] = 1 [:�] and

The starting vector u0 combines x1 and x2, in this case with coefficients 1 and .18:

Combination of eigenvectors 

Now multiply by A to find u1. The eigenvectors are multiplied by .X.1 = 1 and .X.2 = .75:

Each x is multiplied by .X. U1 = 1 [:�] + (.75)(.18) [-�] . 
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Every month, another,\ = . 75 multiplies the vector x2. The eigenvector x 1 is unchanged:
Afterksteps Uk

= Ak
uo = 1k [:�] + (.75l(.18) [-u. 

This equation reveals what happens. The eigenvector x 1 with,\ = 1 is the steady state.

The other eigenvector x2 disappears because i>-1 < 1. The more steps we take, the closer
we come to u00 = (.2, .8). In the limit, 1

2
0 of the cars are in Denver and 1

8
0 are outside.This is the pattern for Markov chains, even starting from u0 = (0, 1): 

If A is a positive Markov matrix (entries aij > 0, each column adds to 1), then
,\1 = 1 is larger than any other eigenvalue. The eigenvector x1 is the steady state:

The first point is to see that ,\ = 1 is an eigenvalue of A. Reason: Every column of
A - I adds to 1 -1 = 0. The rows of A - I add up to the zero row. Those rows are linearlydependent, so A - I is singular. Its determinant is zero and ,\ = 1 is an eigenvalue. 

The second point is that no eigenvalue can have l>-1 > 1. With such an eigenvalue,the powers Ak would grow. But Ak is also a Markov matrix! Ak has positive entriesstill adding to 1-and that leaves no room to get large. 
A lot of attention is paid to the possibility that another eigenvalue has l>-1 = 1.

Example 2 A = [ � "ti] has no steady state because ,\ 2 = -1.
This matrix sends all cars from inside Denver to outside, and vice versa.The powers A k alternate between A and I. The second eigenvector x2 = ( -1, 1) will be

multiplied by ,\2 = -1 at every step-and does not become smaller: No steady state. 
Suppose the entries of A or any power of A are all positive-zero is not allowed.

In this "regular" or "primitive" case, ,\ = 1 is strictly larger than any other eigenvalue.The powers A k approach the rank one matrix that has the steady state in every column. 
Example 3 ("Everybody moves") Start with three groups. At each time step, half of
group 1 goes to group 2 and the other half goes to group 3. The other groups also split in

half and move. Take one step from the starting populations p1, p2, p3: 

New populations

1 
2 

0 

1 
2 

A is a Markov matrix. Nobody is born or lost. A contains zeros, which gave trouble inExample 2. But after two steps in this new example, the zeros disappear from A2
: 

Two-step matrix u, d'uo

- [i i !HE]
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The eigenvalues of A are A1 = 1 (because A is Markov) and A2 = A3 =-½-For A= 1, 
the eigenvector x1 = ( ½, ½, ½) will be the steady state. When three equal populations 
split in half and move, the populations are again equal. Starting from u0 = (8, 16, 32), 
the Markov chain approaches its steady state: 

The step to u4 will split some people in half. This cannot be helped. The total population 
is 8 + 16 + 32 = 56 at every step. The steady state is 56 times(½,½,½)-You can see the 
three populations approaching, but never reaching, their final limits 56/3. 

Challenge Problem 6. 7 .16 created a Markov matrix A from the number of links be­
tween websites. The steady state u will give the Google rankings. Google finds u= by a

random walk that follows links (random surfing). That eigenvector comes from counting 
the fraction of visits to each website-a quick way to compute the steady state. 

The size I A2 1 of the second eigenvalue controls the speed of convergence to steady state. 

Perron-Frobenius Theorem 

One matrix theorem dominates this subject. The Perron-Frobenius Theorem applies when 
all aij 2 0. There is no requirement that columns add to 1. We prove the neatest form, 
when all aij > 0 :  any positive matrix A (not necessarily positive definite!). 

Perron-Frobenius for A > 0 All numbers in Ax = Amaxx are strictly positive. 

Proof The key idea is to look at all numbers t such that Ax 2 tx for some nonnegative 
vector x ( other than x = 0). We are allowing inequality in Ax 2 tx in order to have many 
small positive candidates t. For the largest value tmax (which is attained), we will show 
that equality holds: Ax = tmaxx.

Otherwise, if Ax 2 tmaxx is not an equality, multiply by A. Because A is positive 
that produces a strict inequality A2x > tmaxAx. Therefore the positive vector y = Ax

satisfies Ay > tmaxY, and tmax could be increased. This contradiction forces the equality 
Ax = tmaxx, and we have an eigenvalue. Its eigenvector xis positive because on the left 
side of that equality, Ax is sure to be positive. 

To see that no eigenvalue can be larger than tmax, suppose Az = AZ. Since A and z
may involve negative or complex numbers, we take absolute values: IAI lzl = IAzl :::; Alzl 
by the "triangle inequality." This lzl is a nonnegative vector, so this IAI is one of the 
possible candidates t. Therefore IAI cannot exceed tmax-which must be Amax-
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Population Growth 

Divide the population into three age groups: age < 20, age 20 to 39, and age 40 to 59. 
At year T the sizes of those groups are n1, n2, n3 . Twenty years later, the sizes have 
changed for three reasons: births, deaths, and getting older. 

1. Reproduction npew = Fi n1 + F2 n2 + F3 n3 gives a new generation

2. Survival n�ew = Pi n1 and nfew = P2 n2 gives the older generations

The fertility rates are Fi, A, F3 (F2 largest). The Leslie matrix A might look like this: 

[ l new [ F

�; 
= 

�� 

This is population projection in its simplest form, the same matrix A at every step. In 
a realistic model, A will change with time (from the environment or internal factors). 
Professors may want to include a fourth group, age � 60, but we don't allow it. 

The matrix has A � 0 but not A > 0. The Perron-Frobenius theorem still applies 
because A3 > 0. The largest eigenvalue is Amax :::o 1.06. You can watch the generations 
move, starting from n2 = 1 in the middle generation: 

1.06 
eig(A) = -1.01 

-0.01 [ 

1.08 0.05 
A2 = 0.04 1.08 

0.90 0 

.00 

]. 01 
0 

[ 

0.10 1.19 
A3 = 0.06 0.05 

0.04 0.99 

.01 l 

.00 .
.01 

A fast start would come from u0 = (0, 1, 0). That middle group will reproduce 1.1 and 
also survive .92. The newest and oldest generations are in u1 = (1.1, 0, .92) = column 2 of 
A. Then u2 = Au1 = A2u0 is the second column of A2

. The early numbers (transients)
depend a lot on u0, but the asymptotic growth rate Amax is the same from every start.

Its eigenvector x = ( .63, .58, .51) shows all three groups growing steadily together. 

Caswell's book on Matrix Population Models emphasizes sensitivity analysis. The 
model is never exactly right. If the F's or P's in the matrix change by 10%, does Amax 
go below 1 (which means extinction)? Problem 19 will show that a matrix change 6.A

produces an eigenvalue change 6.A = yT (b.A)x. Here x and yT are the right and left 
eigenvectors of A, with Ax = dx and AT y = AY.

Linear Algebra in Economics: The Consumption Matrix 

A long essay about linear algebra in economics would be out of place here. A short note 
about one matrix seems reasonable. The consumption matrix tells how much of each input 
goes into a unit of output. This describes the manufacturing side of the economy. 
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Consumption matrix We have n industries like chemicals, food, and oil. To produce a 
unit of chemicals may require .2 units of chemicals, .3 units of food, and .4 units of oil. 
Those numbers go into row 1 of the consumption matrix A: 

[
chemical output

] [ 
.2 

food output = .4 
oil output .5 

.3 

. 4 

.1 

.4] 
[
chemical input

] .1 food input . 
.3 oil input 

Row 2 shows the inputs to produce food-a heavy use of chemicals and food, not so much 
oil. Row 3 of A shows the inputs consumed to refine a unit of oil. The real consumption 
matrix for the United States in 1958 contained 83 industries. The models in the 1990's 
are much larger and more precise. We chose a consumption matrix that has a convenient 
eigenvector. 

Now comes the question: Can this economy meet demands y1 , Y2, y3 for chemicals, 
food, and oil? To do that, the inputs p1, p2, p3 will have to be higher-because part of p 
is consumed in producing y. The input is p and the consumption is Ap, which leaves the 
output p - Ap. This net production is what meets the demand y:

Problem Find a vector p such that p - Ap = y or 

Apparently the linear algebra question is whether I - A is invertible. But there is 
more to the problem. The vector y of required outputs is nonnegative, and so is A. The
production levels in p = (I - A)- 1 y must also be nonnegative. The real question is: 

When is (I - A)- 1 a nonnegative matrix?

This is the test on (I - A)- 1 for a productive economy, which can meet any demand. 
If A is small compared to I, then Ap is small compared top. There is plenty of output. 
If A is too large, then production consumes too much and the demand y cannot be met. 

"Small" or "large" is decided by the largest eigenvalue .\ 1 of A (which is positive): 

If >. 1 > 1 
If >-1 = 1 
If >-1 < 1 

then 
then 
then 

(I - A)- 1 has negative entries 
(I - A)- 1 fails to exist 
(I - A)- 1 is nonnegative as desired. 

The main point is that last one. The reasoning uses a nice formula for (I - A)- 1
, which 

we give now. The most important infinite series in mathematics is the geometric series
1 + x + x2 + · · · . This series adds up to 1 / ( 1 - x) provided x lies between -1 and 1. 
When x = 1 the series is 1 + 1 + 1 + · · · = oo. When [x[ ;::: 1 the terms xn don't go to 
zero and the series has no chance to converge. 

The nice formula for (I - A)- 1 is the geometric series of matrices:

Geometric series 
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If you multiply the series S = I+ A+ A2 + · · · by A, you get the same series except 
for I. Therefore S - AS= I, which is (J - A)S =I.The series adds to S = (I -A)- 1 

if it converges. And it converges if all eigenvalues of A have I A I < 1. 
In our case A 2'. 0. All terms of the series are nonnegative. Its sum is (J -A)- 1 2: 0 . 

Example4 [
.2 .3 

A= .4 .4 
.5 .1 

. 4
] [

41 25 27
] .1 has Amax = .9 and (J -A)-1 = 9\ 33 36 24 . 

.3 34 23 36 

This economy is productive. A is small compared to I, because Amax is .9. To meet the 
demand y, start from p = (I -A)- 1 y. Then Ap is consumed in production, leaving 
p - Ap. This is (J - A)p = y, and the demand is met. 

Example 5 A=[� �] has Amax = 2 and (J -A)- 1 = -½ [� 1]. 
This consumption matrix A is too large. Demands can't be met, because production con­
sumes more than it yields. The series I+ A+ A2 + . . .  does not converge to (J -A)- 1 

because Amax > 1. The series is growing while (J -A)- 1 is actually negative. 
In the same way 1 + 2 + 4 + · · · is not really 1/ (1 - 2) = -1. But not entirely false! 

Problem Set 10.3 

Questions 1-12 are about Markov matrices and their eigenvalues and powers. 

1 Find the eigenvalues of this Markov matrix ( their sum is the trace): 

A= 
[.90 .15] 
.10 .85 .

What is the steady state eigenvector for the eigenvalue A1 = 1? 

2 Diagonalize the Markov matrix in Problem 1 to A = X Ax- 1 by finding its other 
eigenvector: 

A=[ ] [ l . 75] [ ] 
What is the limit of Ak = X Ak x- 1 when Ak = [ � _ 7�k] approaches [Ag]?

3 What are the eigenvalues and steady state eigenvectors for these Markov matrices? 

4 For every 4 by 4 Markov matrix, what eigenvector of AT corresponds to the (known) 
eigenvalue A = 1? 



10.3. Markov Matrices, Population, and Economics 

5 Every year 2% of young people become old and 3% of old people become dead. 
(No births.) Find the steady state for 

[
young

] [
.98 

old = .02 
dead k+l .00 

.00 

.97 

.03 

O
l [

young
] 0 old 

1 dead k 

6 For a Markov matrix, the sum of the components of x equals the sum of the compo­
nents of Ax. If Ax = AX with,\ cf= 1, prove that the components of this non-steady 
eigenvector x add to zero. 

7 Find the eigenvalues and eigenvectors of A. Explain why Ak approaches Aoc :

A= [·8 .3] .2 .7 Aoc = [·6 .6] ..4 .4 

Challenge problem: Which Markov matrices produce that steady state (.6, .4)? 

8 The steady state eigenvector of a permutation matrix is ( ¼, ¼, ¼, ¼). This is not
approached when u0 = ( 0, 0, 0, 1). What are u1 and u2 and u3 and u4? What are 
the four eigenvalues of P, which solve ,\4 = 1? 

Permutation matrix = Markov matrix

9 Prove that the square of a Markov matrix is also a Markov matrix. 

10 If A = [ � � ] is a Markov matrix, its eigenvalues are 1 and __ . The steady state 
eigenvector is x 1 = __ . 

11 Complete A to a Markov matrix and find the steady state eigenvector. When A is a 
symmetric Markov matrix, why is x 1 = ( 1 ,  ... , 1) its steady state? 

[
.7 .1 .2

] A= .l .6 .3 
- -

12 A Markov differential equation is not du/dt = Au but du/dt = (A - I)u. The 
diagonal is negative, the rest of A - I is positive. The columns add to zero, not 1. 

Find >. 1 and >.2 for B = A - I= [-:� 
-:�] . Why does A - I have >.1 = O?

When e>-.it and e>-.2t multiply x 1 and x2, what is the steady state as t--+ oo? 
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Questions 13-15 are about linear algebra in economics. 

13 Each row of the consumption matrix in Example 4 adds to .9. Why does that make 
A= .9 an eigenvalue, and what is the eigenvector? 

14 Multiply I+ A+ A2 + A3 + · · · by I -A to get I. The series adds to (I -A)- 1
. 

For A = [ � ! ] , find A2 and A3 and use the pattern to add up the series. 

15 For which of these matrices does I + A + A2 + · · · yield a nonnegative matrix 
(I -A)- 1 ? Then the economy can meet any demand: 

A= [ 0 4]. 2 0 A= [·5 1] .5 0 .

If the demands are y = (2, 6), what are the vectorsp = (I -A)- 1y? 

16 (Markov again) This matrix has zero determinant. What are its eigenvalues? 

[
.4 .2 .3

] A= .2 .4 .3 
.4 .4 .4 

Find the limits of Ak u0 starting from u0 = (1, 0, 0) and then u0 = (100, 0, 0). 

17 If A is a Markov matrix, why doesn't I+ A+ A2 + · · · add up to (I -A)- 1? 

18 For the Leslie matrix show that det(A-AI) = 0 gives F1 ,\
2 + F2 Pi,\ + F3AP2 = 

,\ 3. The right side ,\ 3 is larger as ,\ --+ oo. The left side is larger at ,\ = 1 if
Fi + F2A + F3AP2 > 1. In that case the two sides are equal at an eigenvalue 
Amax > 1: growth.

19 Sensitivity of eigenvalues: A matrix change ,6.A produces eigenvalue changes ,6.A. 
Those changes ,6.,\1 , . . .  , ,6.,\n are on the diagonal of (x- 1 ,6.A X). Challenge:

Start from AX = X A. The eigenvectors and eigenvalues change by ,6.X and ,6.A: 

(A+,6.A)(X+,6.X) = (X+,6.X)(A+,6.A) becomes A(,6.X)+(,6.A)X =X(,6.A)+(,6.X)A. 

Small terms ( ,6.A) ( ,6.X) and ( ,6.X) ( ,6.A) are ignored. Multiply the last equation by
x- 1

. From the inner terms, the diagonal part of x- 1 (,6.A)X gives ,6.A as we want. 
Why do the outer terms x-

1 A ,6.X and x-
1 ,6.X A cancel on the diagonal?

Explain x- 1 A= Ax- 1 and then diag(A x- 1 ,6.X) = diag(x- 1 ,6.X A). 

20 Suppose B > A > 0, meaning that each bij > aij > 0. How does the Perron­
Frobenius discussion show that Amax(B) > Amax(A) ? 
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10.4 Linear Programming 

Linear programming is linear algebra plus two new ideas: inequalities and minimization. 

The starting point is still a matrix equation Ax = b. But the only acceptable solutions 
are nonnegative. We require x 2 0 (meaning that no component of x can be negative). 
The matrix has n > m, more unknowns than equations. If there are any solutions x 2 0 
to Ax = b, there are probably a lot. Linear programming picks the solution x* 2 0 
that minimizes the cost: 

The cost is c1x1 + · · · + CnXn. The winning vector x* is 

the nonnegative solution of Ax = b that has smallest cost. 

Thus a linear programming problem starts with a matrix A and two vectors b and c: 

i) A has n > m: for example A= [ 1 1 2] (one equation, three unknowns)

ii) b has m components form equations Ax = b: for example b = [ 4]

iii) The cost vector c has n components: for example c = [ 5 3 8].

Then the problem is to minimize c · x subject to the requirements Ax = b and x 2 0: 

Minimize 5x1 + 3x2 + 8x3 subject to x1 + x2 + 2x3 = 4 and xi, x2, x3 2:: 0. 

We jumped right into the problem, without explaining where it comes from. Linear pro­
gramming is actually the most important application of mathematics to management. De­
velopment of the fastest algorithm and fastest code is highly competitive. You will see that 
finding x* is harder than solving Ax = b, because of the extra requirements: x* 2 0 and 
minimum cost c T x*. We will explain the background, and the famous simplex method, 

and interior point methods, after solving the example. 
Look first at the "constraints": Ax = band x 2 0. The equation x 1 + x2 + 2x3 = 4 

gives a plane in three dimensions. The nonnegativity x 1 2 0, x2 2 0, x3 2 0 chops the 
plane down to a triangle. The solution x* must lie in the triangle PQ R in Figure 8.6. 

Inside that triangle, all components of x are positive. On the edges of PQR, 

one component is zero. At the comers P and Q and R, two components are zero. The 

optimal solution x* will be one of those corners! We will now show why. 
The triangle contains all vectors x that satisfy Ax = band x 2 0. Those x's are called 

feasible points, and the triangle is the feasible set. These points are the allowed candidates 
in the minimization of c · x, which is the final step: 

Find x* in the triangle PQR to minimize the cost 5x1 + 3x2 + 8x3.

The vectors that have zero cost lie on the plane 5x 1 + 3x2 + 8x3 = 0. That plane does 
not meet the triangle. We cannot achieve zero cost, while meeting the requirements on x. 

So increase the cost C until the plane 5x 1 + 3x2 + 8x3 = C does meet the triangle. 
As C increases, we have parallel planes moving toward the triangle. 



484 

R = (0,0, 2) 
(2 hours by computer) 

P = (4, 0, 0) (4 hours by Ph.D.) 

Chapter 10. Applications 

Example with four homework problems 

Ax = b is the plane x1 + x2 + 2x3 = 4 
Triangle has x1 2 0, x2 2 0, x3 2 0 

corners have 2 zero components 

cost cT x = 5x1 + 3x2 + 8x3 

Figure 10.5: The triangle contains all nonnegative solutions: Ax = b and x 2 0. The 
lowest cost solution x* is a comer P, Q, or R of this feasible set. 

The first plane 5x1 + 3x2 + 8x3 = C to touch the triangle has minimum cost C. 

The point where it touches is the solution x*. This touching point must be one of the 
comers P or Q or R. A moving plane could not reach the inside of the triangle before it 
touches a comer! So check the cost 5x1 + 3x2 + 8x3 at each comer: 

P = ( 4, 0, 0) costs 20 Q = (0, 4, 0) costs 12 R = (0, 0, 2) costs 16. 

The winner is Q. Then x* = (0, 4, 0) solves the linear programming problem. 
If the cost vector c is changed, the parallel planes are tilted. For small changes, Q is still 

the winner. For the cost c · x = 5x1 + 4x2 + 7x3, the optimum x* moves to R = (0, 0, 2). 
The minimum cost is now 7 · 2 = 14. 

Note 1 Some linear programs maximize profit instead of minimizing cost. The mathemat­
ics is almost the same. The parallel planes start with a large value of C, instead of a small 
value. They move toward the origin (instead of away), as C gets smaller. The first touching 

point is still a corner. 

Note 2 The requirements Ax = b and x 2 0 could be impossible to satisfy. The equation 
x1 + x2 + X3 = -1 cannot be solved with x 2 0. That feasible set is empty. 

Note 3 It could also happen that the feasible set is unbounded. If the requirement is 
x1 + x2 - 2x3 = 4, the large positive vector (100, 100, 98) is now a candidate. So is 
the larger vector (1000, 1000, 998). The plane Ax = b is no longer chopped off to a 
triangle. The two comers P and Q are still candidates for x*, but R moved to infinity. 

Note 4 With an unbounded feasible set, the minimum cost could be -oo (minus infinity). 

Suppose the cost is -x1 - x2 + x3. Then the vector (100, 100, 98) costs C = -102. 
The vector (1000, 1000, 998) costs C = -1002. We are being paid to include x1 and x2, 

instead of paying a cost. In realistic applications this will not happen. But it is theoretically 
possible that A, b, and c can produce unexpected triangles and costs. 
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The Primal and Dual Problems 

This first problem will fit A, b, c in that example. The unknowns x1, x2, x3 represent hours 
of work by a Ph.D. and a student and a machine. The costs per hour are $5, $3, and $8. 
(I apologize for such low pay.) The number of hours cannot be negative: x1 � 0, x2 � 

0, x3 � 0. The Ph.D. and the student get through one homework problem per hour. The 

machine solves two problems in one hour. In principle they can share out the homework, 
which has four problems to be solved: x 1 + x2 + 2x3 = 4. 

The problem is to finish the four problems at minimum cost c T x. 

If all three are working, the job takes one hour: x1 = x2 = X3 = 1. The cost is
5 + 3 + 8 = 16. But certainly the Ph.D. should be put out of work by the student (who 
is just as fast and costs less-this problem is getting realistic). When the student works 
two hours and the machine works one, the cost is 6 + 8 and all four problems get solved. 
We are on the edge QR of the triangle because the Ph.D. is not working: x 1 = 0. 
But the best point is all work by student (at Q) or all work by machine (at R). In 
this example the student solves four problems in four hours for $12-the minimum cost. 

With only one equation in Ax = b, the corner (0, 4, 0) has only one nonzero 
component. When Ax = b has m equations, corners have m nonzeros. We solve 
Ax = b for those m variables, with n - m free variables set to zero. But unlike Chapter 3, 
we don't know which m variables to choose. 

The number of possible corners is the number of ways to choose m components out 
of n. This number "n choose m" is heavily involved in gambling and probability. With 
n = 20 unknowns and m = 8 equations (still small numbers), the "feasible set" can have 
20!/8!12! corners. That number is (20)(19) · · · (13) = 5,079,110,400. 

Checking three corners for the minimum cost was fine. Checking five billion corners is 
not the way to go. The simplex method described below is much faster. 

The Dual Problem In linear programming, problems come in pairs. There is a minimum 
problem and a maximum problem-the original and its "dual." The original problem was 
specified by a matrix A and two vectors b and c. The dual problem transposes A and 
switches band c: Maximize b · y. Here is the dual to our example: 

A cheater offers to solve homework problems by selling the answers. 

The charge is y dollars per problem, or 4y altogether. (Note how b = 4 has 
gone into the cost.) The cheater must be as cheap as the Ph.D. or student or 
machine: y ::; 5 and y ::; 3 and 2y ::; 8. (Note how c = (5, 3, 8) has gone into 
inequality constraints). The cheater maximizes the income 4y. 

Dual Problem Maximize b · y subject to AT y ::; c

The maximum occurs when y = 3. The income is 4y = 12. The maximum in the dual 
problem ($12) equals the minimum in the original ($12). Max= min is duality. 
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If either problem has a best vector (x* or y*) then so does the other. 
Minimum cost c · x* equals maximum income b · y* 

This book started with a row picture and a column picture. The first "duality theorem" was 
about rank: The number of independent rows equals the number of independent columns. 
That theorem, like this one, was easy for small matrices. Minimum cost = maximum 
income is proved in our text Linear Algebra and Its Applications. One line will establish 
the easy half of the theorem: The cheater's income b Ty cannot exceed the honest cost: 

The full duality theorem says that when b Ty reaches its maximum and x Tc reaches its 
minimum, they are equal: b · y* = c · x*. Look at the last step in (1 ), with ::; sign: 

Equality needs x Ts = 0 So the optimal solution has x; = 0 ors; = 0 for each j. 

The Simplex Method 

Elimination is the workhorse for linear equations. The simplex method is the workhorse for 
linear inequalities. We cannot give the simplex method as much space as elimination, but 
the idea can be clear. The simplex method goes from one corner to a neighboring corner of

lower cost. Eventually ( and quite soon in practice) it reaches the comer of minimum cost. 
A corner is a vector x � 0 that satisfies the m equations Ax = b with at most m 

positive components. The other n - m components are zero. (Those are the free variables. 
Back substitution gives the m basic variables. All variables must be nonnegative or x is 
a false comer.) For a neighboring corner, one zero component of x becomes positive and 
one positive component becomes zero. 

The simplex method must decide which component "enters" by becoming positive, 
and which component "leaves" by becoming zero. That exchange is chosen so as to 
lower the total cost. This is one step of the simplex method, moving toward x*. 

Here is the overall plan. Look at each zero component at the current comer. If it 
changes from Oto 1, the other nonzeros have to adjust to keep Ax = b. Find the new x 
by back substitution and compute the change in the total cost c · x. This change is the 
"reduced cost" r of the new component. The entering variable is the one that gives the 
most negative r. This is the greatest cost reduction for a single unit of a new variable. 

Example 1 Suppose the current comer is P = (4, 0, 0), with the Ph.D. doing all the 
work (the cost is $20). If the student works one hour, the cost of x = (3, 1, 0) is down to 
$18. The reduced cost is r = -2. If the machine works one hour, then x = (2, 0, 1) also 
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costs $18. The reduced cost is also r = -2. In this case the simplex method can choose 
either the student or the machine as the entering variable. 

Even in this small example, the first step may not go immediately to the best x*. 

The method chooses the entering variable before it knows how much of that variable 
to include. We computed r when the entering variable changes from O to 1, but one unit 
may be too much or too little. The method now chooses the leaving variable (the Ph.D.). 
It moves to corner Q or R in the figure. 

The more of the entering variable we include, the lower the cost. This has to stop 
when one of the positive components (which are adjusting to keep Ax = b) hits zero. The 

leaving variable is the first positive Xi to reach zero. When that happens, a neighboring 
corner has been found. Then start again (from the new corner) to find the next variables to 
enter and leave. 

When all reduced costs are positive, the current corner is the optimal x*. 

No zero component can become positive without increasing c · x. No new variable should 
enter. The problem is solved (and we can show that y* is found too). 

Note Generally x* is reached in cm steps, where a is not large. But examples have been 
invented which use an exponential number of simplex steps. Eventually a different ap­
proach was developed, which is guaranteed to reach x* in fewer (but more difficult) steps. 
The new methods travel through the interior of the feasible set. 

Example 2 Minimize the cost c · x = 3x1 + x2 + 9x3 + x4. The constraints are x 2 0 
and two equations Ax = b: 

X1 + 2X3 + X4 = 4 

X2 + X3 - X4 = 2

m = 2 equations 

n = 4 unknowns. 

A starting corner is x = (4, 2, 0, 0) which costs c · x = 14. It has m = 2 nonzeros and 
n - m = 2 zeros. The zeros are x3 and x4. The question is whether x3 or x4 should enter 
(become nonzero). Try one unit of each of them: 

If X3 = 1 and X4 = 0, 

If X4 = 1 and x3 = 0, 

then x = (2, 1, 1, 0) costs 16. 

then x = (3, 3, 0, 1) costs 13. 

Compare those costs with 14. The reduced cost of x3 is r = 2, positive and useless. The 
reduced cost of x4 is r = -1, negative and helpful. The entering variable is x4. 

