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Preface

I am happy for you to see this Fifth Edition of Introduction to Linear Algebra.
This is the text for my video lectures on MIT’s OpenCourseWare (ocw.mit.edu and
also YouTube). I hope those lectures will be useful to you (maybe even enjoyable !).

Hundreds of colleges and universities have chosen this textbook for their basic linear
algebra course. A sabbatical gave me a chance to prepare two new chapters about
probability and statistics and understanding data. Thousands of other improvements too—
probably only noticed by the author... Here is a new addition for students and all readers:

Every section opens with a brief summary to explain its contents. When you
read a new section, and when you revisit a section to review and organize
it in your mind, those lines are a quick guide and an aid to memory.

Another big change comes on this book’s website math.mit.edu/linearalgebra. That site
now contains solutions to the Problem Sets in the book. With unlimited space, this is
much more flexible than printing short solutions. There are three key websites :

ocw.mit.edu Messages come from thousands of students and faculty about linear algebra
on this OpenCourseWare site. The 18.06 and 18.06 SC courses include video lectures of
a complete semester of classes. Those lectures offer an independent review of the whole
subject based on this textbook—the professor’s time stays free and the student’s time can
be 2 a.m. (The reader doesn’t have to be in a class at all.) Six million viewers around the
world have seen these videos (amazing). I hope you find them helpful.

web.mit.edu/18.06 This site has homeworks and exams (with solutions) for the current
course as it is taught, and as far back as 1996. There are also review questions, Java demos,
Teaching Codes, and short essays (and the video lectures). My goal is to make this book
as useful to you as possible, with all the course material we can provide.

math.mit.edu/linearalgebra This has become an active website. It now has Solutions
to Exercises—with space to explain ideas. There are also new exercises from many dif-
ferent sources—practice problems, development of textbook examples, codes in MATLAB
and Julia and Python, plus whole collections of exams (18.06 and others) for review.

Please visit this linear algebra site. Send suggestions to linearalgebrabook @gmail.com
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The Fifth Edition

The cover shows the Four Fundamental Subspaces—the row space and nullspace are
on the left side, the column space and the nullspace of AT are on the right. It is not usual
to put the central ideas of the subject on display like this! When you meet those four spaces
in Chapter 3, you will understand why that picture is so central to linear algebra.

Those were named the Four Fundamental Subspaces in my first book, and they start
from a matrix A. Each row of A is a vector in n-dimensional space. When the matrix
has m rows, each column is a vector in m-dimensional space. The crucial operation in
linear algebra is to take linear combinations of column vectors. This is exactly the result
of a matrix-vector multiplication. Ax is a combination of the columns of A.

When we take all combinations Ax of the column vectors, we get the column space.
If this space includes the vector b, we can solve the equation Az = b.

May I call special attention to Section 1.3, where these ideas come early—with two
specific examples. You are not expected to catch every detail of vector spaces in one day!
But you will see the first matrices in the book, and a picture of their column spaces.
There is even an inverse matrix and its connection to calculus. You will be learning the
language of linear algebra in the best and most efficient way: by using it.

Every section of the basic course ends with a large collection of review problems. They
ask you to use the ideas in that section—-the dimension of the column space, a basis for
that space, the rank and inverse and determinant and eigenvalues of A. Many problems
look for computations by hand on a small matrix, and they have been highly praised. The
Challenge Problems go a step further, and sometimes deeper. Let me give four examples:

Section 2.1: Which row exchanges of a Sudoku matrix produce another Sudoku matrix?
Section 2.7: If P is a permutation matrix, why is some power P* equal to I ?
Section 3.4: If Az = b and Cz = b have the same solutions for every b, does A equal C'?

Section 4.1: What conditions on the four vectors r, n, ¢, £ allow them to be bases for
the row space, the nullspace, the column space, and the left nullspace of a 2 by 2 matrix?

The Start of the Course

The equation Az = b uses the language of linear combinations right away. The vector
Az is a combination of the columns of A. The equation is asking for a combination that
produces b. The solution vector  comes at three levels and all are important:

1. Direct solution to find = by forward elimination and back substitution.
2. Matrix solution using the inverse matrix: z = A~!b (if A has an inverse).
3. Particular solution (to Ay = b) plus nullspace solution (to Az = 0).

That vector space solution = y + z is shown on the cover of the book.
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Direct elimination is the most frequently used algorithm in scientific computing. The
matrix A becomes triangular—then solutions come quickly. We also see bases for the four
subspaces. But don’t spend forever on practicing elimination ... good ideas are coming.

The speed of every new supercomputer is tested on Az = b: pure linear algebra. But
even a supercomputer doesn’t want the inverse matrix: foo slow. Inverses give the simplest
formula z = A~'b but not the top speed. And everyone must know that determinants are
even slower—there is no way a linear algebra course should begin with formulas for the
determinant of an n by n matrix. Those formulas have a place, but not first place.

Structure of the Textbook

Already in this preface, you can see the style of the book and its goal. That goal is serious,
to explain this beautiful and useful part of mathematics. You will see how the applications
of linear algebra reinforce the key ideas. This book moves gradually and steadily from
numbers to vectors to subspaces—each level comes naturally and everyone can get it.

Here are 12 points about learning and teaching from this book :

1. Chapter 1 starts with vectors and dot products. If the class has met them before,
focus quickly on linear combinations. Section 1.3 provides three independent
vectors whose combinations fill all of 3-dimensional space, and three dependent
vectors in a plane. Those two examples are the beginning of linear algebra.

2. Chapter 2 shows the row picture and the column picture of Az = b. The heart of
linear algebra is in that connection between the rows of A and the columns of A:
the same numbers but very different pictures. Then begins the algebra of matrices:
an elimination matrix £ multiplies A to produce a zero. The goal is to capture
the whole process—start with A, multiply by E’s, end with U.

Elimination is seen in the beautiful form A = LU. The lower triangular L holds
the forward elimination steps, and U is upper triangular for back substitution.

3. Chapter 3 is linear algebra at the best level: subspaces. The column space contains
all linear combinations of the columns. The crucial question is: How many of those
columns are needed ? The answer tells us the dimension of the column space, and
the key information about A. We reach the Fundamental Theorem of Linear Algebra.

4. With more equations than unknowns, it is almost sure that Az = b has no solution.
We cannot throw out every measurement that is close but not perfectly exact!
When we solve by least squares, the key will be the matrix AT A. This wonderful
matrix appears everywhere in applied mathematics, when A is rectangular.

5. Determinants give formulas for all that has come before—Cramer’s Rule,
inverse matrices, volumes in n dimensions. We don’t need those formulas to com-
pute. They slow us down. But det A = 0 tells when a matrix is singular: this is
the key to eigenvalues.
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Section 6.1 explains eigenvalues for 2 by 2 matrices. Many courses want to see
eigenvalues early. It is completely reasonable to come here directly from Chapter 3,
because the determinant is easy for a 2 by 2 matrix. The key equation is Ax = Ax.

Eigenvalues and eigenvectors are an astonishing way to understand a square matrix.
They are not for Az = b, they are for dynamic equations like du/dt = Au.
The idea is always the same: follow the eigenvectors. In those special directions,
A acts like a single number (the eigenvalue \) and the problem is one-dimensional.

An essential highlight of Chapter 6 is diagonalizing a symmetric matrix.
When all the eigenvalues are positive, the matrix is “positive definite”. This key
idea connects the whole course—positive pivots and determinants and eigenvalues
and energy. I work hard to reach this point in the book and to explain it by examples.

. Chapter 7 is new. It introduces sirngular values and singular vectors. They separate

all martices into simple pieces, ranked in order of their importance. You will see
one way to compress an image. Especially you can analyze a matrix full of data.

. Chapter 8 explains linear transformations. This is geometry without axes, algebra

with no coordinates. When we choose a basis, we reach the best possible matrix.

. Chapter 9 moves from real numbers and vectors to complex vectors and matrices.

The Fourier matrix F' is the most important complex matrix we will ever see. And
the Fast Fourier Transform (multiplying quickly by F' and F'~!) is revolutionary.

Chapter 10 is full of applications, more than any single course could need:

10.1 Graphs and Networks—leading to the edge-node matrix for Kirchhoff’s Laws
10.2 Matrices in Engineering—differential equations parallel to matrix equations
10.3 Markov Matrices—as in Google’s PageRank algorithm

10.4 Linear Programming—a new requirement z > 0 and minimization of the cost
10.5 Fourier Series—linear algebra for functions and digital signal processing

10.6 Computer Graphics—matrices move and rotate and compress images

10.7 Linear Algebra in Cryptography—this new section was fun to write. The Hill
Cipher is not too secure. It uses modular arithmetic: integers from 0 to p — 1.
Multiplication gives 4 x 5 = 1 (mod 19). For decoding this gives 4=! = 5.

How should computing be included in a linear algebra course? It can open a new
understanding of matrices—every class will find a balance. MATLAB and Maple and
Mathematica are powerful in different ways. Julia and Python are free and directly
accessible on the Web. Those newer languages are powerful too !

Basic commands begin in Chapter 2. Then Chapter 11 moves toward professional al-
gorithms.You can upload and download codes for this course on the website.

Chapter 12 on Probability and Statistics is new, with truly important applications.
When random variables are not independent we get covariance matrices. Fortunately
they are symmetric positive definite. The linear algebra in Chapter 6 is needed now.
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The Variety of Linear Algebra

Calculus is mostly about one special operation (the derivative) and its inverse (the integral).
Of course I admit that calculus could be important . . .. But so many applications of math-
ematics are discrete rather than continuous, digital rather than analog. The century of data
has begun! You will find a light-hearted essay called “Too Much Calculus” on my website.
The truth is that vectors and matrices have become the language to know.

Part of that language is the wonderful variety of matrices. Let me give three examples:

Symmetric matrix Orthogonal matrix Triangular matrix
2 -1 0 0 1 1 1 1 11 11
-1 2 -1 0 11 -1 1 -1 0 1 1 1
0 -1 2 -1 1 1 -1 -1 00 11
0 0 -1 2 1 -1 -1 1 0 0 01

A key goal is learning to “read” a matrix. You need to see the meaning in the numbers.
This is really the essence of mathematics—patterns and their meaning.

I have used italics and boldface to pick out the key words on each page. I know there
are times when you want to read quickly, looking for the important lines.

May I end with this thought for professors. You might feel that the direction is right,
and wonder if your students are ready. Just give them a chance! Literally thousands of
students have written to me, frequently with suggestions and surprisingly often with thanks.
They know this course has a purpose, because the professor and the book are on their side.
Linear algebra is a fantastic subject, enjoy it.

Help With This Book

The greatest encouragement of all is the feeling that you are doing something worthwhile
with your life. Hundreds of generous readers have sent ideas and examples and corrections
(and favorite matrices) that appear in this book. Thank you all.

One person has helped with every word in this book. He is Ashley C. Fernandes, who
prepared the KTEX files. It is now six books that he has allowed me to write and rewrite,
aiming for accuracy and also for life. Working with friends is a happy way to live.

Friends inside and outside the MIT math department have been wonderful. Alan
Edelman for Julia and much more, Alex Townsend for the flag examples in 7.1, and
Peter Kempthorne for the finance example in 7.3 : those stand out. Don Spickler’s website
on cryptography is simply excellent. I thank Jon Bloom, Jack Dongarra, Hilary Finucane,
Pavel Grinfeld, Randy LeVeque, David Vogan, Liang Wang, and Karen Willcox.
The “eigenfaces” in 7.3 came from Matthew Turk and Jeff Jauregui. And the big step
to singular values was accelerated by Raj Rao’s great course at Michigan.

This book owes so much to my happy sabbatical in Oxford. Thank you, Nick Trefethen
and everyone. Especially you the reader! Best wishes in your work.



X Preface

Background of the Author

This is my 9th textbook on linear algebra, and I hesitate to write about myself. It is the
mathematics that is important, and the reader. The next paragraphs add something brief
and personal, as a way to say that textbooks are written by people.

I was born in Chicago and went to school in Washington and Cincinnati and St. Louis.
My college was MIT (and my linear algebra course was extremely abstract). After that
came Oxford and UCLA, then back to MIT for a very long time. I don’t know how many
thousands of students have taken 18.06 (more than 6 million when you include the videos
on ocw.mit.edu). The time for a fresh approach was right, because this fantastic subject
was only revealed to math majors—we needed to open linear algebra to the world.

I am so grateful for a life of teaching mathematics, more than I could possibly tell you.

Gilbert Strang

PS Ihope the next book (2018 ?) will include Learning from Data. This subject is grow-
ing quickly, especially “deep learning”. By knowing a function on a training set of old data,
we approximate the function on new data. The approximation only uses one simple non-
linear function f(x) = max(0, z). It is n matrix multiplications that we optimize to make
the learning deep: 1 = f(A1x + b1), 22 = f(Asx1 +b2),...,¢n = f(An@Tn_1+by).
Those are n — 1 hidden layers between the input & and the output x,,—which approximates
F(z) on the training set.

THE MATRIX ALPHABET

A Any Matrix P Permutation Matrix

B Basis Matrix P Projection Matrix

C  Cofactor Matrix @  Orthogonal Matrix

D Diagonal Matrix R Upper Triangular Matrix
E  Elimination Matrix R Reduced Echelon Matrix
F  Fourier Matrix S Symmetric Matrix

H  Hadamard Matrix T  Linear Transformation

I Identity Matrix U  Upper Triangular Matrix
J Jordan Matrix U  Left Singular Vectors

K Stiffness Matrix V' Right Singular Vectors
L Lower Triangular Matrix X  Eigenvector Matrix

M  Markov Matrix A Eigenvalue Matrix

N b))

Nullspace Matrix Singular Value Matrix



Chapter 1

Introduction to Vectors

The heart of linear algebra is in two operations—both with vectors. We add vectors to get
v + w. We multiply them by numbers ¢ and d to get cv and dw. Combining those two
operations (adding cv to dw) gives the linear combination cv + dw.

5 i T _ 1 2| | c+2d
Linear combination cv+dw—0{1]+d{3]—[c+3d]

Example v+ w = { 1 } + [ g } = [ i } is the combination withc =d =1

Linear combinations are all-important in this subject! Sometimes we want one partic-
ular combination, the specific choice ¢ = 2 and d = 1 that produces cv + dw = (4,5).
Other times we want all the combinations of v and w (coming from all ¢ and d).

The vectors cv lie along a line. When w is not on that line, the combinations cv + dw
fill the whole two-dimensional plane. Starting from four vectors w, v, w, z in four-
dimensional space, their combinations cu + dv + ew + fz are likely to fill the space—
but not always. The vectors and their combinations could lie in a plane or on a line.

Chapter 1 explains these central ideas, on which everything builds. We start with two-
dimensional vectors and three-dimensional vectors, which are reasonable to draw. Then
we move into higher dimensions. The really impressive feature of linear algebra is how
smoothly it takes that step into n-dimensional space. Your mental picture stays completely
correct, even if drawing a ten-dimensional vector is impossible.

This is where the book is going (into n-dimensional space). The first steps are the
operations in Sections 1.1 and 1.2. Then Section 1.3 outlines three fundamental ideas.

1.1 Vector addition v + w and linear combinations cv + dw.
1.2 The dot product v - w of two vectors and the length ||v| = Vv - v.

1.3 Matrices A, linear equations Ax = b, solutions x = A~'b.
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1.1 Vectors and Linear Combinations

Chapter 1. Introduction to Vectors

ﬁ 3v + Sw is a typical linear combination cv 4 dw of the vectors v and w.

2

1 2 L. 1
2Forv:[1]andw:[3]thatcomblnatlonls3[1]+5{3

|

|

3+10
3+15

|

|

1
1

3 The vector [ ; }

|

2
0

} + [ g ] goes across to = 2 and up to y = 3 in the zy plane.

4 The combinations ¢ [ i ] +d [

5 The combinationsc | 1

c+2d=1

c+4d =0

; } fill the whole zy plane. They produce every [ z ] .
1 2 1 3
+d | 3 | fillaplanein xyz space. Same planefor | 1 |, | 4
1 4 1 5
1
6 But ¢+ 3d =0 hasno solution because its right side | O | is not on that plane.
0

Y

Sy

: |

E

“You can’t add apples and oranges.” In a strange way, this is the reason for vectors.
We have two separate numbers v; and ve. That pair produces a two-dimensional vector v:

v1 = first component of v

Column vector v
vg = second component of v

We write v as a column, not as a row. The main point so far is to have a single letter v
(in boldface italic) for this pair of numbers v; and vy (in lightface italic).

Even if we don’t add v; to v, we do add vectors. The first components of v and w
stay separate from the second components:

=[]

Subtraction follows the same idea: The components of v — w are v1 — w1 and vy — Wa.
The other basic operation is scalar multiplication. Vectors can be multiplied by 2 or by
—1 or by any number c. To find 2v, multiply each component of v by 2:

—v
2v = [ ! } ;
— vy
The components of cv are cv; and cvy. The number cis called a “scalar”.
Notice that the sum of —v and v is the zero vector. This is 0, which is not the same as
the number zero! The vector 0 has components 0 and 0. Forgive me for hammering away

at the difference between a vector and its components. Linear algebra is built on these
operations v + w and cv and dw—adding vectors and multiplying by scalars.

VECTOR

. V1 + w1
ADDITION . } addto v+ w= [ ] ‘

Vg + Wo

SCALAR
MULTIPLICATION

27.}1

2v2]:v+v —v:[
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Linear Combinations

Now we combine addition with scalar multiplication to produce a “linear combination”
of v and w. Multiply v by ¢ and multiply w by d. Then add cv + dw.

The sum of cv and dw is a linear combination cv + dw.

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv:

lv+ 1w = sum of vectorsin Figure 1.1a

lv — 1w = difference of vectors in Figure 1.1b
Ov+ 0w = zero vector

cv+0w = vector cv in the direction of v

The zero vector is always a possible combination (its coefficients are zero). Every time we
see a “space” of vectors, that zero vector will be included. This big view, taking all the
combinations of v and w, is linear algebra at work.

The figures show how you can visualize vectors. For algebra, we just need the com-
ponents (like 4 and 2). That vector v is represented by an arrow. The arrow goes v; = 4
units to the right and v, = 2 units up. It ends at the point whose z, y coordinates are 4, 2.
This point is another representation of the vector—so we have three ways to describe v:

Represent vector v = Two numbers  Arrow from (0, 0) Point in the plane

We add using the numbers. We visualize v + w using arrows:
Vector addition (head to tail) At the end of v, place the start of w.

vru=[f]+ [ -F] -u=[i]-[3- (1]

Figure 1.1: Vector addition v + w = (3, 4) produces the diagonal of a parallelogram.
The reverse of w is —w. The linear combination on the right is v — w = (5, 0).

We travel along v and then along w. Or we take the diagonal shortcut along v + w.
We could also go along w and then v. In other words, w + v gives the same answer as
v + w. These are different ways along the parallelogram (in this example it is a rectangle).
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Vectors in Three Dimensions

A vector with two components corresponds to a point in the zy plane. The components of v
are the coordinates of the point: = v; and y = vo. The arrow ends at this point (v1, v2),
when it starts from (0,0). Now we allow vectors to have three components (vq, v2,V3).

The zy plane is replaced by three-dimensional xyz space. Here are typical vectors
(still column vectors but with three components):

1 2 3
v = 1 and w= |3 and v+w= |4
-1 4 3

The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the “origin”,
where the zyz axes meet and the coordinates are (0,0,0). The arrow ends at the point
with coordinates v, v9, vs. There is a perfect match between the column vector and the
arrow from the origin and the point where the arrow ends.

The vector (z,y) in the plane is different from (z, y,0) in 3-space !

z
Y
2T (3» 2)
4 5 3
T2
} f +
3
a: T
Figure 1.2: Vectors [y} and | y | correspond to points (z,y) and (z, y, z).
z
1
From nowon v = il is also writtenas v = (1,1,-1).
—1

The reason for the row form (in parentheses) is to save space. But v = (1,1,—1) is
not a row vector! It is in actuality a column vector, just temporarily lying down. The row
vector [1 1 —1] is absolutely different, even though it has the same three components.
That 1 by 3 row vector is the “transpose” of the 3 by 1 column vector v.
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In three dimensions, v + w is still found a component at a time. The sum has
components v; + w; and vy + wq and vz + ws. You see how to add vectors in 4 or 5
or n dimensions. When w starts at the end of v, the third side is v + w. The other way
around the parallelogram is w + v. Question: Do the four sides all lie in the same plane?
Yes. And the sum v + w — v — w goes completely around to produce the vector.

A typical linear combination of three vectors in three dimensions is u + 4v — 2w:

Linear combination 1 1 2 1
Multiply by 1,4, —2 Of+41(2]|—-2| 3| =12
Then add 3 1 -1 9

The Important Questions

For one vector u, the only linear combinations are the multiples cu. For two vectors,
the combinations are cu + dv. For three vectors, the combinations are cu + dv + ew.
Will you take the big step from one combination to all combinations? Every c and d and
e are allowed. Suppose the vectors u, v, w are in three-dimensional space:

1. What is the picture of all combinations cu?
2. What is the picture of a/l combinations cu + dv?
3. What is the picture of all combinations cu + dv + ew?

The answers depend on the particular vectors u, v, and w. If they were zero vectors (a very
extreme case), then every combination would be zero. If they are typical nonzero vectors
(components chosen at random), here are the three answers. This is the key to our subject:

1. The combinations cu fill a line through (0,0, 0).
2. The combinations cu + dv fill a plane through (0,0, 0).
3. The combinations cu + dv + ew fill three-dimensional space.

The zero vector (0,0, 0) is on the line because c can be zero. It is on the plane because c
and d could both be zero. The line of vectors cu is infinitely long (forward and backward).
It is the plane of all cu + dv (combining two vectors in three-dimensional space) that
I especially ask you to think about.

Adding all cu on one line to all dv on the other line fills in the plane in Figure 1.3.

When we include a third vector w, the multiples ew give a third line. Suppose that
third line is not in the plane of © and v. Then combining all ew with all cu + dv fills up
the whole three-dimensional space.

This is the typical situation! Line, then plane, then space. But other possibilities exist.
When w happens to be cu + dwv, that third vector w is in the plane of the first two.
The combinations of u, v, w will not go outside that uv plane. We do not get the full
three-dimensional space. Please think about the special cases in Problem 1.
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Line containing all cu Plane from
allcu +dv

(b)

Figure 1.3: (a) Line through w. (b) The plane containing the lines through v and v.
® REVIEW OF THE KEY IDEAS =
1. A vector v in two-dimensional space has two components v; and v.

.Vt w = (v1 + wi, V2 + ’LU2) and cv = (cvl, C’Ug) are found a component at a time.

. A linear combination of three vectors w and v and w is cu + dv + ew.

A W N

. Take all linear combinations of u, or w and v, or w,v,w. In three dimensions,
those combinations typically fill a line, then a plane, then the whole space R3.

® WORKED EXAMPLES =
1.1 A The linear combinations of v = (1,1,0) and w = (0,1, 1) fill a plane in R3.
Describe that plane. Find a vector that is not a combination of v and w—not on the plane.

Solution  The plane of v and w contains all combinations cv + dw. The vectors in that
plane allow any c and d. The plane of Figure 1.3 fills in between the two lines.

1 0 g
Combinations cv+dw=c| 1 |+d| 1 | =| c+d | fill aplane.
0 1 d

Four vectors in that plane are (0,0,0) and (2,3,1) and (5,7,2) and (m,2m, ).
The second component ¢ 4 d is always the sum of the first and third components.
Like most vectors, (1,2, 3) is not in the plane, because 2 # 1 + 3.

Another description of this plane through (0,0, 0) is to know that n = (1,—1,1) is
perpendicular to the plane. Section 1.2 will confirm that 90° angle by testing dot products:
v+-n = 0 and w - n = 0. Perpendicular vectors have zero dot products.
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1.1 B Forv = (1,0) and w = (0, 1), describe all points cv with (1) whole numbers ¢
(2) nonnegative numbers ¢ > 0. Then add all vectors dw and describe all cv + dw.

Solution

(1) The vectors cv = (¢, 0) with whole numbers ¢ are equally spaced points along the
@ axis (the direction of v). They include (-2, 0), (—1,0), (0,0), (1,0), (2,0).

(2) The vectors cv with ¢ > 0 fill a half-line. 1t is the positive = axis. This half-line
starts at (0, 0) where ¢ = 0. It includes (100, 0) and (7, 0) but not (—100, 0).

(1) Adding all vectors dw = (0, d) puts a vertical line through those equally spaced cv.
We have infinitely many parallel lines from (whole number c, any number d).

(2') Adding all vectors dw puts a vertical line through every cv on the half-line. Now we

have a half-plane. The right half of the zy plane has any z > 0 and any y.

1.1 C  Find two equations for ¢ and d so that the linear combination cv + dw equals b:

2 -1 1
B I B b
Solution  In applying mathematics, many problems have two parts:
1 Modeling part Express the problem by a set of equations.

2 Computational part Solve those equations by a fast and accurate algorithm.

Here we are only asked for the first part (the equations). Chapter 2 is devoted to the second
part (the solution). Our example fits into a fundamental model for linear algebra:

Find n numbers c¢y,...,c, sothat civ; + - -+ cpv, = 0.

For n = 2 we will find a formula for the ¢’s. The “elimination method” in Chapter 2
succeeds far beyond n = 1000. For n greater than 1 billion, see Chapter 11. Here n = 2:

Vector: equation 2 1
e | 2]+l 2] 5]

The required equations for ¢ and d just come from the two components separately:

. . 2c—d=1
T d
wo ordinary equations et 2d=0
. . ) . 2 1
Each equation produces a line. The two lines cross at the solution ¢ = 3 d= 3 Why not

see this also as a matrix equation, since that is where we are going :

. 2 -1 c| |1
2 by 2 matrix [_1 2]{03}—[0].
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Problem Set 1.1

Problems 1-9 are about addition of vectors and linear combinations.

1 Describe geometrically (line, plane, or all of R?) all linear combinations of
1 3 1 0 2 0 2
(a) |2 and |6 (b) 0| and |2 (c) Ol and | 2] and |2
3 9 0 3 0 2 3

2 Draw v = { 11 } and w= [ _g } and v+w and v —w in a single zy plane.

3 If'LH—'w:{5

1
1}andv—w:[

5 ] , compute and draw the vectors v and w.

4 Fromv:[f]andw:{l

9 } , find the components of 3v + w and cv + dw.

5 Compute u + v + w and 2u + 2v + w. How do you know u, v, w lie in a plane?

[y

These lie in a plane because 3 ‘

w = cu + dv. Find c and d Ll S P A I Rl
3 —2 —1
6 Every combination of v = (1, —2,1) and w = (0,1, —1) has components that add
to . Find ¢ and d so that cv + dw = (3,3, —6). Why is (3, 3, 6) impossible?
7 In the zy plane mark all nine of these linear combinations:

cm+dm with ¢=0,1,2 and d=0,1,2.

8 The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum.

9 If three corners of a parallelogram are (1,1), (4,2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them.

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4.

10  Which point of the cube is ¢ + j? Which point is the vector sum of ¢ = (1,0, 0) and
j =1(0,1,0) and k = (0,0, 1)? Describe all points (z, y, z) in the cube.

11 Four corners of this unit cube are (0,0, 0), (1,0,0), (0,1,0), (0,0,1). What are the
other four corners? Find the coordinates of the center point of the cube. The center
points of the six faces are . The cube has how many edges?

12 Review Question. In zyz space, where is the plane of all linear combinations of
1= (1,0,0)and i+ j = (1,1,0)?



1.1. Vectors and Linear Combinations 9

13

14

k=(0.01) j+k

Jj=1(0,1,0)

Notice the illusion
Is (0,0, 0) a top or
a bottom corner?

Figure 1.4: Unit cube from i, j, k and twelve clock vectors.

(a) What is the sum V of the twelve vectors that go from the center of a clock to
the hours 1:00, 2:00, ..., 12:00?

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00?

(c) What are the z, y components of that 2:00 vector v = (cos §,sin6)?

Suppose the twelve vectors start from 6:00 at the bottom instead of (0,0) at the
center. The vector to 12:00 is doubled to (0, 2). The new twelve vectors add to .

Problems 15-19 go further with linear combinations of v and w (Figure 1.5a).

15
16

17
18
19

Figure 1.5: Problems 15-19 in a plane

Figure 1.5a shows % v+ % w. Mark the points % v+ % w and % v+ % w and v +w.

Mark the point —v + 2w and any other combination cv + dw with ¢ +d = 1.
Draw the line of all combinations that have ¢ + d = 1.

Locate % v+ % w and % v+ % w. The combinations cv + cw fill out what line?
Restricted by 0 < ¢ < 1and 0 < d < 1, shade in all combinations cv + dw.

Restricted only by ¢ > 0 and d > 0 draw the “cone” of all combinations cv + dw.

®
‘R
Il
N
[~
+
(ST
&
P

(a) (b)

Problems 20-25 in 3-dimensional space
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Problems 20-25 deal with u, v, w in three-dimensional space (see Figure 1.5b).

20 Locate %u + % v+ % w and %u + %w in Figure 1.5b. Challenge problem: Under
what restrictions on ¢, d, e, will the combinations cu + dv + ew fill in the dashed
triangle? To stay in the triangle, one requirementis ¢ > 0,d > 0,e > 0.

21  The three sides of the dashed triangle are v — u and w — v and w — w. Their sum is
. Draw the head-to-tail addition around a plane triangle of (3, 1) plus (—1,1)
plus (=2, —2).

22  Shade in the pyramid of combinations cu + dv + ew with¢ > 0,d > 0, e > 0 and
¢+ d+ e < 1. Mark the vector %(u + v+ w) as inside or outside this pyramid.

23  If youlook at all combinations of those u, v, and w, is there any vector that can’t be
produced from cu + dv + ew? Different answer if u, v, w are all in

24  Which vectors are combinations of u and v, and also combinations of v and w?

25 Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line.
Find vectors u, v, w so that their combinations cu + dv + ew fill only a plane.

1
2

equations for the coefficients ¢ and d in the linear combination.

26  What combination ¢ [ } +d {ﬂ produces {lg} ? Express this question as two

Challenge Problems

27 How many corners does a cube have in 4 dimensions? How many 3D faces?
How many edges? A typical corneris (0,0, 1,0). A typical edge goes to (0,1,0,0).

28  Find vectors v and w so that v + w = (4,5,6) and v — w = (2,5,8). Thisis a
question with unknown numbers, and an equal number of equations to find
those numbers.

29  Find two different combinations of the three vectors w = (1,3) and v = (2,7) and
w = (1,5) that produce b = (0,1). Slightly delicate question: If I take any three
vectors u, v, w in the plane, will there always be two different combinations that
produce b = (0,1)?

30  The linear combinations of v = (a,b) and w = (¢, d) fill the plane unless
Find four vectors u, v, w, z with four components each so that their combinations
cu + dv + ew + fz produce all vectors (by, ba, b3, by) in four-dimensional space.

31 Write down three equations for ¢, d, e so that cu + dv + ew = b. Can you somehow
find ¢, d, e for this b ?

2 -1 0 1
u=| —1 v = 2 w=| -1 b=1]0
0 -1 2 0
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1.2 Lengths and Dot Products

1 The “dot product” of v = [ ; ] andw = [ g } isv-w=(1)4)+(2)(5) =4+10= 1D
1 4
2v=| 3 | andw = | —4 | are perpendicular because v - w is zero:
2 4 (M4) +B)(-4) +(2)(4) =0.
1
3 The length squaredof v = | 3 | isv-v =149+ 4 = 14. The length s ||v|| = V14.
2
4 Thenw = 2 ==l ol zl), has length [Jus|| = 1. Check miensi i — 1
loll ~ Vid~ Vid | £ ' VISV V i
vew
5 The angle 6 between v and w has cos§ = ——.
ol [lwl|
6 The angle between { L } and [ ! } has cosf = : That angleis § = 45°
L . L(v2) '
(All angles have | cos 8| < 1. So all vectors have l lv-w| < ]| [Jwl] /

The first section backed off from multiplying vectors. Now we go forward to define
the “dot product” of v and w. This multiplication involves the separate products v w; and
voWwsa, but it doesn’t stop there. Those two numbers are added to produce one number v - w.

This is the geometry section (lengths of vectors and cosines of angles between them).

The dot product or inner product of v = (v1,v3) and w = (wy, ws) is the number v - w:

Vew = V1w + VaWs. @))

Example 1  The vectors v = (4, 2) and w = (—1, 2) have a zero dot product:

Dot product is zero 40 |1 _ _
Perpendicular vectors [2] ' [ 2] SR

In mathematics, zero is always a special number. For dot products, it means that these
two vectors are perpendicular. The angle between them is 90°. When we drew them
in Figure 1.1, we saw a rectangle (not just any parallelogram). The clearest example of
perpendicular vectors is 2 = (1, 0) along the = axis and j = (0, 1) up the y axis. Again the
dot productis 2 - 5 = 0+ 0 = 0. Those vectors ¢ and j form a right angle.
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The dot product of v = (1,2) and w = (3,1) is 5. Soon v - w will reveal the angle
between v and w (not 90°). Please check that w - v is also 5.

The dot product w - v equals v - w. The order of v and w makes no difference.

Example 2  Put a weight of 4 at the point = —1 (left of zero) and a weight of 2 at the
point x = 2 (right of zero). The z axis will balance on the center point (like a see-saw).
The weights balance because the dot productis (4)(—1) + (2)(2) = 0.

This example is typical of engineering and science. The vector of weights is (wy, w2) =
(4,2). The vector of distances from the center is (v1,v2) = (—1, 2). The weights times the
distances, w; v, and wyvg, give the “moments”. The equation for the see-saw to balance is
w1V + wovy = 0.

Example 3 Dot products enter in economics and business. We have three goods to buy
and sell. Their prices are (p1,p2,ps) for each unit—this is the “price vector” p. The
quantities we buy or sell are (g1, g2, g3)—positive when we sell, negative when we buy.
Selling qi units at the price py brings in q1p1. The total income (quantities ¢ times prices
p) is the dot product q - p in three dimensions:

Income = (q1,q2,q3) * (P1,D2,P3) = q1p1 + q2p2 + @ap3 = dot product.