How much of x4 can enter? One unit of x4 made x1 drop from 4 to 3. Four units will 
make x1 drop from 4 to zero (while x2 increases all the way to 6). The leaving variable is 

x1. The new corner is x = (0, 6, 0, 4), which costs only c · x = 10. This is the optimal 
x*, but to know that we have to try another simplex step from (0, 6, 0, 4). Suppose x1 or 
X3 tries to enter: 

Start from the 

corner (0, 6, 0, 4) 
Ifx1 = 1 and x3 = 0, 
If X3 = 1 and x1 = 0, 

then x = (1, 5, 0, 3) costs 11. 
then x = (0, 3, 1, 2) costs 14. 
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Those costs are higher than 10. Both r's are positive-it does not pay to move. The current 
corner (0, 6, 0, 4) is the solution x*.

These calculations can be streamlined. Each simplex step solves three linear systems 
with the same matrix B. (This is them by m matrix that keeps them basic columns of A.)
When a column enters and an old column leaves, there is a quick way to update B- 1

. That 
is how most codes organize the simplex method. 

Our text on Computational Science and Engineering includes a short code with com­
ments. (The code is also on math.mit.edu/cse) The best y* solves m equations A T y* = c 
in the m components that are nonzero in x*. Then we have optimality x Ts = 0 and this is 
duality: Either x; = 0 or the "slack" ins* = c - A T y* has s; = 0. 

When x* = (0, 4, 0) was the optimal corner Q, the cheater's price was set by y* = 3. 

Interior Point Methods 

The simplex method moves along the edges of the feasible set, eventually reaching the 
optimal corner x*. Interior point methods move inside the feasible set (where x > 0). 
These methods hope to go more directly to x*. They work well. 

One way to stay inside is to put a barrier at the boundary. Add extra cost as a 
logarithm that blows up when any variable x1 touches zero. The best vector has x > 0. 
The number 0 is a small parameter that we move toward zero. 

Barrier problem Minimize c
T x - 0 (log x 1 + · · · + log Xn ) with Ax = b (2)

This cost is nonlinear (but linear programming is already nonlinear from inequalities). 
The constraints x1 2". 0 are not needed because log x1 becomes infinite at x1 = 0. 

The barrier gives an approximate problem for each 0. Them constraints Ax = b have 
Lagrange multipliers y1, ... , Ym · This is the good way to deal with constraints. 

y from Lagrange 

8L/8y = 0 brings back Ax= b. The derivatives 8L/8x1 are interesting! 

Optimality in 

barrierpbm 
BL = c - !_ - (A Ty) · = O which is p_,s

3
· = 0. 

OX· J X · J -J 
J J 

(3) 

(4) 

The true problem has x1s1 = 0. The barrier problem has x1s1 = 0. The solutions x*(0)
lie on the central path to x* (0). Those n optimality equations x1s1 = 0 are nonlinear, and 
we solve them iteratively by Newton's method. 

The current x, y, swill satisfy Ax = b, x 2". 0 and A Ty + s = c, but not x1s1 = 0.
Newton's method takes a step .6.x, .6.y, .6.s. By ignoring the second-order term .6.x.6.s
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in ( x + ,6,.x) ( s + ,6,.s) = 0, the corrections in x, y, s come from linear equations: 

Newton step 

A ,6,.x = 0 
AT ,6,.y + ,6,.s = 0 

Sj,0.Xj + Xj,0.Sj = 0 - XjSj 

(5) 

Newton iteration has quadratic convergence for each 0, and then 0 approaches zero. 
The duality gap x Ts generally goes below 10-8 after 20 to 60 steps. The explanation
in my Computational Science and Engineering textbook takes one Newton step in detail, 
for the example with four homework problems. I didn't intend that the student should end 
up doing all the work, but x* turned out that way. 

This interior point method is used almost "as is" in commercial software, for a large 
class of linear and nonlinear optimization problems. 

Problem Set 10.4 

1 Draw the region in the xy plane where x+2y = 6 and x 2 0 and y 2 0. Which point 
in this "feasible set" minimizes the cost c = x + 3y? Which point gives maximum 
cost? Those points are at corners. 

2 Draw the region in the xy plane where x + 2y ::; 6, 2x + y ::; 6, x 2 0, y 2 0. It 
has four corners. Which corner minimizes the cost c = 2x - y?

3 What are the corners of the set x1 + 2x2 - X3 = 4 with x1, x2, x3 all 2 0? Show 
that the cost x1 + 2x3 can be very negative in this feasible set. This is an example of 
unbounded cost: no minimum. 

4 Start at x = (0, 0, 2) where the machine solves all four problems for $16. Move 
to x = (0, 1, ) to find the reduced cost r (the savings per hour) for work by the 
student. Find r for the Ph.D. by moving to x = (l, 0, ) with 1 hour of Ph.D. work. 

5 Start Example 1 from the Ph.D. corner ( 4, 0, 0) with c changed to [ 5 3 7 ]. Show 
that r is better for the machine even when the total cost is lower for the student. The 
simplex method takes two steps, first to the machine and then to the student for x*.

6 Choose a different cost vector c so the Ph.D. gets the job. Rewrite the dual problem 
(maximum income to the cheater). 

7 A six-problem homework on which the Ph.D. is fastest gives a second constraint 
2x1 + x2 + x3 = 6. Then x = (2, 2, 0) shows two hours of work by Ph.D. and 
student on each homework. Does this x minimize the cost cT x with c = (5, 3, 8)? 

8 These two problems are also dual. Prove weak duality, that always y
Tb::; cT x: 

Primal problem Minimize cT x with Ax 2 band x 2 0. 
Dual problem Maximize y 

T b with AT 
y ::; c and y 2 0. 
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10.5 Fourier Series: Linear Algebra for Functions 

This section goes from finite dimensions to infinite dimensions. I want to explain linear 
algebra in infinite-dimensional space, and to show that it still works. First step: look back. 
This book began with vectors and dot products and linear combinations. We begin by 
converting those basic ideas to the infinite case-then the rest will follow. 

What does it mean for a vector to have infinitely many components? There are two 
different answers, both good: 

1. The vector is infinitely long: v = (v1, v2, v3, . . . ). It could be (1, ½, ¼, ... ).

2. The vector is a function f(x). It could be v = sinx.
We will go both ways. Then the idea of a Fourier series will connect them. 

After vectors come dot products. The natural dot product of two infinite vectors 
( v1, v2, ... ) and ( w1, w2, ... ) is an infinite series: 

Dot product (1) 

This brings a new question, which never occurred to us for vectors in Rn. Does this infinite 
sum add up to a finite number? Does the series converge? Here is the first and biggest 
difference between finite and infinite. 

When v = w = (1, 1, 1, ... ), the sum certainly does not converge. In that case 
v-w = l+ 1+ 1+ ···is infinite. Since v equals w, we are really computingv•v = llvll 2

, 

the length squared. The vector (1, 1, 1, ... ) has infinite length. We don't want that vector.
Since we are making the rules, we don't have to include it. The only vectors to be allowed 
are those with finite length: 
DEFINITION The vector v = ( v1, v2, . . . ) and the function f ( x) are in our infinite­
dimensional "Hilbert spaces" if and only if their lengths llv II and I If I I are finite: 

llvll 2 = V • V =Vi+ V� + V§ + • • • must add to a finite number. 

11!11
2 = (f, f) = J0

2
"' lf(x)l 2 dx must be a finite integral. 

Example 1 The vector v = (l, ½, ¼, ... ) is included in Hilbert space, because its length 
is 2/ v'3. We have a geometric series that adds to 4/3. The length of v is the square root: 

1 1 1 4 Length squared v · v = l + 4 + 16 + · · · = 
1 

_ 1 = 3 ·
4 

Question If v and w have finite length, how large can their dot product be? 

Answer The sum v · w = v1 w1 + v2w2 + · · · also adds to a finite number. We can safely 
take dot products. The Schwarz inequality is still true: 

Schwarz inequality Iv· wl :S llvll llwll- (2) 

The ratio of v · w to llvll llwll is still the cosine of 0 (the angle between v and w). Even 
in infinite-dimensional space, lcos 01 is not greater than 1. 
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Now change over to functions. Those are the "vectors." The space of functions J(x),
g ( x), h( x), . .. defined for 0 ::; x ::; 21r must be somehow bigger than Rn . What is the dot
product of f(x) and g(x)? What is the length off (x)? 

Key point in the continuous case: Sums are replaced by integrals. Instead of a sum 
of Vj times Wj, the dot product is an integral of f(x) times g(x). Change the "dot" to 
parentheses with a comma, and change the words "dot product" to inner product:

DEFINITION The inner product of f(x) and g(x), and the length squared of f(x), are 

/2" 

(f,g) = 
lo 

f(x)g(x)dx and 
/2" 

11111
2 = 

lo 
(f(x)) 2 

dx. (3) 

The interval [0, 21r] where the functions are defined could change to a different interval 
like [0, 1] or (-oo, oo ). We chose 21r because our first examples are sin x and cos x.

Example 2 The length of f ( x) = sin x comes from its inner product with itself: 

/2" 

(f, f) = 
lo 

(sin x) 2 dx = 1r. The length of sinx is ,,fir.

That is a standard integral in calculus-not part of linear algebra. By writing sin2 x as 
½ - ½ cos 2x, we see it go above and below its average value ½- Multiply that average by 
the interval length 21r to get the answer 1r. 

More important: sin x and cos x are orthogonal in function space: (f, g) = 0 

Inner product 

is zero 
12

" sinxcosxdx = 12
" ½ sin2xdx = [-¾ cos2x]�" = 0. (4) 

This zero is no accident. It is highly important to science. The orthogonality goes beyond 
the two functions sin x and cos x, to an infinite list of sines and cosines. The list contains 
cos Ox (which is 1), sin x, cos x, sin 2x, cos 2x, sin 3x, cos 3x, . ... 

Every function in that list is orthogonal to every other function in the list. 

Fourier Series 

The Fourier series of a function f ( x) is its expansion into sines and cosines: 

We have an orthogonal basis! The vectors in "function space" are combinations of the sines 
and cosines. On the interval from x = 21r to x = 41r, all our functions repeat what they did 
from Oto 21r. They are "periodic." The distance between repetitions is the period 21r. 
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Remember: The list is infinite. The Fourier series is an infinite series. We avoided
the vector v = ( 1, 1, 1, . . . ) because its length is infinite, now we avoid a function like
½ + cos x + cos 2x + cos 3x + · · · . (Note: This is 1r times the famous delta function /j ( x).
It is an infinite "spike" above a single point. At x = 0 its height ½ + 1 + 1 + · · · is infinite.
At all points inside O < x < 21r the series adds in some average way to zero.) The integral
of /j ( x) is 1. But J b2 ( x) = oo, so delta functions are not allowed into Hilbert space. 

Compute the length of a typical sum f ( x): 

(!, f) = 1
2

1r (ao + a1 cosx + b1 sinx + a2 cos2x + · · · )2 dx

= 1
2

1r (a5 + ai cos2 
X + bi Sin2 

X + a� COS2 2x + · · ·) dx

llf 11
2 = 2rra� + rr(ai +bi+ a�+···). (6)

The step from line 1 to line 2 used orthogonality. All products like cos x cos 2x integrate to
give zero. Line 2 contains what is left-the integrals of each sine and cosine squared. Line
3 evaluates those integrals. (The integral of 12 is 21r, when all other integrals give 1r.) If we
divide by their lengths, our functions become orthonormal: 

1 cos x sin x cos 2x . . .
!7C., r,;; , r,;; , r,;; , . . .  zs an orthonormal basis for our function space. 

V 21r V 7r V 7r V 7r 

These are unit vectors. We could combine them with coefficients Ao, A1, B1, A2 , ... to
yield a function F(x ). Then the 21r and the 1r's drop out of the formula for length.

Function length = vector length IIFll
2 = (F, F) = A5 +Ai+ Bf+ A�+ ...

. (7)

Here is the important point, for f (x) as well as F(x ). The function has finite length exactly

when the vector of coefficients has finite length. Fourier series gives us a perfect match
between the Hilbert spaces for functions and for vectors. The function is in L2 , its Fourier
coefficients are in £2 • 

The function space contains f(x) exactly when the Hilbert space contains the vector
v = ( ao, a1, b1, ... ) of Fourier coefficients off (x ). Both must have finite length. 

Example 3 Suppose f(x) is a "square wave," equal to 1 for O::; x < 1r. Then f(x) drops
to -1 for 7r::; x < 21r. The +land -1 repeat forever. This f(x) is an odd function like
the sines, and all its cosine coefficients are zero. We will find its Fourier series, containing
only sines :

Square wave f ( ) 
_ 4 

[ 
sin x sin 3x sin 5x 

] X -- --+--+--+··· .1r 1 3 5 (8) 

The length of this function is�. because at every point (J(x))
2 is (-1)2 or (+1)2 : 

/27' /27' 

11!11
2= lo (f(x))

2 dx= lo ldx=21r.
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At x = 0 the sines are zero and the Fourier series gives zero. This is half way up the jump 
from -1 to + 1. The Fourier series is also interesting when x = �. At this point the square 
wave equals 1, and the sines in (8) alternate between + 1 and -1: 

Formula for -rr (9) 
Multiply by ;r to find a magical formula 4(1 - ½ + ½ - i +···) for that famous number. 

The Fourier Coefficients 

How do we find the a's and b's which multiply the cosines and sines? For a given func­
tion f(x), we are asking for its Fourier coefficients ak and bk : 

Fourier series f(x) = ao + a1 cosx + b1 sinx + a2 cos 2x + · · · . 
Here is the way to find a1• Multiply both sides by cos x. Then integrate from Oto 2-rr.

The key is orthogonality! All integrals on the right side are zero, except for cos2 x:

For coefficient a1 fo21r

f(x)cosxdx= fo21r

a1cos2 xdx=1ra1. (10) 
Divide by ;r and you have a1. To find any other ak , multiply the Fourier series by cos kx.
Integrate from Oto 21r. Use orthogonality, so only the integral of ak cos2 kx is left. That 
integral is ;rak , and divide by ;r: 

1127'
ak = - f(x)coskxdx 

7r 0 

and similarly 1127'bk = - f(x) sin kx dx.
7r 0 

The exception is a0. This time we multiply by cos Ox = 1. The integral of 1 is 21r: 
1 121r 

Constant term ao = - f ( x) · 1 dx = average value of f ( x).2;r 0 

(11) 

(12) 
I used those formulas to find the Fourier coefficients for the square wave in equation (8). 

The integral off ( x) cos kx was zero. The integral off ( x) sin kx was 4/ k for odd k.

Compare Linear Algebra in Rn 

Infinite-dimensional Hilbert space is very much like then-dimensional space Rn . Suppose 
the nonzero vectors v1, ... , Vn are orthogonal in Rn . We want to write the vector b (instead 
of the function f (x )) as a combination of those v's:

Finite orthogonal series b = c1 V1 + c2v2 + · · · + Cn Vn . 
Multiply both sides by vI. Use orthogonality, so vI v2 = 0. Only the c1 term is left: 

(13) 

Coefficient c1 v[b = c1 vf v1 + 0 + · · · + 0. Therefore c1 = v[b/vT v1. (14) 
The denominator vI v1 is the length squared, like ;r in equation (11). The numerator 
v I b is the inner product like J f ( x) cos kx dx. Coefficients are easy to find when the
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basis vectors are orthogonal. We are just doing one-dimensional projections, to find the
components along each basis vector. 

The formulas are even better when the vectors are orthonormal. Then we have unit
vectors in Q. The denominators v Iv k are all 1. You know Ck = v I b in another form:

Qc = b yields c = QTb. Row by row this is Ck= qib.

Fourier series is like having a matrix with infinitely many orthogonal columns. Those
columns are the basis functions 1, cos x, sin x, .... After dividing by their lengths we have
an "infinite orthogonal matrix." Its inverse is its transpose, QT . Orthogonality is what
reduces a series of terms to one single term, when we integrate.

Problem Set 10.5 

1 Integrate the trig identity 2 cos j x cos kx = cos(j + k )x + cos(j - k )x to show that
cos j x is orthogonal to cos kx, provided j -/- k. What is the result when j = k? 

2 Show that 1, x, and x2 
- ½ are orthogonal, when the integration is from x = -1 to

x = 1. Write f ( x) = 2x2 as a combination of those orthogonal functions.

3 Find a vector ( w1, w2 , w3 , . .. ) that is orthogonal to v = (1, ½, ¼, ... ). Compute its
length llwll-

4 The first three Legendre polynomials are 1, x, and x2 
- ½. Choose c so that the fourth

polynomial x3 - ex is orthogonal to the first three. All integrals go from -1 to 1.

5 For the square wave f ( x) in Example 3 jumping from 1 to -1, show that

{
27r 

Jo f(x)cosxdx=O {
27r

} 
0 

f ( x) sin x dx = 4 {
27r

}
0 

f ( x) sin 2x dx = 0.

Which three Fourier coefficients come from those integrals?

6 The square wave has llf 112 = 21r. Then (6) gives what remarkable sum for n2 ?

7 Graph the square wave. Then graph by hand the sum of two sine terms in its series,
or graph by machine the sum of 2, 3, and 10 terms. The famous Gibbs phenomenon

is the oscillation that overshoots the jump (this doesn't die down with more terms).

8 Find the lengths of these vectors in Hilbert space:

(a) v = ( Fl' }z, A' Fs' ... )
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v = (l,a,a2 , ... ) 

( c) f ( x) = 1 + sin x.

9 Compute the Fourier coefficients ak and bk for f ( x) defined from 0 to 21r: 

(a) f(:r) = 1 for0 � x � 1r, .f(x) = 0for1r < x < 21r

(b) .f(x) = x.

495 

10 When f (x) has period 21r, why is its integral from -1r to 1r the same as from Oto 
21r? ff .f(.1:) is an odd function, .f(-x) = -.f(x), show that r:7r .f(x) dx is zero. 
Odd functions only have sine terms, even functions only have cosines. 

11 Using trigonometric identities find the two terms in the Fourier series for .f (x ): 

(a) .f(x) = cos2 x (b) .f(x) = cos(x + i) (c) f(x) = sin3 x

12 The functions 1, cos x, sin x, cos 2x, sin 2x, ... are a basis for Hilbert space. Write 
the derivatives of those first five functions as combinations of the same five functions. 
What is the 5 by 5 "differentiation matrix" for these functions? 

13 Find the Fourier coefficients ak and bk of the square pulse F( x) centered at x = 0: 
F(x) = 1/h for lxl � h/2 and F(x) = 0 for h/2 < lxl � 1r. 

Ash -t 0, this F(x) approaches a delta function. Find the limits of ak and bk , 

Section 4.1 of Computational Science and Engineering explains the sine series, 
cosine series, complete series, and complex series � ckeikx on math.mit.edu/cse. 

Section 9.3 of this book explains the Discrete Fourier Transform. This is "Fourier 
series for vectors" and it is computed by the Fast !Fourier Transform. That fast 
algorithm comes quickly from special complex numbers z = eie = cos 0 + i sin 0 
when the angle is 0 = 21rk/n. 
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10.6 Computer Graphics 

Computer graphics deals with images. The images are moved around. Their scale is changed. 
Three dimensions are projected onto two dimensions. All the main operations are done by 
matrices-but the shape of these matrices is surprising. 

The transformations of three-dimensional space are done with 4 by 4 matrices. You 
would expect 3 by 3. The reason for the change is that one of the four key operations 
cannot be done with a 3 by 3 matrix multiplication. Here are the four operations: 

Translation (shift the origin to another point Po= (xo, Yo, zo)) 
Rescaling (by c in all directions or by different factors c1, c2, c3) 

Rotation (around an axis through the origin or an axis through P0 ) 

Projection (onto a plane through the origin or a plane through P0). 

Translation is the easiest-just add (x0, y0, z0) to every point. But this is not linear! No 3
by 3 matrix can move the origin. So we change the coordinates of the origin to (0, 0, 0, 1). 
This is why the matrices are 4 by 4. The "homogeneous coordinates" of the point (x, y, z) 
are ( x, y, z, l) and we now show how they work. 

1. Translation Shift the whole three-dimensional space along the vector v0. The origin
moves to (x0, y0, z0). This vector v0 is added to every point v in R3

. Using homogeneous
coordinates, the 4 by 4 matrix T shifts the whole space by v0 

Translation matrix T
= 

l !
Xo 

0 
1 
0 
Yo 

0 
0 
1 

zo 

Important: Computer graphics works with row vectors. We have row times matrix instead 
of matrix times column. You can quickly check that [0 0 0 1] T = [x0 y0 z0 1].

To move the points (0, 0, 0) and (x, y, z) by v0, change to homogeneous coordinates
(0, 0, 0, 1) and (x, y, z, 1). Then multiply by T. A row vector times T gives a row vector. 
Everyvmovestov+v0: [x y z l]T = [x+xo y+y0 z+zo 1]. 

The output tells where any v will move. (It goes to v + v0 .) Translation is now achieved 
by a matrix, which was impossible in R3

. 

2. Scaling To make a picture fit a page, we change its width and height. A copier
will rescale a figure by 90%. In linear algebra, we multiply by .9 times the identity matrix.
That matrix is normally 2 by 2 for a plane and 3 by 3 for a solid. In computer graphics,
with homogeneous coordinates, the matrix is one size larger:

Rescale the plane: 

S--[·9 .9 1]
Rescale a solid: S = 

l o�c o�c 

�

� ��1 
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Important: Sis not cl. We keep the "1" in the lower corner. Then [x, y, 1] times Sis the 
correct answer in homogeneous coordinates. The origin stays in its normal position because 
[00l]S = [001]. 

If we change that 1 to c, the result is strange. The point (ex, cy, cz, c) is the same

as ( x, y, z, 1). The special property of homogeneous coordinates is that multiplying by cl 
does not move the point. The origin in R3 has homogeneous coordinates (0, 0, 0, 1) and 
(0, 0, 0, c) for every nonzero c. This is the idea behind the word "homogeneous." 

Scaling can be different in different directions. To fit a full-page picture onto a half­
page, scale the y direction by ½. To create a margin, scale the x direction by ¾. The
graphics matrix is diagonal but not 2 by 2. It is 3 by 3 to rescale a plane and 4 by 4 to 
rescale a space: 

Scaling matrke, S � [ ¾ ½
1

] and J 
That last matrix S rescales the x, y, z directions by positive numbers c1, c2, c3. The extra 
column in all these matrices leaves the extra 1 at the end of every vector. 

Summary The scaling matrix Sis the same size as the translation matrix T. They can 
be multiplied. To translate and then rescale, multiply vT S. To rescale and then translate, 
multiply vST. Are those different? Yes. 

The point (x, y, z) in R3 has homogeneous coordinates (x, y, z, 1) in P3 . This "pro­
jective space" is not the same as R4

. It is still three-dimensional. To achieve such a thing, 
(ex, cy, cz, c) is the same point as ( x, y, z, 1). Those points of projective space P3 are really 
lines through the origin in R4

. 

Computer graphics uses affine transformations, linear plus shift. An affine transforma­
tion T is executed on P3 by a 4 by 4 matrix with a special fourth column: 

a12 a13 

a22 a23 

a32 a33 

a42 a43 

�
] 

= [rn:Hl �
1

] 
· 

1 T(O, 0, 0) 

The usual 3 by 3 matrix tells us three outputs, this tells four. The usual outputs come 
from the inputs (1, 0, 0) and (0, 1, 0) and (0, 0, 1). When the transformation is linear, three 
outputs reveal everything. When the transformation is affine, the matrix also contains the 
output from (0, 0, 0). Then we know the shift. 
3. Rotation A rotation in R2 or R3 is achieved by an orthogonal matrix Q. The determi­
nant is + 1. (With determinant -1 we get an extra reflection through a mirror.) Include the
extra column when you use homogeneous coordinates!

Plane rotation Q = [ 
c�s 0 -sin 0

] sm0 cos0 
becomes [

cos0 
R = si

�
0 

-sin0
cos0
0
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This matrix rotates the plane around the origin. How would we rotate around a

different point (4, 5)? The answer brings out the beauty of homogeneous coordinates. 
Translate ( 4, 5) to (0, 0), then rotate bye, then translate (0, 0) back to ( 4, 5): 

[ 1 0 
v T_RT+= [x y 1] 0 1 

-4 -5

ol 
[
cose -sine

0 sine cos e1 0 0 
I won't multiply. The point is to apply the matrices one at a time: v translates to vT_, then 
rotates to vT _ R, and translates back to vT _RT+ . Because each point [ x y l ] is a row 
vector, T _ acts first. The center of rotation ( 4, 5 )-otherwise known as ( 4, 5, 1 )-moves 
first to ( 0, 0, 1). Rotation doesn't change it. Then T + moves it back to ( 4, 5, 1). All as it 
should be. The point (4, 6, 1) moves to (0, 1, 1), then turns bye and moves back. 

In three dimensions, every rotation Q turns around an axis. The axis doesn't move-it 
is a line of eigenvectors with ,\ = 1. Suppose the axis is in the z direction. The 1 in Q is to 
leave the z axis alone, the extra 1 in R is to leave the origin alone: 

[
cose -sine 

Q = sine cose 
0 0 �] and 

Now suppose the rotation is around the unit vector a= (a1, a2, a3). With this axis a, the 
rotation matrix Q which fits into R has three parts: 

(1) 

The axis doesn't move because aQ = a. When a = (0, 0, 1) is in the z direction, this Q
becomes the previous Q-for rotation around the z axis. 

The linear transformation Q always goes in the upper left block of R. Below it we see 
zeros, because rotation leaves the origin in place. When those are not zeros, the transfor­
mation is affine and the origin moves. 

4. Projection In a linear algebra course, most planes go through the origin. In real life,
most don't. A plane through the origin is a vector space. The other planes are affine spaces,
sometimes called "flats." An affine space is what comes from translating a vector space.

We want to project three-dimensional vectors onto planes. Start with a plane through 
the origin, whose unit normal vector is n. (We will keep n as a column vector.) The 
vectors in the plane satisfy n T v = 0. The usual projection onto the plane is the matrix

I - nn T_ To project a vector, multiply by this matrix. The vector n is projected to zero, 
and the in-plane vectors v are projected onto themselves: 
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In homogeneous coordinates the projection matrix becomes 4 by 4 (but the origin doesn't
move): 

Projection onto the plane n T v = 0
p

= 
[I - nn T �1-

0 0 0 1 

Now project onto a plane n T ( v - v0) = 0 that does not go through the origin. One point
on the plane is vo. This is an affine space (or a.fl.at). It is like the solutions to Av = b
when the right side is not zero. One particular solution v0 is added to the nullspace-to
produce a flat. 

The projection onto the flat has three steps. Translate v0 to the origin by T _. Project
along then direction, and translate back along the row vector v0: 

Projection onto a flat T_PT+ = [ I
-Vo 

OJ [I - nn T OJ [ I OJ .
1 0 1 Vo l 

I can't help noticing that T _ and T + are inverse matrices: translate and translate back. They
are like the elementary matrices of Chapter 2. 

The exercises will include reflection matrices, also known as mirror matrices. These
are the fifth type needed in computer graphics. A reflection moves each point twice as far
as a projection-the reflection goes through the plane and out the other side. So change
the projection I - nn T to I - 2nn T for a mirror matrix. 

The matrix P gave a "parallel" projection. All points move parallel to n, until they 
reach the plane. The other choice in computer graphics is a "perspective" projection. This
is more popular because it includes foreshortening. With perspective, an object looks larger
as it moves closer. Instead of staying parallel ton (and parallel to each other), the lines of
projection come toward the eye-the center of projection. This is how we perceive depth
in a two-dimensional photograph. 