A zero dot product means that “the books balance”. Total sales equal total purchases if
q - p = 0. Then p is perpendicular to g (in three-dimensional space). A supermarket with
thousands of goods goes quickly into high dimensions.

Small note: Spreadsheets have become essential in management. They compute linear
combinations and dot products. What you see on the screen is a matrix.

Main point  For v - w, multiply each v; times w;. Then v-w = viw; + - -+ + VW,

Lengths and Unit Vectors

An important case is the dot product of a vector with itself. In this case v equals w.
When the vector is v = (1, 2, 3), the dot product with itself is v - v = ||v||? = 14:

1 1

Dot product v - v

Length squared lv|>=[2]|-|2]| =1+4+9=14.
3 3

Instead of a 90° angle between vectors we have 0°. The answer is not zero because v is not
perpendicular to itself. The dot product v - v gives the length of v squared.

DEFINITION The length ||v|| of a vector v is the square root of v - v:

length = ||v|| = Vv-v= (vf+v%+---+vﬁ)l/2.
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In two dimensions the length is Vv? + v3. In three dimensions it is \/vf +v2 + v3.
By the calculation above, the length of v = (1,2, 3) is ||v| = v/14.

Here ||v|| = /v - v is just the ordinary length of the arrow that represents the vector.
If the components are 1 and 2, the arrow is the third side of a right triangle (Figure 1.6).
" The Pythagoras formula a? + b = c? connects the three sides: 12 + 22 = |lv]%

For the length of v = (1,2, 3), we used the right triangle formula twice. The vector
(1,2,0) in the base has length 1/5. This base vector is perpendicular to (0,0, 3) that goes
straight up. So the diagonal of the box has length ||v|| = /5 + 9 = /14.

The length of a four-dimensional vector would be Vv? + v + vZ + v2. Thus the vec-
tor (1,1,1,1) has length v/12 + 12 + 12 + 12 = 2. This is the diagonal through a unit

) ) )

cube in four-dimensional space. That diagonal in  dimensions has length /7.

0,0,3) g-~""°- §
/ /"
;1

(1,2,3) has

(0,2)
length v/14

v.v = v? 43+ v2
5= 12422
14 = 12422432

— : (0,2,0)
(1.0) /ﬁ: (1,2, 0) has
(1,0,0) v

Figure 1.6: The length /v - v of two-dimensional and three-dimensional vectors.

The word “unit” is always indicating that some measurement equals “one”. The unit
price is the price for one item. A unit cube has sides of length one. A unit circle is a circle
with radius one. Now we see the meaning of a “unit vector”.

DEFINITION A unit vector u is a vector whose length equals one. Then u - u = 1.

An example in four dimensions is u = (%, %, %, %) Then u - u is i + i + i + i =1
We divided v = (1, 1,1, 1) by its length ||v|| = 2 to get this unit vector.

Example 4  The standard unit vectors along the x and y axes are written ¢ and j. In the
xy plane, the unit vector that makes an angle “theta” with the z axis is (cos 6, sin 6):

. . |1 .10 | cosf
Unit vectors z—{o} and J;L} and “‘Lme]

When 6 = 0, the horizontal vector w is 2. When 6 = 90° (or 7 radians), the vertical
vector is j. At any angle, the components cos @ and sin 6 produce v - u = 1 because
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cos? § +sin? § = 1. These vectors reach out to the unit circle in Figure 1.7. Thus cos # and
sin 6 are simply the coordinates of that point at angle € on the unit circle.

Since (2,2,1) has length 3, the vector (%, %, %) has length 1. Check that w - u =
5+ 3 + g = L. For a unit vector, divide any nonzero vector v by its length ||v||.

Unit vector u=v/||v|| is a unit vector in the same direction as v.

i=0.1)  4=(,1
A

(L L)y__v
”‘(ﬁ’ﬁ)‘uv“
i > i=(1,0)

Unit vectors

Figure 1.7: The coordinate vectors ¢ and 7. The unit vector u at angle 45° (left) divides
v = (1,1) by its length ||v|| = v/2. The unit vector u = (cos #,sin ) is at angle .

The Angle Between Two Vectors

We stated that perpendicular vectors have v - w = 0. The dot product is zero when the
angle is 90°. To explain this, we have to connect angles to dot products. Then we show
how v - w finds the angle between any two nonzero vectors v and w.

Right angles The dot product is v - w = 0 when v is perpendicular to w.

Proof When v and w are perpendicular, they form two sides of a right triangle.
The third side is v — w (the hypotenuse going across in Figure 1.8). The Pythagoras Law
for the sides of a right triangle is a® + b2 = c:

Perpendicular vectors |[v|* + ||w|]* = [|[v — w]? )
Writing out the formulas for those lengths in two dimensions, this equation is
Pythagoras (v} +03) + (Wi +w3) = (v1 —w1)? + (v2 — wa)*. (3)

The right side begins with v? — 2v1w; +w?. Then v? and w? are on both sides of the equa-
tion and they cancel, leaving —2vyw;. Also vZ and w3 cancel, leaving —2vpws.
(In three dimensions there would be —2v3w3.) Now divide by —2 to see v — w = 0:

0 = —2viw; — 2vowy whichleadsto wviw; + vows = 0. 4)

Conclusion Right angles produce v - w = 0. The dot product is zero when the angle is
0 = 90°. Then cosf = 0. The zero vector v = 0 is perpendicular to every vector w
because O - w is always zero.
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Now suppose v - w is not zero. It may be positive, it may be negative. The sign of
v - w immediately tells whether we are below or above a right angle. The angle is less than
90° when v - w is positive. The angle is above 90° when v - w is negative. The right side
of Figure 1.8 shows a typical vector v = (3, 1). The angle with w = (1, 3) is less than 90°
because v + w = 6 is positive.

I

,‘v-w>0

5 m veow<O0
I = - - — - angle with v
vew=0 angle with v less than 90 °
54+20=25 greater than 90 ° in this half-plane
in this half-plane

Figure 1.8: Perpendicular vectors have v - w = 0. Then ||v||? + ||w||? = ||v — w|*.

The borderline is where vectors are perpendicular to v. On that dividing line between
plus and minus, (1, —3) is perpendicular to (3, 1). The dot product is zero.

The dot product reveals the exact angle 8. For unit vectors u and U, the sign of u-U
tells whether 6 < 90° or § > 90°. More than that, the dot product u - U is the cosine of
6. This remains true in 7 dimensions.

Unit vectors v and U at angle 0 have w - U = cosf. Certainly |u-U]| < 1.

Remember that cos @ is never greater than 1. It is never less than —1. The dot product of
unit vectors is between —1 and 1. The cosine of 0 is revealed by u - U.

Figure 1.9 shows this clearly when the vectors are u = (cos,sinf) and ¢ = (1,0).
The dot productis u - ¢ = cos . That is the cosine of the angle between them.

After rotation through any angle «, these are still unit vectors. The vector ¢ = (1,0)
rotates to (cosa,sina). The vector u rotates to (cos 3,sin ) with § = a + 6. Their
dot product is cos v cos 8 + sin asin 3. From trigonometry this is cos(8 — «) = cos®.

sin 6

] =v
J = ! %
fu-i —cost =[] (6-5_a

Figure 1.9: Unit vectors: w - U is the cosine of 6 (the angle between).

v [cos@] l:cs(l)sg] -
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What if v and w are not unit vectors? Divide by their lengths to get w = v/||v|| and
U = w/||lw||. Then the dot product of those unit vectors u and U gives cos 6.

COSINE FORMULA If » and w are nonzero vectors then ———— = cosf. (5)

o[l ]l

vV-w
w

Whatever the angle, this dot product of v/||v|| with w/||w|| never exceeds one. That
is the “Schwarz inequality” |v - w| < ||v|| |w|| for dot products—or more correctly the
Cauchy-Schwarz-Buniakowsky inequality. It was found in France and Germany and
Russia (and maybe elsewhere—it is the most important inequality in mathematics).

Since | cos @] never exceeds 1, the cosine formula gives two greai inequalities:

SCHWARZ INEQUALITY lv-w| < vl |w]

TRIANGLE INEQUALITY lv +wl| < ||v]| + ||Jw]|

9
Example 5 Find cos#@ forv = [ I } and w = [ : ] and check both inequalities.

2
Solution The dot product is v - w = 4. Both v and w have length 1/5. The cosine is 4/5.
. 4 4
cosf = — 2

vl llwll — V5v5 5

By the Schwarz inequality, v - w = 4 is less than ||v|| |w]| = 5. By the triangle inequality,
side 3 = [|v + w|| is less than side 1 + side 2. For v + w = (3, 3) the three sides are
V18 < /5 + /5. Square this triangle inequality to get 18 < 20.

Example 6 The dot product of v = (a,b) and w = (b,a) is 2ab. Both lengths are
Va2 + b2. The Schwarz inequality v - w < ||v]| ||w]| says that 2ab < a® + b?.

This is more famous if we write 2 = a? and y = b%. The “geometric mean” VY
is not larger than the “arithmetic mean” = average %(:c + ).

Geometric < Arithmetic a? +b? T+y
< ” :
Héai R ab < 5 becomes /7y < B

Example 5hada = 2and b = 1. Soz = 4 and y = 1. The geometric mean /zy = 2
is below the arithmetic mean £ (1 + 4) = 2.5.

Notes on Computing

MATLAB, Python and Julia work directly with whole vectors, not their components.
When v and w have been defined, v + w is immediately understood. Input v and w
as rows—the prime ’ transposes them to columns. 2v + 3w becomes 2 * v + 3 * w.
The result will be printed unless the line ends in a semicolon.
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MATLAB v=[2 3 4] ; w=[1 1 1’ ; u=2xv+3*w

The dot product v - w is a row vector times a column vector (use * instead of ) :

Instead of B] [2] we more often see [ 1 2]{2} or v'xw

The length of v is known to MATLAB as norm (v). This is sqrt (v’ * v). Then find the
cosine from the dot product v’ * w and the angle (in radians) that has that cosine :

Cosine formula cosine = v’ x w/(norm (v) * norm (w))
The arc cosine angle = acos (cosine)

An M-file would create a new function cosine (v, w). Python and Julia are open source.

® REVIEW OF THE KEY IDEAS =

1. The dot product v - w multiplies each component v; by w; and adds all v;w;.
2. The length ||v|| is the square root of v-v. Then u=wv/||v|| is a unit vector : length 1.
3. The dot product is v - w = 0 when vectors v and w are perpendicular.

4. The cosine of # (the angle between any nonzero v and w) never exceeds 1:

Cosine cosf = Schwarz inequality  |v - w| < ||v]| [|w]|-

v-w
lollllwll
® WORKED EXAMPLES =

1.2 A For the vectors v = (3,4) and w = (4, 3) test the Schwarz inequality on v - w
and the triangle inequality on |[v + w]|. Find cos@ for the angle between v and w.
Which v and w give equality |v - w|=||v|| |w]| and ||v + w|=|/v| + ||w]|?

Solution  The dot product is v - w = (3)(4) + (4)(3) = 24. The length of v is
|v]| = v/9 + 16 = 5 and also ||w| = 5. The sum v + w = (7, 7) has length 7v/2 < 10.

Schwarz inequality lv-w| < |lv]| |lw]|] is 24 < 25.

Triangle inequality v+ w| < |lv]| + |w| is 7v2<5+5.

Cosine of angle cosf = 22 Thin angle fromv = (3,4) tow = (4,3)

Equality: One vector is a multiple of the other as in w = cv. Then the angle is 0° or 180°.
In this case | cos 6| = 1 and |v - w| equals ||v|| ||w]|. If the angle is 0°, as in w = 2wv, then
|lv + w||=|v|| + ||w]| (both sides give 3||v||). This v, 2v, 3v triangle is flat !
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1.2 B Find a unit vector u in the direction of v = (3,4). Find a unit vector U that is
perpendicular to w. How many possibilities for U?

Solution  For a unit vector u, divide v by its length ||v|| = 5. For a perpendicular vector
V we can choose (—4, 3) since the dot product v - V' is (3)(—4) + (4)(3) = 0. For a unit
vector perpendicular to u, divide V' by its length |V ||:

v 3 4 \4 4 3)
u=—= == U:—: == U'U:O
o]l (5 5) v ( 55

The only other perpendicular unit vector would be —U = ( %, —%)

1.2 C Find a vector ¢ = (c,d) that has dot products © - » = 1 and & -+ s = 0 with
two given vectors 7 = (2,—1) and s = (—1, 2).

Solution  Those two dot products give linear equations for ¢ and d. Then & = (c, d).

rz-r=1 is 2c— d=1 The same equations as
z-s=0 is —c+2d=0 in Worked Example 1.1 C

Comment on n equations for x = (x1, ..., &) in n-dimensional space

Section 1.1 would start with columns v;. The goal is to produce 21v1 + - - + To,v, = b.
This section would start from rows 7;. Now the goal is to find « with « - r; = b;.

Soon the v’s will be the columns of a matrix A, and the r’s will be the rows of A.
Then the (one and only) problem will be to solve Az = b.

Problem Set 1.2

1 Calculate the dot products u - v and u - w and w + (v + w) and w - v:
[~ o [4 e
bl E Y= 2]
2 Compute the lengths ||u|| and ||v|| and ||w]|| of those vectors. Check the Schwarz

inequalities |u - v| < ||u| ||v| and |v « w| < ||v|| [|w]|.

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the
angle 0. Choose vectors a, b, c that make 0°, 90°, and 180° angles with w.

4 For any unit vectors v and w, find the dot products (actual numbers) of
(a) v and —v ®b) v+wandv —w (c) v—2wandv+ 2w

5 Find unit vectors ©; and uz in the directions of v = (1,3) and w = (2,1,2).
Find unit vectors U; and U, that are perpendicular to u; and ws.
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6

10

1

12

13
14

15

16

17

(a) Describe every vector w = (w, wo) that is perpendicular to v = (2, —1).
(b) All vectors perpendicularto V' = (1,1,1) lieona in 3 dimensions.

(c) The vectors perpendicular to both (1,1, 1) and (1,2, 3) lie on a

Find the angle 6 (from its cosine) between these pairs of vectors:

1 1 2 2
(a)v:[\/g} and w:[o} b)) v= _i and w = —;

(c)v:[\}gJ and w:bﬂ ) v:m and w:tﬂ.

True or false (give a reason if true or find a counterexample if false):

(a) If w = (1,1, 1) is perpendicular to v and w, then v is parallel to w.
(b) If u is perpendicular to v and w, then u is perpendicular to v + 2w.
(¢) If w and v are perpendicular unit vectors then ||u — v|| = /2. Yes!
The slopes of the arrows from (0, 0) to (v1, v2) and (w1, we) are vg /vy and wa /w;.

Suppose the product vows/v1w of those slopes is —1. Show that v - w = 0 and
the vectors are perpendicular. (The line y = 4z is perpendicular to y = —i:c.)

Draw arrows from (0, 0) to the points v = (1,2) and w = (—2,1). Multiply their
slopes. That answer is a signal that v + w = 0 and the arrows are

If v - w is negative, what does this say about the angle between v and w? Draw a
3-dimensional vector v (an arrow), and show where to find all w’s with v - w < 0.

With v = (1,1) and w = (1, 5) choose a number ¢ so that w — cv is perpendicular
to v. Then find the formula for ¢ starting from any nonzero v and w.

Find nonzero vectors v and w that are perpendicular to (1,0, 1) and to each other.

Find nonzero vectors u, v, w that are perpendicular to (1,1, 1, 1) and to each other.

i Y Y

The geometric mean of x = 2 and y = 8 is /zy = 4. The arithmetic mean is larger:
%(:c +y) = ____ . This would come in Example 6 from the Schwarz inequality for

v= (\/5, \/§) and w = (\/g, \/5) Find cos 8 for this v and w.

How long is the vector v = (1, 1,...,1) in 9 dimensions? Find a unit vector u in
the same direction as v and a unit vector w that is perpendicular to v.

What are the cosines of the angles «, 3, 8 between the vector (1,0, —1) and the unit
vectors 1, j, k along the axes? Check the formula cos? a + cos? 3 + cos? § = 1.
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Problems 18-28 lead to the main facts about lengths and angles in triangles.

18  The parallelogram with sides v = (4,2) and w = (—1,2) is a rectangle. Check the
Pythagoras formula a? + b = c? which is for right triangles only:

(length of v)? + (length of w)? = (length of v + w)?.

19  (Rules for dot products) These equations are simple but useful:
Mv-w=w-v Qu-wWt+w)=u-v+u-w @B)(w) -w=c(v--w)

Use Q) withu =v + w toprove |[v + w||?’=v-v + 2v-w + w- w.
20  The “Law of Cosines” comes from (v —w) (v —w) =v-v - 2v-w + w - w:
Cosine Law lv —wl|?® = ||Jv||*> - 2||v| |w| cos & + |Jw]?.
Draw a triangle with sides v and w and v — w. Which of the angles is 6 ?