The basic problem of computer graphics starts with a scene and a viewing position. Ideally,
the image on the screen is what the viewer would see. The simplest image assigns just one
bit to every small picture element-called a pixel. It is light or dark. This gives a black
and white picture with no shading. You would not approve. In practice, we assign shading
levels between O and 28 for three colors like red, green, and blue. That means 8 x 3 = 24
bits for each pixel. Multiply by the number of pixels, and a lot of memory is needed! 

Physically, a raster frame buffer directs the electron beam. It scans like a television
set. The quality is controlled by the number of pixels and the number of bits per pixel.
In this area, the standard text is Computer Graphics : Principles and Practice by Hughes,
Van Dam, McGuire, Skylar, Foley, Feiner, and Akeley (3rd edition, Addison-Wesley, 2014 ).
Notes by Ronald Goldman and by Tony DeRose were excellent references. 
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• REVIEW OF THE KEY IDEAS •

1. Computer graphics needs shift operations T( v) = v+vo as well as linear operations
T(v) = Av.

2. A shift in Rn can be executed by a matrix of order n + l, using homogeneous coor­
dinates.

3. The extra component 1 in [ x y z 1] is preserved when all matrices have the numbers
0, 0, 0, 1 as last column.

Problem Set 10.6 

1 A typical point in R3 is xi +yj + zk. The coordinate vectors i, j, and k are (1, 0, 0), 
(0, 1, 0), (0, 0, 1). The coordinates of the point are (x, y, z). 

This point in computer graphics is xi+ yj + zk + origin. Its homogeneous coordi­
nates are ( , , , ). Other coordinates for the same point are ( , , , ). 

2 A linear transformation Tis determined when we know T(i), T(j), T(k). For an 
affine transformation we also need T ( __ ). The input point ( x, y, z, 1) is trans­
formed to xT(i) + yT(j) + zT(k) + __ .

3 Multiply the 4 by 4 matrix T for translation along (1, 4, 3) and the matrix T1 for 
translation along (0, 2, 5). The product TT1 is translation along __ . 

4 Write down the 4 by 4 matrix S that scales by a constant c. Multiply ST and also 
TS, where T is translation by (1, 4, 3). To blow up the picture around the center 
point (1, 4, 3), would you use vST or vT S? 

5 What scaling matrix S (in homogeneous coordinates, so 3 by 3) would produce a 
1 by 1 square page from a standard 8.5 by 11 page? 

6 What 4 by 4 matrix would move a comer of a cube to the origin and then multiply 
all lengths by 2? The corner of the cube is originally at (1, 1, 2). 

7 When the three matrices in equation 1 multiply the unit vector a, show that they give 
( cos 0)a and (1 - cos 0)a and 0. Addition gives aQ = a and the rotation axis is not 
moved. 

8 If b is perpendicular to a, multiply by the three matrices in 1 to get ( cos 0)b and 0 
and a vector perpendicular to b. So Qb makes an angle 0 with b. This is rotation.

9 What is the 3 by 3 projection matrix I - nn Tonto the plane jx + jy + ½z = 0? In 
homogeneous coordinates add 0, 0, 0, 1 as an extra row and column in P. 
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rn With the same 4 4 matrix P, multiply T _PT+ to find the projection matrix onto 
the plane f x + f y + ½ z = 1. The translation T_ moves a point on that plane (choose 
one) to (0, 0, 0, 1). The inverse matrix T+ moves it back. 

11 Project (3, 3, 3) onto those planes. Use P in Problem 9 and T_PT+ in Problem 10. 

12 If you project a square onto a plane, what shape do you get? 

13 If you project a cube onto a plane, what is the outline of the projection? Make the 
projection plane perpendicular to a diagonal of the cube. 

14 The 3 by 3 min-or matrix that reflects through the plane n T v = 0 is M = I - 2nn T. 
Find the reflection of the point (3, 3, 3) in the plane fx + h + ½z = 0. 

15 Find the reflection of (3, 3, 3) in the plane fx + h + ½ z = 1. Take three steps 
T _l\/1T+ using 4 by 4 matrices: translate by T _  so the plane goes through the origin, 
reflect the translated point (3, 3, 3, l)T_ in that plane, then translate back by T+. 

16 The vector between the origin (0, 0, 0, 1) and the point (x, y, z, 1) is the difference 
v = __ . In homogeneous coordinates, vectors end in So we add a 

_ _  to a point, not a point to a point. 

17 If you multiply only the last coordinate of each point to get ( x, y, z, c), you rescale 
the whole space by the number __ . This is because the point ( x, y, z, c) is the 
same as ( , , , 1). 
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10.7 Linear Algebra for Cryptography 

1 Codes can use finite fields as alphabets: letters in the message become numbers 0, 1, ... , p - 1. 

2 The numbers are added and multiplied (mod p). Divide by p, keep the remainder. 

3 A Hill Cipher multiplies blocks of the message by a secret matrix E ( mod p). 

4 To decode, multiply each block by the inverse matrix D (mod p). Not a very secure cipher! 

Cryptography is about encoding and decoding messages. Banks do this all the time 
with financial information. Amazingly, modem algorithms can involve extremely deep 
mathematics. "Elliptic curves" play a part in cryptography, as they did in the sensational 
proof by Andrew Wiles of Fermat's Last Theorem. 

This section will not go that far! But it will be our first experience with.finite fields and 
finite vector spaces. The field for Rn contains all real numbers. The field for "modular 
arithmetic" contains only p integers 0, 1, ... ,P - 1. There were infinitely many vectors in 
Rn-now there will only be pn messages of length n in message space. The alphabet from 
A to Z is finite (as in p = 26). 

The codes in this section will be easily breakable-they are much too simple for prac­
tical security. The power of computers demands more complex cryptography, because that 
power would quickly detect a small encoding matrix. But a matrix code (the Hill Cipher) 
will allow us to see linear algebra at work in a new way. 

All our calculations in encoding and decoding will be "mod p". But the central con­
cepts of linear independence and bases and inverse matrices and determinants survive this 
change. We will be doing "linear algebra with finite fields". Here is the meaning of mod p : 

27 = 2 (rnod 5) means that 27 - 2 is divisible by 5 

y = x ( rnod p) means that y - x is divisible by p 

Dividing y by 5 produces one of the five possible remainders x = 0, 1, 2, 3, 4. All the num-
bers 5, -5, 10, -10, ... with no remainder are congruent to zero (mod 5). The numbers 
y = 6, -4, 11, -9, ... are all congruent to x = l(mod 5). 

We use the word congruent for the symbol = and we call this "modular arithmetic". 
Every integer y produces one of the values x = 0, 1, 2, ... , p - 1. 

The theory is best if p is a prime number. With p = 26 letters from A to Z, we 
unfortunately don't start with a prime p. Cryptography can deal with this problem. 
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Modular Arithmetic 

Linear algebra is based on linear combinations of vectors. Now our vectors (x1, ... , Xn) 
are strings of integers limited to x = 0, 1, ... , p - 1. All calculations produce these integers 
when we work "mod p". This means: Every integer y outside that range is divided by p 
and x is the remainder: 

y = qp+ X y = x (modp) y divided by p has remainder x 

Addition mod 3 10 = 1 (mod 3) and 16 = 1 (mod 3) and 10 + 16 = 1 + 1 (mod 3) 

I could add 10 + 16 and divide 26 by 3 to get the remainder 2. 
Or I can just add remainders 1 + 1 to reach the same answer 2. 

Addition mod 2 11 = 1 (mod 2) and 17 = 1 (mod 2) and 11 + 17 = 28 = 0 (mod 2) 

The remainders added to 1 + 1 but this is not 2. The final step was 2 = 0 (mod 2). 

Addition mod pis completely reasonable. So is multiplication mod p. Here p = 3 : 

10 = 1 (mod 3) times 16 = 1 (mod 3) gives 1 times 1 = 1 160 = 1 (mod 3) 

5 = 2 (mod 3) times 8 = 2 (mod 3) gives 2 times 2 = 1 40 = 1 (mod 3) 

Conclusion: We can safely add and multiply modulo p. So we can take linear combinations. 
This is the key operation in linear algebra. But can we divide ? 

In the real number field, the inverse is 1 / y (for any number except y = 0). This means: 
We found another real number z so that yz = 1. Invertibility is a requirement for a field. 
Is inversion always possible mod p? For every number y = 1, ... , p - 1 can we find 
another number z = 1, ... , p - 1 so that yz = 1 mod p? 

The examples 3- 1 
= 4 (mod 11) and 2- 1 

= 6 (mod 11) and 5- 1 
= 9 (mod 11) all 

succeed. Can you solve 7 z = 1 ( mod 11) ? Inverting numbers will be the key to inverting 
matrices. 

Let me show that inversion mod p has a problem when p is not a prime number. The 
examplep = 26factors into2 times 13. Theny = 2cannot have an inversez (mod 26). 
The requirement 2z = 1 (mod 26) is impossible to satisfy because 2z and 26 are even. 

Similarly 5 has no inverse z when pis 25. We can't solve 5z = 1 (mod 25). The 
number 5z - 1 is never going to be a multiple of 5, so it can't be a multiple of 25. 

Inversion of every y (0 < y < p) will be possible if and only if pis prime. 

Inversion needs y, 2y, 3y, ... , py to have different remainders when divided by p. 

If my and ny had the same remainder x then ( m - n )y would be divisible by p. 

The prime number p would have to divide either m - n or y. Both are impossible. 

Soy, . .. , py have different remainders: One of those remainders must be x = 1. 
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The Enigma Machine and the Hill Cipher 

Lester Hill published his cipher (his system for encoding and decoding) in the American 
Mathematical Monthly (1929). The idea was simple, but in some way it started the transi­
tion of cryptography from linguistics to mathematics. Codes up to that time mainly mixed 
up alphabets and rearranged messages. The Enigma code used by the German Navy in 
World War II was a giant advance-using machines that look to us like primitive comput­
ers. The English set up Bletchley Park to break Enigma. They hired puzzle solvers and 
language majors. And by good luck they also happened to get Alan Turing. 

I don't know if you have seen the movie about him: The Imitation Game. A lot of 
it is unrealistic (like Good Will Hunting and A Beautiful Mind at MIT). But the core idea 
of breaking the Enigma code was correct, using human weaknesses in the encoding and 
broadcasting. The German naval command openly sent out their coded orders-knowing 
that the codes were too complicated to break (if it hadn't been for those weaknesses). 
The codebreaking required English electronics to undo the German electronics. It also 
required genius. 

Alan Turing was surely a genius-England's most exceptional mathematician. His 
life was ultimately tragic and he ended it in 1954. The biography by Andrew Hodges 
is excellent. Turing arrived at Bletchley Park the day after Poland was invaded. It is to 
Winston Churchill's credit that he gave fast and full support when his support was needed. 

The Enigma Machine had gears and wheels. The Hill Cipher only needs a matrix. That 
is the code to be explained now, using linear algebra. You will see how decoding involved 
inverse matrices. All steps use modular arithmetic, multiplying and inverting mod p.

I will follow the neat exposition of Professor Spickler of Salisbury State University, 
which he made available on the Web: facultyfp.salisbury.edu/despickler/personal/index.asp

Modular Arithmetic with Matrices 

Addition, subtraction, and multiplication are all we need for Ax (matrix times vector). 
To multiply mod p we can multiply the integers in A times the integers in x as usual­
and then replace every entry of Ax by its value mod p.

Key questions: When can we solve Ax= b (mod p)? Do we still have the four subspaces 
C(A), N(A), C(AT ), N(AT )? Are they still orthogonal in pairs? Is there still an in­
verse matrix mod p whenever the determinant of A is nonzero mod p? I am happy to say 
that the last three answers are yes (but the inverse question requires p to be a prime number). 

We can find A- 1 (mod p) by Gauss-Jordan elimination, reducing [A J] to [J A- 1] 

as in Section 2.5. Or we can use determinants and the cofactor matrix C in the formula 
A- 1 = (det A)- 1 CT . I will work mod 3 with a 2 by 2 integer matrix A:

[ A I] = [ 
2 0 1 0 ]

-+ 

[ 2 0 1 0 ]
-+ 

multiply row 1 
-+ 

[ 1 0 2 0 
l 

2 1 0 1 0 1 2 1 by 2- 1 = 2 0 1 2 1 
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By pure chance A-1 
= A ! Multiplying A times A mod 3 does give the identity matrix:

2 -1 [ 
2 0 ] [ 2 0 ] [ 4 0 ] _ [ 1 0 ] A = AA = 2 1 2 1 6 1 = 0 1 (mod 3).

The determinant of A is 2, and the cofactor formula from Section 5.3 also gives A-1 
= A: 

Theorem. A-1 exists mod p if and only if ( <let A )-1 exists mod p.
The requirement is: <let A and p have no common factors.

Encryption with the Hill Cipher 

The original cipher used the letters A to Z with p = 26. Hill chose an n by n encryption
matrix E so that <let E is not divisible by 2 or 13. Then the number <let E has an inverse
mod 26 and so does the matrix E. The inverse matrix E-1 

= D (mod 26) will be the
decryption matrix that decodes the message. 

Now convert each letter of the message into a number from Oto 25. The obvious choice
from A = 0 to Z = 25 is acceptable because the matrix will make this cipher stronger. 

Ignore spaces and divide the message into blocks v1, v2, ... of size n.
Then multiply each message block (mod p) by the encryption matrix E.
The coded message is Ev 1, Ev2, ... and you know what the decoder will do.

[ l -1 [ l
. , _ -1 _ 2 3 15 10 19 16 Spikier s �xamp: has D - E - 5 8 12 = 4 23 7 (mod 26).detE - 583 _ 11 (mod 26) 1 13 4 17 5 19 

Of course a codebreaker will not know E or D. And the block size n is generally
unknown too. For the matrices Hill had in mind n would not be very large and a computer
could quickly discover E and D. 

I am not sure if Hill's Cipher could become seriously difficulty to break by choosing
very large matrices and a large prime number p. And by encoding the coded message a
second time, using a different block size n2 and large matrix E2 and large prime p2. 

Finite Fields and Finite Vector Spaces 

In algebra, a field F is a set of scalars that can be added and multiplied and inverted
(except 0 can't be inverted). Familiar examples are the real numbers Rand the complex
numbers C and the rational numbers Q (containing every ratio p/q of integers). From a
field you build vectors v = (!1, h, ... , fn), From linear combinations of vectors you
build vector spaces. So linear algebra begins with afield F. 

I taught for ten years from a textbook that started with fields. On the way to Rn , we
lost a lot of students. That was a signal-the emphasis was misplaced if we wanted the
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course to be useful. I believe the right way is to understand Rn and its subspaces first, 
as you do. Then you can look at other fields and vector spaces with a natural question 
in mind: What is new when the field is not R? 

These pages are asking that question for finite fields. The possibilities become more 
limited but also highly interesting. The starting point (and not quite the ending point) is 
the finite field F 

P
. It contains only the numbers O, 1, ... , p - 1 and p is a prime number. 

I will focus first on the field F2 with only 2 members "O" and "1". You could think of 0 
and 1 as "even" and "odd" because the rules to add and multiply are obeyed by the even 
numbers and odd numbers: even+ odd = odd and even X odd = even.

Addition 
table 

0 1 
OfllTl
1 l!___QJ

This is addition and multiplication "mod 2". 

Multiplication 
table 

0 1 
or-oo1 
1 l___g__JJ

From this field F2 we can build vectors like v = (0, 0, 1) and w = (1, 0, 1). There are 
three components with two choices each: a total of 23 = 8 different vectors in the vector 
space (F2) 3 . You know the requirements on a subspace and the possibilities it opens up: 

a) The zero-dimensional subspace containing only O = (0, 0, 0). 

b) One-dimensional subspaces containing O and a vector like v. Notice v + v = 0 ! 

c) Two-dimensional subspaces with a basis like v and w and 4 vectors O, v, w, v + w.

d) The full three-dimensional subspace (F2) 3 with 8 vectors.

What are the possible bases for (F2) 3 ? The standard basis contains (1, 0, 0) and (0, 1, 0) 
and ( 0, 0, 1). Those vectors are linearly independent and they span (F 2) 3 . Their eight 
combinations with coefficients O and 1 fill all of (F 2) 3. 

What about matrices that multiply those vectors? The matrices will be 1 by 3, or 2 by 
3, or 3 by 3. When they are 3 by 3 we can ask if they are invertible. Their determinants 
can only be O (singular matrix) or 1 (invertible matrix). Let me leave you the pleasure of 
deciding whether these matrices are invertible. And how would you find the inverse ? 

Out of 29 possible matrices over F 2, I will guess that most are singular. 

To conclude this discussion of F2, I mention a field with 22 = 4 members. It will not 
come from multiplication ( mod 4), because 4 is not prime. The multiplication 2 times 2 
will give O (and 2 has no inverse): not afield. But we can start with the numbers O and 1 
in F 2 and invent two more numbers a and 1 + a-provided they follow these two rules: 
(a+ a= 0) and (a X a= 1 + a). Then a and 1 + a are inverses. Not obvious! 
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Add 0 1 a l+a Multiply 0 1 a l+a 
0 0 1 a l+a 0 0 0 0 0 

1 1 0 l+a a 1 0 1 a l+a 
a a l+a 0 1 a 0 a l+a 1 

l+a l+a a 1 0 l+a 0 l+a 1 a 

Beyond p = 2, we have the fields F 
P 

for all prime numbers p. They use addition and 
multiplication mod p. They are alphabets for codes. They provide the components for 
vectors v = (Ji, ... , fn ) in the space (Fvt- They provide the entries for matrices that 
multiply those vectors. These fields F 

P 
are the most frequently used finite fields. 

The only other finite fields have pk members. The example above of 0, 1, a, 1 + a 
had 22 = 4 members. We will leave it there and get back safely to R. 

Problem Set 10.7 

1 If you multiply n whole numbers (even or odd) when is the answer odd? Translate 
into multiplication ( mod 2): If you multiply O's and l's when is the answer 1? 

2 If you add n whole numbers (even or odd) when is the sum of the numbers odd? 
Translate into adding O's and l's (mod 2). When do they add to 1? 

3 (a) If Y1 = x1 and Y2 = x2 , why is Y1 + Y2 = X1 + x2 ? All are mod p.

Suggestion: Y1 = pq1 + X1 and Y2 = pq2 + x2. Now add Y1 + Y2-

(b) Can you be sure that x1 + x2 is smaller than p? No. Give an example where
there is a smaller x with (Y1 + Y2 ) = x ( mod p).

4 p = 39 is not prime. Find a number a that has no inverse z ( mod 39). This means 
that az = 1 (mod 39) has no solution. Then find a 2 by 2 matrix A that has no 
inverse matrix Z (mod 39). This means that AZ= I (mod 39) has no solution. 

5 Show that y = x (mod p) leads to -y = -x (mod p). 

6 Find a matrix that has independent columns in R 2 but dependent columns ( mod 5). 

7 What are all the 2 by 2 matrices of O's and l's that are invertible ( mod 2) ? 

8 Is the row space of A still orthogonal to the nulls pace in modular arithmetic ( mod 11) ? 
Are bases for those subspaces still bases ( mod 11) ? 

9 (Hill's Cipher) Separate the message THISWHOLEBOOKISINCODE into blocks 
of 3 letters. Replace each letter by a number from 1 to 26 (normal order). Multiply 
each block by the 3 by 3 matrix L with 1 's on and below the diagonal. What is the 
coded message (in numbers) and how would you decode it? 

10 Suppose you know the original message (the plaintext). Suppose you also see the 
coded message. How would you start to discover the matrix in Hill's Cipher ? For a 
very long message do you expect success ? 
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Numerical Linear Algebra 

1 The goals of numerical linear algebra are speed and accuracy and stability : n > 103 or 106
. 

2 Matrices can be full or sparse or banded or structured: special algorithms for each. 

3 Accuracy of elimination is controlled by the condition number 11 A 11 11 A -
1

11. 

4 Gram-Schmidt is often computed by using Householder reflections H = I - 2uu T to find Q. 

5 Eigenvalues use QR iterations Ao = QoRo ---+ RoQo = A1 = Q1R1 ---+ ---+ An . 

6 Shifted QR is even better: Shift to Ak - ckI = QkRk, shift back Ak+l = RkQk + ckI. 

7 Iteration Sxk+l = b - Txk solves (S + T) x = b if all eigenvalues of s-
1T have l>-1 < 1.

8 Iterative methods often use preconditioners P. Change Ax= b to PAx = Pb with PA� I. 

9 Conjugate gradients and GMRES are Krylov methods; see Trefethen-Bau (and other texts). 

11.1 Gaussian Elimination in Practice 

Numerical linear algebra is a struggle for quick solutions and also accurate solutions. We 
need efficiency but we have to avoid instability. In Gaussian elimination, the main freedom 
(always available) is to exchange equations. This section explains when to exchange rows 
for the sake of speed, and when to do it for the sake of accuracy. 

The key to accuracy is to avoid unnecessarily large numbers. Often that requires us to 
avoid small numbers! A small pivot generally means large multipliers (since we divide by 
the pivot). A good plan is "partial pivoting", to choose the largest available pivot in each 
new column. We will see why this pivoting strategy is built into computer programs. 

Other row exchanges are done to save elimination steps. In practice, most large matrices 
are sparse-almost all entries are zeros. Elimination is fastest when the equations are 

508 
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ordered to produce a narrow band of nonzeros. Zeros inside the band "fill in" during 
elimination-those zeros are destroyed and don't save computing time. 

Section 11.2 is about instability that can't be avoided. It is built into the problem, 
and this sensitivity is measured by the "condition number". Then Section 11.3 describes 
how to solve Ax = b by iterations. Instead of direct elimination, the computer solves 
an easier equation many times. Each answer Xk leads to the next guess Xk+i· For good 
iterations (the conjugate gradient method is extremely good), the Xk converge quickly to 
X = A- 1 b. 

The Fastest Supercomputer 

A new supercomputing record was announced by IBM and Los Alamos on May 20, 2008. 
The Roadrunner was the first to achieve a quadrillion (1015 ) floating-point operations per 
second: a petafiop machine. The benchmark for this world record was a large dense linear 
system Ax = b: computer speed is tested by linear algebra. 

That machine was shut down in 2013 ! The TOP500 project ranks the 500 most powerful 
computer systems in the world. As I write this page in October 2015, the first four are from 
NUDT in China, Cray and IBM in the US, and Fujitsu in Japan. They all use a LINUX­
based system. And all vector processors have fallen out of the top 500. 

Looking ahead, the Summit is expected to take first place with 150-300 petaflops. 
President Obama has just ordered the development of an exascale system (1000 petaflops). 
Up to now we are following Moore's Law of doubling every 14 months. 

The LAPACK software does elimination with partial pivoting. The biggest difference 
from this book is to organize the steps to use large submatrices and never single numbers. 
And graphics processing units (GPU's) are now almost required for success. The market for 
video games dwarfs scientific computing and led to astonishing acceleration in the chips. 

Before IBM's BlueGene, a key issue was to count the standard quad-core processors 
that a petaflop machine would need: 32,000. The new architecture uses much less power, 
but its hybrid design has a price: a code needs three separate compilers and explicit instruc­
tions to move all the data. Please see the excellent article in SIAM News (siam.org, July 
2008) and the update on www.Ianl.gov/roadrunner. 

Our thinking about matrix calculations is reflected in the highly optimized BLAS 

(Basic Linear Algebra Subroutines). They come at levels 1, 2, and 3: 

Level 1 Linear combinations of vectors au+ v: O(n) work 

Level 2 Matrix-vector multiplications Au+ v: O(n2 ) work 

Level 3 Matrix-matrix multiplications AB+ C: O(n3 ) work 

Level 1 is an elimination step (multiply row j by £ij and subtract from row i). Level 2 
can eliminate a whole column at once. A high performance solver is rich in Level 3 BLAS 
(AB has 2n3 flops and 2n2 data, a good ratio of work to talk). 

It is data passing and storage retrieval that limit the speed of parallel processing. The 
high-velocity cache between main memory and floating-point computation has to be fully 
used! Top speed demands a block matrix approach to elimination. 

The big change, corning now, is parallel processing at the chip level. 
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Roundoff Error and Partial Pivoting 

Up to now, any pivot (nonzero of course) was accepted. In practice a small pivot is danger­
ous. A catastrophe can occur when numbers of different sizes are added. Computers keep a
fixed number of significant digits (say three decimals, for a very weak machine). The sum
10,000 + 1 is rounded off to 10,000. The "l" is completely lost. Watch how that changes
the solution to this problem: 

.000lu + v = l 
-u+ V = 0 starts with coefficient matrix A = [ .0001 1] -1 1 .

If we accept .0001 as the pivot, elimination adds 10,000 times row 1 to row 2. Roundoff
leaves 

10,000v = 10,000 instead of 10,00lv = 10,000.
The computed answer v = l is near the true v = .9999. But then back substitution puts the
wrong v = l into the equation for u: 

.0001 u + l = 1 instead of .0001 u + .9999 = 1.

The first equation gives u = 0. The correct answer (look at the second equation) is u =
1.000. By losing the "1" in the matrix, we have lost the solution. The small change from

10,001 to 10,000 has changed the answer from u = l to u = 0 (100% error!). 
If we exchange rows, even this weak computer finds an answer that is correct to 3 places:

-U + V = 0 -U + V = 0 U = l
.000lu+ v = l ---+ 

v = l ---+
v = l.

The original pivots were .0001 and 10,000-badly scaled. After a row exchange the exact
pivots are -1 and 1.0001-well scaled. The computed pivots -1 and 1 come close to the
exact values. Small pivots bring numerical instability, and the remedy is partial pivoting.

Here is our strategy when we reach and search column k for the best available pivot: 

Choose the largest number in row k or below. Exchange its row with row k. 

The strategy of complete pivoting looks also in later columns for the largest pivot. It ex­
changes columns as well as rows. This expense is seldom justified, and all major codes
use partial pivoting. Multiplying a row or column by a scaling constant can also be very
worthwhile. If the first equation above is u + 10,000v = 10,000 and we don't rescale,

then l looks like a good pivot and we would miss the essential row exchange. 

For positive definite matrices, row exchanges are not required. It is safe to accept
the pivots as they appear. Small pivots can occur, but the matrix is not improved by row
exchanges. When its condition number is high, the problem is in the matrix and not in the
code. In this case the output is unavoidably sensitive to the input. 

The reader now understands how a computer actually solves Ax = b--by elimination

with partial pivoting. Compared with the theoretical description-find A- 1 and multiply

A- 1 b-the details took time. But in computer time, elimination is much faster. I believe
that elimination is also the best approach to the algebra of row spaces and nullspaces. 
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Operation Counts: Full Matrices 

Here is a practical question about cost. How many separate operations are needed to solve 
Ax = b by elimination? This decides how large a problem we can afford. 

Look first at A, which changes gradually into U. When a multiple of row 1 is subtracted 
from row 2, we do n operations. The first is a division by the pivot, to find the multiplier£. 
For the other n -1 entries along the row, the operation is a "multiply-subtract". For conve­
nience, we count this as a single operation. If you regard multiplying by £ and subtracting 
from the existing entry as two separate operations, multiply all our counts by 2. 

The matrix A is n by n. The operation count applies to all n -1 rows below the first. 
Thus it requires n times n -1 operations, or n2 

-n, to produce zeros below the first pivot. 
Check: All n2 entries are changed, except then entries in the first row. 

When elimination is down to k equations, the rows are shorter. We need only k2 
- k 

operations (instead of n2 
- n) to clear out the column below the pivot. This is true for 

1 ::::; k ::::; n. The last step requires no operations (12 - 1 = 0); forward elimination is 
complete. The total count to reach U is the sum of k2 

- k over all values of k from 1 to n: 

(l2 +···+n2)-(l+···+n)=
n(n+1)(2n+l) _ n(n+l) 

= 
n3 -n

. 
6 2 3 

Those are known formulas for the sum of the first n numbers and their squares. Substituting 
n = 100 gives a million minus a hundred-then divide by 3. (That translates into one 
second on a workstation.) We will ignore n in comparison with n3

, to reach our main 
conclusion: 

The multiply-subtract count is ½n3 for forward elimination (A to U, producing L).

That means ½n3 multiplications and subtractions. Doubling n increases this cost by eight 
(because n is cubed). 100 equations are easy, 1000 are more expensive, 10000 dense equa­
tions are close to impossible. We need a faster computer or a lot of zeros or a new idea. 

On the right side of the equations, the steps go much faster. We operate on single 
numbers, not whole rows. Each right side needs exactly n 

2 operations. Down and back 
up we are solving two triangular systems, Le = b forward and U x = c backward. In back 
substitution, the last unknown needs only division by the last pivot. The equation above 
it needs two operations-substituting Xn and dividing by its pivot. The kth step needs k 
multiply-subtract operations, and the total for back substitution is 

n(n + 1) 
1 + 2 + · · · + n = �--� � ln2 operations. 

2 2 

The forward part is similar. The n 2 total exactly equals the count for multiplying A-lb! 
This leaves Gaussian elimination with two big advantages over A -lb: 

1 Elimination requires ½n3 multiply-subtracts, compared to n3 for A-1•

2 If A is banded so are L and U: by comparison A - 1 is full of nonzeros.
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Band Matrices 

These counts are improved when A has "good zeros". A good zero is an entry that remains 
zero in L and U. The best zeros are at the beginning of a row. They require no elimination 
steps (the multipliers are zero). So we also find those same good zeros in L. That is 
especially clear for this tridiagonal matrix A (and for band matrices in Figure 11.1): 

Tridiagonal 

Bidiagonal 

times 

bidiagonal 

A= 

r-i -� 
-1 

1 r-i-1 2 -1 
-1 2 

1 
-1 1 

-1

=LU 

Figure 11.1: A = LU for a band matrix. Good zeros in A stay zero in Land U. 

These zeros lead to a complete change in the operation count, for "half-bandwidth" w: 

A band matrix has aij = 0 when Ii - j I > w. 

Thus w = 1 for a diagonal matrix, w = 2 for tridiagonal, w = n for dense. The length of 
the pivot row is at most w. There are no more than w - 1 nonzeros below any pivot. Each 
stage of elimination is complete after w ( w -1) operations, and the band structure survives. 
There are n columns to clear out. Therefore: 

Elimination on a band matrix (A to Land U) needs less than w2n operations. 

For a band matrix, the count is proportional to n instead of n 3. It is also proportional to w2 .
A full matrix has w = n and we are back to n3

. For an exact count, remember that the 
bandwidth drops below w in the lower right corner (not enough space): 

Band 
w(w - 1)(3n - 2w + 1) 

3 
Dense 

n(n - l)(n + 1) 
3 

n3 -n

3

On the right side of Ax = b, to find x from b, the cost is about 2wn ( compared to the 
usual n2 ). Main point: For a band matrix the operation counts are proportional to n. 
This is extremely fast. A tridiagonal matrix of order 10,000 is very cheap, provided
we don't compute A- 1

. That inverse matrix has no zeros at all: 

A= 
-l 2 -1 0 
r 1 -1 0 01 0 -1 2 -1 

0 0 -1 2 

We are actually worse off knowing A- 1 than knowing Land U. Multiplication by A- 1 

needs the full n 2 steps. Solving Le = b and U x = c needs only 2wn. 
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A band structure is very common in practice, when the matrix reflects connections 
between near neighbors: a13 = 0 and a14 = 0 because 1 is not a neighbor of 3 and 4. 

We close with counts for Gauss-Jordan and Gram-Schmidt-Householder: 

A- 1 costs n3 multiply-subtract steps. QR costs in3 steps.

In AA- 1 = I, the jth column of A- 1 solves Axj = jth column of I. The left side costs 
½n3 as usual. (This is a one-time cost! Land U are not repeated.) The special saving for the 
jth column of I comes from its first j - 1 zeros. No work is required on the right side until 
elimination reaches row j. The forward cost is ½(n - j) 2 instead of ½n2

. Summing over 
j, the total for forward elimination on then right sides is ½n3

. The final multiply-subtract 
count for A- 1 is n3 if we actually want the inverse: 

n
3 

n
3 (n2 ) 

3 
(Land U) +

6 
(forward) + n 

2 
(back substitutions) = n3

. (1) 

Orthogonalization (A to Q): The key difference from elimination is that each multiplier

is decided by a dot product. That takes n operations, where elimination just divides by 
the pivot. Then there are n "multiply-subtract" operations to remove from column k its 
projection along column j < k (see Section 4.4). The combined cost is 2n where for 
elimination it is n. This factor 2 is the price of orthogonality. We are changing a dot 
product to zero where elimination changes an entry to zero. 

Caution To judge a numerical algorithm, it is not enough to count the operations. Beyond 
"flop counting" is a study of stability (Householder wins) and the flow of data. 

Reordering Sparse Matrices 

For band matrices with constant width w, the row ordering is optimal. But for most sparse 
matrices in real computations, the width of the band is not constant and there are many 
zeros inside the band. Those zeros can fill in as elimination proceeds-they are lost. We 
need to renumber the equations to reduce fill-in, and thereby speed up elimination. 

Generally speaking, we want to move zeros to early rows and columns. Later rows 
and columns are shorter anyway. The "approximate minimum degree" algorithm in sparse 
MATLAB is greedy-it chooses the row to eliminate without counting all the consequences. 
We may reach a nearly full matrix near the end, but the total operation count to reach LU

is still much smaller. To find the absolute minimum of nonzeros in L and U is an NP-hard 
problem, much too expensive, and amd is a good compromise. 

Fill-in is famous when each point on a square grid is connected to its four nearest 
neighbors. It is impossible to number all the gridpoints so that neighbors stay together! If 
we number by rows of the grid, there is a long wait to come around to the gridpoint above. 
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<=2
j=l 

k=3 
---+ 

11 

a32 = 0 before a32 =I= 0 after 

We only need the positions of the nonzeros, not their exact values. Think of the graph 
of nonzeros: Node i is connected to node j if aij =f. 0. Watch to see how elimination can 
create nonzeros (new edges), which we are trying to avoid. 

The command nnz(L) counts the nonzero multipliers in the lower triangular L, find

(L) will list them, and spy(L) shows them all.
The goal of colamd and symamd is a better ordering (permutation P) that reduces

fill-in for AP and pT AP-by choosing the pivot with the fewest nonzeros below it.

Fast Orthogonalization 

There are three ways to reach the important factorization A = QR. Gram-Schmidt works 
to find the orthonormal vectors in Q. Then R is upper triangular because of the order of 
Gram-Schmidt steps. Now we look at better methods (Householder and Givens), which 
use a product of specially simple Q's that we know are orthogonal. 

Elimination gives A = LU, orthogonalization gives A = QR. We don't want a 
triangular L, we want an orthogonal Q. L is a product of E's from elimination, with 
1 's on the diagonal and the multiplier fJ,ij below. Q will be a product of orthogonal matrices.

There are two simple orthogonal matrices to take the place of the E's. The reflection

matrices I - 2uu T are named after Householder. The plane rotation matrices are named 
after Givens. The simple matrix that rotates the xy plane by 0 is Q21 : 

Givens rotation 

in the 1-2 plane 
[
cos0 -sin0 O

l Q21 = sin0 cos0 0 . 
0 0 1 

Use Q21 the way you used E21 , to produce a zero in the (2, 1) position. That determines 
the angle 0. Bill Hager gives this example in Applied Numerical Linear Algebra:

.8 
.6 
0 

ol [ 90
0 120 
1 200 

-153
-79
-40

114

] 
[ 

150 -155 

-223 = 0 75 
395 200 -40 

-110

] 
-225

395 

The zero came from -.8(90) + .6(120). No need to find 0, what we needed was cos 0: 

90 cos 0 = ---;=====;;: 
\1'902 + 1202 

and 
-120sin 0 = -;=====;;: 

\1'902 + 1202 
(2)
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Now we attack the (3, 1) entry. The rotation will be in rows and columns 3 and l. The 
numbers cos 0 and sin 0 are determined from 150 and 200, instead of 90 and 120. 

.6 
0 

-.8

0 
1 
0 

-� l [ 15� · 
:
] [

25�

.6 200 · 0 

-125
75

100

250
]-225 

325

One more step to R. The (3, 2) entry has to go. The numbers cos 0 and sin 0 now come 
from 75 and 100. The rotation is now in rows and columns 2 and 3: 

0 
.6 

-.8

-� l 
[

25
� 

-1
;; :

] [
25� -���

.6 0 100 . 0 0 

250
] 125 

375 

We have reached the upper triangular R. What is Q? Move the plane rotations Qij to the 
other side to find A = QR-just as you moved the elimination matrices Eij to the other 
side to find A= LU: 

means (3) 

The inverse of each Qij is Q[j (rotation through -0). The inverse of Eij was not an 
orthogonal matrix! L U and QR are similar but L and Q are not the same. 

Householder reflections are faster than rotations because each one clears out a whole 
column below the diagonal. Watch how the first column ai of A becomes column ri of R: 

Reflection by Hi 

Hi
= I - 2uiuT (4) 

The length was not changed, and ui is in the direction of ai - ri. We have n - 1 entries 
in the unit vector ui to get n - 1 zeros in ri. (Rotations had one angle 0 to get one zero.) 
When we reach column k, we have n - k available choices in the unit vector Uk. 

This leads to n - k zeros in r k · We just store the u 's and r's to know the final Q and R: 

Inverse of Hi is Hi (Hn- i ... Hi)A = R means A= (Hi ... Hn-i)R = QR. (5 ) 

This is how LAPACK improves on 19th century Gram-Schmidt. Q is exactly orthogonal.
Section 11.3 explains how A = QR is used in the other big computation of linear

algebra-the eigenvalue problem. The factors QR are reversed to give Ai = RQ which is
Q-i AQ. Since Ai is similar to A, the eigenvalues are unchanged. Then Ai is factored into
QiRi, and reversing the factors gives A2 • Amazingly, the entries below the diagonal get
smaller in Ai, A2 , A3, . . .  and we can identify the eigenvalues. This is the "QR method"
for Ax = ,,\x, a big success of numerical linear algebra. 
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Problem Set 11.1 

1 Find the two pivots with and without row exchange to maximize the pivot: 

A= [1
.001 OJ 1000 .

With row exchanges to maximize pivots, why are no entries of L larger than 1? 
Find a 3 by 3 matrix A with all 1% I ::::; 1 and 1-l\j I ::::; 1 but third pivot= 4. 

2 Compute the exact inverse of the Hilbert matrix A by elimination. Then compute 
A-1 again by rounding all numbers to three figures: 

Ill-conditioned matrix A
� 

hilb(3) 
� [i l !] 

3 For the same A compute b = Ax for x = (l, 1, 1) and x = (0, 6, -3.6). A small 
change !:i.b produces a large change !:i.x.

4 Find the eigenvalues (by computer) of the 8 by 8 Hilbert matrix % = 1 / ( i + j - 1). 
In the equation Ax= bwith llbll = l,how large can llxll be ? Ifbhas roundofferror 
less than 10-15, how large an error can this cause in x? See Section 9 .2. 

5 For back substitution with a band matrix (width w ), show that the number of multi­
plications to solve U x = c is approximately wn.

6 If you know Land U and Q and R, is it faster to solve LU x = b or Q Rx = b?

7 Show that the number of multiplications to invert an upper triangular n by n matrix
is about ¼n3

. Use back substitution on the columns of I, upward from l's. 

8 Choosing the largest available pivot in each column (partial pivoting), factor each A
intoPA=LU:

A= [� �] and 

9 Put l's on the three central diagonals of a 4 by 4 tridiagonal matrix. Find the cofac­
tors of the six zero entries. Those entries are nonzero in A-1

. 

10 (Suggested by C. Van Loan.) Find the LU factorization and solve by elimination 
when E = 10-3, 10-6, 10-9, 10-12, 10-15: 

The true xis (1, 1). Make a table to show the error for each E. Exchange the two
equations and solve again-the errors should almost disappear. 
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11 (a) Choose sin 0 and cos 0 to triangularize A, and find R:

517 

Givens rotation Q A=
[
c�s0 - sin0

] 
[1 -lJ = [* *] = R.

21 
sm 0 cos 0 3 5 0 * 

(b) Choose sin 0 and cos 0 to make Q AQ- 1 triangular. What are the eigenvalues?

12 When A is multiplied by a plane rotation Qij, which entries of A are changed? 
When QiJA is multiplied on the right by Q-;/, which entries are changed now? 

13 How many multiplications and how many additions are used to compute Q ij A? 
Careful organization of the whole sequence of rotations gives jn3 multiplications 
and jn3 additions-the same as for QR by reflectors and twice as many as for LU. 

Challenge Problems 

14 (Turning a :robot hand) The robot produces any 3 by 3 rotation A from plane rota­
tions around the x, y, z axes. Then Q32Q31 Q21A = R, where A is orthogonal so R 
is I! The three robot turns are in A = Q·.;]Q3/Q3z1_ The three angles are "Euler 
angles" and det Q = 1 to avoid reflection. Start by choosing cos 0 and sin 0 so that 

Q21A- sin0 cos0 0 ! 
-

2 -1 2 is zero in the (2,l) position. [
cos0 - sin0 Ol [ 1 2 2

] - 0 0 1 3 2 2 -1

15 Create the 10 by 10 second difference matrix K = toepl.itz([2 - 1 zeros(l, 8)]). 
Permute rows and columns randomly by KK = K(randperm(lO), randperm(lO)). 
Factor by [L, U] = lu(K) and [LL, UU] = lu(K K), and count nonzeros by rmz(L) 
and nnz(LL ). In this case Lis in perfect tridiagonal order, but not LL. 

16 Another ordering for this matrix K colors the meshpoints alternately red and black. 
This permutation P changes the normal 1, . . .  , 10 to 1, 3, 5, 7, 9, 2, 4, 6, 8, 10: 

Red-black ordering i] Find the matrix D.

So many interesting experiments are possible. If you send good ideas they can 
go on the linear algebra website math.mit.edu/linearalgebra. I also recommend 
learning the command B = sparse(A), after which find(B) will list the nonzero 
entries and fu(B) will factor B using that sparse format for L and U. Only the 
nonzeros are computed, where ordinary (dense) MATLAB computes all the zeros too. 

17 Jeff Stuart has created a student activity that brilliantly demonstrates ill-conditioning: 

[� 
1.0001

] 
[x] 

= [3.0001 + e ] With errors 

1.0000 y 3.0000 + E e and E 
x = 2 - 10000( e - E) 
y = 1 + 10000( e - E) 

When those equations are shown by nearly parallel long sticks, a small shake gives 
a big jump in the crossing point (x, y). Errors e and E are amplified by 10000. 
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11.2 Norms and Condition Numbers 

How do we measure the size of a matrix? For a vector, the length is llxll- For a matrix, 
the norm is IIAII - This word "norm" is sometimes used for vectors, instead of length. It 
is always used for matrices, and there are many ways to measure IIAII - We look at the 
requirements on all "matrix norms" and then choose one. 

Frobenius squared all the I aij I 2 and added; his norm 11 A I IF is the square root. This 
treats A like a long vector with n2 components: sometimes useful, but not the choice here. 

I prefer to start with a vector norm. The triangle inequality says that llx + YII is not 
greater than llxll + IIYII - The length of 2x or -2x is doubled to 2 llxll- The same rules 
will apply to matrix norms: 

IIA + BIi :S IIAII + IIBII and llcAII = lei IIAII- (1) 

The second requirements for a matrix norm are new, because matrices multiply. The 
norm IIAII controls the growth from x to Ax, and from B to AB:

Growth factor IIAII IIAxll :S IIAll llxll and IIABII :S IIAII IIBII-

This leads to a natural way to define IIAII, the norm of a matrix: 

The norm of A is the largest ratio IIAxll/llxll: IIAxll IIAII = 

�)t w·

(2) 

(3) 

IIAxll/llxll is never larger than IIAII (its maximum). This says that IIAxll :S IIA ll llxll­
Example 1 If A is the identity matrix I, the ratios are llxll/llxll- Therefore IIIII = 1. If 
A is an orthogonal matrix Q, lengths are again preserved: IIQxll = llxll- The ratios still 
give IIQII = 1. An orthogonal Q is good to compute with: errors don't grow. 

Example 2 The norm of a diagonal matrix is its largest entry (using absolute values): 

A __ [2o 0
3
] [OJ has norm IIAII = 3. The eigenvector x = 1 has Ax= 3x.

The eigenvalue is 3. For this A (but not all A), the largest eigenvalue equals the norm. 

For a positive definite symmetric matrix the norm is IIAII = Amax (A). 

Choose x to be the eigenvector with maximum eigenvalue. Then IIAxll/llxll equals Amax · 
The point is that no other x can make the ratio larger. The matrix is A = QAQT, and the 
orthogonal matrices Q and QT leave lengths unchanged. So the ratio to maximize is really 
IIAxll/llxll- The norm is the largest eigenvalue in the diagonal A. 
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Symmetric matrices Suppose A is symmetric but not positive definite. A = QAQT is
still true. Then the norm is the largest of I A 1 I, I A2 f, ... , I An f. We take absolute values,
because the norm is only concerned with length. For an eigenvector ffAxff = ff Axff = fAI
times 11 x 11- The x that gives the maximum ratio is the eigenvector for the maximum I A f. 

Unsymmetric matrices If A is not symmetric, its eigenvalues may not measure its true
size. The norm can be larger than any eigenvalue. A very unsymmetric example has
A1 = A2 = 0 but its norm is not zero :

has norm IIAxfl
IIAII = �;i 

W 
= 2.

The vector x = (0, 1) gives Ax= (2, 0). The ratio oflengths is 2/1. This is the maximum
ratio ff Alf, even though xis not an eigenvector.

It is the symmetric matrix AT A, not the unsymmetric A, that has eigenvector
x = (0, 1). The norm is really decided by the largest eigenvalue of AT A:

The norm of A (symmetric or not) is the square root of Amax(AT A):

IIAll2 lfAxfl2 xT AT Ax 
= max --- = max---- = Amax(AT A)

x,to llxll2 x,to xT x 

The unsymmetric example with Amax(A) = 0 has Amax(AT A) = 4:

A= [� �] leads to AT A= [� �] with Amax = 4. So the norm is IIAII = V4.

(4) 

For any A Choose x to be the eigenvector of AT A with largest eigenvalue Amax. The
ratio in equation ( 4) is x TAT Ax = x T ( Amax )x divided by x T x. This is Amax· 

No x can give a larger ratio. The symmetric matrix AT A has eigenvalues A1 , ... , An 

and orthonormal eigenvectors q
1

, q
2

, . .. , qn. Every xis a combination of those vectors.
Try this combination in the ratio and remember that q; q

j 
= 0:

( e1 Q 1 + · · · + enqn f ( e1 A1 Q1 + · · · + enAnqn )
(e1 Q 1 + · · · + en qn )T(e1 Q 1 + · · · + en qn )

er A1 + · · · + e;.An 

er+···+e�

The maximum ratio Amax is when all e's are zero, except the one that multiplies Amax·
Note 1 The ratio in equation ( 4) is the Rayleigh quotient for the symmetric matrix AT A.
Its maximum is the largest eigenvalue Amax(AT A). The minimum ratio is Amin(AT A).
If you substitute any vector x into the Rayleigh quotient xT AT Ax/xT x, you are guaran­
teed to get a number between Amin (AT A) and Amax (A

T A).
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Note 2 The norm IIAII equals the largest singular value D"max of A. The singular values 
cr1 , . . .  , O'r are the square roots of the positive eigenvalues of AT 

A. So certainly 
O'max = (>-max ) 1 12

. Since U and V are orthogonal in A = U�VT , the norm is IIAII = 

D"max· 

The Condition Number of A 

Section 9 .1 showed that roundoff error can be serious. Some systems are sensitive, others 
are not so sensitive. The sensitivity to error is measured by the condition number. This 
is the first chapter in the book which intentionally introduces errors. We want to estimate 
how much they change x. 

The original equation is Ax = b. Suppose the right side is changed to b + t:i.b
because of roundoff or measurement error. The solution is then changed to x + t:i.x. Our 
goal is to estimate the change t:i.x in the solution from the change t:i.b in the equation. 
Subtraction gives the error equation A( t:i.x) = t:i.b: 

Subtract Ax = b from A(x + t:i.x) = b + t:i.b to find A(t:i.x) = t:i.b. (5) 

The error is t:i.x = A- 1 t:i.b. It is large when A- 1 is large (then A is nearly singular). The 
error t:i.x is especially large when t:i.b points in the worst direction-which is amplified 
most by A- 1

. The worst error has llt:i.xll = IIA- 1 11 llt:i.bll-
This error bound IIA- 1 11 has one serious drawback. If we multiply A by 1000, then 

A- 1 is divided by 1000. The matrix looks a thousand times better. But a simple rescaling 
cannot change the reality of the problem. It is true that t:i.x will be divided by 1000, but so 
will the exact solution x = A- 1b. The relative error llt:i.xll/llxll will stay the same. It is 
this relative change in x that should be compared to the relative change in b.

Comparing relative errors will now lead to the "condition number" c = 11 A 11 11 A - 1 11. 

Multiplying A by 1000 does not change this number, because A- 1 is divided by 1000 and 
the condition number c stays the same. It measures the sensitivity of Ax = b.

The solution error is less than c = IIAII IIA- 1 11 times the problem error:

Condition number c 

If the problem error is t:i.A ( error in A instead of b ), still c controls t:i.x: 

Error t:i.Ain A llt:i.xll llt:i.AII 
llx + t:i.xll � clAjf

.

(6) 

(7)
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Proof The original equation is b = Ax. The error equation (5) is �x
Apply the key property IIAxll :=; IIAll llxll of matrix norms: 

A-1�b.

llbll :=; IIAll llxll and

Multiply the left sides to get ll bll ll�xll , and multiply the right sides to get cllxll ll�bll­
Divide both sides by llbll llxll- The left side is now the relative error ll�xll/llxll- The
right side is now the upper bound in equation (6). 

The same condition number c = IIA II IIA-111 appears when the error is in the matrix.
We have �A instead of �b in the error equation: 

Subtract Ax= b from (A + �A)(x + �x) = b to find A(�x) = -(�A)(x + �x).

Multiply the last equation by A-1 and take norms to reach equation (7):

ll�xll 
< IIAII IIA-111 

ll�AII 
llx + �xii - IIAII 

.

Conclusion Errors enter in two ways. They begin with an error �A or �b---a wrong
matrix or a wrong b. This problem error is amplified (a lot or a little) into the solution error
�x. That error is bounded, relative to x itself, by the condition number c. 

The error �b depends on computer roundoff and on the original measurements of b.

The error �A also depends on the elimination steps. Small pivots tend to produce large
errors in L and U. Then L+�L times U +�U equals A+�A. When �A or the condition
number is very large, the error �x can be unacceptable. 

Example 3 When A is symmetric, c = IIAI I IIA-1 II comes from the eigenvalues:

A = [ � �] has norm 6. A-1 _ [t 0] h 1 - 0 ½ as norm 2.

This A is symmetric positive definite. Its norm is Amax = 6. The norm of A-1 is
1/ Amin = ½- Multiplying norms gives the condition number IIA II IIA-1 II =Amax/Amin: 

Condition number for positive definite A C = Amax = � = 3_
Amin 2 

Example 4 Keep the same A, with eigenvalues 6 and 2. To make x small, choose b along
the first eigenvector (1, 0). To make �x large, choose �b along the second eigenvector
(0, 1). Then x = ½b and �x = ½�b. The ratio ll�xll/llxll is exactly c = 3 times the
ratio ll�bll/llbll-

This shows that the worst error allowed by the condition number IIA II IIA-1 II can
actually happen. Here is a useful rule of thumb, experimentally verified for Gaussian
elimination: The computer can lose log c decimal places to roundoff error.



522 Chapter 11. Numerical Linear Algebra 

Problem Set 11.2 

1 Find the norms IIAII = Amax and condition numbers c = Amax/ Am in of these posi­
tive definite matrices: 

[ i �] . 
2 Find the norms and condition numbers from the square roots of >-max(AT A) and 

Am in(AT A). Without positive definiteness in A, we go to AT A! 

3 Explain these two inequalities from the definitions (3) of IIAII and IIBII: 

IIABxll :S: IIAII IIBxll :S: IIAII IIBll llxll-

From the ratio of IIABxll to llxll, deduce that IIABII ::; IIAII IIBII- This is the key to 
using matrix norms. The norm of An is never larger than IIAlln. 

4 Use IIAA- 1 11 :S: IIAII IIA- 1 11 to prove that the condition number is at least l. 

5 Why is I the only symmetric positive definite matrix that has Amax = Am in = 1? 
Then the only other matrices with IIAII = 1 and IIA- 1 II = 1 must have AT A= I.
Those are __ matrices: perfectly conditioned. 

6 Orthogonal matrices have norm IIQII = 1. If A= QR show thc>.t IIAII :S: IIRII and 
also IIRII :S: IIAII- Then IIAII = IIQII IIRII- Find an example of A = LU with 
IIAII < IILII IIUll-

7 (a) Which famous inequality gives ll(A + B)xll :S: IIAxll + IIBxll for every x?

(b) Why does the definition (3) of matrix norms lead to IIA + BIi :S: IIAII + IIBII?

8 Show that if>- is any eigenvalue of A, then l>-1 ::; IIAII- Start from Ax= .\x.

9 The "spectral radius" p( A) = l>-max I is the largest absolute value of the eigenvalues. 
Show with 2 by 2 examples that p(A + B) ::; p(A) + p(B) and p(AB) ::; p(A)p(B)
can both be false. The spectral radius is not acceptable as a norm. 

10 (a) Explain why A and A- 1 have the same condition number.
(b) Explain why A and AT have the same norm, based on >-(AT A) and >-(AAT ).

11 Estimate the condition number of the ill-conditioned matrix A = [ � 1.o1oi]. 

12 Why is the determinant of A no good as a norm? Why is it no good as a condition 
number? 
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13 (Suggested by C. Moler and C. Van Loan.) Compute b - Ay and b - Az when

b=[·217] .254 A= [.780 .563 ] . 913 .65 9 = [ .341 ] y -.087 = [ .999] z -1.0 .

Is y closer than z to solving Ax = b? Answer in two ways: Compare the residual

b - Ay to b - Az. Then compare y and z to the true x = (1, -1). Both answers
can be right. Sometimes we want a small residual, sometimes a small .6.x. 

14 (a) Compute the determinant of A in Problem 13. Compute A- 1 . 

(b) If possible compute IIA II and IIA-1
11 and show that c > 106

. 

Problems 15-19 are about vector norms other than the usual llxll = �.

15 The "£ 1 norm" and the "£00 norm" of x = (x 1 , ... , Xn) are

llxll oo = max Ix;!.
l:S:i:S:n 

Compute the norms llxll and llxll1 and llxll oo of these two vectors inR5
: 

X = (1, 1, 1, 1, 1) X = (.1, .7, .3, .4, .5).

16 Prove that llxll oo � llxll � llxlli, Show from the Schwarz inequality that the ratios
llxll/llxll oo and llxlli/llxll are never larger than yn. Which vector (x1, ... , xn)
gives ratios equal to yn? 

17 All vector norms must satisfy the triangle inequality. Prove that

llx + Yll oo � llxll oo + IIYll oo and

18 Vector norms must also satisfy llcxll = lei llxll- The norm must be positive except
when x = 0. Which of these are norms for vectors ( x 1, x 2) in R 2? 

llxllA = lx1I + 2 lx2I

llxllc = llxll + llxlloo

llxllB = min ( lx1I, lx2I)

llxllD = IIAxll ( this answer depends on A).