21 The triangle inequality says: (length of v + w). < (length of v) + (length of w).

Problem 19 found ||v + w||* = |[v]|? + 2v - w + ||w]||?. Increase that v - w to
lv|| ||w]| to show that ||side 3| can not exceed ||side 1| + ||side 2||:

Triangle
iy lo +wl® < (vl + [[wl)?* or o+ w]| < [lv]| + |lw].
v+w w = (w1, w2)
” lwl
g |l e
v MNASS
x
o

22  The Schwarz inequality |v - w| < ||v|| ||w]| by algebra instead of trigonometry:

(a) Multiply out both sides of (v1w1 + vows)? < (v} + v3) (W} + w3).

(b) Show that the difference between those two sides equals (viws — UQ’LUl)2.

This cannot be negative since it is a square—so the inequality is true.

23  The figure shows that cosaw = v1/||v|| and sina = wvy/||v||. Similarly cos 3 is
and sin g is . The angle 0 is  — «. Substitute into the trigonometry
formula cos 3 cos & + sin S sin « for cos(5 — a) to find cos§ = v - w/||v|| [|[w]|.
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One-line proof of the inequality |u - U| < 1 for unit vectors (u1, uz) and (Uy, Us) :

u%ﬁ-Ui?Jru%—FUQQ
2 2

Put (u1,uz) = (.6,.8) and (U, Us) = (.8, .6) in that whole line and find cos 6.

lu- Ul < |ur] [Un] + [ug| [Us] < =1

Why is | cos 0] never greater than 1 in the first place?
(Recommended) Draw a parallelogram

Parallelogram with two sides v and w. Show that the squared diagonal lengths ||v +
w|? + Jv — w|? add to the sum of four squared
side lengths 2|v||? + 2|lw]|?.

If v = (1,2) draw all vectors w = (x,y) in the zy plane with v - w =  + 2y = 5.
Why do those w’s lie along a line? Which is the shortest w?

(Recommended) If ||v|| = 5 and ||w|| = 3, what are the smallest and largest possible

values of ||[v — w(|? What are the smallest and largest possible values of v « w?

Challenge Problems

Can three vectors in the zy plane have u - v < Oand v - w < 0and v - w < 07
I don’t know how many vectors in xyz space can have all negative dot products.
(Four of those vectors in the plane would certainly be impossible . . .).

Pick any numbers that add to x + y + z = 0. Find the angle between your vec-
tor v = (x,y, z) and the vector w = (z,z,y). Challenge question: Explain why
v-w/||vl|||w| is always —1.

How could you prove /zyz < %(m +y+ z) (geometric mean < arithmetic mean ) ?
Find 4 perpendicular unit vectors of the form (£, £, +1, +1): Choose + or —.

Using v = randn(3, 1) in MATLAB, create a random unit vector u = v/||v||. Using
V = randn(3, 30) create 30 more random unit vectors U;. What is the average size

of the dot products |u - U;|? In calculus, the average is fo7r |cosf|db/m = 2/x.
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1.3 Matrices

1 2
1 A=| 3 4 |isa3by2matrix: m = 3 rows and n = 2 columns.
5 6
1 2 1 2 ]
2 A= | 3 4 [ . } is a combination of the columns Ar=x1| 3 | +x2 | 4
5 6 |L"2 5 6

3 The 3 components of Az are dot products of the 3 rows of A with the vector x :

1 2 7 1-7+2-8 23 |
Row at a time 3 4 {8}: 3-7+4-8 | =1 53 |.
5 6 5-7+6-8 83 |
5 5 5 . 2 5 I = b1 2.751 + 5332 = b1
4 Equations in matrix form Ax = b: [ 3 7 } { 2 :| = [ by } replaces 32y + Tz = by °

{The solution to Az = b can be written as = A~1b. But some matrices don’t allow A 1. /

This section starts with three vectors u, v, w. I will combine them using matrices.

1 0 0
Three vectors u= | —1 v = 1 w=1]0
0 -1 1

Their linear combinations in three-dimensional space are z;u + zov + T3w:

A a 1 0 0 T
Combination
of the vectors ry| =1 | 42| 1| +23] 0| =|22-21 |. (1)
0 —1 1 I3 — T2

Now something important: Rewrite that combination using a matrix. The vectors u, v, w
go into the columns of the matrix A. That matrix “multiplies” the vector (1, x2, x3):

Matrix times vector - _1 (1) 8 il _ il - Q)
Combination of columns a 2T ° ' g
0 -1 1 T3 T3 — X2

The numbers x1, T2, 3 are the components of a vector . The matrix A times the vector @
is the same as the combination z;u + xov + z3w of the three columns in equation (1).

This is more than a definition of Az, because the rewriting brings a crucial change
in viewpoint. At first, the numbers z,z9, 23 were multiplying the vectors. Now the
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matrix is multiplying those numbers. The matrix A acts on the vector . The output
Ax is a combination b of the columns of A.
To see that action, I will write by, b, bs for the components of Ax :

1 0 0 I 1 bl
Az = | -1 1 0 To | =|@m—21 | = | ba | =0b. 3)
0 -1 1 T3 T3 — Xp b3

The input is « and the output is b = Ax. This A is a “difference matrix” because b
contains differences of the input vector . The top difference is ; — g = 1 — 0.

Here is an example to show differences of = (1,4, 9): squares in «, odd numbers in b.

T =

Nl
N =

1- 1
= squares Az =|4-1| =|3| =b. “
9— 5

That pattern would continue for a 4 by 4 difference matrix. The next square would be
z4 = 16. The next difference would be =4 — 3 = 16 — 9 = 7 (the next odd number).
The matrix finds all the differences 1, 3, 5, 7 at once.

Important Note: Multiplication a row at a time. You may already have learned about
multiplying Az, a matrix times a vector. Probably it was explained differently, using the
rows instead of the columns. The usual way takes the dot product of each row with x:

Az is also 1 00 x1 (1, 0, 0)«(z1,x2,x3)
dot products Az=| -1 1 0 ze | = | (-1,1,0) - (z1,22,23) | - (5)
with rows 0 -1 1 x3 (0,-1,1) + (21,22, 3)

Those dot products are the same z; and z2 — z; and 3 — =2 that we wrote in equation (3).
The new way is to work with Ax a column at a time. Linear combinations are the key to
linear algebra, and the output A« is a linear combination of the columns of A.

With numbers, you can multiply Ax by rows. With letters, columns are the good way.
Chapter 2 will repeat these rules of matrix multiplication, and explain the ideas.

Linear Equations

One more change in viewpoint is crucial. Up to now, the numbers z;, 2, 3 were known.
The right hand side b was not known. We found that vector of differences by multiplying
A times . Now we think of b as known and we look for .

Old question: Compute the linear combination z;u + 22v + 3w to find b.
New question: Which combination of u, v, w produces a particular vector b?

This is the inverse problem—to find the input x that gives the desired output b = Aw.
You have seen this before, as a system of linear equations for z1, z2, 3. The right hand
sides of the equations are by, bo, bs. I will now solve that system Ax = b to find 1, zo, x3:
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T1 =b z1=b
i(iuitlgns —21 + X2 = by 2:01:“'20_“11) To = by + by (6)
—Zo+x3=Dbs3 x3 = by + by + bs.

Let me admit right away—most linear systems are not so easy to solve. In this example,

the first equation decided z; = b;. Then the second equation produced zo = by + bs.

The equations can be solved in order (top to bottom) because A is a triangular matrix.
Look at two specific choices 0, 0,0 and 1, 3, 5 of the right sides b1, b2, b3:

0 0 1 1 1
b=|0| gives x= |0 b= |3]| gives z=|1+3 = |4
0 0 5 1+3+5 9

The first solution (all zeros) is more important than it looks. In words: If the output is
b = 0, then the input must be x = 0. That statement is true for this matrix A. It is not true
for all matrices. Our second example will show (for a different matrix C') how we can have
Cx =0whenC # 0and x # 0.

This matrix A is “invertible”. From b we can recover x. We write = as A~! b.

The Inverse Matrix

Let me repeat the solution « in equation (6). A sum matrix will appear!

T1 b1 1 0 0 by
Axz = bissolvedby | zo | = | by + by =1 1 0 N )]
T3 b1 + by + b3 1 1 1 bs

If the differences of the x’s are the b’s, the sums of the b’s are the z’s. That was true for

the odd numbers b = (1,3,5) and the squares © = (1,4,9). Itis true for all vectors.

The sum matrix in equation (7) is the inverse A~! of the difference matrix A.
Example: The differencesof x = (1,2,3)are b= (1,1,1). Sob = Az andz = A~'b:

1 00 1 1 100 1 1
Az=|-1 1 0 2 (=11 A%=1|11 0 1|=12
0 -1 1 3 1 11 1 1 3

Equation (7) for the solution vector = (z1, x2, z3) tells us two important facts:
1. Forevery b there is one solutionto Az = b. 2. The matrix A~! produces z=A"1b.

The next chapters ask about other equations Az = b. Is there a solution? How to find it?

Note on calculus. Letme connect these special matrices to calculus. The vector « changes
to a function z(¢). The differences Az become the derivative dz/dt = b(t). In the
inverse direction, the sums A~'b become the integral of b(t). Sums of differences are like
integrals of derivatives.
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The Fundamental Theorem of Calculus says : integration is the inverse of differentiation .

d t
Az =band z = A~'b gx = band z(t) = / bdt. ®)
0

The differences of squares 0, 1,4, 9 are odd numbers 1, 3, 5. The derivative of z(t) = ¢
is 2¢. A perfect analogy would have produced the even numbers b = 2,4,6 at times
t = 1,2, 3. But differences are not the same as derivatives, and our matrix A produces not
2t but 2t — 1:

Backward z(t)—z(t—1)=t*-(t-1)2 =t - (> -2t+1)=2t—1. (9)

The Problem Set will follow up to show that “forward differences” produce 2¢ + 1.
The best choice (not always seen in calculus courses) is a centered difference that uses
z(t + 1) — z(t — 1). Divide that Az by the distance At from ¢ — 1 to ¢ + 1, which is 2:

(t+1)2 - (¢t = 1)?
2
Difference matrices are great. Centered is the best. Our second example is not invertible.

Centered difference of x(t) = ¢2 =2t exactly.  (10)

Cyclic Differences

This example keeps the same columns u and v but changes w to a new vector w*:

1 0 -1
Second example u=|—1 v= 1 w* = 0
0 -1 1

Now the linear combinations of u, v, w* lead to a cyclic difference matrix C:

il 0 -1 1 Tr1 — X3
Cyclic Cx=| -1 1 0 To | = | 9o —21 | =0. (11)
0 -1 1 T3 T3 — T2

This matrix C' is not triangular. It is not so simple to solve for  when we are given b.
Actually it is impossible to find the solution to C'xz = b, because the three equations either
have infinitely many solutions (sometimes) or else no solution (usually) :

Cx=0 T, — T3 0 1 c
Infinitely xo—x1 | = | 0 | issolvedbyall vectors | zo | = | ¢ | . (12)
many T3 — To 0 T3 c

Every constant vector like = (3,3, 3) has zero differences when we go cyclically. The
undetermined constant c is exactly like the + C' that we add to integrals. The cyclic dif-
ferences cycle around to z; — z3 in the first component, instead of starting from zq = 0.
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The more likely possibility for Cx = b is no solution x at all:

T — T3 1 Left sides add to 0
Cx=b To—x1 | = | 3 Right sides add to 9 (13)
T3 — To 5 No solution x1, x5, T3

Look at this example geometrically. No combination of w, v, and w* will produce the
vector b = (1,3,5). The combinations don’t fill the whole three-dimensional space.
The right sides must have b; + by + bs = 0 to allow a solution to Cx = b, because
the left sides ©; — x3, 2 — 1, and 3 — x2 always add to zero. Put that in different words :

All linear combinations z1u + zov + z3w* lie on the plane given by b; + by + b = 0.
This subject is suddenly connecting algebra with geometry. Linear combinations can fill all

of space, or only a plane. We need a picture to show the crucial difference between u, v, w
(the first example) and u, v, w™ (all in the same plane).

Figure 1.10: Independent vectors u, v, w. Dependent vectors w, v, w™ in a plane.

Independence and Dependence

Figure 1.10 shows those column vectors, first of the matrix A and then of C'. The first two
columns u and v are the same in both pictures. If we only look at the combinations of
those two vectors, we will get a two-dimensional plane. The key question is whether the
third vector is in that plane:

Independence w is not in the plane of w and v.
Dependence  w™ is in the plane of w and v.

The important point is that the new vector w™ is a linear combination of w and v:

ut+v+w =0 w" = 0| =—-u—w. (14)
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All three vectors u, v, w* have components adding to zero. Then all their combinations
will have b; + by + b3 = 0 (as we saw above, by adding the three equations). This is the
equation for the plane containing all combinations of v and v. By including w* we get
no new vectors because w* is already on that plane.

The original w = (0,0, 1) is not on the plane: 0 + 0 + 1 % 0. The combinations of
u, v, w fill the whole three-dimensional space. We know this already, because the solution
x = A~'b in equation (6) gave the right combination to produce any b.

The two matrices A and C, with third columns w and w*, allowed me to mention two
key words of linear algebra: independence and dependence. The first half of the course will
develop these ideas much further—I am happy if you see them early in the two examples:

u, v, w are independent. No combination except Ou + 0v + Ow = 0 gives b = 0.
u, v, w* are dependent. Other combinations like © + v + w™* give b = 0.

You can picture this in three dimensions. The three vectors lie in a plane or they don’t.
Chapter 2 has n vectors in n-dimensional space. Independence or dependence is the key
point. The vectors go into the columns of an n by n matrix:

Independent columns: Az = 0 has one solution. A is an invertible matrix.

Dependent columns: Cz = 0 has many solutions. C' is a singular matrix.

Eventually we will have n vectors in m-dimensional space. The matrix A with those n
columns is now rectangular (m by n). Understanding Ax = b is the problem of Chapter 3.

® REVIEW OF THE KEY IDEAS =

1. Matrix times vector: Ax = combination of the columns of A.
2. The solution to Az = bis x = A~!b, when A is an invertible matrix.

3. The cyclic matrix C' has no inverse. Its three columns lie in the same plane.
Those dependent columns add to the zero vector. C'x = 0 has many solutions.

4. This section is looking ahead to key ideas, not fully explained yet.

® WORKED EXAMPLES =

1.3 A Change the southwest entry as; of A (row 3, column 1) to ag; = 1:

1 00 z1 z1 by
Az =b -1 1 0 X2 = —I1 + X9 = | by
1 -1 1 z3 T1 — Ty + 13 b3

Find the solution x for any b. From = = A~'b read off the inverse matrix A~!.
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Solution Solve the (linear triangular) system Az = b from top to bottom:

first x1 =0 1 0 0
then xo = b1 + by This saysthatx = A~'b=| 1 1 0 Lo )
then xr3 = b2 —+ b3 0 1 1

This is good practice to see the columns of the inverse matrix multiplying b1, ba, and bs.
The first column of A~! is the solution for b = (1,0, 0). The second column is the solution
for b = (0,1,0). The third column  of A~! is the solution for Az = b = (0,0,1).

The three columns of A are still independent. They don’t lie in a plane. The combi-
nations of those three columns, using the right weights x1, x2, x3, can produce any three-
dimensional vector b = (b, ba, b3). Those weights come from x = A~ b,

1.3 B This F is an elimination matrix. F has a subtraction and £~! has an addition.
. by | T . 1 0|x _ 1 0
b=Fx [b2:|_|:$2"~€331}_|:*£ 1:‘{172 b= —£ 1

The first equation is 1 = b;. The second equation is o — £1 = bse. The inverse will add
£by to by, because the elimination matrix subtracted :

el 1| | b - 1 0]|b; 1 1 0
e=E"b LJ—{ebﬁbJ—[ ¢ 1“@ E7=1 01

1.3 C Change C from a cyclic difference to a centered difference producing x3 — z7:

0 1 0 T o — 0 by
Cx=0b -1 0 1 o | = a3 —x1 | = | by |. (15)
0 -1 0 T3 0 — 9 b3

Cz = b can only be solved when b; + b3 = a» — 2 = 0. That is a plane of vectors b
in three-dimensional space. Each column of C is in the plane, the matrix has no inverse.
So this plane contains all combinations of those columns (which are all the vectors Cx).

I included the zeros so you could see that this C' produces “centered differences”.
Row i of Cxc is z;41 (right of center) minus z;_1 (left of center). Here is 4 by 4:

o T Dl I oot B
Centered N Tp | _ |3 —w | _ | b2 (16)
differences 0 -1 01 3 T4 — T2 b3

0 0 -1 0] | 0 — 3 by

Surprisingly this matrix is now invertible! The first and last rows tell you x5 and x3.
Then the middle rows give z; and z4. It is possible to write down the inverse matrix c-1L
But 5 by 5 will be singular (not invertible) again . . .
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Problem Set 1.3

1

2

3

4

5

6

Find the linear combination 3s; + 485 + 583 = b. Then write b as a matrix-vector
multiplication S, with 3,4, 5 in . Compute the three dot products (row of S) - x:

1 0 0
s1=1|1 so= 1|1 ss = | 0 | gointo the columns of S.
1 1 1

Solve these equations Sy = b with s1, s, s3 in the columns of S

1007w 1 1007 [wm 1
1 1 0| |w|=|1]and|1 1 0]]|w]|=]4
11 1]y 1 11 1] ys 9

S is a sum matrix. The sum of the first 5 odd numbers is

Solve these three equations for y1, 2, y3 in terms of ¢y, c2, c3:

1 0 0 Y1 C1
Sy=c 110 Yo | = | ¢
1 11 Y3 C3

Write the solution y as a matrix A = S~! times the vector c. Are the columns of S
independent or dependent?