Challenge Problems 

19 Show that xTy � llxlli IIYll 00 by choosing components Yi = ±1 to make xTy as
large as possible. 

20 The eigenvalues of the -1, 2, -1 difference matrix K are A = 2 - 2 cos (j1r / n+ 1).
Estimate Amin and Amax and c = cond(K) = Amax/ Amin as n increases: c::::; Cn2 

with what constant C? 
Test this estimate with eig(K) and cond(K) for n = 10, 100, 1000.
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11.3 Iterative Methods and Preconditioners 

Up to now, our approach to Ax = b has been direct. We accepted A as it came. We 
attacked it by elimination with row exchanges. We now look at iterative methods, which 

replace A by a simpler matrix S. The difference T = S - A is moved over to the right 
side of the equation. The problem becomes easier to solve, with S instead of A. But there 
is a price-the simpler system has to be solved over and over. 

An iterative method is easy to invent. Just split A (carefully) into S - T. 

Rewrite Ax = b Sx = Tx+b. (1) 

The novelty is to solve (1) iteratively. Each guess Xk leads to the next Xk+I: 

Pure iteration (2) 

Start with any x0. Then solve Sx1 = Tx0 + b. Continue to Sx2 = Tx1 + b. A hundred
iterations are very common-often more. Stop when (and if!) Xk+I is sufficiently close 
to Xk-or when the residual Tk = b - Axk is near zero. Our hope is to get near the true 
solution, more quickly than by elimination. When the Xk converge, their limit x00 does 
solve equation (1): Sx00 = Tx00 + b means Ax00 = b. 

The two goals of the splitting A = S - T are speed per step and fast convergence. 

The speed of each step depends on Sand the speed of convergence depends on s- 1r:

1 Equation (2) should be easy to solve for Xk+i· The "preconditioner" S could be the 
diagonal or triangular part of A. A fast way uses S = L0U0, where those factors 
have many zeros compared to the exact A= LU. This is "incomplete LU". 

2 The difference x - Xk (this is the error ek) should go quickly to zero. Subtracting
equation (2) from (1) cancels b, and it leaves the equation for the error ek: 

Error equation (3) 

At every step the error is multiplied by s-
1
r. If s-

1
r is small, its powers go quickly to

zero. But what is "small"? 
The extreme splitting is S = A and T = 0. Then the first step of the iteration is the 

original Ax = b. Convergence is perfect and s-
1
r is zero. But the cost of that step is

what we wanted to avoid. The choice of Sis a battle between speed per step (a simple S) 
and fast convergence (S close to A). Here are some choices of S: 

J S = diagonal part of A (the iteration is called Jacobi's method) 

GS S = lower triangular part of A including the diagonal ( Gauss-Seidel method) 

ILU S = approximate L times approximate U (incomplete L U  method). 
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Our first question is pure linear algebra: When do the Xk 's converge to x? The
answer uncovers the number l>-l max that controls convergence. In examples of Jacobi and
Gauss-Seidel, we will compute this "spectral radius" l>-l max · It is the largest eigenvalue of
the iteration matrix B = s-

1
r. 

The Spectral Radius p(B) Controls Convergence 

Equation (3) is ek+I = s-
1 Tek . Every iteration step multiplies the error by the same

matrix B = s-
1 T. The error after k steps is ek = Bkea. The error approaches zero if

the powers of B = s-
1 T approach zero. It is beautiful to see how the eigenvalues of

B-the largest eigenvalue in particular-control the matrix powers Bk . 

The powers Bk approach zero if and only if every eigenvalue of B has l>-1 < 1.
The rate of convergence is controlled by the spectral radius of B: p = max I,\ ( B) 1-

The test for convergence is l>-l max < 1. Real eigenvalues must lie between -1 and 1.
Complex eigenvalues>-= a+ ib must have l>-1 2 = a2 + b2 < 1. The spectral radius "rho"
is the largest distance from Oto the eigenvalues of B = s-

1 T. This is p = l>-l max · 
To see why l>-l max < 1 is necessary, suppose the starting error ea happens to be an

eigenvector of B. After one step the error is Beo = >-ea. After k steps the error is Bkeo = 
A k ea. If we start with an eigenvector, we continue with that eigenvector-and the factor
,>_k only goes to zero when l>-1 < 1. This condition is required of every eigenvalue. 

To see why l>-l max < 1 is sufficient for the error to approach zero, suppose eo is a
combination of eigenvectors: 

ea = C1X1 + · · · + CnXn leads to ek = c1(>-1lx1 + · · · + Cn (>-nlXn - (4)

This is the point of eigenvectors! When we multiply by B, each eigenvector Xi is multiplied
by Ai- If all I Ai I < 1 then equation ( 4) ensures that eJc goes to zero. 

Example 1 B = [ :� :� ] has Amax = 1.1 B' = [ -� 1 :! ] has Amax = .6

B2 is 1.1 times B. Then B3 is (1.1)2 times B. The powers of B will blow up.
Contrast with the powers of B'. The matrix (B') k has (.6)k and ( .5)k on its diagonal.
The off-diagonal entries also involve pk = ( .6) k , which sets the speed of convergence. 

Note When there are too few eigenvectors, equation ( 4) is not correct. We turn to the
Jordan form when eigenvectors are missing and the matrix B can't be diagonalized: 

Jordan form J B = MJM-
1 and (5)

Section 8.3 shows how J and Jk are made of "blocks" with one repeated eigenvalue:

The powers of a 2 by 2 block in J are
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If l>-1 < 1 then these powers approach zero. The extra factor k from a double eigenvalue is 
overwhelmed by the decreasing factor )_k-I _ This applies to every block:
Diagonalizable or not: Convergence Bk -+ 0 and its speed depend on p = I A I max < 1.

Jacobi versus Gauss-Seidel 

We now solve a specific 2 by 2 problem by splitting A. Watch for that number l>-lmax · 

Ax=b 
2u- V = 4 

-u+2v = -2 has the solution [uv] [ o2] . (6) 

The first splitting is Jacobi's method. Keep the diagonal of A on the left side (this is S).

Move the off-diagonal part of A to the right side (this is T). Then iterate: 

Jacobi iteration 
= Vk +4 
= Uk - 2. 

Start from u0 = v0 = 0. The first step finds u1 = 2 and v1 = -1. Keep going: 

[15/�] [-1;1!] approaches rn] . 
This shows convergence. At steps 1, 3, 5 the second component is -1, -1/4, -1/16. 
Those drop by 4 in each two steps. The error equation is Sek+I = Tek : 

Error equation rn �] ek+l = [� �] ek or ek+I = [i !] ek , (7)

That last matrix s-
1
r has eigenvalues ½ and -½. So its spectral radius is p( B) = ½: 

½]
2

=[¼ OJ 0 0 l. .
4 

has l>-lmax = ½ and 

Two steps multiply the error by ¼ exactly, in this special example. The important message 
is this: Jacobi's method works well when the main diagonal of A is large compared to the 
off-diagonal part. The diagonal part is S, the rest is -T. We want the diagonal to dominate. 

The eigenvalue >- = ½ is unusually small. Ten iterations reduce the error by 
210 = 1024. More typical and more expensive is l>-lmax = .99 or .999. 

The Gauss-Seidel method keeps the whole lower triangular part of A as S: 

Gauss-Seidel 
2uk+l = Vk +4 

-Uk+l + 2Vk+I = - 2 or 
Uk+l = ½vk + 2 
Vk+l = ½uk+l - l. (8) 

Notice the change. The new uk+l from the first equation is used immediately in the second 
equation. With Jacobi, we saved the old Uk until the whole step was complete. With Gauss­
Seidel, the new values enter right away and the old Uk is destroyed. This cuts the storage in 
half. It also speeds up the iteration (usually). And it costs no more than the Jacobi method. 
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Test the iteration starting from another start u0 = 0 and v0 = -1: 

[ 
3/2

]-1/4 [ 
15 /8

] -1/16 [ �� j !! ] approaches rn] . 
The errors in the first component are 2, 1/2, 1/8, 1/32. The errors in the second component 
are -1, -1/4, -1/16, -1/32. We divide by 4 in one step not two steps. Gauss-Seidel is 
twice as fast as Jacobi. We have PGs = (PJ) 2 when A is positive definite tridiagonal: 

S= [-� �] and T= [� �] and s-
1

T= [� !] . 
The Gauss-Seidel eigenvalues are O and ¼- Compare with ½ and -½ for Jacobi. 

With a small push we can describe the successive overrelaxation method (SOR).

The new idea is to introduce a parameter w (omega) into the iteration. Then choose this 
number w to make the spectral radius of s- 1r as small as possible. 

Rewrite Ax = bas wAx = wb. The matrix Sin SOR has the diagonal of the origi­
nal A, but below the diagonal we use wA. On the right side Tis S - wA:

SOR 
2uk+l = (2 - 2w)uk + wvk + 4w 
-wuk+l + 2vk+l = (2 - 2w)vk - 2w. (9) 

This looks more complicated to us, but the computer goes as fast as ever. SOR is like 
Gauss-Seidel, with an adjustable number w. The best w makes it faster. 

I will put on record the most valuable test matrix of order n. It is our favorite -1, 2, 
-1 tridiagonal matrix K. The diagonal is 2I. Below and above are -1 's. Our example had
n = 2, which leads to cos i = ½ as the Jacobi eigenvalue found above. Notice especially
that this 1>-lmax is squared for Gauss-Seidel:

The splittings of the -1, 2, -1 matrix K of order n yield these eigenvalues of B: 

Jacobi (S = 0, 2, 0 matrix): 

Gauss-Seidel (S = -1, 2, 0 matrix): 

-1 7f S T has l>-lmax = COS -­

n + l 

s- 1r has l>-lmax = ( cos _1r_)
2 

n+l 

SOR (with the best w): s- 1r has l>-lmax = (cos-7f-)
2

/(1+sin-7f-)
2

. n+l n+l 

Let me be clear: For the -1, 2, -1 matrix you should not use any of these iterations! 
Elimination on a tridiagonal matrix is very fast (exact LU). Iterations are intended for a 
large sparse matrix that has nonzeros far from the central diagonal. Those create many 
more nonzeros in the exact Land U. This fill-in is why elimination becomes expensive. 
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We mention one more splitting. The idea of "incomplete LU" is to set the small nonze­
ros in L and U back to zero. This leaves triangular matrices Lo and U0 which are again 
sparse. The splitting has S = L0U0 on the left side. Each step is quick: 

Incomplete LU LoUoxk+l = (LoUo - A)xk + b. 

On the right side we do sparse matrix-vector multiplications. Don't multiply Lo times U0 , 

those are matrices. Multiply Xk by U0 and then multiply that vector by L0. On the left side 
we do forward and back substitutions. If L0U0 is close to A, then i>-l max is small. A few 
iterations will give a close answer. 

Multigrid and Conjugate Gradients 

I cannot leave the impression that Jacobi and Gauss-Seidel are great methods. Generally the 
"low-frequency" part of the error decays very slowly, and many iterations are needed. Here 
are two important ideas that bring tremendous improvement. Multigrid can solve problems 
of size n in 0( n) steps. With a good preconditioner, conjugate gradients becomes one of 
the most popular and powerful algorithms in numerical linear algebra. 

Multigrid Solve smaller problems with coarser grids. Each iteration will be cheaper and 
faster. Then interpolate between the coarse grid values to get a quick headstart on the 
full-size problem. Multigrid might go 4 levels down and back. 

Conjugate gradients An ordinary iteration like Xk+l = Xk - Axk + b involves mul­
tiplication by A at each step. If A is sparse, this is not too expensive: Axk is what we 
are willing to do. It adds one more basis vector to the growing "Krylov spaces" that con­
tain our approximations. But Xk+l is not the best combination of xo , Axo , ... , Akxo. 
The ordinary iterations are simple but far from optimal. 

The conjugate gradient method chooses the best combination Xk at every step. The 
extra cost (beyond one multiplication by A) is not great. We will give the CG iteration, 
emphasizing that this method was created for a symmetric positive definite matrix. When 
A is not symmetric, one good choice is GMRES. When A = AT is not positive definite, 
there is MINRES. A world of high-powered iterative methods has been created around the 
idea of making optimal choices of each successive Xk. 

My textbook Computational Science and Engineering describes multigrid and CG in 
much more detail. Among books on numerical linear algebra, Trefethen-Bau is deservedly 
popular ( others are terrific too). Golub-Van Loan is a level up. 

The Problem Set reproduces the five steps in each conjugate gradient cycle from Xk-l 
to Xk. We compute that new approximation Xk , the new residual rk = b - Axk , and the 
new search direction dk to look for the next Xk+l· 

I wrote those steps for the original matrix A. But a preconditioner S can make con­
vergence much faster. Our original equation is Ax = b. The preconditioned equation is 
s-

1 Ax = s-
1 b. Small changes in the code give the preconditioned conjugate gradient 

method-the leading iterative method to solve positive definite systems. 
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The biggest competition is direct elimination, with the equations reordered to take max­
imum advantage of the zeros in A. It is not easy to outperform Gauss. 

Iterative Methods for Eigenvalues 

We move from Ax = b to Ax = AX. Iterations are an option for linear equations. They
are a necessity for eigenvalue problems. The eigenvalues of an n by n matrix are the roots
of an nth degree polynomial. The determinant of A - Al starts with (-At. This book
must not leave the impression that eigenvalues should be computed that way! Working
from det(A - AI) = 0 is a very poor approach-except when n is small. 

For n > 4 there is no formula to solve det(A - >-I) = 0. Worse than that, the A's
can be very unstable and sensitive. It is much better to work with A itself, gradually mak­
ing it diagonal or triangular. (Then the eigenvalues appear on the diagonal.) Good computer
codes are available in the LAPACK library-individual routines are free on
www.netlib.org/lapack. This library combines the earlier UNPACK and EISPACK, with 
many improvements (to use matrix-matrix operations in the Level 3 BLAS). It is a collec­
tion of Fortran 77 programs for linear algebra on high-performance computers. For your 
computer and mine, a high quality matrix package is all we need. For supercomputers with
parallel processing, move to ScaLAPACK and block elimination. 

We will briefly discuss the power method and the QR method (chosen by LAPACK)
for computing eigenvalues. It makes no sense to give full details of the codes. 

1 Power methods and inverse power methods. Start with any vector u0. Multiply by
A to find u1 . Multiply by A again to find u2. If u0 is a combination of the eigenvectors,
then A multiplies each eigenvector Xi by Ai- After k steps we have (Ai ) k : 

Uk
= Akuo = c1 (A1 tx 1 + · · · + Cn (An tXn- (10) 

As the power method continues, the largest eigenvalue begins to dominate. The vectors
Uk point toward that dominant eigenvector x 1. We saw this for Markov matrices: 

A= [·9 .3] . 1 .7 has Amax = 1 with eigenvector

Start with u0 and multiply at every step by A:

[.75] .25 .

uo = [�], u1 = [:i], u2 = [:�:] is approaching u= = [:��].

The speed of convergence depends on the ratio of the second largest eigenvalue A2 to the
largest A1 . We don't want A1 to be small, we want A2 / A1 to be small. Here A2 = .6 and
A1 = 1, giving good speed. For large matrices it often happens that IA2 / A1 I is very close
to 1. Then the power method is too slow. 

Is there a way to find the smallest eigenvalue-which is often the most important in
applications? Yes, by the inverse power method: Multiply u0 by A- 1 instead of A. Since
we never want to compute A- 1 , we actually solve Au1 = u0. By saving the LU factors,
the next step Au2 = u1 is fast. Step k has Auk = uk_ 1: 
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Inverse power method (11 ) 

Now the smallest eigenvalue Amin is in control. When it is very small, the factor 1/ ,\�in 

is large. For high speed, we make Amin even smaller by shifting the matrix to A - ,\*I.

That shift doesn't change the eigenvectors. (,\* might come from the diagonal of A,

even better is a Rayleigh quotient XT Ax/xT x). If,\* is close to Amin then (A -,\* n- 1 

has the very large eigenvalue ( Amin -,\ * )- 1
. Each shifted inverse power step multiplies 

the eigenvector by this big number, and that eigenvector quickly dominates. 

2 The QR Method This is a major achievement in numerical linear algebra. Sixty years 
ago, eigenvalue computations were slow and inaccurate. We didn't even realize that solving 
det(A - ,\J) = 0 was a terrible method. Jacobi had suggested earlier that A should 
gradually be made triangular-then the eigenvalues appear automatically on the diagonal. 
He used 2 by 2 rotations to produce off-diagonal zeros. (Unfortunately the previous zeros 
can become nonzero again. But Jacobi's method made a partial comeback with parallel 
computers.) The QR method is now a leader in eigenvalue computations. 

The basic step is to factor A, whose eigenvalues we want, into QR. Remember from 
Gram-Schmidt (Section 4.4) that Q has orthonormal columns and R is triangular. For 
eigenvalues the key idea is: Reverse Q and R. The new matrix ( same ,\'s) is A1 = RQ. 

The eigenvalues are not changed in RQ because A= QR is similar to A1 = Q-1 AQ: 

A1 = RQ has the same ,\ (12) 

This process continues. Factor the new matrix A1 into Q1R1. Then reverse the factors 
to R1 Q1. This is the similar matrix A2 and again no change in the eigenvalues. Amazingly, 
those eigenvalues begin to show up on the diagonal. Soon the last entry of A4 holds an 
accurate eigenvalue. In that case we remove the last row and column and continue with a 
smaller matrix to find the next eigenvalue. 

Two extra ideas make this method a success. One is to shift the matrix by a multiple of 
I, before factoring into QR. Then RQ is shifted back to give Ak+ 1: 

Ak+l has the same eigenvalues as Ak, and the same as the original Ao = A. A good shift
chooses c near an (unknown) eigenvalue. That eigenvalue appears more accurately on the
diagonal of Ak+1-which tells us a better c for the next step to Ak+2. 

The second idea is to obtain off-diagonal zeros before the QR method starts. An elim­
ination step E will do it, or a Givens rotation, but don't forget E-1 (or,\ will change): 

EAE '� [l 1

-1 1 l U : � l [ 
1 

: 1 l [ i ! i l . Same A's.

We must leave those nonzeros 1 and 4 along one subdiagonal. More E's could remove 
them, but E- 1 would fill them in again. This is a "Hessenberg matrix" (one nonzero 
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subdiagonal). The zeros in the lower left corner will stay zero through the QR method. The operation count for each QR factorization drops from O(n3) to O(n2). Golub and Van Loan give this example of one shifted QR step on a Hessenberg matrix. The shift is 7 I, taking 7 from all diagonal entries of A (then shifting back for A1 ): 

[1 2 A= 4 5 0 .001 �] [-

.5

4 
leads to A1 = 0.31 1.69 0.835

] 6.53 -6.656 ..00002 7.012 
Factoring A- 7 I into QR produced A1 = RQ + 7 I. Notice the very small number .00002. The diagonal entry 7.012 is almost an exact eigenvalue of A1 , and therefore of A. Another 
QR step on A1 with shift by 7.0121 would give terrific accuracy. 

For a few eigenvalues of a large sparse matrix I would look to ARPACK.Problems 25-27 describe the Arnoldi iteration that orthogonalizes the basis-each step has only three terms when A is symmetric. The matrix becomes tridiagonal: a wonderful start for computing eigenvalues. 
Problem Set 11.3 

Problems 1-12 are about iterative methods for Ax = b. 

1 Change Ax = b to x = (I -A)x + b. What are S and T for this splitting? What matrix s- 1 y controls the convergence of Xk+l = (I - A)xk + b?

2 If A is an eigenvalue of A, then __ is an eigenvalue of B = I - A. The real eigenvalues of B have absolute value less than 1 if the real eigenvalues of A lie between and 
3 Show why the iteration Xk+l = (I -A)xk + b does not converge for A= [ _i -�]. 

4 Why is the norm of Bk never larger than II BIi k? Then IIBII < 1 guarantees that the powers Bk approach zero (convergence). No surprise since l>-lmax is below IIBll-
5 If A is singular then all splittings A = S - T must fail. From Ax = 0 show that 

s- 1
rx = X. So this matrix B = s- 1r has>.= 1 and fails. 

6 Change the 2's to 3's and find the eigenvalues of s- 1 y for Jacobi's method: 
Sxk+l = Txk + b is [ � �] Xk+l = [ � �] Xk + b.

7 Find the eigenvalues of s- 1 y for the Gauss-Seidel method applied to Problem 6: 

Does l>-lmax for Gauss-Seidel equal l>-l�ax for Jacobi? 
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8 For any 2 by 2 matrix [ � �] show that [>-[max equals [be/ ad[ for Gauss-Seidel and
[be/ ad[ 1 /2 for Jacobi. We need ad =f. 0 for the matrix S to be invertible. 

9 Write a computer code (MATLAB or other) for the Gauss-Seidel method. You can
define S and T from A, or set up the iteration loop directly from the entries aij. Test
it on the -1, 2, -1 matrices A of order 10, 20, 50 with b = (1, 0, ... , 0). 

10 The Gauss-Seidel iteration at component i uses earlier parts of xnew :

Gauss-Seidel
i-1 n 

xnew = xold + J__ (b _� a · xnew _� a · ·xold), , a.. i L.., ,1 1 L.., ,1 1 
. 

ii j=l j=i 

If every xrew 
= 

x?1d how does this show that the solution X is correct? How does 
the formula change for Jacobi's method? For SOR insert w outside the parentheses.

11 Divide equation ( 10) by A� and explain why I >-2 / A1 I controls the convergence of the
power method. Construct a matrix A for which this method does not converge. 

12 The Markov matrix A = [ :i J] has A = 1 and .6, and the power method Uk 

Ak u0 converges to [ :��]. Find the eigenvectors of A- 1 . What does the inverse
power method u_ k = A-k u0 converge to (after you multiply by .6k)?

13 The tridiagonal matrix of size n - 1 with diagonals -1, 2, -1 has eigenvalues
Aj = 2 - 2cos(j1r/n). Why are the smallest eigenvalues approximately (j1r/n)2?
The inverse power method converges at the speed >-i/ >-2 :::::: 1 / 4. 

14 For A = [ _i -�] apply the power method Uk+i = Auk three times starting with
u0 = [ 5]. What eigenvector is the power method converging to?

15 For A= -1, 2, -1 matrix, apply the inverse power method Uk+l = A- 1 uk three
times with the same u0. What eigenvector are the Uk 's approaching? 

16 In the QR method for eigenvalues when A is shifted to make A22 = 0, show that the
2, 1 entry drops from sin 0 in A= 

QR to - sin3 0 in RQ. (Compute Rand RQ.)
This "cubic convergence" makes the method a success: 

A
= [c�s0 sin0 ] =QR

= [c�s0 - sin0 ] [1 ?] 
sm 0 0 sm 0 cos 0 0 ? ·

17 If A is an orthogonal matrix, its QR factorization has Q = __ and R = __ .
Therefore RQ = __ . These are among the rare examples when the QR method 
goes nowhere. 

18 The shifted QR method factors A - cl into QR. Show that the next matrix A1 =
RQ + cl equals Q- 1 AQ. Therefore A1 has the __ eigenvalues as A (but A1 is
closer to triangular). 
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19 When A= AT , the "Lanczas method" finds a's and b's and orthonormal q's so that 
Aq

j 
= bj-lQj-l + ajq

j 
+ bjq

j+l (with q0 = 0). Multiply by qJ to find a formula
for aj. The equation says that AQ = QT where Tis a tridiagonal matrix. 

20 The equation in Problem 19 develops from this loop with b0 = 1 and r0 = any q1 : 

q
j+l = rj/bj; j = j + l; aj = Qf A%; Tj = Aq

j 
-bj-1 %-l -ajq

j; bj = llrj II­

Write a code and test it on the -1, 2, -1 matrix A. QT Q should be I. 

21 Suppose A is tridiagonal and symmetric in the QR method. From A1 = Q- 1 AQ 
show that A1 is symmetric. Write A1 = RAR-1 to show that A1 is also tridiagonal.
(If the lower part of A1 is proved tridiagonal then by symmetry the upper part is too.) 
Symmetric tridiagonal matrices are the best way to start in the QR method. 

Problems 22-25 present two fundamental iterations. Each step involves Aq or Ad. 

The key point for large matrices is that matrix-vector multiplication is much faster 

than matrix-matrix multiplication. A crucial construction starts with a vector b. Re­
peated multiplication will produce Ab, A2b, ... but those vectors are far from orthogonal. 
The "Arnoldi iteration" creates an orthonormal basis q 1 , q2 , ... for the same space by the 
Gram-Schmidt idea: orthogonalize each new Aqn against the previous q 1 , . . .  , qn-l · The
"Krylov space" spanned by b, Ab, ... , An-lb then has a much better basis q

1 , ... , qn.

Here in pseudocode are two of the most important algorithms in numerical linear 
algebra: Arnoldi gives a good basis and CG gives a good approximation to x = A- 1 b. 

Arnoldi Iteration 

Q 1 = b/llbll 
for n = 1 to N - 1 

V =Aqn 

for j = 1 ton

hjn = qJv 
V = V - hjn Qj 

hn+l,n = llvll 
qn+l = v/hn+l,n 

Conjugate Gradient Iteration for Positive Definite A 
xo = O,ro = b,do = ro 
forn = 1 to N 

O!n = (rJ_ 1 Tn- 1)/(dJ_ 1 Adn-d step length Xn-1 to Xn 

Xn = Xn-1 + andn-1 approximate solution 
Tn = Tn-1 - anAdn-1 new residual b - Axn 

f3n = (rJrn)/(rJ_ 1rn-1) improvement this step 
dn = Tn + f3ndn-l next search direction 

% Notice: only 1 matrix-vector multiplication Aq and Ad 

For conjugate gradients, the residuals Tn are orthogonal and the search directions are A­
orthogonal: all d'J Adk = 0. The iteration solves Ax = b by minimizing the error e T Ae 
over all vectors in the Krylov space= span of b, Ab, ... , An-1b. It is a fantastic algorithm.

22 For the diagonal matrix A = diag([l 2 3 4]) and the vector b = (1, 1, 1, 1), 
go through one Arnoldi step to find the orthonormal vectors q

1 
and q

2. 
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23 Arnoldi's method is finding Q so that AQ = QH (column by column): 

H is a "Hessenberg matrix" with one nonzero subdiagonal. Here is the crucial fact 
when A is symmetric: The Hessenberg matrix H = Q- 1 AQ = QT AQ is 

symmetric and therefore it is tridiagonal. Explain that sentence. 

24 This tridiagonal H (when A is symmetric) gives the Lanc:ws iteration: 

Three terms only 

From H = Q- 1 AQ, why are the eigenvalues of H the same as the eigenvalues 
of A? For large matrices, the "Lanczos method" computes the leading eigenvalues 
by stopping at a smaller tridiagonal matrix H k. The QR method in the text is applied 
to compute the eigenvalues of H k. 

25 Apply the conjugate gradient method to solve Ax = b = ones(lOO, 1), where A is 
the -1, 2, -1 second difference matrix A= toeplitz([2 - 1 zeros(l, 98)]). Graph 
x10 and x20 from CG, along with the exact solution x. (Its 100 components are 
Xi = (ih - i2 h2)/2 with h = 1/101. "plot(i, x(i))" should produce a parabola.) 

26 For unsymmetric matrices, the spectral radius p = max I Ai I is not a norm. 
But still IIAn ll grows or decays like pn for large n. Compare those numbers for 
A= [1 1; 0 1.1] using the command norm. 

An -+ 0 if and only if p < 1. When A= s- 1r, this is the key to convergence. 



Chapter 12 

Linear Algebra in Probability & Statistics 

12.1 Mean, Variance, and Probability 

We are starting with the three fundamental words of this chapter : mean, variance, and 

probability. Let me give a rough explanation of their meaning before I write any formulas : 

The mean is the average value or expected value

The variance o-2 measures the average squared distance from the mean m

The probabilities of n different outcomes are positive numbers p1, ... , Pn adding to 1.