Find a combination z;w; + z2ws + z3ws that gives the zero vector with 3 = 1:

1 4 7
wi = 2 w2 = 5 w3 = 8
3 6 9

Those vectors are (independent) (dependent). The three vectors lie in a
The matrix W with those three columns is not invertible.

The rows of that matrix W produce three vectors (I write them as columns):

1 2 3
r = 4 To = 5 T3 = 6
7 8 9

Linear algebra says that these vectors must also lie in a plane. There must be many
combinations with y171 + y272 + y373 = 0. Find two sets of y’s.

Which numbers ¢ give dependent columns so a combination of columns equals zero ?
¢ ¢ c | maybe
2 1 5 always
3 3 6

1
2
4 independent for ¢ # 0?

-3 w
o = O
O ==
=)
= O 0
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If the columns combine into Az = O then each of the rows has r - & = 0:

T 0 X 0
a, az as zo | =10 Byrows | rocxz | = | 0
T3 0 T3 X 0

The three rows also lie in a plane. Why is that plane perpendicular to x?

Moving to a 4 by 4 difference equation Ax = b, find the four components z;, z2,
x3, 24. Then write this solution as = A~ b to find the inverse matrix :

1 0 0 0 x1 b1
/-1 1 00 z2 | | b2 |
Az 0 =1 1 0| |as| |bs| ="
0 0 -1 1 24 b4

What is the cyclic 4 by 4 difference matrix C' ? It will have 1 and —1 in each row and
each column. Find all solutions = (z1, 22, z3, z4) to Cx = 0. The four columns
of C lie in a “three-dimensional hyperplane” inside four-dimensional space.

A forward difference matrix A is upper triangular:

-1 1 0 21 Z9 — 21 by
Az = 0 -1 1 zZ2 = zZ3 — 22 = bg =b.
0 0 -1 zZ3 0— zZ3 b3

Find 21, 22, 23 from by, by, b3. What is the inverse matrix in 2 = A~1 b?

Show that the forward differences (¢t + 1)2 — t? are 2t+1 = odd numbers.
As in calculus, the difference (¢ + 1)™ — ¢™ will begin with the derivative of ¢™,
which is

The last lines of the Worked Example say that the 4 by 4 centered difference matrix
in (16) is invertible. Solve Cx = (b1, ba, b3, bs) to find its inverse in x = C~1 b.

Challenge Problems

The very last words say that the 5 by 5 centered difference matrix is not invertible.
Write down the 5 equations Cx = b. Find a combination of left sides that gives
zero. What combination of by, bo, b3, b4, b5 must be zero? (The 5 columns lie on a
“4-dimensional hyperplane” in 5-dimensional space. Hard to visualize.)

If (a, b) is a multiple of (¢, d) with abed # 0, show that (a, ) is a multiple of (b, d).
This is surprisingly important; two columns are falling on one line. You could use
numbers first to see how a, b, ¢, d are related. The question will lead to:

If [ i g ] has dependent rows, then it also has dependent columns.



Chapter 2

Solving Linear Equations

2.1 Vectors and Linear Equations

( The column picture of Az = b: a combination of n columns of A produces the vector b. \

\6When b = 0, all the planes (row ¢) - ¢ = 0 go through the center point = (0,0, ...

2 This is a vector equation Ax = z1a; + - - -+ x,a, = b: the columns of A are a1, as, ..., a,.
3 When b = 0, a combination Az of the columns is zero : one possibility is = (0, ..., 0).

4 The row picture of Az = b : m equations from m rows give m planes meeting at x.

5 A dot product gives the equation of each plane: (row 1) - © = by, ..., (row m) « © = by,.

,0)./

The central problem of linear algebra is to solve a system of equations. Those equations

are linear, which means that the unknowns are only multiplied by numbers—we never see
z times y. Our first linear system is small. But you will see how far it leads:

Two equations r — 2y 1

Two unknowns 3z + 2y = 11 1)

We begin a row at a time. The first equation £ — 2y = 1 produces a straight line in the
zy plane. The point z = 1,y = 0 is on the line because it solves that equation. The point
x = 3,y = 1 is also on the line because 3 — 2 = 1. If we choose x = 101 we find y = 50.

The slope of this particular line is %, because y increases by 1 when x changes by 2.
But slopes are important in calculus and this is linear algebra!

Figure 2.1 will show that first line  — 2y = 1. The second line in this “row picture”
comes from the second equation 3z + 2y = 11. You can’t miss the point x = 3,y = 1
where the two lines meet. That point (3, 1) lies on both lines and solves both equations.

31
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A 3z+2y =11

-2y =1

el
o+
%;

-~

Figure 2.1: Row picture: The point (3, 1) where the lines meet solves both equations.

ROWS The row picture shows two lines meeting at a single point (the solution).

Turn now to the column picture. I want to recognize the same linear system as a “vector
equation”. Instead of numbers we need to see vectors. If you separate the original system
into its columns instead of its rows, you get a vector equation:

. 1 -2 1
Combination equals b z [ 3 } +vy [ 9 } = [ 1 } =b. )
This has two column vectors on the left side. The problem is to find the combination of
those vectors that equals the vector on the right. We are multiplying the first column by
2 and the second column by ¥, and adding. With the right choices z = 3 and y = 1 (the
same numbers as before), this produces 3 (column I) + 1 (column 2) = b.

COLUMNS The column picture combines the column vectors on the left side to
produce the vector b on the right side.

Figure 2.2 is the “column picture” of two equations in two unknowns. The first part
shows the two separate columns, and that first column multiplied by 3. This multiplication
by a scalar (a number) is one of the two basic operations in linear algebra:

Scalar multiplication 3 { é } = [ g } .
If the components of a vector v are v; and vy, then cv has components cv; and cva.
The other basic operation is vector addition. We add the first components and the
second components separately. The vector sum is (1, 11), the desired vector b.
- 3 -2 | 1
Vector addition [ 9 ] + { 9 } = { 1 ] .

The right side of Figure 2.2 shows this addition. Two vectors are in black. The sum along
the diagonal is the vector b = (1, 11) on the right side of the linear equations.
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i
3 = 3 (column 1) C
3(column 1) + 1(column 2) =b , |

column 2 ,
T 1 — column 1 K ]
[—2} L7 13 [—2} D

Figure 2.2: Column picture: A combination of columns produces the right side (1, 11).

To repeat: The left side of the vector equation is a linear combination of the columns.
The problem is to find the right coefficients x = 3 and y = 1. We are combining scalar
multiplication and vector addition into one step. That step is crucially important, because
it contains both of the basic operations: Multiply by 3 and 1, then add.

. ML 1 —2 il
Linear combination 3 [ 3 ] - [ 9 ] = [ 1 ] :

Of course the solution z = 3,y = 1 is the same as in the row picture. I don’t know
which picture you prefer ! I suspect that the two intersecting lines are more familiar at first.
You may like the row picture better, but only for one day. My own preference is to combine
column vectors. It is a lot easier to see a combination of four vectors in four-dimensional
space, than to visualize how four hyperplanes might possibly meet at a point. (Even one

hyperplane is hard enough. . .)
The coefficient matrix on the left side of the equations is the 2 by 2 matrix A:

Coefficient matrix A= [ ;’ _3 ] .

This is very typical of linear algebra, to look at a matrix by rows and by columns. Its rows
give the row picture and its columns give the column picture. Same numbers, different
pictures, same equations. We combine those equations into a matrix problem Ax = b:

Matrix equation 1 -2 z | | 1
Az =b 3 11|



34 Chapter 2. Solving Linear Equations

The row picture deals with the two rows of A. The column picture combines the columns.
The numbers z = 3 and y = 1 go into . Here is matrix-vector multiplication:

Dot products with rows Sl S 1 -2
Combination of columns 23 3 2

Looking ahead This chapter is going to solve n equations in n unknowns (for any n).
I am not going at top speed, because smaller systems allow examples and pictures and a
complete understanding. You are free to go faster, as long as matrix multiplication and
inversion become clear. Those two ideas will be the keys to invertible matrices.

I can list four steps to understanding elimination using matrices.

1. Elimination goes from A to a triangular U by a sequence of matrix steps Fj;.

2. The triangular system is solved by back substitution: working bottom to top.
3. In matrix language A is factored into LU = (lower triangular) (upper triangular).

4. Elimination succeeds if A is invertible. (But it may need row exchanges.)

The most-used algorithm in computational science takes those steps (MATLAB calls it lu).
Its quickest form is backslash: @ = A\ b. But linear algebra goes beyond square invertible
matrices! For m by n matrices, Az = 0 may have many solutions. Those solutions will
go into a vector space. The rank of A leads to the dimension of that vector space.

All this comes in Chapter 3, and I don’t want to hurry. But I must get there.

Three Equations in Three Unknowns

The three unknowns are x, y, z. We have three linear equations:

xr + 2y + 3z = 6
Ax=0»b 2c 4+ b5y + 2z = 4 3)
6z — 3y + 2z = 2

We look for numbers x, y, z that solve all three equations at once. Those desired numbers
might or might not exist. For this system, they do exist. When the number of unknowns
matches the number of equations, in this case 3 = 3, there is usually one solution.

Before solving the problem, we visualize it both ways:

ROW The row picture shows three planes meeting at a single point.

COLUMN The column picture combines three columns to produce b = (6,4, 2).

In the row picture, each equation produces a plane in three-dimensional space. The first
plane in Figure 2.3 comes from the first equation = + 2y + 3z = 6. That plane crosses the ©
and y and z axes at the points (6,0, 0) and (0,3,0) and (0, 0, 2). Those three points solve
the equation and they determine the whole plane.
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The vector (z,y,z) = (0,0, 0) does not solve z + 2y + 3z = 6. Therefore that plane
does not contain the origin. The plane x + 2y + 3z = 0 does pass through the origin, and it
is parallel to z + 2y + 3z = 6. When the right side increases to 6, the parallel plane moves
away from the origin.

The second plane is given by the second equation 2x + 5y + 2z = 4. It intersects the
first plane in a line L. The usual result of two equations in three unknowns is a line L of
solutions. (Not if the equations were  + 2y + 3z = 6 and z + 2y + 32 = 0.)

The third equation gives a third plane. It cuts the line L at a single point. That point
lies on all three planes and it solves all three equations. It is harder to draw this triple
intersection point than to imagine it. The three planes meet at the solution (which we
haven’t found yet). The column form will now show immediately why z = 2.

z 4

line L L

0

Solution | 0

L L 2
y — )

plane x +2y +3z=6 3rd plane 6x —3y +z=2
plane 2z + 5y + 2z =4

x X

(0,0, 2) is on all three planes

Figure 2.3: Row picture: Two planes meet at a line L. Three planes meet at a point.

The column picture starts with the vector form of the equations Ax = b:

1 2 3 6
Combine columns x| 2 | +y 5|+z|2|=|4]|=b 4
6 -3 1 2

The unknowns are the coefficients z, y, z. We want to multiply the three column vectors
by the correct numbers z, y, z to produce b = (6, 4, 2).

Figure 2.4 shows this column picture. Linear combinations of those columns can pro-
duce any vector b! The combination that produces b = (6,4, 2) is just 2 times the third
column. The coefficients we need are x = 0, y = 0, and z = 2.

The three planes in the row picture meet at that same solution point (0, 0, 2):

1 2 3 6
02|40 S| +2| 2 |=|4
6 -3 1 2

Correct combination
(z,y,2) = (0,0,2)
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1
2 | = column 1
6
3
/ . 2
! 5 | = column 2
6 -3
2 times column 3is b = | 4
2

Figure 2.4: Column picture: Combine the columns with weights (z,y, z) = (0,0, 2).

The Matrix Form of the Equations

We have three rows in the row picture and three columns in the column picture (plus the
right side). The three rows and three columns contain nine numbers. These nine numbers
fill a 3 by 3 matrix A:

1 2 3
The “coefficient matrix” in Ax =bis A=| 2 5 2
6 -3 1

The capital letter A stands for all nine coefficients (in this square array). The letter
b denotes the column vector with components 6,4, 2. The unknown x is also a column
vector, with components z,y, z. (We use boldface because it is a vector,  because it is
unknown.) By rows the equations were (3), by columns they were (4), and by matrices they
are (5):

1 2 3 T 6
Matrix equation Ax = b 2 5 2 y | =|41. &)
6 -3 1 z 2

Basic question: What does it mean to “multiply A times x’’? We can multiply by rows
or by columns. Either way, Az = b must be a correct statement of the three equations.
You do the same nine multiplications either way.

Multiplication by rows Ax comes from dot products, each row times the column x:
(rowl) - x

Az = | (row2) - x |. (6)
(row3) - x
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Multiplication by columns | Ax is a combination of column vectors:

Ax =2z (column 1)+ y (column 2)+ z (column 3). (7)

When we substitute the solution = (0, 0, 2), the multiplication Ax produces b:

1 2 3 0 6
2 5 2 0 | =2times column3 = | 4
6 -3 1 2 2

The dot product from the first row is (1,2,3) « (0,0,2) = 6. The other rows give dot
products 4 and 2. This book sees Ax as a combination of the columns of A.

Example 1 Here are 3 by 3 matrices A and I = identity, with three 1’s and six 0’s :

1 00 4 4 1 00 4 4
Az=|1 0 0 5 | =14 Iz=|0 1 0 5| =15
1 00 6 4 0 01 6 6

If you are a row person, the dot product of (1,0, 0) with (4,5, 6) is 4. If you are a column
person, the linear combination A« is 4 times the first column (1, 1,1). In that matrix A,
the second and third columns are zero vectors.

The other matrix [ is special. It has ones on the “main diagonal”. Whatever vector
this matrix multiplies, that vector is not changed. This is like multiplication by 1, but for
matrices and vectors. The exceptional matrix in this example is the 3 by 3 identity matrix :

1 00
I={0 10 always yields the multiplication [x = x.
0 01

Matrix Notation

The first row of a 2 by 2 matrix contains a;; and a;2. The second row contains az; and
ag2. The first index gives the row number, so that a;; is an entry in row 7. The second index
7 gives the column number. But those subscripts are not very convenient on a keyboard !
Instead of a,;; we type A(4, j). The entry as7 = A(5,7) would be in row 5, column 7.

SERINE:

a21 Aa22

For an m by n matrix, the row index 7 goes from 1 to m. The column index j stops at n.
There are mn entries a;; = A(i, j). A square matrix of order n has n? entries.
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Multiplication in MATLAB

I want to express A and « and their product Az using MATLAB commands. This is a first
step in learning that language (and others). I begin by defining A and . A vector « in R"
is an n by 1 matrix (as in this book). Enter matrices a row at a time, and use a semicolon
to signal the end of a row. Or enter by columns and transpose by ’ :

A=[1 2 3; 2 5 2; 6 —3 1]
z=[0 0 2] or ==[0;0;2]

Here are three ways to multiply Az in MATLAB. In reality, A * x is the good way to do it.
MATLAB is a high level language, and it works with matrices:

Matrix multiplication b= Axx

We can also pick out the first row of A (as a smaller matrix !). The notation for that
3 by 3 submatrix is A(1,:). Here the colon symbol : keeps all columns of row 1.

Rowatatime b=[A(1,:)*xx; A(2,:)*x; A(3,:) *xx]

Each entry of b is a dot product, row times column, 1 by 3 matrix times 3 by 1 matrix.

The other way to multiply uses the columns of A. The first column is the 3 by 1
submatrix A(:,1). Now the colon symbol : comes first, to keep all rows of column 1.
This column multiplies (1) and the other columns multiply z(2) and z(3):

Columnatatime b= A(:,1)*z(1)+ A(:,2)*x(2) + A(:,3) *z(3)

I think that matrices are stored by columns. Then multiplying a column at a time will be a
little faster. So A * x is actually executed by columns.

Programming Languages for Mathematics and Statistics

Here are five more important languages and their commands for the multiplication Ax :

Julia Axx julialang.org

Python dot(A, x) python.org

R A%+« % x r-project.org
Mathematica A.x wolfram.com/mathematica
Maple Axax maplesoft.com

Julia, Python, and R are free and open source languages. R is developed particularly for
applications in statistics. Other software for statistics (SAS, JMP, and many more)
is described on Wikipedia’s Comparison of Statistical Packages.

Mathematica and Maple allow symbolic entries a, b, z, ... and not only real numbers.
As in MATLAB’s Symbolic Toolbox, they work with symbolic expressions like z? — .
The power of Mathematica is seen in Wolfram Alpha.
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Julia combines the high productivity of SciPy or R for technical computing with per-
formance comparable to C or Fortran. It can call Python and C/Fortran libraries. But it
doesn’trely on “vectorized” library functions for speed; Julia is designed to be fast.

I entered juliabox.org. I clicked Sign in via Google to access my gmail space. Then
I clicked new at the right and chose a Julia notebook. I chose 0.4.5 and not one under
development. The Julia command line came up immediately.

As a novice, I computed 1 + 1. To see the answer I pressed Shift+Enter. 1 also
learned that 1.0 4 1.0 uses floating point, much faster for a large problem. The website
math.mit.edu/linearalgebra will show part of the power of Julia and Python and R.

Python is a popular general-purpose programming language. When combined with
packages like NumPy and the SciPy library, it provides a full-featured environment for
technical computing. NumPy has the basic linear algebra commands. Download the Ana-
conda Python distribution from https://www.continuum.io (a prepackaged collection of
Python and most important mathematical libraries, with a graphical installer).

R is free software for statistical computing and graphics. To download and install R, go
to r-project.org (prefix https://www.). Commands are prompted by > and R is a scripted
language. It works with lists that can be shaped into vectors and matrices.

It is important to recommend RStudio for editing and graphing (and help resources).
When you download from www.RStudio.com, a window opens for R commands—plus
windows for editing and managing files and plots. Tell R the form of the matrix as well as
the list of numerical entries:

> A = matrix (¢(1,2,3,2,5,2,6,—3,1), nrow = 3, byrow = TRUE)

> x = matrix (c(0,0,2), nrow =3)

To see A and z, type their names at the new prompt >. To multiply type b = A% * % .
Transpose by t(A) and use as.matrix to turn a vector into a matrix.

MATLAB and Julia have a cleaner syntax for matrix computations than R. But R has
become very familiar and widely used. The website for this book has space for proper
demos (including the Manipulate command) of MATLAB and Julia and Python and R.

® REVIEW OF THE KEY IDEAS =

1. The basic operations on vectors are multiplication cv and vector addition v + w.
2. Together those operations give linear combinations cv + dw.

3. Matrix-vector multiplication Az can be computed by dot products, a row at a time.
But Ax must be understood as a combination of the columns of A.

4. Column picture: Az = b asks for a combination of columns to produce b.

5. Row picture: Each equation in Az = b gives a line (n = 2) or a plane (n = 3)
or a “hyperplane” (n > 3). They intersect at the solution or solutions, if any.
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® WORKED EXAMPLES =

2.1 A Describe the column picture of these three equations Az = b. Solve by careful
inspection of the columns (instead of elimination):
T+3y+22=-3 1 3 2| |z -3
2x 4+ 2y +2z=—-2 whichis 2 2 2| |yl =1|-2
3z + 5y +6z2=-5 3 5 6] |z -5
Solution  The column picture asks for a linear combination that produces b from the
three columns of A. In this example b is minus the second column. So the solution is
xz =0,y = —1,z = 0. To show that (0, —1,0) is the only solution we have to know that
“A is invertible” and “the columns are independent” and “the determinant isn’t zero.”
Those words are not yet defined but the test comes from elimination: We need
(and for this matrix we find) a full set of three nonzero pivots.
Suppose the right side changes to b = (4,4, 8) = sum of the first two columns. Then
the good combination has z = 1,y = 1, z = 0. The solution becomes = = (1, 1,0).

2.1 B This system has no solution. The planes in the row picture don’t meet at a point.
No combination of the three columns produces b. How to show this ?

z+3y+5z=4 1 3 5 T 4
T+2y—3z2=5 1 2 -3 y|=|5]|=b
2c+5y+22=28 2 5 2 z 8

Idea Add (equation 1) + (equation 2) — (equation 3). The result is 0 = 1. This system
cannot have a solution. We could say: The vector (1,1, —1) is orthogonal to all three
columns of A but not orthogonal to b.

(1) Are any two of the three planes parallel? What are the equations of planes parallel to
x4+ 3y +5z=47

(2) Take the dot product of each column of A (and also b) with y = (1,1,—1).
How do those dot products show that no combination of columns equals b?

(3) Find three different right side vectors b* and b** and b*** that do allow solutions.

Solution
(1) The planes don’t meet at a point, even though no two planes are parallel. For a plane
parallel to x + 3y + 5z = 4, change the “4”. The parallel plane = + 3y + 5z = 0
goes through the origin (0,0,0). And the equation multiplied by any nonzero con-
stant still gives the same plane, as in 2z + 6y + 10z = 8.

(2) The dot product of each column of A with y = (1,1, —1) is zero. On the right side,
y-b=(1,1,-1)-(4,5,8) = 1is not zero. Az = bled to 0 = 1: no solution.

(3) There is a solution when b is a combination of the columns. These three choices of
b have solutions including * = (1,0,0) and ** = (1,1, 1) and *** = (0,0, 0):

1 9 0
b* = |1| = firstcolumn b = [0| = sumofcolumns b** = |0
2 9 0
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Problem Set 2.1

Problems 1-8 are about the row and column pictures of Az = b.

1

With A = I (the identity matrix) draw the planes in the row picture. Three sides of
a box meet at the solution z = (z,y, z) = (2,3, 4):

lz + 0y + 0z =2 1 0 0] |z 2
0z 4+ 1y+0z=3 or 01 0f |y|l=13
Oz +0y+1z2=4 0 0 1| |z 4

Draw the vectors in the column picture. Two times column 1 plus three times column
2 plus four times column 3 equals the right side b.

If the equations in Problem 1 are multiplied by 2, 3, 4 they become DX = B:

20 +0y+0z2=4 2 0 0f |z 4
0z+3y+0z=9 or DX =10 3 0| |y|l=]|9|=B
Oz +0y +4z =16 0 0 4] |z 16

Why is the row picture the same? Is the solution X the same as ? What is changed
in the column picture—the columns or the right combination to give B?

If equation 1 is added to equation 2, which of these are changed: the planes in the
row picture, the vectors in the column picture, the coefficient matrix, the solution?
The new equations in Problem 1 wouldbe z = 2,z +y = 5, 2 = 4.

Find a point with z = 2 on the intersection line of the planes z + y + 3z = 6 and
x — Yy + z = 4. Find the point with z = 0. Find a third point halfway between.

The first of these equations plus the second equals the third:

z+ y+ z2=2
T+2y+ z2=3
2z 4+ 3y +2z2=5.
The first two planes meet along a line. The third plane contains that line, because

if x,y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions on L.

Move the third plane in Problem 5 to a parallel plane 2z + 3y + 2z = 9. Now the
three equations have no solution—why not? The first two planes meet along the line
L, but the third plane doesn’t that line.

In Problem 5 the columns are (1,1, 2) and (1,2, 3) and (1, 1,2). This is a “singular
case” because the third column is . Find two combinations of the columns that
give b = (2, 3,5). This is only possible for b = (4,6, ¢c) if c =
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8 Normally 4 “planes” in 4-dimensional space meet at a ___ . Normally 4 col-
umn vectors in 4-dimensional space can combine to produce b. What combination
of (1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1) produces b = (3,3,3,2)? What 4
equations for z, y, z, t are you solving?

Problems 9-14 are about multiplying matrices and vectors.

9 Compute each Az by dot products of the rows with the column vector:
L2 472 Lo 1o
(@ |-2 3 1| |2 (b)
41 2|13 01 2 1|1
0 0 1 2|2

10 Compute each Ax in Problem 9 as a combination of the columns:

1 2 4
9(a)becomes Ax =2 |—2| +2|3|+3|1| =
—4 1 2

How many separate multiplications for Az, when the matrix is “3 by 3”?

11 Find the two components of Az by rows or by columns:
3
2 3|14 and 3 6 2 and 1 2 4 1
5 1) |2 6 12] [-1] " |2 0 1]

12 Multiply A times x to find three components of Ax:

0 0 1] |z 21 3 1 2 1 1
01 0] |y and 1 2 3 1 and 1 2 [1] .
1 0 0] |= 3 3 6] |—-1 3 3 ‘
13 (a) A matrix with m rows and n columns multiplies a vector with compo-
nents to produce a vector with ____ components.

(b) The planes from the m equations Az = b are in -dimensional space.
The combination of the columns of A is in -dimensional space.

14 Write 2+ 3y + z + 5t = 8 as a matrix A (how many rows?) multiplying the column
vector = (z,y, 2,t) to produce b. The solutions « fill a plane or “hyperplane”
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 15-22 ask for matrices that act in special ways on vectors.

15 (a) What s the 2 by 2 identity matrix? I times [ | equals [ ].
(b) What is the 2 by 2 exchange matrix? P times [;] equals [i]
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16

17

18

19

20

21

22

23

24

25

(a) What 2 by 2 matrix R rotates every vector by 90°? R times [?] is [ y} .

—X

(b) What 2 by 2 matrix R? rotates every vector by 180°?

Find the matrix P that multiplies (z,y, z) to give (y, z, ). Find the matrix @ that
multiplies (y, z, x) to bring back (z, y, ).

What 2 by 2 matrix F subtracts the first component from the second component?
What 3 by 3 matrix does the same?

3 3
E {3} = [3} and E |5 =12
5 2 7

What 3 by 3 matrix E multiplies (z,y, z) to give (z,y, z + z)? What matrix £~}
multiplies (z,y, z) to give (z,y,z — 2)? If you multiply (3,4,5) by F and then
multiply by E~1, the two results are ( ) and ( ).

What 2 by 2 matrix P; projects the vector (z,y) onto the z axis to produce (z,0)?
What matrix P, projects onto the y axis to produce (0,y)? If you multiply (5,7)
by P and then multiply by P, you get ( ) and ( ).

What 2 by 2 matrix R rotates every vector through 45°? The vector (1,0) goes to
(v/2/2,/2/2). The vector (0, 1) goes to (—v/2/2,1/2/2). Those determine the
matrix. Draw these particular vectors in the 2y plane and find R.

Write the dot product of (1,4,5) and (x,y, z) as a matrix multiplication Axz. The
matrix A has one row. The solutions to Az = 0 lie on a perpendicular to the
vector . The columns of A are only in -dimensional space.

In MATLAB notation, write the commands that define this matrix A and the column
vectors « and b. What command would test whether or not Ax = b?

SIE R

The MATLAB commands A = eye(3) and v = [3:5]/ produce the 3 by 3 identity
matrix and the column vector (3,4,5). What are the outputs from Axv and v/ sv?
(Computer not needed!) If you ask for v«A, what happens?

If you multiply the 4 by 4 all-ones matrix A = ones(4) and the column v = ones(4,1),
what is Axv? (Computer not needed.) If you multiply B = eye(4) + ones(4) times
w = zeros(4,1) + 2xones(4,1), what is Bxw?
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Questions 26-28 review the row and column pictures in 2, 3, and 4 dimensions.

26  Draw the row and column pictures for the equations z — 2y = 0, z + y = 6.

27  For two linear equations in three unknowns z, y, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lieona __

28  Forfourlinear equationsin two unknowns z and y, the row picture shows four ___
The column picture is in -dimensional space. The equations have no solution
unless the vector on the right side is a combination of

29  Start with the vector ug = (1,0). Multiply again and again by the same “Markov
matrix” A = [.8 .3; .2.7]. The next three vectors are w1, ug, Us:

8 3|1 .8
= [.2 .7} M = [2} wp=Au=__ uz=Adup=___
What property do you notice for all four vectors wg, u1, w2, us?
Challenge Problems

30 Continue Problem 29 from ug = (1,0) to uz, and also from vy = (0,1) to vr.
What do you notice about u; and v7? Here are two MATLAB codes, with while and
for. They plot ug to w7 and vg to v7. You can use other languages:

u=[1;0;A=[8.3;.2.7]; v=[0;1);A=[8.3;.2.7];
x=u;k=[0:7]; x=Vv;k=[0:7];
while size(x,2) <=7 forj=1:7
u = Axu; x =[x u]; vV =Axv; X =[x V];
end end
plot(k, x) plot(k, x)

The u’s and v’s are approaching a steady state vector s. Guess that vector and check
that As = s. If you start with s, you stay with s.

31 Invent a 3 by 3 magic matrix M3 with entries 1,2,...,9. All rows and columns
and diagonals add to 15. The first row could be 8, 3,4. What is M3 times (1,1,1)?
What is M, times (1,1,1,1) if a 4 by 4 magic matrix has entries 1, ..., 16?

32  Supposeu and v are the first two columns of a 3 by 3 matrix A. Which third columns
w would make this matrix singular? Describe a typical column picture of Az = b
in that singular case, and a typical row picture (for a random b).



2.1. Vectors and Linear Equations 45

33

34

35

Multiplication by A is a “linear transformation”. Those words mean:

If w is a combination of u and v, then Aw is the same combination of Au and Av.

It is this “linearity” Aw = cAu + dAwv that gives us the name “linear algebra”.

Problem: If u = [ é } and v = [ ? ] then Au and Av are the columns of A.

Combine w = cu + dv. If w = { = } how is Aw connected to Au and Av ?

7
Start from the four equations —x;4+; + 2z; — ;1 = ¢ (for ¢ = 1,2,3,4 with
xp = x5 = 0). Write those equations in their matrix form Az = b. Can you solve
them for z1, z9, x3, 24?7

A 9 by 9 Sudoku matrix S has the numbers 1, ..., 9 in every row and every column,
and in every 3 by 3 block. For the all-ones vector = (1,...,1), whatis Sx?

A better question is: Which row exchanges will produce another Sudoku matrix?
Also, which exchanges of block rows give another Sudoku matrix?

Section 2.7 will look at all possible permutations (reorderings) of the rows. I can see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows?
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2.2 The Idea of Elimination

1 For m = n = 3, there are three equations Az = b and three unknowns =1, 2, T3. \
2 The first two equations are a;1x1 + -+ = by and ag121 + -+ = ba.

3 Multiply the first equation by as1/a11 and subtract from the second : then x; is eliminated.

4 The corner entry aq; is the first “pivot” and the ratio as; /a1; is the first “multiplier.”

5 Eliminate x; from every remaining equation ¢ by subtracting a;1 /a1 times the first equation.

6 Now the last n — 1 equations contain n — 1 unknowns s, ..., Z,. Repeat to eliminate 2.

{Elimination breaks down if zero appears in the pivot. Exchanging two equations may save id

This chapter explains a systematic way to solve linear equations. The method is called
“elimination”, and you can see it immediately in our 2 by 2 example. Before elimination,
z and y appear in both equations. After elimination, the first unknown z has disappeared
from the second equation 8y = 8:

x—2y =1 =1 (multiply equation 1 by 3)
Before 3x+2y=11 After =8 (subtract to eliminate 3x)

The new equation 8y = 8 instantly gives y = 1. Substituting y = 1 back into the first
equation leaves z — 2 = 1. Therefore z = 3 and the solution (z,y) = (3,1) is complete.

Elimination produces an upper triangular system—this is the goal. The nonzero
coefficients 1, —2,8 form a triangle. That system is solved from the bottom upwards—
first y = 1 and then z = 3. This quick process is called back substitution. 1t is used for
upper triangular systems of any size, after elimination gives a triangle.

Important point: The original equations have the same solution x = 3 and y = 1.
Figure 2.5 shows each system as a pair of lines, intersecting at the solution point (3, 1).
After elimination, the lines still meet at the same point. Every step worked with correct
equations.

How did we get from the first pair of lines to the second pair? We subtracted 3 times
the first equation from the second equation. The step that eliminates z from equation 2 is
the fundamental operation in this chapter. We use it so often that we look at it closely:

To eliminate x : Subtract a multiple of equation 1 from equation 2.
Three times z — 2y = 1 gives 3z — 6y = 3. When this is subtracted from 3z + 2y = 11,

the right side becomes 8. The main point is that 3z cancels 3z. What remains on the left
side is 2y — (—6y) or 8y, and z is eliminated. The system became triangular.
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Ask yourself how that multiplier £ = 3 was found. The first equation contains 1z.
So the first pivot was 1 (the coefficient of x). The second equation contains 3z, so the
multiplier was 3. Then subtraction 3z — 3z produced the zero and the triangle.

You will see the multiplier rule if I change the first equation to 4z — 8y = 4. (Same
straight line but the first pivot becomes 4.) The correct multiplier is now ¢ = %. To find the
multiplier, divide the coefficient “ 3" to be eliminated by the pivot “4”: -

4x -8y =4 Multiply equation 1 by % 4x —8y|=4
3x+2y =11 Subtract from equation 2 8y|= 8.

The final system is triangular and the last equation still gives y = 1. Back substitution
produces 4x — 8 = 4 and 4z = 12 and x = 3. We changed the numbers but not the lines
or the solution. Divide by the pivot to find that multiplier £ = %:

Pivot = first nonzero in the row that does the elimination
Multiplier = (entry to eliminate) divided by (pivot) = %.

The new second equation starts with the second pivot, which is 8. We would use it to
eliminate y from the third equation if there were one. 7o solve n equations we want n
pivots. The pivots are on the diagonal of the triangle after elimination.

You could have solved those equations for x and y without reading this book. It is an
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system,
elimination might break down. By understanding the possible breakdown (when we can’t
find a full set of pivots), you will understand the whole process of elimination.

y
A 3x+2y=11

) After elimination

8y =38

=3
x—2y=1
> X 1 I > X

Before elimination

x—2y=1

\
p

=

Figure 2.5: Eliminating  makes the second line horizontal. Then 8y = 8 gives y = 1.