Certainly the mean is easy to understand. We will start there. But right away we have 
two different situations that you have to keep straight. On the one hand, we may have 
the results (sample values) from a completed trial. On the other hand, we may have the 
expected results (expected values) from future trials. Let me give examples: 

Sample values Five random freshmen have ages 18, 17, 18, 19, 17 
Sample mean g(18 + 17 + 18 + 19 + 17) = 17.8 
Probabilities The ages in a freshmen class are 17 (20%), 18 (50%), 19 (30%) 

A random freshman has expected age E [x] = (0.2) 17 + (0.5) 18 + (0.3) 19 = 18.1 

Both numbers 17.8 and 18.1 are correct averages. The sample mean starts with N samples
x1, ... , x N from a completed trial. Their mean is the average of the N observed samples : 

Sample mean 
1 

m =µ=-(xi+ X2 + • • • + XN) 
N 

535 

(1)
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The expected value of x starts with the probabilities p1, ... , Pn of the ages x 1, ... , Xn : 

Expected value m = E[x] = P1X1 + P2X2 + · · · + PnXn- (2) 

This is p · x. Notice that m = E[x] tells us what to expect, m = µ tells us what we got. 

By taking many samples (large N), the sample results will come close to the proba­
bilities. The "Law of Large Numbers" says that with probability 1, the sample mean will 
converge to its expected value E[x] as the sample size N increases. A fair coin has prob­
ability p0 = ½ of tails and p1 = ½ of heads. Then E [ x] = ( ½) 0 + ½ ( 1). The fraction of 
heads in N flips of the coin is the sample mean, expected to approach E [ x] = ½.

This does not mean that if we have seen more tails than heads, the next sample is likely 
to be heads. The odds remain 50-50. The first 100 or 1000 flips do affect the sample mean. 
But 1000 flips will not affect its limit-because you are dividing by N --+ oo. 

Variance (around the mean) 

The variance a2 measures expected distance (squared) from the expected mean E[x]. 
The sample variance S2 measures actual distance (squared) from the sample mean. The 
square root is the standard deviation a or S. After an exam, I emailµ and S to the class. 
I don't know the expected mean and variance because I don't know the probabilities p1 to 
p100 for each score. (After teaching for 50 years, I still have no idea what to expect.) 

The deviation is always deviation from the mean-sample or expected. We are looking 
for the size of the "spread" around the mean value x = m. Start with N samples. 

Sample variance 2 1 [ 2 2
] S = -- (x1 - m) + · · · + (xN - m) 

N-1
(3) 

The sample ages x = 18, 17, 18, 19, 17 have mean m = 17.8. That sample has variance 0.7: 

s2 = i [(.2)2 + (-.8)2 + (.2)2 + (1.2)2 + (-.8)2 ] = i(2.8) = 0.1

The minus signs disappear when we compute squares. Please notice ! Statisticians divide 
by N - l = 4 (and not N = 5) so that S2 is an unbiased estimate of o-2 . One degree of 
freedom is already accounted for in the sample mean. 

An important identity comes from splitting each (x - m)2 into x2 - 2mx + m2 : 

sum of (xi - m)2 = (sum of x;) - 2m(sum of xi)+ (sum of m2 ) 

= (sum of x;) - 2m(Nm) + Nm2 

sumof(xi - m) 2 = (sumofx;) - Nm2
. (4) 

This is an equivalent way to find (x 1 - m)2 + · · · + (xN - m2 ) by adding Xi+···+ xJ.,. 
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Now start with probabilities Pi (never negative!) instead of samples. We find expected 
values instead of sample values. The variance 0"

2 is the crucial number in statistics. 

Variance o-2 = E [(x - m) 2] = P1(x1 - m) 2 
+ · · · + Pn (Xn - m) 2

. (5)

We are squaring the distance from the expected value m = E[x]. We don't have samples, 
only expectations. We know probabilities but we don't know experimental outcomes. 

Example 1 Find the variance 0"
2 of the ages of college freshmen. 

Solution The probabilities of ages Xi = 17, 18, 19 were Pi = 0.2 and 0.5 and 0.3. 
The expected value was m = L PiXi = 18.1. The variance uses those same probabilities: 

o-2 
= (0.2)(17 - 18.1)2 + (0.5)(18 - 18.1)2 + (0.3)(19 - 18.1)2 

= (0.2)(1.21) + (0.5)(0.01) + (0.3)(0.81) = 0.49. 

The standard deviation is the square root o- = 0. 7. 
This measures the spread of 17, 18, 19 around E[x], weighted by probabilities .2, .5, .3. 

Continuous Probability Distributions 

Up to now we have allowed for n possible outcomes x1, ... , Xn- With ages 17, 18, 19, 
we only had n = 3. If we measure age in days instead of years, there will be a thousand 
possible ages (too many). Better to allow every number between 17 and 20-a continuum 
of possible ages. Then the probabilities p1, P2, p3 for ages x1, x2, X3 have to move to a 
probability distribution p( x) for a whole continuous range of ages 17 ::; x :=; 20. 

The best way to explain probability distributions is to give you two examples. They 
will be the uniform distribution and the normal distribution. The first (uniform) is easy. 
The normal distribution is all-important. 

Uniform distribution Suppose ages are uniformly distributed between 17.0 and 20.0. 
All ages between those numbers are "equally likely". Of course any one exact age has no 
chance at all. There is zero probability that you will hit the exact number x = 17.1 or 
x = 17 + y'2. What you can truthfully provide (assuming our uniform distribution) is 
the chance F ( x) that a random freshman has age less than x : 

The chance of age less than x = l 7 is F(l 7) = 0 
The chance of age less than x = 20 is F(20) = 1 
The chance of age less than xis F( x) = ½ ( x - 17) 

x :=; 17 won't happen 
x :=; 20 will happen 
F goes from 0 to 1 

That formula F(x) = ½(x - 17) gives F = 0 at x = l 7; then x :=; 17 won't happen. It 
gives F(x) = 1 at x = 20; then x :=; 20 is sure. Between 17 and 20, the graph of the 
cumulative distribution F ( x) increases linearly for this uniform model. 
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Let me draw the graphs of F(x) and its derivative p(x) = "probability density function". 

17 20 

cumulative F(x) = 

probability that a 
sample is below x

F(x) = ½(x - 17)

X 

"pdf" p (x) = 

probability that a 
sample is near x 

dF 
r-----.p(x) = -d-x

p = ½ 
X 

17 20 

Figure 12.1: F ( x) is the cumulative distribution and its derivative p( x) = dF / dx is the 
probability density function (pdf). For this uniform distribution, p( x) is constant between 
17 and 20. The total area under the graph of p( x) is the total probability F = 1. 

You could say that p(x) dx is the probability of a sample falling in between x and 
x + dx. This is "infinitesimally true": p(x) dx is F(x + dx) - F(x). Here is the full truth: 

b 

F = integral ofp Probability of a ::S: x ::S: b = j p(x) dx = F(b) - F(a) (6)

a 

F(b) is the probability of x :S b. I subtract F(a) to keep x 2". a. That leaves a :S x :S b.

Mean and Variance of p( x) 

What are the mean m and variance a2 for a probability distribution? Previously we added 
PiXi to get the mean (expected value). With a continuous distribution we integrate xp(x): 

20 

Mean m = E[x] = j xp(x) dx = j (x) (1) dx = 18.5 
m=17 

For this uniform distribution, the mean m is halfway between 17 and 20. Then the 
probability of a random value x below this halfway point m = 18.5 is F(m) = ½-

In MATLAB, x = rand (1) chooses a random number uniformly between O and 1. 
Then the expected mean ism = ½- The interval from Oto x has probability F(x) = x.
The interval below the mean m always has probability F(m) = ½-

The variance is the average squared distance to the mean. With N outcomes, a2 is the 
sum of Pi ( Xi -m) 2 • For a continuous random variable x, the sum changes to an integral.

Variance o-2 
= E [(x - m) 2 ] = j p(x) (x - m) 2 dx (7)
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When ages are uniform between 17 ::; x :=; 20, the integral can shift to 0 ::; x :=; 3 :

2 
1 

2 
1 

2 
1 3 2 3 3 

w 

3 
lx=

3 
17 = j-(x - 18 5) dx = j-(x - 1 5) dx = -(x - 1 5) = -(1 5) = -

3 . 3 
. 

9 
. 

9 
. 

4·
17 0 x=O 

That is a typical example, and here is the complete picture for a uniform p(x), 0 to a. 

l X 

Uniformdistribution forO S x Sa Density p(x) = - Cumulative F(x) = -
a a 

Mean m = - halfway
2 

fa 1 ( a
)

2 a2 

Variance u2 = - x - - dx = -a 2 12 
0 

(8) 

The mean is a multiple of a, the variance is a multiple of a2 . For a = 3, <7
2 = i92 

= f
For one random number between 0 and 1 ( mean ½) the variance is <7

2 = /
2 

. 

Normal Distribution: Bell-shaped Curve 

The normal distribution is also called the "Gaussian" distribution. It is the most important
of all probability density functions p( x). The reason for its overwhelming importance
comes from repeating an experiment and averaging the outcomes. The experiments have
their own distribution (like heads and tails). The average approaches a normal distribution. 

Central Limit Theorem (informal) The average of N samples of "any" probability
distribution approaches a normal distribution as N -+ oo. 

Start with the "standard normal distribution". It is symmetric around x = 0, so its mean
value ism = 0. It is chosen to have a standard variance <7

2 = 1. It is called N (0, 1).

Standard normal distribution 
1 2; 

p(x) = -- e-x 2_ 
v'2n 

The graph of p( x) is the bell-shaped curve in Figure 12.2. The standard facts are

Total probability = 1 

MeanE[x] = 0 

Variance E [x2] = 1

00 00 

J p(x)dx= � J e-x
2

12dx=l 
-00 -oo 

00 

m = -
1- J xe-x

2

f2 dx = 0
v27r 

-00 

00 

u2 = _l_ J (x - 0)2e-x2
/ 2 dx = l

v27r 
-oo 

(9)
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The zero mean was easy because we are integrating an odd function. Changing x to -x 
shows that "integral= - integral". So that integral must be m = 0. 

The other two integrals apply the idea in Problem 12 to reach 1. Figure 12.2 shows 
a graph of p(x) for the normal distribution N (0, er) and also its cumulative distribution
F(x) = integral of p(x). From the symmetry of p(x) you see mean= zero. From F(x) 
you see a very important practical approximation for opinion polling : 

The probability that a random sample falls between -er and er is F(a') - F(-a) � i, 
a a -a 

This is because J p(x) dx equals J p(x) dx - J p(x) dx = F(cr) - F(-cr). 
-(j -(X) -(X) 

Similarly, the probability that a random x lies between -2cr and 2cr ("less than 
two standard deviations from the mean") is F(2cr) - F(-2cr) � 0.95. If you have an 
experimental result further than 2cr from the mean, it is fairly sure to be not accidental : 
chance = 0.05. Drug tests may look for a tighter confirmation, like probability 0.001. 
Searching for the Higgs boson used a hyper-strict test of 5cr deviation from pure accident. 

-2cr -er 0 CT 2cr 

.98 
X 

.84 

J F(x) = p(x) dx

F(O) = � 
-ex, 

.16 

.02 -=----'----'-----'-----' 

-2cr -CT 0 CT 2cr 

Figure 12.2: The standard normal distribution p ( x) has mean m = 0 and er = 1. 

The normal distribution with any mean m and standard deviation er comes by shifting 
and stretching the standardN (0, 1). Shift x to x - m. Stretch x - m to (x - m)/a. 

Gaussian density p( x) 

Normal distribution N ( m, a) 
p(x) = 

_1_ e-(x - m) 2 /2a2 

av'21r 
(10) 

The integral of p(x) is F(x)-the probability that a random sample will fall below x. 
The differential p(x) dx = F(x + dx) - F(x) is the probability that a random sample
will fall between x and x + dx. There is no simple formula to integrate e-x2 

/
2

, so
this cumulative distribution F ( x) is computed and tabulated very carefully.
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N Coin Flips and N --+ oo 

Example 2 Suppose xis 1 or -1 with equal probabilities p1 = p_ 1 = ½. 
The mean value ism= ½(1) + ½(-1) = 0. The variance is u2 = ½(1)2 

+ ½(-1)2 = 1.

The key question is the average AN = ( x 1 + · · · + x N) / N. The independent Xi 

are ±1 and we are dividing their sum by N. The expected mean of AN is still zero.
The law of large numbers says that this sample average approaches zero with probability 1.
How fast does AN approach zero? What is its variance u'f..?

(J.2 CT2 CT2 CT2 1 
By linearity u'fv = N2 

+ N2 
+ · · · + N2 

= N N2 
= N since CT2 = 1. (11)

Example 3 Change outputs from 1 or -1 to x = 1 or x = 0. Keep p1 = p0 = ½-
The new mean value m = ½ falls halfway between 0 and 1. The variance moves to u2 = ¼ :

1 1 1 
m = -(1) + -(0) = -

2 2 2 
1 

( 
1
)

2 1 
( 

1
)

2 

and u2 = 2 1 - 2 + 2 0 -
2 

1
4

1 1 1 1 
The average AN now has mean - and variance --

2 
+ · · · + --

2 
= - = u'fv. (12)

2 4N 4N 4N 

This CTN is half the size of CTN in Example 2. This must be correct because the new range
0 to 1 is half as long as -1 to 1. Examples 2-3 are showing a law of linearity.

The new 0 - 1 variable xnew is ½ Xold + ½. So the mean m is increased to ½ and
the variance is multiplied by ( ½) 

2

. A shift changes m and the rescaling changes CT2
. 

Linearity Xnew = aXoJd + b has ffinew = amold + b and u2new = a2 u2oJd· (13)

Here are the results from three numerical tests: random 0 or 1 averaged over N trials.

[48 l's from N = 100] [5035 l's from N = 10000] [19967 l's from N = 40000].

The standardized X = (x - m)/CT = (AN - ½) / 2vN was [-.40] [.70] [-.33].

The Central Limit Theorem says that the average of many coin flips will approach a
normal distribution. Let us begin to see how that happens: binomial approaches normal. 

For each flip, the probability of heads is ½. For N = 3 flips, the probability of heads
all three times is ( ½) 3 = ½. The probability of heads twice and tails once is j,
from three sequences HHT and HTH and THH. These numbers ½ and ¾ are pieces of
( ½ + ½) 3 = ½ + ¾ + ¾ + ½ = 1. The average number of heads in 3 flips is 1.5.

1 3 3 3 6 3
Mean m = (3 heads)

8 
+ (2 heads)

8 
+ (1 head)

8 
+ 0 = 

8 
+ 

8 
+ 

8 
= 1.5 heads
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With N flips, Example 3 ( or common sense) gives a mean of rn = :E Xi Pi = ½ N heads. 

The variance 0'
2 is based on the squared distance from this mean N /2. With N = 3 

the variance is 0'
2 = ¾ (which is N / 4). To find 0'

2 we add ( Xi - m )2 Pi with m = 1.5 : 

2 21 
2

3 
2

3 
2

1 9+3+3+9 3 u = (3-1.5) - + (2-1.5) - + (1-1.5) - + (0-1.5) -= ----= -.
8 8 8 8 32 4 

For any N, the variance is u'f.., = N/4. Then O'N = ,/Fi /2. 
Figure 12.3 shows how the probabilities of 0, 1, 2, 3, 4 heads in N = 4 flips come 

close to a bell-shaped Gaussian. That Gaussian is centered at the mean value N /2 = 2. 
To reach the standard Gaussian (mean O and variance 1) we shift and rescale that graph. 
If x is the number of heads in N flips-the average of N zero-one outcomes-then x is 
shifted by its mean m = N /2 and rescaled by O' = ,/Fi /2 to produce the standard X : 

Shifted and scaled 
X -rn 

X=--­
u v'IV/2 

(N = 4 has X = x -2) 

Subtracting rn is "centering" or "detrending". The mean of Xis zero.

Dividing by u is "normalizing" or "standardizing". The variance of Xis 1. 

p(x) = 1 
uniform 

PN/2 � J2li'N/'•',
I \ 

1-' binomial \,
1 approaches \ M heads 

area= 1 1 
16 

1
I Gaussian \ N flips 

I 
1 I 1 

/ -2 O 2 M=O N 2 N 

Figure 12.3: The probabilities p (l, 4, 6, 4, 1) /16 for the number of heads in 4 flips. 
These Pi approach a Gaussian distribution with variance 0'

2 = N / 4 centered at m = N /2. 
For X, the Central Limit Theorem gives convergence to the normal distribution N(O, 1). 

It is fun to see the Central Limit Theorem giving the right answer at the center point 
X = 0. At that point, the factor e-X

2 

/
2 equals 1. We know that the variance for N coin 

flips is 0'
2 = N / 4. The center of the bell-shaped curve has height 1 / v'21m2 = )2 / N 1r. 

What is the height at the center of the coin-flip distribution p0 to PN (the binomial 
distribution)? For N = 4, the probabilities for 0, 1, 2, 3, 4 heads come from(½+ ½) 4. 

6 
Center probability -

16 
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The binomial theorem in Problem 8 tells us the center probability PN/2 for any even N:

The center probability ( � heads, � tails) is
1 N!

2 N (N/2)! (N/2)!

For N = 4, those factorials produce 4!/2! 2! = 24/4 = 6. For large N, Stirling's formula
v'21r N(N/ e)N is a close approximation to N!. Use Stirling for N and twice for N/2: 

Limit of coin-flip 

Center probability 

1 /2'iN(N/e)N y'2 1 
PN/2 � 2 N wN(N/2e)N 

= 
,j;"Fi 

= 
,,/'h<J

. (14) 

At that last step we used the variance <J2 = N / 4 for the coin-tossing problem. The result
1/,,/'h<J matches the center value (above) for the Gaussian. The Central Limit Theorem
is true: The "binomial distribution" approaches the normal distribution as N --+ oo. 

Monte Carlo Estimation Methods 

Scientific computing has to work with errors in the data. Financial computing has to work
with unsure numbers and uncertain predictions. All of applied mathematics has moved
to accepting uncertainty in the inputs and estimating the variance in the outputs. 

How to estimate that variance? Often probability distributions p(x) are not known.
What we can do is to try different inputs b and compute the outputs x and take an average.
This is the simplest form of a Monte Carlo method (named after the gambling palace
on the Riviera, where I once saw a fight about whether the bet was placed in time).
Monte Carlo approximates an expected value E[x] by a sample average (x 1 + · · · +xN )/ N.

Please understand that every Xk can be expensive to compute. We are not just flip­
ping coins. Each sample comes from a set of data bk . Monte Carlo randomly chooses this
data bk , it computes the outputs Xk , and then it averages those x's. Decent accuracy for
E[x] often requires many samples band huge computing cost. The error in approximating
E[x] by (x 1 + · · ·+XN )/N is normally of order 1/vN. Slow improvement as N increases. 

That 1/ vN estimate came for coin flips in equation (11). Averaging N independent
samples x k of variance <J2 reduces the variance to <J2 / N. 

"Quasi-Monte Carlo" can sometimes reduce this variance to <J2 / N2 : a big difference!
The inputs bk are selected very carefully-not just randomly. This QMC approach is
surveyed in the journal Acta Numerica 2013. The newer idea of "Multilevel Monte Carlo"
is outlined by Michael Giles in Acta Numerica 2015. Here is how it works. 

Suppose it is much simpler to simulate another variable y(b) close to x(b). Then use
N computations of y(bk) and only N* < N computations of x(bk) to estimate E[x].

2-level Monte Carlo 
1 N 1 N* 

E[x] � - L y(bk) + - L [x(bk) - y(bk)].
N i N* i 
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The idea is that x - y has a smaller variance CJ* than the original x. Therefore N* can 
be smaller than N, with the same accuracy for E[x]. We do N cheap simulations to find 
the y's. Those cost C each. We only do N* expensive simulations involving x's. Those 
cost C* each. The total computing cost is NC+ N*C*. 

Calculus minimizes the overall variance for a fixed total cost. The optimal ratio N* / N 
is JC/ C* CJ*/ CJ. Three-level Monte Carlo would simulate x, y, and z : 

1 N 1 N* 1 N** 
E[x] � N

L z(bk) + N* 
L [y(bk) - z(bk)] + N** L [x(bk) - y(bk)].

1 1 1 
Giles optimizes N, N*, N**, ... to keep E[x] :s; fixed E0 , and provides a MATLAB code. 

Review : Three Formulas for the Mean and the Variance 

The formulas for m and CJ
2 are the starting point for all of probability and statistics. There 

are three different cases to keep straight: sample values Xi , expected values (discrete Pi), 
and a range of expected values ( continuous p( x) ). Here are the mean and the variance: 

Samples X 1 to X N 

n possible outputs

with probabilities Pi 

m= 
X1+···+XN 

S2 = 
(X1-m) 2 +···+(XN-m) 2 

N N-1
n 

m = I:: PiXi 

1 

Range of outputs 
m=fxp(x)dx 

with probability density 

n 
a2 = I:: Pi (Xi - m)2 

1 

a2 = f (x -m) 2p(x)dx 

A natural question: Why are there no probabilities p on the first line? How can these 
formulas be parallel ? Answer : We expect a fraction Pi of the samples to be X = Xi . If 
this is exactly true, X = Xi is repeated PiN times. Then lines 1 and 2 give the same m. 

When we work with samples, we don't know the Pi · We just include each output X 
as often as it comes. We get the "empirical" mean instead of the expected mean. 

Problem Set 12.1 

1 Add 7 to every output x. What happens to the mean and the variance? 
What are the new sample mean, the new expected mean, and the new variance? 

2 We know: ½ of all integers are divisible by 3 and t of integers are divisible by 7. 
What fraction of integers will be divisible by 3 or 7 or both ? 

3 Suppose you sample from the numbers 1 to 1000 with equal probabilities 1/1000. 
What are the probabilities p0 to pg that the last digit of your sample is 0, ... , 9? 
What is the expected mean m of that last digit? What is its variance CJ2 ? 

4 Sample again from 1 to 1000 but look at the last digit of the sample squared. That 
square could end with x = 0, 1, 4, 5, 6, or 9 .  What are the probabilities Po,Pi, p4,p5, 
p6, pg? What are the ( expected) mean m and variance CJ

2 of that number x? 
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5 (a little tricky) Sample again from 1 to 1000 with equal probabilities and let x be the 
first digit (x = l if the number is 15). What are the probabilities p1 to p9 (adding to 1) of x = l, ... , 9? What are the mean and variance of x? 

6 Suppose you have N = 4 samples 157,312, 696, 602 in Problem 5. What are the first digits x1 to x4 of the squares? What is the sample meanµ? What is the sample variance S2 ? Remember to divide by N -1 = 3 and not N = 4. 
7 Equation (4) gave a second equivalent form for 82 (the variance using samples):1 1 S2 = -- sum of (xi -m) 2 = -- [(sum of x;) -Nm2]. 

N-l N -1 Verify the matching identity for the expected variance u2 (using m = I; Pi Xi): o-2 
= sum of p; (x; - rn) 2 

= (sum of Pix:} -rn2. 

8 If all 24 samples from a population produce the same age x = 20, what are the sample meanµ and the sample variance 82 ? What if x = 20 or 21, 12 times each ? 
9 Computer experiment as on page 541: Find the average A1000000 of a million random 0-1 samples! What is X = (AN - ½) /2vN? 
10 The probability Pi to get i heads in N coin flips is the binomial number bi = ( �) 

divided by 2N. The bi add to (1 + 1 )N = 2N so the probabilities Pi add to l. 
(1 l)N 1 . N! Po+···+ PN = '.2 + 

2 
= 2N 

( bo + · · · + bN ) with bi = i! (N _ i)! 
24 24 24 1 N= 4 leads tob0 = 24

, b1 = (l)(6
) = 4, b2 = (2)(2) = 6, Pi = 16 

(1,4, 6,4, 1).
Notice bi = bN-i · Problem: Confirm that the mean m = 0p0+· · ·+NpN equals If.

11 For any function f ( x) the expected value is E[f] = 'I', Pi f (Xi) or J p( x) f ( x) dx(discrete probability or continuous probability). Suppose the mean is E[x] = m andthe variance is E[(x -m) 2 ] = u2 . Whatis E[x2]? 
12 Show that the standard normal distribution p( x) has total probability J p( x) dx = las required. A famous trick multiplies J p( x) dx by J p(y) dy and computes theintegral over all x and ally (-oo to oo). The trick is to replace dx dy in that doubleintegral by r dr d0 (polar coordinates with x2 

+ y2 = r2
). Explain each step: 

00 

21r jp(x) dx 
-00 

00 00 27f 00 

j�(y)dy = fje-(x2
+Y

2 ll2 dxdy = J Je-r2 12rdrd0 = 2-rr. 
-oo -oo 0 = 0 r = 0 
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12.2 Covariance Matrices and Joint Probabilities 

Linear algebra enters when we run M different experiments at once. We might measure 
age and height and weight (M = 3 measurements of N people). Each experiment 
has its own mean value. So we have a vector m = (m1, m2, m3) containing the M
mean values. Those could be sample means of age and height and weight. Or m1, m2, m3 
could be expected values of age, height, weight based on known probabilities. 

A matrix becomes involved when we look at variances. Each experiment will have a 
sample variance S; or an expected a} = E [(xi - mi) 2 ] based on the squared distance 
from its mean. Those M numbers O"r, ... , O"i will go on the main diagonal of the matrix. 
So far we have made no connection between the M parallel experiments. They measure 
M different random variables, but the experiments are not necessarily independent! 

If we measure age and height and weight (a, h, w) for children, the results will be 
strongly correlated. Older children are generally taller and heavier. Suppose the means 
ma , mh, mw are known. Then O"�, O"�, O"! are the separate variances in age, height, weight. 
The new numbers are the covariances like u ah, where age multiplies height.

Covariance u ah = E [ ( age - mean age) (height - mean height)]. (1) 

This definition needs a close look. To compute O"ah, it is not enough to know the 
probability of each age and the probability of each height. We have to know the joint
probability of each pair (age and height). This is because age is connected to height. 

Pah = probability that a random child has age = a and height = h: both at once 

Pij = probability that experiment 1 produces Xi and experiment 2 produces Yj 
Suppose experiment 1 (age) has mean m1. Experiment 2 (height) has mean m2. The 
covariance in (1) between experiments 1 and 2 looks at all pairs of ages Xi, heights y1: 

Covariance U12 = I: I: Pij(Xi - m1)(Yj - m2) 
all i, j

(2) 

To capture this idea of "joint probability Pij" we begin with two small examples. 

Example 1 Flip two coins separately. With 1 for heads and O for tails, the results can be 
(1, 1) or (1, 0) or (0, 1) or (0, 0). Those four outcomes all have probability p11 = p1o = 
Poi= Poo = ¼- Independent experiments have Prob of ( i, j) = (Prob of i) (Prob of j). 

Example 2 Glue the coins together, facing the same way. The only possibilities are 
(1, 1) and (0, 0). Those have probabilities ½ and ½- The probabilities p10 and p01 are zero. 
(1, 0) and (0, 1) won't happen because the coins stick together: both heads or both tails. 

Probability matrices 
for Examples 1 and 2 P=[! il· 
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Let me stay longer with P, to show it in good matrix notation. The matrix shows the prob­
ability Pij of each pair (Xi, Yj )-starting with ( x1, Y1) = (heads, heads) and ( x1, Y2) 

(heads, tails). Notice the row sums Pi and column sums Pj and the total sum = 1.

Probability matrix p = [ Pn P12 ] 
Pn + P12 = P1 

( 
fir�t 

)
P21 P22 P21 + P22 = P2 com 

(second coin) column sums P1 P2 4 entries add to 1

Those numbers p1, P2 and Pi, P2 are called the marginals of the matrix P:

Pl = P11 + P12 = chance of heads from coin 1 (coin 2 can be heads or tails)
Pi = p11 + p21 = chance of heads from coin 2 (coin 1 can be heads or tails)

Example 1 showed independent variables. Every probability Pij equals Pi times Pj(½ times ½ gave Pij = ¼ in that example). In this case the covariance u12 will be zero.
Heads or tails from the first coin gave no information about the second coin. 

Zero covariance u12 

for independent trials O ] d' 1 . . 2 = iagona covariance matrix.
O' 2 

Independent experiments have 0'12 = 0 because every Pij = (Pi) (Pj) in equation (2):

The glued coins show perfect correlation. Heads on one means heads on the other.
The covariance 0'12 moves from O to 0"10'2 = ¼-this is the largest possible value of 0'12 : 

1 
Means= -

2 0'12 = � ( 1 - �) ( 1 - �) + 0 + 0 + � ( 0 - �) ( 0 - �) = ¾ 

Heads or tails from coin 1 gives complete information about heads or tails from coin 2 :

Glued coins give largest possible covariances
Singular covariance matrix: determinant = 0

Always Uiu� � ui
2 , Thus 0'12 is between -0"10"2 and 0"10"2. The covariance matrix V

is positive definite (or in this singular case of glued coins, V is positive semidefinite).
That is an important fact about M by M covariance matrices for M experiments. 

Note that the sample covariance matrix S from N trials is certainly semidefinite.
Every new sample X = (age, height, weight) contributes to the sample mean X and to S.

Each term (Xi - X)(Xi - X)T is positive semidefinite and we just add to reach S: 

x 
= _x_1_+_·_·_· _+_x_N_ 

N 

- -T - -T (X1 - X)(X1 - X) + · · · + (XN - X)(XN - X) 
S =

N -1 
(3)
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The Covariance Matrix V is Positive Semidefinite

Come back to the expected covariance o-12 between two experiments 1 and 2 (two coins) : 

expected value of [ ( output l - mean l) times ( output 2 - mean 2)] 
L L Pij (xi - m1) (yj - m2). 
all i, j

(4) 

Pij 2". 0 is the probability of seeing output Xi in experiment 1 and y1 in experiment 2. 
Some pair of outputs must appear. Therefore the N2 probabilities Pij add to 1. 

Total probability (all pairs) is 1 LLPij = l. 
all i, j

(5) 

Here is another fact we need. Fix on one particular output Xi in experiment 1. Allow 
all outputs y1 in experiment 2. Add the probabilities of (xi, Y1), (xi, Y2), ... , (xi, Yn) : 

Row sum Pi of P L Pij = probability Pi of xi in experiment 1. (6) 
j=l 

Some y1 must happen in experiment 2 ! Whether the two coins are completely separate or 
glued together, we still get ½ for the probability PH =PHH+ PHT that coin 1 is heads: 

1 1 1 
(separate) PHH+ PHT = - + - = -4 4 2 

1 1 
(glued) PHH+ PHT = - + 0 = -.

2 2 
That basic reasoning allows us to write one matrix formula that includes the covariance 
o-12 along with the separate variances o-f and o-� for experiment 1 and experiment 2. 
We get the whole covariance matrix V by adding the matrices ¼1 for each pair ( i, j) : 

Covariance matrix 
V = :E :E ¼j 

Off the diagonal, this is equation (2) for the covariance o-12. On the diagonal, we are 
getting the ordinary variances o-f and d. I will show in detail how we get V11 = o-f by 
using equation (6). Allowing all j just leaves the probability Pi of xi in experiment 1 :  

V11 = L LPij(Xi - m1)2 = L (probability ofxi) (xi - m1)2 = a-r (8) 
all i,j all i 

Please look at that twice. It is the key to producing the whole covariance matrix by 
one formula (7). The beauty of that formula is that it combines 2 by 2 matrices ¼1 . 
And the matrix ¼1 in (7) for each pair of outcomes i, j is positive semidefinite:

¼1 has diagonal entries Pi1 (xi-m1)2 2". 0 and Pi1 (y1-m2)2 2". 0 and det(¼1) = 0.
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That matrix ¼j has rank 1. Equation (7) multiplies Pij times column U times row UT : 

(9) 

Every matrix UU
T is positive semidefinite. So the whole matrix V (combining these 

matrices UUT with weights Pij � 0) is at least semidefinite-and probably V is definite. 

The covariance matrix V is positive definite unless the experiments are dependent. 

Now we move from two variables x and y to M variables like age-height-weight. 
The output from each trial is a vector X with M components. (Each child has an age­
height-weight vector with 3 components.) The covariance matrix V is now M by M.

V is created from the output vectors X and their average X = E [ X] 

Covariance matrix V = E [ (X - X) (X - X) T] (10) 

Remember that X XT and XX T = (column) (row) are M by M matrices. 
For M = l (one variable) you see that Xis the mean m and Vis 1J

2 (Section 12.1).
For M = 2 (two coins) you see that Xis (m 1,m2

) and V matches equation (10). The 
expectation E always adds up outputs times their probabilities. For age-height-weight 
the output could be X = (5 years, 31 inches, 48 pounds) and its probability is P5,31,48. 

Now comes a new idea. Take any linear combination c
T X = c1X1 + · · · + cMXM. 

With c = (6, 2, 5) this would be c
T X = 6 (age)+ 2 (height)+ 5 (weight). By linearity 

we know that its expected value E [cT X] is cTE [X] = cT X :  

E [cT X] = cTE [X] = 6 (expected age)+ 2 (expected height)+ 5 (expected weight). 

More than that, we also know the variance 1J2 of that number c TX: 

Variance of cT X=E [(cT X-cT X)(cT X-cT X)T] 

=cTE [(X-X)(X-X)T]c=cT Vc! 
(11) 

Now the key point: The variance of cT X can never be negative. So cT V c 2'. 0. 
The covariance matrix Vis therefore positive semidefinite by the energy test cT V c 2'. 0. 

Covariance matrices V open up the link between probability and linear algebra: 
V equals QAQT with eigenvalues Ai � 0 and orthonormal eigenvectors q

1 
to qM. 

Diagonalizing the covariance matrix means finding M independent

experiments as combinations of the original M experiments. 
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Confession I am not entirely happy with that proof based on cT V c ;:::: 0. The expectation 
symbol Eis burying the key idea of joint probability. Allow me to show directly that Vis 
positive semidefinite (at least for the age-height-weight example). The proof is simply that 
V is the sum of the joint probability Pahw of each combination (age, height, weight)

times the positive semidefinite matrix UUT . Here U is X - X : 

V = L Pahw u uT with 
all a,h,w 

[ 
age l [ mean age l 

U = hei�ht - mean hei�ht
weight mean weight 

This is exactly like the 2 by 2 coin flip matrix V in equation (7). Now M = 3. 

(12) 

The value of the expectation symbol E is that it also allows pdf's (probability density 
functions like p(x, y, z) for continuous random variables x and y and z). If we allow all 
numbers as ages and heights and weights, instead of age i = 0, 1, 2, 3 ... , then we need 
p( x, y, z) instead of Pij k. The sums in this section of the book would all change to integrals. 
But we still have V = E [UUT ] : 

Covariance matrix V = j j j p( x, y, z) UUT dx dy dz
[X -Xi

with U = y - � . (13) 
z-z 

Always J J J p = 1. Examples 1-2 emphasized how p can give diagonal V or singular V: 
Independent variables x, y, z p(x, y, z) = P1 (x) P2(Y) p3(z). 
Dependent variables x, y, z p(x, y, z) = 0 except when ex+ dy + ez = 0. 

The Mean and Variance of z = x + y

Start with the sample mean. We have N samples of x. Their mean(= average) is mx. 
We also have N samples of y and their mean is my. The sample mean of z = x + y 
is clearly mz = mx + my : 

Mean of sum = Sum of means (14) 

Nice to see something that simple. The expected mean of z = x + y doesn't look so 
simple, but it must come out as E[z] = E[x] + E[y]. Here is one way to see this. 

The joint probability of the pair (Xi, yj) is Pij. Its value depends on whether the exper­
iments are independent, which we don't know. But for the mean of the sum z = x + y, 
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dependence or independence of x and y doesn't matter. Expected values still add: 

E[x + y] = L LPij (Xi + Yj) = L LPijXi + L LPijYj · (15) 
j j j 

All the sums go from 1 to N. We can add in any order. For the first term on the right side, 
add the Pij along row i of the probability matrix P to get Pi· That double sum gives E[x] : 

LLPijXi = L(Pil + · · · + PiN)Xi = LPiXi = E[x]. 
j 

For the last term, add Pij down column j of the matrix to get the probability Pj of Yj. 
Those pairs (x1, Yj) and (x2, Yj) and ... and (xN, Yj) are all the ways to produce Yj : 

L LPijYj = L(Plj + ... + PNj)Yj = L Pjyj = E[y]. 
j j j 

Now equation (15) says that E[x + y] = E[x] + E[y]. 
What about the variance of z = x + y? The joint probabilities Pij and the covariance 

CTxy will be involved. Let me separate the variance of x + y into three simple pieces: 

u; = L LPij (Xi + Yj - mx - my)2 

= L LPij (Xi - mx)2 
+ L LPij (Yj - my)2 

+ 2 L LPij (Xi - mx) (yj - my) 
The first piece is u;. The second piece is u�. The last piece is 2u rey. 

The variance of z = x + y is u; = u; + ui + 2urey
• (16) 

The Covariance Matrix for Z = AX 

Here is a good way to see u; when z = x + y. Think of (x, y) as a column vector X. 
Think of the 1 by 2 matrix A = [ 1 1 ] multiplying that vector X. Then AX is the sum 
z = x + y. The variance u; in equation (16) goes into matrix notation as 

which is u2 
- AV AT 

z-

You can see that u; = AV AT in (17) agrees with u� + u� + 2uxy in (16). 

(17) 

Now for the main point. The vector X could have M components corning from M
experiments (instead of only 2). Those experiments will have an M by M covariance 
matrix Vx. The matrix A could be K by M. Then AX is a vector with K combinations 
of the M outputs (instead of 1 combination x + y of 2 outputs). 

That vector Z = AX of length K has a K by K covariance matrix V z. Then the 
great rule for covariance matrices-of which equation (17) was only a 1 by 2 example­
is this beautiful formula: Covariance matrix of AX is A (covariance matrix of X) AT : 

The covariance matrix of Z = AX is V z = AV X A
T (18) 

To me, this neat formula shows the beauty of matrix multiplication. I won't prove this 
formula, just admire it. It is constantly used in applications-corning in Section 12.3. 
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The Correlation p

Correlation Pxy is closely related to covariance O"xy· They both measure dependence or 
independence. Start by rescaling or "standardizing" the random variables x and y 
The new X = x /a"' and Y = y / a y have variance ai = a-} = 1. This is just like
dividing a vector v by its length to produce a unit vector v / I Iv 11 of length 1. 

The correlation of x and y is the covariance of X and Y. If the original covariance
of x and y was O"xy, then rescaling to X and Y will divide by O"x and O"y: 

Uxy 
X y 

Correlation Pxy 
= -- = covariance of - and -

Urr,U
y 

Ux U
y 

Always -1 � Pxy � 1

Zero covariance gives zero correlation. Independent random variables produce Pxy = 0. 

We know that always O"�Y ::;: O"�O"� (the covariance matrix V is at least positive
semidefinite). Then p;,Y � 1. Correlation near p = + l means strong dependence in 
the same direction: often voting the same. Negative correlation means that y tends to be 
below its mean when x is above its mean: Voting in opposite directions. 

Example 3 Suppose that y is just -x. A coin flip has outputs x = 0 or 1. The same flip 
has outputs y = 0 or -1. The mean mx is ½ for a fair coin, and m

y 
is -½. The covariance 

is O"xy = -O"xO"y. The correlation divides by O"xO"y to get Pxy = -1. In this case the 
correlation matrix R has determinant zero (singular and only semidefinite): 

Correlation matrix R - [ 
P

�
y 

P
? ] R= [ 1

-1 

-1 ] 
1 wheny = -x

R always has l's on the diagonal because we normalized to O"x = O"y = l. R is the 
correlation matrix for x and y, and the covariance matrix for X = x / O" x and Y = y / O" y. 

That number Pxy is also called the Pearson coefficient. 

Example 4 Suppose the random variables x, y, z are independent. What matrix is R?

Answer R is the identity matrix. All three correlations Pxx, Pyy, Pzz are 1 by definition. 
All three cross-correlations Pxy, Pxz, Pyz are zero by independence. 

The correlation matrix R comes from the covariance matrix V, when we rescale every 
row and every column. Divide each row i and column i by the ith standard deviation O"i-

(a) R = DVD for the diagonal matrix D = diag [1/ 0"1, ... , 1/ O"Af].

(b) If covariance V is positive definite, correlation R = DVD is also positive definite.



12.2. Covariance Matrices and Joint Probabilities 553 

• WORKED EXAMPLES • 

12.2 A Suppose x and y are independent random variables with mean O and variance 1. 
Then the covariance matrix Vx for X = (x, y) is the 2 by 2 identity matrix. What are the 
mean mz and the covariance matrix Vz for the 3-component vector Z = (x, y, ax+ by)? 

Solution 

Z is connected to X by A 
X 

y 
ax+by l [� :][;] = AX. 

The vector m x contains the means of the M components of X. The vector m z contains 
the means of the K components of Z = AX. The matrix connection between the means 
of X and Z has to be linear: mz = A mx. The mean of ax+ by is amx + bm

y
. 

The covariance matrix for Z is Vz = AAT , when Vx is the 2 by 2 identity matrix: 

covariance matrix for 
Vz

= 

Z = (x,y,ax + by) 
0 
1 

0 

1 
b 

a l b 
a2 + b2 

Interpretation: x and y are independent so axy 
= 0. Then the covariance of x with 

ax + by is a and the covariance of y with ax + by is b. Those just come from the two 
independent parts of ax+ by. Finally, equation (18) gives the variance of ax+ by: 

Use Vz = AVxAT 2 2 2 2 2 b2 0 aax+by 
= aax + aby 

+ aax ,by 
= a + + . 

The 3 by 3 matrix Vz is singular. Its determinant is a2 
+ b2 - a2 - b2 

= 
0. The third

component z =ax+ by is completely dependent on x and y. The rank of Vz is only 2. 

GPS Example The signal from a GPS satellite includes its departure time. The receiver 
clock gives the arrival time. The receiver multiplies the travel time by the speed of light. 
Then it knows the distance from that satellite. Distances from four or more satellites 
pinpoint the receiver position (using least squares !). 

One problem: The speed of light changes in the ionosphere. But the correction 
will be almost the same for all nearby receivers. If one receiver stays in a known position, 
we can take differences from that position. Differential GPS reduces the error variance: 

Difference matrix 

A=[l -1] 

Covariance matrix 

Vz = AVxAT 
Vz = [ 1 -1 l [ ar 

a12 

= uf - 2u12 + u�
] [ -� ] 

Errors in the speed of light are gone. Then centimeter positioning accuracy is achievable. 
(The key ideas are on page 320 of Algorithms for Global Positioning by Borre and Strang.) 
The GPS world is all about time and space and amazing accuracy. 
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Problem Set 12.2 

1 (a) Compute the variance a-2 when the coin flip probabilities are p and 1 - p
(tails = 0, heads= 1). 

(b) The sum of N independent flips (0 or 1) is the count of heads after N tries.
The rule ( 16-17-18) for the variance of a sum gives a-2 = __ . 

2 What is the covariance O"kz between the results x1, ... , Xn of Experiment 3 and the
results y1, ... , Yn of Experiment 5? Your formula will look like a-12 in equation (2).
Then the ( 3, 5) and (5, 3) entries of the covariance matrix V are a-35 = a-53. 

3 For M = 3 experiments, the variance-covariance matrix V will be 3 by 3. There
will be a probability Pijk that the three outputs are Xi and Yj and Zk- Write down a
formula like equation (7) for the matrix V. 

4 What is the covariance matrix V for M = 3 independent experiments with means
m1, m2, m3 and variances a-r, (T�, O"§ ? 

Problems 5-9 are about the conditional probability that Y = y3 when we know X = Xi. 

Notation: Prob (Y = y3 IX = xi) = probability of the outcome Yj given that X = Xi.

Example 1 Coin 1 is glued to coin 2. Then Prob (Y = heads when X = heads) is 1.
Example 2 Independent coin flips : X gives no information about Y. Useless to know X.

Then Prob (Y = heads IX = heads) is the same as Prob (Y = heads). 

5 Explain the sum rule of conditional probability :
Prob(Y = Yj) = sum over all outputs xi ofProb(Y = YjlX = Xi)-

6 Then by n matrix P contains joint probabilities Pij = Prob ( X = Xi and Y = Yj).

p· Pi1·Explain why the conditional Prob (Y = Yj IX = xi) equals '1 

Pi1 + · · · + Pin Pi

7 For this joint probability matrix with Prob (x1, y2) = 0.3, find Prob (Y2 lx1) and Prob (x1).

p = [ P11 P12 ] = [ 0.1 0.3 ] 
P21 P22 0.2 0.4 

The entries Pij add to 1.
Some i, j must happen. 

8 Explain the product rule of conditional probability:

Pij = Prob (X = Xi and Y = Yj) equals Prob (Y = YjlX = Xi) times Prob (X = Xi)-

9 Derive this Bayes Theorem for Pij from the product rule in Problem 8:

P b(y-. dX- ·)_Prob(X=xilY=yj)Prob(Y=yj)ro - y
1 

an - x, -
Prob (X = xi) 

"Bayesians" use prior information. "Frequentists" only use sampling information.
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12.3 Multivariate Gaussian and Weighted Least Squares 

The normal probability density p(x) (the Gaussian) depends on only two numbers:

Mean m and variance a-2 (1)

The graph of p(x) is a bell-shaped curve centered at x = m. The continuous variable x
can be anywhere between -oo and oo. With probability close to i, that random x will lie
between m - r, and m + r, (less than one standard deviation r, from its mean value m).

00 

J p(x)dx = 1

-oo

m + u 1 

and J p(x) dx = � J e-X 2 12 dX:::::; �-

m - u -1

(2)

That integral has a change of variables from x to X ( x - m) / r,. This simplifies the
exponent to -X 2 / 2 and it simplifies the limits of integration to -1 and 1. Even the 1 / r,
from p disappears outside the integral because dX equals dx / r,. Every Gaussian turns
into a standard Gaussian p(X) with mean m = 0 and variance r,2 = 1 .  Just call it p(x):

The standard normal distribution N(O, 1) has p(x) = -
1
- e-x

2

/2.
v'2rr 

(3) 

Integrating p(x) from -oo to x gives the cumulative distribution F(x): the probability
that a random sample is below x. That probability will be F = ½ at x = 0 (the mean). 

Two-dimensional Gaussians 

Now we have M = 2 Gaussian random variables x and y. They have means m1 and m2. 

They have variances <5f and <5§. If they are independent, then their probability density
p( x, y) is just p1 ( x) times p2 (y). Multiply probabilities when variables are independent:

Independent x and y 

The covariance of x and y will be a-12 = 0. The covariance matrix V will be diago­
nal. The variances <5f and <5§ are always on the main diagonal of V. The exponent in
p(x, y) is just the sum of the x-exponent and they-exponent. Good to notice that the two
exponents can be combined into -½ ( x - m? v- 1 ( x - m) with v- 1 in the middle:

(5)
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Non-independent x and y 

We are ready to give up independence. The exponent (5) with v- 1 is still correct when Vis 
no longer a diagonal matrix. Now the Gaussian depends on a vector m and a matrix V.

When M = 2, the first variable x may give partial information about the second 
variable y (and vice versa). Maybe part of y is decided by x and part is truly independent. 
It is the M by M covariance matrix V that accounts for dependencies between the M 
variables x = x1, ... , XM. Its inverse v- 1 goes into p(x):

Multivariate Gaussian 

probability distribution 

The vectors x = ( x1, ... , x M) and m = ( m1, ... , m M) contain the random variables and 
their means. The M square roots of 21r and the determinant of V are included to make the 
total probability equal to 1. Let me check that by linear algebra. I use the eigenvalues >. and 
orthonormal eigenvectors q of the symmetric matrix V = QAQT. So v-

1 = QA- 1 QT : 

X=x-m 

Notice! The combinations Y = QT X = QT ( x - m) are statistically independent. 
Their covariance matrix A is diagonal.

This step of diagonalizing V by its eigenvector matrix Q is the same as "uncorrelating" 
the random variables. Covariances are zero for the new variables X 1, ... X m. This is the 
point where linear algebra helps calculus to compute multidimensional integrals. 

The integral of p( x) is not changed when we center the variable x by subtracting m
to reach X, and rotate that variable to reach Y = QT X. The matrix A is diagonal! 
So the integral we want splits into M separate one-dimensional integrals that we know : 

j j e_yTr 1Yf2dY � (l ,-yl/2>., dy,) ... (l e-Y/.,/2>.M dyM)

= ( �) ... ( J21r>.M) = ( �)
M 

v'detV. (7) 

The determinant of V (also the determinant of A) is the product (>- 1
) ... (>.M) of 

the eigenvalues. Then (7) gives the correct number to divide by so that p( x 1 , ... , x M)
in equation (6) has integral= 1 as desired. 

The mean and variance of p( x) are also M-dimensional integrals. The same idea of 
diagonalizing V by its eigenvectors and introducing Y = QT X will find those integrals : 

Vector m of means J ... J xp(x) dx = (m1,m2, ... ) = m (8) 

Covariance matrix V J ... J (x - m)p(x)(x - m) T dx = V. (9) 

Conclusion: Formula (6) for the probability density p(x) has all the properties we want. 
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Weighted Least Squares 

In Chapter 4, least squares started from an unsolvable system Ax = b. We chose x to 
minimize the error 11 b - Ax I I 

2
. That led us to the least squares equation AT Ax = AT b.

The best Ax is the projection of b onto the column space of A. But is this squared 
distance E = 11 b - Ax 112 the right error measure to minimize ? 

If the measurement errors in b are independent random variables, with mean m = 0 
and variance CJ2 = 1 and a normal distribution, Gauss would say yes: Use least squares.

If the errors are not independent or their variances are not equal. Gauss would say no : 
Use weighted least squares. This section will show that the good measure of error is 
E = ( b - Ax) Ty-1 ( b - Ax). The equation for the best x uses the covariance matrix V :

Weighted least squares (10) 

The most important examples have m independent errors in b. Those errors have 
variances CJi, ... , CJ;,. By independence, V is a diagonal matrix. The good weights 
1 / CJi, ... , 1 / CJ;, come from v- 1

. We are weighting the errors in b to have variance = 1 : 

Weighted least squares 

Independent errors in b 
Minimize E = 

f, (b -:x); 
i=l (Ji 

(11) 

By weighting the errors, we are "whitening" the noise. White noise is a quick description 
of independent errors based on the standard Gaussian N ( 0, 1) with mean zero and CJ2 = 1. 

Let me write down the steps to equations (10) and (11) for the best x: 
Start with Ax = b (m equations, n unknowns, m > n, no solution) 

Each right side bi has mean zero and variance er;. The bi are independent. 

Divide the ith equation by CJi to have variance = 1 for every bi/ CJi 

That division turns Ax = b into v- 1/2 Ax = v-
1 !2 b with v-1/2 = diag (1/ CJ1, ... , 1/ Cim)

Ordinary least squares on those weighted equations has A--+ v-112 A and b--+ v-
112b

Because of 1/ CJ2 in v- 1, more reliable equations (smaller CI) get heavier weights. This is
the main point of weighted least squares. 

Those diagonal weightings (uncoupled equations) are the most frequent and the sim­
plest. They apply to independent errors in the bi. When these measurement errors are not 
independent, Vis no longer diagonal-but (12) is still the correct weighted equation. 

In practice, finding all the covariances can be serious work. Diagonal V is simpler. 
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The Variance in the Estimated x 

One more point : Often the important question is not the best x for one particular set of 
measurements b. This is only one sample ! The real goal is to know the reliability of the 
whole experiment. That is measured (as reliability always is) by the variance in the

estimate x. First, zero mean in b gives zero mean in x. Then the formula connecting 
variance V in the inputs b to variance W in the outputs x turns out to be beautiful: 

Variance-covariance matrixWforx E[(x-x)(x-x?] = (AT V- 1A)- 1. (13) 

That smallest possible variance comes from the best possible weighting, which is v- 1
. 

This key formula is a perfect application of Section 12.2. If b has covariance matrix

V, then x = Lb has covariance matrix LV LT . Equation (12) above tells us that Lis 
(AT v- 1 A)- 1 AT v- 1

. Now substitute this into LV LT and watch equation (13) appear: 

This is the covariance W of the output, our best estimate x. It is time for examples. 

Example 1 Suppose a doctor measures your heart rate x three times ( m = 3, n = 1) : 

is Ax = b with A = 
[ 

1

i l [ 

0"2 

and V = i 0
a§ 
0 

The variances could be af - / 9 and a§ = 1 / 4 and a� = 1. You are getting more nervous 
as measurements are taken: ; is less reliable than b2 and bi . All three measurements 
contain some information, so they all go into the best (weighted) estimate x:

3x = 3b1 
v- 1 !2 Ax= v- 1!2 b is 2x = 2b2 leading to AT v- 1 Ax= AT v- 1 b

Ix= lb3 

[ 1 1 [ 1 1 

X= is a weighted average of b1 , b2 , b3 



12.3. Multivariate Gaussian and Weighted Least Squares 559 

Most weight is on b1 since its variance o-1 is smallest. The variance of x has the beautifulformula W = (AT v-1 A)-1 = 1/14: 

Variance of x

1
'T 4 ,][:Jr 

1 
14 is smaller than 1

9
The BLUE theorem of Gauss (proved on the website) says that our x = Lb is the best

linear unbiased estimate of the solution to Ax = b. Any other unbiased choice x* = L * bhas greater variance than x. All unbiased choices have L * A = I so that an exact Ax = bwill produce the right answer x = L * b = L * Ax. 
Note. I must add that there are reasons not to minimize squared errors in the first place.
One reason : This x often has many small components. The squares of small numbers 
are very small, and they appear when we minimize. It is easier to make sense of sparsevectors-only a few nonzeros. Statisticians often prefer to minimize unsquared errors:

the sum of l(b - Ax)il- This error measure is L 1 instead of L2
. Because of theabsolute values, the equation for x becomes nonlinear (it is actually piecewise linear).

Fast new algorithms are computing a sparse x quickly and the future may belong to L 1
. 

The Kalman Filter 

The "Kalman filter" is the great algorithm in dynamic least squares. That word dynamicmeans that new measurements bk keep coming. So the best estimate Xk keeps changing(based on all of bo , ... , bk). More than that, the matrix A is also changing. So x2 will be
our best least squares estimate of the latest solution x k to the whole history of observation

equations and update equations (state equations) up to time 2: 

Aoxo = bo (14) 

The Kalman idea is to introduce one equation at a time. There will be errors in eachequation. With every new equation, we update the best estimate Xk for the current Xk. But
history is not forgotten! This new estimate Xk uses all the past observations b0 to bk-I and
all the state equations Xnew = Fold Xo!d· A large and growing least squares problem. 

One more important point. Each least squares equation is weighted using thecovariance matrix Vi for the error in bk. There is even a covariance matrix Ck for
errors in the update equations Xk+I = FkXk - The best x2 then depends on b0 , b1 , b2 and
Vo , Vi, Vi and C1, C2. The good way to write Xk is as an update to the previous Xk-l·

Let me concentrate on a simplified problem, without the matrices Fk and the covari­
ances Ck. We are estimating the same true x at every step. How do we get x1 from x0 ?