1

Breakdown of Elimination

Normally, elimination produces the pivots that take us to the solution. But failure is possi-
ble. At some point, the method might ask us to divide by zero. We can’t do it. The process
has to stop. There might be a way to adjust and continue—or failure may be unavoidable.

Example 1 fails with no solution to 0y = 8. Example 2 fails with too many solutions to
Oy = 0. Example 3 succeeds by exchanging the equations.
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first 1
column | 3

/
Columns don’t combine to give b = [1 i]

column |_g

second [—2}

Figure 2.6: Row picture and column picture for Example 1: no solution.

Example 1  Permanent failure with no solution. Elimination makes this clear:

r—2y=1 Subtract 3 times r—2y=1
3z —6y =11 eqn. 1 fromeqn.2 0y = 8.

There is no solution to Oy = 8. Normally we divide the right side 8 by the second pivot,
but this system has no second pivot. (Zero is never allowed as a pivot!) The row and
column pictures in Figure 2.6 show why failure was unavoidable. If there is no solution,
elimination will discover that fact by reaching an equation like Oy = 8.

The row picture of failure shows parallel lines—which never meet. A solution must lie
on both lines. With no meeting point, the equations have no solution.

The column picture shows the two columns (1,3) and (—2, —6) in the same direction.
All combinations of the columns lie along a line. But the column from the right side is in
a different direction (1,11). No combination of the columns can produce this right side—
therefore no solution.

When we change the right side to (1, 3), failure shows as a whole line of solution points.
Instead of no solution, next comes Example 2 with infinitely many.

Example 2  Failure with infinitely many solutions. Change b = (1,11) to (1, 3).

r—2y=1  Subtract 3 times rT—-2y=1 Still only
3r—6y=3 eqn.1 from eqn. 2 0y = 0. one pivot.

Every y satisfies Oy = 0. There is really only one equation z — 2y = 1. The unknown y is
“free”. After y is freely chosen, x is determined as z = 1 + 2y.
In the row picture, the parallel lines have become the same line. Every point on that
line satisfies both equations. We have a whole line of solutions in Figure 2.7.
In the column picture, b = (1, 3) is now the same as column 1. So we can choose z = 1
1

and y = 0. We can also choose z = 0 and y = —3; column 2 times —% equals b. Every

(x,y) that solves the row problem also solves the column problem.
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1
right hand side [3]

lies on the line of columns

Same line from both equations
T Solutions all along this line

1 1
E(second column) = — [ 3]

Figure 2.7: Row and column pictures for Example 2: infinitely many solutions.

Failure For n equations we do not get n pivots
Elimination leads to an equation 0 # 0 (no solution) or 0 = 0 (many solutions)

Success comes with n pivots. But we may have to exchange the n equations.

Elimination can go wrong in a third way—but this time it can be fixed. Suppose the first
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation
has no term involving z, we can exchange it with an equation below:

Example 3  Temporary failure (zero in pivot). A row exchange produces two pivots:

0z+2y=4  Exchange the 3z=2y =5

Permutation .
3r—2y=>5  twoequations 2y = 4.

The new system is already triangular. This small example is ready for back substitution.
The last equation gives y = 2, and then the first equation gives z = 3. The row picture is
normal (two intersecting lines). The column picture is also normal (column vectors not in
the same direction). The pivots 3 and 2 are normal—but a row exchange was required.
Examples 1 and 2 are singular—there is no second pivot. Example 3 is nonsingular—
there is a full set of pivots and exactly one solution. Singular equations have no solution or
infinitely many solutions. Pivots must be nonzero because we have to divide by them.

Three Equations in Three Unknowns

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three
is enough to see the pattern. For now the matrices are square—an equal number of rows
and columns. Here is a 3 by 3 system, specially constructed so that all elimination steps
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lead to whole numbers and not fractions:
20 +4y —22=2
dr+9y —32 =38 (1)
—2x—-3y+72=10
What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want

to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by
¢91 = 2 and subtract. Subtraction removes the 4z from the second equation:

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4.

We also eliminate —2x from equation 3—still using the first pivot. The quick way is to add
equation 1 to equation 3. Then 2z cancels —2x. We do exactly that, but the rule in this book
is to subtract rather than add. The systematic pattern has multiplier ¢3; = —2/2 = —1.
Subtracting —1 times an equation is the same as adding:

Step 2 Subtract —1 times equation 1 from equation 3. This leaves y + 5z = 12.
The two new equations involve only y and z. The second pivot (in boldface) is 1:
T ly+1lz=4
x is eliminated 1y +5z =12

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1:

Step 3 Subtract equation 2pew from 3pew. The multiplier is 1/1 = 1. Then 4z = 8.

The original Az = b has been converted into an upper triangular Uz = c:

2e+4y — 22 =2 Ax =b 2 +4y —2z2=2
dx+9y —32=8 has become ly+1z=14 2)
—2z —3y+7z=10 Uz=c 4z =8.

The goal is achieved—forward elimination is complete from A to U. Notice the pivots
2,1, 4 along the diagonal of U. The pivots 1 and 4 were hidden in the original system.
Elimination brought them out. Uz = c is ready for back substitution, which is quick:

(4z=8 gives 2=2) (y+z=4 gives y=2) (equationl gives z = —1)

The solution is (z,y,z) = (—1,2,2). The row picture has three planes from three equa-
tions. All the planes go through this solution. The original planes are sloping, but the last
plane 4z = 8 after elimination is horizontal.

The column picture shows a combination Az of column vectors producing the right
side b. The coefficients in that combination are —1, 2, 2 (the solution):

2 4 —2 2
Ar=(-1)| 4| +2| 9| +2|-3| equals | 8| =b. 3)
—2 -3 7 10

The numbers z, y, z multiply columns 1, 2, 3 in Az = b and also in the triangular Uz = c.
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Elimination from A to U

For a 4 by 4 problem, or an n by n problem, elimination proceeds in the same way. Here is
the whole idea, column by column from A to U, when Gaussian elimination succeeds.

Column 1. Use the first equation to create zeros below the first pivot.
Column 2. Use the new equation 2 to create zeros below the second pivot.

Columns 3 to n. Keep going to find all n pivots and the upper triangular U .

r T x T T T T T
After column 2 we have U We want & & o )

0 0 =z =z T T

0 0 z = -

The result of forward elimination is an upper triangular system. It is nonsingular if there
is a full set of n pivots (never zero!). Question: Which z on the left won’t be changed
in elimination because the pivot is known? Here is a final example to show the original
Az = b, the triangular system Uz = ¢, and the solution (z, y, z) from back substitution:

z+ y+ z=6 z+y+z==6 x 3 Back
r+2y+2z=9  Forward y+z=3 yl =12 Back
z+2y+32z=10 Forward z=1 z 1

All multipliers are 1. All pivots are 1. All planes meet at the solution (3, 2, 1). The columns
of A combine with 3,2, 1 to give b = (6,9, 10). The triangle shows Uz = ¢ = (6, 3, 1).

= REVIEW OF THE KEY IDEAS =

1. A linear system (Axz = b) becomes upper triangular (Ux = ¢) after elimination.
2. We subtract /;; times equation j from equation ¢, to make the (4, j) entry zero.

__entry to eliminate in row §

3. The multiplier is £;; = DIVOUI TOW ] . Pivots can not be zero!

4. When zero is in the pivot position, exchange rows if there is a nonzero below it.
5. The upper triangular Uz = c s solved by back substitution (starting at the bottom).

6. When breakdown is permanent, Az = b has no solution or infinitely many.
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® WORKED EXAMPLES =

22 A When elimination is applied to this matrix A, what are the first and second pivots?
What is the multiplier ¢5; in the first step ({2; times row 1 is subtracted from row 2)?

1 10 1
A=|1 2 1| — |0
0 1 2

What entry in the 2,2 position (instead of 2) would force an exchange of rows 2 and 3?
Why is the lower left multiplier £3; = 0, subtracting zero times row 1 from row 3?
If you change the corner entry from ass = 2 to ass = 1, why does elimination fail?

Solution  The first pivotis 1. The multiplier £9; is 1, 1. When 1 times row 1 is subtracted
from row 2, the second pivot is revealed as another 1. If the original middle entry had been
1 instead of 2, that would have forced a row exchange.

The multiplier /3; is zero because az; = 0. A zero at the start of a row needs no
elimination. This A is a “band matrix”. Everything stays zero outside the band.

The last pivotis also 1. So if the original corner entry ass = 2 reduced by 1, elimination
would produce 0. No third pivot, elimination fails.

22 B Suppose A is already a triangular matrix (upper triangular or lower triangular).
Where do you see its pivots? When does Az = b have exactly one solution for every b?

Solution  The pivots of a triangular matrix are already set along the main diagonal. Elim-
ination succeeds when all those numbers are nonzero. Use back substitution when A is
upper triangular, go forward when A is lower triangular.

2.2C  Use elimination to reach upper triangular matrices U. Solve by back substitution
or explain why this is impossible. What are the pivots (never zero)? Exchange equations
when necessary. The only difference is the —z in the last equation.

Success T+y+z="7 Failure z+y+z="7
T+y—2z=5 T+y—2=35
T—y+z=3 —r—y+z=3

Solution  For the first system, subtract equation 1 from equations 2 and 3 (the multipliers
are {57 = 1 and £37 = 1). The 2, 2 entry becomes zero, so exchange equations 2 and 3

c+yt+z= 7 z+y+z= 7
Success Oy — 2z = -2 exchangesinto —2y+0z=—4
—2y+0z=-4 —2z=-2

Then back substitution gives z = 1 and y = 2 and z = 4. The pivots are 1, —2, —2.
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For the second system, subtract equation 1 from equation 2 as before. Add equation 1
to equation 3. This leaves zero in the 2, 2 entry and also below:

T+y+z= 7 There is no pivot in column 2 (it was — column 1)
Failure Oy — 2z =-2 A further elimination step gives 0z = 8
Oy +2z= 10 The three planes don’t meet

Plane 1 meets plane 2 in a line. Plane 1 meets plane 3 in a parallel line. No solution.
If we change the “3” in the original third equation to “—5” then elimination would lead
to 0 = 0. There are infinitely many solutions! The three planes now meet along a whole line.
Changing 3 to —5 moved the third plane to meet the other two. The second equation
gives z = 1. Then the first equation leaves x +y = 6. No pivot in column 2 makes y free
(free variables can have any value). Thenz = 6 — y.

Problem Set 2.2

Problems 1-10 are about elimination on 2 by 2 systems.
1 What multiple Z2; of equation 1 should be subtracted from equation 2?

2r+3y=1
10z + 9y = 11.

After elimination, write down the upper triangular system and circle the two pivots.
The numbers 1 and 11 don’t affect the pivots—use them now in back substitution.

2 Solve the triangular system of Problem 1 by back substitution, y before z. Verify
that  times (2, 10) plus y times (3,9) equals (1, 11). If the right side changes to
(4,44), what is the new solution?

3 What multiple of equation 1 should be subtracted from equation 2?
20 —4y =6
—x+ 5y =0.

After this elimination step, solve the triangular system. If the right side changes to
(—6,0), what is the new solution?

4 What multiple ¢ of equation 1 should be subtracted from equation 2 to remove ¢ ?

ax+by=f
cx+dy=g.

The first pivot is a (assumed nonzero). Elimination produces what formula for the
second pivot ? What is ¢ ? The second pivot is missing when ad = bc: singular.



54

10

Chapter 2. Solving Linear Equations

Choose a right side which gives no solution and another right side which gives
infinitely many solutions. What are two of those solutions?

3z 42y =10

Singular system 6z + Ay =

Choose a coefficient b that makes this system singular. Then choose a right side g
that makes it solvable. Find two solutions in that singular case.

2z + by =16
4z + 8y =g.

For which numbers a does elimination break down (1) permanently (2) temporarily?

ax + 3y = -3
4z 4+ 6y = 6.

Solve for z and y after fixing the temporary breakdown by a row exchange.

For which three numbers k does elimination break down? Which is fixed by a row
exchange? In each case, is the number of solutions 0 or 1 or co?

kx+3y= 6
3z + ky = —6.

What test on b; and by decides whether these two equations allow a solution? How
many solutions will they have? Draw the column picture for b = (1, 2) and (1, 0).

3x—2y="b
6z — 4y = bo.

In the zy plane, draw the lines £ +y = 5 and £+ 2y = 6 and the equationy =
that comes from elimination. The line 5z — 4y = ¢ will go through the solution of
these equations if ¢ =

Problems 11-20 study elimination on 3 by 3 systems (and possible failure).

11

(Recommended) A system of linear equations can’t have exactly two solutions. Why ?

(a) If (z,y, z) and (X, Y, Z) are two solutions, what is another solution?

(b) If 25 planes meet at two points, where else do they meet?
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12

13

14

15

16

17

18

Reduce this system to upper triangular form by two row operations:

204+3y+ z= 8
dx+ Ty + 52 =20
—2y+2z= 0.

Circle the pivots. Solve by back substitution for 2, y, .
Apply elimination (circle the pivots) and back substitution to solve
2z — 3y =3

dr —dy+ 2=17
20 — y—3z=5.

List the three row operations: Subtract times row from row

Which number d forces a row exchange, and what is the triangular system (not sin-
gular) for that d? Which d makes this system singular (no third pivot)?

20 +5y+2=0
dr+dy+z=2
y—z=3.

Which number b leads later to a row exchange? Which b leads to a missing pivot? In
that singular case find a nonzero solution z, v, 2.

T+ by =0
r—2y—z=0
y+2z2=0.

(a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks
down later.

If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange)? If columns 1 and 2 are the same, which pivot is missing?

Equal 2z — y+2=0 2¢4+2y+2=0 Equal
rows 2z—y+z=0 4dr+4y+2=0 columns
de4+y+2=2 6z + 6y + 2z = 2.

Construct a 3 by 3 example that has 9 different coefficients on the left side, but
rows 2 and 3 become zero in elimination. How many solutions to your system with
b = (1,10, 100) and how many with b = (0,0,0)?
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20

21

22

23
24
25

26

27
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Which number ¢ makes this system singular and which right side ¢ gives it infinitely
many solutions? Find the solution that has z = 1.

r4+4y—2z=1
x4+ Ty—62=06
3y+qz=t.

Three planes can fail to have an intersection point, even if no planes are parallel.
The system is singular if row 3 of Aisa ___ of the first two rows. Find a third
equation that can’t be solved together withz +y + z=0andz — 2y — 2 = 1.

Find the pivots and the solution for both systems (Axz = b and K« = b):

2r+ vy =0 2 — y =0
rc+2y+ 2z =0 —x4+2y— =z =0
y+22+ t=0 - y+2z2— t=0
z+2t=5 — z+2t=5.

If you extend Problem 21 following the 1, 2, 1 pattern or the —1, 2, —1 pattern, what
is the fifth pivot? What is the nth pivot? K is my favorite matrix.

If elimination leads to  + y = 1 and 2y = 3, find three possible original problems.
For which two numbers a will elimination fail on A = [2 2]?

aa

For which three numbers a will elimination fail to give three pivots?

a 2 3
A= | a a 4| issingular for three values of a.
aa a

Look for a matrix that has row sums 4 and 8, and column sums 2 and s:

Matrix — | ¢ b a+b=4 a+c=2
e d c+d=8 bt+d=s
The four equations are solvable only if s = . Then find two different matrices

that have the correct row and column sums. Extra credit: Write down the 4 by 4
system Az = b with ¢ = (a, b, ¢, d) and make A triangular by elimination.

Elimination in the usual order gives what matrix U and what solution to this “lower
triangular” system? We are really solving by forward substitution:

3z =3

6z + 2y =38
9z — 2y +2=09.
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28

29

30

31

32

Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3 times row
1 from the existing row 2 if the matrix A is already known.

Challenge Problems

Find experimentally the average 1st and 2nd and 3rd pivot sizes from MATLAB ’s
[L,U] = lu(rand (3)). The average size abs (U(1, 1)) is above 1 because lu picks
the largest available pivot in column 1. Here A = rand (3) has random entries
between 0 and 1.

If the last corner entry is A(5,5) = 11 and the last pivot of A is U(5,5) = 4, what
different entry A(5,5) would have made A singular?

Suppose elimination takes A to U without row exchanges. Then row j of U is a
combination of which rows of A? If Ax = 0,isUx = 0? If Ax = b,is Uz = b?
If A starts out lower triangular, what is the upper triangular U?

Start with 100 equations Az = 0 for 100 unknowns « = (z1,...,Z100). Suppose
elimination reduces the 100th equation to O = 0, so the system is “singular”.

(a) Elimination takes linear combinations of the rows. So this singular system has
the singular property: Some linear combination of the 100 rows is

(b) Singular systems Az = 0 have infinitely many solutions. This means that some
linear combination of the 100 columns is

(c) Inventa 100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and the column picture of
Ax = 0. Not necessary to draw 100-dimensional space.
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2.3 Elimination Using Matrices

1 The first step multiplies the equations Az = b by a matrix E9; to produce Ep1 Az = E21b. \
2 That matrix E9; A has a zero in row 2, column 1 because z; is eliminated from equation 2.