OLD Ao xo = bo leads to the weighted equation AJ' v
0
-

1 Ao x0 = AJ' v
0
-

1 
b0 . (15)

NEW [ ��] x1 = [ :�] leads to the following weighted equation for x1 : 
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[ AJ [ AJ 

Yes, we could just solve that new problem and forget the old one. But the old solution x0 
needed work that we hope to reuse in x1. What we look for is an update to x0 : 

Kalman update gives x1 from xo (17) 

The update correction is the mismatch b1 -A1x0 between the old state x0 and the new 
measurements b1-multiplied by the Kalman gain matrix K1. The formula for K1 comes 
from comparing the solutions x1 and x0 to (15) and (16). And when we update xo to x1 
based on new data b1 , we also update the covariance matrix W0 to W1 . Remember 
Wo = (AJ v0

-
1 Ao)-1 from equation (13). Update its inverse to w1-

1
: 

Covariance W1 of errors in x1 

Kalman gain matrix K 1 

w
l
- l = W

o
- l + AI vl- l A1 

Ki = W1 AI v1-
1

(18) 

(19) 

This is the heart of the Kalman filter. Notice the importance of the Wk. Those matrices 
measure the reliability of the whole process, where the vector Xk estimates the current state 
based on the particular measurements bo to bk. 

Whole chapters and whole books are written to explain the dynamic Kalman filter, 
when the states Xk are also changing (based on the matrices Fk)- There is a prediction of 
Xk using F, followed by a correction using the new data b. Perhaps best to stop here. 

This page was about recursive least squares: adding new data bk and updating both 
x and W : the best current estimate based on all the data, and its covariance matrix. 

Problem Set 12.3 

1 Two measurements of the same variable x give two equations x = b1 and x = b2. 
Suppose the means are zero and the variances are o-f and o-�, with independent 
errors: V is diagonal with entries o-f and o-�. Write the two equations as Ax = b

(A is 2 by 1). As in the text Example 1, find this best estimate x based on b1 and b2 : 

��T 1 1 
( 

)-1 

E [ x x ] = 
o-r 

+ (l� 

2 (a) In Problem 1, suppose the second measurement b2 becomes super-exact and its
variance o-2 -+ 0. What is the best estimate x when o-2 reaches zero?

(b) The opposite case has o-2 -+ oo and no information in b2. What is now the best
estimate x based on bi and b2 ?
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3 If x and y are independent with probabilities p1 ( x) and p2 (y), then p( x, y) =

p1 ( x) p2 (y). By separating double integrals into products of single integrals 
(-oo to oo) show that 

jjp(x,y)dxdy=l and j J (x + y) p(x, y) dx dy = rn1 + rn2. 

4 Continue Problem 3 for independent x, y to show that p( x, y) = p1 ( x) p2 (y) has 

J J (x - mi)2 p(x, y) dxdy = O"i j j (x - m1)(y - m2) p(x, y) dxdy = 0. 

So the 2 by 2 covariance matrix V is diagonal and its entries are -� . 

5 Show that the inverse of a 2 by 2 covariance matrix V is 

6 

0"12 

0'2 

2 l-

1 
with correlation 
p = 0"12 / 0"10"2 · 

This produces the exponent -( x - rn) T v- 1 ( x - rn) in a 2-variable Gaussian. 

Suppose Xk is the average of b1, ... , bk. A new measurement bk+l arrives and we 
want the new average x k+ 1. The Kalman update equation ( 17) is 

New average 
� � 1 ( �)Xk+l = Xk + -

k
-- bk+l - Xk 
+1 

Verify that Xk+l is the correct average of b1 ... , bk+l· 

7 Also check the update equation (18) for the variance Wk+l = 0"
2 /(k + 1) of this 

average x assuming that Wk = 0'2 / k and bk+1 has variance V = 0'2 . 

8 (Steady model) Problems 6-7 were static least squares. All the sample averages 
Xk were estimates of the same x. To make the Kalman filter dynamic, include also 
a state equation Xk+l = Fxk with its own error variance s2

. The dynamic least 
squares problem allows x to "drift" as k increases : 

[ ) :] [ :: ] [ ! ] "°lh variances [ ;: ]
With F = l, divide both sides of those three equations by O", s, and O". Find Xo 
and Xi by least squares, which gives more weight to the recent b1. The Kalman 
filter is developed in Algorithms for Global Positioning (Borre and Strang, Wellesley­
Cambridge Press). 
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Change in A -1 from a Change in A

This final page connects the beginning of the book (inverses and rank one matrices) with 
the end of the book (dynamic least squares and filters). Begin with this basic formula: 

T 

The inverse of M = I -uvT is M- 1 =I+
uv 

1-vTu
T 

The quickest proof is MM- 1 =I -uv T 
+ (1-uvT) 

uv
T 

= I -uvT 
+ uvT =I.

l-v u

M is not invertible ifv Tu=l(thenMu=O).Herev T =u T = [ 1 1 1): 

Example The inverse of M = I - [ i i i ] is M- 1 = I+ -1- [ i i i ] 
111 1-3 111 

But we don't always start from the identity matrix. Many applications need to invert 
M = A -uv T. After we solve Ax = b we expect a rank one change to give My = b. 
The division by 1 -vT u above will become a division by c = 1 -vT A- 1u = l -vT z.

Step 1 

Step 2 

Solve Az = u and compute c = 1 - v T z.

V
T

X 

If c =/= 0 then M- 1b is y = x + -- z.

Suppose A is easy to work with. A might already be factored into LU by elimination. 
Then this Sherman-Woodbury-Morrison formula is the fast way to solve My = b.
Here are three problems to end the book ! 
9 TakeStepsl-2tofindywhenA=Jandu T =v T =[ l 2 3] andbT=[2 1 4]. 

10 Step 2 in this "update formula" claims that My = ( A -uv T ) ( x +
v

: 
x z) = b.

T 

Simplify this to 
uv x 

[1 - c -v T z] = 0. This is true since c = 1 -v T z. 
C 

11 When A has a new row v T , AT A in the least squares equation changes to M :

M = [ AT v ] [ : T ] = A T A + vv T = rank one change in AT A.

Why is that multiplication correct? The updated Xnew comes from Steps 1 and 2. 
For reference here are four formulas for M- 1

. The first two were given above, when the 
change was uvT . Formulas 3 and 4 go beyond rank one to allow matrices U, V, W.

1 M = I -uv T and M- 1 = J + uvT /(1 -vTu) (rank l change)
2 M = A-uvT and M- 1 = A- 1 

+ A- 1uvT A- 1 /(1-vT A- 1u)
3 M = I - UV and M- 1 = In + U(Lm - VU)- 1 V
4 M = A- uw-

1
v and M- 1 = A- 1 

+ A- 1 U(W - V A- 1 u)- 1 VA- 1 

Formula 4 is the "matrix inversion lemma" in engineering. Not seen until now ! 
The Kalman filter for solving block tridiagonal systems uses formula 4 at each step. 
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Requirements: No row exchanges. The pivots in D are divided out to leave 1 's on
the diagonal of U. If A is symmetric then U is L T and A = LDLT . 

3. PA = LU (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does all of the
row exchanges on A in advance, to allow normal LU. Alternative: A= L 1Pi U1. 

4. EA= R (m by m invertible E) (any m by n matrix A)= rref(A).

Requirements: None! The reduced row echelon form R has r pivot rows and pivot
columns, containing the identity matrix. The last m - r rows of E are a basis for
the left nullspace of A; they multiply A to give m - r zero rows in R. The first r
columns of E-1 are a basis for the column space of A.

5. S = CT C = (lower triangular) ( upper triangular) with v15 on both diagonals

Requirements: Sis symmetric and positive definite (all n pivots in Dare positive).
This Choleskyfactorization C = chol(S) has cT = Lv15, sos= cTc = LDL T .

6. A= QR= (orthonormal columns in Q) (upper triangular R).

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt or Householder process. If A is square then Q-1 = QT

. 

7. A = X Ax- 1 = (eigenvectors in X) (eigenvalues in A) (left eigenvectors in x- 1 ). 

Requirements: A must have n linearly independent eigenvectors.

8. S = QAQT = (orthogonal matrix Q) (real eigenvalue matrix A) (QT is Q-1 ).
Requirements: Sis real and symmetric: ST = S. This is the Spectral Theorem.

563 
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9. A = BJ B-1 = (generalized eigenvectors in B) (Jordan blocks in J) (B-1 ). 

10.

Requirements: A is any square matrix. This Jordan form J has a block for each
independent eigenvector of A. Every block has only one eigenvalue. 

A = U:EVT = ( or:hogonal ) ( m x n singular _val�e matrix ) ( ort?ogonal ) .
U 1s m x m o-1, ... , O-r on its diagonal V 1s n x n 

Requirements: None. This Singular Value Decomposition (SVD) has the eigenvec­
tors of AAT in U and eigenvectors of AT A in V; o-i = J>.i(AT A)= J>.i(AAT). 
Those singular values are o-1 2: o-2 2: · · · 2: O-r > 0. By column-row multiplication

T T TA= U:EV = CJ1U1V1 + · · · + 0-rUrVr . 

If S is symmetric positive definite then U = V = Q and I:= A and S = QAQT.

ll. A+ = V:E+uT = (orthogonal) ( n/ 
x m pseu

/
doinver�e of I: ) (orthogonal).nxn 1 o-1, ... ,1 o-r on diagonal mxm 

Requirements: None. The pseudoinverse A+ has = projection onto row space
of A and AA+ = projection onto column space. A+ = A -1 if A is invertible. The
shortest least-squares solution to Ax = b is x+ =A+ b. This solves AT Ax+= AT b.

12. A= QS = (orthogonal matrix Q) (symmetric positive definite matrix S).
Requirements: A is invertible. This polar decomposition has S2 

= AT A. The
factor S is semidefinite if A is singular. The reverse polar decomposition A = K Q

has K2 
= AAT . Both have Q = uvT from the SVD. 

13. A= u Au-1 = (unitary U) (eigenvalue matrix A) cu- 1 which is UH= UT).
Requirements: A is normal: AH A= AAH . Its orthonormal (and possibly complex)
eigenvectors are the columns of U. Complex ,\.'s unless S = SH : Hermitian case.

14. A= QTQ-1 = (unitary Q) (triangular T with Xs on diagonal) (Q-1 = QH).
Requirements: Schur triangularization of any square A. There is a matrix Q with
orthonormal columns that makes Q-1 AQ triangular: Section 6.4. 

] [ even-odd ] .
F 

. = one step of the recursive FFT. 
n/2 permutat10n 

Requirements: Fn = Fourier matrix with entlies wjk where wn = 1: FnF n = nI.

D has 1, w, ... , w
n/2 

-

1 on its diagonal. For n = 2£ the Fast Fourier Transform

will compute Fnx with only ½nR = ½n log
2 

n multiplications from .e stages of D's.
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GPU, 509 

Gram-Schmidt, 232,237,239,240,428,515 

Graph, 76,186,187,452 

Graph Laplacian matrix, 457 

Grayscale, 364 

Greece, 369 

Grounded node, 458 

Group, 121, 362 

Growth factor, 321,327,337,478 

H 

Hadamard matrix, 241,285,313 

Half-plane, 7, 15 

Heat equation, 330 

Heisenberg, 296, 303 

Hermitian matrix, 347,430,438, 440 

Hessenberg matrix, 265, 530, 534 

Hessian matrix, 356 

High Definition TV, 365 

Index 

Hilbert matrix, 95,257,357,368,426,516 

Hilbert space, 490, 492, 493 

Hill Cipher, 504, 505 

HITS algorithm, 388 

Homogeneous coordinates, 496, 497, 500 

Homogeneous solution, 159 

Hooke's Law, 467,468 

House matrix, 406, 409 

Householder, 241, 513, 515 

Hypercube, 285 

Hyperplane, 33, 232 

Identity matrix, 37 

Ill-conditioned, 516 

Image processing, 364 

Imaginary eigenvalues, 294 

Incidence matrix, 186,452,456,459 

Incomplete LU, 524 

Independent columns, 153 

Independent eigenvectors, 305, 306 

Independent random variables, 555, 557 

Independent vectors, 27, 164, 547 

Infinite dimensions, 490 

Inner product, 11, 111, 122,426,439,491 

Input basis, 411,412,421 

Integral, 404,413,545 

Integration by parts, 122 

Interior point method, 488 

Interlacing, 349 

Interpolation, 44 7 

Intersection, 133, 179 

Inverse formula, 275, 284 

Inverse matrix, 24, 83, 255, 408 

Inverse power method, 530, 532 

Invertible matrix, 27, 88, 89 

Isometric, 416 

Iteration, 524 

J 

Jacobi's method, 524, 526, 527 

Jacobian matrix, 279 
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Joint probability, 546, 550, 554 

Jordan form, 308, 421, 423, 429, 525 

Jordan matrix, 422, 423 

JPEG, 344 

K 

Kalman filter, 218,559,560,561 

Kernel, 405 

Kirchhoff's Laws, 145, 187, 189,455 

Krylov space, 533 

L 

Lagrange multiplier, 488 

Lanczos method, 533, 534 

Laplace transform, 337 

Largest ratio, 393 

Law of Inertia, 349 

Law of large numbers, 536 

Lax, 317, 348 

Leapfrog method, 324, 325, 336 

Least squares, 220, 226, 239, 240, 396 

Left eigenvectors, 318 

Left inverse, 83, 148, 397 

Left nullspace, 181, 183, 185 

Legendre polynomial, 428, 494 

Length, 11,438,490,491 

Line, 5 

Line of springs, 467 

Linear combination, 1, 3, 9, 33 

Linear independence, 164,165,167,175 

Linear programming, 483, 485 

Linear transformation, 401, 402, 407, 411 

Linearity, 45,403,411, 541 

Loadings, 390 

Loop, 187,314,453,456 

Lower triangular, 98 

Lucas numbers, 312 

M 

Magic matrix, 44 

Map of Europe, 385 

Markov equation, 332, 481 

Markov matrix, 290,301,387,474,476,480 

Mass matrix, 324 

Matching signs, 342 

Mathematical finance, 473 

Matrix, 7, 22, 37 

Matrix exponential, 326 

Matrix for transformation, 413 

Matrix inversion lemma, 562 

Matrix multiplication, 58, 62, 70, 414 

Matrix powers, 74, 80 

569 

Matrix space, 125, 126, 171, 172, 178, 409 

Max = min, 485 

Maximum ratio, 376 

Mean,230,535,538 

Mean square error, 227 

Mechanical engineering, 462,463,465,468 

Median, 228 

Medical genetics, 385 

Minimum of function, 356,361,381 

Minimum cost, 483, 485, 486 

Minor, 263 

Model Order Reduction, 387 

Modified Gram-Schmidt, 240 

Modular arithmetic, 502, 504 

Monte Carlo, 543 

Moore's Law, 509 

Multigrid, 528 

Multiplication, 71, 72, 74,414 

Multiplication by rows/ columns, 36, 37, 72 

Multiplication count, 71, 82, 101 

Multiplicity of eigenvalues, 311 

Multiplier, 46, 47, 51, 85, 97,105,508 

Multiply pivots, 251 

Multivariate Gaussian, 556 

N 

Nearest singular matrix, 395 

Network, 76, 458, 469 

No solution, 26, 40, 48, 220 

Nodes, 187,454 

Noise, 219, 230, 427 

N ondiagonalizable matrix, 306, 311 

Nonnegative Factorization, 386 

Nonnegative matrix, 479 

Nonzero solution, 139 

Norm, 393,394,518,519 

Normal distribution, 537, 539, 540 

Normal equation, 211,219 
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Normal matrix, 348, 444 
Not diagonalizable, 306, 312, 429 
Nullspace, 135, 147 
Nullspace of ATA, 203,212,217 

0 
Odd permutation, 249, 261 
Ohm's Law, 189,458 
One at a time, 376 
Operation count, 511 
Optimal solution, 483 
Order of importance, 371 
Orthogonal columns, 224,447 

Pivot matrix, 106 
Pivot variables, 138, 151 
Pixel, 364, 499 
Plane, 1, 5, 128 
Plane rotation, 498 
Polar decomposition, 392, 394 
Polar form, 285, 430, 433 
Population, 384, 478 
Positive definite, 350, 469, 547, 549 
Positive definite matrix, 352, 359 
Positive matrix, 474, 477 
Positive semidefinite, 350, 354 
Power method, 388, 529, 532 
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Orthogonal complement, 197, 198 
Orthogonal eigenvectors, 340, 440 
Orthogonal matrix, 234,241,242,295,494 
Orthogonal subspaces, 195, 196, 203 
Orthogonal vectors, 194, 233, 430 
Orthonormal basis, 371,492 

Powers of A, 121,305,307,310,315,525 
Preconditioner, 524, 528 

Orthonormal columns, 234,236,441 
Orthonormal eigenvectors, 338, 348 
Orthonormal vectors, 233, 237 
Outer product (see columns times rows), 81 
Output basis, 411,412, 413 

p 
P-value, 385
PageRank, 388
Parabola, 226, 227, 464
Paradox, 347
Parallel plane, 41, 483
Parallelogram, 3, 8, 277
Parentheses, 61, 73, 83
Partial pivoting, 115,508,510,516
Particular solution, 151,153,334,462 
Pascal matrix, 91,103,271,357 
PCA, 382, 383, 389 

Primal problem, 489 
Prime number, 503 
Principal axis theorem, 339 
Principal Component Analysis, 382, 389 
Probability, 535, 538 
Probability density (pdf), 538, 544, 555 
Probability matrix, 547,554 
Probability vector, 475 
Product inequality, 393 
Product of eigenvalues, 294, 300, 342 
Product of pivots, 248, 342 
Product rule, 252, 266, 273, 554 
Projection, 206, 208, 236, 395, 496, 498 
Projection matrix, 206, 209, 211, 216, 236, 

291,415,501 
Pseudoinverse, 198,225,392,395,399,404 
Pythagoras, 13, 14, 20, 194 

Q 

Quadratic formula, 309, 437 
Quantum mechanics, 111, 296 

Permutation matrix, 49, 62, 63, 109, 113, R 
116, 179,303,424 Random matrix, 57, 541 

Perpendicular, 11 rank(AB), 147 
Perpendicular distances, 384 Range, 402, 405 
Perron-Frobenius theorem, 477,482 Rank, 139,146,155,171,181,190,366,369 
Pivot, 46, 47, 88,137,378,508,510 Rank one matrix, 140,188,318,372,400 
Pivot columns, 137, 138, 169 Rank one update, 562 
Pivot formula, 258 Rayleigh quotient, 376,519 
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Real eigenvalues, 339,440 

Recursive, 214,218,231,449,560 

Reduced row echelon form, 86, 137, 138 

Reflection matrix, 235,241,291,499,514 

Repeated eigenvalue, 311,327, 333 

Rescaling, 496, 552 

Residual, 224, 524 

Reverse order, 84, 85, 110 

Right hand rule, 278, 280 

Right inverse, 83, 397, 448 

Right triangle, 13, 14, 194, 220 

Roots of 1, 435, 442, 445 

Rotation, 15, 392,394,496 

Rotation matrix, 294, 414 

Roundoff error, 510, 520 

Row at a time, 22, 23, 38 

Row exchange,49,58,63, 115,247,256 

Row picture, 31, 32, 34 

Row rank, 150 

Row space, 168, 182,443 

Rules for vector spaces, 131 

Rules for determinant, 249, 254 

Runge-Kutta, 337 

s 

Saddle point, 117, 358, 361 

Same eigenvalues, 308,318 

Same length, 235 

Sample covariance matrix, 382, 547 

Sample mean, 535, 547, 550 

Sample value, 535, 544 

Sample variance, 382, 536 

Scalar, 2, 32, 124 

Schur, 343, 363 

Schur complement, 75, 96, 270, 357 

Schwarz inequality, 11, 16, 20, 393, 490 

Scree plot, 389 

Second derivative matrix, 356, 361 

Second difference, 344, 357, 464 

Second eigenvalue, 477 

Second order equation, 322, 333 

Semidefinite matrix, 354 

Sensitivity, 478, 482 

Sherman-Woodbury-Morrison, 562 

Shift by Uo, 402 

Short wide matrix, 139, 171 

Shortage of eigenvectors, 329 

Shortest solution, 225, 397, 400 

Sigma notation, 59 
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Signal processing, 435,445,450 

Similar matrix, 307,318,416,421,429 

Simplex method, 486 

Simulation, 4 72 

Sine matrix, 344 

Singular matrix, 27, 88,225,251 

Singular value, 367,368,371,520 (see SVD) 

Singular value matrix, 416 

Singular vector, 367,371,416 

Skew-symmetric matrix, 119,295,334,437 

Slope, 19, 31 

Snapshot, 387 

SNP, 384, 385 

Solvable, 127, 130 

SOR, 527, 532 

Span, 128,134,164,167,200 

Spanning tree, 314 

Sparse matrix, 101,508,513,559 

Spatial statistics, 385 

Special solution, 135,137, 140, 149, 158 

Spectral radius, 522, 525, 534 

Spectral Theorem, 339, 340, 343 

Spiral, 323 

Splitting, 200, 222, 260, 524, 531 

Spread, 536 

Spreadsheet, 12, 375 

Square root matrix, 353 

Square wave, 492, 494 

Squashed, 410 

Stoichiometric matrix, 461 

Stability, 307,319,325,326,375 

Standard basis, 169,415,421 

Standard deviation, 536 

Standard normal (Gaussian), 545, 555 

Standardize, 541, 542, 552 

State equations, 559 

Statistics, 38, 230, 384 

Steady model, 561 

Steady state, 290, 332, 474, 476 

Stiffness matrix, 324, 462, 469 
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Stirling's formula, 543 

Straight line, 223, 231 

Stretching, 279, 392, 394 

Stripes on flag, 369 

Submatrix, 38, 146, 263 

Subspace, 123,125,126,130,132 

Sum matrix, 29, 90, 276 

Sum of eigenvalues, 294, 300 

Sum of errors, 228 

Sum of spaces, 179 

Sum of squares, 353 

Super Bowl, 387 

Supercomputer, 509 

SVD, 364, 370, 372, 392 

Symmetric factorization, 116 

Symmetric matrix, 87, 111, 338 

T 

Table of eigenvalues, 363 

Test, 350, 359 

Test for minimum, 356, 361 

Three-dimensional space, 4 

Tic-tac-toe, 193 

Time to maturity, 389 

TOP500, 509 

Total least squares, 384 

Total variance,383,389 

Trace,294,300,316,325,380,383 

Training set, 386 

Transform, 236 

Transformation, 401, 402 

Translation matrix, 496 

Transpose matrix, 109, 117, 122, 417 

Transpose of inverse, 110 

Trapezoidal, 336 

Tree, 187,314,453 

Trefethen-Bau, 528 

Triangle area, 276 

Triangle inequality, 16, 17, 20, 393, 523 

Triangular matrix, 52, 89, 100, 251 

Tridiagonal matrix, 87,107,268,363,377 

Triple product, 112, 281, 286 

Turing,504 

Two-dimensional Gaussian, 555 

u 

U.S. Treasury, 389 

Uncertainty principle, 296, 303 

Underdamping, 337 

Underdetermined, 154 

Uniform distribution, 537, 539 

Unique solution, 153, 168, 200 

Unit circle, 432 

Unit vector, 13, 14 

Unitary matrix, 430,441,446 

Unsquared errors, 559 

Update, 214, 218, 559, 560, 562 

Upper left submatrix, 259, 352 

Upper triangular, 46, 87 

V 

Vandermonde, 256,269,447 

Variance,230,535,537,539,545,551 

Variance in x, 558 

Vector addition, 2, 32 

Vector space, 123, 124 

Vertical distances, 220, 384 

Voltage, 187, 454, 457 

Volume, 42, 278 

w 

Wall, 203 

Wave equation, 330 

Wavelets, 245 

Web matrix, 387 

Weight function, 426 

Weighted least squares, 557 

White noise, 557 

y 

Yield curve, 389, 390 

z 

Zero determinant, 24 7 

Zero nullspace, 138 

Zero vector, 2, 3, 166, 167 
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Index of Symbols and Computer Codes 

A= LDU,99 
A= LU, 99,114,378 
A= QR, 239,240,378 
A= QS and KQ, 394 
A = U�VT, 372, 378 
A= UV

T
, 140 

A= BCB-1, 308 
A= BJB-1

, 422,423 
A= QR, 239,513,530,532 
A= QTQ-1

, 343 
A= XAX-1, 304,310 
Ak = XAk x-1, 307,310 
A+= v�+ uT, 395 
AT A, 112,203,212,372 
AT Ax= AT b, 219 
ATCA, 362,459,467 
p = A(AT A)-1 AT, 211
PA= L U, 114 
QTQ = I, 234 
R = rref(A), 137 
S = AT A, 352,372 
S = LDLT, 342 
S = QAQT , 338,341,353 
eAt, 326, 328, 334 
eAt = XeAtx-1, 327 
(A-AI)x =0,292 
(Ax) T y = x T (AT y), 111 
(AB)T = BT AT, 110 

(AB)-1 
= B-1 A-1, 84 

(AB)C = A(BC), 70 
[A b] and [A I], 149 
det(A -Al) = 0, 292, 293 
C(A) and C(AT), 128 
N(A) and N(AT), 135 
e

n

, 430,444 
Rn, 123,430 
SU T, 134 
S + T, 134, 179 
Sn T, 133,179 
V _1_, 197, 204 
z, 123, 125, 137, 173 
£1 and £00

, 523 
i,j,k, 13,169,280
u X v,279
x+ = A+ b, 397
N(0, 1), 555
mod p, 502, 503
NaN, 225
-1, 2, -1 matrix, 259,368,

523 
3 by 3 determinant, 271 

Computer Packages 

ARPACK, 531 
BLAS, 509 

chebfun, 428 
Fortran, 39 
Julia, 16, 38, 39 
LAPACK, 100, 378, 509, 
515,529 
Maple, 38 
Mathematica, 38 
MATLAB, 16, 38, 43, 88, 
115,240,303 
MINRES, 528 
Python, 16, 38, 39 
R, 38, 39 

Code Names 

amd, 513 
chol, 353 
eig, 293 
eigshow, 303, 380 
lu, 103 
norm, 17,392,518 
pascal, 95 
plot2d, 406, 410 
qr,241,246 
rand, 370 
rref, 88, 137 
svd, 378 
toeplitz, 108 

Linear Algebra Websites and Email Address 

math.mit.edullinearalgebra Dedicated to readers and teachers working with this book 

ocw.mit.edu MIT's Open Course Ware site including video lectures in 18.06 and 18.085-6 

web.mit.edu/18.06 Current and past exams and homeworks with extra materials 

wellesleycambridge.com Ordering information for books by Gilbert Strang 

linearalgebrabook@gmail.com Direct email contact about this book 
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Six Great Theorems of Linear Algebra 

Dimension Theorem All bases for a vector space have the same number of vectors. 

Counting Theorem Dimension of column space + dimension of nullspace = number of columns. 

Rank Theorem Dimension of column space = dimension of row space. This is the rank. 

Fundamental Theorem The row space and nullspace of A are orthogonal complements in Rn
.

SVDThere are orthonormal bases (v's and u's for the row and column spaces) so that Avi = CTiUi. 

Spectral Theorem If AT = A there are orthonormal q's so that Aqi = >..iqi and A = QAQT .

LINEAR ALGEBRA IN A NUTSHELL 

(( The matrix A is n by n )) 

Nonsingular 

A is invertible 

The columns are independent 

The rows are independent 

The determinant is not zero 

Ax= 0 has one solution x = 0 

Ax=b has one solution x=A- 1b 

A has n (nonzero) pivots 

A has full rank r = n 

The reduced row echelon form is R = I 

The column space is all of Rn 

The row space is all of Rn 

All eigenvalues are nonzero 

AT A is symmetric positive definite 

A has n (positive) singular values 

Singular 

A is not invertible 

The columns are dependent 

The rows are dependent 

The determinant is zero 

Ax= 0 has infinitely many solutions 

Ax= b has no solution or infinitely many 

A has r < n pivots 

A has rank r < n 

R has at least one zero row 

The column space has dimension r < n 

The row space has dimension r < n 

Zero is an eigenvalue of A 

AT A is only semidefinite 

A has r < n singular values 
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