3 E»; is the identity matrix (diagonal of 1’s) minus the multiplier ag; /@11 in row 2, column 1.

4 Matrix-matrix multiplication is n matrix-vector multiplications: EA = [Ea; ... Eay].

5 We must also multiply Eb! So E is multiplying the augmented matrix [Ab] = [a@; ... a, b].

6 Elimination multiplies Az = bby Fsq, F31, ..., En1,then Esg, Eyo, ... , E,2, and onward.

(The row exchange matrix is not F;; but F;;. To find P;;, exchange rows 4 and j of I. /

This section gives our first examples of matrix multiplication. Naturally we start with
matrices that contain many zeros. Our goal is to see that matrices do something. E acts on
a vector b or a matrix A to produce a new vector Eb or a new matrix FA.

Our first examples will be “elimination matrices.” They execute the elimination steps.
Multiply the 5" equation by ¢;; and subtract from the i*" equation. (This eliminates
z; from equation ¢.) We need a lot of these simple matrices E;;, one for every nonzero
to be eliminated below the main diagonal.

Fortunately we won’t see all these matrices F;; in later chapters. They are good exam-
ples to start with, but there are too many. They can combine into one overall matrix F that
takes all steps at once. The neatest way is to combine all their inverses (E;;) ™! into one
overall matrix L = E~!. Here is the purpose of the next pages.

1. To see how each step is a matrix multiplication.
2. To assemble all those steps F;; into one elimination matrix E.

3. To see how each E;; is inverted by its inverse matrix E;l
4. To assemble all those inverses Ez; ! (in the right order) into L.

The special property of L is that all the multipliers ¢;; fall into place. Those numbers
are mixed up in £ (forward elimination from A to U). They are perfect in L (undoing
elimination, returning from U to A). Inverting puts the steps and their matrices E; Lin the
opposite order and that prevents the mixup.

This section finds the matrices E;;. Section 2.4 presents four ways to multiply matrices.
Section 2.5 inverts every step. (For elimination matrices we can already see £;; ! here.)
Then those inverses go into L.
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Matrices times Vectors and Az = b

The 3 by 3 example in the previous section has the short form Az = b:

201 +4xo — 223 = 2 2 4 -2 1 2
4r1 + 920 —3x3 = 8  isthe same as 4 9 =3 zo | =1 8. ()
—2x1 — 3x92 + 723 =10 -2 -3 7 xs3 10

The nine numbers on the left go into the matrix A. That matrix not only sits beside x.
A multiplies x. The rule for “A times x” is exactly chosen to yield the three equations.

Review of A times x. A matrix times a vector gives a vector. The matrix is square when
the number of equations (three) matches the number of unknowns (three). Our matrix is
3 by 3. A general square matrix is 7 by n. Then the vector @ is in n-dimensional space.

T -1 ]
The unknownis x = |xo and the solutionis x = | 2
I3 2

J

Key point: Az = b represents the row form and also the column form of the equations.

2 4 -2 2
Columnform Az=(-1)| 4|+2]| 9| +2|-3|=| 8| =b. (2
= -3 7 10

Awx is a combination of the columns of A. To compute each component of Ax, we use the
row form of matrix multiplication. Components of Ax are dot products with rows of A.
The short formula for that dot product with  uses “sigma notation”.

The first component of Ax aboveis (—1)(2) + (2)(4) + (2)(—2).
The ith component of Az is (row i) - @ = a;121 + aia%a + *+* + AinTn.
This is sometimes written with the sigma symbol as Z?:l a;;T;.

3" is an instruction to adl. Start with j = 1 and stop with j = n. The sum
begins with a;1z; and ends with a;n, z,. That produces the dot product (row i) - x.

One point to repeat about matrix notation: The entry in row 1, column 1 (the top left
corner) is a;;. The entry in row 1, column 3 is a;3. The entry in row 3, column 1 is ag;.
(Row number comes before column number.) The word “entry” for a matrix corresponds
to “component” for a vector. General rule: a;; = A(%, j) is in row 1, column j.

Example 1  This matrix has a;; = 27 + j. Then a;; = 3. Also a;2 = 4 and a1 = 5.
Here is Az by rows with numbers and letters:

3 4| (2] _[3-2+4-1 a1 a2 | |Z1| _ |a11%1 + a1222
5 6| (1] [5-246-1 as1 age | |®2 | |a21zi + agexa |’

A row times a column gives a dot product.

'Einstein shortened this even more by omitting the ) . The repeated j in a;;z;

automatically meant addition. He also wrote the sum as alz;. Not being Einstein, we
include the ).
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The Matrix Form of One Elimination Step

Ax = b is a convenient form for the original equation. What about the elimination steps ?
In this example, 2 times the first equation is subtracted from the second equation. On
the right side, 2 times the first component of b is subtracted from the second component.

2 2
First step b=| 8 changesto bpew = | 4
10 10

We want to do that subtraction with a matrix! The same result bpew = Eb is achieved
when we multiply an “elimination matrix” E times b. It subtracts 2b; from bs:

1 0 0
The elimination matrixis F = (-2 1 0
0 0 1

Multiplication by E subtracts 2 times row 1 fromrow 2. Rows 1 and 3 stay the same:

1 0 0 2 2 1 0 0] |b1 b1
-2 1 0 8| =1 4 —2 1 0] |b2| =]|bz—2bs
0 0 1} 10 10 0 0 1 bs bs

The first and third rows of £ come from the identity matrix /. They don’t change the first
and third numbers (2 and 10). The new second component is the number 4 that appeared
after the elimination step. This is by — 2b;.

It is easy to describe the “elementary matrices” or “elimination matrices” like this E.
Start with the identity matrix I. Change one of its zeros to the multiplier —¥¢:

The identity matrix has 1’s on the diagonal and otherwise 0’s. Then Ib = b for all b.
The elementary matrix or elimination matrix E;; has the extra nonzero entry —/
in the ¢, j position. Then E;; subtracts a multiple £ of row j from row .

Example 2 The matrix F3; has —Z in the 3, 1 position:

1 0 0 1 0 0
Identity /=10 1 0 Elimination FE5; =] 0 1 0
0 0 1 —-£ 0 1

When you multiply [ times b, you get b. But F3; subtracts ¢ times the first component
from the third component. With ¢ = 4 this example gives 9 —4 = 5:

1 0 0| (1 1 1 0 O0f]1 1
Ib=|0 1 0f |3|=13 and Eb=| 0 1 0| 3] =3
0 0 1]1]9 9 -4 0 1|19 5
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What about the left side of Az = b? Both sides will be multiplied by this Fs;.
The purpose of Es is to produce a zero in the (3, 1) position of the matrix.

The notation fits this purpose. Start with A. Apply E’s to produce zeros below the
pivots (the first F'is Eo7). End with a triangular U. We now look in detail at those steps.

First a small point. The vector x stays the same. The solution « is not changed by
elimination. (That may be more than a small point.) It is the coefficient matrix that is
changed. When we start with Az = b and multiply by F, the result is EAx = FEb.
The new matrix E'A is the result of multiplying E times A.

Confession The elimination matrices E;; are great examples, but you won’t see them
later. They show how a matrix acts on rows. By taking several elimination steps, we
will see how to multiply matrices (and the order of the E’s becomes important). Products
and inverses are especially clear for E’s. It is those two ideas that the book will use.

Matrix Multiplication

The big question is: How do we multiply two matrices? When the first matrix is F,
we know what to expect for £ A. This particular F subtracts 2 times row 1 from row 2.
The multiplier is £ = 2:

1 0 0 2 4 -2 2 4 -2
FA=1|-2 1 0 4 9 -3|=0 1 1 (with the zero). (3)
o 0 1| (-2 -3 7 -2 -3 7

This step does not change rows 1 and 3 of A. Those rows are unchanged in £ A—only
row 2 is different. Twice the first row has been subtracted from the second row. Matrix
multiplication agrees with elimination—and the new system of equations is FAx = Eb.

E Az is simple but it involves a subtle idea. Start with Az = b. Multiplying both
sides by E gives E(Ax) = Eb. With matrix multiplication, this is also (FA)xz = Eb.

The first was E times Ax, the second is £'A times x. They are the same.

Parentheses are not needed. We just write £ Ax.

That rule extends to a matrix C' with several column vectors. When multiplying EAC,
you can do AC first or E'A first. This is the point of an “associative law” like 3 x (4 x 5) =
(3 x 4) x 5. Multiply 3 times 20, or multiply 12 times 5. Both answers are 60. That law
seems so clear that it is hard to imagine it could be false.

The “commutative law” 3 x 4 = 4 x 3 looks even more obvious. But E'A is usually
different from AE. When F multiplies on the right, it acts on the columns of A—not
the rows. AFE actually subtracts 2 times column 2 from column 1. So FA # AE.

Associative law is true A(BC) = (AB)C
Commutative law is false Often AB # BA
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There is another requirement on matrix multiplication. Suppose B has only one column
(this column is b). The matrix-matrix law for EB should agree with the matrix-vector
law for Eb. Even more, we should be able to multiply matrices EB a column at a time:

If B has several columns by, by, bs, then the columns of EB are Eb,, Eby, Ebs.

Matrix multiplication AB = Aby by bs] = [Ab; Aby Abg]. 4

This holds true for the matrix multiplication in (3). If you multiply column 3 of A by
E, you correctly get column 3 of F'A:

1 0 0f[-2 -2
-2 1 0| |-3|=|1 E(column j of A) = column j of FA.
0 0 1 7 7

This requirement deals with columns, while elimination is applied to rows. The next
section describes each entry of every product AB. The beauty of matrix multiplication
is that all three approaches (rows, columns, whole matrices) come out right.

The Matrix P;; for a Row Exchange

To subtract row j from row ¢ we use E;;. To exchange or “permute” those rows we use
another matrix F;; (a permutation matrix). A row exchange is needed when zero is in the
pivot position. Lower down, that pivot column may contain a nonzero. By exchanging the
two rows, we have a pivot and elimination goes forward.

What matrix P»3 exchanges row 2 with row 3? We can find it by exchanging rows of
the identity matrix I:

Permutation matrix P3 =

OO =
= o O
O = O

This is a row exchange matrix. Multiplying by P»3 exchanges components 2 and 3 of any
column vector. Therefore it also exchanges rows 2 and 3 of any matrix:

1 00 1 1 1 0 0] (2 4 1 2 4 1
00 1]|3] =15 and 0 0 1{]0 0 3[=1]0 6 5
0 1 0] 1|5 3 0 1 0[]0 6 5 0 0 3

On the right, P»3 is doing what it was created for. With zero in the second pivot position
and “6” below it, the exchange puts 6 into the pivot.
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Matrices act. They don’t just sit there. We will soon meet other permutation matrices,
which can change the order of several rows. Rows 1, 2, 3 can be moved to 3, 1, 2. Our Po3
is one particular permutation matrix—it exchanges rows 2 and 3.

Row Exchange Matrix P;; is the identity matrix with rows ¢ and j reversed.
When this “permutation matrix” P;; multiplies a matrix, it exchanges rows ¢ and j.

To exchange equations 1 and 3 multiply by P35 = [El)) g é} .

Usually row exchanges are not required. The odds are good that elimination uses only
the I;;. But the P;; are ready if needed, to move a pivot up to the diagonal.

The Augmented Matrix

This book eventually goes far beyond elimination. Matrices have all kinds of practical
applications, in which they are multiplied. Our best starting point was a square F times a
square A, because we met this in elimination—and we know what answer to expect for £ A.
The next step is to allow a rectangular matrix. It still comes from our original equations,
but now it includes the right side b.

Key idea: Elimination does the same row operations to A and to b. We can include
b as an extra column and follow it through elimination. The matrix A is enlarged or
“augmented” by the extra column b:

2 4 -2 2
Augmented matrix [Ab] =4 9 -3 8
-2 -3 7 10

Elimination acts on whole rows of this matrix. The left side and right side are both mul-
tiplied by F, to subtract 2 times equation 1 from equation 2. With [A b] those steps
happen together:

1 0 0 2 4 -2 2
-2 1 0 4 9 -3 8|=|0 1 1 4
0o o0 1f|-2 -3 7 10 -2 =3 7 10

The new second row contains 0, 1, 1,4. The new second equation is x5 + 3 = 4. Matrix
multiplication works by rows and at the same time by columns:

ROWS Eachrowof E actson [A b]togivearowof [EA Eb].
COLUMNS FE acts on each column of [A b] to give a column of [EA Eb].
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Notice again that word “acts.” This is essential. Matrices do something! The matrix
A acts on  to produce b. The matrix E operates on A to give FFA. The whole process of
elimination is a sequence of row operations, alias matrix multiplications. A goes to Fp; A
which goes to F3; Eo1 A. Finally F39 F31 Eo1 A is a triangular matrix.

The right side is included in the augmented matrix. The end result is a triangular system
of equations. We stop for exercises on multiplication by E, before writing down the rules
for all matrix multiplications (including block multiplication).

= REVIEW OF THE KEY IDEAS =

1. Az = x; times column 1 + - - - + z;, times column 7. And (Ax); = Z?Zl

Qi Tj.
2. Identity matrix = I, elimination matrix = £;; using 4;;, exchange matrix = F;;.

3. Multiplying Az = b by Fs; subtracts a multiple ¢2; of equation 1 from equation 2.
The number —/5; is the (2, 1) entry of the elimination matrix Fs;.

4. For the augmented matrix [A b] , that elimination step gives [EZlA Fy1b ]

5. When A multiplies any matrix B, it multiplies each column of B separately.

= WORKED EXAMPLES =

23 A What 3 by 3 matrix Fs; subtracts 4 times row 1 from row 2?7 What matrix Pso
exchanges row 2 and row 3? If you multiply A on the right instead of the left, describe the
results AF5; and AP35.

Solution By doing those operations on the identity matrix I, we find

1 0 0 1 0 0
E21 = —4 1 0 and P32 = 0 0 1
0 0 1 01 0

Multiplying by Fs; on the right side will subtract 4 times column 2 from column 1.
Multiplying by P35 on the right will exchange columns 2 and 3.

23 B  Write down the augmented matrix [A b] with an extra column:

T+2y+2z=1
4r+8y+9z2=3
3y+2z=1

Apply E5; and then Psg to reach a triangular system. Solve by back substitution. What
combined matrix P3o F5; will do both steps at once?
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Solution  Ep; removes the 4 in column 1. But zero also appears in column 2:

1 2 21 1 2 2 1
[A bj=]4 8 9 3 and Enfd bj=[0 0 1 -1
03 21 0 3 2 1
Now P33 exchanges rows 2 and 3. Back substitution produces z then y and x
1 2 2 1 T 1
P32 E21 [A b] = 0 3 2 1 and yl = 1
001 -1 z -1
For the matrix P39 5 that does both steps at once, apply P32 to Eo;.
One matrix P3g Eoy = hange the rows of Ey; = é 8 (1)
Both steps 30 E'21 = exchange the row 21 = o

2.3 C  Multiply these matrices in two ways. First, rows of A times columns of B.
Second, columns of A times rows of B. That unusual way produces two matrices that
add to AB. How many separate ordinary multiplications are needed?

3 4 9 4 10 16
Both ways AB=1|1 5 [1 1] = 9
2 0 4 8

Solution  Rows of A times columns of B are dot products of vectors:

(row 1) - (column 1) = [3 4] [ﬂ =10  isthe(1,1) entry of AB

(row 2) - (column 1) = [1 5] [ﬂ =7 is the (2, 1) entry of AB

We need 6 dot products, 2 multiplications each, 12 in all (3 - 2 - 2). The same AB comes
from columns of A times rows of B. A column times a row is a matrix.

3] [2 4] [4] [t 1] 6 12 4 4
AB= |1 +15 =|2 4|+|5 5
2 0 4 8 00
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Problem Set 2.3

Problems 1-15 are about elimination matrices.

1

Write down the 3 by 3 matrices that produce these elimination steps:

(a) FE5; subtracts 5 times row 1 from row 2.
(b) FE35 subtracts —7 times row 2 from row 3.
(c) P exchangesrows 1 and 2, then rows 2 and 3.
In Problem 1, applying E5; and then Es35 to b = (1,0,0) gives E3F1b =

Applying E3, before Eg; gives Fo1 F3b = . When E35 comes first,
row feels no effect from row

Which three matrices Es1, E31, F39 put A into triangular form U?

1 1 0
A= 4 6 1 and E32E31E21A =U.
-2 2 0

Multiply those E’s to get one matrix M that does elimination: M A = U.

Include b = (1,0, 0) as a fourth column in Problem 3 to produce [A b]. Carry out
the elimination steps on this augmented matrix to solve Az = b.

Suppose azs = 7 and the third pivot is 5. If you change ass to 11, the third pivot is
. If you change a33 to , there is no third pivot.

If every column of A is a multiple of (1,1, 1), then Ax is always a multiple of
(1,1,1). Do a 3 by 3 example. How many pivots are produced by elimination?

Suppose E subtracts 7 times row 1 from row 3.

(a) To invert that step you should ___ 7 times row to row
(b) What “inverse matrix” E£~! takes that reverse step (so E~'E = I)?
(c) If the reverse step is applied first (and then E) show that EE~! = .

The determinant of M = [28] is det M = ad — bc. Subtract ¢ times row 1

from row 2 to produce a new M*. Show that det M* = det M for every £. When
¢ = c/a, the product of pivots equals the determinant: (a)(